WO2022095817A1 - 信号收发装置、信号放大装置、通信系统的运行方法 - Google Patents

信号收发装置、信号放大装置、通信系统的运行方法 Download PDF

Info

Publication number
WO2022095817A1
WO2022095817A1 PCT/CN2021/127871 CN2021127871W WO2022095817A1 WO 2022095817 A1 WO2022095817 A1 WO 2022095817A1 CN 2021127871 W CN2021127871 W CN 2021127871W WO 2022095817 A1 WO2022095817 A1 WO 2022095817A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
radio frequency
control
unit
transmission
Prior art date
Application number
PCT/CN2021/127871
Other languages
English (en)
French (fr)
Inventor
赵路
郭阳
何勃
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21888514.3A priority Critical patent/EP4220975A1/en
Priority to US18/034,639 priority patent/US20230396284A1/en
Publication of WO2022095817A1 publication Critical patent/WO2022095817A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Definitions

  • the present disclosure relates to the field of communication technology.
  • Embodiments of the present disclosure provide a signal transceiving device, a signal amplifying device, and an operating method of a communication system.
  • a first aspect of the present disclosure discloses a signal transceiving device, which includes: a radio frequency signal transceiving unit, a signal transceiving control unit, and a first control signal unit.
  • the radio frequency signal transceiving unit is connected between the baseband interface and at least one radio frequency interface, and is configured to generate a first radio frequency signal according to a baseband signal of the baseband interface, send the first radio frequency signal to the at least one radio frequency interface, and receive a radio frequency signal from the at least one radio frequency interface.
  • the second radio frequency signal of at least one radio frequency interface; the at least one radio frequency interface is used for connecting with the radio frequency interface of the signal amplification device through a cable.
  • the signal transceiving control unit is connected to the radio frequency signal transceiving unit, and is configured to generate a first control instruction and control the radio frequency signal transceiving unit to send a first radio frequency signal to the at least one radio frequency interface according to the first control instruction, and receiving a second control instruction and controlling the radio frequency signal transceiving unit to receive a second radio frequency signal from the at least one radio frequency interface according to the second control instruction.
  • the first control signal unit is connected between the signal transceiving control unit and the transmission interface of the signal transceiving device, and is used to convert the first control instruction generated by the signal transceiving control unit into a first transmission signal and transmit and receive the signal.
  • the transmission interface of the device sends the first transmission signal, and receives the second transmission signal from the transmission interface of the signal transceiver device, converts the second transmission signal into a second control command, and sends the second control command to the
  • the signal transceiving control unit, the transmission interface of the signal transceiving device is used for connecting with the transmission interface of the signal amplifying device through a cable.
  • generating the first control instruction by the signal transceiving control unit includes: determining a first time for controlling the radio frequency signal transceiving unit to send the first radio frequency signal to the radio frequency interface, and determining the first time according to the first time and the first time of the reference pulse. A time difference generates the first control command.
  • the first control signal unit converting the first control instruction generated by the signal transceiving control unit into a first transmission signal and sending the first transmission signal to the transmission interface of the signal transceiving device includes: according to the The first control command generated by the signal transceiving control unit determines the first applied voltage value; the first DC bias voltage with the first applied voltage value is applied on the cable connected with the transmission interface, so as to convert the first applied voltage value to the cable.
  • the DC bias voltage is sent to the transmission interface of the signal transceiving device as the first transmission signal.
  • the first control signal unit converting the first control instruction generated by the signal transceiving control unit into a first transmission signal and sending the first transmission signal to the transmission interface of the signal transceiving device includes: converting the The first control command generated by the signal transceiving control unit is converted into a first transmission signal, and the first control signal unit sends the first transmission signal to the transmission interface of the signal transceiving device.
  • the control instruction controls the radio frequency signal transceiving unit to send the first radio frequency signal at least a predetermined transmission delay in advance.
  • the at least one radio frequency interface and the transmission interface of the signal transceiving device are an integral structure.
  • the at least one radio frequency interface includes a first radio frequency interface and a second radio frequency interface
  • the radio frequency signal transceiving unit is configured to send a first radio frequency signal to the first radio frequency interface, and receive a second radio frequency signal from the second radio frequency interface radio frequency signal.
  • a second aspect of the present disclosure discloses a signal amplification device, which includes: a power amplifier, a low noise amplifier, a signal amplification control unit, and a second control signal unit.
  • the power amplifier is connected between the antenna and the radio frequency interface of the signal amplifying device, and is used for receiving the first radio frequency signal from the radio frequency interface of the signal amplifying device, and amplifying the first radio frequency signal and sending it to the antenna; the signal The radio frequency interface of the amplifying device is used for connecting with the radio frequency interface of the signal transceiving device through a cable.
  • the low noise amplifier is connected between the antenna and the radio frequency interface of the signal amplifying device, and is used for receiving the second radio frequency signal from the antenna, and amplifying the second radio frequency signal and sending it to the radio frequency interface of the signal amplifying device.
  • the signal amplification control unit is connected to the power amplifier and the low noise amplifier, and is configured to receive a first control instruction and control the power amplifier to receive the first radio frequency from the radio frequency interface of the signal amplification device according to the first control instruction signal, or generate a second control instruction and control the low noise amplifier to send a second radio frequency signal to the radio frequency interface according to the second control instruction.
  • the second control signal unit is connected between the signal amplification control unit and the transmission interface of the signal amplification device, and is used for converting the second control command generated by the signal amplification control unit into a second transmission signal and amplifying the signal
  • the transmission interface of the device sends the second transmission signal, or receives the first transmission signal from the transmission interface of the signal amplification device, converts the first transmission signal into a first control command, and sends the first control command to the signal
  • An amplification control unit wherein the transmission interface of the signal amplification device is used for connecting with the transmission interface of the signal transceiving device through a cable.
  • the radio frequency interface connected to the power amplifier and the low noise amplifier is the same radio frequency interface.
  • a switching unit is provided between the power amplifier, the low noise amplifier and the radio frequency interface; when the signal amplification control unit receives the first control instruction, the signal amplification control unit Controlling the power amplifier to receive the first radio frequency signal from the radio frequency interface of the signal amplifying device according to the first control instruction includes: controlling the switching unit to make the radio frequency interface of the signal amplifying device communicate with the power amplifier; When the amplifier receives the second radio frequency signal from the antenna, the signal amplification control unit controlling the low noise amplifier to send the second radio frequency signal to the radio frequency interface of the signal amplification device according to the second control instruction includes: controlling the switching unit , so that the radio frequency interface of the signal amplifying device is communicated with the low noise amplifier.
  • generating the second control instruction by the signal amplification control unit includes: determining a second time for controlling the low noise amplifier to send the second radio frequency signal to the radio frequency interface of the signal amplification device, and according to the second time The second time difference between the time and the reference pulse generates the second control command.
  • the second control signal unit converting the second control command generated by the signal amplification control unit into a second transmission signal and sending the second transmission signal to the transmission interface of the signal amplification device includes: according to the The second control instruction generated by the signal amplification control unit determines the second applied voltage value; the DC bias voltage with the second applied voltage value is applied on the cable connected with the transmission interface of the signal amplification device, so as to convert the The second DC bias voltage is sent to the transmission interface of the signal amplifying device as the second transmission signal.
  • the second control signal unit converting the second control instruction generated by the signal amplification control unit into a second transmission signal and sending the second transmission signal to the transmission interface of the signal amplification device includes: converting the The second control command generated by the signal amplification control unit is converted into a second transmission signal, and the second control signal unit sends the second transmission signal to the transmission interface of the signal amplification device.
  • the second control instruction controls the low noise amplifier to send the second radio frequency signal at least a predetermined transmission delay in advance.
  • a third aspect of the present disclosure discloses a method for operating a communication system
  • the communication system includes the above-mentioned signal transceiving device and the above-mentioned signal amplifying device, wherein a radio frequency interface of the signal transceiving device is connected through a cable
  • the radio frequency interface of the signal amplifying device is connected, the transmission interface of the signal transceiver device is connected to the transmission interface of the signal amplifying device through a cable
  • the operation method includes at least one of a sending process and a receiving process
  • the sending process includes: the signal transceiving control unit generates a first control instruction and controls the radio frequency signal transceiving unit to transmit a first radio frequency signal to the power amplifier according to the first control instruction; the first control signal unit Convert the first control instruction generated by the signal transceiving control unit into a first transmission signal and send the first transmission signal to the second control signal unit; the second control signal unit receives the signal from the first control signal unit a first transmission signal, convert the first transmission signal into
  • the receiving process includes: the signal amplification control unit generates a second control instruction and controls the low-noise amplifier to send a second radio frequency signal according to the second control instruction; the second control signal The unit converts the second control command generated by the signal amplifying control unit into a second transmission signal and sends the second transmission signal to the first control signal unit; the first control signal unit receives data from the second control signal The second transmission signal of the signal unit converts the second transmission signal into a second control instruction, and sends the second control instruction to the signal transceiving control unit; the signal transceiving control unit receives the second control instruction and according to The second control instruction controls the radio frequency signal transceiving unit to receive the second radio frequency signal from the low noise amplifier.
  • FIG. 1 is a schematic diagram of the composition of a signal transceiver device in the prior art
  • FIG. 2 is a schematic diagram of the composition of a signal transceiving device and a signal amplifying device according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the composition of a signal transceiver device and a signal amplifying device according to another embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a signal transceiving device and a signal amplifying device installed on an aircraft according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a portion of a method of operating a communication system according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a portion of a method of operating a communication system according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure may be described with reference to plan and/or cross-sectional views with the aid of idealized schematic illustrations of the present disclosure. Accordingly, example illustrations may be modified according to manufacturing techniques and/or tolerances.
  • Embodiments of the present disclosure are not limited to the embodiments shown in the drawings, but include modifications of configurations formed based on manufacturing processes.
  • the regions illustrated in the figures have schematic properties and the shapes of regions illustrated in the figures are illustrative of the specific shapes of regions of elements and are not intended to be limiting.
  • FIG. 1 is a schematic diagram of the composition of a signal transceiver in the prior art.
  • a signal transceiver (also called a transceiver) consists of a baseband unit, a digital intermediate frequency unit, an intermediate/radio frequency unit, a PA (Power Amplifier), an LNA (Low Noise Amplifier, a low noise amplifier), a control unit, Circulator, filter and other units.
  • the baseband unit is used to modulate the user data into baseband signals suitable for transmission, and to demodulate the baseband signals into user data.
  • User data can be 4G data or 5G data.
  • the baseband uses OFDM (Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing) to modulate the user data into baseband signals.
  • the baseband also uses OFDM to demodulate the baseband signals into 4G data. or 5G data.
  • the baseband unit can also be replaced by functional units that can convert user data into baseband signals and demodulate baseband signals into user data, such as transmission units, control units, clock units, and service high-level units.
  • the digital IF unit is connected between the baseband unit and the IF/RF unit.
  • the digital IF unit is used to perform IF processing on the baseband signal, and the IF/RF unit converts the IF processed baseband signal into a RF signal through digital-to-analog conversion.
  • the intermediate/radio frequency unit can also convert the radio frequency signal into a digital radio frequency signal through analog-to-digital conversion, and the digital intermediate frequency unit can also convert the digital radio frequency signal into a baseband signal.
  • Both the power amplifier and the low noise amplifier are connected to the mid/radio unit.
  • the power amplifier is used to amplify the RF signal from the MF/RF unit, while the LNA is used to amplify the signal from the antenna and send it to the MF/RF unit.
  • the control unit is connected with the power amplifier and the low-noise amplifier, and is used for controlling the power amplifier and the low-noise amplifier to work according to the mode of the signal transceiving device.
  • the mode of the signal transceiver is TDD (Time Division Duplexing, time division duplexing)
  • TDD Time Division Duplexing, time division duplexing
  • the circulator is connected to the power amplifier and the low noise amplifier, and the filter is connected between the circulator and the antenna.
  • the circulator is used to combine the transmit path from the signal transceiver to the antenna and the receive path from the antenna to the signal transceiver into one path, that is, , the circulator transmits the radio frequency signal amplified by the power amplifier to the antenna and transmits the radio frequency signal from the antenna to the low-noise amplifier to combine on one line.
  • the filter is used to filter the signal transmitted on this combined path (including the RF signal amplified by the power amplifier and the RF signal from the antenna).
  • the signal transceiver device constitutes a satellite ground station through an external antenna, which realizes the function of transmitting signals to satellites and simultaneously receiving signals transmitted by other ground stations via satellites. It is suitable for most application scenarios and has been widely used.
  • the power amplifier has always been a high-power consumption device in the signal transceiver device, and its existence increases the heat consumption of the signal transceiver device. The increased heat consumption further increases the ambient temperature of the space where the signal transceiver device is located. This not only puts forward higher requirements on the thermal stress of the devices constituting the digital circuit in the signal transceiver device, but also causes the signal transceiver device to be unable to adapt to application scenarios with strict environmental temperature requirements (eg, high ambient temperature).
  • strict environmental temperature requirements eg, high ambient temperature
  • the volume of the signal transceiver device is also larger, resulting in the signal transceiver device not only unable to meet the high requirements at the same time.
  • the requirements of power and small volume cannot be adapted to application scenarios with strict volume requirements (such as limited volume).
  • FIG. 2 is a schematic diagram of the composition of a signal transceiving device and a signal amplifying device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of the composition of a signal transceiving apparatus and a signal amplifying apparatus according to another embodiment of the present disclosure.
  • a signal transceiving apparatus includes: a radio frequency signal transceiving unit, a signal transceiving control unit, and a first control signal unit.
  • the radio frequency signal transceiving unit is connected between the baseband interface and at least one radio frequency interface, and is used for generating the first radio frequency signal according to the first baseband signal of the baseband interface and sending the first radio frequency signal to the radio frequency interface under the control of the signal transceiving control unit, and The second radio frequency signal from the radio frequency interface is received under the control of the signal transceiving control unit.
  • the radio frequency interface is used to connect with the radio frequency interface of the signal amplifying device through a cable.
  • the signal transceiving control unit is connected to the radio frequency signal transceiving unit, and is used for generating a first control instruction and controlling the radio frequency signal transceiving unit to send the first radio frequency signal to the radio frequency interface according to the first control instruction, and receiving the second control instruction sent by the signal amplifying device and according to the first control instruction.
  • the second control instruction controls the radio frequency signal transceiver unit to receive the second radio frequency signal from the radio frequency interface.
  • the first control signal unit is connected between the signal transceiving control unit and the transmission interface, and is used to convert the first control instruction generated by the signal transceiving control unit into a first transmission signal and send the first transmission signal to the transmission interface, and receive the first transmission signal from the transmission interface.
  • the second transmission signal of the interface converts the second transmission signal into a second control instruction and sends the second control instruction to the signal transceiving control unit.
  • the transmission interface is used to connect with the transmission interface of the signal amplification device through a cable.
  • a signal transceiving apparatus may be a base station or a CPE (Customer Premise Equipment, customer terminal equipment), which has two states of sending and receiving.
  • a connected device sends a signal; when it is in a receive state, it can receive a signal from a connected device.
  • CPE Customer Premise Equipment, customer terminal equipment
  • the radio frequency signal transceiver unit is connected between the baseband interface and the radio frequency interface, and is connected to the baseband unit through the baseband interface, and is connected to the signal amplifying device through the radio frequency interface.
  • the radio frequency signal transceiver unit receives the baseband through the baseband interface.
  • the first baseband signal of the unit converts the first baseband signal into a first radio frequency signal, and sends the first radio frequency signal to the signal amplifying device through the radio frequency interface under the control of the signal transceiver control unit.
  • the radio frequency signal transceiving unit receives the second radio frequency signal from the signal amplifying device through the radio frequency interface under the control of the signal transceiving control unit, and converts the second radio frequency signal into the second baseband signal, and send the second baseband signal to the baseband unit through the baseband interface.
  • the signal transceiving control unit is connected to the radio frequency signal transceiving unit.
  • the signal transceiving control unit When the signal transceiving device is in the sending state, the signal transceiving control unit generates a first control instruction for synchronizing with the operation of the signal amplifying device, and controls the radio frequency signal transceiving unit to transmit to the radio frequency signal transceiving unit according to the first control instruction.
  • the signal amplifying device sends the first radio frequency signal, and at the same time sends the generated first control command to the first control signal unit; when the signal transceiving device is in the receiving state, the signal transceiving control unit receives the second control command sent by the first control signal unit , and at the same time control the radio frequency signal transceiver unit to receive the second radio frequency signal from the signal amplifying device according to the received second control instruction.
  • the first control signal unit is connected between the signal transceiving control unit and the transmission interface, and is connected to the signal amplifying device through the transmission interface.
  • the first control signal unit receives the first control command generated by the signal transceiving control unit, converts the first control command into a first transmission signal, and sends the first transmission signal to the signal amplifying device.
  • the first control signal unit receives the second transmission signal from the signal amplifying device, converts the second transmission signal into a second control command, and sends the second control command to the signal transceiving control unit.
  • a baseband signal refers to a signal obtained by modulating user data by a baseband unit
  • a signal transceiving apparatus may also include a baseband unit, and the baseband unit is configured to modulate the first user data into a first baseband signal, and After receiving the second baseband signal sent by the radio frequency signal transceiver unit, the second baseband signal may also be demodulated into second user data.
  • User data can be 4G data or 5G data
  • the baseband unit uses OFDM to modulate it into a baseband signal.
  • the baseband also uses OFDM to demodulate the baseband signal into 4G data or 5G data.
  • the signal transceiver control unit can not only send the first control command to the signal amplification device through the first signal control unit, but also send other information through the first signal control unit, such as the user's heartbeat, indoor temperature and other information obtained through measurement, user assets, etc.
  • the signal amplifying device connected to the radio frequency signal transceiver unit and the first control signal unit is the same signal amplifying device.
  • the signal amplifying device refers to a device that can amplify and transmit radio frequency signals to an antenna, which can be according to an embodiment of the present disclosure.
  • the radio frequency signal transceiver unit is connected to the power amplifier and the low noise amplifier of the signal amplifying device through the radio frequency interface
  • the first control signal unit is connected to the second control signal unit of the signal amplifying device through the transmission interface.
  • the radio frequency signal transceiver unit is connected to the signal amplifying device through a radio frequency interface, and the radio frequency interface is connected to the signal amplifying device through a cable, that is, the radio frequency signal transceiver unit is connected to the signal amplifying device through a cable.
  • the first control signal unit is also connected to the signal amplifying device through a cable. That is, the signal transceiving apparatus and the signal amplifying apparatus according to the embodiments of the present disclosure are two independent devices connected by cables.
  • the control unit performs "negotiation", that is, sends the first control instruction or receives the second control instruction through the first control signal unit.
  • the signal transceiving apparatus is connected to the signal amplifying apparatus through a cable, so as to realize the removal of a signal amplifying device (such as a power amplifier and a low noise amplifier) from the signal transceiving apparatus.
  • a signal amplifying device such as a power amplifier and a low noise amplifier
  • high-power devices such as power amplifiers are removed, the heat consumption of the signal transceiver device is greatly reduced, and the ambient temperature of the space where the signal transceiver device is located is reduced, so that the signal transceiver device can adapt to application scenarios with high ambient temperature.
  • the devices that implement signal amplification such as power amplifiers and low-noise amplifiers
  • the volume of the heat capacity structure is also reduced, and accordingly, the volume of the signal transceiver device is also reduced, and the volume of the signal transceiver device is reduced, making it suitable for application scenarios with strict volume requirements (eg, limited volume).
  • the signal amplifying device can be placed in a space far away from the signal transceiving device, for example, the signal amplifying device Can be placed on the antenna side.
  • the signal amplifying device is placed on the antenna side, and the feeder loss from the signal amplifying device to the antenna is greatly reduced, so the signal amplifying device can use a smaller amplification factor to amplify the signal, and the heat consumption of the signal amplifying device is greatly reduced.
  • the volume of the signal amplifying device is much smaller than that of the device on the antenna side, after it is placed on the antenna side, the increased space on the antenna side is basically negligible compared to the space originally occupied by the antenna side.
  • the radio frequency interface and the transmission interface are an integral structure.
  • the radio frequency interface and the transmission interface can be connected to the signal amplifying device by using the same cable, and the connection mode is shown by the dotted line in FIG. 2 and FIG. 3 .
  • the first signal control unit is connected to the radio frequency through another line The cable connecting the signal transceiving unit and the signal amplifying device.
  • the transmission signal can be an RF (Radio Frequency, radio frequency) signal, an AM ( Amplitude Modulation) signal, FM (Frequency Modulation, frequency modulation) signal, PM (Phase Modulation, phase modulation) signal, OOK (On-Off-Keying, on-off keying) signal and other signals that can be transmitted using the same channel as the RF signal .
  • RF Radio Frequency, radio frequency
  • AM Amplitude Modulation
  • FM Frequency Modulation, frequency modulation
  • PM Phase Modulation
  • OOK On-Off-Keying, on-off keying
  • the radio frequency interface and the transmission interface are connected to the signal amplifying device using the same cable, that is, the radio frequency signal and the transmission signal are sent to the signal amplifying device using the same cable, which can reduce the use of cables and save the cost of transmission.
  • the radio frequency interface and the transmission interface may also be connected to the signal amplifying device using different cables, and the connection manner is shown by the solid lines in FIG. 2 and FIG. 3 .
  • the transmission interface is a physical interface different from the radio frequency interface such as serial port, network port, etc., and the transmission signal is transmitted using a dedicated physical line different from the radio frequency signal transmission line.
  • the signal can be a protocol signal such as UART (Universal Asynchronous Receiver/Transmitter, Universal Asynchronous Receiver/Transmitter), HDLC (High Level Data Link Control, Advanced Data Link Control), ETH (Ethernet).
  • the radio frequency signal transceiving unit is configured to send the first radio frequency signal to the first radio frequency interface, and receive the second radio frequency signal from the second radio frequency interface.
  • the radio frequency signal transceiver unit needs to use two different radio frequency interfaces (ie, the first radio frequency interface and the second radio frequency interface) to be connected to the signal amplifying device through two different cables.
  • the radio frequency signal transceiver unit It is used for sending the first radio frequency signal to the signal amplifying device through the first radio frequency interface, and receiving the second radio frequency signal from the signal amplifying device through the second radio frequency interface.
  • the radio frequency signal transceiving unit is connected to the power amplifier in the signal amplifying device through one cable, and is connected to the low-noise amplifier signal in the signal amplifying device through another cable
  • the cable connected with the power amplifier works to transmit the first radio frequency signal to the signal amplifying device;
  • the cable connected with the low noise amplifier works , to receive the second radio frequency signal from the signal amplifying device.
  • the radio frequency signal transceiver unit can pass a radio frequency interface. Use a cable to connect to the signal amplifier.
  • the radio frequency signal transceiving unit is signal-connected to the power amplifier and the low noise amplifier in the signal amplifying device through a cable, and the radio frequency signal is transceived through the first control signal unit.
  • the control of the unit and the control of the power amplifier and the low noise amplifier by the second control signal unit realize the switching between the path from the signal transceiving device to the signal amplifying device and the path from the signal amplifying device to the signal transceiving device.
  • the generation of the first control instruction by the signal transceiving control unit includes: the signal transceiving control unit determines a first time for controlling the radio frequency signal transceiving unit to send the first radio frequency signal to the radio frequency interface, and determines the first time according to the difference between the first time and the reference pulse. The first time difference generates a first control command.
  • the signal transceiving control unit generating the first control instruction for synchronizing with the operation of the signal amplifying device includes: the signal transceiving control unit determining the first time at which the radio frequency signal transceiving unit sends the first radio frequency signal to the signal amplifying device. After a period of time, the first time difference between the first time and the pulse of the base station is used as the first control command, and the first control command is sent to the signal amplifying device through the first control signal unit. Both the signal transceiving control unit and the signal amplifying device control the transceiving of the first radio frequency signal based on the reference pulse and the first time difference in the first control instruction.
  • the reference pulse can be obtained by sending periodic commands to the signal amplifying device through the signal transceiver device.
  • the reference pulse can be obtained by sending periodic commands to the signal amplifying device through the first control signal unit, so as to ensure that the signal transceiver device and the signal amplifying device generate the same reference pulse.
  • the signal amplifying control unit of the signal amplifying device determines to send and receive signals to After the radio frequency signal transceiver unit in the device sends the second time of the second radio frequency signal, the second time difference between the second time and the reference pulse is used as a control command, and the second control signal unit sends the second control command to the signal transceiver through the second control signal unit. device.
  • the signal amplification control unit controls the sending of the second radio frequency signal based on the reference pulse and the second time difference in the second control instruction, and the signal transceiving control unit controls the reception of the second radio frequency signal based on the reference pulse and the second time difference in the second control instruction .
  • the first control command is generated by the first time difference between the first time and the reference pulse and the transmission and reception of the first radio frequency signal is controlled
  • the second control command is generated by the second time difference between the second time and the reference pulse and the transmission and reception of the second radio frequency signal is controlled
  • the first control signal unit converting the first control instruction generated by the signal transceiving control unit into the first transmission signal and sending the first transmission signal to the transmission interface includes: according to the first control command generated by the signal transceiving control unit The instruction determines the first applied voltage value; and applies a first DC bias voltage with the first applied voltage value on the cable connected to the transmission interface, so as to send the first transmission signal to the transmission interface.
  • the first control signal unit converts the first control command into a first transmission signal, and sends the first transmission signal to the signal amplifying device, including: the first control signal unit determines according to the first control command a first applied voltage value (such as a first preset value), and a first DC bias voltage with a first preset value is applied on the cable (ie, the cable connecting the first signal control unit and the signal amplifying device), The first DC bias voltage is sent to the signal amplifying device as the first transmission signal.
  • a first applied voltage value such as a first preset value
  • the first preset value indicates that the signal transceiving device is in the transmitting state, and the signal amplifying device switches to the receiving state when receiving the first DC bias voltage with the first preset value as the first transmission signal.
  • Both the signal transceiver device and the signal amplifying device have the DC isolation function, which can separate the DC signal. Therefore, when receiving the transmission signal with increased DC bias voltage, the DC signal can be separated to obtain the voltage value of the DC bias voltage, and The transmission and reception status is switched according to the voltage value.
  • the second control signal unit of the signal amplifying device when the signal transceiving device is in a receiving state, that is, when the signal amplifying device is in a transmitting state, the second control signal unit of the signal amplifying device will control the second Converting the command into a second transmission signal, and sending the second transmission signal to the signal transceiver device includes: the second control signal unit determines a second applied voltage value (such as a second preset value) according to the second control command, and the cable ( That is, a second DC bias voltage with a second preset value is applied to the cable connecting the first signal control unit and the signal amplifying device, and the second DC bias voltage is sent to the signal transceiver device as a second transmission signal.
  • a second applied voltage value such as a second preset value
  • the second preset value is a value different from the first preset value, indicating that the signal amplifying device is in the transmitting state, and when the signal transceiver device receives the second DC bias voltage with the second preset value as the second transmission signal, Switch to receiving state.
  • the first DC bias voltage or the second DC bias voltage is correspondingly applied, and the DC bias voltages with different voltage values represent the states of the signal transceiving device and the signal amplifying device (such as receiving state, transmitting state, inactive state, etc.) .
  • Different voltage values of the DC bias voltage are used to represent the different states of the signal transceiver device and the signal amplifier device.
  • the signal transceiver device or the signal amplifier device detects the DC bias voltage value, it will convert its own state according to the DC bias voltage value.
  • the corresponding state is reached, the synchronization between the signal transceiver and the signal amplifying device is completed.
  • the first control signal unit converting the first control instruction generated by the signal transceiving control unit into the first transmission signal and sending the first transmission signal to the signal amplifying device includes: the first control signal unit controls the signal transceiving The first control command generated by the unit is converted into a first transmission signal, and the first control signal unit sends the first transmission signal to the transmission interface at least earlier than the signal transceiver control unit controls the radio frequency signal transceiver unit to send the first radio frequency signal according to the first control instruction predetermined transmission delay.
  • the first control signal unit converts the first control command generated by the signal transceiver control unit into a first transmission signal, it needs to be based on a predetermined (for example, pre-measured) transmission delay between the signal transceiver device and the signal amplifying device (the first control signal).
  • the first transmission signal is transmitted to the second control signal unit of the signal amplification device.
  • Sending the first transmission signal in advance can avoid that when the first transmission signal generated by the signal transceiver device is transmitted to the signal amplifying device due to the transmission delay, the signal amplifying device has been unable to receive the first radio frequency signal in time according to the first control instruction, which eventually leads to The signal amplifying device fails to receive the first radio frequency signal.
  • the signal amplifying device is a signal amplifying device according to an embodiment of the present disclosure
  • the signal needs to be measured according to the pre-measured signal.
  • the transmission delay between the transceiver and the signal transceiver (specifically, the transmission delay between the first control signal unit and the second control signal unit), relative to the signal amplification control unit, which controls the low-noise amplifier to transmit according to the second control instruction
  • the second radio frequency signal at least in advance of the transmission delay, transmits the second transmission signal to the first control signal unit of the signal transceiver device.
  • the signal amplifying device Similar to the signal transceiver device sending the first transmission signal in advance, the signal amplifying device sends the second transmission signal with an advance transmission delay, which can avoid the transmission delay caused when the second transmission signal generated by the signal amplifying device is transmitted to the signal transceiver device.
  • the signal transceiving device has been unable to receive the second radio frequency signal in time according to the second control instruction, which eventually causes the signal transceiving device to fail to receive the second radio frequency signal.
  • a signal amplification apparatus includes: a power amplifier, a low noise amplifier, a signal amplification control unit, and a second control signal unit.
  • the power amplifier is connected between the antenna and the radio frequency interface, and is used for receiving the first radio frequency signal from the radio frequency interface under the control of the signal amplification control unit, and amplifying the first radio frequency signal and sending it to the antenna.
  • the radio frequency interface is used to connect with the radio frequency interface of the signal transceiver device through a cable.
  • the low noise amplifier is connected between the antenna and the radio frequency interface, and is used for receiving the second radio frequency signal from the antenna, amplifying the second radio frequency signal, and under the control of the signal amplification control unit, the amplified second radio frequency signal (herein Also referred to as the second radio frequency signal) is sent to the radio frequency interface.
  • the radio frequency interface is used to connect with the radio frequency interface of the signal transceiver device through a cable.
  • the signal amplification control unit is connected to the power amplifier and the low noise amplifier, and is used for receiving the first control instruction and controlling the power amplifier to receive the first radio frequency signal from the radio frequency interface according to the first control instruction, or generating the second control instruction and according to the second control instruction
  • the low noise amplifier is controlled to send the second radio frequency signal to the radio frequency interface.
  • the second control signal unit is connected between the signal amplification control unit and the transmission interface, and is used to convert the second control command generated by the signal amplification control unit into a second transmission signal and send the second transmission signal to the transmission interface, or receive a signal from the transmission interface.
  • the first transmission signal of the transmission interface converts the first transmission signal into a first control command, and sends the first control command to the signal amplification control unit.
  • the transmission interface is used to connect with the transmission interface of the signal transceiver device through a cable.
  • the signal amplifying device also has two states of sending and receiving, the sending state of the signal amplifying device corresponds to the receiving state of the signal transceiving device, and the receiving state of the signal amplifying device corresponds to the signal The sending status of the transceiver.
  • the signal amplifying device may be connected between the signal transceiving device (eg, base station, CPE) and the antenna.
  • the signal transceiving device eg, base station, CPE
  • the second radio frequency signal from the antenna can be processed and the processed second radio frequency signal (also referred to as the second radio frequency signal herein) can be sent to the signal transmitting device.
  • the signal amplifying device is in the receiving state, the first radio frequency signal may be received from the signal transceiver device, the first radio frequency signal may be processed, and the processed first radio frequency signal may be sent to the antenna.
  • the power amplifier is connected between the radio frequency interface and the antenna, and is connected to the signal transceiver device through the radio frequency interface.
  • the power amplifier receives the first radio frequency signal from the signal transceiver device through the radio frequency interface. After the first radio frequency signal is amplified, the amplified first radio frequency signal is sent to the antenna.
  • the low-noise amplifier is also connected between the radio frequency interface and the antenna, and is also connected to the signal transceiver device through the radio frequency interface.
  • the low-noise amplifier receives the second radio frequency signal from the antenna. After the second radio frequency signal is amplified, the amplified second radio frequency signal is sent to the signal transceiving unit.
  • the signal amplification control unit is connected to the power amplifier and the low noise amplifier.
  • the signal amplification control unit When the signal amplification device is in the sending state, the signal amplification control unit generates a second control command for synchronizing with the operation of the signal transceiver device, and controls the low noise amplifier according to the second control command Send the second radio frequency signal to the signal transceiver device, and simultaneously send the generated second control command to the second control signal unit;
  • the signal amplifying control unit receives the first control signal sent by the first control signal unit. instruction, and control the power amplifier to receive the first radio frequency signal from the signal transceiver device according to the received first control instruction.
  • the second control signal unit is connected between the signal amplification control unit and the transmission interface, and is connected to the signal transceiver device through the transmission interface.
  • the second control signal unit receives the second signal generated by the signal amplification control unit. a control instruction, converting the second control instruction into a second transmission signal, and transmitting the second transmission signal to the signal transceiving device;
  • the second control signal unit receives the first transmission from the signal transceiving device signal, convert the first transmission signal into a first control command, and send the first control command to the signal amplification control unit.
  • the signal amplification control unit can not only send the second control instruction to the signal transceiving device through the second signal control unit, but also can send other information through the second signal control unit.
  • a duplexer (or circulator) and a filter may also be included between the power amplifier, the low noise amplifier and the antenna.
  • the duplexer is connected to the power amplifier and the low noise amplifier, and the filter is connected between the duplexer and the antenna.
  • the device is used to combine the transmission path from the signal amplifying device to the antenna and the receiving path from the antenna to the signal amplifying device into one path, that is, the first radio frequency signal amplified by the power amplifier is sent to the antenna and the second radio frequency signal from the antenna is sent to the antenna.
  • the signal sent to the low noise amplifier is combined on one line.
  • the filter is used for filtering the signal transmitted on the combined path (including the first radio frequency signal amplified by the power amplifier and the second radio frequency signal from the antenna).
  • the signal transceiver device connected to the power amplifier, the low-noise amplifier, and the second control signal unit is the same signal transceiver device.
  • the signal transceiver device refers to that the second radio frequency signal can be converted into the second baseband signal, and the second baseband signal can be sent.
  • the apparatus for converting the baseband unit into the second user data may be a signal transceiving apparatus according to an embodiment of the present disclosure.
  • the power amplifier and the low noise amplifier are connected with the radio frequency signal transceiver unit of the signal transceiver device through the radio frequency interface, and the second control signal unit is connected with the first control signal unit of the signal transceiver device through the transmission interface.
  • the power amplifier and the low noise amplifier are connected to the signal transceiver device through a radio frequency interface, and the radio frequency interface is connected to the signal transceiver device through a cable, that is, the power amplifier and the low noise amplifier are connected to the signal amplifier device through a cable.
  • the second control signal unit is also connected to the signal transceiving device through a cable.
  • the signal amplifying apparatus is connected to the signal transceiving apparatus through a cable, and components that implement signal amplification (such as a power amplifier and a low noise amplifier) are removed from the signal transceiving apparatus.
  • components that implement signal amplification such as a power amplifier and a low noise amplifier
  • high-power devices such as power amplifiers are removed, the heat consumption of the signal transceiver device is greatly reduced, and the ambient temperature of the space where the signal transceiver device is located is reduced, so that the signal transceiver device can adapt to application scenarios with high ambient temperature.
  • the devices that implement signal amplification such as power amplifiers and low-noise amplifiers
  • the volume of the heat capacity structure is also reduced, and accordingly, the volume of the signal transceiver device is also reduced, and the volume of the signal transceiver device is reduced, making it suitable for application scenarios with strict volume requirements (eg, limited volume).
  • the signal amplifying device can be placed in a space far away from the signal transceiving device, for example, the signal amplifying device Can be placed on the antenna side.
  • the signal amplifying device is placed on the antenna side, and the feeder loss from the signal amplifying device to the antenna is greatly reduced, so the signal amplifying device can use a smaller amplification factor to amplify the signal, and the heat consumption of the signal amplifying device is greatly reduced.
  • the volume of the signal amplifying device is much smaller than that of the device on the antenna side, after it is placed on the antenna side, the increased space on the antenna side is basically negligible compared to the space originally occupied by the antenna side.
  • the radio frequency interface to which the power amplifier and the low noise amplifier are connected is the same radio frequency interface.
  • a switching unit is provided between the power amplifier and the low noise amplifier and the radio frequency interface.
  • the signal amplification control unit controls the power amplifier to receive the first radio frequency signal from the radio frequency interface according to the first command and includes: controlling the switching unit, making the radio frequency interface and the power amplifier conduct;
  • the signal amplification control unit controls the low noise amplifier to send the second radio frequency signal to the radio frequency interface according to the second control instruction.
  • Amplifier is on.
  • the power amplifier and the low noise amplifier need to use different cables to connect with the signal transceiver device, one of which is used to send the second radio frequency signal to the signal transceiver device, and the other cable is used to receive the signal from the signal transceiver device. first radio frequency signal.
  • the radio frequency signal transceiving unit is connected to the power amplifier through one cable, and is signal-connected to the low noise amplifier through another cable.
  • the signal amplifying device is in the transmitting state , the cable connected between the low noise amplifier and the radio frequency signal transceiver unit works, and the second radio frequency signal is transmitted to the signal transceiver device; when the signal amplifier device is in the receiving state, the cable connected between the power amplifier and the radio frequency signal transceiver unit works, receives the signal from The first radio frequency signal of the signal transceiving device.
  • the power amplifier, low noise can be connected to the signal transceiver using a single cable.
  • the power amplifier and the low noise amplifier are connected to the radio frequency signal transceiving unit through the same radio frequency interface.
  • a switching unit (such as a switch) can be set between the power amplifier and the low noise amplifier and the radio frequency interface, and the power amplifier and the low noise amplifier can be powered on and off to realize the path from the signal transceiver device to the signal amplifier device (that is, the radio frequency signal transceiver.
  • the switching between the channel from the unit to the power amplifier) and the channel from the signal amplification device to the signal transceiver device ie the channel from the low noise amplifier to the radio frequency signal transceiver unit).
  • the signal amplifying control unit controls the power amplifier to power off while the control switch is in the off state (that is, the radio frequency interface is not connected to the paths of the power amplifier and the low noise amplifier).
  • the control switch is in the conducting state.
  • the control switch is in the conducting state (that is, the radio frequency interface is connected to the paths of the power amplifier and the low-noise amplifier)
  • the low-noise amplifier is controlled to be powered on and sends the first signal to the signal transceiver. Two radio frequency signals.
  • the power amplifier since the power amplifier has been powered off and the low noise amplifier is powered on, the power amplifier cannot work, which is equivalent to the fact that the radio frequency interface and the power amplifier are not conducting, but the low noise amplifier is working normally, which is equivalent to It is conductive with the radio frequency interface.
  • the signal amplifying control unit controls the low-noise amplifier to power off while the control switch is in the off state, and after the low-noise amplifier is powered off, the control switch is in the on state, and when the control switch is in the off state In the on state, the power amplifier is controlled to be powered on and receive the first radio frequency signal from the signal transceiving device.
  • the LNA since the LNA has been powered off and the power amplifier is powered on, the LNA cannot work, which is equivalent to the fact that the radio frequency interface and the LNA are not conducting, but the power amplifier is working normally. It is connected to the radio frequency interface.
  • Switching between the receiving state and the transmitting state of the signal amplifying device is realized by arranging a switch between the power amplifier, the low noise amplifier and the radio frequency interface, and the circuit design is simple and easy to implement.
  • generating the second control instruction by the signal amplification control unit includes: determining a second time for controlling the low-noise amplifier to send the second radio frequency signal to the radio frequency interface, and generating a second time according to a second time difference between the second time and the reference pulse. 2. Control instructions.
  • the signal amplifying control unit of the signal amplifying device compares the second time with the second time of the base station pulse. The time difference is used as the second control instruction, and the second control instruction is sent to the signal transceiver device through the second control signal unit, and the signal amplification control unit controls the low-noise amplifier to send the second radio frequency based on the reference pulse and the second time difference in the second control instruction.
  • the signal transceiving control unit controls the reception of the second radio frequency signal based on the reference pulse and the second time difference in the second control command.
  • the signal transceiving device When the signal amplifying device is in the receiving state, that is, when the signal transceiving device is in the transmitting state, after determining the first time at which the radio frequency signal transceiving unit sends the first radio frequency signal to the signal amplifying device, the signal transceiving device compares the first time with respect to the pulse of the base station. The first time difference is used as the first control command, and the first control command is sent to the signal amplifying device through the first control signal unit, and the signal transceiving control unit controls the first radio frequency signal based on the reference pulse and the first time difference in the first control command. The signal amplifying device controls the receiving of the first radio frequency signal based on the reference pulse and the first time difference in the first control command.
  • the first control command is generated by the first time difference between the first time and the reference pulse and the transmission and reception of the first radio frequency signal is controlled
  • the second control command is generated by the second time difference between the second time and the reference pulse and the transmission and reception of the second radio frequency signal is controlled
  • the second control signal unit converting the second control command generated by the signal amplification control unit into the second transmission signal and sending the second transmission signal to the transmission interface includes: according to the second control command generated by the signal amplification control unit The control instruction determines the second applied voltage value; and applies a second DC bias voltage with the second applied voltage value on the cable connected to the transmission interface, so as to send the second transmission signal to the transmission interface.
  • the second control signal unit converts the second control command into a second transmission signal, and sends the second transmission signal to the signal transceiving device, comprising: the second control signal unit determining according to the second control command For the second applied voltage value (eg, the second preset value), a second DC bias voltage with the second preset value is added to the cable (ie, the cable connecting the first signal control unit and the signal amplifying device), and the The second DC bias voltage is sent to the signal transceiving device as a second transmission signal.
  • the second applied voltage value eg, the second preset value
  • the second preset value indicates that the signal amplifying device is in the transmitting state, and the signal transceiving device switches to the receiving state when receiving the second DC bias voltage with the second preset value as the second transmission signal.
  • the first control signal unit of the signal transceiving device converts the first control command into a first transmission signal and sends the first transmission signal to the signal amplifying device, including :
  • the first control signal unit determines a first applied voltage value (such as a first preset value) according to the first control instruction, and applies a voltage with a first voltage on the cable (ie, the cable connected between the first signal control unit and the signal amplifying device).
  • the first DC bias voltage of the preset value is sent to the signal amplifying device as the first transmission signal.
  • the first preset value indicates that the signal transceiving device is in the transmitting state, and the signal amplifying device switches to the receiving state when receiving the first DC bias voltage with the first preset value as the first transmission signal.
  • the first DC bias voltage or the second DC bias voltage is correspondingly applied, and the DC bias voltages with different voltage values represent the states of the signal transceiving device and the signal amplifying device (such as receiving state, transmitting state, inactive state, etc.) .
  • Different voltage values of the DC bias voltage are used to represent the different states of the signal transceiver device and the signal amplifier device.
  • the signal transceiver device or the signal amplifier device detects the DC bias voltage value, it will convert its own state according to the DC bias voltage value.
  • the corresponding state is reached, the synchronization between the signal transceiver and the signal amplifying device is completed.
  • the second control signal unit converting the second control instruction generated by the signal amplification control unit into the second transmission signal and sending the second transmission signal to the transmission interface includes: the second control signal unit amplifies the signal and controls the The second control command generated by the unit is converted into a second transmission signal, and the second control signal unit sends the second transmission signal to the transmission interface.
  • the low-noise amplifier is controlled to send the second radio frequency signal according to the second control command at least a predetermined advance. transmission delay.
  • the second control signal unit converts the second control command generated by the signal amplification control unit into the second transmission signal, it needs to be based on the pre-measured transmission delay between the signal transceiver and the signal transceiver (the first control signal unit and the first control signal The transmission delay between the two control signal units), relative to the signal amplification control unit, which controls the low-noise amplifier to send the second radio frequency signal according to the second control command, at least in advance of the transmission delay, and transmits the second transmission signal to the signal transceiver device the first control signal unit.
  • the signal amplifying device Similar to the signal transceiver device sending the first transmission signal in advance, the signal amplifying device sends the second transmission signal with an advance transmission delay, so as to avoid the transmission delay when the second transmission signal generated by the signal amplifying device is transmitted to the signal transceiver device.
  • the transceiver device has been unable to receive the second radio frequency signal in time according to the second control instruction, which eventually causes the signal transceiver device to fail to receive the second radio frequency signal.
  • the signal transceiving apparatus and signal amplifying apparatus can be used in scenarios with special restrictions on device volume, heat dissipation, power consumption, and power supply, such as airplanes, high-speed rails, and the like.
  • the signal transceiver device can be designed as a part of the signal processor to perform signal processing and provide services for users, and be installed in the equipment installation area of aircraft, high-speed rail, etc.; signal amplification device and antennas (such as satellite antennas, radar antennas, ground communication Antennas, etc.) can be designed as one device and installed together near the surface of aircraft, high-speed rail, etc.
  • signal amplification device and antennas such as satellite antennas, radar antennas, ground communication Antennas, etc.
  • FIG. 4 is a schematic diagram of a signal transceiving device and a signal amplifying device installed on an aircraft according to an embodiment of the present disclosure.
  • the signal transceiver device and the signal amplifying device as an example of aircraft airborne equipment (such as satellite receivers, airborne ground communication receivers, radar receivers, etc.).
  • the signal transceiver device is set as a signal processor. Because of its low heat generation and small size, it can be installed in areas such as the electronic cabin, cargo hold, and luggage compartment of the aircraft.
  • the signal amplifying device and the antenna are designed as a whole, and are installed on the surface of the aircraft body with less restrictions on the size and power consumption of the equipment.
  • a cable (such as a radio frequency cable) is used to connect the signal processor and the antenna, that is, the signal transceiver device and the signal amplifying device are connected by a cable.
  • a filter is also set between the signal processor and the antenna, which can isolate the mutual interference between the two.
  • the signal processor and the antenna both have DC isolation function.
  • the first radio frequency signal is sent, that is, the first radio frequency signal is coupled to the radio frequency cable so that it can be transmitted through the radio frequency cable, and the second radio frequency signal sent by the low noise amplifier is received.
  • the signal transceiving control unit determines the first time at which the radio frequency signal transceiving unit sends the first radio frequency signal to the power amplifier, and then assigns the first time to the power amplifier.
  • the first time difference relative to the base station pulse is used as the first control command, and the first control command is sent to the second control signal unit of the signal amplifying device through the first control signal unit.
  • the first control signal unit controls the radio frequency signal transceiver unit according to the first control instruction, and at a time point having a first time difference with the reference pulse, sends the first radio frequency signal to the power amplifier of the signal amplifying device; the second control signal unit receives the first radio frequency signal; After the first transmission signal of a control signal unit is converted into a first control command, and according to the first time difference in the first control command, at a time point having a first time difference with the reference pulse, the power amplifier is controlled to be in a working state , to receive the first radio frequency signal sent from the radio frequency signal transceiver unit.
  • the signal amplification control unit After determining the second time for the low noise amplifier to send the second radio frequency signal to the radio frequency signal transceiving unit, converts the second radio frequency signal into the second radio frequency signal.
  • the second time difference between the time and the pulse of the base station is used as the second control command, and the second control command is sent to the first control signal unit through the second control signal unit.
  • the second control signal unit controls the low noise amplifier to be in a working state at a time point having a second time difference with the reference pulse according to the second control instruction, so as to send a second radio frequency signal to the radio frequency signal transceiving unit.
  • the first control signal unit After the first control signal unit receives the second transmission signal from the second control signal unit, it converts it into a second control command, and according to the second time difference in the second control command, at the second time difference with the reference pulse. At a time point, the radio frequency signal transceiving unit is controlled to receive the second radio frequency signal sent from the low noise amplifier.
  • the radio frequency signal transceiver unit is connected to the power amplifier through one cable, and is connected to the low noise amplifier through another cable (that is, in the FDD or full-duplex working mode), when the signal transceiver device needs to send the first radio frequency signal, the signal amplifier device When the first radio frequency signal needs to be received, the cable connecting the power amplifier and the radio frequency signal transceiver unit works; when the signal transceiver device needs to receive the second radio frequency signal and the signal amplifying device needs to send the second radio frequency signal, the low noise amplifier and the radio frequency signal are sent and received.
  • the cable to which the unit is connected works.
  • a control switch is set between the power amplifier and the low noise amplifier and the radio frequency interface.
  • the signal transceiver device needs to send The first radio frequency signal.
  • the signal amplifying control unit controls the low-noise amplifier to power off while the control switch is in the off state, and after the low-noise amplifier is powered off, the control switch is turned on. In the on state, when the control switch is in the on state, the power amplifier is controlled to be powered on.
  • the signal amplification control unit controls the power amplifier to power off while the control switch is in the off state, and after the power amplifier is powered off, The control switch is in a conducting state, and when the control switch is in a conducting state, the low-noise amplifier is controlled to be powered on.
  • the first transmission signal and the second transmission signal should be sent in advance of the transmission delay (transmission delay between the first control signal unit and the second control signal unit).
  • the first control signal unit and the radio frequency signal transceiver unit are connected to the signal amplifying device using the same cable
  • the first control signal unit and the second signal control unit can be designed as OOK modulation chips, which are used to convert the first control command or the second signal
  • the second control command is modulated into an OOK signal, or the OOK signal is demodulated into a second control command or a second control command.
  • the first control signal unit and the radio frequency signal transceiver unit are connected to the signal amplifying device using different cables, the first control signal unit and the second signal control unit may be designed to have different operating frequencies from the radio frequency chip of the radio frequency signal transceiver unit.
  • the radio frequency chip is used to modulate the first control instruction or the second control instruction into a radio frequency signal with a frequency different from that of the first radio frequency signal or the second radio frequency signal sent and received by the radio frequency signal transceiver unit, or to transmit and receive the radio frequency signal with the radio frequency signal transceiver unit.
  • the received first radio frequency signal or the second radio frequency signal with different frequencies is demodulated into the first control command or the second control command.
  • the first control command or the second control can also be transmitted by applying the first DC bias voltage or the second DC bias voltage on the cable transmitting the first transmission signal or the second transmission signal.
  • the first control signal unit modulates the first control command into a first transmission signal that is easy to transmit, and then sends the first control signal unit to the second control signal unit.
  • a first DC bias voltage with a first preset value is applied to the cable transmitting the first transmission signal, so as to identify that the signal transceiver device is in a sending state.
  • the second control signal unit converts the first DC bias voltage into a first control command, and converts the first DC bias voltage into a first control command. Commands are sent to the signal amplification control unit.
  • the second control signal unit modulates the second control command into a second transmission signal that is easy to transmit, and then sends the second control signal unit to the first control signal unit.
  • a second DC bias voltage with a second preset value is applied to the cable transmitting the second transmission signal, so as to identify that the signal transceiver device is in a receiving state.
  • the first control signal unit converts the second DC bias voltage into a second control command, and sends the second control command to the signal transceiver control unit.
  • the first DC bias voltage or the second DC bias voltage connected to the cable load between the signal transceiving device and the signal amplifying device can also be used to supply power to the signal amplifying device or the antenna.
  • the signal processor can also transmit various data with the antenna through the channel for transmitting the first transmission signal and the second transmission signal, such as version upgrade, alarm query, heartbeat detection, asset query, fault detection and other operations on the antenna, so as to ensure The signal processor and antenna implement the overall function of a device.
  • FIG. 5 is a flowchart of an operating method of a communication system according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of an operating method of a communication system according to another embodiment of the present disclosure.
  • the communication system includes the signal transceiving device and the signal amplifying device as described above.
  • the radio frequency interface of the signal transceiver device is connected to the radio frequency interface of the signal amplifying device through a cable
  • the transmission interface of the signal transceiver device is connected to the transmission interface of the signal amplifier device through a cable.
  • the operating method of the communication system includes at least one of a transmission process and a reception process with respect to the signal transceiving device. As shown in FIG. 5, the sending process includes steps S101 to S104.
  • step S101 the signal transceiving control unit of the signal transceiving apparatus generates a first control instruction and controls the radio frequency signal transceiving unit of the signal transceiving apparatus to send the first radio frequency signal to the power amplifier of the signal amplifying apparatus according to the first control instruction.
  • step S102 the first control signal unit of the signal transceiving device converts the first control instruction generated by the signal transceiving control unit into a first transmission signal and sends the first transmission signal to the second control signal unit of the signal amplifying device.
  • step S103 the second control signal unit receives the first transmission signal from the first control signal unit, converts the first transmission signal into a first control command, and sends the first control command to the signal amplification control unit of the signal amplification device .
  • step S104 the signal amplification control unit receives the first control instruction and controls the power amplifier of the signal amplification device to receive the first radio frequency signal from the radio frequency signal transceiver unit according to the first control instruction.
  • the receiving process includes steps S201 to S204.
  • step S201 the signal amplification control unit generates a second control command and controls the low noise amplifier of the signal amplification device to transmit the second radio frequency signal according to the second control command.
  • step S202 the second control signal unit converts the second control command generated by the signal amplification control unit into a second transmission signal and sends the second transmission signal to the first control signal unit.
  • step S203 the first control signal unit receives the second transmission signal from the second control signal unit, converts the second transmission signal into a second control command, and sends the second control command to the signal transceiving control unit.
  • step S204 the signal transceiving control unit receives the second control instruction and controls the radio frequency signal transceiving unit to receive the second radio frequency signal from the low noise amplifier according to the second control instruction.
  • the signal amplifying apparatus is connected to the signal transceiving apparatus through a cable, and the components (such as power amplifiers and low noise amplifiers) that implement signal amplification are removed from the signal transceiving apparatus.
  • the components such as power amplifiers and low noise amplifiers
  • high-power devices such as power amplifiers are removed, the heat consumption of the signal transceiver device is greatly reduced, and the ambient temperature of the space where the signal transceiver device is located is reduced, so that the signal transceiver device can adapt to application scenarios with high ambient temperature.
  • the devices that implement signal amplification are removed from the signal transceiver device, and the volume of the signal transceiver device is also reduced accordingly.
  • the volume of the heat capacity structure is also reduced, and accordingly, the volume of the signal transceiver device is also reduced, and the volume of the signal transceiver device is reduced, making it suitable for application scenarios with strict volume requirements (eg, limited volume).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Amplifiers (AREA)

Abstract

公开了一种信号收发装置,其包括:射频信号收发单元、信号收发控制单元和第一控制信号单元。射频信号收发单元连接在基带接口与至少一个射频接口之间,用于根据基带接口的基带信号产生第一射频信号并向射频接口发送第一射频信号。信号收发控制单元连接射频信号收发单元,用于生成第一控制指令并根据第一控制指令控制射频信号收发单元向射频接口发送第一射频信号。第一控制信号单元连接在信号收发控制单元与信号收发装置的传输接口之间,用于将信号收发控制单元生成的第一控制指令转换为第一传输信号并向传输接口发送传第一输信号,并接收来自传输接口的第二传输信号,将第二传输信号转换为第二控制指令,将第二控制指令发送至信号收发控制单元。

Description

信号收发装置、信号放大装置、通信系统的运行方法 技术领域
本公开涉及通信技术领域。
背景技术
随着通信技术的发展,对通信装置(如信号收发装置)的高功率、小体积的需求越来越大。
发明内容
本公开实施例提供一种信号收发装置、信号放大装置以及通信系统的运行方法。
本公开的第一方面公开了一种信号收发装置,其包括:射频信号收发单元、信号收发控制单元和第一控制信号单元。所述射频信号收发单元连接在基带接口与至少一个射频接口之间,用于根据基带接口的基带信号产生第一射频信号并向所述至少一个射频接口发送第一射频信号,以及接收来自所述至少一个射频接口的第二射频信号;所述至少一个射频接口用于通过线缆与信号放大装置的射频接口连接。
所述信号收发控制单元连接所述射频信号收发单元,用于生成第一控制指令并根据所述第一控制指令控制所述射频信号收发单元向所述至少一个射频接口发送第一射频信号,以及接收第二控制指令并根据所述第二控制指令控制所述射频信号收发单元接收来自所述至少一个射频接口的第二射频信号。
所述第一控制信号单元连接在所述信号收发控制单元与信号收发装置的传输接口之间,用于将所述信号收发控制单元生成的第一控制指令转换为第一传输信号并向信号收发装置的传输接口发送所述第一传输信号,以及接收来自信号收发装置的传输接口的第二传输信 号,将所述第二传输信号转换为第二控制指令,并将第二控制指令发送至所述信号收发控制单元,所述信号收发装置的传输接口用于通过线缆与信号放大装置的传输接口连接。
根据本公开的实施,信号收发控制单元生成第一控制指令包括:确定控制所述射频信号收发单元向射频接口发送第一射频信号的第一时间,并根据所述第一时间与基准脉冲的第一时间差生成第一控制指令。
根据本公开的实施例,第一控制信号单元将所述信号收发控制单元生成的第一控制指令转换为第一传输信号并向信号收发装置的传输接口发送所述第一传输信号包括:根据所述信号收发控制单元生成的第一控制指令确定第一施加电压值;在与传输接口连接的线缆上施加具有所述第一施加电压值的第一直流偏置电压,以将所述第一直流偏置电压作为所述第一传输信号发送至所述信号收发装置的传输接口。
根据本公开的实施例,第一控制信号单元将所述信号收发控制单元生成的第一控制指令转换为第一传输信号并向信号收发装置的传输接口发送所述第一传输信号包括:将所述信号收发控制单元生成的第一控制指令转换为第一传输信号,所述第一控制信号单元向信号收发装置的传输接口发送所述第一传输信号相对于所述信号收发控制单元根据所述控制指令控制所述射频信号收发单元发送第一射频信号至少提前预定的传输时延。
根据本公开的实施例,所述至少一个射频接口和所述信号收发装置的传输接口是一体结构。
在一些实施例中,所述至少一个射频接口包括第一射频接口和第二射频接口,射频信号收发单元用于向第一射频接口发送第一射频信号,以及接收来自第二射频接口的第二射频信号。
本公开的第二方面公开了一种信号放大装置,其包括:功率放大器、低噪声放大器、信号放大控制单元和第二控制信号单元。
所述功率放大器连接在天线和信号放大装置的射频接口之间,用于接收来自信号放大装置的射频接口的第一射频信号,并将所述第 一射频信号放大后发送至天线;所述信号放大装置的射频接口用于通过线缆与所述信号收发装置的射频接口连接。
所述低噪声放大器连接在天线和信号放大装置的射频接口之间,用于接收来自天线的第二射频信号,并将所述第二射频信号放大后发送至信号放大装置的射频接口。
所述信号放大控制单元连接所述功率放大器和所述低噪声放大器,用于接收第一控制指令并根据所述第一控制指令控制所述功率放大器接收来自信号放大装置的射频接口的第一射频信号,或生成第二控制指令并根据所述第二控制指令控制所述低噪声放大器向射频接口发送第二射频信号。
所述第二控制信号单元连接在所述信号放大控制单元和信号放大装置的传输接口之间,用于将所述信号放大控制单元生成的第二控制指令转换为第二传输信号并向信号放大装置的传输接口发送第二传输信号,或接收来自信号放大装置的传输接口的第一传输信号,将所述第一传输信号转换为第一控制指令,并将第一控制指令发送至所述信号放大控制单元,所述信号放大装置的传输接口用于通过线缆与所述信号收发装置的传输接口连接。
根据本公开的实施例,所述功率放大器和所述低噪声放大器连接的射频接口为同一个射频接口。
根据本公开的实施例,所述功率放大器和所述低噪声放大器与射频接口之间设有切换单元;在所述信号放大控制单元接收到第一控制指令的情况下,所述信号放大控制单元根据第一控制指令控制所述功率放大器接收来自信号放大装置的射频接口的第一射频信号包括:控制所述切换单元,使信号放大装置的射频接口与所述功率放大器连通;在所述低噪声放大器接收到来自天线的第二射频信号的情况下,所述信号放大控制单元根据第二控制指令控制所述低噪声放大器向信号放大装置的射频接口发送第二射频信号包括:控制所述切换单元,使信号放大装置的射频接口与所述低噪声放大器连通。
根据本公开的实施例,所述信号放大控制单元生成第二控制指令包括:确定控制所述低噪声放大器向信号放大装置的射频接口发送 第二射频信号的第二时间,并根据所述第二时间与基准脉冲的第二时间差生成第二控制指令。
根据本公开的实施例,所述第二控制信号单元将所述信号放大控制单元生成的第二控制指令转换为第二传输信号并向信号放大装置的传输接口发送第二传输信号包括:根据所述信号放大控制单元生成的第二控制指令确定第二施加电压值;在与信号放大装置的传输接口连接的线缆上施加具有所述第二施加电压值的直流偏置电压,以将所述第二直流偏置电压作为所述第二传输信号发送至所述信号放大装置的传输接口。
根据本公开的实施例,所述第二控制信号单元将所述信号放大控制单元生成的第二控制指令转换为第二传输信号并向信号放大装置的传输接口发送第二传输信号包括:将所述信号放大控制单元生成的第二控制指令转换为第二传输信号,所述第二控制信号单元向信号放大装置的传输接口发送所述第二传输信号相对于所述信号放大控制单元根据所述第二控制指令控制所述低噪声放大器发送第二射频信号至少提前预定的传输时延。
本公开的第三方面公开了一种通信系统的运行方法,所述通信系统包括如上所述的信号收发装置和如上所述的信号放大装置,其中,所述信号收发装置的射频接口通过线缆连接所述信号放大装置的射频接口,所述信号收发装置的传输接口通过线缆连接所述信号放大装置的传输接口,所述运行方法包括发送过程和接收过程中的至少一者,并且其中,所述发送过程包括:所述信号收发控制单元生成第一控制指令并根据所述第一控制指令控制所述射频信号收发单元向所述功率放大器发送第一射频信号;所述第一控制信号单元将所述信号收发控制单元生成的第一控制指令转换为第一传输信号并将第一传输信号发送至第二控制信号单元;所述第二控制信号单元接收来自所述第一控制信号单元的第一传输信号,将所述第一传输信号转换为第一控制指令,并将第一控制指令发送至所述信号放大控制单元;所述信号放大控制单元接收第一控制指令并根据所述第一控制指令控制所述功率放大器接收来自所述射频信号收发单元的第一射频信号。
根据本公开的实施例,所述接收过程包括:所述信号放大控制单元生成第二控制指令并根据所述第二控制指令控制所述低噪声放大器发送第二射频信号;所述第二控制信号单元将所述信号放大控制单元生成的第二控制指令转换为第二传输信号并将第二传输信号发送至所述第一控制信号单元;所述第一控制信号单元接收来自所述第二控制信号单元的第二传输信号,将所述第二传输信号转换为第二控制指令,并将第二控制指令发送至所述信号收发控制单元;所述信号收发控制单元接收第二控制指令并根据所述第二控制指令控制所述射频信号收发单元接收来自所述低噪声放大器的第二射频信号。
附图说明
在本公开实施例的附图中:
图1为现有技术中的一种信号收发装置的组成示意图;
图2为根据本公开的实施例的信号收发装置和信号放大装置的组成示意图;
图3为根据本公开的另一实施例的信号收发装置和信号放大装置的组成示意图;
图4为根据本公开的实施例的安装于飞机上的信号收发装置和信号放大装置的示意图;
图5为根据本公开的实施例的通信系统的运行方法的一部分的流程图;
图6为根据本公开的实施例的通信系统的运行方法的一部分的流程图。
具体实施方式
为使本领域的技术人员更好地理解本公开实施例的技术方案,下面结合附图对根据本公开的实施例的信号收发装置、信号放大装置以及通信系统的运行方法进行详细描述。
在下文中将参考附图更充分地描述本公开的实施例,但是所示的实施例可以以不同形式来体现,且不应当被解释为限于本公开阐述 的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本公开实施例的附图用来提供对本公开的实施例的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其他特征和优点对本领域技术人员将变得更加显而易见,
本公开的实施例可借助本公开的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。
在不冲突的情况下,本公开的各实施例及实施例中的各特征可相互组合。
本公开所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本公开所使用的术语“和/或”包括一个或多个相关列举条目的任何和所有组合。如本公开所使用的单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。如本公开所使用的术语“包括”、“由……制成”,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其他特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本公开所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本公开明确如此限定。
本公开的实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。
图1为现有技术中的一种信号收发装置的组成示意图。
参照图1,信号收发装置(也叫收发信机)由基带单元、数字中频单元、中/射频单元、PA(Power Amplifier,功率放大器)、LNA (Low Noise Amplifier,低噪声放大器)、控制单元、环形器、滤波器等单元构成。
基带单元用于将用户数据调制转换为适用于传输的基带信号,以及将基带信号解调为用户数据。用户数据可以是4G数据或5G数据,基带使用OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)将用户数据调制为基带信号,对应的,基带也使用OFDM将基带信号解调为4G数据或5G数据。当然基带单元也可以使用传输单元、控制单元、时钟单元、业务高层单元等可以实现将用户数据转换为基带信号以及将基带信号解调为用户数据的功能单元代替。
数字中频单元连接在基带单元和中/射频单元之间,数字中频单元用于将基带信号进行中频处理,中/射频单元则通过数模转换将经过中频处理的基带信号转换为射频信号。对应的,中/射频单元也可以通过模数转换将射频信号转换为数字射频信号,数字中频单元也可以将数字射频信号转换为基带信号。
功率放大器和低噪声放大器都连接中/射频单元。功率放大器用于将来自中/射频单元的射频信号放大,而低噪声放大器则是将来自天线的信号放大并发送至中/射频单元。
控制单元连接功率放大器和低噪声放大器,用于根据信号收发装置的模式控制功率放大器和低噪声放大器工作。参照图1,信号收发装置的模式为TDD(Time Division Duplexing,时分双工),当信号收发装置处于发送状态时,控制单元控制功率放大器工作;当信号收发装置处于接收状态时,控制单元控制低噪声放大器工作。
环形器连接功率放大器和低噪声放大器,滤波器连接在环形器和天线之间,环形器用于将信号收发装置到天线的发送通路和天线到信号收发装置的接收通路合并为一条通路,也就是说,环形器将功率放大器放大后的射频信号发送至天线和将来自天线的射频信号发送至低噪声放大器合并至一条线路上实现。滤波器用于对这条合并的通路上传输的信号(包括将功率放大器放大后的射频信号以及来自天线的射频信号)进行滤波。
信号收发装置通过外接天线构成了卫星地面站,实现了向卫星发射信号,同时接收由其它地面站经卫星转发来的信号的功能,适应了绝大部分的应用场景,得到了广泛应用。
但由于基带单元、数字中频单元等大量电路都是数字电路,相对于模拟电路来说,数字电路对温度更加敏感,过高的环境温度可能会影响到数字电路工作状态。此外,由于功率放大效率问题,功率放大器一直是信号收发装置中的大功率消耗器件,它的存在增大了信号收发装置的热耗,功率放大器的发射功率越大,增加的热耗越多,增加的热耗又提升了信号收发装置所在空间的环境温度。这不仅对信号收发装置中组成数字电路的器件的热应力提出了较高的要求,也造成了信号收发装置无法适应于环境温度要求严格(如环境温度较高)的应用场景。
同时,信号收发装置的功率越高,其热耗越大,其所需要的热容量结构体积也越大,相应的,信号收发装置的体积也就越大,导致了信号收发装置不仅无法同时满足高功率、小体积的要求,也无法适应于体积要求严格(如体积受限)的应用场景。
图2为根据本公开的实施例的信号收发装置和信号放大装置的组成示意图。图3为根据本公开的另一实施例的信号收发装置和信号放大装置的组成示意图。
参照图2和图3,根据本公开的实施例的信号收发装置包括:射频信号收发单元、信号收发控制单元和第一控制信号单元。
射频信号收发单元连接在基带接口与至少一个射频接口之间,用于根据基带接口的第一基带信号产生第一射频信号并在信号收发控制单元的控制下向射频接口发送第一射频信号,以及在信号收发控制单元的控制下接收来自射频接口的第二射频信号。射频接口用于通过线缆与信号放大装置的射频接口连接。
信号收发控制单元连接射频信号收发单元,用于生成第一控制指令并根据第一控制指令控制射频信号收发单元向射频接口发送第一射频信号,以及接收信号放大装置发送的第二控制指令并根据第二控制指令控制射频信号收发单元接收来自射频接口的第二射频信号。
第一控制信号单元连接在信号收发控制单元与传输接口之间,用于将信号收发控制单元生成的第一控制指令转换为第一传输信号并向传输接口发送第一传输信号,以及接收来自传输接口的第二传输信号,将第二传输信号转换为第二控制指令并将第二控制指令发送至信号收发控制单元。传输接口用于通过线缆与信号放大装置的传输接口连接。
参照图2和图3,根据本公开的实施例的信号收发装置可以是基站或CPE(Customer Premise Equipment,客户终端设备),具有发送和接收两种状态,当其处于发送状态时,可以向与其连接的装置发送信号;当其处于接收状态时,可以从与其连接的装置接收信号。
射频信号收发单元连接在基带接口与射频接口之间,其通过基带接口与基带单元连接,通过射频接口与信号放大装置连接,当信号收发装置处于发送状态时,射频信号收发单元通过基带接口接收基带单元的第一基带信号,将第一基带信号转换为第一射频信号,并在信号收发控制单元的控制下通过射频接口将第一射频信号发送至信号放大装置。对应的,当信号收发装置处于接收状态时,射频信号收发单元在信号收发控制单元的控制下通过射频接口接收来自信号放大装置的第二射频信号,将第二射频信号转换为第二基带信号,并通过基带接口将第二基带信号发送至基带单元。
信号收发控制单元连接射频信号收发单元,当信号收发装置处于发送状态时,信号收发控制单元生成用于与信号放大装置工作同步的第一控制指令,并根据第一控制指令控制射频信号收发单元向信号放大装置发送第一射频信号,同时将生成的第一控制指令发送至第一控制信号单元;当信号收发装置处于接收状态时,信号收发控制单元接收第一控制信号单元发送的第二控制指令,同时根据接收到的第二控制指令控制射频信号收发单元接收来自信号放大装置的第二射频信号。
第一控制信号单元连接在信号收发控制单元和传输接口之间,其通过传输接口与信号放大装置连接。当信号收发装置处于发送状态时,第一控制信号单元接收信号收发控制单元生成的第一控制指令, 将第一控制指令转换为第一传输信号,并将第一传输信号发送至信号放大装置。当信号收发装置处于接收状态时,第一控制信号单元接收来自信号放大装置的第二传输信号,将第二传输信号转换为第二控制指令,并将第二控制指令发送至信号收发控制单元。
基带信号是指基带单元对用户数据进行调制而得到的信号,根据本公开的实施例的信号收发装置也可以包括基带单元,基带单元用于将第一用户数据调制为第一基带信号,以及在接收到射频信号收发单元发送的第二基带信号后,也可以将第二基带信号解调为第二用户数据。用户数据可以是4G数据或5G数据,基带单元使用OFDM将其调制为基带信号,对应的,基带也使用OFDM将基带信号解调为4G数据或5G数据。
信号收发控制单元不仅可以通过第一信号控制单元向信号放大装置发送第一控制指令,也可以通过第一信号控制单元发送其他信息,如用户心跳、室内温度等通过测量获取的信息、用户资产等通过查询获取的信息、以及警报信息、系统软件最新版本等与系统运行所需要的信息。
射频信号收发单元和第一控制信号单元连接的信号放大装置为同一个信号放大装置,信号放大装置是指可以实现将射频信号放大并发送至天线的装置,其可以是根据本公开的实施例的信号放大装置。射频信号收发单元通过射频接口与信号放大装置的功率放大器和低噪声放大器连接,第一控制信号单元通过传输接口与信号放大装置的第二控制信号单元连接。
射频信号收发单元通过射频接口与信号放大装置连接,射频接口通过线缆与信号放大装置连接,即射频信号收发单元通过线缆与信号放大装置连接。同样的,第一控制信号单元也是通过线缆与信号放大装置连接。也就是说,根据本公开的实施例的信号收发装置和信号放大装置是通过线缆连接的两个独立设备。
由于信号收发装置和信号放大装置通过线缆连接,射频信号的传输可能存在一定的传输时延,为了保证信号收发装置和信号放大装置的收发同步,信号收发控制单元必须和信号放大装置的信号放大控 制单元进行“协商”,即通过第一控制信号单元发送第一控制指令或接收第二控制指令。
根据本公开的实施例的信号收发装置通过线缆连接信号放大装置,从而实现将信号放大的器件(如功率放大器和低噪声放大器)从信号收发装置中去除。一方面,功率放大器等大功率器件被去除,信号收发装置的热耗被大大减少,降低了信号收发装置所在空间的环境温度,使得信号收发装置可以适应环境温度较高的应用场景。另一方面,实现信号放大的器件(如功率放大器和低噪声放大器)从信号收发装置中去除,信号收发装置的体积也相应减小,同时由于信号收发装置的热耗的减少,其所需要的热容量结构体积也变小,相应的,信号收发装置的体积也变小,信号收发装置体积的减小,使其可以适应于体积要求严格(如体积受限)的应用场景。
由于与信号放大装置连接的射频信号收发单元和第一控制信号单元都是通过线缆与信号放大装置连接,因此信号放大装置可以放置在距离信号收发装置较远距离的空间,例如,信号放大装置可以放置在天线侧。
信号放大装置被放置在天线侧,信号放大装置到天线的馈线损耗被大大降低,因此信号放大装置可以使用较小的放大倍数放大信号,信号放大装置的热耗被大幅度降。同时,由于信号放大装置的体积相比天线侧的装置的体积要小很多,其被放置在天线侧后,天线侧需增加的空间相比于天线侧原本占用的空间基本可以忽略。
根据本公开的实施例,射频接口和传输接口是一体结构。
根据本公开的实施例,射频接口和传输接口可以使用同一条线缆与信号放大装置连接,连接方式如图2和图3中虚线所示,此外,第一信号控制单元通过另外的线连接射频信号收发单元与信号放大装置连接的线缆。
当射频接口和传输接口使用同一条线缆与信号放大装置连接,即射频信号与传输信号使用同一条线缆发送至信号放大装置时,传输信号可以是RF(Radio Frequency,射频)信号、AM(Amplitude Modulation,调幅)信号、FM(Frequency Modulation,调频)信号、 PM(Phase Modulation,相位调制)信号、OOK(On-Off-Keying,开关键控)信号等可以与射频信号使用相同通路传输的信号。
射频接口和传输接口使用同一条线缆与信号放大装置连接,即射频信号与传输信号使用同一条线缆发送至信号放大装置,可以减少线缆的使用,节省了传输的成本。
根据本公开的实施例,射频接口和传输接口也可以使用不同线缆与信号放大装置连接,连接方式如图2和图3中的实线所示。当射频接口和传输接口使用不同线缆与信号放大装置连接,传输接口为串口、网口等与射频接口不同的物理接口,传输信号使用与射频信号传输线路不同的专用的物理线路进行传输,传输信号可以是UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)、HDLC(High Level Data Link Control,高级数据链路控制)、ETH(以太网)等协议信号。
根据本公开的实施例,射频信号收发单元用于向第一射频接口发送第一射频信号,以及接收来自第二射频接口的第二射频信号。
参照图2,当信号收发装置的工作模式为FDD(Frequency Division Duplexing,频分双工)或全双工时,由于将第一射频信号发送至信号放大装置和接收来自信号放大装置的第二射频信号时,采用不同的频率,因此射频信号收发单元需要使用两个不同的射频接口(即第一射频接口和第二射频接口)通过两条不同的线缆与信号放大装置连接,射频信号收发单元用于通过第一射频接口发送第一射频信号至信号放大装置,通过第二射频接口接收来自信号放大装置的第二射频信号。
当信号放大装置为根据本公开的实施例的信号放大装置时,射频信号收发单元通过一条线缆与信号放大装置中的功率放大器连接,通过另一条线缆与信号放大装置中的低噪声放大器信号连接,当信号收发装置处于发送状态时,与功率放大器连接的线缆工作,以将第一射频信号传输至信号放大装置;当信号收发装置处于接收状态时,与低噪声放大器连接的线缆工作,以接收来自信号放大装置的第二射频信号。
参照图3,当信号收发装置的工作模式为TDD时,由于将射频信号发送至信号放大装置和接收来自信号放大装置的射频信号时,使用相同的频率,因此射频信号收发单元可以通过一个射频接口使用一条线缆与信号放大装置连接。
当信号放大装置为根据本公开的实施例的信号放大装置时,射频信号收发单元通过一条线缆与信号放大装置中的功率放大器和低噪声放大器信号连接,通过第一控制信号单元对射频信号收发单元的控制以及第二控制信号单元对功率放大器和低噪声放大器的控制,实现信号收发装置到信号放大装置的通路与信号放大装置到信号收发装置的通路之间的切换。
根据本公开的实施例,信号收发控制单元生成第一控制指令包括:信号收发控制单元确定控制射频信号收发单元向射频接口发送第一射频信号的第一时间,并根据第一时间与基准脉冲的第一时间差生成第一控制指令。
当信号收发装置处于发送状态时,信号收发控制单元生成用于与信号放大装置工作同步的第一控制指令包括:信号收发控制单元在确定射频信号收发单元向信号放大装置发送第一射频信号的第一时间后,将第一时间相对于基站脉冲的第一时间差作为第一控制指令,并通过第一控制信号单元将第一控制指令发送至信号放大装置。信号收发控制单元和信号放大装置都基于基准脉冲以及第一控制指令中的第一时间差控制第一射频信号的收发。
可以通过信号收发装置向信号放大装置发送周期性指令来获取基准脉冲,例如,可以通过第一控制信号单元向信号放大装置发送周期性指令来获取基准脉冲,从而保证信号收发装置和信号放大装置产生相同的基准脉冲。
当信号放大装置为根据本公开的实施例的信号放大装置时,对应的,当信号收发装置处于接收状态,即信号放大装置处于发送状态时,信号放大装置的信号放大控制单元在确定向信号收发装置中的射频信号收发单元发送第二射频信号的第二时间后,将第二时间相对于基准脉冲的第二时间差作为控制指令,并通过第二控制信号单元将第 二控制指令发送至信号收发装置。信号放大控制单元基于基准脉冲以及第二控制指令中的第二时间差控制第二射频信号的发送,信号收发控制单元则基于基准脉冲以及第二控制指令中的第二时间差控制第二射频信号的接收。
通过第一时间与基准脉冲的第一时间差生成第一控制指令并控制第一射频信号的收发以及通过第二时间与基准脉冲的第二时间差生成第二控制指令并控制第二射频信号的收发,可以保证信号收发装置与信号放大装置收发的同步,即当信号收发装置处于发送状态时,信号放大装置处于接收状态,可以接收信号收发装置发送的第一射频信号;当信号收发装置处于接收状态时,信号放大装置处于发送状态,信号收发装置可以接收信号放大装置发送的第二射频信号。
根据本公开的实施例,第一控制信号单元将信号收发控制单元生成的第一控制指令转换为第一传输信号并向传输接口发送第一传输信号包括:根据信号收发控制单元生成的第一控制指令确定第一施加电压值;在与传输接口连接的线缆上施加具有第一施加电压值的第一直流偏置电压,以向传输接口发送第一传输信号。
当信号收发装置处于发送状态时,第一控制信号单元将第一控制指令转换为第一传输信号,并将第一传输信号发送至信号放大装置包括:第一控制信号单元根据第一控制指令确定第一施加电压值(如第一预设值),在线缆(即第一信号控制单元与信号放大装置连接的线缆)上施加具有第一预设值的第一直流偏置电压,将第一直流偏置电压作为第一传输信号发送至信号放大装置。
第一预设值表示信号收发装置处于发送状态,信号放大装置在接收到作为第一传输信号的具有第一预设值的第一直流偏执电压时,切换至接收状态。
信号收发装置和信号放大装置都具有直流隔离功能,可以将直流信号分离出来,因此在接收到增加直流偏置电压的传输信号时,可以将直流信号分离,得到直流偏置电压的电压值,并根据电压值进行收发状态的切换。
当信号放大装置为根据本公开的实施例的信号放大装置时,对 应的,当信号收发装置处于接收状态,即信号放大装置处于发送状态时,信号放大装置的第二控制信号单元将第二控制指令转换为第二传输信号,并将第二传输信号发送至信号收发装置包括:第二控制信号单元根据第二控制指令确定第二施加电压值(如第二预设值),在线缆(即第一信号控制单元与信号放大装置连接的线缆)上施加具有第二预设值的第二直流偏置电压,将第二直流偏置电压作为第二传输信号发送至信号收发装置。
第二预设值是与第一预设值不同的值,表示信号放大装置处于发送状态,信号收发装置在接收到作为第二传输信号的具有第二预设值的第二直流偏执电压时,切换至接收状态。
也就是说,在第一传输信号或第二传输信号的传输过程中,在传输第一传输信号和第二传输信号的线缆上(即第一信号控制单元与信号放大装置连接的线缆)相应地施加第一直流偏置电压或第二直流偏置电压,具有不同电压值的直流偏置电压代表信号收发装置和信号放大装置的状态(如接收状态、发送状态、不工作状态等)。
使用直流偏置电压的不同电压值代表信号收发装置和信号放大装置的不同状态,当信号收发装置或信号放大装置检测到直流偏置电压值后,根据直流偏置电压值,将自身的状态转换至对应的状态,完成信号收发装置与信号放大装置收发的同步。
根据本公开的实施例,第一控制信号单元将信号收发控制单元生成的第一控制指令转换为第一传输信号并向信号放大装置发送第一传输信号包括:第一控制信号单元将信号收发控制单元生成的第一控制指令转换为第一传输信号,第一控制信号单元向传输接口发送第一传输信号相对于信号收发控制单元根据第一控制指令控制射频信号收发单元发送第一射频信号至少提前预定的传输时延。
第一控制信号单元将信号收发控制单元生成的第一控制指令转换为第一传输信号后,需要根据预定(如预先测量)的信号收发装置与信号放大装置之间的传输时延(第一控制信号单元与信号放大装置中的第二控制信号单元之间的传输时延),相对于信号收发控制单元根据第一控制指令控制射频信号收发单元发送第一射频信号,至少提 前该传输时延,将第一传输信号传输至信号放大装置的第二控制信号单元。
提前发送第一传输信号,可以避免由于传输时延导致当信号收发装置产生的第一传输信号传输至信号放大装置时,信号放大装置已经无法及时根据第一控制指令接收第一射频信号,最终导致信号放大装置接收第一射频信号失败。
当信号放大装置为根据本公开的实施例的信号放大装置时,对应的,第二控制信号单元将信号放大控制单元生成的第二控制指令转换为第二传输信号后,需要根据预先测量的信号收发装置与信号收发装置之间的传输时延(具体是第一控制信号单元与第二控制信号单元之间的传输时延),相对于信号放大控制单元根据第二控制指令控制低噪声放大器发送第二射频信号,至少提前该传输时延,将第二传输信号传输至信号收发装置的第一控制信号单元。
与信号收发装置提前发送第一传输信号类似,信号放大装置提前传输时延发送第二传输信号,可以避免由于传输时延,导致当信号放大装置产生的第二传输信号传输至信号收发装置时,信号收发装置已经无法及时根据第二控制指令接收第二射频信号,最终导致信号收发装置接收第二射频信号失败。
参照图2和图3,根据本公开的实施例的信号放大装置包括:功率放大器、低噪声放大器、信号放大控制单元、第二控制信号单元。
功率放大器连接在天线和射频接口之间,用于在信号放大控制单元的控制下接收来自射频接口的第一射频信号,并将第一射频信号放大后发送至天线。射频接口用于通过线缆与信号收发装置的射频接口连接。
低噪声放大器连接在天线和射频接口之间,用于接收来自天线的第二射频信号,将第二射频信号放大,并在信号放大控制单元的控制下将经过放大的第二射频信号(本文中也简称为第二射频信号)发送至射频接口。射频接口用于通过线缆与信号收发装置的射频接口连接。
信号放大控制单元连接功率放大器和低噪声放大器,用于接收 第一控制指令并根据第一控制指令控制功率放大器接收来自射频接口的第一射频信号,或生成第二控制指令并根据第二控制指令控制低噪声放大器向射频接口发送第二射频信号。
第二控制信号单元连接在信号放大控制单元和传输接口之间,用于将信号放大控制单元生成的第二控制指令转换为第二传输信号并将第二传输信号发送至传输接口,或接收来自传输接口的第一传输信号,将第一传输信号转换为第一控制指令,并将第一控制指令发送至信号放大控制单元。传输接口用于通过线缆与信号收发装置的传输接口连接。
参照图2和图3,根据本公开的实施例的信号放大装置也具有发送和接收两种状态,信号放大装置的发送状态对应于信号收发装置的接收状态,信号放大装置的接收状态对应于信号收发装置的发送状态。信号放大装置可以连接在信号收发装置(如基站、CPE)和天线之间。当信号放大装置处于发送状态时,可以对来自天线的第二射频信号进行处理并将经处理的第二射频信号(本文中也简称为第二射频信号)发送至信号发送装置。当信号放大装置处于接收状态时,可以从信号收发装置接收第一射频信号,对第一射频信号进行处理,并将经处理的第一射频信号发送至天线。
功率放大器连接在射频接口和天线之间,其通过射频接口与信号收发装置连接,当信号放大装置处于接收状态时,功率放大器通过射频接口接收来自信号收发装置的第一射频信号,在将接收的第一射频信号放大后,将经放大的第一射频信号发送至天线。
低噪声放大器也连接在射频接口与天线之间,其也通过射频接口与信号收发装置连接,当信号放大装置处于发送状态时,低噪声放大器接收来自天线的第二射频信号,在将接收到的第二射频信号放大后,将经放大的第二射频信号发送至信号收发单元。
信号放大控制单元连接功率放大器和低噪声放大器,当信号放大装置处于发送状态时,信号放大控制单元生成用于与信号收发装置工作同步的第二控制指令,并根据第二控制指令控制低噪声放大器向信号收发装置发送第二射频信号,同时将生成的第二控制指令发送至 第二控制信号单元;当信号放大装置处于接收状态时,信号放大控制单元接收第一控制信号单元发送的第一控制指令,同时根据接收到的第一控制指令控制功率放大器接收来自信号收发装置的第一射频信号。
第二控制信号单元连接在信号放大控制单元和传输接口之间,其通过传输接口与信号收发装置连接,当信号放大装置处于发送状态时,第二控制信号单元接收信号放大控制单元生成的第二控制指令,将第二控制指令转换为第二传输信号,并将第二传输信号传输至信号收发装置;当信号放大装置处于接收状态时,第二控制信号单元接收来自信号收发装置的第一传输信号,将第一传输信号转换为第一控制指令,将第一控制指令发送至信号放大控制单元。
与根据本公开的实施例的信号收发装置类似,信号放大控制单元不仅可以通过第二信号控制单元向信号收发装置发送第二控制指令,也可以通过第二信号控制单元发送其他信息,具体的如用户心跳、室内温度等通过测量获取的信息、用户资产等通过查询获取的信息、以及警报信息、系统软件最新版本等与系统运行所需要的信息。
功率放大器、低噪声放大器与天线之间还可以包括双工器(或环形器)、滤波器,双工器连接功率放大器和低噪声放大器,滤波器连接在双工器和天线之间,双工器用于将信号放大装置到天线的发送通路和天线到信号放大装置的接收通路合并为一条通路,也就是说,将功率放大器放大后的第一射频信号发送至天线和将来自天线的第二射频信号发送至低噪声放大器合并至一条线路上实现。滤波器用于对这条合并的通路上传输的信号(包括将功率放大器放大后的第一射频信号以及来自天线的第二射频信号)进行滤波。
功率放大器、低噪声放大器、第二控制信号单元连接的信号收发装置为同一个信号收发装置,信号收发装置是指可以实现将第二射频信号转换为第二基带信号,并将第二基带信号发送给基带单元,供基带单元转换为第二用户数据的装置,可以是根据本公开的实施例的信号收发装置。功率放大器和低噪声放大器通过射频接口与信号收发装置的射频信号收发单元连接,第二控制信号单元通过传输接口与信 号收发装置的第一控制信号单元连接。
功率放大器、低噪声放大器通过射频接口与信号收发装置连接,射频接口通过线缆与信号收发装置连接,也就是说,功率放大器、低噪声放大器通过线缆与信号放大装置连接。同样的,第二控制信号单元也是通过线缆与信号收发装置连接。
根据本公开的实施例的信号放大装置通过线缆连接信号收发装置,将实现信号放大的器件(如功率放大器和低噪声放大器)从信号收发装置中去除。一方面,功率放大器等大功率器件被去除,信号收发装置的热耗被大大减少,降低了信号收发装置所在空间的环境温度,使得信号收发装置可以适应环境温度较高的应用场景。另一方面,实现信号放大的器件(如功率放大器和低噪声放大器)从信号收发装置中去除,信号收发装置的体积也相应减小,同时由于信号收发装置的热耗的减少,其所需要的热容量结构体积也变小,相应的,信号收发装置的体积也变小,信号收发装置体积的减小,使其可以适应于体积要求严格(如体积受限)的应用场景。
由于与信号放大装置连接的射频信号收发单元和第一控制信号单元都是通过线缆与信号放大装置连接,因此信号放大装置可以放置在距离信号收发装置较远距离的空间,例如,信号放大装置可以放置在天线侧。
信号放大装置被放置在天线侧,信号放大装置到天线的馈线损耗被大大降低,因此信号放大装置可以使用较小的放大倍数放大信号,信号放大装置的热耗被大幅度降。同时,由于信号放大装置的体积相比天线侧的装置的体积要小很多,其被放置在天线侧后,天线侧需增加的空间相比于天线侧原本占用的空间基本可以忽略。
根据本公开的实施例,功率放大器和低噪声放大器连接的射频接口为同一个射频接口。
根据本公开的实施例,功率放大器和低噪声放大器与射频接口之间设有切换单元。
在信号放大控制单元接收到第一控制指令的情况下,信号放大控制单元根据第一指令控制功率放大器接收来自射频接口的第一射 频信号包括:控制切换单元,使射频接口与功率放大器导通;
在低噪声放大器接收到来自天线的第二射频信号的情况下,信号放大控制单元根据第二控制指令控制低噪声放大器向射频接口发送第二射频信号包括:控制切换单元,使射频接口与低噪声放大器导通。
参照图2,当信号收发装置和信号放大装置的工作模式为FDD或全双工时,由于将第二射频信号发送至信号收发装置和接收来自信号收发装置的第一射频信号时,采用不同的频率,因此功率放大器、低噪声放大器需要使用不同的线缆与信号收发装置连接,其中一条线缆用于将第二射频信号发送至信号收发装置,另一条线缆用于接收来自信号收发装置的第一射频信号。
当信号收发装置为根据本公开的实施例的信号收发装置时,射频信号收发单元通过一条线缆与功率放大器连接,通过另一条线缆与低噪声放大器信号连接,当信号放大装置处于发送状态时,低噪声放大器与射频信号收发单元连接的线缆工作,将第二射频信号传输至信号收发装置;当信号放大装置处于接收状态时,功率放大器与射频信号收发单元连接的线缆工作,接收来自信号收发装置的第一射频信号。
参照图3,当信号收发装置的工作模式为TDD时,由于将第二射频信号发送至信号收发装置和接收来自信号收发装置的第一射频信号时,使用相同的频率,因此功率放大器、低噪声放大器可以使用一条的线缆与信号收发装置连接。
当信号收发装置为根据本公开的实施例的信号收发装置时,功率放大器和低噪声放大器通过同一个射频接口与射频信号收发单元连接。可以通过在功率放大器和低噪声放大器与该射频接口之间设置切换单元(如开关),对功率放大器和低噪声放大器进行上下电控制来实现信号收发装置到信号放大装置的通路(即射频信号收发单元到功率放大器的通路)与信号放大装置到信号收发装置的通路(即低噪声放大器到射频信号收发单元的通路)之间的切换。
即当信号放大装置处于发送状态时,信号放大控制单元在控制开关处于关断状态(即射频接口与功率放大器和低噪声放大器的通路 都未连通)的同时控制功率放大器下电,并在功率放大器下电完成后,控制开关处于导通状态,在控制开关处于导通状态(即射频接口与功率放大器和低噪声放大器的通路都连通)下,控制低噪声放大器上电并向信号收发装置发送第二射频信号。此时,由于功率放大器已经下电完成,而低噪声放大器在上电,因此功率放大器并不能工作,就相当于射频接口与功率放大器之间并未导通,而低噪声放大器正常工作,相当于其与射频接口之间是导通的。
当信号放大装置处于接收状态时,信号放大控制单元在控制开关处于关断状态的同时控制低噪声放大器下电,并在低噪声放大器下电完成后,控制开关处于导通状态,在控制开关处于导通状态下,控制功率放大器上电并接收来自信号收发装置的第一射频信号。此时,由于低噪声放大器已经下电完成,而功率放大器在上电,因此低噪声放大器并不能工作,就相当于射频接口与低噪声放大器之间并未导通,而功率放大器正常工作,相当于其与射频接口之间是导通的。
通过在功率放大器和低噪声放大器与射频接口之间设置有开关实现信号放大装置接收状态和发送状态的切换,电路设计简单,易于实现。
根据本公开的实施例,信号放大控制单元生成第二控制指令包括:确定控制低噪声放大器向射频接口发送第二射频信号的第二时间,并根据第二时间与基准脉冲的第二时间差生成第二控制指令。
当信号放大装置处于发送状态时,信号放大装置的信号放大控制单元在确定控制低噪声放大器向射频信号收发单元发送第二射频信号的第二时间后,将第二时间相对于基站脉冲的第二时间差作为第二控制指令,并通过第二控制信号单元将第二控制指令发送至信号收发装置,信号放大控制单元基于基准脉冲以及第二控制指令中的第二时间差控制低噪声放大器发送第二射频信号,信号收发控制单元则基于基准脉冲以及第二控制指令中的第二时间差控制第二射频信号的接收。
当信号放大装置处于接收状态,即信号收发装置处于发送状态时,信号收发装置在确定射频信号收发单元向信号放大装置发送第一 射频信号的第一时间后,将第一时间相对于基站脉冲的第一时间差作为第一控制指令,并通过第一控制信号单元将第一控制指令发送至信号放大装置,信号收发控制单元基于基准脉冲以及第一控制指令中的第一时间差控制第一射频信号的发送,而信号放大装置基于基准脉冲以及第一控制指令中的第一时间差控制第一射频信号的接收。
通过第一时间与基准脉冲的第一时间差生成第一控制指令并控制第一射频信号的收发以及通过第二时间与基准脉冲的第二时间差生成第二控制指令并控制第二射频信号的收发,可以保证信号收发装置与信号放大装置收发的同步,即当信号收发装置处于发送状态时,信号放大装置处于接收状态,信号放大装置可以接收信号收发装置发送的第一射频信号;当信号收发装置处于接收状态时,信号放大装置处于发送状态,信号收发装置可以接收信号放大装置发送的第二射频信号。
根据本公开的实施例,第二控制信号单元将信号放大控制单元生成的第二控制指令转换为第二传输信号并将第二传输信号发送至传输接口包括:根据信号放大控制单元生成的第二控制指令确定第二施加电压值;在与传输接口连接的线缆上施加具有第二施加电压值的第二直流偏置电压,以向传输接口发送第二传输信号。
当信号放大装置处于发送状态时,第二控制信号单元将第二控制指令转换为第二传输信号,并将第二传输信号发送至信号收发装置包括:第二控制信号单元根据第二控制指令确定第二施加电压值(如第二预设值),在线缆(即第一信号控制单元与信号放大装置连接的线缆)上增加具有第二预设值的第二直流偏置电压,将第二直流偏置电压作为第二传输信号发送至信号收发装置。
第二预设值表示信号放大装置处于发送状态,信号收发装置在接收到作为第二传输信号的具有第二预设值的第二直流偏执电压时,切换至接收状态。
当信号放大装置处于接收状态,即,信号接收装置处于发送状态时,信号收发装置的第一控制信号单元将第一控制指令转换为第一传输信号并将第一传输信号发送至信号放大装置包括:第一控制信号 单元根据第一控制指令确定第一施加电压值(如第一预设值),在线缆(即第一信号控制单元与信号放大装置连接的线缆)上施加具有第一预设值的第一直流偏置电压,将第一直流偏置电压作为第一传输信号发送至信号放大装置。
第一预设值表示信号收发装置处于发送状态,信号放大装置在接收到作为第一传输信号的具有第一预设值的第一直流偏执电压时,切换至接收状态。
也就是说,在第一传输信号或第二传输信号的传输过程中,在传输第一传输信号和第二传输信号的线缆上(即第一信号控制单元与信号放大装置连接的线缆)相应地施加第一直流偏置电压或第二直流偏置电压,具有不同电压值的直流偏置电压代表信号收发装置和信号放大装置的状态(如接收状态、发送状态、不工作状态等)。
使用直流偏置电压的不同电压值代表信号收发装置和信号放大装置的不同状态,当信号收发装置或信号放大装置检测到直流偏置电压值后,根据直流偏置电压值,将自身的状态转换至对应的状态,完成信号收发装置与信号放大装置收发的同步。
根据本公开的实施例,第二控制信号单元将信号放大控制单元生成的第二控制指令转换为第二传输信号并将第二传输信号发送至传输接口包括:第二控制信号单元将信号放大控制单元生成的第二控制指令转换为第二传输信号,第二控制信号单元向传输接口发送第二传输信号相对于信号放大控制单元根据第二控制指令控制低噪声放大器发送第二射频信号至少提前预定的传输时延。
第二控制信号单元将信号放大控制单元生成的第二控制指令转换为第二传输信号后,需要根据预先测量的信号收发装置与信号收发装置之间的传输时延(第一控制信号单元与第二控制信号单元之间的传输时延),相对于信号放大控制单元根据第二控制指令控制低噪声放大器发送第二射频信号,至少提前该传输时延,将第二传输信号传输至信号收发装置的第一控制信号单元。
与信号收发装置提前发送第一传输信号类似,信号放大装置提前传输时延发送第二传输信号,可以避免由于传输时延导致当信号放 大装置产生的第二传输信号传输至信号收发装置时,信号收发装置已经无法及时根据第二控制指令接收第二射频信号,最终导致信号收发装置接收第二射频信号失败。
根据本公开的实施例的信号收发装置和信号放大装置,可以用于对设备体积、散热、功耗、供电有特殊限制的场景,比如飞机、高铁等。
信号收发装置可以设计为信号处理机的一部分,用于进行信号处理,为用户提供服务,安装在飞机、高铁等的设备安装区;信号放大装置与天线(如卫星天线、雷达天线、对地通讯天线等)可以设计为一体设备,一起安装在飞机、高铁等体表附近。
图4为根据本公开的实施例的安装于飞机上的信号收发装置和信号放大装置的示意图。
参照图4,以信号收发装置和信号放大装置组成飞机机载设备(如卫星接收机、机载对地通讯接收机、雷达接收机等)为例具体说明。
信号收发装置被设置为信号处理机,由于其发热少、体积小,因此可以安装在飞机的电子舱、货舱、行李舱等区域。信号放大装置与天线设计为一体,安装在对设备体积、功耗等限制少的飞机机体表面。
信号处理机与天线之间使用线缆(如射频线缆)连接,即信号收发装置和信号放大装置使用线缆连接。信号处理机与天线之间还设置有滤波器,可以隔离两者之间的相互干扰,同时,信号处理机和天线都带直流隔离功能,射频信号收发单元设计为射频芯片,用于向功率放大器发送第一射频信号,即将第一射频信号耦合在射频线缆上,使其可以通过射频线缆传输,以及接收低噪声放大器发送的第二射频信号。
当信号收发装置需要发送第一射频信号,信号放大装置需要接收第一射频信号时,信号收发控制单元在确定射频信号收发单元向功率放大器发送第一射频信号的第一时间后,将第一时间相对于基站脉冲的第一时间差作为第一控制指令,通过第一控制信号单元将第一控 制指令发送至信号放大装置的第二控制信号单元。第一控制信号单元根据第一控制指令控制射频信号收发单元,在与基准脉冲具有第一时间差的时间点,向信号放大装置的功率放大器发送第一射频信号;第二控制信号单元在接收到第一控制信号单元的第一传输信号后,将其转换为第一控制指令,并根据第一控制指令中的第一时间差,在与基准脉冲具有第一时间差的时间点,控制功率放大器处于工作状态,以接收来自射频信号收发单元发送的第一射频信号。
当信号收发装置需要接收第二射频信号,信号放大装置需要发送第二射频信号时,信号放大控制单元在确定低噪声放大器向射频信号收发单元发送第二射频信号的第二时间后,将第二时间相对于基站脉冲的第二时间差作为第二控制指令,通过第二控制信号单元将第二控制指令发送至第一控制信号单元。第二控制信号单元根据第二控制指令控制低噪声放大器在与基准脉冲具有第二时间差的时间点处于工作状态,以向射频信号收发单元发送第二射频信号。第一控制信号单元在接收到第二控制信号单元的第二传输信号后,将其转换为第二控制指令,并根据第二控制指令中的第二时间差,在与基准脉冲具有第二时间差的时间点,控制射频信号收发单元接收来自低噪声放大器发送的第二射频信号。
若射频信号收发单元通过一条线缆与功率放大器连接,通过另一条线缆与低噪声放大器连接(即处于FDD或全双工工作模式),当信号收发装置需要发送第一射频信号,信号放大装置需要接收第一射频信号时,功率放大器与射频信号收发单元连接的线缆工作;当信号收发装置需要接收第二射频信号,信号放大装置需要发送第二射频信号时,低噪声放大器与射频信号收发单元连接的线缆工作。
若射频信号收发单元通过一条线缆与功率放大器和低噪声放大器二者连接(即处于TDD工作模式),在功率放大器和低噪声放大器与该射频接口之间设置控制开关,当信号收发装置需要发送第一射频信号,信号放大装置需要接收第一射频信号时,信号放大控制单元在控制开关处于关断状态的同时控制低噪声放大器下电,并在低噪声放大器下电完成后,控制开关处于导通状态,在控制开关处于导通状态 下,控制功率放大器上电。当信号收发装置需要接收第二射频信号,信号放大装置需要发送第二射频信号时,信号放大控制单元在控制开关处于关断状态的同时控制功率放大器下电,并在功率放大器下电完成后,控制开关处于导通状态,在控制开关处于导通状态下,控制低噪声放大器上电。
第一传输信号和第二传输信号应提前传输时延(第一控制信号单元与第二控制信号单元之间的传输时延)发送。
若第一控制信号单元和射频信号收发单元使用同一条线缆与信号放大装置连接时,第一控制信号单元和第二信号控制单元可以设计为OOK调制芯片,用于将第一控制指令或第二控制指令调制为OOK信号,或将OOK信号解调为第二控制指令或第二控制指令。
若第一控制信号单元和射频信号收发单元使用不同线缆与信号放大装置连接时,第一控制信号单元和第二信号控制单元可以设计为具有与射频信号收发单元的射频芯片不同的工作频率的射频芯片,用于将第一控制指令或第二控制指令调制为与射频信号收发单元发送和接收的第一射频信号或第二射频信号频率不同的射频信号,或将与射频信号收发单元发送和接收的第一射频信号或第二射频信号频率不同的射频信号解调为第一控制指令或第二控制指令。
第一控制指令或第二控制也可以通过在传输第一传输信号或第二传输信号的线缆上施加第一直流偏置电压或第二直流偏置电压进行传输。
当信号收发装置需要发送第一射频信号,信号放大装置需要接收第一射频信号时,第一控制信号单元将第一控制指令调制为易于传输的第一传输信号,在向第二控制信号单元发送第一传输信号的同时,在传输第一传输信号的线缆上施加具有第一预设值的第一直流偏置电压,以标识信号收发装置处于发送状态。第二控制信号单元在接收到作为第一传输信号的具有第一预设值的第一直流偏置电压后,将第一直流偏置电压转换为第一控制指令,并将第一控制指令发送至信号放大控制单元。
当信号放大装置需要发送第二射频信号,信号收发装置需要接 收第二射频信号时,第二控制信号单元将第二控制指令调制为易于传输的第二传输信号,在向第一控制信号单元发送第二传输信号的同时,在传输第二传输信号的线缆上施加具有第二预设值的第二直流偏置电压,以标识信号收发装置处于接收状态。第一控制信号单元在接收到作为第二传输信号的具有第二预设值的第二直流偏置电压后,将第二直流偏置电压转换为第二控制指令,并将第二控制指令发送至信号收发控制单元。
连接信号收发装置和信号放大装置之间线缆负载的第一直流偏置电压或第二直流偏置电压还可以用于给信号放大装置或天线供电。
信号处理机还可以通过传输第一传输信号和第二传输信号的通路,与天线进行各种数据传输,如对天线进行版本升级、告警查询、心跳检测、资产查询、故障检测等操作,从而保证信号处理机和天线实现一个设备的整体功能。
图5为根据本公开的实施例的通信系统的运行方法的流程图。图6为根据本公开的另一实施例的通信系统的运行方法的流程图。
根据本公开的实施例的通信系统包括如上所述的信号收发装置和信号放大装置。信号收发装置的射频接口通过线缆连接信号放大装置的射频接口,信号收发装置的传输接口通过线缆连接信号放大装置的传输接口。该通信系统的运行方法包括相对于信号收发装置的发送过程和接收过程中至少一者。如图5所示,发送过程包括步骤S101至S104。
在步骤S101,信号收发装置的信号收发控制单元生成第一控制指令并根据第一控制指令控制信号收发装置的射频信号收发单元向信号放大装置的功率放大器发送第一射频信号。
在步骤S102,信号收发装置的第一控制信号单元将信号收发控制单元生成的第一控制指令转换为第一传输信号并将第一传输信号发送至信号放大装置的第二控制信号单元。
在步骤S103,第二控制信号单元接收来自第一控制信号单元的第一传输信号,将第一传输信号转换为第一控制指令,并将第一控制指令发送至信号放大装置的信号放大控制单元。
在步骤S104,信号放大控制单元接收第一控制指令并根据第一控制指令控制信号放大装置的功率放大器接收来自射频信号收发单元的第一射频信号。
如图6所示,接收过程包括步骤S201至S204。
在步骤S201,信号放大控制单元生成第二控制指令并根据第二控制指令控制信号放大装置的低噪声放大器发送第二射频信号。
在步骤S202,第二控制信号单元将信号放大控制单元生成的第二控制指令转换为第二传输信号并将第二传输信号发送至第一控制信号单元。
在步骤S203,第一控制信号单元接收来自第二控制信号单元的第二传输信号,将第二传输信号转换为第二控制指令,并将第二控制指令发送至信号收发控制单元。
在步骤S204,信号收发控制单元接收第二控制指令并根据第二控制指令控制射频信号收发单元接收来自低噪声放大器的第二射频信号。
本公开实施例的种通信系统的运行方法中,信号放大装置通过线缆连接信号收发装置,将实现信号放大的器件(如功率放大器和低噪声放大器)从信号收发装置中去除。一方面,功率放大器等大功率器件被去除,信号收发装置的热耗被大大减少,降低了信号收发装置所在空间的环境温度,使得信号收发装置可以适应环境温度较高的应用场景。另一方面,实现信号放大的器件(如功率放大器和低噪声放大器)从信号收发装置中去除,信号收发装置的体积也相应减小,同时由于信号收发装置的热耗的减少,其所需要的热容量结构体积也变小,相应的,信号收发装置的体积也变小,信号收发装置体积的减小,使其可以适应于体积要求严格(如体积受限)的应用场景。
本公开已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其他实施例相结合描述的特征、特性和/或元件组合使 用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (14)

  1. 一种信号收发装置,包括:
    射频信号收发单元、信号收发控制单元和第一控制信号单元,
    其中,所述射频信号收发单元连接在基带接口与至少一个射频接口之间,用于根据所述基带接口的基带信号产生第一射频信号并向所述至少一个射频接口发送所述第一射频信号,以及接收来自所述至少一个射频接口的第二射频信号;所述至少一个射频接口用于通过线缆与信号放大装置的射频接口连接,
    所述信号收发控制单元连接所述射频信号收发单元,用于生成第一控制指令并根据所述第一控制指令控制所述射频信号收发单元向所述至少一个射频接口发送所述第一射频信号,以及接收第二控制指令并根据所述第二控制指令控制所述射频信号收发单元接收来自所述至少一个射频接口的第二射频信号,并且
    所述第一控制信号单元连接在所述信号收发控制单元与所述信号收发装置的传输接口之间,用于将所述信号收发控制单元生成的第一控制指令转换为第一传输信号并向所述信号收发装置的传输接口发送所述第一传输信号,以及接收来自所述信号收发装置的传输接口的第二传输信号,将所述第二传输信号转换为所述第二控制指令,并将所述第二控制指令发送至所述信号收发控制单元,所述信号收发装置的传输接口用于通过线缆与所述信号放大装置的传输接口连接。
  2. 根据权利要求1所述的信号收发装置,其中,所述信号收发控制单元生成所述第一控制指令包括:
    确定控制所述射频信号收发单元向所述至少一个射频接口发送所述第一射频信号的第一时间,并根据所述第一时间与基准脉冲的第一时间差生成所述第一控制指令。
  3. 根据权利要求1所述的信号收发装置,其中,所述第一控制信号单元将所述信号收发控制单元生成的第一控制指令转换为所述 第一传输信号并向所述信号收发装置的传输接口发送所述第一传输信号包括:
    根据所述信号收发控制单元生成的第一控制指令确定第一施加电压值;
    在与所述信号收发装置的传输接口连接的线缆上施加具有所述第一施加电压值的第一直流偏置电压,以将所述第一直流偏置电压作为所述第一传输信号发送至所述信号收发装置的传输接口。
  4. 根据权利要求1所述的信号收发装置,其中,所述第一控制信号单元将所述信号收发控制单元生成的第一控制指令转换为所述第一传输信号并向所述信号收发装置的传输接口发送所述第一传输信号包括:
    将所述信号收发控制单元生成的第一控制指令转换为所述第一传输信号,所述第一控制信号单元向所述信号收发装置的传输接口发送所述第一传输信号相对于所述信号收发控制单元根据所述第一控制指令控制所述射频信号收发单元发送所述第一射频信号至少提前预定的传输时延。
  5. 根据权利要求1所述的信号收发装置,其中,所述至少一个射频接口和所述信号收发装置的传输接口是一体结构。
  6. 根据权利要求1所述的信号收发装置,其中,所述至少一个射频接口包括第一射频接口和第二射频接收,所述射频信号收发单元用于向所述第一射频接口发送所述第一射频信号,以及接收来自所述第二射频接口的第二射频信号。
  7. 一种信号放大装置,包括:
    功率放大器、低噪声放大器、信号放大控制单元和第二控制信号单元,
    其中,所述功率放大器连接在天线和所述信号放大装置的射频 接口之间,用于接收来自所述信号放大装置的射频接口的第一射频信号,并将所述第一射频信号放大后发送至所述天线,所述信号放大装置的射频接口用于通过线缆与信号收发装置的射频接口连接,
    所述低噪声放大器连接在所述天线和所述信号放大装置的射频接口之间,用于接收来自天线的第二射频信号,并将所述第二射频信号放大后发送至所述信号放大装置的射频接口,
    所述信号放大控制单元连接所述功率放大器和所述低噪声放大器,用于接收第一控制指令并根据所述第一控制指令控制所述功率放大器接收来自所述信号放大装置的射频接口的第一射频信号,或生成第二控制指令并根据所述第二控制指令控制所述低噪声放大器向所述信号放大装置的射频接口发送第二射频信号,并且
    所述第二控制信号单元连接在所述信号放大控制单元和所述信号放大装置的传输接口之间,用于将所述信号放大控制单元生成的第二控制指令转换为第二传输信号并向所述信号放大装置的传输接口发送所述第二传输信号,或接收来自所述信号放大装置的传输接口的第一传输信号,将所述第一传输信号转换为所述第一控制指令,并将所述第一控制指令发送至所述信号放大控制单元,所述信号放大装置的传输接口用于通过线缆与所述信号收发装置的传输接口连接。
  8. 根据权利要求7所述的信号放大装置,其中,所述功率放大器和所述低噪声放大器连接的射频接口为同一个射频接口。
  9. 根据权利要求8所述的信号放大装置,其中,所述功率放大器和所述低噪声放大器与射频接口之间设有切换单元;
    在所述信号放大控制单元接收到所述第一控制指令的情况下,所述信号放大控制单元根据所述第一控制指令控制所述功率放大器接收来自所述信号放大装置的射频接口的第一射频信号包括:控制所述切换单元,使所述信号放大装置的射频接口与所述功率放大器连通;
    在所述低噪声放大器接收到来自所述天线的第二射频信号的情况下,所述信号放大控制单元根据所述第二控制指令控制所述低噪声 放大器向所述信号放大装置的射频接口发送所述第二射频信号包括:控制所述切换单元,使所述信号放大装置的射频接口与所述低噪声放大器连通。
  10. 根据权利要求7所述的信号放大装置,其中,所述信号放大控制单元生成所述第二控制指令包括:
    确定控制所述低噪声放大器向所述信号放大装置的射频接口发送所述第二射频信号的第二时间,并根据所述第二时间与基准脉冲的第二时间差生成所述第二控制指令。
  11. 根据权利要求7所述的信号放大装置,其中,所述第二控制信号单元将所述信号放大控制单元生成的第二控制指令转换为所述第二传输信号并向所述信号放大装置的传输接口发送所述第二传输信号包括:
    根据所述信号放大控制单元生成的第二控制指令确定第二施加电压值;
    在与所述信号放大装置的传输接口连接的线缆上施加具有所述第二施加电压值的第二直流偏置电压,以将所述第二直流偏置电压作为所述第二传输信号发送至所述信号放大装置的传输接口。
  12. 根据权利要求7所述的信号放大装置,其中,所述第二控制信号单元将所述信号放大控制单元生成的第二控制指令转换为所述第二传输信号并向所述信号放大装置的传输接口发送所述第二传输信号包括:
    将所述信号放大控制单元生成的第二控制指令转换为所述第二传输信号,所述第二控制信号单元向所述信号放大装置的传输接口发送所述第二传输信号相对于所述信号放大控制单元根据所述第二控制指令控制所述低噪声放大器发送所述第二射频信号至少提前预定的传输时延。
  13. 一种通信系统的运行方法,所述通信系统包括如权利要求1至6任意一项所述的信号收发装置和如权利要求7至12任意一项所述的信号放大装置,其中,所述信号收发装置的射频接口通过线缆连接所述信号放大装置的射频接口,所述信号收发装置的传输接口通过线缆连接所述信号放大装置的传输接口,所述运行方法包括相对于所述信号收发装置的发送过程和接收过程中的至少一者,并且
    其中,所述发送过程包括:
    所述信号收发控制单元生成所述第一控制指令并根据所述第一控制指令控制所述射频信号收发单元向所述功率放大器发送所述第一射频信号;
    所述第一控制信号单元将所述信号收发控制单元生成的第一控制指令转换为所述第一传输信号并将所述第一传输信号发送至第二控制信号单元;
    所述第二控制信号单元接收来自所述第一控制信号单元的第一传输信号,将所述第一传输信号转换为所述第一控制指令,并将所述第一控制指令发送至所述信号放大控制单元;
    所述信号放大控制单元接收所述第一控制指令并根据所述第一控制指令控制所述功率放大器接收来自所述射频信号收发单元的第一射频信号。
  14. 根据权利要求13所述的运行方法,
    其中,所述接收过程包括:
    所述信号放大控制单元生成所述第二控制指令并根据所述第二控制指令控制所述低噪声放大器发送所述第二射频信号;
    所述第二控制信号单元将所述信号放大控制单元生成的第二控制指令转换为所述第二传输信号并将所述第二传输信号发送至所述第一控制信号单元;
    所述第一控制信号单元接收来自所述第二控制信号单元的第二传输信号,将所述第二传输信号转换为所述第二控制指令,并将所述第二控制指令发送至所述信号收发控制单元;
    所述信号收发控制单元接收所述第二控制指令并根据所述第二控制指令控制所述射频信号收发单元接收来自所述低噪声放大器的第二射频信号。
PCT/CN2021/127871 2020-11-04 2021-11-01 信号收发装置、信号放大装置、通信系统的运行方法 WO2022095817A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21888514.3A EP4220975A1 (en) 2020-11-04 2021-11-01 Signal transceiving device, signal amplification device, and communication system operation method
US18/034,639 US20230396284A1 (en) 2020-11-04 2021-11-01 Signal transceiving device, signal amplification device, and operation method of communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011215744.7 2020-11-04
CN202011215744.7A CN113572493B (zh) 2020-11-04 2020-11-04 信号收发装置、信号放大装置、通信系统的运行方法

Publications (1)

Publication Number Publication Date
WO2022095817A1 true WO2022095817A1 (zh) 2022-05-12

Family

ID=78158757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127871 WO2022095817A1 (zh) 2020-11-04 2021-11-01 信号收发装置、信号放大装置、通信系统的运行方法

Country Status (4)

Country Link
US (1) US20230396284A1 (zh)
EP (1) EP4220975A1 (zh)
CN (1) CN113572493B (zh)
WO (1) WO2022095817A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113572493B (zh) * 2020-11-04 2022-09-23 中兴通讯股份有限公司 信号收发装置、信号放大装置、通信系统的运行方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194351A (ja) * 1999-02-05 2004-07-08 Interdigital Technol Corp ケーブル損失自動補償手段を備える基地局
CN101018086A (zh) * 2006-02-10 2007-08-15 大唐移动通信设备有限公司 时分同步码分多址系统中中继放大器的同步收发控制方法与系统
CN101414844A (zh) * 2007-10-19 2009-04-22 信和控股有限公司 双向信号放大装置、接收/发射装置和信号传输方法
US20110026442A1 (en) * 2009-07-31 2011-02-03 Samsung Electronics Co. Ltd. Apparatus and method for protecting receive circuits in tdd wireless communication system
CN201742570U (zh) * 2010-05-17 2011-02-09 福建先创通信有限公司 用于时分双工移动通信系统的双向室外射频单元
CN107819483A (zh) * 2017-11-02 2018-03-20 京信通信系统(中国)有限公司 信号传输装置及其测试设备、直放站通信设备
WO2020118585A1 (zh) * 2018-12-12 2020-06-18 华为技术有限公司 一种信号放大电路及终端设备
CN113572493A (zh) * 2020-11-04 2021-10-29 中兴通讯股份有限公司 信号收发装置、信号放大装置、通信系统的运行方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI99180C (fi) * 1993-04-26 1997-10-10 Nokia Mobile Phones Ltd Menetelmä radiopuhelimen käyttämiseksi ulkoisen vahvistinlaitteen kanssa ja menetelmässä käytettävä radiopuhelin ja vahvistinlaite
CN2927509Y (zh) * 2006-06-15 2007-07-25 中国电子科技集团公司第五十四研究所 导航用单电缆多信号传输装置
CN102457458B (zh) * 2010-10-14 2015-08-12 大唐移动通信设备有限公司 一种基站数字预失真的实现方法和装置
DE102018213029A1 (de) * 2018-08-03 2020-02-06 Audi Ag Sende-/Empfangssystem für Funksignale
CN110266326B (zh) * 2019-06-19 2021-07-13 成都星联芯通科技有限公司 一种基于ook的一线通射频前端控制方法及其系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194351A (ja) * 1999-02-05 2004-07-08 Interdigital Technol Corp ケーブル損失自動補償手段を備える基地局
CN101018086A (zh) * 2006-02-10 2007-08-15 大唐移动通信设备有限公司 时分同步码分多址系统中中继放大器的同步收发控制方法与系统
CN101414844A (zh) * 2007-10-19 2009-04-22 信和控股有限公司 双向信号放大装置、接收/发射装置和信号传输方法
US20110026442A1 (en) * 2009-07-31 2011-02-03 Samsung Electronics Co. Ltd. Apparatus and method for protecting receive circuits in tdd wireless communication system
CN201742570U (zh) * 2010-05-17 2011-02-09 福建先创通信有限公司 用于时分双工移动通信系统的双向室外射频单元
CN107819483A (zh) * 2017-11-02 2018-03-20 京信通信系统(中国)有限公司 信号传输装置及其测试设备、直放站通信设备
WO2020118585A1 (zh) * 2018-12-12 2020-06-18 华为技术有限公司 一种信号放大电路及终端设备
CN113572493A (zh) * 2020-11-04 2021-10-29 中兴通讯股份有限公司 信号收发装置、信号放大装置、通信系统的运行方法

Also Published As

Publication number Publication date
CN113572493B (zh) 2022-09-23
EP4220975A1 (en) 2023-08-02
US20230396284A1 (en) 2023-12-07
CN113572493A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
EP1800411B1 (en) Remote front-end for a multi-antenna station
US8768416B2 (en) Communication system, apparatus and method
US7050765B2 (en) Highly integrated microwave outdoor unit (ODU)
US20030152140A1 (en) System and method for transmitting/receiving telemetry control signals with if payload data on common cable between indoor and outdoor units
JP2008510391A (ja) 無線データ通信装置
CN105830514A (zh) 频分双工多输入输出无线网络中信道状态信息的获取方法
CN109495569B (zh) 一种新型无线通信系统架构
EP0996241B1 (en) Mobile communication system
US20100067585A1 (en) A wireless communication apparatus and the configuration method thereof
WO2022095817A1 (zh) 信号收发装置、信号放大装置、通信系统的运行方法
CN104301058A (zh) 微小卫星多码率多通道多体制测控系统
CN212969627U (zh) 一种车载动中通卫星通讯天线的天馈系统及天线套件
US5678228A (en) Satellite terminal with sleep mode
US9380527B2 (en) Method for reducing the energy consumption in a wireless communication terminal and communication terminal implementing said method
JP5724538B2 (ja) 信号伝送装置、通信装置、電子機器、及び、信号伝送方法
KR20100092713A (ko) 무선 인터넷 접속 중계기
KR20190090144A (ko) 무인기 데이터링크용 통신모듈
EP2733976A1 (en) System, device, and method for transmitting multi-input-multi-output signals
US9025644B2 (en) Transmitting/receiving system
CN111147119B (zh) Das合路系统
Khaledian et al. A power-efficient implementation of in-band full-duplex communication system (ReflectFX)
CN214205534U (zh) 一种卫星测控数传射频通道交叉备份装置及卫星
US10165623B2 (en) Splitter device connecting multiple remote radio heads
CN216086622U (zh) 一种功率输出设备及通信系统
KR100790655B1 (ko) Wimax 통신 시스템용 rf 주파수 변환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021888514

Country of ref document: EP

Effective date: 20230426

NENP Non-entry into the national phase

Ref country code: DE