WO2020118825A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2020118825A1
WO2020118825A1 PCT/CN2019/071017 CN2019071017W WO2020118825A1 WO 2020118825 A1 WO2020118825 A1 WO 2020118825A1 CN 2019071017 W CN2019071017 W CN 2019071017W WO 2020118825 A1 WO2020118825 A1 WO 2020118825A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic insulating
display panel
insulating layer
grooves
Prior art date
Application number
PCT/CN2019/071017
Other languages
English (en)
French (fr)
Inventor
汪衎
夏存军
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/464,268 priority Critical patent/US10741633B2/en
Publication of WO2020118825A1 publication Critical patent/WO2020118825A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of displays, and in particular, to a display panel and a method of manufacturing a display panel, which reduces the risk of breakage of a bendable connection area between a display area and a non-display area of the display panel.
  • An organic light emitting diode (OLED) display panel includes a main display area (including pixels, touch electrodes, etc.), surrounding non-display areas (including gate drive circuits, patterned interconnection circuits, etc.), and Display control module. And the two need to be connected by wires arranged in the connection area. In order to achieve the purpose of the narrow border of the OLED display panel, at present, the wire area is generally bent, so that the surrounding non-display area is placed below the main display area, and the distance between the main display area and the OLED device border is shortened.
  • each layer component for example, the wire layer
  • each layer component for example, the wire layer
  • An object of the present invention is to provide a display panel and a method of manufacturing a display panel, which reduces the risk of breakage of a flexible connection area between a display area and a non-display area of the display panel.
  • the present invention provides a display panel having a display area, a non-display area, and a bendable connection area, the bendable connection area is located between the display area and the non-display area And connect the display area to the non-display area, the display panel includes:
  • An inorganic insulating layer disposed on the substrate, wherein in the bendable connection area, a plurality of grooves are defined in the inorganic insulating layer, and the plurality of grooves form a pattern;
  • An organic filling layer a plurality of grooves filled in the inorganic insulating layer, wherein the organic filling layer in each groove has a concave arc surface;
  • the layer forms a corresponding concave arc surface according to the concave arc surface of the organic filling layer.
  • the portion of the inorganic insulating layer without the groove is formed with a flat surface on the wire layer.
  • the display panel further includes: an organic protective layer disposed on the wire layer in the bendable connection area to cover the wire layer.
  • the surface of the inorganic insulating layer at the pattern exhibits hydrophilicity or hydrophobicity.
  • the material of the inorganic insulating layer is selected from the group consisting of SiNx, SiOxNy and SiOx.
  • the cross-sectional pattern of each of the plurality of grooves is a rectangle, a trapezoid, an inverted trapezoid, or a parallelogram.
  • the horizontal pattern of each of the plurality of grooves is a hole, a polygon, or a groove.
  • the material of the organic filler layer is selected from the group consisting of epoxy resin polymers and acrylic resin polymers.
  • the material of the wire layer is selected from the group consisting of Al, Ti, Cu, ITO and IZO.
  • the thickness of the organic filling layer at the edges of the plurality of grooves is greater than the thickness of the organic filling layer at the center of the plurality of grooves.
  • the cross-sectional pattern of the organic filling layer in the plurality of grooves is a crescent shape.
  • the display panel has a display area, a non-display area, and a flexible connection area.
  • the flexible connection area is located between the display area and the display area. Between the non-display area and connecting the display area to the non-display area, the method includes the following steps:
  • the inorganic insulating layer forms a plurality of grooves in the bendable connection area, and the plurality of grooves form a pattern;
  • a wire layer is provided on the inorganic insulating layer, and covers the inorganic insulating layer and the organic filling layer in the plurality of grooves, wherein all the layers on the organic filling layer in each groove
  • the lead layer is formed with a corresponding concave arc surface according to the concave arc surface of the organic filling layer.
  • the portion of the inorganic insulating layer without the groove is formed with a flat surface on the wire layer.
  • the method further includes steps after step (S50):
  • the method further includes steps after step (S30) and before step (S40):
  • the material of the inorganic insulating layer is selected from the group consisting of SiNx, SiOxNy and SiOx.
  • the cross-sectional pattern of each of the plurality of grooves is a rectangle, a trapezoid, an inverted trapezoid, or a parallelogram.
  • the horizontal pattern of each of the plurality of grooves is a hole, a polygon, or a groove.
  • the material of the organic filler layer is selected from the group consisting of epoxy resin polymers and acrylic resin polymers.
  • the material of the wire layer is selected from the group consisting of Al, Ti, Cu, ITO and IZO.
  • the thickness of the organic filling layer at the edges of the plurality of grooves is greater than the thickness of the organic filling layer at the center of the plurality of grooves.
  • the cross-sectional pattern of the organic filling layer in the plurality of grooves is a crescent shape.
  • the step (30) includes: forming a plurality of grooves in the inorganic insulating layer in the bendable connection region by a photolithography process, the plurality of The groove forms the pattern.
  • the step (S40) includes: filling the organic filling layer in the plurality of grooves in the inorganic insulating layer by an inkjet printing process, wherein the The organic filling layer in each groove has an arcuate surface of the depression.
  • Another aspect of the present invention provides a display panel having a display area, a non-display area, and a bendable connection area, the bendable connection area is located between the display area and the non-display area, And connecting the display area to the non-display area, the display panel includes:
  • An inorganic insulating layer disposed on the substrate, wherein in the bendable connection area, a plurality of grooves are defined in the inorganic insulating layer, and the plurality of grooves form a pattern;
  • An organic filling layer a plurality of grooves filled in the inorganic insulating layer, wherein the organic filling layer in each groove has a concave arc surface;
  • the concave arc-shaped surface of the organic filling layer a corresponding concave arc-shaped surface is formed; the portion of the inorganic insulating layer without the groove, the wire layer is formed with a flat surface.
  • the display panel further includes: an organic protective layer disposed on the wire layer in the bendable connection area to cover the wire layer.
  • the surface of the inorganic insulating layer at the pattern exhibits hydrophilicity or hydrophobicity.
  • the cross-sectional pattern of each of the plurality of grooves is a rectangle, a trapezoid, an inverted trapezoid, or a parallelogram.
  • the horizontal pattern of each of the plurality of grooves is a hole, a polygon, or a groove.
  • the material of the organic filler layer is selected from the group consisting of epoxy resin polymers and acrylic resin polymers.
  • the organic filling layer has a concave arc-shaped surface in the groove of the inorganic insulating layer, and exhibits a non-horizontal "crescent" shape, thereby Make the wire above the inorganic insulating film longer than its path to improve its bending ability.
  • a mechanical film protective layer is provided above the wire to cover the wire in the bendable connection area, reduce the stress on the wire and reduce the risk of breakage, and at the same time protect the wire from external environment damage. Further, no photoresist needs to be coated under the wire, which reduces the total thickness of the film layer of the bendable connection area, thereby reducing the risk of breakage during bending.
  • FIG. 1 is a schematic side view of a display panel according to an embodiment of the invention.
  • FIG. 2 is a schematic side view of a display panel after a bendable connection area is bent according to an embodiment of the invention
  • FIG. 3 is a flowchart of a method of manufacturing a display panel according to an embodiment of the invention.
  • 4 to 8 are schematic side views of the display panel in each step of a method of manufacturing a display panel according to an embodiment of the invention.
  • FIG. 1 is a schematic side view of a display panel according to an embodiment of the present invention.
  • the present invention provides a display panel 200 including: a substrate 10, an inorganic insulating layer 20, and a wire layer 30.
  • the display panel 200 is divided into a display area 210, a non-display area 220, and a flexible display area 230.
  • the display area 210 of the display panel 200 is an area for displaying images, which may include various elements most directly related to image display or touch sensing, such as an organic light-emitting diode disposed on the wire layer 30 Body layer (OLED layer) 40, an encapsulation layer 50 disposed on the OLED layer 40, a polarizing layer 60 disposed on the encapsulation layer 50, and a touch layer 70 disposed on the polarizing layer 60 .
  • OLED layer Body layer
  • encapsulation layer 50 disposed on the OLED layer 40
  • a polarizing layer 60 disposed on the encapsulation layer 50
  • a touch layer 70 disposed on the polarizing layer 60 .
  • the above-mentioned components most directly related to image display or touch sensing are only an example of implementation, and other components can be added as needed, or the components can be removed or modified, so the scope of protection of the present invention should not be limited thereby.
  • the non-display area 220 of the display panel 200 is an area where no image is displayed. Generally speaking, it is located around the display panel 200. It may include elements that are not directly related to image display or touch sensing, such as gate drive
  • the circuit (not shown), the patterned interconnection circuit (not shown), and the chip 80 are disposed on the wire layer 30 or the control module (not shown).
  • the above-mentioned element is only an example of implementation, and other elements can be added as needed, or the elements can be removed or modified, so the scope of protection of the present invention should not be limited thereby.
  • the flexible connection area 230 of the display panel 200 is located between the display area 210 and the non-display area 220, and connects the display area 210 to the non-display area 220.
  • the bendable connection region 230 has a wire made of the wire layer 30, and electrically connects the elements in the display area 210 and the non-display area 220 to transmit signals to each other.
  • the inorganic insulating layer 20 is disposed on the substrate 10 and has a thickness of 1 to 100 microns. In the bendable connection region 230, a plurality of grooves are defined in the inorganic insulating layer 20, and the plurality of grooves form a pattern.
  • the material of the inorganic insulating layer 20 is selected from, but not limited to, SiNx, SiOxNy, or SiOx. Plasma (H2, O2, NH3, N2, etc. gas) treatment or UV irradiation treatment is performed on the surface of the inorganic insulating layer 20 at the pattern, so that the surface of the inorganic insulating layer 20 at the pattern is modified , While showing hydrophilic or hydrophobic.
  • the cross-sectional pattern of each of the plurality of grooves is a rectangle, a trapezoid, an inverted trapezoid, or a parallelogram, and the horizontal pattern of each of the plurality of grooves is a hole, a polygon, or a Groove.
  • the organic filling layer 101 fills a plurality of grooves in the inorganic insulating layer 20, wherein the organic filling layer 101 in each groove has a concave arc surface.
  • an appropriate inkjet material such as epoxy resin polymer or acrylic resin polymer, using inkjet printing process, in the
  • the plurality of grooves in the inorganic insulating layer 20 are filled with the organic filling layer 101, and the grooves cannot be overflowed, and then cured, so that the organic filling layer 101 in each groove has a concave arc surface Therefore, the cross-sectional pattern of the organic filling layer 101 in the plurality of grooves has a crescent shape, and the thickness of the organic filling layer 101 at the edge of the plurality of grooves is greater than that in the plurality of grooves The thickness of the organic filling layer 101 in the center.
  • the organic filling layer 101 is required to have insulating properties.
  • the wire layer 30 is disposed on the inorganic insulating layer 20 and covers the inorganic insulating layer 20 and the organic filling layer 101 in the plurality of grooves, wherein the organic filling layer in each groove
  • the wire layer 30 on the 101 forms a corresponding concave arc surface according to the concave arc surface of the organic filling layer 101, and the portion of the inorganic insulating layer 20 without the groove is
  • the wire layer shape 30 is formed with a flat surface.
  • the wire layer 30 can be formed by physical vapor deposition (PVD) or sputtering.
  • the material is selected from, but not limited to, Al, Ti, Cu, ITO, or IZO.
  • the display panel 200 further includes: an organic protective layer 102 disposed on the conductive layer 30 in the flexible connection area to cover the conductive layer 30 .
  • an organic protective layer 102 disposed on the conductive layer 30 in the flexible connection area to cover the conductive layer 30 .
  • an appropriate inkjet material such as an epoxy resin polymer or an acrylic resin polymer, using an inkjet printing process, in the flexible connection area
  • the organic protective layer 102 is formed on the wire layer 30.
  • the organic protective layer 102 is required to have insulating properties and a thickness of 1 to 100 microns.
  • FIG. 2 is a schematic side view of a display panel after a bendable connection area is bent according to an embodiment of the present invention. Due to the specific concave arc structure of the organic filling layer 101, such as a "crescent shape", the length of the wire is increased and it is easier to withstand bending. Fold the regional stress to enhance flexibility. At the same time, the mechanical protective layer 102 also has a protective effect to prevent the wire from being damaged by the external environment, causing an increase in impedance or a short circuit.
  • the organic filling layer in the groove of the inorganic insulating layer, has a concave curved surface, and exhibits a non-horizontal "crescent" shape, thereby allowing the inorganic
  • the wire above the insulating film is longer than its path, improving its bending ability.
  • a mechanical film protective layer is provided above the wire to cover the wire in the bendable connection area, reduce the stress on the wire and reduce the risk of breakage, and at the same time protect the wire from external environment damage. Further, no photoresist needs to be coated under the wire, which reduces the total thickness of the film layer of the bendable connection area, thereby reducing the risk of breakage during bending.
  • FIG. 3 is a flowchart of a method for manufacturing a display panel according to an embodiment of the present invention.
  • 4 to 8 which are schematic diagrams of a plurality of side views of the display panel in each step of a method of manufacturing a display panel according to an embodiment of the present invention.
  • a method for manufacturing a display panel 200 is provided.
  • the display panel 200 has a display area 210, a non-display area 220, and a flexible connection area 230.
  • the flexible connection area of the display panel 200 230 is located between the display area 210 and the non-display area 220 and connects the display area 210 to the non-display area 220.
  • the bendable connection region 230 has a wire made of the wire layer 30, and electrically connects the elements in the display area 210 and the non-display area 220 to transmit signals to each other.
  • the method includes the following steps:
  • the inorganic insulating layer 20 forms a plurality of grooves in the bendable connection region 230, and the plurality of grooves form a pattern;
  • An organic filling layer 210 is filled in the plurality of grooves in the inorganic insulating layer 20, wherein the organic filling layer 210 in each groove has a concave curved surface;
  • a lead layer 30 is provided on the inorganic insulating layer 20, and covers the inorganic insulating layer 20 and the organic filling layer 101 in the plurality of grooves, wherein the organic filling in each groove
  • the wire layer 30 on the layer 101 forms a corresponding concave arc surface according to the concave arc surface of the organic filling layer 101;
  • An organic protective layer 102 is provided on the conductive layer in the flexible connection region 230 to cover the conductive layer 30.
  • an inorganic insulating layer 20 is provided on the substrate, the thickness of the inorganic insulating layer 20 is 1 to 100 microns, and the material is selected from, but not limited to SiNx, SiOxNy or SiOx.
  • the step (30) includes: forming the plurality of grooves in the inorganic insulating layer 20 in the bendable connection region by a photolithography process, the plurality of grooves The pattern is formed.
  • the cross-sectional pattern of each of the plurality of grooves is a rectangle, a trapezoid, an inverted trapezoid, or a parallelogram, and the horizontal pattern of each of the plurality of grooves is a hole, a polygon, or a Groove.
  • the method further includes the step of: (S34) performing a plasma treatment (H2, O2, NH3, N2 and other gases) or an ultraviolet light irradiation treatment, so that the surface of the inorganic insulating layer 20 at the pattern is modified to exhibit hydrophilicity or hydrophobicity.
  • a plasma treatment H2, O2, NH3, N2 and other gases
  • an ultraviolet light irradiation treatment so that the surface of the inorganic insulating layer 20 at the pattern is modified to exhibit hydrophilicity or hydrophobicity.
  • step (S40) it includes: filling the organic filling layer 101 in the plurality of grooves in the inorganic insulating layer by an inkjet printing process, wherein each of the concave The organic filled layer in the groove has the concave curved surface.
  • a suitable inkjet material is selected, such as an epoxy resin polymer or an acrylic resin polymer, using an inkjet printing process .
  • the organic filling layer 101 is filled in the plurality of grooves in the inorganic insulating layer 20, and the groove cannot overflow, and then curing is performed, so that the organic filling layer 101 in each groove has a recess
  • the arc-shaped surface, so the cross-sectional pattern of the organic filling layer 101 in the plurality of grooves has a crescent shape, and the thickness of the organic filling layer 101 at the edge of the plurality of grooves is greater than that in the The thickness of the organic filling layer 101 in the center of the plurality of grooves.
  • the organic filling layer 101 is required to have insulating properties.
  • a physical vapor deposition (PVD) or sputtering process may be used to provide a lead layer 30 on the inorganic insulating layer 20 and cover the inorganic
  • the material of the insulating layer 20 and the organic filling layer 101 in the plurality of grooves is selected from, but not limited to, Al, Ti, Cu, ITO, or IZO.
  • the lead layer 30 on the organic filling layer 101 in each groove forms a corresponding concave arc surface according to the concave arc surface of the organic filling layer 101, and is located on the inorganic insulation In the portion of the layer 20 without the groove, the wire layer shape 30 is formed with a flat surface.
  • the organic protective layer 102 is provided on the conductive layer 30 in the flexible connection region 230 to cover the conductive layer 30, and the organic protective layer 102 has a thickness of 1 to 100 microns, in addition to The organic protective layer 102 is required to have insulating properties.
  • the organic filling layer has a concave curved surface in the groove of the inorganic insulating layer, and presents a non-horizontal "crescent" shape, so that The wire above the inorganic insulating film is longer than its path, improving its bending ability.
  • a mechanical film protective layer is provided above the wire to cover the wire in the bendable connection area, reduce the stress on the wire and reduce the risk of breakage, and at the same time protect the wire from external environment damage. Further, no photoresist needs to be coated under the wire, which reduces the total thickness of the film layer of the bendable connection area, thereby reducing the risk of breakage during bending.

Abstract

一种显示面板(200)及其制作方法。显示面板(200)具有一显示区(210)、一非显示区(220)以及一可弯曲的连接区(230),可弯曲的连接区(230)位于显示区(210)与非显示区(220)之间,并将显示区(210)连接至非显示区(220)。显示面板(200)包括:一基板(10);一无机绝缘层(20),设置于基板(10)上,其中在可弯曲的连接区(230)中,无机绝缘层(20)中定义有多个凹槽;一有机填充层(101),填充于无机绝缘层(20)中的多个凹槽,并且具有一凹陷的弧形表面;以及一导线层(30),设置于无机绝缘层(20)上,对应有机填充层(101)的凹陷的弧形表面,导线层(30)形成有一凹陷的弧形表面。

Description

显示面板及其制作方法 技术领域
本发明涉及显示器技术领域,特别是涉及一种显示面板及一种显示面板的制造方法,其降低显示面板的显示区域和非显示区域之间的可弯曲连接区域的断裂风险。
背景技术
有机发光二极体(organic light emitting diode, OLED)显示面板包括一主要显示区域(包含像素点、触控电极等)、周围的非显示区域(包含栅极驱动电路、图案化互联电路等)以及显示的控制模块。而二者之间需要通过设置在连接区域中导线进行连接。而为了实现OLED显示面板窄边框的目的,目前一般将导线区域进行弯折,从而将周围的非显示区域放置在主要显示区域的下方,缩短主要显示区域与OLED器件边框之间的距离。然而当将导线穿过的连接区域以大角度的弯折时,连接区域中的各层组件(例如导线层)承受应力,容易发生断裂,造成导线阻抗上升,甚至短路。
因此有必要发展出一种显示面板,其中显示区域和非显示区域之间导线通过的可弯曲连接区域能够承受较大应力,从而降低断裂的风险。
技术问题
本发明的目的在于提供一种显示面板及一种显示面板的制造方法,其降低显示面板的显示区域和非显示区域之间的可弯曲连接区域的断裂风险。
技术解决方案
为解决上述技术问题,本发明提供一种显示面板,具有一显示区、一非显示区以及一可弯曲的连接区,所述可弯曲的接区位于所述显示区与所述非显示区之间,并将所述显示区连接至所述非显示区,所述显示面板包括:
一基板;
一无机绝缘层,设置于所述基板上,其中在所述可弯曲的连接区中,所述无机绝缘层中定义有多个凹槽,所述多个凹槽形成一图案;
一有机填充层,填充于所述无机绝缘层中的多个凹槽,其中所述各凹槽中的所述有机填充层具有一凹陷的弧形表面;以及
一导线层,设置于所述无机绝缘层上,并且覆盖所述无机绝缘层和所述多个凹槽中的有机填充层,其中位于所述各凹槽中的有机填充层上的所述导线层依照所述有机填充层的凹陷的弧形表面形成有一对应的凹陷的弧形表面。
根据本发明的一个实施例,在位于所述无机绝缘层上无所述凹槽的部分,所述导线层形成有一平坦表面。
根据本发明的一个实施例,所述显示面板进一步包括:一有机保护层,设置于所述可弯曲的连接区中的所述导线层上,覆盖所述导线层。
根据本发明的一个实施例,在所述图案处的所述无机绝缘层的表面呈现亲水性或疏水性。
根据本发明的一个实施例,所述无机绝缘层的材料选自于SiNx、SiOxNy及SiOx所组成的一群组。
根据本发明的一个实施例,所述多个凹槽的各者的横截面图案为一矩形、一梯形、一倒梯形或一平行四边形。
根据本发明的一个实施例,所述多个凹槽的各者的水平面图案为一孔型、一多边形或一沟槽。
根据本发明的一个实施例,所述有机填充层的材料选自于环氧树脂类聚合物和丙烯酸树脂类聚合物组成的一群组。
根据本发明的一个实施例,所述导线层的材料选自于Al、Ti、Cu、ITO和IZO组成的一群组。
根据本发明的一个实施例,在所述多个凹槽的边缘的所述有机填充层的厚度大于在所述多个凹槽的中央的所述有机填充层的厚度。
根据本发明的一个实施例,在所述多个凹槽的所述有机填充层的横截面图案为一月牙型。
本发明的另一方面提供一种显示面板的制作方法,所述显示面板具有一显示区、一非显示区以及一可弯曲的连接区,所述可弯曲的接区位于所述显示区与所述非显示区之间,并将所述显示区连接至所述非显示区,所述方法包括以下步骤:
(S10) 提供一基板;
(S20) 在所述基板上设置一无机绝缘层;
(S30) 在所述可弯曲的连接区中所述无机绝缘层形成多个凹槽,所述多个凹槽形成一图案;
(S40)         在所述无机绝缘层中的多个凹槽中填充一有机填充层,其中所述各凹槽中的所述有机填充层具有一凹陷的弧形表面;以及
(S50) 在所述无机绝缘层上设置一导线层,并且覆盖所述无机绝缘层和所述多个凹槽中的有机填充层,其中位于所述各凹槽中的有机填充层上的所述导线层依照所述有机填充层的凹陷的弧形表面形成有一对应的凹陷的弧形表面。
根据本发明的一个实施例,在位于所述无机绝缘层上无所述凹槽的部分,所述导线层形成有一平坦表面。
根据本发明的一个实施例,所述方法在步骤(S50)之后进一步包括步骤:
(S60) 在所述可弯曲的连接区中的所述导线层上设置一有机保护层,覆盖所述导线层。
根据本发明的一个实施例,所述方法在步骤(S30)之后,在步骤(S40)之前进一步包括步骤:
(S34)对所述图案处的所述无机绝缘层的表面执行一等离子体处理或一紫外光照射处理,使得在所述图案处的所述无机绝缘层的表面呈现亲水性或疏水性。
根据本发明的一个实施例,所述无机绝缘层的材料选自于SiNx、SiOxNy及SiOx所组成的一群组。
根据本发明的一个实施例,所述多个凹槽的各者的横截面图案为一矩形、一梯形、一倒梯形或一平行四边形。
根据本发明的一个实施例,所述多个凹槽的各者的水平面图案为一孔型、一多边形或一沟槽。
根据本发明的一个实施例,所述有机填充层的材料选自于环氧树脂类聚合物和丙烯酸树脂类聚合物组成的一群组。
根据本发明的一个实施例,所述导线层的材料选自于Al、Ti、Cu、ITO和IZO组成的一群组。
根据本发明的一个实施例,在所述多个凹槽的边缘的所述有机填充层的厚度大于在所述多个凹槽的中央的所述有机填充层的厚度。
根据本发明的一个实施例,在所述多个凹槽的所述有机填充层的横截面图案为一月牙型。
根据本发明的一个实施例,在所述步骤(30)中包括:通过一光刻处理,在所述可弯曲的连接区中所述无机绝缘层形成所述多个凹槽,所述多个凹槽形成所述图案。
根据本发明的一个实施例,在所述步骤(S40)中包括:通过一喷墨打印处理,在所述无机绝缘层中的所述多个凹槽中填充所述有机填充层,其中所述各凹槽中的所述有机填充层具有所述凹陷的弧形表面。
本发明的另一方面提供一种显示面板,具有一显示区、一非显示区以及一可弯曲的连接区,所述可弯曲的接区位于所述显示区与所述非显示区之间,并将所述显示区连接至所述非显示区,所述显示面板包括:
一基板;
一无机绝缘层,设置于所述基板上,其中在所述可弯曲的连接区中,所述无机绝缘层中定义有多个凹槽,所述多个凹槽形成一图案;
一有机填充层,填充于所述无机绝缘层中的多个凹槽,其中所述各凹槽中的所述有机填充层具有一凹陷的弧形表面;以及
一导线层,设置于所述无机绝缘层上,并且覆盖所述无机绝缘层和所述多个凹槽中的有机填充层,其中位于所述各凹槽中的有机填充层上的所述导线层
依照所述有机填充层的凹陷的弧形表面形成有一对应的凹陷的弧形表面;在位于所述无机绝缘层上无所述凹槽的部分,所述导线层形成有一平坦表面。
根据本发明的一个实施例,所述的显示面板进一步包括:一有机保护层,设置于所述可弯曲的连接区中的所述导线层上,覆盖所述导线层。
根据本发明的一个实施例,在所述图案处的所述无机绝缘层的表面呈现亲水性或疏水性。
根据本发明的一个实施例,所述多个凹槽的各者的横截面图案为一矩形、一梯形、一倒梯形或一平行四边形。
根据本发明的一个实施例,所述多个凹槽的各者的水平面图案为一孔型、一多边形或一沟槽。
根据本发明的一个实施例,所述有机填充层的材料选自于环氧树脂类聚合物和丙烯酸树脂类聚合物组成的一群组。
有益效果
本发明的所述显示面板及所述显示面板的制造方法中,在所述无机绝缘层的凹槽中所述有机填充层具有凹陷的弧形表面,并且呈现非水平的“月牙”形状,从而让所述无机绝缘膜上方导线比其路径更长,提升其弯折能力。此外,所述导线上方设有机膜保护层,覆盖所述可弯曲的连接区域中的导线,降低导线所受到的应力,降低断裂的风险,同时也可保护导线不受外界环境破坏。进一步而言,导线下方无需涂覆光刻胶,降低所述可弯曲的连接区域的膜层总厚度,从而降低了弯折时断裂的风险。
附图说明
本文所述的本发明,仅作为示例,参考附图,其中:
图1 为根据本发明的一实施例中,一种显示面板的一侧视示意图;
图2为根据本发明的一实施例中,一种显示面板在一可弯曲的连接区域被弯折之后的一侧视示意图;
图3为根据本发明的一实施例中,一种显示面板的制作方法的一流程图;以及
图4至图8为根据本发明的一实施例中,一种显示面板的制作方法的各步骤中所述显示面板的多个侧视示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是以相同标号表示。
实施例一:
请参考图1,其为根据本发明的一实施例中,一种显示面板的一侧视示意图。
在本发明中提供一种显示面板200,包括:一基板10、一无机绝缘层20、一导线层30。所述显示面板200分为一显示区域210、一非显示区域220以及一可弯曲的显示区域230。
所述显示面板200的显示区域210,为显示影像的区域,其可包括各种与影像显示或触控感测最直接相关的元件,例如设置于所述导线层30上的一有机发光二极体层(OLED 层)40、设置于所述OLED层40上的一封装层50、设置于所述封装层50上一偏光层60、及设置于所述偏光层60上的一触控层70。然而上述与影像显示或触控感测最直接相关的元件仅为一实施范例,可以视需求增添其他元件,或移除或修改所述元件,因此不应以此限制本发明的保护范围。
所述显示面板200的非显示区域220,为不显示影像的区域,一般而言位于显示面板200的周围,其可包括与影像显示或触控感测较无直接相关的元件,例如栅极驱动电路(未显示)、图案化互联电路(未显示)、芯片80,设置于所述导线层30上、或控制模块(未显示)。然而上述元件仅为一实施范例,可以视需求增添其他元件,或移除或修改所述元件,因此不应以此限制本发明的保护范围。
所述显示面板200的可弯曲的连接区域230位于所述显示区210与所述非显示区220之间,并将所述显示区210连接至所述非显示区220。所述可弯曲的连接区域230具有由所述导线层30所制成的导线,将所述显示区210与所述非显示区220中的元件电性连接,以相互传递信号。
所述无机绝缘层20,设置于所述基板10上,其厚度为1至100微米。其中在所述可弯曲的连接区230中,所述无机绝缘层20中定义有多个凹槽,所述多个凹槽形成一图案。所述无机绝缘层20的材料选自于,但不限于SiNx、SiOxNy或SiOx。对所述无机绝缘层20的图案处的处表面进行等离子体(H2、O2、NH3、N2等气体)处理或UV照射处理,使得在所述图案处的所述无机绝缘层20的表面改性,而呈现亲水性或疏水性。所述多个凹槽的各者的横截面图案为一矩形、一梯形、一倒梯形或一平行四边形,而所述多个凹槽的各者的水平面图案为一孔型、一多边形或一沟槽。
所述有机填充层101,填充于所述无机绝缘层20中的多个凹槽,其中所述各凹槽中的所述有机填充层101具有一凹陷的弧形表面。根据所述无机绝缘层20的表面改性呈现亲水性或是疏水性,选择合适的喷墨材料,例如环氧树脂类聚合物或丙烯酸树脂类聚合物,利用喷墨打印工艺,在所述无机绝缘层20中的多个凹槽中填充有机填充层101,并且不能溢出所述凹槽,之后进行固化,使得所述各凹槽中的所述有机填充层101具有一凹陷的弧形表面,因此在所述多个凹槽的有机填充层101的横截面图案呈一月牙型,而在所述多个凹槽的边缘的所述有机填充层101的厚度大于在所述多个凹槽的中央的所述有机填充层101的厚度。除此之外还要求所述有机填充层101具有绝缘特性。
所述导线层30,设置于所述无机绝缘层20上,并且覆盖所述无机绝缘层20和所述多个凹槽中的有机填充层101,其中位于所述各凹槽中的有机填充层101上的所述导线层30依照所述有机填充层101的凹陷的弧形表面形成有一对应的凹陷的弧形表面,并且在位于所述无机绝缘层20上无所述凹槽的部分,所述导线层形30形成有一平坦表面。所述导线层30可以利用物理气相层积(PVD)或是溅镀(sputting)的方式形成,其材料选自于,但不限于Al、Ti、Cu、ITO或IZO。
根据本发明的一个实施例的一实施例,所述显示面板200进一步包括:一有机保护层102,设置于所述可弯曲的连接区中的所述导线层30上,覆盖所述导线层30。如同所述有机填充层101的形成方式,选择合适的喷墨材料,例如环氧树脂类聚合物或丙烯酸树脂类聚合物,利用喷墨打印工艺,在所述可弯曲的连接区中的所述导线层30上形成所述有机保护层102。除此之外也要求所述有机保护层102具有绝缘特性,其厚度为1至100微米。
请参考图2,其为根据本发明的一实施例中,一种显示面板在一可弯曲的连接区域被弯折之后的一侧视示意图。由于所述有机填充层101的特定的凹陷的弧形结构,例如呈“月牙形”,使得导线长度增长,更易承受弯折,同时导线上下存在有机填充层101及有机保护层102,可以调整弯折区域应力,增强柔韧性,同时机保护层102也具有保护作用,防止导线被外界环境破坏,造成阻抗上升或短路。
总结而言,本发明的所述显示面板中,在所述无机绝缘层的凹槽中所述有机填充层具有凹陷的弧形表面,并且呈现非水平的“月牙”形状,从而让所述无机绝缘膜上方导线比其路径更长,提升其弯折能力。此外,所述导线上方设有机膜保护层,覆盖所述可弯曲的连接区域中的导线,降低导线所受到的应力,降低断裂的风险,同时也可保护导线不受外界环境破坏。进一步而言,导线下方无需涂覆光刻胶,降低所述可弯曲的连接区域的膜层总厚度,从而降低了弯折时断裂的风险。
实施例二:
请参考图 3,其为根据本发明的一实施例中,一种显示面板的制作方法的一流程图。以及参考图4至图8,其为根据本发明的一实施例中,一种显示面板的制作方法的各步骤中所述显示面板的多个侧视示意图。
在本发明中提供一种制作显示面板200的方法,所述显示面板200具有一显示区210、一非显示区220以及一可弯曲的连接区230,所述显示面板200的可弯曲的连接区域230位于所述显示区210与所述非显示区220之间,并将所述显示区210连接至所述非显示区220。所述可弯曲的连接区域230具有由所述导线层30所制成的导线,将所述显示区210与所述非显示区220中的元件电性连接,以相互传递信号。
所述方法包括以下步骤:
(S10) 提供一基板10;
(S20) 在所述基板上设置一无机绝缘层20;
(S30) 在所述可弯曲的连接区230中所述无机绝缘层20形成多个凹槽,所述多个凹槽形成一图案;
(S40)在所述无机绝缘层20中的多个凹槽中填充一有机填充层210,其中所述各凹槽中的所述有机填充层210具有一凹陷的弧形表面;
(S50) 在所述无机绝缘层20上设置一导线层30,并且覆盖所述无机绝缘层20和所述多个凹槽中的有机填充层101,其中位于所述各凹槽中的有机填充层101上的所述导线层30依照所述有机填充层101的凹陷的弧形表面形成有一对应的凹陷的弧形表面;以及
(S60) 在所述可弯曲的连接区230中的所述导线层上设置一有机保护层102,覆盖所述导线层30。
具体而言,在所述步骤(20)中,在所述基板上设置一无机绝缘层20,所述无机绝缘层20的厚度为1至100微米,而材料选自于,但不限于SiNx、SiOxNy或SiOx。
具体而言,在所述步骤(30)中,包括:通过一光刻处理,在所述可弯曲的连接区中所述无机绝缘层20形成所述多个凹槽,所述多个凹槽形成所述图案。所述多个凹槽的各者的横截面图案为一矩形、一梯形、一倒梯形或一平行四边形,而所述多个凹槽的各者的水平面图案为一孔型、一多边形或一沟槽。并且所述方法在步骤(S30)之后,在步骤(S40)之前进一步包括步骤:(S34)对所述图案处的所述无机绝缘层20的表面执行一等离子体处理(H2、O2、NH3、N2等气体)或一紫外光照射处理,使得在所述图案处的所述无机绝缘层20的表面改性,而呈现亲水性或疏水性。
具体而言,在所述步骤(S40)中,包括:通过一喷墨打印处理,在所述无机绝缘层中的所述多个凹槽中填充所述有机填充层101,其中所述各凹槽中的所述有机填充层具有所述凹陷的弧形表面。具体而言,根据所述无机绝缘层20的表面改性呈现亲水性或是疏水性,选择合适的喷墨材料,例如环氧树脂类聚合物或丙烯酸树脂类聚合物,利用喷墨打印工艺,在所述无机绝缘层20中的多个凹槽中填充有机填充层101,并且不能溢出所述凹槽,之后进行固化,使得所述各凹槽中的所述有机填充层101具有一凹陷的弧形表面,因此在所述多个凹槽的有机填充层101的横截面图案呈一月牙型,而在所述多个凹槽的边缘的所述有机填充层101的厚度大于在所述多个凹槽的中央的所述有机填充层101的厚度。除此之外还要求所述有机填充层101具有绝缘特性。
具体而言,在所述步骤(50)中,可以利用物理气相层积(PVD)或是溅镀(sputting)处理,在所述无机绝缘层20上设置一导线层30,并且覆盖所述无机绝缘层20和所述多个凹槽中的有机填充层101,其材料选自于,但不限于Al、Ti、Cu、ITO或IZO。其中位于所述各凹槽中的有机填充层101上的所述导线层30依照所述有机填充层101的凹陷的弧形表面形成有一对应的凹陷的弧形表面,并且在位于所述无机绝缘层20上无所述凹槽的部分,所述导线层形30形成有一平坦表面。
具体而言,在所述步骤(60)中,如同所述有机填充层101的形成方式,选择合适的喷墨材料,例如环氧树脂类聚合物或丙烯酸树脂类聚合物,利用喷墨打印工艺,在所述可弯曲的连接区230中的所述导线层30上设置一有机保护层102,覆盖所述导线层30,所述有机保护层102厚度为1至100微米,除此之外也要求所述有机保护层102具有绝缘特性。
总结而言,本发明的所述显示面板的制造方法中,在所述无机绝缘层的凹槽中所述有机填充层具有凹陷的弧形表面,并且呈现非水平的“月牙”形状,从而让所述无机绝缘膜上方导线比其路径更长,提升其弯折能力。此外,所述导线上方设有机膜保护层,覆盖所述可弯曲的连接区域中的导线,降低导线所受到的应力,降低断裂的风险,同时也可保护导线不受外界环境破坏。进一步而言,导线下方无需涂覆光刻胶,降低所述可弯曲的连接区域的膜层总厚度,从而降低了弯折时断裂的风险。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (18)

  1. 一种显示面板,具有一显示区、一非显示区以及一可弯曲的连接区,所述可弯曲的接区位于所述显示区与所述非显示区之间,并将所述显示区连接至所述非显示区,所述显示面板包括:
    一基板;
    一无机绝缘层,设置于所述基板上,其中在所述可弯曲的连接区中,所述无机绝缘层中定义有多个凹槽,所述多个凹槽形成一图案;
    一有机填充层,填充于所述无机绝缘层中的多个凹槽,其中所述各凹槽中的所述有机填充层具有一凹陷的弧形表面;以及
    一导线层,设置于所述无机绝缘层上,并且覆盖所述无机绝缘层和所述多个凹槽中的有机填充层,其中位于所述各凹槽中的有机填充层上的所述导线层
    依照所述有机填充层的凹陷的弧形表面形成有一对应的凹陷的弧形表面。
  2. 如权利要求1所述的显示面板,其中在位于所述无机绝缘层上无所述凹槽的部分,所述导线层形成有一平坦表面。
  3. 如权利要求1所述的显示面板,进一步包括:
    一有机保护层,设置于所述可弯曲的连接区中的所述导线层上,覆盖所述导线层。
  4. 如权利要求1所述的显示面板,其中在所述图案处的所述无机绝缘层的表面呈现亲水性或疏水性。
  5. 如权利要求1所述的显示面板,其中所述多个凹槽的各者的横截面图案为一矩形、一梯形、一倒梯形或一平行四边形。
  6. 如权利要求1所述的显示面板,其中所述多个凹槽的各者的水平面图案为一孔型、一多边形或一沟槽。
  7. 如权利要求1所述的显示面板,其中所述有机填充层的材料选自于环氧树脂类聚合物和丙烯酸树脂类聚合物组成的一群组。
  8. 一种显示面板的制作方法,所述显示面板具有一显示区、一非显示区以及一可弯曲的连接区,所述可弯曲的接区位于所述显示区与所述非显示区之间,并将所述显示区连接至所述非显示区,所述方法包括以下步骤:
    (S10) 提供一基板;
    (S20) 在所述基板上设置一无机绝缘层;
    (S30) 在所述可弯曲的连接区中所述无机绝缘层形成多个凹槽,所述多个凹槽形成一图案;
    (S40) 在所述无机绝缘层中的多个凹槽中填充一有机填充层,其中所述各凹槽中的所述有机填充层具有一凹陷的弧形表面;以及
    (S50) 在所述无机绝缘层上设置一导线层,并且覆盖所述无机绝缘层和所述多个凹槽中的有机填充层,其中位于所述各凹槽中的有机填充层上的所述导线层依照所述有机填充层的凹陷的弧形表面形成有一对应的凹陷的弧形表面。
  9. 如权利要求8所述的显示面板的制作方法,其中在位于所述无机绝缘层上无所述凹槽的部分,所述导线层形成有一平坦表面。
  10. 如权利要求8所述的显示面板的制作方法,在步骤(S50)之后进一步包括步骤:
    (S60) 在所述可弯曲的连接区中的所述导线层上设置一有机保护层,覆盖所述导线层。
  11. 如权利要求8所述的显示面板的制作方法,在步骤(S30)之后,在步骤(S40)之前进一步包括步骤:
    (S34)对所述图案处的所述无机绝缘层的表面执行一等离子体处理或一紫外光照射处理,使得在所述图案处的所述无机绝缘层的表面呈现亲水性或疏水性。
  12. 如权利要求8所述的显示面板的制作方法,其中在所述步骤(S40)中包括:
    通过一喷墨打印处理,在所述无机绝缘层中的所述多个凹槽中填充所述有机填充层,其中所述各凹槽中的所述有机填充层具有所述凹陷的弧形表面。
  13. 一种显示面板,具有一显示区、一非显示区以及一可弯曲的连接区,所述可弯曲的接区位于所述显示区与所述非显示区之间,并将所述显示区连接至所述非显示区,所述显示面板包括:
    一基板;
    一无机绝缘层,设置于所述基板上,其中在所述可弯曲的连接区中,所述无机绝缘层中定义有多个凹槽,所述多个凹槽形成一图案;
    一有机填充层,填充于所述无机绝缘层中的多个凹槽,其中所述各凹槽中的所述有机填充层具有一凹陷的弧形表面;以及
    一导线层,设置于所述无机绝缘层上,并且覆盖所述无机绝缘层和所述多个凹槽中的有机填充层,其中位于所述各凹槽中的有机填充层上的所述导线层
    依照所述有机填充层的凹陷的弧形表面形成有一对应的凹陷的弧形表面;在位于所述无机绝缘层上无所述凹槽的部分,所述导线层形成有一平坦表面。
  14. 如权利要求13所述的显示面板,进一步包括:
    一有机保护层,设置于所述可弯曲的连接区中的所述导线层上,覆盖所述导线层。
  15. 如权利要求13所述的显示面板,其中在所述图案处的所述无机绝缘层的表面呈现亲水性或疏水性。
  16. 如权利要求13所述的显示面板,其中所述多个凹槽的各者的横截面图案为一矩形、一梯形、一倒梯形或一平行四边形。
  17. 如权利要求13所述的显示面板,其中所述多个凹槽的各者的水平面图案为一孔型、一多边形或一沟槽。
  18. 如权利要求13所述的显示面板,其中所述有机填充层的材料选自于环氧树脂类聚合物和丙烯酸树脂类聚合物组成的一群组。
PCT/CN2019/071017 2018-12-11 2019-01-09 显示面板及其制作方法 WO2020118825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/464,268 US10741633B2 (en) 2018-12-11 2019-01-09 Display panel and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811510418.1A CN109671745B (zh) 2018-12-11 2018-12-11 显示面板及其制作方法
CN201811510418.1 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020118825A1 true WO2020118825A1 (zh) 2020-06-18

Family

ID=66143758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071017 WO2020118825A1 (zh) 2018-12-11 2019-01-09 显示面板及其制作方法

Country Status (3)

Country Link
US (1) US10741633B2 (zh)
CN (1) CN109671745B (zh)
WO (1) WO2020118825A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109523921B (zh) * 2018-12-12 2021-07-23 上海天马有机发光显示技术有限公司 柔性显示面板和显示装置
CN110211971B (zh) * 2019-05-16 2021-11-02 武汉华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置
CN110133895B (zh) * 2019-06-10 2022-12-20 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN111276495B (zh) * 2020-02-12 2022-06-07 武汉华星光电半导体显示技术有限公司 阵列基板及其制备方法
CN111754870B (zh) * 2020-06-22 2022-05-27 武汉华星光电半导体显示技术有限公司 柔性显示面板及显示装置
KR20220031839A (ko) * 2020-09-04 2022-03-14 삼성디스플레이 주식회사 표시 장치
CN112786808B (zh) * 2021-01-12 2022-05-31 武汉华星光电半导体显示技术有限公司 一种显示面板
CN113299700A (zh) 2021-05-08 2021-08-24 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN113867029A (zh) * 2021-10-12 2021-12-31 合肥维信诺科技有限公司 阵列模组及其制备方法和显示面板
CN114284450A (zh) * 2021-12-16 2022-04-05 武汉华星光电半导体显示技术有限公司 柔性oled显示模组及制作方法、终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784362A (zh) * 2015-09-23 2017-05-31 乐金显示有限公司 有机发光显示装置
CN107086236A (zh) * 2016-02-12 2017-08-22 三星显示有限公司 显示装置
US20170315399A1 (en) * 2013-02-15 2017-11-02 Lg Display Co., Ltd. Flexible Organic Light Emitting Display Device and Method for Manufacturing the Same
CN108231800A (zh) * 2018-02-02 2018-06-29 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法、显示装置
CN108461393A (zh) * 2018-05-07 2018-08-28 京东方科技集团股份有限公司 显示基板的制备方法、显示基板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136392B1 (ko) * 2013-09-05 2020-07-22 삼성디스플레이 주식회사 플렉서블 표시장치 및 터치 스크린 패널의 제조 방법
KR101818480B1 (ko) * 2016-10-31 2018-01-15 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN106775173B (zh) * 2017-02-07 2019-12-20 上海天马微电子有限公司 一种触控显示面板和触控显示装置
KR102409593B1 (ko) * 2017-11-10 2022-06-15 엘지디스플레이 주식회사 폴더블 표시 장치 및 폴더블 표시 장치의 제조 방법
CN108198950B (zh) * 2017-12-28 2019-11-22 武汉华星光电半导体显示技术有限公司 柔性显示面板的边缘区结构、柔性显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170315399A1 (en) * 2013-02-15 2017-11-02 Lg Display Co., Ltd. Flexible Organic Light Emitting Display Device and Method for Manufacturing the Same
CN106784362A (zh) * 2015-09-23 2017-05-31 乐金显示有限公司 有机发光显示装置
CN107086236A (zh) * 2016-02-12 2017-08-22 三星显示有限公司 显示装置
CN108231800A (zh) * 2018-02-02 2018-06-29 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法、显示装置
CN108461393A (zh) * 2018-05-07 2018-08-28 京东方科技集团股份有限公司 显示基板的制备方法、显示基板及显示装置

Also Published As

Publication number Publication date
CN109671745B (zh) 2021-06-22
CN109671745A (zh) 2019-04-23
US10741633B2 (en) 2020-08-11
US20200203459A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
WO2020118825A1 (zh) 显示面板及其制作方法
US10573833B2 (en) Flexible display substrate and method for manufacturing the same, and flexible display device
US10658436B2 (en) Organic light emitting display device to implement narrow bezel and thin thickness
WO2021190162A1 (zh) 显示基板及其制备方法、显示面板
US10211416B2 (en) Flexible display panel, fabrication method, and flexible display apparatus
US10707429B2 (en) Flexible display panel and flexible display apparatus
TWI788925B (zh) 顯示設備
US11127804B2 (en) Display panel, method for manufacturing the same and display device
TWI471661B (zh) 影像顯示系統
TWI553838B (zh) 畫素陣列基板與面板
US11537253B2 (en) Touch substrate and manufacturing method therefor, touch display substrate, and touch display device
WO2020077815A1 (zh) 一种柔性oled显示面板及其制备方法
KR20170114029A (ko) 디스플레이 장치 및 그 제조방법
KR20170116302A (ko) 디스플레이 장치
KR20160016267A (ko) 플렉서블 표시장치 및 이의 제조방법
TW201532841A (zh) 顯示裝置
KR102495844B1 (ko) 디스플레이 장치
US20200163207A1 (en) Flexible circuit board and display panel
KR20180060710A (ko) 플렉서블 표시장치
JP2015204239A (ja) 表示装置及び表示装置の製造方法
WO2020103241A1 (zh) 一种oled显示器
KR20180061856A (ko) 플렉서블 표시장치
JP6867461B2 (ja) 表示装置
TWI709797B (zh) 顯示面板
US11599162B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894539

Country of ref document: EP

Kind code of ref document: A1