WO2020118585A1 - 一种信号放大电路及终端设备 - Google Patents

一种信号放大电路及终端设备 Download PDF

Info

Publication number
WO2020118585A1
WO2020118585A1 PCT/CN2018/120734 CN2018120734W WO2020118585A1 WO 2020118585 A1 WO2020118585 A1 WO 2020118585A1 CN 2018120734 W CN2018120734 W CN 2018120734W WO 2020118585 A1 WO2020118585 A1 WO 2020118585A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
microprocessor
gain
downlink
signal strength
Prior art date
Application number
PCT/CN2018/120734
Other languages
English (en)
French (fr)
Inventor
陈品辉
隆仲莹
曾伟才
杨怀毅
孙勇
占奇志
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880098322.0A priority Critical patent/CN112805938B/zh
Priority to PCT/CN2018/120734 priority patent/WO2020118585A1/zh
Publication of WO2020118585A1 publication Critical patent/WO2020118585A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present application relates to the field of communications, in particular to a signal amplification circuit and terminal equipment.
  • the RF coaxial cable connecting the TBOX and the external antenna is limited by the wiring in the car, and the length can be up to 5m or even longer, so the loss introduced will cause the wireless communication performance of the vehicle to deteriorate, especially at high frequencies.
  • the wireless terminal couples the upstream transmission signal to the relay amplifier through the coupling board and the RF cable for amplification, and then transmits it to the external antenna through the RF cable and radiates outward; in turn, the external antenna receives the external downlink
  • the signal is transmitted to the relay amplifier through the RF cable for amplification, and then transmitted to the wireless terminal through the RF cable and the coupling board.
  • this method requires a radio frequency cable and a coupling board as the transmission medium between the wireless terminal and the relay amplifier.
  • the system cost is high, and the wiring of the radio frequency cable in the car is still complicated.
  • the embodiments of the present application provide a signal amplifying circuit and terminal equipment.
  • an adjustable high-gain directional antenna inside the signal amplifying circuit, the current situation of requiring RF cable connection between the TBOX and the signal amplifying circuit is eliminated, and performance problems are solved. At the same time, the vehicle cost and assembly difficulty are reduced.
  • the automatic gain control scheme With the automatic gain control scheme, the automatic adaptation of the signal transmission path loss from the signal amplification circuit to the TBOX and the gain of the relay amplifier is completed. There is no need to configure different relays for different application scenarios.
  • the amplifier is versatile.
  • the first aspect of the present application provides a signal amplifying circuit, which can be applied to vehicle communication terminals and other mobile devices requiring a relay amplifying function.
  • the signal amplifying circuit equipment involved in the operation of the signal amplifying circuit is Corresponding functional entities in in-vehicle communication terminals and other mobile devices that require relay amplification.
  • the circuit may include: a signal amplifying circuit, characterized in that the signal amplifying circuit includes: a directional antenna, a gain control circuit and a microprocessor; the directional antenna is connected to the gain control circuit, the microprocessor and the directional antenna Connected, the microprocessor is connected to the gain control circuit; the directional antenna is used to receive the uplink signal sent by the vehicle communication terminal TBOX and send the downlink signal to the TBOX; detect the signal strength of the uplink signal and the signal strength of the downlink signal; The microprocessor is used to determine the gain parameter according to the signal strength of the upstream signal and the signal strength of the downstream signal, and send a gain command to the gain control circuit according to the gain parameter; the gain control circuit is used to perform a signal according to the gain command deal with.
  • the signal amplifying circuit includes: a directional antenna, a gain control circuit and a microprocessor; the directional antenna is connected to the gain control circuit, the microprocessor and the directional antenna Connected, the microprocess
  • the reception and transmission of the TBOX wireless signal through the directional antenna replaces the complicated existing solution through the complicated radio frequency cable.
  • the detection of the signal and related instructions by the microprocessor Send realize the dynamic gain for the uplink/downlink signal, complete the automatic adaptation of the signal transmission path loss between the relay amplifier and the TBOX and the gain of the relay amplifier, no need to configure different relay amplifiers for different application scenarios, improve The adaptability in practical application scenarios.
  • the directional antenna includes a coupler, a detector, and at least two sub-antenna modules; the at least two sub-antenna modules are connected to the microprocessor, and the at least two sub-antenna modules are connected to the A coupler is connected, the coupler is connected to the detector, the coupler is connected to the gain control circuit, the detector is connected to the microprocessor; the coupler is used to acquire the at least two sub-antenna modules at a preset time The first signal in the segment; the detector for detecting the signal strength of the first signal; the microprocessor, the microprocessor for traversing the position information of the at least two sub-antenna modules; acquiring the first signal Correspondence between the signal strength of the signal and the position information; when the signal strength of the first signal is greater than the first threshold, the position information of the at least two sub-antenna modules, and the at least two sub-antenna modules are controlled to obtain the second signal according to the position
  • a directional antenna composed of at least two sub-antenna modules can receive and send signals well. Further, by obtaining the phase delay characteristics of at least two sub-antenna modules, a phase delay with better performance can be obtained The combination improves the signal strength received or transmitted by the directional antenna. Moreover, through the setting of the first threshold, in the case of too many phase delay combinations, it is not necessary to traverse all phase delay combinations, saving the computing resources of the device. In the use scenarios of vehicle-mounted or other mobile terminals, the influence of signals caused by the external metal frame can be avoided, and the stability of the operation of the signal amplification circuit is improved.
  • the coupler is specifically configured to periodically acquire the first signal of the at least two sub-antenna modules within a preset time period. From this possible implementation, it can be seen that changes in the performance of at least two sub-antenna modules will cause performance changes, and at least two sub-antenna modules may be in an unstable environment, such as vehicle jitter, external signal interference may affect Performance, so periodically acquiring the position information of the first signal can improve the stability of the sub-antenna module and ensure the quality of the signal received by the sub-antenna module.
  • the signal amplification circuit further includes a first synchronization unit; the first synchronization unit is connected to the directional antenna, the first synchronization unit is connected to the automatic gain control circuit, and the first A synchronization unit is connected to the microprocessor; the first synchronization unit is used to couple the downlink signal; detect the signal strength of the downlink signal; output the signal strength of the downlink signal to the microprocessor; when the microprocessor detects When the signal strength of the downlink signal is greater than the signal strength of the uplink signal detected by the directional antenna, the downlink channel is turned on; when the microprocessor detects that the signal strength of the downlink signal is less than the signal strength of the uplink signal detected by the directional antenna , Turn on the upstream channel; the first synchronization unit is used to turn on the downstream channel when the microprocessor detects that the signal strength of the downstream signal is greater than the signal strength of the upstream signal detected by the directional antenna; when the microprocessor When it is detected that the
  • the uplink/downlink status at this time can be obtained, and the corresponding channel is selected to improve signal amplification
  • the accuracy of the circuit avoids the occurrence of redundant uplink/downlink signals.
  • the microprocessor is further used to calculate the absolute value of the difference between the signal strength of the upstream signal and the signal strength of the downstream signal; if the absolute value is less than or equal to the Two thresholds will generate relay failure information. It can be seen from this possible implementation that the relay amplifier corresponds to a certain power for signal amplification. When the absolute value of the uplink/downlink signal strength difference is too small, it means that the relay amplifier has failed and the signal cannot be normalized. Amplify to a certain intensity, this judgment method improves the identifiability of the signal amplifying circuit, that is, you can better understand the working state of the circuit at this time, or the fault condition.
  • the microprocessor is specifically used to calculate the difference between the signal strength of the upstream signal minus the signal strength of the downstream signal; if the difference is less than or equal to the third threshold , The microprocessor generates relay failure information. It can be seen from this possible implementation that by calculating the difference between the upstream signal and the downstream signal, the working condition of the signal amplification circuit can be obtained, and the recognizability of the signal amplification circuit is improved.
  • the microprocessor is specifically used to calculate the difference between the signal strength of the downlink signal minus the signal strength of the uplink signal; if the difference is less than or equal to the fourth threshold , The microprocessor generates directional antenna fault information. It can be seen from this possible implementation that by calculating the difference between the downlink signal and the uplink signal, the working condition of the directional antenna can be obtained, and the recognizability of the signal amplification circuit is improved.
  • the signal amplifying circuit further includes a second synchronization unit, which is used to couple the uplink signal after gain control; and to detect the signal of the uplink signal after gain control Strength; output the signal strength of the gain-controlled upstream signal to the microprocessor; the first synchronization unit is also used to couple the gain-controlled downstream signal; detect the signal strength of the gain-controlled downstream signal; output the The signal strength of the downstream signal after gain control is sent to the microprocessor; the microprocessor is used to obtain the upstream output power according to the signal strength of the upstream signal after gain control and the signal strength of the upstream signal; The signal strength of the downlink signal after the control and the signal strength of the downlink signal obtain the downlink output power.
  • a second synchronization unit which is used to couple the uplink signal after gain control; and to detect the signal of the uplink signal after gain control Strength; output the signal strength of the gain-controlled upstream signal to the microprocessor; the first synchronization unit is also used to couple the gain-controlled downstream signal; detect the signal strength of the
  • the gain control circuit includes: a variable gain amplifier and an adjustable attenuator; the variable gain amplifier is used when the microprocessor detects that the upstream output power is less than the first Gain operation at a preset power; also used for switching operation when the microprocessor detects that the downlink output power is greater than the second preset power; the adjustable attenuator is used for when the microprocessor detects When the uplink output power is greater than the first preset power, the attenuation operation is performed; and also used to perform the attenuation operation when the microprocessor detects that the downlink output power is greater than the second preset power.
  • the gain process can be automatically and dynamically processed, that is, the gain is performed according to the predetermined gain power, without human monitoring and The regulation improves the stability of the signal amplification circuit.
  • variable gain amplifier is specifically used to adjust the variable gain amplifier from the first gain state when the microprocessor detects that the downlink output power is greater than the preset power In the second gain state, the gain amount corresponding to the first gain state is greater than the gain amount corresponding to the second gain state.
  • the gain control circuit further includes a switching device; the switching device is connected in parallel with the variable gain amplifier; the switching device is used when the microprocessor detects that the downlink output power is greater than When the power is preset, the variable gain amplifier is switched to the bypass, and after a second preset duration, it is turned on again. From this possible implementation, it can be seen that through the design of the bypass, the attenuation effect can be achieved when only a variable gain amplifier is used, which simplifies the circuit design and saves costs.
  • the signal amplifying circuit further includes a power divider and a synchronous demodulation unit; the power divider is connected to the TBOX through a radio frequency cable, and the power divider is connected to the synchronous demodulation unit , The power divider is connected to the gain control circuit, the synchronous demodulation unit is connected to the microprocessor; the power divider is used to separate the second signal sent by the TBOX, the second signal includes a radio frequency signal and a power modulation signal.
  • the synchronous demodulation unit is used to obtain the transmission direction information of the second signal according to the power modulation signal and send the transmission direction information to the microprocessor; the microprocessor is used to generate the gain command according to the transmission direction information
  • the gain control circuit is used to perform gain control corresponding to the transmission direction according to the gain instruction. It can be seen from this possible implementation that the demodulation of the power supply voltage can obtain the upstream and downstream status information. In some possible scenarios, the transmission path is simplified, and signal interference during the upstream and
  • the synchronous demodulation unit is specifically used to obtain a first voltage according to the power modulation signal, and the first voltage is the output voltage of the TBOX; compare the first voltage with the preset Voltage, the preset voltage is used to indicate the transmission direction information; if the first voltage is greater than the preset voltage, generate uplink transmission information and send the uplink transmission direction information to the microprocessor; if the first voltage is less than the The preset voltage generates downlink transmission information and sends the uplink transmission direction information to the microprocessor. It can be seen from this possible implementation that by setting the preset voltage and comparing the demodulated voltage with the preset voltage, the upstream and downstream status information can be obtained. In some possible scenarios, the transmission path is simplified, Signal interference during uplink and downlink is avoided.
  • the signal amplification circuit further includes: a temperature sensor; the temperature sensor is connected to the microprocessor; the temperature sensor is used to obtain the temperature variation of the signal amplification circuit, if If the temperature change is greater than the second threshold, temperature compensation is performed. It can be seen from this possible implementation that since the signal amplification circuit is accompanied by a temperature change during operation, and the temperature change will affect the performance of the circuit, the temperature compensation of the circuit through the detection of the temperature change can improve the stability of the circuit , And the accuracy of the amplification process.
  • a second aspect of an embodiment of the present application provides an on-board communication terminal TBOX.
  • the TBOX includes: a wireless communication unit, a combiner, and a synchronous modulation unit; wherein, the wireless communication unit is connected to the combiner, and the combiner is The synchronous modulation unit is connected to the wireless communication unit; the wireless communication unit is used to send radio frequency signals; the synchronous modulation unit is used to generate power modulation signals; the combiner is used to send the power supply The modulation signal and the radio frequency signal. From this possible implementation, it can be seen that the different transmission states are identified by the modulation voltage. In some possible scenarios, the transmission path is simplified, and signal interference in the uplink and downlink processes is avoided.
  • the synchronous modulation unit is specifically configured to output a first voltage according to the radio frequency signal, generate the power modulation signal according to the first voltage, and the first voltage is used to indicate the radio frequency signal It is an uplink control signal; it is also used to output a second voltage according to the radio frequency signal, and to generate the power modulation signal according to the second voltage.
  • the second voltage is used to indicate that the radio frequency signal is a downlink control signal.
  • a third aspect of the embodiments of the present application provides a terminal device, the terminal device includes: a relay amplifier, a processor, a memory, a bus, and an input/output interface; the relay amplifier includes any of the possible implementation manners of the first aspect above A signal amplifying circuit; a program code is stored in the memory; when the processor calls the program code in the memory, a control signal is sent to the signal amplifying circuit, and the control signal is used to control the signal amplifying circuit to amplify an upstream signal or a downstream signal.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, which when executed on a computer, causes the computer to execute the method described in the foregoing first aspect and any optional implementation manner.
  • the computer storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • program codes such as a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • an embodiment of the present application provides a computer program product, which when run on a computer, causes the computer to execute the method as described in the foregoing first aspect and any optional implementation manner.
  • the present application provides a chip system that includes a processor for supporting an optimized device to implement the functions involved in the above aspects, for example, sending or processing data and/or information involved in the above method .
  • the chip system further includes a memory for storing necessary program instructions and data of the signal amplification circuit.
  • the chip system may be either a signal amplification circuit or a system chip applied in the signal amplification circuit to perform corresponding functions.
  • the integrated high-gain directional antenna is integrated in the relay amplifier, which eliminates the need for the connection between the radio frequency cable and the TBOX and the relay amplifier, solves the performance problem, and reduces the cost of the vehicle and the assembly difficulty.
  • the automatic gain control scheme completes the automatic adaptation of the signal transmission path loss from the relay amplifier to the TBOX and the gain of the relay amplifier, without the need to configure different intermediate amplifiers for different application scenarios, and is universal.
  • FIG. 1 is a scene diagram of an amplification of a wireless terminal through a relay amplifier in the prior art
  • FIG. 2 is a schematic diagram of a scenario applied in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a signal amplification circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a directional antenna provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another signal amplification circuit provided by an embodiment of the present application.
  • FIG. 6 is a circuit diagram of a synchronization unit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a real-time status detection result provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another signal amplification circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fault detection result provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an automatic gain control circuit provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another signal amplification circuit provided by an embodiment of the present application.
  • FIG. 12 is a circuit diagram of a synchronous demodulation unit provided by an embodiment of the present application.
  • FIG. 13 is a circuit diagram of a synchronous modulation unit provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another signal amplification circuit provided by an embodiment of the present application.
  • 15 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • the embodiments of the present application provide a signal amplifying circuit and terminal equipment.
  • TBOX telematics box
  • the current status of the connection solves the performance problems while reducing the cost of the vehicle and the difficulty of assembly.
  • the automatic gain control scheme With the automatic gain control scheme, the automatic adaptation of the signal transmission path loss from the relay amplifier to the TBOX and the gain of the relay amplifier is completed.
  • Different application scenarios are equipped with different intermediate amplifiers, which are versatile.
  • the RF coaxial cable connecting the TBOX and the external antenna is limited by the wiring in the car, and the length can be up to 5m or even longer, so the loss introduced will cause the wireless communication performance of the vehicle to deteriorate, especially at high frequencies.
  • FIG. 1 it is a scene diagram of a wireless terminal amplifying through a relay amplifier in the prior art.
  • the wireless terminal couples an upstream transmission signal to a relay amplifier through a coupling board and a radio frequency cable for amplification, and then a radio frequency cable It is transmitted to the external antenna and radiated outward; in turn, the external antenna receives the external downlink signal, transmits it to the relay amplifier for amplification through the RF cable, and then transmits it to the wireless terminal through the RF cable and the coupling board.
  • this method requires a radio frequency cable and a coupling board as the transmission medium between the wireless terminal and the relay amplifier. The system cost is high, and the wiring of the radio frequency cable in the car is still complicated.
  • different modulation frequencies are used to distinguish signals that need to be amplified by relays, detection signals and control signals after relay amplification to achieve the purpose of multiplexing RF cables.
  • the amplified detection signal is returned to the wireless terminal, which is used to adjust the output power of the terminal to ensure that the relay amplifier has a stable and accurate output power.
  • the detection signal is a continuously changing analog signal, it needs to undergo codec decoding, up-down conversion and other processing before it can be reused.
  • this method requires signals of multiple frequencies to be superimposed on the RF line, which greatly increases the risk of mutual interference with each other, and the detection signal after relay amplification returns to the wireless terminal requires a complex modulation and demodulation system. The system cost is still relatively high.
  • the embodiment of the present application proposes a signal amplification method.
  • the method of the embodiment of the present application can be applied in the following scenarios, as shown in FIG. 2, which is the embodiment of the present application.
  • This scenario includes: a vehicle-mounted communication terminal and a relay amplifier, where the vehicle-mounted communication terminal communicates with a relay amplifier through a wireless signal, and the relay amplifier amplifies the signal and radiates it through an external antenna.
  • FIG. 3 it is a schematic diagram of a signal amplifying circuit provided by an embodiment of the present application.
  • the signal amplifying circuit includes but is not limited to the following modules: directional antenna 301 ⁇ Gain control circuit 302 and microprocessor 303.
  • the directional antenna 301 is connected to the gain control circuit 302, the microprocessor 303 is connected to the directional antenna 301, and the microprocessor 303 is connected to the gain control circuit 302.
  • the directional antenna 301 is used to receive the uplink signal sent by the signal source TBOX and send the downlink signal to the TBOX, and detect the signal strength of the uplink signal and the signal strength of the downlink signal.
  • the uplink/downlink signal in this embodiment may It is an indication of the transmission direction, or it can be an overview of a signal transmission stream. The specific scenario depends on the actual situation and is not limited here.
  • the directional antenna 301 may be an antenna device or an overview of devices with wireless signal transmission and reception functions.
  • the directional antenna 301 is a representative name for such functional devices and is not limited herein.
  • the microprocessor 303 is used to determine the gain parameter according to the signal strength of the uplink signal and the signal strength of the downlink signal, and send a gain command to the gain control circuit 302 according to the gain parameter.
  • the gain parameter may be a This specific number is directly transmitted by the microprocessor 303 and identified by the gain control circuit 302. It can also be a code symbol, which is parsed by the microprocessor 303 and written into the gain command. The specific scene depends on the actual situation. There is no limitation here.
  • the gain control circuit 302 is used for signal processing according to the gain command. It can be understood that the process of signal gain can be amplification of uplink/downlink signals or attenuation of uplink/downlink signals. The specific scenario depends on the actual situation However, it is not limited here.
  • the problem of poor cable performance, difficult installation, and high system cost is solved by receiving wireless signals through a directional antenna, and through the linkage of the microprocessor and the gain control circuit, the signal can be reasonably amplified or Attenuation to achieve a good spreading effect.
  • a directional antenna includes a coupler, a detector, and at least two sub-antenna modules.
  • this embodiment uses four sub-antenna modules as an example for description. It should be understood that this example is only a logical description, and the number of sub-antenna modules is not limited here.
  • 4 sub-antenna modules are connected to the microprocessor, 4 sub-antenna modules are connected to the coupler, the coupler is connected to the detector, the coupler is connected to the gain control circuit, and the detector is connected to the microprocessor Connected.
  • the microprocessor can traverse the position information of the at least two sub-antenna modules; obtain the correspondence between the signal strength of the first signal and the position information; when the first signal When the signal strength is greater than the first threshold, the position information of the at least two sub-antenna modules, and the at least two sub-antenna modules are controlled according to the position information to obtain the second signal.
  • the microprocessor may traverse all the position combinations of the four sub-antenna modules.
  • the position combination may indicate the phase delay combination, for example: the position of each sub-antenna module
  • the position of each sub-antenna module There are three modes: 30° offset, 45° offset, and 60° offset.
  • the position pattern of each sub-antenna module is only an example, and the specific position pattern depends on the actual situation, and is not limited here.
  • the coupler After the microprocessor traverses all the phase delay combinations of the four sub-antenna modules, the coupler obtains the signals of all the phase delay combinations, and the detector detects the signal strength of these signals to obtain the phase delay combination when the signal strength is greater than the first threshold.
  • the phase delay combination when it is greater than the first threshold may be only one group, in which case the group is the strongest phase delay combination; or it may be multiple groups, in which case one group can be selected
  • the phase delay combination saves the computing resources of the microprocessor, and there is no need to operate all the phase delay combinations.
  • the value of the first threshold can be an artificial input, or the microprocessor can calculate statistics based on historical data. The income, the specific scene depends on the actual situation, not limited here.
  • the first threshold is 25dBm
  • the first sub-antenna module is offset by 15°
  • the second sub-antenna module is offset by 30°
  • the third sub-antenna module is offset by 15°
  • the fourth sub-antenna module Offset 30°, signal strength 20dBm
  • the first sub-antenna module is offset by 30°
  • the second sub-antenna module is offset by 30°
  • the third sub-antenna module is offset by 15°
  • the module is offset by 15° and the signal strength is 30 dBm. Since the signal strength of the second phase delay combination is 30 dBm greater than the first threshold of 20 dBm, the second phase delay combination is adopted to adjust the positions of the four sub-antenna modules to receive the next signal.
  • the position of the sub-antenna module may be changed due to the jitter of the body, or the signal propagation path may be changed due to the influence of the metal body, so the cycle
  • the detection and adjustment process of the above-mentioned phase delay combination is performed sexually, that is, a fixed time interval is set in the microprocessor, and when the preset time is reached, the microprocessor controls the directional antenna to perform the process.
  • This embodiment improves the quality and stability of the signal received by the directional antenna by selecting the phase delay combination.
  • This solution can also be applied to other wireless signal transmission and reception scenarios, which is not limited herein.
  • the directional antenna has the function of receiving signals and can also send signals, corresponding to the process of receiving and sending uplink/downlink signals in the circuit.
  • the gain control circuit it is often necessary to provide different transmission channels for the uplink signal and the downlink signal. This is In order to avoid interference between signals, to solve this problem, as shown in FIG. 5, it is another schematic diagram of a signal amplification circuit provided by an embodiment of the present application.
  • the signal amplification circuit includes: a directional antenna 501, a gain control circuit 502, a microprocessor 503, and a first synchronization unit 504.
  • the first synchronization unit 504 is connected to the gain control circuit 502, the first synchronization unit 504 is connected to the microprocessor 503; the first synchronization unit 504 is connected to the directional antenna 501.
  • the first synchronization unit 504 is used to couple the downlink signal; detect the signal strength of the downlink signal; output the signal strength of the downlink signal to the microprocessor 503; when the microprocessor 503 detects that the signal strength of the downlink signal is greater than the When the signal strength of the upstream signal detected by the directional antenna 501 is turned on, the downstream channel is turned on; when the microprocessor 503 detects that the signal strength of the downstream signal is less than the signal strength of the upstream signal detected by the directional antenna 501, the upstream channel is turned on.
  • the first synchronization unit 504 is used to connect a downstream channel when the microprocessor 503 detects that the signal strength of the downstream signal is greater than the signal strength of the upstream signal detected by the directional antenna 501; when the microprocessor 503 detects When the signal strength of the downlink signal is less than the signal strength of the uplink signal detected by the directional antenna 501, the uplink channel is turned on.
  • the first synchronization unit 504 may adopt a circuit design. As shown in FIG. 6, it is a circuit diagram of a synchronization unit provided by an embodiment of the present application. It should be noted that this possible implementation is not a limitation on the circuit design of the first synchronization unit 504, and the first synchronization unit 504 may also be other designs with the above functions. The specific design depends on the actual scenario and is not done here limited.
  • switching on the upstream/downstream channel can be switched by a switch or by a circulator; because the switching of the upstream channel and the downstream channel corresponds to different operation processes, that is, in a possible scenario, when When the strength of the upstream signal is greater than the strength of the downstream signal, the microprocessor 503 determines that the signal is being transmitted, and the microprocessor 503 controls the first synchronization unit 504 to switch to the upstream channel; when the strength of the upstream signal is less than the strength of the downstream signal, the microprocessor 503 determines that In the signal receiving state, the microprocessor 503 controls the first synchronization unit 504 to switch to the downstream channel.
  • this scenario can be embodied by real-time statistics of the data in the microprocessor 503.
  • FIG. 7 it is a schematic diagram of a real-time status detection result provided by an embodiment of the present application.
  • the result of the real-time status detection may be
  • the code embodied in the microprocessor 503 may also be presented in the form of an external display device, and the content displayed may be a dynamic curve at the time of detection or the result of the detection, for example, transmission or reception.
  • the signal strength of the uplink signal or the signal strength of the downlink signal will not reach the preset strength, that is, the terminal has a failure. At this time, the terminal needs to detect the failure. In this embodiment, It can be inferred by comparing the absolute value of the difference between the signal strength of the upstream signal and the signal strength of the downstream signal with the second threshold.
  • the second threshold can be the threshold A, which can be expressed as: when
  • the setting of the threshold A may be input by the operator, or may be calculated by the terminal according to the operating data.
  • the specific method depends on the actual situation and is not limited here.
  • a synchronization unit can be added to realize the function of fault detection.
  • FIG. 8 it is another schematic diagram of a signal amplification circuit provided by an embodiment of the present application. Based on the function of channel selection, it also has the function of fault detection.
  • the signal amplification circuit includes: a directional antenna 801, a gain control circuit 802, a microprocessor 803, a first synchronization unit 804, and a second synchronization unit 805.
  • the second synchronization unit is connected to the gain control circuit, and the second synchronization unit is connected to the microprocessor; the second synchronization unit is used to couple the upstream signal after gain control; the signal to detect the upstream signal after gain control Strength; output the signal strength of the gain-controlled upstream signal to the microprocessor; the first synchronization unit is also used to couple the gain-controlled downstream signal; detect the signal strength of the gain-controlled downstream signal; output the The signal strength of the downlink signal after gain control is sent to the microprocessor.
  • the microprocessor is used to obtain uplink output power according to the signal strength of the uplink signal after the gain control and the signal strength of the uplink signal; to use the signal strength of the downlink signal after the gain control and the signal strength of the downlink signal Get the downlink output power.
  • the difference can correspond to different signal amplification circuit components, that is, the difference between the signal strength of the upstream signal minus the signal strength of the downstream signal and the third threshold can be derived.
  • the difference between the signal strength of the downstream signal minus the signal strength of the upstream signal and the fourth threshold can be deduced from the directional antenna failure.
  • the third threshold can be the threshold A1
  • the fourth threshold can be the threshold A2, using the formula It can be expressed as: when the signal strength of the upstream signal-the signal strength of the downstream signal ⁇ threshold A1, the relay circuit is considered to be faulty, and when the signal strength of the downstream signal-the signal strength of the upstream signal ⁇ threshold A2, it is considered that the directional antenna is faulty.
  • the microprocessor 503 detects that the signal strength of the upstream signal is 30 dBm, the signal strength of the downstream signal is 20 dBm, and the threshold A1 is 15 dB.
  • the detection result can be represented by a data schematic diagram. As shown in FIG. 9, it is a schematic diagram of a fault detection result provided by an embodiment of the present application.
  • the result of the real-time status detection may be micro
  • the code embodied in the processor 503 may also be presented in the form of an external display device, and the content displayed may be a dynamic curve during detection or the result of detection.
  • the settings of the thresholds A1 and A2 may be input by the operator or calculated by the terminal according to the operating data.
  • the specific method depends on the actual situation and is not limited here.
  • the identifiability of the signal amplification circuit is improved, that is, the working state of the circuit at this time or the fault condition can be better understood.
  • the terminal corresponding to the circuit also has the above characteristics, which will not be repeated here.
  • FIG. 10 is a schematic diagram of an automatic gain control circuit provided by an embodiment of the present application.
  • this embodiment is an expression of the function of automatic gain control, and its component parts can be applied to any of the above circuits, that is, the signal reception can refer to the related description of FIG. 3, and the signal judgment or fault judgment can refer to The relevant description of FIG. 5 will not be repeated here.
  • the process of automatic gain control is described below.
  • the adjustable attenuator and variable gain amplifier are integrated in the gain control circuit.
  • the microprocessor can be integrated into the detector in the final amplifier or integrated in the synchronization unit.
  • the coupler and the detector obtain the upstream/downstream output signal strength of the relay amplifier, and calculate the gain required when the relay amplifier works at the target output power according to the strength, and then control the adjustable attenuator and the variable gain amplifier.
  • variable gain amplifier is used for gain operation when the microprocessor detects that the uplink output power is less than the first preset power; and also used for when the microprocessor detects that the downlink output power is greater than the second preset Switching operation at power; adjustable attenuator for attenuation operation when the microprocessor detects that the upstream output power is greater than the first preset power; also used for when the microprocessor detects the downstream output When the power is greater than the second preset power, the attenuation operation is performed.
  • the settings of the first preset power and the second preset power may be input by the operator, or may be calculated by the terminal according to the operating data.
  • the specific method depends on the actual situation and is not limited here. .
  • the gain control of the downlink signal can only be achieved by the variable gain amplifier, that is, when the microprocessor detects that the downlink output power is greater than the third preset power, the variable gain The amplifier is adjusted from a first gain state to a second gain state, the gain amount corresponding to the first gain state is greater than the gain amount corresponding to the second gain state.
  • the microprocessor detects that the downlink output power is 40dBm, the preset power is 30dBm, the first gain state of the variable gain amplifier is amplified by 20dB, and the second gain state is amplified by 10dB.
  • the downstream output power of 40dBm is greater than the preset power 30dBm, so the first gain state is adjusted to the second gain state, and the downstream output power is adjusted to 30dBm, which meets the preset power requirement.
  • the downlink signal is strong enough, and by bypassing the variable gain amplifier, the gain control of the downlink signal can also be achieved. Only the variable gain amplifier achieves the automatic gain effect, that is, using the switch to bypass the variable gain The amplifier lasts for 1ms, and the original gain state is restored after 1ms. This similar restart process allows the variable gain amplifier to skip the signal of the frame to achieve the effect of gain control.
  • the above signal amplification circuits can be integrated into a wireless relay amplifier for wireless signal reception, amplification and transmission.
  • the wireless relay amplifier can also integrate a temperature sensor, which is connected to the microprocessor; If the amount of temperature change of the signal amplifier circuit is greater than the fifth threshold, temperature compensation is performed. It can be understood that the amount of temperature change may be the temperature of the board, and the specific scenario depends on the actual situation, and is not limited here. For example, if the fifth threshold is 40°C and the temperature of the board of the wireless relay amplifier is 45°C, the microprocessor controls the wireless relay amplifier to perform temperature compensation.
  • the wireless relay amplifier can also have multiple signal transmission modes, that is, when one mode fails, it can be switched to another mode to ensure the normal operation of the wireless relay amplifier, avoiding the Following the failure of the amplifier, there are hidden safety hazards.
  • FIG. 11 it is another schematic diagram of a signal amplification circuit provided by an embodiment of the present application.
  • connection methods and functions of the directional antenna 1101, the gain control circuit 1102, the microprocessor 1103, the first synchronization unit 1104, and the second synchronization unit 1105 reference may be made to the related description in FIG. 5, which will not be repeated here.
  • the power divider 1109 is connected to the TBOX through a radio frequency cable, the power divider 1109 is connected to the synchronous demodulation unit 1110, the power divider 1109 is connected to the second synchronization unit 1105, the synchronization The demodulation unit 1110 is connected to the microprocessor 1103.
  • the directional antenna 1101 fails.
  • the power divider 1109 separates the second signal sent by the TBOX.
  • the second signal includes a radio frequency signal and a power modulation signal; synchronization
  • the demodulation unit 1110 obtains the transmission direction information of the second signal according to the power modulation signal, and sends the transmission direction information to the microprocessor 1103; the microprocessor 1103 generates the gain instruction according to the transmission direction information; the gain control circuit 1102, according to This gain instruction performs gain control corresponding to the transmission direction.
  • the first synchronization unit 1104 and the second synchronization unit 1105 may refer to the related description in FIG. 5 to determine the transmission status or detect the fault, and details are not described here.
  • the synchronous demodulation unit 1110 obtains the transmission direction information of the second signal according to the power modulation signal in one of the following ways, that is, the synchronous demodulation unit 1110 obtains the first voltage according to the power modulation signal, and the first voltage Is the output voltage of the TBOX; comparing the first voltage with a preset voltage, the preset voltage is used to indicate the transmission direction information; if the first voltage is greater than the preset voltage, the uplink transmission information is generated and sent to the microprocessor Sending the uplink transmission direction information; if the first voltage is less than the preset voltage, generating downlink transmission information and sending the uplink transmission direction information to the microprocessor.
  • the preset voltage is 9V, if the first voltage is 6V, the microprocessor sends the downlink transmission direction information; if the first voltage is 12V, the microprocessor sends the uplink transmission direction information, this example can be through the following circuit
  • the design and implementation, as shown in FIG. 12, is a circuit diagram of a synchronous demodulation unit provided by an embodiment of the present application.
  • a TBOX in this embodiment, it includes: a wireless communication unit 1106, a combiner 1107, and a synchronization modulation unit 1108, wherein the wireless communication unit 1106 is connected to the combiner 1107, and the combiner 1107 is synchronized with the synchronization
  • the modulation unit 1108 is connected, and the synchronous modulation unit 1108 is connected to the wireless communication unit 1106.
  • the TBOX in this embodiment also includes a built-in antenna.
  • the built-in antenna is connected to the combiner 1107, and is used to switch the radio frequency signal to the built-in antenna when switching to the wireless transmission mode.
  • the signal amplifying circuit described in FIG. 5 or FIG. 8. For the specific operation, please refer to the related descriptions in FIG. 3, FIG. 5 or FIG. 8, which will not be repeated here.
  • the built-in antenna can be integrated in the wireless communication unit, or it can be a plug-in of TBOX. The specific method depends on the actual scene, and is not limited here.
  • the wireless communication unit 1106 sends an RF signal to the combiner 1107; the synchronous modulation unit 1108 generates a power modulation signal based on the RF signal; then the combiner 1107 sends the power The modulation signal and the radio frequency signal.
  • the synchronous modulation unit 1108 may output a first voltage according to the radio frequency signal, and generate the power modulation signal according to the first voltage.
  • the first voltage is used to indicate that the radio frequency signal is an uplink control signal;
  • the signal outputs a second voltage, and the power modulation signal is generated according to the second voltage.
  • the second voltage is used to indicate that the radio frequency signal is a downlink control signal.
  • the preset voltage is 9V. If the radio frequency signal is an uplink signal, the first voltage can be 12V; if the radio frequency signal is a downlink signal, the first voltage can be 6V.
  • Figure 13 is a circuit diagram of a synchronous modulation unit provided by an embodiment of the present application.
  • FIG. 14 it is another schematic diagram of a signal amplification circuit provided by an embodiment of the present application. All the shown components can refer to the related descriptions in FIG. 11 and will not be repeated here.
  • An embodiment of the present application also provides a terminal device.
  • the terminal device may be a relay amplifier or a device having the above-mentioned signal amplification circuit.
  • the terminal device uses a relay amplifier as an example.
  • the terminal device includes a processor, a memory, a signal amplifying circuit, an antenna, and input and output devices.
  • the processor is mainly used for processing communication protocols and communication data, as well as controlling terminal devices, executing software programs, and processing software program data.
  • the memory is mainly used to store software programs and data.
  • the signal amplification circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input/output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the signal amplification circuit.
  • the signal amplification circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the signal amplification circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • only one memory and processor are shown in FIG. 15. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium, storage device, or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiments of the present application.
  • an antenna and a signal amplifying circuit with a transceiver function can be regarded as a transceiver unit of a terminal device, and a processor with a processing function can be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1501 and a processing unit 1502.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device used to implement the receiving function in the transceiver unit 1501 may be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 1501 may be regarded as a sending unit, that is, the transceiver unit 1501 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a signal amplifying circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1501 is used to perform the sending operation and the receiving operation on the terminal device side in the above method embodiment, and the processing unit 1502 is used to perform other operations on the terminal device in addition to the transceiving operation in the above method embodiment.
  • the naming or numbering of steps that appear in this application does not mean that the steps in the method flow must be executed in the time/logic sequence indicated by the naming or numbering.
  • the named or numbered process steps can be based on the The technical order can be changed as long as the same or similar technical effects can be achieved.
  • the division of modules appearing in this application is a logical division. In actual application, there may be other divisions. For example, multiple modules can be combined or integrated into another system, or some features can be ignored , Or not, in addition, the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection between modules may be electrical or other similar forms. There are no restrictions in the application.
  • the modules or submodules described as separate components may or may not be physically separated, may or may not be physical modules, or may be distributed among multiple circuit modules, and some or all of them may be selected according to actual needs Module to achieve the purpose of this application scheme.
  • the program may be stored in a computer-readable storage medium, and the storage medium may include: U disk, mobile hard disk, read-only memory (ROM, read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Abstract

一种信号放大电路及终端设备,通过信号放大电路中集成可调高增益定向天线(301),免去了TBOX与信号放大电路之间需要射频线缆连接的现状,提高性能的同时降低了成本及装配难度。所述信号放大电路包括:定向天线(301)、增益控制电路(302)和微处理器(303);定向天线(301)与增益控制电路(302)相连,微处理器(303)与定向天线(301)相连,微处理器(303)与增益控制电路(302)相连;定向天线(301)用于接收车载通讯终端TBOX发送的上行信号,向TBOX发送下行信号;检测上行信号的信号强度和下行信号的信号强度;微处理器(303)用于根据上行信号的信号强度和下行信号的信号强度确定增益参数,根据增益参数向增益控制电路(302)发送增益指令;增益控制电路(302)用于根据增益指令进行信号的处理。

Description

一种信号放大电路及终端设备 技术领域
本申请涉及通信领域,尤其涉及一种信号放大电路及终端设备。
背景技术
在实现车载通讯终端(telematics box,TBOX)中的无线通信功能过程中,由于受车体金属的遮挡影响,通常需要使用外接天线,并将天线置于车外以获取更强的信号和更好的天线方向性。然而,连接TBOX和外接天线之间的射频同轴线缆,受车内布线的限制,长度可达5m甚至更长,从而引入的损耗会导致整车无线通信性能下降,尤其是高频。
现有技术中,无线终端通过耦合板和射频线缆,将上行发射信号耦合到中继放大器进行放大,再通过射频线缆传输到外接天线并向外辐射;反过来,外接天线接收到外部下行信号,通过射频线缆传输到中继放大器进行放大,再通过射频线缆和耦合板传输给无线终端。
但是,这种方法需要射频线缆和耦合板作为无线终端与中继放大器之间的传输媒介,其系统成本高,车内射频线缆的布线依然复杂。
发明内容
本申请实施例提供了一种信号放大电路及终端设备,通过信号放大电路内部集成可调高增益定向天线,免去了TBOX与信号放大电路之间需要射频线缆连接的现状,解决性能问题的同时降低了整车成本及装配难度,配合自动增益控制方案,完成了信号放大电路到TBOX之间的信号传输路径损耗与中继放大器增益的自动适配,无需针对不同应用场景配置不同的中继放大器,具有通用性。
为达到上述目的,本申请实施例提供如下技术方案:
本申请第一方面提供一种信号放大电路,该信号放大电路可应用于车载通讯终端及其他需要中继放大功能的移动设备中,该信号放大电路在运行过程中涉及到的信号放大电路设备在车载通讯终端及其他需要中继放大功能的移动设备中对应相应的功能实体。该电路可以包括:一种信号放大电路,其特征在于,该信号放大电路包括:定向天线、增益控制电路和微处理器;该定向天线与该增益控制电路相连,该微处理器与该定向天线相连,该微处理器与该增益控制电路相连;该定向天线,用于接收车载通讯终端TBOX发送的上行信号,向该TBOX发送下行信号;检测上行信号的信号强度和下行信号的信号强度;该微处理器,用于根据该上行信号的信号强度和下行信号的信号强度确定增益参数,根据该增益参数向该增益控制电路发送增益指令;该增益控制电路,用于根据该增益指令进行信号的处理。由该可能的实现方式可见,通过定向天线对于TBOX无线信号的接收与发送,代替了复杂的通过复杂的射频线缆的现有方案,进一步的,通过微处理器对于信号的检测与相关指令的发送,实现了对于上行/下行信号的动态增益,完成了中继放大器到TBOX之间的信号传输路径损耗与中继放大器增益的自动适配,无需针对不同应用场景配置不同的中继 放大器,提高了在实际应用场景中的适应通用性。
可选的,在本申请的一些实施例中,该定向天线包括耦合器、检波器和至少两个子天线模块;该至少两个子天线模块与该微处理器相连,该至少两个子天线模块与该耦合器相连,该耦合器与该检波器相连,该耦合器与该增益控制电路相连,该检波器与该微处理器相连;该耦合器,用于获取该至少两个子天线模块在预设时间段内的第一信号;该检波器,用于检测该第一信号的信号强度;该微处理器,该微处理器,用于遍历该至少两个子天线模块的位置信息;获取该第一信号的信号强度与该位置信息的对应关系;当该第一信号的信号强度大于第一阈值时该至少两个子天线模块的位置信息,并根据该位置信息控制该至少两个子天线模块获取第二信号。由该可能的实现方式可见,通过至少两个子天线模块组成的定向天线可以对信号进行良好的接收与发送,进一步的,通过获取至少两个子天线模块的相位延迟特性,得到性能较好的相位延迟组合,提高了定向天线接收或发送的信号强度,而且,通过第一阈值的设定,在相位延迟组合过多的情况下,无需对所有相位延迟组合进行遍历,节约了设备的计算资源,在车载或其他移动终端的使用场景中,可以避免由于外界金属框架造成的信号影响,提高了信号放大电路运行的稳定性。
可选的,在本申请的一些实施例中,该耦合器,具体用于周期性的获取该至少两个子天线模块在预设时间段内的第一信号。由该可能的实现方式可见,由于至少两个子天线模块的位置变化会引起性能的改变,而且至少两个子天线模块可能处于一个不稳定的环境中,例如车的抖动,外界信号的干扰都可能影响性能,故周期性的获取第一信号的位置信息可以提高子天线模块的稳定性,保证了子天线模块接收信号的质量。
可选的,在本申请的一些实施例中,该信号放大电路还包括第一同步单元;该第一同步单元与该定向天线相连,该第一同步单元与该自动增益控制电路相连,该第一同步单元与该微处理器相连;该第一同步单元,用于耦合该下行信号;检测该下行信号的信号强度;输出该下行信号的信号强度至该微处理器;当该微处理器检测到该下行信号的信号强度大于该定向天线检测的上行信号的信号强度时,接通下行通道;当该微处理器检测到该下行信号的信号强度小于该定向天线检测的上行信号的信号强度时,接通上行通道;该第一同步单元,用于当该微处理器检测到该下行信号的信号强度大于该定向天线检测的上行信号的信号强度时,接通下行通道;当该微处理器检测到该下行信号的信号强度小于该定向天线检测的上行信号的信号强度时,接通上行通道。由该可能的实现方式可见,通过第一同步单元对于下行信号的耦合检测,以及与上行信号的信号强度的对比,可以得到此时上行/下行的状态,并选择对应的通道,提高了信号放大电路的准确性,避免了上行/下行信号冗杂的发生。
可选的,在本申请的一些实施例中,该微处理器,还用于计算该上行信号的信号强度与该下行信号的信号强度的差值的绝对值;若该绝对值小于或等于第二阈值,则产生中继故障信息。由该可能的实现方式可见,由于中继放大器对于信号的放大是对应了一定功率的,当上行/下行的信号强度差值绝对值过小时,说明中继放大器发生了故障,无法正常的将信号放大到一定强度,这种判断方法提高了信号放大电路的可识别性,即可以更好的了解到电路此时的工作状态,或故障情况。
可选的,在本申请的一些实施例中,该微处理器,具体用于计算该上行信号的信号强度减去该下行信号的信号强度的差值;若该差值小于或等于第三阈值,则该微处理器产生中继故障信息。由该可能的实现方式可见,通过计算上行信号与下行信号的差值,可以得到信号放大电路的工作情况,提高了信号放大电路的可识别性。
可选的,在本申请的一些实施例中,该微处理器,具体用于计算该下行信号的信号强度减去该上行信号的信号强度的差值;若该差值小于或等于第四阈值,则该微处理器产生定向天线故障信息。由该可能的实现方式可见,通过计算下行信号与上行信号的差值,可以得到定向天线的工作情况,提高了信号放大电路的可识别性。
可选的,在本申请的一些实施例中,该信号放大电路还包括第二同步单元,该第二同步单元,用于耦合增益控制后的上行信号;检测该增益控制后的上行信号的信号强度;输出该增益控制后的上行信号的信号强度至该微处理器;该第一同步单元,还用于耦合增益控制后的下行信号;检测该增益控制后的下行信号的信号强度;输出该增益控制后的下行信号的信号强度至该微处理器;该微处理器,用于根据该增益控制后的上行信号的信号强度与该上行信号的信号强度得到上行输出功率;用于根据该增益控制后的下行信号的信号强度与该下行信号的信号强度得到下行输出功率。由该可能的实现方式可见,通过对增益控制后上行/下行信号强度的检测,并反馈给微处理器,可以对信号放大电路进行实时的功率监控,提高了信号放大电路的稳定性。
可选的,在本申请的一些实施例中,该增益控制电路包括:可变增益放大器和可调衰减器;该可变增益放大器,用于当该微处理器检测到该上行输出功率小于第一预设功率时,进行增益操作;还用于当该微处理器检测到下行输出功率大于第二预设功率时,进行切换操作;该可调衰减器,用于当该微处理器检测到上行输出功率大于该第一预设功率时,进行衰减操作;还用于当该微处理器检测到该下行输出功率大于该第二预设功率时,进行衰减操作。由该可能的实现方式可见,通过对增益控制后上行/下行信号强度的检测,并反馈给微处理器,可以自动的动态处理增益过程,即按照预定的增益功率进行增益,无需人为的监测与调控,提高了信号放大电路的稳定性。
可选的,在本申请的一些实施例中,该可变增益放大器,具体用于当该微处理器检测到下行输出功率大于预设功率时,将该可变增益放大器从第一增益状态调整为第二增益状态,该第一增益状态对应的增益量大于该第二增益状态对应的增益量。由该可能的实现方式可见,通过可变增益放大器增益状态的改变,可以达到衰减的效果,简化了电路的设计,节约了成本。
可选的,在本申请的一些实施例中,该增益控制电路还包括切换装置;该切换装置与该可变增益放大器并联;该切换装置,用于当该微处理器检测到下行输出功率大于预设功率时,切换该可变增益放大器至旁路,持续第二预设时长后,恢复接通。由该可能的实现方式可见,通过旁路的设计,可以在只使用可变增益放大器的情况下达到衰减的效果,简化了电路的设计,节约了成本。
可选的,在本申请的一些实施例中,该信号放大电路还包括功分器和同步解调单元;该功分器通过射频电缆与TBOX相连,该功分器与该同步解调单元相连,该功分器与该增益 控制电路相连,该同步解调单元与该微处理器相连;该功分器,用于分离TBOX发送的第二信号,该第二信号包括射频信号和电源调制信号;该同步解调单元,用于根据该电源调制信号获取第二信号的传输方向信息,并向该微处理器发送传输方向信息;该微处理器,用于根据该传输方向信息生成该增益指令;该增益控制电路,用于根据该增益指令执行对应传输方向的增益控制。由该可能的实现方式可见,通过电源电压的解调,可以得到上行与下行的状态信息,在一些可能的场景中,简化了传输路径,避免了上行与下行过程中的信号干扰。
可选的,在本申请的一些实施例中,该同步解调单元,具体用于根据该电源调制信号获取第一电压,该第一电压为TBOX的输出电压;对比该第一电压与预设电压,该预设电压用于指示该传输方向信息;若该第一电压大于该预设电压,则生成上行传输信息并向该微处理器发送该上行传输方向信息;若该第一电压小于该预设电压,则生成下行传输信息并向该微处理器发送该上行传输方向信息。由该可能的实现方式可见,通过对预设电压的设定,以及解调电压的与预设电压的比较,可以得到上行与下行的状态信息,在一些可能的场景中,简化了传输路径,避免了上行与下行过程中的信号干扰。
可选的,在本申请的一些实施例中,该信号放大电路还包括:温度传感器;该温度传感器与该微处理器相连;该温度传感器,用于获取该信号放大电路的温度变化量,若该温度变化量大于第二阈值,则进行温度补偿。由该可能的实现方式可见,由于信号放大电路在运行过程中伴随温度的变化,而温度的变化会影响电路的性能,故通过温度变化量的检测,对电路进行温度补偿可以提高电路的稳定性,以及放大过程的准确性。
本申请实施例第二方面提供了一种车载通讯终端TBOX,该TBOX包括:无线通信单元、合路器和同步调制单元;其中,该无线通信单元与该合路器相连,该合路器与该同步调制单元相连,该同步调制单元与该无线通信单元相连;该无线通信单元,用于发送射频信号;该同步调制单元,用于生成电源调制信号;该合路器,用于发送该电源调制信号和该射频信号。由该可能的实现方式可见,通过调制电压标识不同的传输状态,在一些可能的场景中,简化了传输路径,避免了上行与下行过程中的信号干扰。
可选的,在本申请的一些实施例中,该同步调制单元,具体用于根据该射频信号输出第一电压,根据第一电压生成该电源调制信号,该第一电压用于指示该射频信号为上行控制信号;还用于根据该射频信号输出第二电压,根据该第二电压生成该电源调制信号,该第二电压用于指示该射频信号为下行控制信号。
本申请实施例第三方面提供了一种终端设备,该终端设备包括:中继放大器、处理器、存储器、总线以及输入输出接口;该中继放大器包括上述第一方面任一可能实现方式中的信号放大电路;该存储器中存储有程序代码;该处理器调用该存储器中的程序代码时向该信号放大电路发送控制信号,该控制信号用于控制该信号放大电路对上行信号或下行信号放大。
第四方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如前述第一方面及任一可选实现方式中所述的方法。
该计算机存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、 随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
第五方面,本申请实施例提供一种计算机程序产品,当其在计算机上运行时,使得计算机执行如前述第一方面及任一可选实现方式中所述的方法。
第六方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持优化设备实现上述方面中所涉及的功能,例如,发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存信号放大电路必要的程序指令和数据。该芯片系统,既可以是信号放大电路,也可以是应用在信号放大电路中执行相应功能的系统芯片。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例通过中继放大器内部集成可调高增益定向天线,免去了TBOX与中继放大器之间需要射频线缆连接的现状,解决性能问题的同时降低了整车成本及装配难度,配合自动增益控制方案,完成了中继放大器到TBOX之间的信号传输路径损耗与中继放大器增益的自动适配,无需针对不同应用场景配置不同的中级放大器,具有通用性。
附图说明
图1是现有技术中无线终端通过中继放大器进行放大的场景图;
图2是本申请实施例所应用的场景示意图;
图3是本申请实施例提供的一种信号放大电路示意图;
图4是本申请实施例提供的一种定向天线结构示意图;
图5是本申请实施例提供的另一种信号放大电路示意图;
图6是本申请实施例提供的一种同步单元的电路图;
图7是本申请实施例提供的一种实时状态检测结果示意图;
图8是本申请实施例提供的另一种信号放大电路示意图;
图9是本申请实施例提供的一种故障检测结果示意图;
图10是本申请实施例提供的一种自动增益控制电路示意图;
图11是本申请实施例提供的另一种信号放大电路示意图;
图12是本申请实施例提供的一种同步解调单元的电路图;
图13是本申请实施例提供的一种同步调制单元的电路图;
图14是本申请实施例提供的另一种信号放大电路示意图;
图15是本申请实施例提供的一种终端设备示意图。
具体实施方式
本申请实施例提供了一种信号放大电路及终端设备,通过中继放大器内部集成可调高增益定向天线,免去了车载通讯终端(telematics box,TBOX)与中继放大器之间需要射频线缆连接的现状,解决性能问题的同时降低了整车成本及装配难度,配合自动增益控制方案,完成了中继放大器到TBOX之间的信号传输路径损耗与中继放大器增益的自动适配, 无需针对不同应用场景配置不同的中级放大器,具有通用性。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,都应当属于本申请保护的范围。
在实现TBOX中的无线通信功能过程中,由于受车体金属的遮挡影响,通常需要使用外接天线,并将天线置于车外以获取更强的信号和更好的天线方向性。然而,连接TBOX和外接天线之间的射频同轴线缆,受车内布线的限制,长度可达5m甚至更长,从而引入的损耗会导致整车无线通信性能下降,尤其是高频。
如图1所示,是现有技术中无线终端通过中继放大器进行放大的场景图,无线终端通过耦合板和射频线缆,将上行发射信号耦合到中继放大器进行放大,再通过射频线缆传输到外接天线并向外辐射;反过来,外接天线接收到外部下行信号,通过射频线缆传输到中继放大器进行放大,再通过射频线缆和耦合板传输给无线终端。但是,这种方法需要射频线缆和耦合板作为无线终端与中继放大器之间的传输媒介,其系统成本高,车内射频线缆的布线依然复杂。
在另外一种现有技术中,采用不同的调制频率,区分需要被中继放大的信号、中继放大后的检测信号及控制信号,以实现复用射频线缆的目的。其中,放大后的检测信号回传至无线终端,用于实现终端输出功率的调整,以保证中继放大器具有稳定准确的输出功率。但由于该检测信号为连续变化的模拟信号,所以还需要经过编解码、上下变频等处理,才能复用射频线缆。但是,这种方法需多个频率的信号叠加在射频线上,大大增加了彼此间相互干扰的风险,而且中继放大后的检测信号回传给无线终端需要一套复杂的调制解调系统,其系统成本依然较高。
为解决上述问题,本申请实施例提出一种信号放大的方法,在一种可能的场景中,本申请实施例的方法可应用在如下场景中,如图2所示,是本申请实施例所应用的场景示意图。该场景中包括:车载通讯终端和中继放大器,其中,车载通讯终端通过无线信号与中继放大器进行通讯,中继放大器将信号放大后通过外接天线向外辐射。
下面以实施例的方式对本申请技术方案做进一步的说明,如图3所示,是本申请实施例提供的一种信号放大电路的示意图,该信号放大电路包括但不限于如下模块:定向天线301、增益控制电路302和微处理器303。
其中,定向天线301与增益控制电路302相连,微处理器303与定向天线301相连,微处理器303与增益控制电路302相连。
定向天线301,用于接收信号源TBOX发送的上行信号,以及向TBOX发送下行信号,并检测上行信号的信号强度和下行信号的信号强度,应当注意的是,本实施例中上行/下行信号可以是传输方向的标识,也可以是一种信号传输流的概述,具体场景因实际情况而定,此处不做限定。
可以理解的是,定向天线301可以是一种天线装置,也可以是具有无线信号收发功能器件的概述,定向天线301即对于这类功能器件的代表称谓,此处不做限定。
微处理器303,用于根据上行信号的信号强度和下行信号的信号强度确定增益参数, 根据增益参数向增益控制电路302发送增益指令,可以理解的是,本实施例中,增益参数可以是一种具体的数字,经由微处理器303直接传输与增益控制电路302进行识别操作,也可以是一种代码符号,经由微处理器303解析后写入增益指令中,具体场景因实际情况而定,此处不做限定。
增益控制电路302,用于根据增益指令进行信号的处理,可以理解的是,信号增益的过程可以是对于上行/下行信号的放大,也可以是对于上行/下行信号的衰减,具体场景因实际情况而定,此处不做限定。
本实施例中,通过定向天线接收无线信号的方式,解决了线缆性能差、安装困难且系统成本高的问题,且通过微处理器与增益控制电路的联动,可以对信号进行合理的放大或衰减,以达到良好传播的效果。
可以理解是的,定向天线对于无线信号的接收是该方案的关键之一,可选的,在一种可能的设计中,如图4所示,是本申请实施例提供的一种定向天线结构示意图,定向天线包括耦合器、检波器和至少两个子天线模块。
为便于理解,本实施例以4个子天线模块作为示例进行说明,应当理解的是,本示例仅为逻辑说明,此处对子天线模块数量不做限定。
其中,4个子天线模块与该微处理器相连,4个子天线模块与该耦合器相连,该耦合器与该检波器相连,该耦合器与该增益控制电路相连,该检波器与该微处理器相连。
为了达到良好的信号接收效果,该微处理器可以遍历所述至少两个子天线模块的位置信息;获取所述第一信号的信号强度与所述位置信息的对应关系;当所述第一信号的信号强度大于第一阈值时所述至少两个子天线模块的位置信息,并根据所述位置信息控制所述至少两个子天线模块获取第二信号。
在一种可能的场景中,在初次上电时,微处理器可以遍历4个子天线模块所有的位置组合,可以理解的是,该位置组合可以指示相位延迟组合,例如:每个子天线模块的位置模式有偏移30°、偏移45°和偏移60°三种模式,则对于这4个子天线模块一种有3*3*3*3=81中可能的组合方式,应当注意的是,本实施例中,每个子天线模块的位置模式仅为示例,具体的位置模式因实际情况而定,此处不做限定。
微处理器遍历4个子天线模块所有的相位延迟组合后,耦合器获取所有的相位延迟组合时的信号,检波器检测这些信号的信号强度,获取信号强度大于第一阈值时的相位延迟组合,可以理解的是,大于第一阈值时的相位延迟组合可以是只有一组,此时该组为信号最强的相位延迟组合;也可以为多组,此时达到其中一组即可选用该组的相位延迟组合,节约了微处理器的计算资源,无需对所有的相位延迟组合进行操作,应当注意的是,第一阈值的取值可以是人为的输入,也可以是微处理器根据历史数据统计所得,具体场景因实际情况而定,此处不做限定。
例如:第一阈值为25dBm,第一相位延迟组合中,第一子天线模块偏移15°,第二子天线模块偏移30°,第三子天线模块偏移15°,第四子天线模块偏移30°,信号强度20dBm;第二相位延迟组合中,第一子天线模块偏移30°,第二子天线模块偏移30°,第三子天线模块偏移15°,第四子天线模块偏移15°,信号强度30dBm;由于第二相位延迟组合的信 号强度30dBm大于第一阈值20dBm,则采取第二相位延迟组合的方式,调整4个子天线模块的位置接收接下来的信号。
可选的,在一种可能的场景中,由于车载环境并不稳定,可能由于车身的抖动造成子天线模块位置的变化,也可能由于金属车身的影响,使信号传播路径发生变化,于是可以周期性的进行上述相位延迟组合的检测及调整过程,即在微处理器中设定一个固定的时间间隔,当达到预设的时刻时,微处理器控制定向天线进行该过程。
本实施例通过对于相位延迟组合的选择提高了定向天线接收信号的质量与稳定性,该方案也可应用于其他无线信号的收发场景中,此处不做限定。
定向天线即具有信号的接收功能,也可以发送信号,对应在电路中即上行/下行信号的收发过程,但在增益控制电路中,往往需要为上行信号和下行信号提供不同的传输通道,这是为了避免信号之间的干扰,为解决这一问题,如图5所示,是本申请实施例提供的另一种信号放大电路示意图。
该信号放大电路包括:定向天线501、增益控制电路502、微处理器503、第一同步单元504。
该第一同步单元504与该增益控制电路502相连,该第一同步单元504与该微处理器503相连;该第一同步单元504与该定向天线501相连。
该第一同步单元504,用于耦合下行信号;检测下行信号的信号强度;输出该下行信号的信号强度至该微处理器503;当该微处理器503检测到该下行信号的信号强度大于该定向天线501检测的上行信号的信号强度时,接通下行通道;当该微处理器503检测到该下行信号的信号强度小于该定向天线501检测的上行信号的信号强度时,接通上行通道。
该第一同步单元504,用于当该微处理器503检测到该下行信号的信号强度大于该定向天线501检测的上行信号的信号强度时,接通下行通道;当该微处理器503检测到该下行信号的信号强度小于该定向天线501检测的上行信号的信号强度时,接通上行通道。
本实施例中,第一同步单元504可以采用一种电路设计,如图6所示,是本申请实施例提供的一种同步单元的电路图。应当注意的是,该可能的实现方式并不是对于第一同步单元504电路设计的限定,第一同步单元504也可以为具有上述功能的其他设计,具体设计因实际场景而定,此处不做限定。
本实施例中,接通上行/下行通道可以通过开关的切换,也可以通过环形器的切换;由于上行通道与下行通道的切换对应了不同的操作过程,即在一种可能的场景中,当上行信号强度大于下行信号强度时,微处理器503判断为信号发射状态,微处理器503控制第一同步单元504切换至上行通道;当上行信号强度小于下行信号强度时,微处理器503判断为信号接收状态,微处理器503控制第一同步单元504切换至下行通道。
可以理解的是,该场景可以通过微处理器503中数据实时统计的方式体现,如图7所示,是本申请实施例提供的一种实时状态检测结果示意图,该实时状态检测的结果可以为微处理器503内部的代码体现,也可以以外接显示设备的形式呈现,其呈现内容可以是检测时的动态曲线,也可以是检测的结果,例如:发射或接收。
在一种可能的场景中,上行信号的信号强度或下行信号的信号强度会达不到预设的强 度,即终端发生了故障,此时,终端需要对故障进行检测,在本实施例中,可以通过对于上行信号的信号强度与下行信号的信号强度的差值的绝对值与第二阈值比较来推断,第二阈值可以为门限A,用公式可以表达为:当│上行信号的信号强度-下行信号的信号强度│>门限A,则认为终端正常,当│上行信号的信号强度-下行信号的信号强度│≤门限A,则认为终端故障,例如,微处理器503检测到上行信号的信号强度为40dBm,下行信号的信号强度为10dBm,门限A为20dB,由于│上行信号的信号强度-下行信号的信号强度│=│40dBm-10dBm│=30dB>20dB,则认为终端正常。
应当注意的是,门限A的设定可以是通过操作人员的输入,也可以是终端根据运行数据计算所得,具体方法因实际情况而定,此处不做限定。
在另一种可能的场景中,可以通过添加一个同步单元,实现故障检测的功能,如图8所示,是本申请实施例提供的另一种信号放大电路示意图,该信号放大电路在结合了通道选择的功能基础上,还具有故障检测的功能。
该信号放大电路包括:定向天线801、增益控制电路802、微处理器803、第一同步单元804和第二同步单元805。
该第二同步单元与该增益控制电路相连,该第二同步单元与该微处理器相连;该第二同步单元,用于耦合增益控制后的上行信号;检测该增益控制后的上行信号的信号强度;输出该增益控制后的上行信号的信号强度至该微处理器;该第一同步单元,还用于耦合增益控制后的下行信号;检测该增益控制后的下行信号的信号强度;输出该增益控制后的下行信号的信号强度至该微处理器。
该微处理器,用于根据该增益控制后的上行信号的信号强度与该上行信号的信号强度得到上行输出功率;用于根据该增益控制后的下行信号的信号强度与该下行信号的信号强度得到下行输出功率。
由于信号放大电路具有上行信号与下行信号的传输,其差值可以对应不同的信号放大电路部件,即上行信号的信号强度减去下行信号的信号强度的差值与第三阈值对比可以推导出中继电路故障,下行信号的信号强度减去上行信号的信号强度的差值与第四阈值对比可以推导出定向天线故障,第三阈值可以为门限A1,第四阈值可以为门限A2,用公式可以表达为:当上行信号的信号强度-下行信号的信号强度≤门限A1,则认为中继电路故障,当下行信号的信号强度-上行信号的信号强度≤门限A2,则认为定向天线故障。例如:微处理器503检测到上行信号的信号强度为30dBm,下行信号的信号强度为20dBm,门限A1为15dB,由于上行信号的信号强度-下行信号的信号强度=30dBm-20dBm=10dB<15dB,则认为中继电路故障,可以理解的是,检测结果可以通过数据示意图表示,如图9所示,是本申请实施例提供的一种故障检测结果示意图,该实时状态检测的结果可以为微处理器503内部的代码体现,也可以以外接显示设备的形式呈现,其呈现内容可以是检测时的动态曲线,也可以是检测的结果。
应当注意的是,门限A1和A2的设定可以是通过操作人员的输入,也可以是终端根据运行数据计算所得,具体方法因实际情况而定,此处不做限定。
本实施例中,通过对上行信号的信号强度与下行信号强度的计算,提高了信号放大电 路的可识别性,即可以更好的了解到电路此时的工作状态,或故障情况,该信号放大电路对应的终端亦具有上述特性,此处不做赘述。
可以理解的是,在信号放大电路工作过程中,信号放大操作会由于信号源的波动而产生变化,即信号放大所用的功率可能是波动的,增益控制电路需实时的做出调整,为解决该问题,下面说明一种可能的实现方式,如图10所示,是本申请实施例提供的一种自动增益控制电路示意图。
应当注意的是,本实施例为自动增益控制这种功能的表述,其组成部件可以应用到上述任一电路中,即信号的接收可参照图3的相关描述,信号的判断或故障判断可参照图5的相关描述,此处不做赘述。
下面对自动增益控制这一过程进行说明,在增益控制电路中集成了可调衰减器和可变增益放大器,微处理可以通过集成在末级放大器中的检波器,或者集成在同步单元中的耦合器及检波器,获取中继放大器的上行/下行输出信号强度,并根据该强度计算中继放大器工作在目标输出功率时所需增益,继而控制可调衰减器及可变增益放大器。
其中,可变增益放大器,用于当该微处理器检测到该上行输出功率小于第一预设功率时,进行增益操作;还用于当该微处理器检测到下行输出功率大于第二预设功率时,进行切换操作;可调衰减器,用于当该微处理器检测到上行输出功率大于该第一预设功率时,进行衰减操作;还用于当该微处理器检测到该下行输出功率大于该第二预设功率时,进行衰减操作。
应当注意的是,第一预设功率和第二预设功率的设定可以是通过操作人员的输入,也可以是终端根据运行数据计算所得,具体方法因实际情况而定,此处不做限定。
在一种可能的场景中,下行信号的增益控制可以只由可变增益放大器达到自动增益的效果,即当该微处理器检测到下行输出功率大于第三预设功率时,将该可变增益放大器从第一增益状态调整为第二增益状态,该第一增益状态对应的增益量大于该第二增益状态对应的增益量。例如:微处理器检测到下行输出功率为40dBm,预设功率为30dBm,可变增益放大器的第一增益状态为放大20dB,第二增益状态为放大10dB,此时下行输出功率40dBm大于预设功率30dBm,故将第一增益状态调整为第二增益状态,下行输出功率调整为30dBm,符合预设功率的要求。
在另一种可能的场景中,下行信号足够强烈,通过旁路可变增益放大器,也可以达到下行信号的增益控制只由可变增益放大器达到自动增益的效果,即使用开关旁路可变增益放大器,并持续1ms,1ms后恢复原来的增益状态,这种类似重启的过程,使可变增益放大器可以跳过该帧的信号,达到增益控制的效果。
上述信号放大电路都可以集成到一种无线中继放大器中,用于无线信号的接收、放大与发送,该无线中继放大器还可以集成温度传感器,温度传感器与微处理器相连;用于获取所述信号放大电路的温度变化量,若温度变化量大于第五阈值,则进行温度补偿。可以理解的是,该温度变化量可以是单板的温度,具体场景因实际情况而定,此处不做限定。例如:第五阈值为40℃,无线中继放大器的单板温度为45℃,则微处理器控制无线中继放大器进行温度补偿。
应当注意的是,该无线中继放大器还可以具有多种信号传输模式,即当一种模式出现故障时,可以切换到另一种模式,保证无线中继放大器的正常运行,避免了由于无线中继放大器故障而产生安全隐患。
为说明这一设计,如图11所示,是本申请实施例提供的另一种信号放大电路示意图。
其中,定向天线1101、增益控制电路1102、微处理器1103、第一同步单元1104和第二同步单元1105的连接方式与功能可参照图5中的相关描述,此处不做赘述。
本实施例提供的信号放大电路中,功分器1109通过射频电缆与TBOX相连,该功分器1109与同步解调单元1110相连,该功分器1109与该第二同步单元1105相连,该同步解调单元1110与该微处理器1103相连。
在一种可能的场景中,定向天线1101发生了故障,此时为保证电路的信号传输,该功分器1109分离TBOX发送的第二信号,该第二信号包括射频信号和电源调制信号;同步解调单元1110根据该电源调制信号获取第二信号的传输方向信息,并向该微处理器1103发送传输方向信息;微处理器1103根据该传输方向信息生成该增益指令;增益控制电路1102,根据该增益指令执行对应传输方向的增益控制。可以理解的是,第一同步单元1104和第二同步单元1105可参照图5中的相关描述进行传输状态的判断或故障检测,此处不做赘述。
本实施例中,同步解调单元1110根据电源调制信号获取第二信号的传输方向信息可以为下面的一种方式,即同步解调单元1110根据该电源调制信号获取第一电压,该第一电压为TBOX的输出电压;对比该第一电压与预设电压,该预设电压用于指示该传输方向信息;若该第一电压大于该预设电压,则生成上行传输信息并向该微处理器发送该上行传输方向信息;若该第一电压小于该预设电压,则生成下行传输信息并向该微处理器发送该上行传输方向信息。例如:预设电压为9V,若第一电压为6V,则微处理器发送下行传输方向信息;若第一电压为12V,则微处理器发送上行传输方向信息,该示例可以通过下面一种电路设计实现,如图12所示,是本申请实施例提供的一种同步解调单元的电路图。
在本实施例提供的一种TBOX中,包括:无线通信单元1106、合路器1107和同步调制单元1108,其中,无线通信单元1106与该合路器1107相连,该合路器1107与该同步调制单元1108相连,该同步调制单元1108与该无线通信单元1106相连。
可以理解的是,本实施例TBOX中还包括了内置天线,该内置天线与合路器1107相连,用于当切换到无线传输模式时,将射频信号切换到内置天线,以使用如图3、图5或图8所描述的信号放大电路,具体操作参见图3、图5或图8的相关描述,此处不做赘述。该内置天线可以集成在无线通信单元中,也可以是TBOX的一种插件,具体方式因实际场景而定,此处不做限定。
在信号放大电路故障,无法接受无线通信单元1106发送的信号时,无线通信单元1106向合路器1107发送射频信号;同步调制单元1108根据射频信号生成电源调制信号;然后合路器1107发送该电源调制信号和该射频信号。
本实施例中,同步调制单元1108可以根据该射频信号输出第一电压,根据第一电压生成该电源调制信号,该第一电压用于指示该射频信号为上行控制信号;还用于根据该射频信号输出第二电压,根据该第二电压生成该电源调制信号,该第二电压用于指示该射频信 号为下行控制信号。例如:预设电压为9V,若射频信号为上行信号,则第一电压可以为12V;若射频信号为下行信号,则第一电压可以为6V,该示例可以通过下面一种电路设计实现,如图13所示,是本申请实施例提供的一种同步调制单元的电路图。
通过这种电压调制解调的方式,解决了无线天线故障时信号放大电路的过渡问题,而且该方案实现了射频信号、控制信号和供电电源复用一根线缆,减少了布线数量。
可以理解的是,该电压调制解调的方案也可以单独作为一种解决信号线缆复杂的方案,如图14所示,是本申请实施例提供的另一种信号放大电路示意图,图中所示部件均可参照图11中的相关描述,此处不做赘述。
本申请实施例还提供一种终端设备。该终端设备可以是中继放大器,也可以是具有上述信号放大电路的设备。
如图15所示,是本申请实施例提供的一种终端设备示意图。便于理解和图示方便,图15中,终端设备以中继放大器作为例子。如图15所示,终端设备包括处理器、存储器、信号放大电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。信号放大电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至信号放大电路,信号放大电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,信号放大电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图15中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和信号放大电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图15所示,终端设备包括收发单元1501和处理单元1502。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1501中用于实现接收功能的器件视为接收单元,将收发单元1501中用于实现发送功能的器件视为发送单元,即收发单元1501包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或信号放大电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1501用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1502用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类 似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的模块的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请方案的目的。
本领域普通技术人员可以理解上述实施例的各种电路操作的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:U盘、移动硬盘、只读存储器(ROM,read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本申请实施例所提供的信号放大电路及终端设备进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (17)

  1. 一种信号放大电路,其特征在于,所述信号放大电路包括:定向天线、增益控制电路和微处理器;
    所述定向天线与所述增益控制电路相连,所述微处理器与所述定向天线相连,所述微处理器与所述增益控制电路相连;
    所述定向天线,用于接收车载通讯终端TBOX发送的上行信号,向所述TBOX发送下行信号,检测上行信号的信号强度和下行信号的信号强度;
    所述微处理器,用于根据所述上行信号的信号强度和下行信号的信号强度确定增益参数,根据所述增益参数向所述增益控制电路发送增益指令;
    所述增益控制电路,用于根据所述增益指令进行信号的处理。
  2. 根据权利要求1所述的信号放大电路,其特征在于,所述定向天线包括耦合器、检波器和至少两个子天线模块;
    所述至少两个子天线模块与所述微处理器相连,所述至少两个子天线模块与所述耦合器相连,所述耦合器与所述检波器相连,所述耦合器与所述增益控制电路相连,所述检波器与所述微处理器相连;
    所述耦合器,用于获取所述至少两个子天线模块在预设时间段内的第一信号;
    所述检波器,用于检测所述第一信号的信号强度;
    所述微处理器,用于遍历所述至少两个子天线模块的位置信息;获取所述第一信号的信号强度与所述位置信息的对应关系;当所述第一信号的信号强度大于第一阈值时所述至少两个子天线模块的位置信息,并根据所述位置信息控制所述至少两个子天线模块获取第二信号。
  3. 根据权利要求2所述的信号放大电路,其特征在于,
    所述耦合器,具体用于周期性的获取所述至少两个子天线模块在预设时间段内的第一信号。
  4. 根据权利要求1-3任一项所述的信号放大电路,其特征在于,所述信号放大电路还包括第一同步单元;
    所述第一同步单元与所述定向天线相连,所述第一同步单元与所述自动增益控制电路相连,所述第一同步单元与所述微处理器相连;
    所述第一同步单元,用于耦合所述下行信号;检测所述下行信号的信号强度;输出所述下行信号的信号强度至所述微处理器;当所述微处理器检测到所述下行信号的信号强度大于所述定向天线检测的上行信号的信号强度时,接通下行通道;当所述微处理器检测到所述下行信号的信号强度小于所述定向天线检测的上行信号的信号强度时,接通上行通道。
  5. 根据权利要求4所述的信号放大电路,其特征在于,
    所述微处理器,还用于计算所述上行信号的信号强度与所述下行信号的信号强度的差值的绝对值;若所述绝对值小于或等于第二阈值,则产生中继故障信息。
  6. 根据权利要求5所述的信号放大电路,其特征在于,
    所述微处理器,具体用于计算所述上行信号的信号强度减去所述下行信号的信号强度 的差值;若所述差值小于或等于第三阈值,则所述微处理器产生中继故障信息。
  7. 根据权利要求5所述的信号放大电路,其特征在于,
    所述微处理器,具体用于计算所述下行信号的信号强度减去所述上行信号的信号强度的差值;若所述差值小于或等于第四阈值,则所述微处理器产生定向天线故障信息。
  8. 根据权利要求4所述的信号放大电路,其特征在于,所述信号放大电路还包括第二同步单元;
    所述第二同步单元与所述增益控制电路相连,所述第二同步单元与所述微处理器相连;
    所述第二同步单元,用于耦合增益控制后的上行信号;检测所述增益控制后的上行信号的信号强度;输出所述增益控制后的上行信号的信号强度至所述微处理器;
    所述第一同步单元,还用于耦合增益控制后的下行信号;检测所述增益控制后的下行信号的信号强度;输出所述增益控制后的下行信号的信号强度至所述微处理器;
    所述微处理器,用于根据所述增益控制后的上行信号的信号强度与所述上行信号的信号强度得到上行输出功率;用于根据所述增益控制后的下行信号的信号强度与所述下行信号的信号强度得到下行输出功率。
  9. 根据权利要求8所述的信号放大电路,其特征在于,所述增益控制电路包括:可变增益放大器和可调衰减器;
    所述可变增益放大器,用于当所述微处理器检测到所述上行输出功率小于第一预设功率时,进行增益操作;还用于当所述微处理器检测到下行输出功率大于第二预设功率时,进行切换操作;
    所述可调衰减器,用于当所述微处理器检测到上行输出功率大于所述第一预设功率时,进行衰减操作;还用于当所述微处理器检测到所述下行输出功率大于所述第二预设功率时,进行衰减操作。
  10. 根据权利要求9所述的信号放大电路,其特征在于,
    所述可变增益放大器,具体用于当所述微处理器检测到下行输出功率大于第三预设功率时,将所述可变增益放大器从第一增益状态调整为第二增益状态,所述第一增益状态对应的增益量大于所述第二增益状态对应的增益量。
  11. 根据权利要求10所述的信号放大电路,其特征在于,所述增益控制电路还包括切换装置;
    所述切换装置与所述可变增益放大器并联;
    所述切换装置,用于当所述微处理器检测到下行输出功率大于预设功率时,切换所述可变增益放大器至旁路,持续第二预设时长后,恢复接通。
  12. 根据权利要求1-11任一项所述的信号放大电路,其特征在于,所述信号放大电路还包括功分器和同步解调单元;
    所述功分器通过射频电缆与TBOX相连,所述功分器与所述同步解调单元相连,所述功分器与所述增益控制电路相连,所述同步解调单元与所述微处理器相连;
    所述功分器,用于分离TBOX发送的第二信号,所述第二信号包括射频信号和电源调制信号;
    所述同步解调单元,用于根据所述电源调制信号获取第二信号的传输方向信息,并向所述微处理器发送传输方向信息;
    所述微处理器,用于根据所述传输方向信息生成所述增益指令;
    所述增益控制电路,用于根据所述增益指令执行对应传输方向的增益控制。
  13. 根据权利要求12所述的信号放大电路,其特征在于,
    所述同步解调单元,具体用于根据所述电源调制信号获取第一电压,所述第一电压为TBOX的输出电压;对比所述第一电压与预设电压,所述预设电压用于指示所述传输方向信息;若所述第一电压大于所述预设电压,则生成上行传输信息并向所述微处理器发送所述上行传输方向信息;若所述第一电压小于所述预设电压,则生成下行传输信息并向所述微处理器发送所述上行传输方向信息。
  14. 根据权利要求1-13任一项所述的信号放大电路,其特征在于,所述信号放大电路还包括:温度传感器;
    所述温度传感器与所述微处理器相连;
    所述温度传感器,用于获取所述信号放大电路的温度变化量,若所述温度变化量大于第五阈值,则进行温度补偿。
  15. 一种车载通讯终端TBOX,其特征在于,所述TBOX包括:无线通信单元、合路器和同步调制单元;
    其中,所述无线通信单元与所述合路器相连,所述合路器与所述同步调制单元相连,所述同步调制单元与所述无线通信单元相连;
    所述无线通信单元,用于发送射频信号;
    所述同步调制单元,用于生成电源调制信号;
    所述合路器,用于发送所述电源调制信号和所述射频信号。
  16. 根据权利要求15所述的TBOX,其特征在于,
    所述同步调制单元,具体用于根据所述射频信号输出第一电压,根据第一电压生成所述电源调制信号,所述第一电压用于指示所述射频信号为上行控制信号;还用于根据所述射频信号输出第二电压,根据所述第二电压生成所述电源调制信号,所述第二电压用于指示所述射频信号为下行控制信号。
  17. 一种终端设备,其特征在于,所述终端设备包括:
    信号放大电路、处理器、存储器、总线以及输入输出接口;
    所述信号放大电路包括权利要求1-14中任一项所述的信号放大电路;
    所述存储器中存储有程序代码;
    所述处理器调用所述存储器中的程序代码时向所述信号放大电路发送控制信号,所述控制信号用于控制所述信号放大电路对上行信号或下行信号放大。
PCT/CN2018/120734 2018-12-12 2018-12-12 一种信号放大电路及终端设备 WO2020118585A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880098322.0A CN112805938B (zh) 2018-12-12 2018-12-12 一种信号放大电路及终端设备
PCT/CN2018/120734 WO2020118585A1 (zh) 2018-12-12 2018-12-12 一种信号放大电路及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/120734 WO2020118585A1 (zh) 2018-12-12 2018-12-12 一种信号放大电路及终端设备

Publications (1)

Publication Number Publication Date
WO2020118585A1 true WO2020118585A1 (zh) 2020-06-18

Family

ID=71077050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120734 WO2020118585A1 (zh) 2018-12-12 2018-12-12 一种信号放大电路及终端设备

Country Status (2)

Country Link
CN (1) CN112805938B (zh)
WO (1) WO2020118585A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737715A (zh) * 2020-12-31 2021-04-30 Oppo广东移动通信有限公司 天线部署方法及其装置、客户前置设备和可读存储介质
CN113030752A (zh) * 2021-04-12 2021-06-25 安徽理工大学 一种基于变遗忘因子在线参数辨识和soc联合估计方法
CN113904699A (zh) * 2021-10-08 2022-01-07 深圳国人无线通信有限公司 一种检测外接天线安装错误的方法和射频单元
CN114221670A (zh) * 2021-12-15 2022-03-22 大唐联诚信息系统技术有限公司 一种机动通信设备和通信控制方法
WO2022095817A1 (zh) * 2020-11-04 2022-05-12 中兴通讯股份有限公司 信号收发装置、信号放大装置、通信系统的运行方法
CN114598372A (zh) * 2020-11-19 2022-06-07 中国移动通信有限公司研究院 一种中继装置及方法
CN114639948A (zh) * 2022-03-21 2022-06-17 智道网联科技(北京)有限公司 用于v2x设备的天线、v2x设备和车辆
WO2023169466A1 (zh) * 2022-03-08 2023-09-14 福耀玻璃工业集团股份有限公司 车用信号放大器、系统及信号传输方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092514A1 (zh) * 2021-11-26 2023-06-01 富士通株式会社 信号发送方法以及装置
CN115593328A (zh) * 2022-09-07 2023-01-13 智道网联科技(北京)有限公司(Cn) 适用于自动驾驶车辆的电路和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375510A (zh) * 2006-01-31 2009-02-25 Posdata株式会社 基于时分双工的无线电信系统中的自动增益控制设备和方法
CN101414844A (zh) * 2007-10-19 2009-04-22 信和控股有限公司 双向信号放大装置、接收/发射装置和信号传输方法
CN201854270U (zh) * 2010-11-15 2011-06-01 福建工程学院 一种车载天线的信号接收装置
CN106992791A (zh) * 2017-03-21 2017-07-28 合肥极友软件开发有限公司 一种抗干扰车载收音机系统
CN207021987U (zh) * 2017-03-21 2018-02-16 深圳市金溢科技股份有限公司 一种车载有源天线装置及车载单元
CN107809257A (zh) * 2017-10-24 2018-03-16 深圳思凯微电子有限公司 无线广播性能优化方法、装置及计算机可读存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735633B2 (ja) * 2007-10-17 2011-07-27 トヨタ自動車株式会社 車両用アンテナアンプ装置
JP2009124189A (ja) * 2007-11-09 2009-06-04 Nsc Co Ltd 自動利得制御回路
CN104981009A (zh) * 2015-06-19 2015-10-14 东南大学 一种多用户移动中继通信系统的功率分配方法
US10164700B2 (en) * 2016-03-31 2018-12-25 Huawei Technologies Co., Ltd. Fault detection method and fault detection device for external antenna
CN206475837U (zh) * 2016-11-29 2017-09-08 卜放 一种车载天线信号接收与处理系统
CN206353604U (zh) * 2016-12-16 2017-07-25 深圳安狗数据技术有限公司 车用天线装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375510A (zh) * 2006-01-31 2009-02-25 Posdata株式会社 基于时分双工的无线电信系统中的自动增益控制设备和方法
CN101414844A (zh) * 2007-10-19 2009-04-22 信和控股有限公司 双向信号放大装置、接收/发射装置和信号传输方法
CN201854270U (zh) * 2010-11-15 2011-06-01 福建工程学院 一种车载天线的信号接收装置
CN106992791A (zh) * 2017-03-21 2017-07-28 合肥极友软件开发有限公司 一种抗干扰车载收音机系统
CN207021987U (zh) * 2017-03-21 2018-02-16 深圳市金溢科技股份有限公司 一种车载有源天线装置及车载单元
CN107809257A (zh) * 2017-10-24 2018-03-16 深圳思凯微电子有限公司 无线广播性能优化方法、装置及计算机可读存储介质

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022095817A1 (zh) * 2020-11-04 2022-05-12 中兴通讯股份有限公司 信号收发装置、信号放大装置、通信系统的运行方法
CN114598372A (zh) * 2020-11-19 2022-06-07 中国移动通信有限公司研究院 一种中继装置及方法
CN112737715A (zh) * 2020-12-31 2021-04-30 Oppo广东移动通信有限公司 天线部署方法及其装置、客户前置设备和可读存储介质
CN112737715B (zh) * 2020-12-31 2023-03-24 Oppo广东移动通信有限公司 天线部署方法及其装置、客户前置设备和可读存储介质
CN113030752A (zh) * 2021-04-12 2021-06-25 安徽理工大学 一种基于变遗忘因子在线参数辨识和soc联合估计方法
CN113030752B (zh) * 2021-04-12 2024-03-29 安徽理工大学 一种基于变遗忘因子在线参数辨识和soc联合估计方法
CN113904699A (zh) * 2021-10-08 2022-01-07 深圳国人无线通信有限公司 一种检测外接天线安装错误的方法和射频单元
CN113904699B (zh) * 2021-10-08 2023-03-24 深圳国人无线通信有限公司 一种检测外接天线安装错误的方法和射频单元
CN114221670A (zh) * 2021-12-15 2022-03-22 大唐联诚信息系统技术有限公司 一种机动通信设备和通信控制方法
CN114221670B (zh) * 2021-12-15 2023-03-21 大唐联诚信息系统技术有限公司 一种机动通信设备和通信控制方法
WO2023169466A1 (zh) * 2022-03-08 2023-09-14 福耀玻璃工业集团股份有限公司 车用信号放大器、系统及信号传输方法
CN114639948A (zh) * 2022-03-21 2022-06-17 智道网联科技(北京)有限公司 用于v2x设备的天线、v2x设备和车辆

Also Published As

Publication number Publication date
CN112805938A (zh) 2021-05-14
CN112805938B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2020118585A1 (zh) 一种信号放大电路及终端设备
EP1336258B1 (en) Automatic gain setting in a cellular communications system
JP2637818B2 (ja) 無線装置における送信パワー制御装置
US11463124B2 (en) Full-time duplex system, full-time duplex circuit, and control method
WO2017080165A1 (zh) 一种多天线的射频电路、射频信号处理方法
WO2012145866A1 (en) Method, apparatus and system for determining voltage standing wave ratio in downlink period of radio communication
JPH06197037A (ja) 増幅器制御システムおよび増幅器制御方法
CN112821902B (zh) 一种接收机、接收机的控制方法及移动终端
CN112118055B (zh) 一种驻波检测装置及通信设备
JP2003234628A (ja) 無線基地局
CN112119598A (zh) 天线单元、发送系统和用于运行天线单元的方法
CN100574125C (zh) 无线收发系统
US9197309B2 (en) Systems and methods for providing signals of multiple active wireless transmitters
CN209964038U (zh) 一种天通卫星地面站自适应有源天线
CN101170330A (zh) 射频功放旁路系统及方法
KR100695398B1 (ko) 시분할 듀플렉싱 방식 무선 전송장치의 무선단 유닛
WO2020243909A1 (zh) 一种驻波检测装置及通信设备
JP3694487B2 (ja) ケーブルロス等化方法
CN108418601B (zh) 一种载波对消系统
KR100537412B1 (ko) 시분할 듀플렉스 시스템에서의 저출력 스위치를 이용한무선 송수신 스위칭 회로
CN101807959A (zh) 一种用于认知无线电系统的干扰抑制方法
CN215268252U (zh) 一种无线通信设备的信号放大电路
KR20130073609A (ko) 무선 통신 시스템의 전송 전력 제어 장치 및 방법
CN110912845A (zh) 模拟预失真处理电路和信号处理设备
JP2636780B2 (ja) 無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942827

Country of ref document: EP

Kind code of ref document: A1