WO2020116537A1 - がん処置用RNAi分子 - Google Patents
がん処置用RNAi分子 Download PDFInfo
- Publication number
- WO2020116537A1 WO2020116537A1 PCT/JP2019/047505 JP2019047505W WO2020116537A1 WO 2020116537 A1 WO2020116537 A1 WO 2020116537A1 JP 2019047505 W JP2019047505 W JP 2019047505W WO 2020116537 A1 WO2020116537 A1 WO 2020116537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- rnai molecule
- bcl
- nucleotides
- antisense strand
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
Definitions
- the present disclosure relates to an RNAi molecule useful for cancer treatment, a cancer treatment method using the RNAi molecule, and the like.
- Non-patent Document 1 Cancer chemotherapy started with the use of drugs that show cytotoxicity in a cell-nonspecific manner, such as alkylating agents, but in recent years, cancer-specific molecules that have less effect on cells other than cancer cells. There is a growing interest in molecularly targeted drugs that target Under these circumstances, it has been reported that BcL-XL is up-regulated in some types of cancer (Non-patent Document 1).
- RNAi molecule for cancer treatment which comprises the nucleotide sequence of SEQ ID NO: 1 in the antisense strand.
- a composition for treating cancer which comprises an RNAi molecule containing the nucleotide sequence of SEQ ID NO: 1 in the antisense strand.
- BcL2 family is BcL-XL.
- Cancer is brain cancer, head and neck cancer, breast cancer, lung cancer, oral cancer, esophageal cancer, gastric cancer, duodenal cancer, appendix cancer, colon cancer, rectal cancer, liver cancer, pancreas Cancer, gallbladder cancer, bile duct cancer, anal cancer, renal cancer, ureteral cancer, bladder cancer, prostate cancer, penis cancer, testicular cancer, uterine cancer, cervical cancer, ovary Cancer, vulvar cancer, vaginal cancer, skin cancer, fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma,
- the RNAi molecule or the pharmaceutical composition according to [7] which is selected from the group consisting of chondrosarcoma, osteosarcoma, myeloma, lympho
- RNAi molecule according to any one of [1], [3] to [8], or the composition according to any one of [2] to [8], A method for treating cancer, which comprises administering to a subject in need thereof.
- RNAi molecule comprising the nucleotide sequence of SEQ ID NO: 1 in the manufacture of a medicament for treating cancer.
- the RNAi molecule and/or the method for treating cancer using the RNAi molecule according to the present disclosure can exert one or more of the following effects depending on its mode.
- (1) The growth of cancer cells can be suppressed.
- (2) Apoptosis can be induced in cancer cells.
- the ability to suppress cancer cell growth is high.
- the ability to kill cancer cells is higher than that of other RNAi molecules that target BcL-xL.
- FIG. 1 is a diagram comparing the RNA interference ability of siRNAs targeting BcL-xL.
- the vertical axis represents the relative value when the expression level of BcL-xL was normalized by the expression level of GAPDH and the control (Compound Z) was set to 1.
- FIG. 2 is a diagram comparing the ability of siRNAs targeting BcL-xL to suppress cancer cell growth. The vertical axis shows the relative value of the survival rate with the control (Compound Z) set to 1.
- FIG. 3-1 is a diagram comparing the ability of siRNA targeting BcL-xL to suppress cancer cell growth and the ability to kill cancer cells in A549 cells.
- FIG. 3-2 is a diagram comparing the ability of siRNA targeting BcL-xL to suppress cancer cell growth and the ability to kill cancer cells in SW1990 cells.
- the upper row shows the relative value of the survival rate when the control (CompoundZ) was set to 1, and the lower row shows the number obtained by dividing the dead cell number by the viable cell number.
- FIG. 3-3 is a diagram comparing the ability of siRNA targeting BcL-xL to suppress cancer cell growth and the ability to kill cancer cells in SUIT-2 cells.
- FIG. 4 is a diagram comparing the siRNA targeting BcL-xL with the expression suppressing ability of other specific genes.
- the vertical axis represents the relative value with the control (Compound Z) being set to 1 by normalizing the expression levels of various genes with the GAPDH expression levels.
- FIG. 5 is a diagram showing the apoptosis-inducing activity of CUGACUC-containing siRNA.
- FIG. 6 is a diagram showing the in vivo antitumor effect of CUGACUC-containing siRNA.
- the vertical axis represents the tumor size (mm 3 ).
- FIG. 7 is a diagram showing the in vivo antitumor effect of CUGACUC-containing siRNA.
- RNAi molecule of the present disclosure relates to an RNAi molecule (hereinafter, may be referred to as “RNAi molecule of the present disclosure”) that includes the nucleotide sequence of SEQ ID NO: 1 (CUGACUC) in the antisense strand (or antisense region).
- RNAi molecule refers to any molecule capable of causing RNA interference.
- RNA interference typically refers to the phenomenon of double-stranded nucleic acid molecule-induced degradation of target RNA in a sequence-specific manner.
- RNA-derived siren containing Argonaute (AGO) protein When a double-stranded nucleic acid molecule enters a cell, it is cleaved by Dicer according to its length, and then one strand (referred to as antisense strand or guide strand) of the RNA-derived siren containing Argonaute (AGO) protein. Incorporated into the Sing Complex (RISC). RISC recognizes the target RNA using the antisense strand (guide strand) having a sequence complementary to the target RNA as a guide, and cleaves the target RNA. When the target RNA is mRNA, the protein encoded by the mRNA is not expressed (gene silencing).
- RISC Sing Complex
- RNAi molecule of the present disclosure is not limited, and examples thereof include siNA (small interfering nucleic acid) such as siRNA (small interfering RNA), shRNA, and the like.
- siNAs typically have an antisense strand that is complementary to the target sequence and a sense strand that is complementary to the antisense strand, with both strands forming at least a partial duplex. Is a small molecule nucleic acid.
- the antisense strand and the sense strand in siNA are each independently a length of 15 to 49 nucleotides (for example, a length of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26).
- nucleotides 17 It may be -35 nucleotides, 17-30 nucleotides, 15-25 nucleotides, 18-25 nucleotides, 18-23 nucleotides, 19-21 nucleotides, 25-30 nucleotides, or 26-28 nucleotides.
- the double-stranded region has a length of 15 to 49 nucleotides (for example, a length of about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 or 49 nucleotides), 15 to 35 nucleotides, 15 It may be -30 nucleotides, about 15-25 nucleotides, 17-25 nucleotides, 17-23 nucleotides, 17-21 nucleotides, 25-30 nucleotides, or 25-28 nucleotides.
- the sense and antisense strands of siNA are separate polynucleotide strands.
- the antisense strand and the sense strand may form a double-stranded structure through hydrogen bonding, such as Watson-Crick base pairing, or by being covalently linked to each other.
- the sense strand and the antisense strand are part of a single polynucleotide strand having a sense region and an antisense region, and in such an aspect, the polynucleotide strand may have a hairpin structure. Good.
- SiNA may have blunt ends or protruding ends.
- the overhanging ends may have overhangs of 1, 2, 3, 4, 5, 6, 7, or 8 nucleotides.
- the overhang may be present on either the 5'or 3'end of the antisense strand and/or the sense strand, or on both the 5'and 3'ends of the antisense or sense strand.
- the overhang is the 5'end of the antisense strand, the 3'end of the antisense strand, both the 5'end and the 3'end of the antisense strand, the 5'end of the sense strand, the 3'end of the sense strand, Present at both the 5'end and 3'end of the sense strand, at both the 5'end of the antisense strand and the 5'end of the sense strand, or at both the 3'end of the antisense strand and the 3'end of the sense strand You may.
- the ends of siNA may be symmetrical or asymmetrical.
- siNAs having symmetric terminals are, for example, those in which each terminal is a blunt end, and the antisense strand and the sense strand have the same overhang on the same side. Those having an overhang of the same number of nucleotides at both the 5'end of the antisense strand and the 5'end of the sense strand, or the same number at both the 3'end of the antisense strand and the 3'end of the sense strand Which have an overhang of nucleotides of) and the like.
- siNA having an asymmetric end examples include, for example, one end having a blunt end and the other end having a protruding end, and both ends having a protruding end. , Overhang positions, lengths and/or types are different.
- An asymmetrical siNA having both ends protruding is, for example, an antisense strand or one having an overhang at both the 5'end and the 3'end of the sense strand, the same for both the antisense strand and the sense strand. Those having an overhang on the side (that is, the 5'end or the 3'end), but having different lengths and/or types are included.
- overhangs mean, for example, different types of nucleotides that make up the overhang.
- the nucleotides constituting the overhang include RNA, DNA, and nucleic acids having various modifications described below. Therefore, an overhang composed only of unmodified RNA is different in type from an overhang containing modified RNA, and an overhang composed of one modified RNA is different from an overhang composed of another modified RNA. different.
- the ends of siNA may have a loop structure.
- siNA has a hairpin structure in which one end has a loop structure and the other end is a blunt end (having a sense strand and an antisense strand in one polynucleotide), but one end has a loop structure, and It may have a hairpin structure in which the end is a protruding end (for example, having an overhang of 1, 2, 3, 4, 5, 6, 7, or 8 nucleotides).
- the overhang may be a 3'overhang or a 5'overhang and the overhang may be in the sense or antisense strand.
- the sense strand of siNA may include one or more nicks. In such an embodiment, the sense strand is split by a nick, and when the antisense strand is incorporated into RISC, the sense strand forms a split fragment at the nick.
- SiNA may include unmodified nucleotides and/or modified nucleotides.
- unmodified nucleotides and modified nucleotides may be collectively referred to simply as “nucleotides”.
- An unmodified nucleotide is a nucleotide that constitutes naturally occurring DNA or RNA, that is, composed of a nucleobase (adenine, guanine, uracil, thymine, cytosine), a sugar (ribose, deoxyribose), and a phosphate group. Refers to something.
- unmodified nucleic acid molecule composed of unmodified nucleotides
- two adjacent unmodified nucleotides are usually linked by a phosphodiester bond between the 3'position of one unmodified nucleotide and the 5'position of the other unmodified nucleotide.
- the unmodified nucleotides are unmodified ribonucleotides and the unmodified nucleic acid molecule is composed of unmodified ribonucleotides.
- Modified nucleotide refers to a nucleotide containing a chemical modification with respect to an unmodified nucleotide.
- the modified nucleotide may be artificially synthesized or naturally-occurring.
- Modified nucleotides include those with modified nucleobases, sugars, backbones (internucleotide linkages), 5'ends and/or 3'ends.
- Modified nucleotides include those in which any one of the above sites has been modified, as well as those in which two or more of the above sites have been modified.
- nucleobases include, but are not limited to, 2,4-difluorotoluyl, 2,6-diamino, 5-bromo, 5-iodo, 2-thio, dihydro, 5-propynyl, and 5-methyl. Modification, abasic etc. are mentioned.
- the modified nucleobase is not limited, and examples thereof include 6-methyl derivatives of xanthine, hypoxanthine, inosine, 2-aminoadenine, adenine and guanine and other alkyl derivatives, universal bases, 2-adenine and guanine.
- Propyl derivatives and other alkyl derivatives 5-halouracil and 5-halocytosine, 5-propynyluracil and 5-propynylcytosine, 6-azouracil, 6-azocytosine and 6-azothymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, amino, thiol, thioalkyl, hydroxyl and other 8-substituted adenine and guanine, 5-trifluoromethyl and other 5-substituted uracil and 5-substituted cytosine, 7-methylguanine, acyclonucleotide, deazapurine, Heterocyclic-substituted analogs of purines and pyrimidines, such as aminoethoxyphenoxazine, derivatives of purines and pyrimidines (eg 1-alkyl derivatives, 1-alkenyl derivatives, heteroaromatic ring derivatives and 1-alkyn
- modified sugars other than the above include locked nucleic acid (LNA), oxetane-LNA (OXE), unlocked nucleic acid (UNA), ethylene bridged nucleic acid (ENA), altritol nucleic acid (ANA), and hexitol nucleic acid (HNA).
- LNA locked nucleic acid
- OXE oxetane-LNA
- UNA unlocked nucleic acid
- ENA ethylene bridged nucleic acid
- ANA altritol nucleic acid
- HNA hexitol nucleic acid
- alkyl groups include saturated aliphatic groups, which include straight chain alkyl groups (eg, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched chain alkyl groups. (Isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), and alkyl-substituted cycloalkyl groups.
- straight chain alkyl groups eg, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.
- branched chain alkyl groups
- a straight chain or branched chain alkyl has 6 or fewer carbon atoms in its backbone (eg, C 1 -C 6 for straight chain, C 3 -C for branched chain). 6 ), more preferably 4 or less carbon atoms.
- preferred cycloalkyls may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.
- the term C 1 -C 6 includes alkyl groups containing 1-6 carbon atoms.
- the alkyl group may be a substituted alkyl group, for example an alkyl moiety having a substituent that substitutes hydrogen on one or more carbons of the hydrocarbon backbone.
- substituents are, for example, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl.
- alkoxy groups include substituted and unsubstituted alkyl, alkenyl and alkynyl groups covalently linked to an oxygen atom.
- alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy and pentoxy groups.
- substituted alkoxy groups include halogenated alkoxy groups.
- the alkoxy group is, for example, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, Dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonate, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino), acylamino (alkylcarbonylamino, arylcarbonylamino, carbamoyl and (Including ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
- halogen-substituted alkoxy groups include, but are not limited to, fluoromethoxy including difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, and the like.
- halogen includes fluorine, bromine, chlorine and iodine.
- the modified backbone is not limited and includes, for example, phosphorothioate, thiophosphate-D-ribose, triester, thioate, 2′-5′ bond (5′-2′ or 2′5′ nucleotide or 2′5′).
- Examples of the 5′-terminal and/or 3′-terminal modification include addition of a capping moiety to the 5′-terminal and/or 3′-terminal, modification of the 5′-terminal and/or 3′-terminal phosphate group, for example, [3-3′]-inverted deoxyribose, deoxyribonucleotide, [5′-3′]-3′-deoxyribonucleotide, [5′-3′]-ribonucleotide, [5′-3′]-3′ -O-methyl ribonucleotide, 3'-glyceryl, [3'-5']-3'-deoxyribonucleotide, [3'-3']-deoxyribonucleotide, [5'-2']-deoxyribonucleotide and [5 -3′]-dideoxyribonucleotide and the like.
- a capping moiety to the 5′-terminal and/or 3′-terminal, modification
- Non-limiting examples of capping moieties include, for example, abasic nucleotides, deoxy abasic nucleotides, inverted (deoxy) abasic nucleotides, hydrocarbon (alkyl) moieties and their derivatives, mirror nucleotides (L-DNA or L-RNA).
- Cross-linked nucleic acids including LNA and ethylene cross-linked nucleic acids, linked modified nucleotides (eg PACE) and base modified nucleotides, glyceryl, dinucleotides, acyclic nucleotides, amino, fluoro, chloro, bromo, CN, CF, methoxy, imidazole, carboxy.
- the capping moiety can also function as a non-nucleotide overhang.
- Modified nucleotides in the present disclosure include 2'-deoxyribonucleotides, 2'-O-methylribonucleotides, 2'-deoxy-2'-fluororibonucleotides, universal base nucleotides, acyclic nucleotides, 5-C-methyl nucleotides.
- a biotin group, and a nucleotide containing a terminal glyceryl and/or an inverted deoxy abasic residue, a sterically hindering molecule such as a nucleotide containing a fluorescent molecule, 3′-deoxyadenosine (cordicepine), 3′-azido-3′ -Deoxythymidine (AZT), 2',3'-dideoxyinosine (ddI), 2',3'-dideoxy-3'-thiacytidine (3TC), 2',3'-didehydro-2',3'-dideoxy Thymidine (d4T), and 3'-azido-3'-deoxythymidine (AZT), 2',3'-dideoxy-3'-thiacytidine (3TC) or 2',3'-didehydro-2',3'- A nucleotide containing dideoxythymidine (d4T), a nucleotide having a northern
- Non-limiting examples of modified nucleotides include, for example, Gaglione and Messere, Mini Rev Med Chem. 2010;10(7):578-95, Deleavey and Damha, Chem Biol. 2012;19(8):937-54, Bramsen and. It is also described in Kjems, J. Front Genet. 2012;3:154.
- the CUGACUC sequence contained in the antisense strand consists of RNA.
- the CUGACUC sequence comprised in the antisense strand consists of unmodified RNA.
- shRNA is a single-stranded RNA molecule containing an antisense region and a sense region which are complementary to each other, and a loop region interposed therebetween, and a double-stranded region is formed by pairing the antisense region and the sense region. And has a hairpin-like three-dimensional structure.
- shRNA is cleaved by dicer in the cell to produce a double-stranded siRNA molecule, which is taken up by RISC and causes RNA interference.
- shRNA is typically expressed intracellularly by a nucleic acid construct encoding the same, a plasmid containing the same, and exerts its action, but it is also possible to deliver the shRNA molecule directly to cells.
- the description relating to the antisense strand in siNA applies to the antisense region of shRNA, and the description relating to the sense strand of siNA applies to the sense region of shRNA. Therefore, the shRNA of the present disclosure includes the CUGACUC sequence in the antisense region.
- the antisense region and the sense region of the shRNA of the present disclosure each independently have a length of 15 to 49 nucleotides, 17 to 35 nucleotides, 17 to 30 nucleotides, 15 to 25 nucleotides, 18 to 25 nucleotides, 18 to It may be 23 nucleotides, 19-21 nucleotides, 25-30 nucleotides, or 26-28 nucleotides.
- the length of the double-stranded region is 15-49 nucleotides, 15-35 nucleotides, 15-30 nucleotides, 15-25 nucleotides, 17-25 nucleotides, 17-23 nucleotides, 17-21 nucleotides, 25-30 nucleotides.
- the length of the loop region is not particularly limited as long as it can be cut by dicer, and is, for example, 2 to 100 nucleotides, 3 to 80 nucleotides, 4 to 70 nucleotides, 5 to 60 nucleotides, 6 to 50 nucleotides and the like. You can
- the RNAi molecule of the present disclosure suppresses BcL2 family protein expression.
- the BcL2 family is the apoptosis-inhibiting BcL2 family.
- the apoptosis-inhibiting BcL2 family includes BcL-2, BcL-XL, BFL1, BcL-W and the like.
- the BcL2 family molecule is BcL-XL.
- Apoptosis-inhibiting BcL2 family molecules include only pro-apoptotic BcL2 family molecules (eg, BAX, BOK, BAK, and other multidomain proteins, BIM, BAD, BID, NOXA, PUMA (Bbc3), BMF, HRK, BIK, and other BH3 only). It is thought to suppress apoptosis through interaction with a protein (BH3-only protein).
- RNAi molecules of the present disclosure suppress BcL-XL expression.
- the RNAi molecule of the present disclosure comprises, in addition to BcL-XL, at least one gene selected from BcL-2, Smad1, P21, and MRS2, TJP2, SIKE1, GPANK1, HSPA12A, and TYW3. Suppress expression.
- the RNAi molecules of the present disclosure suppress the expression of genes including at least the following gene combinations: BcL-XL and BcL-2, BcL-XL and Smad1, BcL-XL and P21, BcL-XL.
- BcL-XL and TJP2 BcL-XL and SIKE1, BcL-XL and GPANK1, BcL-XL and HSPA12A, BcL-XL and TYW3, BcL-XL, BcL-2 and Smad1, BcL-XL, Bc-2.
- the suppression of gene expression or protein expression can be evaluated, for example, by comparing the expression level of the gene or protein in cells to which the RNAi molecule of the present disclosure is allowed to act and cells not allowed to act.
- the expression level of a gene can be determined by any known method, for example, various hybridization methods, Northern blotting method, Southern blotting method using a nucleic acid that specifically hybridizes to a nucleic acid molecule encoding the gene or a unique fragment thereof. Can be determined by detecting the nucleic acid molecule by a method, various PCR methods, or the like.
- the expression level of the protein may be any known protein detection method, for example, without limitation, immunoprecipitation method using an antibody, EIA (enzyme immunoassay) (for example, ELISA (emzyme-linked immunosorbent assay)), RIA ( radioimmunoassay) (eg IRMA (immunoradiometric assay), RAST (radioallergosorbent test), RIST (radioimmunosorbent test), etc.), Western blotting, immunohistochemistry, immunocytochemistry, flow cytometry, etc. You can use of EIA (enzyme immunoassay) (for example, ELISA (emzyme-linked immunosorbent assay)), RIA ( radioimmunoassay) (eg IRMA (immunoradiometric assay), RAST (radioallergosorbent test), RIST (radioimmunosorbent test), etc.), Western blotting, immunohistochemistry, immunocytochemistry, flow cytometry, etc.
- the RNAi molecules of the present disclosure target BcL2L1 encoding BcL-XL.
- the sequence of BcL2L1 is known, and the sequence of human BcL2L1 mRNA is, for example, accession numbers NM_138578.3 (SEQ ID NO: 2), NM_001317919.1 (SEQ ID NO: 3), NM_001317920.1 (SEQ ID NO: 4), NM_001317921. It is registered as 1 (sequence number 5), NM_001322239.1 (sequence number 6), NM_001322240.1 (sequence number 7), and NM_001322242.1 (sequence number 8).
- the RNAi molecule of the present disclosure typically has a sequence complementary to SEQ ID NO: 1 in BcL2L1 (GAGTCAG, SEQ ID NO: 9).
- Target the region containing.
- “Complementary” or “complementary” means that one nucleic acid molecule can form hydrogen bonds with another nucleic acid molecule, either classically by Watson-Crick or by other nonclassical types. To do. “Percentage of complementarity” refers to the percentage of nucleotides of another nucleic acid molecule that are capable of forming hydrogen bonds (eg, Watson-Crick base pairs) with one nucleic acid molecule.
- the percent complementarity is , 50%, 60%, 70%, 80%, 90% and 100%, respectively.
- Perfectly complementary or “having perfect complementarity” means that every nucleotide of one nucleic acid molecule hydrogen bonds with the same number of contiguous nucleotides in another nucleic acid molecule.
- the antisense strand of an RNAi molecule of the present disclosure is perfectly complementary to a target nucleic acid molecule or portion thereof.
- the RNAi molecule of the present disclosure has the nucleotide sequence of SEQ ID NO: 1 at positions 2 to 8 from the 5'end of the antisense strand (or antisense region).
- RNAi molecules of the present disclosure have an antisense strand (or antisense region) that includes the following sequences.
- the target site indicates the position in NM — 138578.3 (SEQ ID NO: 2).
- RNAi molecules of the present disclosure may be delivered or administered with any of the known delivery carriers that have the effect of assisting, facilitating or facilitating delivery to the site of action, or may be delivered or administered directly without these delivery carriers.
- a viral vector or a non-viral vector can be used as a delivery carrier.
- the viral vector includes, without limitation, vectors based on adenovirus, adeno-associated virus (AAV), retrovirus, vaccinia virus, pox virus, lentivirus, herpes virus, etc.
- the viral vector may be oncolytic. Oncolytic viral vectors are particularly useful in treating cancer.
- the non-viral vector is not limited, and examples thereof include particulate carriers such as polymer particles, lipid particles, and inorganic particles, and bacterial vectors.
- particulate carriers such as polymer particles, lipid particles, and inorganic particles, and bacterial vectors.
- the particulate carrier nanoparticles with a nano-level size can be used.
- the polymer particles are not limited and include, for example, a cationic polymer, polyamidoamine (PAMAM), chitosan, cyclodextrin, poly(lactic acid-co-glycolic acid) (PLGA), poly(lactic acid-co-caprolactone acid) ( PLCA), poly( ⁇ amino ester), and those containing polymers such as atelocollagen.
- Lipid particles include liposomes and non-liposome type lipid particles.
- a liposome is a vesicle having a lumen surrounded by a lipid bilayer, and a non-liposomal lipid particle is a lipid particle that does not have such a structure.
- the inorganic particles include gold nanoparticles, quantum dots, silica nanoparticles, iron oxide nanoparticles (for example, superparamagnetic iron oxide nanoparticles (SPION)), nanotubes (for example, carbon nanotubes (CNT)), nanodiamonds, and fullerenes. And so on.
- the bacterial vector is not limited, and examples thereof include those based on Listeria monocytogenes, bifidobacteria, Salmonella, and the like.
- RNAi molecule of the present disclosure is systemically administered to a relevant tissue ex vivo or in vivo via dermal application, transdermal application or injection (intravenous injection, intradermal injection, subcutaneous injection, intramuscular injection, arterial injection, drip injection, etc.). It can be locally administered in vivo.
- RNAi molecule of the present disclosure can be delivered by a delivery system suitable for the purpose.
- Delivery systems may include, for example, aqueous and non-aqueous gels, creams, double emulsions, microemulsions, liposomes, ointments, aqueous and non-aqueous solutions, lotions, aerosols, hydrocarbon bases and powders, and the like.
- Agents such as solubilizers, penetration enhancers (such as fatty acids, fatty acid esters, fatty alcohols and amino acids) and hydrophilic polymers (such as polycarbophil and polyvinylpyrrolidone) can be included.
- the pharmaceutically acceptable carrier is a liposome or transdermal enhancer.
- Delivery systems may include patches, tablets, suppositories, pessaries, gels and creams, with excipients such as solubilizers and enhancers (eg, propylene glycol, bile salts and amino acids), and other vehicles (eg, , Polyethylene glycol, fatty acid esters and derivatives, and hydrophilic polymers such as hydroxypropylmethyl cellulose and hyaluronic acid).
- solubilizers and enhancers eg, propylene glycol, bile salts and amino acids
- other vehicles eg, Polyethylene glycol, fatty acid esters and derivatives, and hydrophilic polymers such as hydroxypropylmethyl cellulose and hyaluronic acid.
- Methods and systems useful for delivery of RNAi molecules of the present disclosure include, for example, Rettig and Behlke, Mol Ther. 2012;20(3):483-512, Kraft et al., J Pharm Sci. 2014;103(1). :29-52, Hong
- compositions of the present disclosure relate to a composition that includes the RNAi molecule of the present disclosure (hereinafter, may be referred to as a composition of the present disclosure).
- the compositions of the present disclosure may include, in addition to the RNAi molecules of the present disclosure, any of the carriers, diluents, delivery vehicles, delivery systems, etc. described above.
- the compositions of the present disclosure can be used in the treatment of diseases such as cancer. Therefore, the composition of the present disclosure can be a pharmaceutical composition for treating a disease such as cancer (hereinafter, may be referred to as a pharmaceutical composition of the present disclosure).
- the pharmaceutical compositions of the present disclosure may include one or more pharmaceutically acceptable additives (eg, surfactants, carriers, diluents, excipients, etc.). Pharmaceutically acceptable additives are well known in the pharmaceutical field, for example, Remington's Pharmaceutical Sciences, 18th Ed., Mack Publishing Co., Easton, PA (1990), which is incorporated herein by reference in its entirety. Have been described.
- the RNAi molecules and pharmaceutical compositions of the present disclosure can be used for the treatment of cancer.
- Cancer includes epithelial and non-epithelial malignancies.
- the cancer to be treated is not limited, for example, brain tumor, head and neck cancer, breast cancer, lung cancer, oral cancer, esophageal cancer, gastric cancer, duodenal cancer, appendiceal cancer, colon cancer, Rectal cancer, liver cancer, pancreatic cancer, gallbladder cancer, bile duct cancer, anal cancer, renal cancer, ureteral cancer, bladder cancer, prostate cancer, penis cancer, testicular cancer, uterus Cancer, cervical cancer, ovarian cancer, vulvar cancer, vaginal cancer, skin cancer, fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi Examples include sarcoma, lymphangiosarcoma, synovial s
- Cancer is any part of the body, for example, brain, head and neck, chest, limbs, lungs, heart, thymus, esophagus, stomach, small intestine (duodenum, jejunum, ileum), large intestine (colon, cecum, appendix, rectum), liver.
- the RNAi molecules and pharmaceutical compositions of the present disclosure can be used for the treatment of BcL-XL expressing cancer.
- BcL-XL in cancer is overexpressed. Whether or not a cancer expresses BcL-XL or whether it overexpresses BcL-XL is known from the literature or the like, or BcL- in cancer cells constituting the cancer is known. It can be determined by, for example, detecting the expression of XL.
- BcL-XL expression of BcL-XL can be carried out by any known method, for example, various hybridization methods using a nucleic acid molecule that specifically hybridizes with a nucleic acid molecule encoding BcL-XL (Bcl2L1) or a unique fragment thereof, Northern.
- the nucleic acid molecule can be detected by a blotting method, a Southern blotting method, various PCR methods, or the like, or BcL-XL can be detected by a known protein detection method such as, but not limited to, an immunoprecipitation method using an antibody, EIA ( For example, ELISA etc.), RIA (eg IRMA, RAST, RIST etc.), Western blotting, immunohistochemistry, immunocytochemistry, flow cytometry, etc. can be used for the determination. Since overexpression of BcL-XL in cancer cells may be due to amplification of the Bcl2L1 gene, amplification of the Bcl2L1 gene can be used as one indicator of overexpression of BcL-XL. It has been reported that Bcl2L1 gene is amplified in bladder cancer, breast cancer, head and neck cancer, lung cancer, stomach cancer, uterine cancer, etc. (Campbell and Tait, Open Biol. 2018;8(5):180002) ..
- the cancer to be treated with the RNAi molecule of the present disclosure is preferably one selected from BcL-2, Smad1, P21, MRS2, TJP2, SIKE1, GPANK1, HSPA12A and TYW3 in addition to BcL-XL. It expresses the above genes.
- the cancers to be treated with the RNAi molecules of the present disclosure express genes comprising at least the following gene combinations: BcL-XL and BcL-2, BcL-XL and Smad1, BcL.
- BcL-XL and P21 BcL-XL and MRS2, BcL-XL, BcL-2 and Smad1, BcL-XL and TJP2, BcL-XL and SIKE1, BcL-XL and GPNK1, BcL-XL and HSPA12A, BcL-XL and TYW3.
- treatment is intended to include all kinds of medically acceptable preventive and/or therapeutic interventions for the purpose of cure, temporary remission or prevention of diseases.
- treatment includes medically acceptable interventions for various purposes, including delaying or halting the progression of disease, regression or elimination of lesions, prevention of the onset or recurrence of the disease, and the like. Therefore, the RNAi molecule and the pharmaceutical composition can be used for treatment and/or prevention of diseases.
- RNAi molecules and pharmaceutical compositions of the present disclosure can also be used for the treatment of diseases caused by abnormal apoptosis, such as diseases caused by abnormal proliferation of cells.
- the disease caused by abnormal proliferation of cells is not limited and includes, for example, benign or malignant tumors, hyperplasia, keloids, Cushing's syndrome, primary aldosteronism, erythema, polycythemia vera, leukoplakia, hyperplasia. Includes plastic scars, lichen planus and melasma.
- the RNAi molecules and pharmaceutical compositions of the present disclosure can also be used for the treatment of diseases caused by the expression of BcL-XL, such as diseases caused by the abnormal proliferation of cells associated with the expression of BcL-XL. ..
- the disease caused by abnormal proliferation of cells is not limited and includes, for example, benign or malignant tumors, lymphoproliferative diseases and the like.
- RNAi molecules or pharmaceutical compositions of the present disclosure can be administered by a variety of routes including both oral and parenteral, including, without limitation, oral, buccal, buccal, intravenous, intramuscular, subcutaneous, intradermal, It may be administered by local, rectal, intraarterial, intraportal, intraventricular, transmucosal, transdermal, intranasal, intraperitoneal, respiratory, intrapulmonary, intrauterine, etc. routes suitable for each route of administration. It may be formulated into a dosage form. As the dosage form and formulation method, any publicly known one can be appropriately adopted (for example, see Remington's Pharmaceutical Sciences, 18th Ed., _Mack Publishing Co., Easton, PA (1990)).
- dosage forms suitable for oral administration include, without limitation, powders, granules, tablets, capsules, solutions, suspensions, emulsions, gels, syrups, etc., and also for parenteral administration.
- Suitable dosage forms include injections such as solution injections, suspension injections, emulsion injections and ready-to-use injections.
- Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile solutions or suspensions.
- composition according to the present disclosure may be supplied in any form, but from the viewpoint of storage stability, a form that can be prepared at the time of use, such as a doctor and/or pharmacist, nursing at or near the medical site. It may be provided in a form that can be prepared by a doctor or other paramedical.
- the composition is provided as one or more containers containing at least one of the essential components thereof, before use, for example within 24 hours, preferably within 3 hours, And more preferably, it is prepared immediately before use.
- reagents, solvents, preparation equipment and the like that are usually available at the place of preparation can be used as appropriate.
- a further aspect of the present disclosure is a kit or pack for treating a disease, for preparing an RNAi molecule or composition according to the present disclosure, or a component thereof, for preparing said RNAi molecule or composition, and such
- the RNAi molecules or compositions provided in the form of various kits or packs, or the necessary components thereof.
- Each component of the RNAi molecule or composition contained in such a kit or pack is as described above for the RNAi molecule or composition.
- the present kit is a medium in which instructions relating to a method of preparing an RNAi molecule or a composition and a method of use (for example, an administration method, etc.), such as an instruction manual and information about the method of use, such as a flexible disk, are recorded.
- kits or packs may include all of the components for completing the RNAi molecule or composition, but does not necessarily include all of the components. Therefore, the kit or pack does not have to include reagents and solvents that are usually available at medical sites, experimental facilities, etc., such as sterile water, physiological saline, and glucose solutions.
- Another aspect of the present disclosure is a method of treating cancer, a disease caused by abnormal apoptosis, or a disease caused by expression of BcL-XL, wherein the method comprises an effective amount of the RNAi molecule of the present disclosure or
- the present invention relates to the above method, which comprises a step of administering the pharmaceutical composition to a subject in need thereof (hereinafter, may be referred to as “treatment method of the present disclosure”).
- the effective amount is, for example, an amount that prevents the onset and recurrence of the disease or cures the disease.
- the specific dose of the RNAi molecule or the pharmaceutical composition to be administered to the subject in the above treatment method depends on various conditions relating to the subject requiring administration, for example, target type, purpose of the method, treatment content, type of disease, and severity of symptoms. It may be determined in consideration of severity, general health condition of the subject, age, weight, sex of the subject, diet, timing and frequency of administration, concomitant medication, responsiveness to treatment, compliance with treatment and the like.
- the total daily dose of the RNAi molecule or the pharmaceutical composition is not limited, and for example, the amount of the RNAi molecule is about 1 ⁇ g/kg to about 1000 mg/body weight kg, about 10 ⁇ g/kg to about 100 mg/body weight kg, about It may be 100 ⁇ g/kg to about 10 mg/kg body weight. Alternatively, the dose may be calculated based on the surface area of the patient.
- various routes including both oral and parenteral, for example, oral, buccal, buccal, intravenous, intramuscular, subcutaneous, intradermal, topical, rectal, intraarterial, intraportal,
- the routes include intraventricular, transmucosal, percutaneous, intranasal, intraperitoneal, respiratory tract, intrapulmonary and intrauterine routes.
- the frequency of administration varies depending on the properties of the preparation or composition used and the conditions of the subject as described above, but is, for example, many times a day (that is, 2, 3, 4 or 5 times a day) or once a day , Every few days (ie every 2, 3, 4, 5, 6, 7 days etc.), several times per week (eg 2, 3, 4, etc. per week), every week, every few weeks (ie 2 Every 3 or 4 weeks).
- the term “subject” means any living individual, preferably an animal, more preferably a mammal, more preferably a human individual.
- the subject may be healthy (for example, not having a particular or any disease) or may be suffering from any disease, but when treatment of a disease related to the target nucleic acid molecule is intended.
- Another aspect of the present disclosure is the use of the RNAi molecules of the present disclosure in the manufacture of a medicament for the treatment of cancer, diseases caused by abnormal apoptosis and/or diseases caused by the expression of BcL-XL (hereinafter: Sometimes referred to as "use of the present disclosure".
- cancer diseases caused by abnormal apoptosis
- disease caused by expression of BcL-XL diseases caused by expression of BcL-XL
- treatment are as described above for the RNAi molecule of the present disclosure. is there.
- RNAi Function of siRNA Targeting BcL-xL As the siRNA targeting BcL-xL, the following experiment was conducted. In the sequence, uppercase letters indicate RNA and lowercase letters indicate DNA.
- Compound X (includes CUGACUC sequence in antisense strand)
- Sense strand 5'-GGAUACAGCUGGAGUCAGUtt-3' (SEQ ID NO: 31)
- Antisense strand 5'-ACUGACUCCAGCUGUAUCCtt-3' (SEQ ID NO: 32)
- Compound Y (CUGACUC sequence is not included in the antisense strand)
- Sense strand 5'-GGUAUUGGUGAGUCGGAUCtt-3' (SEQ ID NO: 33)
- Antisense strand 5'-GAUCCGACUCACCAAUACCtt-3' (SEQ ID NO: 34)
- Compound Z (control, Allstars negative control siRNA (QIAGEN))
- Colorectal cancer cell line HCT116 was inactivated in fetal bovine serum (FBS) 10%, 100 U/mL penicillin as an antibiotic, 100 ⁇ g/mL streptomycin in DMEM medium containing 37°C, 5% CO 2 conditions. Culture was performed under. Transfection of siRNA was performed as follows. The day before transfection, HCT116 cells were seeded in a 6-well tissue culture plastic dish at 0.1 ⁇ 10 5 cells/well. 25 pmol of each type of siRNA was added to 250 ⁇ L of Opti-MEM I Reduced Serum Medium (Invitrogen) and gently mixed.
- FBS fetal bovine serum
- DMEM medium containing 37°C, 5% CO 2 conditions. Culture was performed under. Transfection of siRNA was performed as follows. The day before transfection, HCT116 cells were seeded in a 6-well tissue culture plastic dish at 0.1 ⁇ 10 5 cells/well. 25 pmol of each type of siRNA was added to 250 ⁇ L of Opti-MEM I Reduce
- RNAiMAX Lipofectamine RNAiMAX (Invitrogen) was diluted in 250 ⁇ L of Opti-MEM I Reduced Serum Medium and gently mixed. The diluted siRNA and the diluted Lipofectamine RNAiMAX were combined, mixed gently, and then incubated at room temperature for 15 minutes. During this period, the medium was replaced with 2 mL of Opti-MEM I Reduced Serum Medium. After incubation for 15 minutes, a complex of siRNA and Lipofectamine RNAiMAX was added to the cells and incubated at 37° C. in an atmosphere containing 5% CO 2 . After incubation for 5 hours, the medium was replaced with 3 mL of DMEM medium containing 10% FBS.
- RNA was recovered, reverse-transcribed into cDNA, and the amount of BcL-xL mRNA was quantified by the quantitative PCR method using 7300 Real Time PCR System (Applied BioSystems). As shown in the results of FIG. 1, the compound X and the compound Y exhibited the same level of suppressive effect on BcL-xL.
- Example 2 Verification of Cancer Cell Growth Inhibitory Ability of siRNA Targeting BcL-xL Colon cancer cell line HCT116, breast cancer cell line MDA-MB-231, skin cancer cell line A375, colon cancer cell line SW480, HCT116 is McCOY 's 5A medium (Sigma-Aldrich), MDA-MB-231, A375 and SW480 are DMEM medium (Sigma-Aldrich) (10% inactivated fetal bovine serum (FBS) and 100 U as an antibiotic, respectively). /ML of penicillin and 100 ⁇ g/mL of streptomycin) were cultivated under the conditions of 37° C. and 5% CO 2 .
- siRNA Compounds X to Z
- HCT116 and A375 were seeded in a 6-well tissue culture plastic dish at 0.25 ⁇ 10 5 cells/well and MDA-MB-231 and SW480 at 0.5 ⁇ 10 5 cells/well. did. 27.5 pmol of siRNA was added to 125 ⁇ L of Opti-MEM I Reduced Serum Medium (Invitrogen) and gently mixed. Next, 3 ⁇ L of Lipofectamine RNAiMAX (Invitrogen) was diluted in 125 ⁇ L of Opti-MEM I Reduced Serum Medium, and gently mixed.
- the diluted siRNA and the diluted Lipofectamine RNAiMAX were combined, mixed gently, and then incubated at room temperature for 15 minutes. During this period, the medium was replaced with 2.5 mL of Opti-MEM I Reduced Serum Medium. After incubation for 15 minutes, a complex of siRNA and Lipofectamine RNAiMAX was added to the cells and incubated at 37° C. in an atmosphere containing 5% CO 2 . After incubation for 5 hours, the medium was replaced with 3 mL of a medium containing 10% FBS. The number of cells was counted 3 days after the transfection. As shown in the results of FIG. 2, in all cancer cells, compound X suppressed the growth more strongly than compound Y.
- Example 3 Verification of Cancer Cell Growth Inhibitory Ability and Cancer Cell Killing Ability of siRNA Targeting BcL-xL Lung cancer cell line A549, pancreatic cancer cell line SUIT-2, pancreatic cancer cell line SW1990, A549 is DMEM medium ( Sigma-Aldrich), SUIT-2 for MEM medium (Sigma-Aldrich), SW1990 for RPMI1640 (Sigma-Aldrich) (10% inactivated fetal bovine serum (FBS), 100 U/antibiotic). Culture was performed under the conditions of 37° C. and 5% CO 2 with 100 mL of penicillin and 100 ⁇ g/mL of streptomycin).
- siRNA Compounds X to Z
- 1.1 pmol of siRNA was added to 5 ⁇ L of Opti-MEM I Reduced Serum Medium (Invitrogen) and gently mixed.
- 0.12 ⁇ L of Lipofectamine RNAiMAX (Invitrogen) was diluted in 4.88 ⁇ L of Opti-MEM I Reduced Serum Medium and gently mixed.
- the diluted siRNA and the diluted Lipofectamine RNAiMAX were combined, mixed gently, and then incubated at room temperature for 15 minutes. During this period, the medium was replaced with 100 ⁇ L of Opti-MEM I Reduced Serum Medium. After incubation for 15 minutes, a complex of siRNA and Lipofectamine RNAiMAX was added to the cells and incubated at 37° C. in an atmosphere containing 5% CO 2 .
- Example 4 Effect of Compound X on expression of genes other than BcL-xL siRNA was introduced into HCT116 cells and incubated in the same manner as in Example 1, RNA was recovered, and reverse transcribed into cDNA. Using the obtained cDNA, the amount of BCL2, SMAD1, P21, and MRS2 mRNA was quantified by the quantitative PCR method using a 7300 Real Time PCR System (Applied Bio Systems). As shown in the results of FIG. 4, compound Y did not suppress the expression of BCL2, SMAD1, P21, MRS2, whereas compound X suppressed the expression of all of these genes.
- Example 5 Verification of Apoptosis-Inducing Activity of Compound X siRNA was introduced into HCT116 cells and incubated in the same manner as in Example 1 except that the seeding density of cells was 0.2 ⁇ 10 5 cells/well.
- a cell extract was prepared 3 days after transfection, and changes in expression of activated caspase-3 and activated PARP, which are apoptosis signals, were analyzed by Western blot.
- Western blotting was performed as follows. After washing the cells with ice-cold PBS, TNE lysis buffer (1% NP-40, 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, complete Mini EDTA-free (Roche), PhosSTOP (Roche), pH 7.5).
- PBS-T PBS containing 5% skim milk/0.05% Tween 20
- various primary antibodies diluted with PBS-T Bcl-xL (54H6) Rabbit mAb #2764 (CST), PARP Antibody #9542 (CST), Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb # 9664 (CST) and Anti-GAPDH antibody [6C5] (abcam) were incubated for 16 hours at 4°C.
- Example 6 Verification of in vivo antitumor effect of compound X
- 0 ⁇ 10 5 mice were subcutaneously inoculated to give cancer-bearing mice.
- Compound X or Compound Z was intratumorally administered at a dose of 1 mg/g of mouse body weight twice a week, and the tumor volume was measured with a caliper.
- LipoTrust TM EX Oligo ⁇ in vivo> (Hokkaido System Science Co., Ltd.) was used to deliver each compound.
- the mouse was euthanized 35 days after the inoculation, and the tumor weight was measured.
- the transition of tumor volume is shown in FIG. 6, and the comparison of tumor weight is shown in FIG. 7, respectively. From both figures, it can be seen that compound X markedly suppresses tumor growth even in vivo.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本発明は、配列番号1のヌクレオチド配列をアンチセンス鎖に含む、がん処置用RNAi分子、有効量の前記RNAi分子を、それを必要とする対象に投与することを含む、がんを処置する方法に関する。
Description
本開示は、がんの処置に有用なRNAi分子、当該RNAi分子を用いたがんの処置方法等に関する。
がん化学療法は、アルキル化剤など、細胞非特異的に細胞毒性を示す薬剤の使用から始まったが、近年は、がん細胞以外の細胞に対してより影響の少ない、がん特有の分子を標的とした分子標的薬に関心が集まっている。こうした状況の中、BcL-XLがいくつかの種類のがんで上方調節されていることが報告されている(非特許文献1)。
Sarosiek and Leta, FEBS J. 2016;283(19):3523-3533
がん治療薬の開発は世界中で進められているが、依然として有効性の高いがん治療薬が求められている。
本開示の一部の態様は以下に関する。
[1] 配列番号1のヌクレオチド配列をアンチセンス鎖に含む、がん処置用RNAi分子。
[2] 配列番号1のヌクレオチド配列をアンチセンス鎖に含むRNAi分子を含む、がん処置用組成物。
[3] 配列番号1のヌクレオチド配列が、アンチセンス鎖の5’から2~8位に配置されている、[1]に記載のRNAi分子又は[2]に記載の組成物。
[4] BcL2ファミリーのタンパク質発現を抑制する、[1]若しくは[3]に記載のRNAi分子又は[2]若しくは[3]に記載の組成物。
[5] BcL2ファミリーが、BcL-XLである、[4]に記載のRNAi分子又は組成物。
[6] アンチセンス鎖が、配列番号14(ACUGACUCCAGCUGUAUCC)のヌクレオチド配列を含む、[1]、[3]~[5]のいずれか一項に記載のRNAi分子又は[2]~[5]のいずれか一項に記載の組成物。
[7] がんがBcL-XLを発現している、[1]、[3]~[6]のいずれか一項に記載のRNAi分子又は[2]~[6]のいずれか一項に記載の組成物。
[8] がんが、脳腫瘍、頭頚部がん、乳がん、肺がん、口腔がん、食道がん、胃がん、十二指腸がん、虫垂がん、大腸がん、直腸がん、肝がん、膵がん、胆嚢がん、胆管がん、肛門がん、腎がん、尿管がん、膀胱がん、前立腺がん、陰茎がん、精巣がん、子宮がん、子宮頸がん、卵巣がん、外陰がん、膣がん、皮膚がん、線維肉腫、悪性線維性組織球腫、脂肪肉腫、横紋筋肉腫、平滑筋肉腫、血管肉腫、カポジ肉腫、リンパ管肉腫、滑膜肉腫、軟骨肉腫、骨肉腫、骨髄腫、リンパ腫、白血病からなる群から選択される、[7]に記載のRNAi分子又は医薬組成物。
[9] 有効量の[1]、[3]~[8]のいずれか一項に記載のRNAi分子、又は、[2]~[8]のいずれか一項に記載の組成物を、それを必要とする対象に投与することを含む、がんの治療方法。
[10] がんの治療ための医薬の製造における、配列番号1のヌクレオチド配列を含むRNAi分子の使用。
[1] 配列番号1のヌクレオチド配列をアンチセンス鎖に含む、がん処置用RNAi分子。
[2] 配列番号1のヌクレオチド配列をアンチセンス鎖に含むRNAi分子を含む、がん処置用組成物。
[3] 配列番号1のヌクレオチド配列が、アンチセンス鎖の5’から2~8位に配置されている、[1]に記載のRNAi分子又は[2]に記載の組成物。
[4] BcL2ファミリーのタンパク質発現を抑制する、[1]若しくは[3]に記載のRNAi分子又は[2]若しくは[3]に記載の組成物。
[5] BcL2ファミリーが、BcL-XLである、[4]に記載のRNAi分子又は組成物。
[6] アンチセンス鎖が、配列番号14(ACUGACUCCAGCUGUAUCC)のヌクレオチド配列を含む、[1]、[3]~[5]のいずれか一項に記載のRNAi分子又は[2]~[5]のいずれか一項に記載の組成物。
[7] がんがBcL-XLを発現している、[1]、[3]~[6]のいずれか一項に記載のRNAi分子又は[2]~[6]のいずれか一項に記載の組成物。
[8] がんが、脳腫瘍、頭頚部がん、乳がん、肺がん、口腔がん、食道がん、胃がん、十二指腸がん、虫垂がん、大腸がん、直腸がん、肝がん、膵がん、胆嚢がん、胆管がん、肛門がん、腎がん、尿管がん、膀胱がん、前立腺がん、陰茎がん、精巣がん、子宮がん、子宮頸がん、卵巣がん、外陰がん、膣がん、皮膚がん、線維肉腫、悪性線維性組織球腫、脂肪肉腫、横紋筋肉腫、平滑筋肉腫、血管肉腫、カポジ肉腫、リンパ管肉腫、滑膜肉腫、軟骨肉腫、骨肉腫、骨髄腫、リンパ腫、白血病からなる群から選択される、[7]に記載のRNAi分子又は医薬組成物。
[9] 有効量の[1]、[3]~[8]のいずれか一項に記載のRNAi分子、又は、[2]~[8]のいずれか一項に記載の組成物を、それを必要とする対象に投与することを含む、がんの治療方法。
[10] がんの治療ための医薬の製造における、配列番号1のヌクレオチド配列を含むRNAi分子の使用。
本開示によるRNAi分子及び/又は当該RNAi分子を用いたがんの処置方法は、その態様に応じて以下の1又は2以上の効果を奏し得る。
(1)がん細胞の増殖を抑制することができる。
(2)がん細胞にアポトーシスを誘導することができる。
(3)本来標的とするBcL-xL以外に、少なくともBcL-2、Smad1、P21及びMRS2から選択される特定の遺伝子の発現を抑制する。
(4)BcL-xLを標的とする他のRNAi分子に比べ、がん細胞増殖抑制能が高い。
(5)BcL-xLを標的とする他のRNAi分子に比べ、がん細胞殺傷能が高い。
(1)がん細胞の増殖を抑制することができる。
(2)がん細胞にアポトーシスを誘導することができる。
(3)本来標的とするBcL-xL以外に、少なくともBcL-2、Smad1、P21及びMRS2から選択される特定の遺伝子の発現を抑制する。
(4)BcL-xLを標的とする他のRNAi分子に比べ、がん細胞増殖抑制能が高い。
(5)BcL-xLを標的とする他のRNAi分子に比べ、がん細胞殺傷能が高い。
本明細書において別様に定義されない限り、本明細書で用いる全ての技術用語及び科学用語は、当業者が通常理解しているものと同じ意味を有する。本明細書中で参照する全ての特許、出願及び他の出版物(オンライン情報を含む)は、その全内容を参照により本明細書に援用する。
また、本明細書は、2018年12月5日に出願された本願優先権主張の基礎となる日本国特許出願(特願2018-228284号)の明細書および図面に記載の内容を包含する。
また、本明細書は、2018年12月5日に出願された本願優先権主張の基礎となる日本国特許出願(特願2018-228284号)の明細書および図面に記載の内容を包含する。
本開示は、一態様において、配列番号1(CUGACUC)のヌクレオチド配列をアンチセンス鎖(又はアンチセンス領域)に含む、RNAi分子(以下、「本開示のRNAi分子」と称することがある)に関する。
RNAi分子は、RNA干渉を引き起こすことが可能な任意の分子を指す。RNA干渉は、典型的には、二本鎖核酸分子が誘導する、標的RNAが配列特異的に分解される現象を指す。二本鎖核酸分子は細胞内に入ると、その長さに応じてダイサーにより切断された後、その一方の鎖(アンチセンス鎖又はガイド鎖と称する)がArgonaute(AGO)タンパク質を含むRNA誘導サイレンシング複合体(RISC)に取り込まれる。RISCは、標的RNAと相補的な配列を有するアンチセンス鎖(ガイド鎖)をガイド役に標的RNAを認識し、これを切断する。標的RNAがmRNAである場合は、mRNAがコードするタンパク質等が発現されなくなる(遺伝子サイレンシング)。
RNAi分子は、RNA干渉を引き起こすことが可能な任意の分子を指す。RNA干渉は、典型的には、二本鎖核酸分子が誘導する、標的RNAが配列特異的に分解される現象を指す。二本鎖核酸分子は細胞内に入ると、その長さに応じてダイサーにより切断された後、その一方の鎖(アンチセンス鎖又はガイド鎖と称する)がArgonaute(AGO)タンパク質を含むRNA誘導サイレンシング複合体(RISC)に取り込まれる。RISCは、標的RNAと相補的な配列を有するアンチセンス鎖(ガイド鎖)をガイド役に標的RNAを認識し、これを切断する。標的RNAがmRNAである場合は、mRNAがコードするタンパク質等が発現されなくなる(遺伝子サイレンシング)。
本開示のRNAi分子としては、限定されずに、例えば、siRNA(低分子干渉RNA)などのsiNA(低分子干渉核酸)、shRNA等が挙げられる。siNAは、典型的には、標的配列に相補性を有するアンチセンス鎖と、アンチセンス鎖に相補性を有するセンス鎖とを有し、両方の鎖が少なくとも部分的に二重鎖を形成している、低分子核酸を指す。
siNAにおけるアンチセンス鎖及びセンス鎖は、それぞれ独立して、長さが15~49ヌクレオチド(例えば長さが15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48又は49ヌクレオチド)、17~35ヌクレオチド、17~30ヌクレオチド、15~25ヌクレオチド、18~25ヌクレオチド、18~23ヌクレオチド、19~21ヌクレオチド、25~30ヌクレオチド、又は26~28ヌクレオチドであってもよい。また、二重鎖領域は、長さが15~49ヌクレオチド(例えば、長さが約15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48又は49ヌクレオチド)、15~35ヌクレオチド、15~30ヌクレオチド、約15~25ヌクレオチド、17~25ヌクレオチド、17~23ヌクレオチド、17~21ヌクレオチド、25~30ヌクレオチド、又は25~28ヌクレオチドであってもよい。
siNAにおけるアンチセンス鎖及びセンス鎖は、それぞれ独立して、長さが15~49ヌクレオチド(例えば長さが15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48又は49ヌクレオチド)、17~35ヌクレオチド、17~30ヌクレオチド、15~25ヌクレオチド、18~25ヌクレオチド、18~23ヌクレオチド、19~21ヌクレオチド、25~30ヌクレオチド、又は26~28ヌクレオチドであってもよい。また、二重鎖領域は、長さが15~49ヌクレオチド(例えば、長さが約15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48又は49ヌクレオチド)、15~35ヌクレオチド、15~30ヌクレオチド、約15~25ヌクレオチド、17~25ヌクレオチド、17~23ヌクレオチド、17~21ヌクレオチド、25~30ヌクレオチド、又は25~28ヌクレオチドであってもよい。
一部の態様において、siNAのセンス鎖及びアンチセンス鎖は、別々のポリヌクレオチド鎖である。かかる態様において、アンチセンス鎖及びセンス鎖は、水素結合、例えばワトソン-クリック型塩基対形成を介して、又は、互いに共有結合的に連結されることにより、二本鎖構造を形成していてもよい。別の態様において、センス鎖及びアンチセンス鎖は、センス領域及びアンチセンス領域を有する単一のポリヌクレオチド鎖の一部であり、かかる態様において、ポリヌクレオチド鎖は、ヘアピン構造を有していてもよい。
siNAは、平滑末端又は突出末端を有していてもよい。突出末端は、1、2、3、4、5、6、7又は8ヌクレオチドのオーバーハングを有していてもよい。オーバーハングは、アンチセンス鎖及び/又はセンス鎖の5’末端又は3’末端のいずれか一方、又は、アンチセンス鎖又はセンス鎖の5’末端及び3’末端の両方に存在してもよい。すなわち、オーバーハングは、アンチセンス鎖の5’末端、アンチセンス鎖の3’末端、アンチセンス鎖の5’末端と3’末端の両方、センス鎖の5’末端、センス鎖の3’末端、センス鎖の5’末端と3’末端の両方、アンチセンス鎖の5’末端とセンス鎖の5’末端の両方、又は、アンチセンス鎖の3’末端とセンス鎖の3’末端の両方に存在してもよい。siNAの末端は、対称であっても、非対称であってもよい。末端が対称なsiNA(以下、「対称siNA」と称することもある)としては、例えば、各末端が平滑末端であるもの、アンチセンス鎖とセンス鎖が同じ側に同じオーバーハングを有しているもの(例えば、アンチセンス鎖の5’末端とセンス鎖の5’末端の両方に同数のヌクレオチドのオーバーハングを有するものや、アンチセンス鎖の3’末端とセンス鎖の3’末端の両方に同数のヌクレオチドのオーバーハングを有するもの)等が挙げられる。末端が非対称なsiNA(以下、「非対称siNA」と称することもある)としては、例えば、一方の末端が平滑末端であり、他方の末端が突出末端であるもの、両末端とも突出末端であるが、オーバーハングの位置、長さ及び/又は種類が異なるもの等が挙げられる。両末端とも突出末端である、末端が非対称なsiNAとしては、例えば、アンチセンス鎖又はセンス鎖の5’末端及び3’末端の両方にオーバーハングを有するもの、アンチセンス鎖及びセンス鎖とも、同じ側(すなわち、5’末端又は3’末端)にオーバーハングを有するが、その長さ及び/又は種類が異なるもの等が挙げられる。オーバーハングの種類が異なるとは、例えば、オーバーハングを構成するヌクレオチドの種類が異なることを意味する。オーバーハングを構成するヌクレオチドは、RNA、DNA、及び、後述の種々の修飾を有する核酸を含む。したがって、未修飾RNAのみで構成されるオーバーハングは、修飾RNAを含むオーバーハングと種類が異なるし、ある修飾RNAで構成されるオーバーハングは、別の修飾RNAで構成されるオーバーハングと種類が異なる。
別の態様において、siNAの末端はループ構造を有していてもよい。例えば、siNAは、一端がループ構造であり、他端が平滑末端であるヘアピン構造(1つのポリヌクレオチドにセンス鎖とアンチセンス鎖を有する)を有しても、一端がループ構造であり、他端が突出末端である(例えば1、2、3、4、5、6、7又は8ヌクレオチドのオーバーハングを有する)ヘアピン構造を有していてもよい。後者の場合、オーバーハングは3’オーバーハング又は5’オーバーハングであってもよく、オーバーハングはセンス鎖又はアンチセンス鎖にあってもよい。
一部の態様において、siNAのセンス鎖は1以上のニックを含んでいてもよい。かかる態様において、センス鎖はニックにより分断されており、アンチセンス鎖がRISCに取り込まれると、センス鎖はニックの位置で分断された断片を形成する。
一部の態様において、siNAのセンス鎖は1以上のニックを含んでいてもよい。かかる態様において、センス鎖はニックにより分断されており、アンチセンス鎖がRISCに取り込まれると、センス鎖はニックの位置で分断された断片を形成する。
siNAは、非修飾ヌクレオチド及び/又は修飾ヌクレオチドを含んでいてもよい。本明細書において、非修飾ヌクレオチド及び修飾ヌクレオチドを、単に「ヌクレオチド」と総称することがある。非修飾ヌクレオチドは、天然に存在するDNAやRNAを構成するヌクレオチド、すなわち、核酸塩基(アデニン、グアニン、ウラシル、チミン、シトシン)と、糖(リボース、デオキシリボース)と、リン酸基とから構成されるものを指す。非修飾ヌクレオチドで構成される非修飾核酸分子において、隣接する2個の非修飾ヌクレオチド同士は通常ホスホジエステル結合により一方の非修飾ヌクレオチドの3’位と他方の非修飾ヌクレオチドの5’位が連結されている。一態様において、非修飾ヌクレオチドは非修飾リボヌクレオチドであり、非修飾核酸分子は非修飾リボヌクレオチドで構成される。
修飾ヌクレオチドは、非修飾ヌクレオチドに対して化学的修飾を含むヌクレオチドを指す。修飾ヌクレオチドは、人工的に合成したものであっても、天然に存在するものであってもよい。修飾ヌクレオチドは、その核酸塩基、糖、バックボーン(ヌクレオチド間結合)、5’末端及び/又は3’末端が修飾されたものを包含する。修飾ヌクレオチドは、上記部位のいずれか1つが修飾されたもののほか、上記部位の2つ以上が修飾されたものも含む。
核酸塩基に対する修飾としては、限定されずに、例えば、2,4-ジフルオロトルイル、2,6-ジアミノ、5-ブロモ、5-ヨード、2-チオ、ジヒドロ、5-プロピニル、及び、5-メチル修飾、脱塩基などが挙げられる。また、修飾核酸塩基としては、限定されずに、例えば、キサンチン、ヒポキサンチン、イノシン、2-アミノアデニン、アデニン及びグアニンの6-メチル誘導体及び他のアルキル誘導体、ユニバーサル塩基、アデニン及びグアニンの2-プロピル誘導体及び他のアルキル誘導体、5-ハロウラシル及び5-ハロシトシン、5-プロピニルウラシル及び5-プロピニルシトシン、6-アゾウラシル、6-アゾシトシン及び6-アゾチミン、5-ウラシル(シュードウラシル)、4-チオウラシル、8-ハロ、アミノ、チオール、チオアルキル、ヒドロキシル及び他の8-置換アデニン及びグアニン、5-トリフルオロメチル及び他の5-置換ウラシル及び5-置換シトシン、7-メチルグアニン、アシクロヌクレオチド、デアザプリン、プリン及びピリミジンの複素環置換アナログ、例えばアミノエチオキシフェノキサジン、プリン及びピリミジンの誘導体(例えば1-アルキル誘導体、1-アルケニル誘導体、複素芳香環誘導体及び1-アルキニル誘導体)及びその互変異性体、8-オキソ-N6-メチルアデニン、7-ジアザキサンチン、5-メチルシトシン、5-メチルウラシル、5-(1-プロピニル)ウラシル、5-(1-プロピニル)シトシン、4,4-エタノシトシン、非プリン塩基及び非ピリミジン塩基、例えば2-アミノピリジン及びトリアジン、無塩基ヌクレオチド、デオキシ無塩基ヌクレオチド、逆位無塩基ヌクレオチド、逆位デオキシ無塩基ヌクレオチドなどが挙げられる。
糖に対する修飾としては、限定されずに、2’位の修飾、例えば、2’-O-アルキル修飾(例えば、2’-O-メチル修飾、2’-O-エチル修飾等)、2’-メトキシエトキシ修飾、2’-メトキシエチル修飾、2’-デオキシ修飾、2’-ハロゲン修飾(2’-フルオロ修飾、2’-クロロ修飾、2’-ブロモ修飾等)、2’-O-アリル修飾、2’-アミノ修飾、2’-S-アルキル修飾、2’-O-[2(メチルアミノ)-2-オキソエチル]修飾、2’-アルコキシ修飾、2’-O-2-メトキシエチル、2’-アリルオキシ(-OCH2CH=CH2)、2’-プロパルギル、2’-プロピル、2’-O-(N-メチルカルバメート)修飾、2’-O-(2,4-ジニトロフェニル)修飾、2’-デオキシ-2’-フルオロ-β-D-アラビノ修飾など、4’位の修飾、例えば、4’チオ修飾、4’-C-ヒドロキシメチル修飾など、その他、エチニル、エテニル、プロペニル、CF、シアノ、イミダゾール、カルボキシレート、チオエート、C1~C10低級アルキル、置換低級アルキル、アルカリル又はアラルキル、OCF3、OCN、O-、S-又はN-アルキル、O-、S-又はN-アルケニル、SOCH3、SO2CH3、ONO2、NO2、N3、ヘテロシクロアルキル、ヘテロシクロアルカリル、アミノアルキルアミノ、ポリアルキルアミノ又は置換シリルなどが挙げられる。上記以外の修飾糖としては、例えば、ロックド核酸(LNA)、オキセタン-LNA(OXE)、アンロックド核酸(UNA)、エチレン架橋核酸(ENA)、アルトリトール核酸(ANA)、ヘキシトール核酸(HNA)などが挙げられる。
本開示において、アルキル基は、飽和脂肪族基を含み、これは直鎖アルキル基(例えばメチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなど)、分枝鎖アルキル基(イソプロピル、tert-ブチル、イソブチルなど)、シクロアルキル(脂環式)基(シクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル)、アルキル置換シクロアルキル基を含む。一部の態様において、直鎖又は分枝鎖アルキルはその骨格に6個又はそれ未満の炭素原子を有し(例えば、直鎖についてはC1~C6、分枝鎖についてはC3~C6)、より好ましくは4個又はそれ未満の炭素原子を有する。同様に、好ましいシクロアルキルは、その環構造中に3~8個の炭素原子を有してもよく、より好ましくは5個又は6個の炭素を環構造中に有してもよい。用語C1~C6は、1~6個の炭素原子を含有するアルキル基を含む。アルキル基は、置換アルキル基、例えば、炭化水素骨格の1個又は2個以上の炭素上で水素に置換する置換基を有するアルキル部分であってもよい。かかる置換基は、例えば、アルケニル、アルキニル、ハロゲン、ヒドロキシル、アルキルカルボニルオキシ、アリールカルボニルオキシ、アルコキシカルボニルオキシ、アリールオキシカルボニルオキシ、カルボキシレート、アルキルカルボニル、アリールカルボニル、アルコキシカルボニル、アミノカルボニル、アルキルアミノカルボニル、ジアルキルアミノカルボニル、アルキルチオカルボニル、アルコキシル、ホスフェート、ホスホナト、ホスフィナト、シアノ、アミノ(アルキルアミノ、ジアルキルアミノ、アリールアミノ、ジアリールアミノ及びアルキルアリールアミノを含む)、アシルアミノ(アルキルカルボニルアミノ、アリールカルボニルアミノ、カルバモイル及びウレイドを含む)、アミジノ、イミノ、スルフヒドリル、アルキルチオ、アリールチオ、チオカルボキシレート、硫酸塩、アルキルスルフィニル、スルホナト、スルファモイル、スルホンアミド、ニトロ、トリフルオロメチル、シアノ、アジド、ヘテロシクリル、アルキルアリール又は、芳香族部分又は複素環式芳香族部分を含んでもよい。
本開示において、アルコキシ基は、酸素原子に共有結合的に連結した、置換及び非置換アルキル、アルケニル及びアルキニル基を含む。アルコキシ基の例は、メトキシ、エトキシ、イソプロピルオキシ、プロポキシ、ブトキシ及びペントキシ基を含む。置換アルコキシ基の例は、ハロゲン化アルコキシ基を含む。アルコキシ基は、例えば、アルケニル、アルキニル、ハロゲン、ヒドロキシル、アルキルカルボニルオキシ、アリールカルボニルオキシ、アルコキシカルボニルオキシ、アリールオキシカルボニルオキシ、カルボキシレート、アルキルカルボニル、アリールカルボニル、アルコキシカルボニル、アミノカルボニル、アルキルアミノカルボニル、ジアルキルアミノカルボニル、アルキルチオカルボニル、アルコキシル、ホスフェート、ホスホナト、ホスフィナト、シアノ、アミノ(アルキルアミノ、ジアルキルアミノ、アリールアミノ、ジアリールアミノ及びアルキルアリールアミノを含む)、アシルアミノ(アルキルカルボニルアミノ、アリールカルボニルアミノ、カルバモイル及びウレイドを含む)、アミジノ、イミノ、スルフヒドリル、アルキルチオ、アリールチオ、チオカルボキシレート、硫酸塩、アルキルスルフィニル、スルホナト、スルファモイル、スルホンアミド、ニトロ、トリフルオロメチル、シアノ、アジド、ヘテロシクリル、アルキルアリール又は芳香族部分又は複素環式芳香族部分で置換されていてもよい。ハロゲン置換アルコキシ基の例は、限定されずに、フルオロメトキシに、ジフルオロメトキシ、トリフルオロメトキシ、クロロメトキシ、ジクロロメトキシ、トリクロロメトキシなどを含む。
本開示において、ハロゲンは、フッ素、臭素、塩素、ヨウ素を含む。
本開示において、ハロゲンは、フッ素、臭素、塩素、ヨウ素を含む。
修飾バックボーンとしては、限定されずに、例えば、ホスホロチオエート、チオリン酸-D-リボース体、トリエステル、チオエート、2’-5’結合(5’-2’又は2’5’ヌクレオチド又は2’5’リボヌクレオチドとも称する)、PACE、PNA、3’-(又は-5’)デオキシ-3’-(又は-5’)チオ-ホスホロチオエート、ホスホロジチオエート、ホスホロセレネート、3’-(又は-5’)デオキシホスフィネート、ボラノホスフェート、3’-(又は-5’)デオキシ-3’-(又は5’-)アミノホスホルアミデート、水素ホスホネート、ホスホネート、ボラノリン酸エステル、ホスホルアミデート、アルキル又はアリールホスホネート及びホスホトリエステル修飾、アルキルホスホトリエステル、ホスホトリエステルリン結合、5’-エトキシホスホジエステル、P-アルキルオキシホスホトリエステル、メチルホスホネート、モルホリノなど、及び非リン含有結合、例えば、炭酸塩、カルバメート、シリル、硫黄、スルホネート、スルホンアミド、ホルムアセタール、チオホルムアセチル、オキシム、メチレンイミノ、メチレンメチルイミノ、メチレンヒドラゾ、メチレンジメチルヒドラゾ及びメチレンオキシメチルイミノなどが挙げられる。
5’末端及び/又は3’末端修飾としては、例えば、5’末端及び/又は3’末端へのキャッピング部分の付加や、5’末端及び/又は3’末端のリン酸基の修飾、例えば、[3~3’]-逆位デオキシリボース、デオキシリボヌクレオチド、[5’-3’]-3’-デオキシリボヌクレオチド、[5’-3’]-リボヌクレオチド、[5’-3’]-3’-O-メチルリボヌクレオチド、3’-グリセリル、[3’-5’]-3’-デオキシリボヌクレオチド、[3’-3’]-デオキシリボヌクレオチド、[5’-2’]-デオキシリボヌクレオチド及び[5-3’]-ジデオキシリボヌクレオチドなどが挙げられる。キャッピング部分の非限定例としては、例えば、無塩基ヌクレオチド、デオキシ無塩基ヌクレオチド、逆位(デオキシ)無塩基ヌクレオチド、炭化水素(アルキル)部分及びその誘導体、ミラーヌクレオチド(L-DNA又はL-RNA)、LNA及びエチレン架橋核酸を含む架橋核酸、結合修飾ヌクレオチド(例えばPACE)及び塩基修飾ヌクレオチド、グリセリル、ジヌクレオチド、非環式ヌクレオチド、アミノ、フルオロ、クロロ、ブロモ、CN、CF、メトキシ、イミダゾール、カルボキシレート、チオエート、C1~C10低級アルキル、置換低級アルキル、アルカリル又はアラルキル、OCF3、OCN、O-、S-又はN-アルキル、O-、S-又はN-アルケニル、SOCH3、SO2CH3、ONO2、NO2、N3、ヘテロシクロアルキル、ヘテロシクロアルカリル、アミノアルキルアミノ、ポリアルキルアミノ又は置換シリルなどが挙げられる。キャッピング部分は、非ヌクレオチド突出として機能することもできる。
本開示における修飾ヌクレオチドには、2’-デオキシリボヌクレオチド、2’-O-メチルリボヌクレオチド、2’-デオキシ-2’-フルオロリボヌクレオチド、ユニバーサル塩基ヌクレオチド、非環式ヌクレオチド、5-C-メチルヌクレオチド、ビオチン基、及び末端グリセリル及び/又は逆位デオキシ無塩基残基を含むヌクレオチド、立体障害分子、例えば、蛍光分子などを含むヌクレオチド、3’-デオキシアデノシン(コルジセピン)、3’-アジド-3’-デオキシチミジン(AZT)、2’,3’-ジデオキシイノシン(ddI)、2’,3’-ジデオキシ-3’-チアシチジン(3TC)、2’,3’-ジデヒドロ-2’,3’-ジデオキシチミジン(d4T)、及び3’-アジド-3’-デオキシチミジン(AZT)、2’,3’-ジデオキシ-3’-チアシチジン(3TC)又は2’,3’-ジデヒドロ-2’,3’-ジデオキシチミジン(d4T)を含むヌクレオチド、ノーザンコンフォメーションを有するヌクレオチド、2’-メチルチオエチル、2’-デオキシ-2’-フルオロヌクレオチド、2’-デオキシ-2’-クロロヌクレオチド、2’-アジドヌクレオチド、及び2’-O-メチルヌクレオチド、6員環ヌクレオチドアナログ(例えば、WO 2006/047842等に記載のヘキシトール及びアルトリトールヌクレオチドモノマーを含むもの)、ミラーヌクレオチド(例えば、L-DNA(L-デオキシリボアデノシン-3’-ホスフェート(ミラーdA)、L-デオキシリボシチジン-3’-ホスフェート(ミラーdC)、L-デオキシリボグアノシン-3’-ホスフェート(ミラーdG)、L-デオキシリボチミジン-3’-ホスフェート(鏡像チミジン))及びL-RNA(L-リボアデノシン-3’-ホスフェート(ミラーrA)、L-リボシチジン-3’-ホスフェート(ミラーrC)、L-リボグアノシン-3’-ホスフェート(ミラーrG)、L-リボウラシル-3’-ホスフェート(ミラーdU)等)が包含される。
修飾ヌクレオチドの非限定例は、例えば、Gaglione and Messere, Mini Rev Med Chem. 2010;10(7):578-95、Deleavey and Damha, Chem Biol. 2012;19(8):937-54、Bramsen and Kjems, J.Front Genet. 2012;3:154などにも記載されている。
一態様において、アンチセンス鎖に含まれるCUGACUC配列はRNAからなる。特定の態様において、アンチセンス鎖に含まれるCUGACUC配列は非修飾RNAからなる。
一態様において、アンチセンス鎖に含まれるCUGACUC配列はRNAからなる。特定の態様において、アンチセンス鎖に含まれるCUGACUC配列は非修飾RNAからなる。
shRNAは、互いに相補性を有するアンチセンス領域及びセンス領域と、その間に介在するループ領域とを含む1本鎖RNA分子であり、アンチセンス領域とセンス領域との対合により二重鎖領域が形成され、ヘアピン状の3次元構造を呈する。shRNAは細胞内でdicerにより切断され、二本鎖siRNA分子を生成し、これがRISCに取り込まれ、RNA干渉を引き起こす。shRNAは典型的には、これをコードする核酸構築物や、これを含むプラスミド等により細胞内で発現され、その作用を発揮するが、shRNA分子を直接細胞に送達することも可能である。
本開示のRNAi分子がshRNAである場合、siNAにおけるアンチセンス鎖に係る記載はshRNAのアンチセンス領域に適用され、siNAにおけるセンス鎖に係る記載はshRNAのセンス領域に適用される。したがって、本開示のshRNAは、アンチセンス領域にCUGACUC配列を含む。また、本開示のshRNAのアンチセンス領域及びセンス領域は、それぞれ独立して、長さが15~49ヌクレオチド、17~35ヌクレオチド、17~30ヌクレオチド、15~25ヌクレオチド、18~25ヌクレオチド、18~23ヌクレオチド、19~21ヌクレオチド、25~30ヌクレオチド、又は26~28ヌクレオチドであってもよい。また、二重鎖領域は、長さが15~49ヌクレオチド、15~35ヌクレオチド、15~30ヌクレオチド、15~25ヌクレオチド、17~25ヌクレオチド、17~23ヌクレオチド、17~21ヌクレオチド、25~30ヌクレオチド、又は25~28ヌクレオチドであってもよい。また、ループ領域の長さは、dicerによる切断が可能であれば特に限定されず、例えば、2~100ヌクレオチド、3~80ヌクレオチド、4~70ヌクレオチド、5~60ヌクレオチド、6~50ヌクレオチド等であってよい。
一態様において、本開示のRNAi分子は、BcL2ファミリーのタンパク質発現を抑制する。好ましい態様において、BcL2ファミリーはアポトーシス抑制性BcL2ファミリーである。アポトーシス抑制性BcL2ファミリーには、BcL-2、BcL-XL、BFL1、BcL-Wなどが含まれる。特に好ましい態様において、BcL2ファミリー分子は、BcL-XLである。アポトーシス抑制性BcL2ファミリー分子は、アポトーシス促進性BcL2ファミリー分子(例えば、BAX、BOK、BAKなどのマルチドメインタンパク質、BIM、BAD、BID、NOXA、PUMA(Bbc3)、BMF、HRK、BIKなどのBH3のみタンパク質(BH3-only protein))との相互作用を通じて、アポトーシスを抑制すると考えられている。特定の態様において、本開示のRNAi分子はBcL-XLの発現を抑制する。
より好ましい態様において、本開示のRNAi分子は、BcL-XLのほかに、少なくともBcL-2、Smad1、P21及び、MRS2、TJP2、SIKE1、GPANK1、HSPA12A及びTYW3から選択される1種以上の遺伝子の発現を抑制する。特定の態様において、本開示のRNAi分子は、少なくとも以下の遺伝子の組合せを含む遺伝子の発現を抑制する:BcL-XL及びBcL-2、BcL-XL及びSmad1、BcL-XL及びP21、BcL-XL及びMRS2、BcL-XL及びTJP2、BcL-XL及びSIKE1、BcL-XL及びGPANK1、BcL-XL及びHSPA12A、BcL-XL及びTYW3、BcL-XL、BcL-2及びSmad1、BcL-XL、BcL-2及びP21、BcL-XL、BcL-2及びMRS2、BcL-XL、Smad1及びP21、BcL-XL、Smad1及びMRS2、BcL-XL、P21及びMRS2、BcL-XL、Smad1、P21及びMRS2。
遺伝子発現又はタンパク質発現の抑制は、例えば、本開示のRNAi分子を作用させた細胞と作用させていない細胞における遺伝子又はタンパク質の発現量を比較することにより評価することができる。遺伝子の発現量は、既知の任意の手法、例えば、当該遺伝子をコードする核酸分子若しくはそのユニークな断片に特異的にハイブリダイズする核酸を利用した、種々のハイブリダイゼーション法、ノーザンブロット法、サザンブロット法、種々のPCR法などにより前記核酸分子を検出することにより決定することができる。また、タンパク質の発現量は、既知のタンパク質検出手法、例えば、限定されずに、抗体を利用した免疫沈降法、EIA(enzyme immunoassay)(例えば、ELISA(emzyme-linked immunosorbent assay)など)、RIA(radio immuno assay)(例えば、IRMA(immunoradiometric assay)、RAST(radioallergosorbent test)、RIST(radioimmunosorbent test)など)、ウエスタンブロッティング法、免疫組織化学法、免疫細胞化学法、フローサイトメトリー法などにより決定することができる。
一態様において、本開示のRNAi分子はBcL-XLをコードするBcL2L1を標的とする。BcL2L1の配列は公知であり、ヒトBcL2L1のmRNAの配列は、例えば、アクセッション番号NM_138578.3(配列番号2)、NM_001317919.1(配列番号3)、NM_001317920.1(配列番号4)、NM_001317921.1(配列番号5)、NM_001322239.1(配列番号6)、NM_001322240.1(配列番号7)、NM_001322242.1(配列番号8)として登録されている。本開示のRNAi分子のアンチセンス鎖は配列番号1のヌクレオチド配列を含むため、本開示のRNAi分子は、典型的には、BcL2L1における配列番号1と相補性を有する配列(GAGTCAG、配列番号9)を含む領域を標的とする。「相補性を有する」又は「相補的な」は、ある核酸分子が、他の核酸分子と、古典的なワトソン-クリック型か、又は他の非古典的なタイプにより水素結合を形成できることを意味する。「相補性パーセント」は、ある核酸分子と水素結合(例えば、ワトソン-クリック塩基対)を形成することができる他の核酸分子のヌクレオチドのパーセンテージを示す。例えば、第1のオリゴヌクレオチドの合計10ヌクレオチドのうち5、6、7、8、9又は10ヌクレオチドが、10個のヌクレオチドを有する第2のオリゴヌクレオチドと塩基対を形成する場合、相補性パーセントは、それぞれ、50%、60%、70%、80%、90%及び100%となる。「完全に相補的」又は「完全な相補性を有する」は、ある核酸分子の全てのヌクレオチドが、他の核酸分子における同じ数の連続するヌクレオチドと水素結合することを意味する。一態様において、本開示のRNAi分子のアンチセンス鎖は、標的核酸分子又はその部分と完全に相補的である。
好ましい態様において、本開示のRNAi分子は、アンチセンス鎖(又はアンチセンス領域)の5’末端から2~8位に配列番号1のヌクレオチド配列を有する。特定の好ましい態様において、本開示のRNAi分子は、以下の配列を含むアンチセンス鎖(又はアンチセンス領域)を有する。なお、標的部位はNM_138578.3(配列番号2)における位置を示す。
本開示のRNAi分子は作用部位への送達を補助、促進又は容易化する作用を有する既知の任意の送達担体とともに送達又は投与されてもよいし、これらの送達担体なしで直接送達又は投与されてもよい。送達担体としては、ウイルスベクター又は非ウイルスベクターを用いることができる。
ウイルスベクターとしては、限定されずに、アデノウイルス、アデノ随伴ウイルス(AAV)、レトロウイルス、ワクシニアウイルス、ポックスウイルス、レンチウイルス、ヘルペスウイルスなどをベースとするベクターが挙げられる。ウイルスベクターは、腫瘍溶解性であってもよい。腫瘍溶解性ウイルスベクターはがんの処置に特に有用である。
非ウイルスベクターとしては、限定されずに、例えば、ポリマー粒子、脂質粒子、無機粒子などの粒子状担体、細菌ベクター等が挙げられる。粒子状担体としては、大きさがナノレベルのナノ粒子を用いることができる。ポリマー粒子としては、限定されずに、例えば、カチオン性ポリマー、ポリアミドアミン(PAMAM)、キトサン、シクロデキストリン、ポリ(乳酸-コ-グリコール酸)(PLGA)、ポリ(乳酸-コ-カプロラクトン酸)(PLCA)、ポリ(βアミノエステル)、アテロコラーゲンなどのポリマーを含むものが挙げられる。脂質粒子にはリポソームや非リポソーム型脂質粒子などが含まれる。リポソームは脂質二重膜で包まれた内腔を有する小胞であり、非リポソーム型脂質粒子は、このような構造を有しない脂質粒子である。無機粒子としては、例えば、金ナノ粒子、量子ドット、シリカナノ粒子、酸化鉄ナノ粒子(例えば、超常磁性酸化鉄ナノ粒子(SPION))、ナノチューブ(例えば、カーボンナノチューブ(CNT))、ナノダイヤモンド、フラーレンなどが挙げられる。細菌ベクターとしては、限定されずに、例えば、リステリア菌、ビフィズス菌、サルモネラ菌などをベースにしたものが挙げられる。
本開示のRNAi分子は皮膚適用、経皮適用又は注射(静脈注射、皮内注射、皮下注射、筋肉注射、動脈注射、点滴注射等)を介して、全身投与あるいは関係する組織にex vivo又はin vivoで、局所投与することができる。
本開示のRNAi分子は、目的に適した送達システムにより送達することができる。送達システムは、例えば、水性及び非水性のゲル、クリーム、複エマルション、マイクロエマルション、リポソーム、軟膏、水性及び非水性の溶液、ローション、エアゾール、炭化水素基剤及びパウダーなどを含んでもよく、賦形剤、例えば可溶化剤、浸透促進剤(例えば脂肪酸、脂肪酸エステル、脂肪族アルコール及びアミノ酸など)及び親水性ポリマー(例えばポリカルボフィル及びポリビニルピロリドンなど)を含むことができる。一態様において、薬学的に許容し得る担体は、リポソーム又は経皮促進剤である。
送達システムは、パッチ、錠剤、坐薬、ペッサリー、ゲル及びクリームを含んでもよく、賦形剤、例えば可溶化剤及び促進剤(例えばプロピレングリコール、胆汁酸塩及びアミノ酸など)、及び他のビヒクル(例えば、ポリエチレングリコール、脂肪酸エステル及び誘導体、及び親水性ポリマー、例えばヒドロキシプロピルメチルセルロース及びヒアルロン酸など)を含むことができる。
本開示のRNAi分子の送達に有用な手法やシステムは、例えば、Rettig and Behlke, Mol Ther. 2012;20(3):483-512、Kraft et al., J Pharm Sci. 2014;103(1):29-52、Hong and Nam, Theranostics. 2014;4(12):1211-32、Kaczmarek et al., Genome Med. 2017;9(1):60 などに記載されている。
本開示のRNAi分子の送達に有用な手法やシステムは、例えば、Rettig and Behlke, Mol Ther. 2012;20(3):483-512、Kraft et al., J Pharm Sci. 2014;103(1):29-52、Hong and Nam, Theranostics. 2014;4(12):1211-32、Kaczmarek et al., Genome Med. 2017;9(1):60 などに記載されている。
本開示の一部の態様は、本開示のRNAi分子を含む組成物に関する(以下、本開示の組成物と称することがある)。本開示の組成物は、本開示のRNAi分子に加え、上述の任意の担体、希釈剤、送達ビヒクル、送達システムなどを含んでもよい。本開示の組成物は、がんなどの疾患の処置に使用できる。したがって、本開示の組成物は、がんなどの疾患の処置のための医薬組成物となり得る(以下、本開示の医薬組成物と称することがある)。本開示の医薬組成物は、1又は2以上の薬学的に許容し得る添加物(例えば、界面活性剤、担体、希釈剤、賦形剤など)を含んでもよい。薬学的に許容し得る添加物は医薬分野でよく知られており、例えば、その全体を本明細書に援用するRemington's Pharmaceutical Sciences, 18th Ed., Mack Publishing Co., Easton, PA (1990)などに記載されている。
一部の態様において、本開示のRNAi分子及び医薬組成物は、がんの処置のために使用することができる。がんは、上皮性悪性腫瘍及び非上皮性悪性腫瘍を含む。処置の対象となるがんとしては、限定されずに、例えば、脳腫瘍、頭頚部がん、乳がん、肺がん、口腔がん、食道がん、胃がん、十二指腸がん、虫垂がん、大腸がん、直腸がん、肝がん、膵がん、胆嚢がん、胆管がん、肛門がん、腎がん、尿管がん、膀胱がん、前立腺がん、陰茎がん、精巣がん、子宮がん、子宮頸がん、卵巣がん、外陰がん、膣がん、皮膚がん、線維肉腫、悪性線維性組織球腫、脂肪肉腫、横紋筋肉腫、平滑筋肉腫、血管肉腫、カポジ肉腫、リンパ管肉腫、滑膜肉腫、軟骨肉腫、骨肉腫、骨髄腫、リンパ腫、白血病などが挙げられる。がんは、任意の部位、例えば、脳、頭頚部、胸部、四肢、肺、心臓、胸腺、食道、胃、小腸(十二指腸、空腸、回腸)、大腸(結腸、盲腸、虫垂、直腸)、肝臓、膵臓、胆嚢、肛門、腎、尿管、膀胱、前立腺、陰茎、精巣、子宮、卵巣、外陰、膣、皮膚、横紋筋、平滑筋、滑膜、軟骨、骨、甲状腺、副腎、腹膜、腸間膜、骨髄、血液、血管系、リンパ節等のリンパ系、リンパ液などに存在し得る。
特定の態様において、本開示のRNAi分子及び医薬組成物は、BcL-XLを発現しているがんの処置のために使用することができる。好ましい態様において、がんにおけるBcL-XLは過剰発現されている。あるがんがBcL-XLを発現しているか否か、又は、BcL-XLを過剰発現しているか否かは、文献などにより知られているか、そのがんを構成するがん細胞におけるBcL-XLの発現を検出することなどにより決定することができる。BcL-XLの発現は、既知の任意の手法、例えば、BcL-XLをコードする核酸分子(Bcl2L1)若しくはそのユニークな断片に特異的にハイブリダイズする核酸を利用した、種々のハイブリダイゼーション法、ノーザンブロット法、サザンブロット法、種々のPCR法などにより前記核酸分子を検出することや、BcL-XLを、既知のタンパク質検出手法、例えば、限定されずに、抗体を利用した免疫沈降法、EIA(例えば、ELISAなど)、RIA(例えば、IRMA、RAST、RISTなど)、ウエスタンブロッティング法、免疫組織化学法、免疫細胞化学法、フローサイトメトリー法などで検出することなどにより決定することができる。がん細胞におけるBcL-XLの過剰発現は、Bcl2L1遺伝子の増幅による場合があるため、Bcl2L1遺伝子の増幅をBcL-XLの過剰発現の1つの指標とすることができる。膀胱がん、乳がん、頭頚部がん、肺がん、胃がん、子宮がんなどでBcl2L1遺伝子の増幅がみられることが報告されている(Campbell and Tait, Open Biol. 2018;8(5):180002)。
本開示のRNAi分子による処置の対象となるがんは、好ましくは、BcL-XLのほかに、BcL-2、Smad1、P21、MRS2、TJP2、SIKE1、GPANK1、HSPA12A及びTYW3から選択される1種以上の遺伝子を発現している。特定の態様において、本開示のRNAi分子による処置の対象となるがんは、少なくとも以下の遺伝子の組合せを含む遺伝子を発現している:BcL-XL及びBcL-2、BcL-XL及びSmad1、BcL-XL及びP21、BcL-XL及びMRS2、BcL-XL、BcL-2及びSmad1、BcL-XL及びTJP2、BcL-XL及びSIKE1、BcL-XL及びGPANK1、BcL-XL及びHSPA12A、BcL-XL及びTYW3、BcL-XL、BcL-2及びP21、BcL-XL、BcL-2及びMRS2、BcL-XL、Smad1及びP21、BcL-XL、Smad1及びMRS2、BcL-XL、P21及びMRS2、BcL-XL、Smad1、P21及びMRS2。
本開示において、「処置」は、疾患の治癒、一時的寛解又は予防などを目的とする医学的に許容される全ての種類の予防的及び/又は治療的介入を包含するものとする。例えば、「処置」は、疾患の進行の遅延又は停止、病変の退縮又は消失、当該疾患発症の予防又は再発の防止などを含む、種々の目的の医学的に許容される介入を包含する。したがって、前記RNAi分子及び医薬組成物は、疾患の治療及び/又は予防に用いることができる。
本開示のRNAi分子及び医薬組成物はまた、アポトーシスの異常に起因する疾患、例えば、細胞の異常増殖に起因する疾患などの処置のために使用することができる。細胞の異常増殖に起因する疾患としては、限定されずに、例えば、良性又は悪性腫瘍、過形成症、ケロイド、クッシング症候群、原発性アルドステロン症、紅板症、真性多血症、白板症、過形成瘢痕、扁平苔癬及び黒子症などを含む。
本開示のRNAi分子及び医薬組成物はまた、BcL-XLの発現に起因する疾患、例えば、BcL-XLの発現に伴う細胞の異常増殖に起因する疾患などの処置のために使用することができる。細胞の異常増殖に起因する疾患としては、限定されずに、例えば、良性又は悪性腫瘍、リンパ増殖性疾患などを含む。
本開示のRNAi分子及び医薬組成物はまた、BcL-XLの発現に起因する疾患、例えば、BcL-XLの発現に伴う細胞の異常増殖に起因する疾患などの処置のために使用することができる。細胞の異常増殖に起因する疾患としては、限定されずに、例えば、良性又は悪性腫瘍、リンパ増殖性疾患などを含む。
本開示のRNAi分子又は医薬組成物は、経口及び非経口の両方を包含する種々の経路、例えば、限定することなく、経口、頬側、口腔内、静脈内、筋肉内、皮下、皮内、局所、直腸、動脈内、門脈内、心室内、経粘膜、経皮、鼻腔内、腹腔内、気道内、肺内及び子宮内等の経路で投与してもよく、各投与経路に適した剤形に製剤してもよい。かかる剤形及び製剤方法は任意の公知のものを適宜採用することができる(例えば、Remington's Pharmaceutical Sciences, 18th Ed., Mack Publishing Co., Easton, PA (1990)などを参照)。
例えば、経口投与に適した剤形としては、限定することなく、散剤、顆粒剤、錠剤、カプセル剤、液剤、懸濁剤、乳剤、ゲル剤、シロップ剤などが挙げられ、また非経口投与に適した剤形としては、溶液性注射剤、懸濁性注射剤、乳濁性注射剤、用時調製型注射剤などの注射剤が挙げられる。非経口投与用製剤は、水性又は非水性の等張性無菌溶液又は懸濁液の形態であることができる。
本開示に係る組成物は、いずれの形態で供給されてもよいが、保存安定性の観点から、用時調製可能な形態、例えば、医療の現場あるいはその近傍において、医師及び/又は薬剤師、看護士、若しくはその他のパラメディカルなどによって調製され得る形態で提供されてもよい。この場合、前記組成物は、これらに必須の構成要素の少なくとも1つを含む1個又は2個以上の容器として提供され、使用の前、例えば、24時間前以内、好ましくは3時間前以内、そしてより好ましくは使用の直前に調製される。調製に際しては、調製する場所において通常入手可能な試薬、溶媒、調剤器具などを適宜使用することができる。
本開示のさらなる態様は、本開示に係るRNAi分子若しくは組成物、又はその構成要素を含む、前記RNAi分子若しくは組成物を調製するための、疾患を処置するためのキット又はパック、並びに、そのようなキット又はパックの形で提供される前記RNAi分子若しくは組成物、又はその必要構成要素にも関する。かかるキット又はパックに含まれる、RNAi分子若しくは組成物の各構成要素は、前記RNAi分子若しくは組成物について上記した通りである。本キットは、上記のほか、RNAi分子若しくは組成物の調製方法や使用方法(例えば、投与方法等)などに関する指示、例えば、使用説明書や、使用方法に関する情報を記録した媒体、例えば、フレキシブルディスク、CD、DVD、ブルーレイディスク、メモリーカード、USBメモリーなどをさらに含んでいてもよい。また、かかるキット又はパックは、RNAi分子若しくは組成物を完成するための構成要素の全てを含んでいてもよいが、必ずしも全ての構成要素を含んでいなくてもよい。したがって、前記キット又はパックは、医療現場や、実験施設などで通常入手可能な試薬や溶媒、例えば、無菌水や、生理食塩水、ブドウ糖溶液などを含んでいなくてもよい。
本開示の別の態様は、がん、アポトーシスの異常に起因する疾患又はBcL-XLの発現に起因する疾患を処置する方法であって、該方法が、有効量の本開示に係るRNAi分子又は医薬組成物を、それを必要とする対象に投与する工程を含む、前記方法に関する(以下、「本開示の処置方法」と称することがある)。ここで、有効量とは、例えば、当該疾患の発症及び再発を予防し、又は当該疾患を治癒する量である。
前記処置方法において対象に投与するRNAi分子又は医薬組成物の具体的な用量は、投与を要する対象に関する種々の条件、例えば、標的の種類、方法の目的、治療内容、疾患の種類、症状の重篤度、対象の一般健康状態、年齢、体重、対象の性別、食事、投与の時期及び頻度、併用している医薬、治療への反応性、及び治療に対するコンプライアンスなどを考慮して決定され得る。前記RNAi分子又は医薬組成物の1日総投与量は、限定されずに、例えば、RNAi分子の量として約1μg/kg~約1000mg/体重kg、約10μg/kg~約100mg/体重kg、約100μg/kg~約10mg/体重kgであってもよい。あるいは、投与量は患者の表面積に基づいて計算してもよい。
投与経路としては、経口及び非経口の両方を包含する種々の経路、例えば、経口、頬側、口腔内、静脈内、筋肉内、皮下、皮内、局所、直腸、動脈内、門脈内、心室内、経粘膜、経皮、鼻腔内、腹腔内、気道内、肺内及び子宮内等の経路が含まれる。
投与頻度は、用いる製剤又は組成物の性状や、上記のような対象の条件によって異なるが、例えば、1日多数回(すなわち1日2、3、4回又は5回以上)、1日1回、数日毎(すなわち2、3、4、5、6、7日毎など)、1週間に数回(例えば、1週間に2、3、4回など)、1週間毎、数週間毎(すなわち2、3、4週間毎など)であってもよい。
投与頻度は、用いる製剤又は組成物の性状や、上記のような対象の条件によって異なるが、例えば、1日多数回(すなわち1日2、3、4回又は5回以上)、1日1回、数日毎(すなわち2、3、4、5、6、7日毎など)、1週間に数回(例えば、1週間に2、3、4回など)、1週間毎、数週間毎(すなわち2、3、4週間毎など)であってもよい。
本開示において、用語「対象」は、任意の生物個体、好ましくは動物、さらに好ましくは哺乳動物、さらに好ましくはヒトの個体を意味する。対象は健常(例えば、特定の又は任意の疾患を有しない)であっても、何らかの疾患に罹患していてもよいものとするが、標的核酸分子に関連する疾患の処置等が企図される場合には、典型的には当該疾患に罹患しているか、罹患するリスクを有する対象を意味する。
本開示の別の側面は、がん、アポトーシスの異常に起因する疾患及び/又はBcL-XLの発現に起因する疾患の処置のための医薬の製造における、本開示のRNAi分子の使用(以下、「本開示の使用」と称することがある)に関する。
本開示の使用における「がん」、「アポトーシスの異常に起因する疾患」、「BcL-XLの発現に起因する疾患」、「処置」の各用語は、本開示のRNAi分子について上記した通りである。
本開示の使用における「がん」、「アポトーシスの異常に起因する疾患」、「BcL-XLの発現に起因する疾患」、「処置」の各用語は、本開示のRNAi分子について上記した通りである。
以下の例で本開示の一部の態様をより詳細に説明するが、これらの例は例証を目的とするものであり、前記態様の範囲を制限するものではない。
例1 BcL-xLを標的とするsiRNAのRNAi機能評価
BcL-xLを標的とするsiRNAとして、以下のものを使用して実験を行った。なお、配列中の大文字はRNA、小文字はDNAを示す。
化合物X(CUGACUC配列をアンチセンス鎖に含む)
センス鎖:5'-GGAUACAGCUGGAGUCAGUtt-3’(配列番号31)
アンチセンス鎖:5'-ACUGACUCCAGCUGUAUCCtt-3’(配列番号32)
化合物Y(CUGACUC配列をアンチセンス鎖に含まない)
センス鎖:5'-GGUAUUGGUGAGUCGGAUCtt-3’(配列番号33)
アンチセンス鎖:5'-GAUCCGACUCACCAAUACCtt-3’(配列番号34)
化合物Z(コントロール、Allstars negative control siRNA(QIAGEN社))
BcL-xLを標的とするsiRNAとして、以下のものを使用して実験を行った。なお、配列中の大文字はRNA、小文字はDNAを示す。
化合物X(CUGACUC配列をアンチセンス鎖に含む)
センス鎖:5'-GGAUACAGCUGGAGUCAGUtt-3’(配列番号31)
アンチセンス鎖:5'-ACUGACUCCAGCUGUAUCCtt-3’(配列番号32)
化合物Y(CUGACUC配列をアンチセンス鎖に含まない)
センス鎖:5'-GGUAUUGGUGAGUCGGAUCtt-3’(配列番号33)
アンチセンス鎖:5'-GAUCCGACUCACCAAUACCtt-3’(配列番号34)
化合物Z(コントロール、Allstars negative control siRNA(QIAGEN社))
大腸癌細胞株HCT116を、非働化処理したウシ胎仔血清(FBS)を10%、抗生物質として100U/mLのpenicillin、100μg/mLのstreptomycinを含むDMEM培地で、37℃、5%CO2の条件下で培養を行った。
siRNAのトランスフェクションは、次の通りに行った。トランスフェクションの前日、HCT116細胞を0.1×105個/ウェルとなるように6ウェル組織培養プラスチックディッシュに播種した。250μLのOpti-MEM I Reduced Serum Medium(Invitrogen)中に各種siRNAを25pmol加え、穏やかに混合した。次に、Lipofectamine RNAiMAX(Invitrogen)を250μLのOpti-MEM I Reduced Serum Medium中に5μL希釈し、穏やかに混合した。希釈したsiRNAと希釈したLipofectamine RNAiMAXを合わせ、穏やかに混合した後、室温で15分間インキュベートした。この間、培地を2mLのOpti-MEM I Reduced Serum Mediumに交換した。15分間のインキュベーション後、siRNAとLipofectamine RNAiMAXとの複合体を細胞に加え、37℃、5%CO2を含む大気下でインキュベートした。5時間のインキュベーション後、3mLの10%FBS入りDMEM培地に交換した。トランスフェクション後1日目にRNAを回収し、逆転写してcDNAにした後、BcL-xLのmRNA量を7300 Real Time PCR System(Applied BioSystems)を用いて、定量PCR法にて定量した。図1の結果が示すように、化合物Xと化合物YはBcL-xLに対し同程度の発現抑制効果を示した。
siRNAのトランスフェクションは、次の通りに行った。トランスフェクションの前日、HCT116細胞を0.1×105個/ウェルとなるように6ウェル組織培養プラスチックディッシュに播種した。250μLのOpti-MEM I Reduced Serum Medium(Invitrogen)中に各種siRNAを25pmol加え、穏やかに混合した。次に、Lipofectamine RNAiMAX(Invitrogen)を250μLのOpti-MEM I Reduced Serum Medium中に5μL希釈し、穏やかに混合した。希釈したsiRNAと希釈したLipofectamine RNAiMAXを合わせ、穏やかに混合した後、室温で15分間インキュベートした。この間、培地を2mLのOpti-MEM I Reduced Serum Mediumに交換した。15分間のインキュベーション後、siRNAとLipofectamine RNAiMAXとの複合体を細胞に加え、37℃、5%CO2を含む大気下でインキュベートした。5時間のインキュベーション後、3mLの10%FBS入りDMEM培地に交換した。トランスフェクション後1日目にRNAを回収し、逆転写してcDNAにした後、BcL-xLのmRNA量を7300 Real Time PCR System(Applied BioSystems)を用いて、定量PCR法にて定量した。図1の結果が示すように、化合物Xと化合物YはBcL-xLに対し同程度の発現抑制効果を示した。
例2 BcL-xLを標的とするsiRNAのがん細胞増殖抑制能の検証
大腸癌細胞株HCT116、乳癌細胞株MDA-MB-231、皮膚癌細胞株A375、大腸癌細胞株SW480を、HCT116はMcCOY’s 5A培地(Sigma-Aldrich社)、MDA-MB-231、A375、SW480はDMEM培地(Sigma-Aldrich社)(それぞれ、非働化処理したウシ胎仔血清(FBS)を10%、抗生物質として100U/mLのpenicillin、100μg/mLのstreptomycinを含む)で、37℃、5%CO2の条件下で培養を行った。
大腸癌細胞株HCT116、乳癌細胞株MDA-MB-231、皮膚癌細胞株A375、大腸癌細胞株SW480を、HCT116はMcCOY’s 5A培地(Sigma-Aldrich社)、MDA-MB-231、A375、SW480はDMEM培地(Sigma-Aldrich社)(それぞれ、非働化処理したウシ胎仔血清(FBS)を10%、抗生物質として100U/mLのpenicillin、100μg/mLのstreptomycinを含む)で、37℃、5%CO2の条件下で培養を行った。
siRNA(化合物X~Z)のトランスフェクションは、次の通りに行った。トランスフェクションの前日、HCT116、A375は、0.25×105個/ウェル、MDA-MB-231、SW480は、0.5×105個/ウェルとなるように6ウェル組織培養プラスチックディッシュに播種した。125μLのOpti-MEM I Reduced Serum Medium(Invitrogen)中にsiRNAを27.5pmol加え、穏やかに混合した。次に、Lipofectamine RNAiMAX(Invitrogen)を125μLのOpti-MEM I Reduced Serum Medium中に3μL希釈し、穏やかに混合した。希釈したsiRNAと希釈したLipofectamine RNAiMAXを合わせ、穏やかに混合した後、室温で15分間インキュベートした。この間、培地を2.5mLのOpti-MEM I Reduced Serum Mediumに交換した。15分間のインキュベーション後、siRNAとLipofectamine RNAiMAXとの複合体を細胞に加え、37℃、5%CO2を含む大気下でインキュベートした。5時間のインキュベーション後、3mLの10%FBS入り培地に交換した。トランスフェクション後、3日目に細胞数を計測した。図2の結果が示すように、いずれの癌細胞においても、化合物Yより化合物Xの方が強く増殖を抑制した。
例3 BcL-xLを標的とするsiRNAのがん細胞増殖抑制能及びがん細胞殺傷能の検証
肺癌細胞株A549、膵臓癌細胞株SUIT-2、膵臓癌細胞株SW1990を、A549はDMEM培地(Sigma-Aldrich社)、SUIT-2はMEM培地(Sigma-Aldrich社)、SW1990はRPMI1640(Sigma-Aldrich社)(それぞれ、非働化処理したウシ胎仔血清(FBS)を10%、抗生物質として100U/mLのpenicillin、100μg/mLのstreptomycinを含む)で、37℃、5%CO2の条件下で培養を行った。
肺癌細胞株A549、膵臓癌細胞株SUIT-2、膵臓癌細胞株SW1990を、A549はDMEM培地(Sigma-Aldrich社)、SUIT-2はMEM培地(Sigma-Aldrich社)、SW1990はRPMI1640(Sigma-Aldrich社)(それぞれ、非働化処理したウシ胎仔血清(FBS)を10%、抗生物質として100U/mLのpenicillin、100μg/mLのstreptomycinを含む)で、37℃、5%CO2の条件下で培養を行った。
siRNA(化合物X~Z)のトランスフェクションは、次の通りに行った。トランスフェクションの前日、それぞれの細胞をA549、SUIT-2は、0.15×104個/ウェル、SW1990は、0.45×104個/ウェルとなるように96ウェル組織培養プラスチックディッシュに播種した。5μLのOpti-MEM I Reduced Serum Medium(Invitrogen)中にsiRNAを1.1pmol加え、穏やかに混合した。次に、Lipofectamine RNAiMAX(Invitrogen)を4.88μLのOpti-MEM I Reduced Serum Medium中に0.12μL希釈し、穏やかに混合した。希釈したsiRNAと希釈したLipofectamine RNAiMAXを合わせ、穏やかに混合した後、室温で15分間インキュベートした。この間、培地を100μLのOpti-MEM I Reduced Serum Mediumに交換した。15分間のインキュベーション後、siRNAとLipofectamine RNAiMAXとの複合体を細胞に加え、37℃、5%CO2を含む大気下でインキュベートした。
5時間のインキュベーション後、3mLの10%FBS入りのそれぞれの培地に交換した。トランスフェクション後4日目に、Hoechst 33342(Thermo Fisher社、#H3570)とヨウ化プロピジウム(Wako社、#169-26281)をそれぞれ終濃度が、5μg/mL、2μg/mLとなるように培地に添加し、Celigo(R) Image Cytometer(Nexcelom Bioscience社、#Celigo-106-0448)にて、Hoechst 33342で染色された細胞を生細胞数と死細胞数の合計として、ヨウ化プロピジウムで染色された細胞を死細胞数として、生細胞数、死細胞数を計測した。図3-1~3-3の結果が示すように、いずれの癌細胞においても、化合物Yより化合物Xの方が強く増殖を抑制し、細胞死の割合も化合物Yより化合物Xの方が多かった。
例4 化合物XによるBcL-xL以外の遺伝子発現への影響
例1と同様にsiRNAをHCT116細胞に導入、インキュベートした後、RNAを回収し、逆転写してcDNAにした。得られたcDNAを用い、BCL2、SMAD1、P21、MRS2のmRNA量を7300 Real Time PCR System(Applied Bio Systems)により、定量PCR法にて定量した。図4の結果が示すように、化合物YはBCL2、SMAD1、P21、MRS2の発現を抑制しなかったのに対し、化合物Xは、これらすべての遺伝子の発現を抑制した。
例1と同様にsiRNAをHCT116細胞に導入、インキュベートした後、RNAを回収し、逆転写してcDNAにした。得られたcDNAを用い、BCL2、SMAD1、P21、MRS2のmRNA量を7300 Real Time PCR System(Applied Bio Systems)により、定量PCR法にて定量した。図4の結果が示すように、化合物YはBCL2、SMAD1、P21、MRS2の発現を抑制しなかったのに対し、化合物Xは、これらすべての遺伝子の発現を抑制した。
例5 化合物Xのアポトーシス誘導活性の検証
細胞の播種密度を0.2×105個/ウェルとした以外は例1と同様にして、siRNAをHCT116細胞に導入、インキュベートした。トランスフェクション後3日目に細胞抽出液を調製し、アポトーシスシグナルである活性化カスパーゼ-3並びに活性化PARPの発現変化をウエスタンブロットにより解析した。
ウエスタンブロットは次のように行った。細胞は氷冷PBSで洗浄後、TNE lysis buffer(1%NP-40、50mM Tris-HCl、150mM NaCl、1mM EDTA、complete Mini EDTA-free(Roche社)、PhosSTOP(Roche社)、pH7.5)を加え、氷冷で30分間インキュベートすることで可溶化した。その後、15000rpm、4℃の条件で15分間遠心し、上清を細胞抽出液とした。得られた細胞抽出液は、Micro BCA Protein Assay Kit(Thermo Scientific)を用いてタンパク質の定量を行い、10μgの細胞抽出液にRed Loading Buffer Pack(New England Biolabs社)を加えて熱処理(100℃、5分間)することで変性させ、SuperSepTM Ace(Wako社)を用いたSDS-PAGEにより、タンパク質を分離した。分離後、セミドライ式ブロッティング装置(Bio-Rad社)を用いて、PVDF transfer membrane(Immobilon-P:Millipore)に転写した。メンブレンは5%スキムミルク/0.05%Tween 20添加PBS(以下PBS-Tと略す)で、室温にて1時間でインキュベートしてブロッキングを行った。続いて、PBS-Tで希釈した各種一次抗体(Bcl-xL (54H6) Rabbit mAb #2764(CST社)、PARP Antibody #9542(CST社)、Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb #9664(CST社)、Anti-GAPDH antibody [6C5](abcam社))で16時間、4℃でインキュベートした。PBS-Tで洗浄後、対応するHRP結合抗マウス若しくはウサギIgG(CST社)とともに室温で60分間インキュベートした後、PBS-Tで洗浄し、SuperSignalTMWest Femto Maximum Sensitivity Substrate(Thermo Scientific)と反応させた後、chemidoc(Bio-Rad社)を用いて化学発光を検出した。各操作間の洗浄には、PBS-Tによる5分間の振盪を3回行った。図5の結果が示す通り、化合物Xにより、アポトーシスシグナルである活性化カスパーゼ-3並びに活性化PARPが観察され、アポトーシスが誘導されたことが示された。一方、化合物Yでは活性化カスパーゼ-3は観察されず、活性化PARPもわずかしか観察されなかった。
細胞の播種密度を0.2×105個/ウェルとした以外は例1と同様にして、siRNAをHCT116細胞に導入、インキュベートした。トランスフェクション後3日目に細胞抽出液を調製し、アポトーシスシグナルである活性化カスパーゼ-3並びに活性化PARPの発現変化をウエスタンブロットにより解析した。
ウエスタンブロットは次のように行った。細胞は氷冷PBSで洗浄後、TNE lysis buffer(1%NP-40、50mM Tris-HCl、150mM NaCl、1mM EDTA、complete Mini EDTA-free(Roche社)、PhosSTOP(Roche社)、pH7.5)を加え、氷冷で30分間インキュベートすることで可溶化した。その後、15000rpm、4℃の条件で15分間遠心し、上清を細胞抽出液とした。得られた細胞抽出液は、Micro BCA Protein Assay Kit(Thermo Scientific)を用いてタンパク質の定量を行い、10μgの細胞抽出液にRed Loading Buffer Pack(New England Biolabs社)を加えて熱処理(100℃、5分間)することで変性させ、SuperSepTM Ace(Wako社)を用いたSDS-PAGEにより、タンパク質を分離した。分離後、セミドライ式ブロッティング装置(Bio-Rad社)を用いて、PVDF transfer membrane(Immobilon-P:Millipore)に転写した。メンブレンは5%スキムミルク/0.05%Tween 20添加PBS(以下PBS-Tと略す)で、室温にて1時間でインキュベートしてブロッキングを行った。続いて、PBS-Tで希釈した各種一次抗体(Bcl-xL (54H6) Rabbit mAb #2764(CST社)、PARP Antibody #9542(CST社)、Cleaved Caspase-3 (Asp175) (5A1E) Rabbit mAb #9664(CST社)、Anti-GAPDH antibody [6C5](abcam社))で16時間、4℃でインキュベートした。PBS-Tで洗浄後、対応するHRP結合抗マウス若しくはウサギIgG(CST社)とともに室温で60分間インキュベートした後、PBS-Tで洗浄し、SuperSignalTMWest Femto Maximum Sensitivity Substrate(Thermo Scientific)と反応させた後、chemidoc(Bio-Rad社)を用いて化学発光を検出した。各操作間の洗浄には、PBS-Tによる5分間の振盪を3回行った。図5の結果が示す通り、化合物Xにより、アポトーシスシグナルである活性化カスパーゼ-3並びに活性化PARPが観察され、アポトーシスが誘導されたことが示された。一方、化合物Yでは活性化カスパーゼ-3は観察されず、活性化PARPもわずかしか観察されなかった。
例6 化合物Xのin vivoでの抗腫瘍効果の検証
BALB/c nu/nuマウス(6~8週齢、メス、n=4、日本クレア社より購入)に、大腸癌細胞系HCT116細胞1.0×105個を皮下接種し、担癌マウスとした。接種後14日目から、化合物X又は化合物Zをマウスの体重1gあたり1mgの用量で週2回腫瘍内投与し、腫瘍の体積をノギスで測定した。なお、各化合物の送達にはLipoTrustTM EX Oligo <in vivo>(北海道システム・サイエンス社)を使用した。また、接種後35日目にマウスを安楽死させ、腫瘍重量を測定した。腫瘍体積の推移を図6に、腫瘍重量の比較を図7にそれぞれ示す。両図より、化合物Xがin vivoでも腫瘍の増殖を顕著に抑制することが分かる。
BALB/c nu/nuマウス(6~8週齢、メス、n=4、日本クレア社より購入)に、大腸癌細胞系HCT116細胞1.0×105個を皮下接種し、担癌マウスとした。接種後14日目から、化合物X又は化合物Zをマウスの体重1gあたり1mgの用量で週2回腫瘍内投与し、腫瘍の体積をノギスで測定した。なお、各化合物の送達にはLipoTrustTM EX Oligo <in vivo>(北海道システム・サイエンス社)を使用した。また、接種後35日目にマウスを安楽死させ、腫瘍重量を測定した。腫瘍体積の推移を図6に、腫瘍重量の比較を図7にそれぞれ示す。両図より、化合物Xがin vivoでも腫瘍の増殖を顕著に抑制することが分かる。
多数の様々な改変が、本発明の精神から逸脱せずになされ得ることを当業者は理解する。したがって、本明細書に記載された本発明の形態は例示にすぎず、本発明の範囲を制限する意図がないことを理解すべきである。
Claims (9)
- 配列番号1のヌクレオチド配列をアンチセンス鎖に含む、がん処置用RNAi分子。
- 配列番号1のヌクレオチド配列をアンチセンス鎖に含むRNAi分子を含む、がん処置用組成物。
- 配列番号1のヌクレオチド配列が、アンチセンス鎖の5’から2~8位に配置されている、請求項1に記載のRNAi分子又は請求項2に記載の組成物。
- BcL2ファミリーのタンパク質発現を抑制する、請求項1又は3に記載のRNAi分子又は請求項2若しくは3に記載の組成物。
- BcL2ファミリーが、BcL-XLである、請求項4に記載のRNAi分子又は組成物。
- アンチセンス鎖が、配列番号14のヌクレオチド配列を含む、請求項1、3~5のいずれか一項に記載のRNAi分子又は請求項2~5のいずれか一項に記載の組成物。
- がんがBcL-XLを発現している、請求項1、3~6のいずれか一項に記載のRNAi分子又は請求項2~6のいずれか一項に記載の組成物。
- がんが、脳腫瘍、頭頚部がん、乳がん、肺がん、口腔がん、食道がん、胃がん、十二指腸がん、虫垂がん、大腸がん、直腸がん、肝がん、膵がん、胆嚢がん、胆管がん、肛門がん、腎がん、尿管がん、膀胱がん、前立腺がん、陰茎がん、精巣がん、子宮がん、子宮頸がん、卵巣がん、外陰がん、膣がん、皮膚がん、線維肉腫、悪性線維性組織球腫、脂肪肉腫、横紋筋肉腫、平滑筋肉腫、血管肉腫、カポジ肉腫、リンパ管肉腫、滑膜肉腫、軟骨肉腫、骨肉腫、骨髄腫、リンパ腫、白血病からなる群から選択される、請求項7に記載のRNAi分子又は医薬組成物。
- 有効量の請求項1、3~8のいずれか一項に記載のRNAi分子、又は、請求項2~8のいずれか一項に記載の組成物を、それを必要とする対象に投与することを含む、がんの治療方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980075669.8A CN113038956A (zh) | 2018-12-05 | 2019-12-04 | 癌处置用RNAi分子 |
JP2020559989A JPWO2020116537A1 (ja) | 2018-12-05 | 2019-12-04 | がん処置用RNAi分子 |
US17/299,621 US20220016156A1 (en) | 2018-12-05 | 2019-12-04 | Rnai molecule for treating cancer |
EP19894146.0A EP3906930A4 (en) | 2018-12-05 | 2019-12-04 | RNAI MOLECULE FOR TREATMENT OF CANCER |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-228284 | 2018-12-05 | ||
JP2018228284 | 2018-12-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020116537A1 true WO2020116537A1 (ja) | 2020-06-11 |
Family
ID=70975466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/047505 WO2020116537A1 (ja) | 2018-12-05 | 2019-12-04 | がん処置用RNAi分子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220016156A1 (ja) |
EP (1) | EP3906930A4 (ja) |
JP (1) | JPWO2020116537A1 (ja) |
CN (1) | CN113038956A (ja) |
WO (1) | WO2020116537A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2020196736A1 (ja) * | 2019-03-28 | 2020-10-01 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004083240A2 (en) * | 2003-03-18 | 2004-09-30 | Jo Milner | Regulation of gene expression |
WO2006047842A2 (en) | 2004-11-08 | 2006-05-11 | K.U. Leuven Research And Development | Modified nucleosides for rna interference |
US20060166920A1 (en) * | 2005-12-27 | 2006-07-27 | Regents Of The University Of Michigan | Oligonucleotide based therapeutics |
JP2009540857A (ja) * | 2006-06-26 | 2009-11-26 | サントル レジオナル ド ルッテ コントル ル キャンサー−サントル フランソワ バクレシー | Bcl−XL特異的siNAを用いる癌治療法 |
WO2011046983A2 (en) * | 2009-10-12 | 2011-04-21 | Smith Holdings, Llc | Methods and compositions for modulating gene expression using oligonucleotide based drugs administered in vivo or in vitro |
JP2018513668A (ja) * | 2014-12-26 | 2018-05-31 | 日東電工株式会社 | P21遺伝子調節のためのrna剤 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1442143A4 (en) * | 2002-02-20 | 2005-02-16 | Sirna Therapeutics Inc | INHIBITION OF RNA INTERFERENCE-INDUCED BCL2 GENE EXPRESSION USING SMALL INTERFERING NUCLEIC ACIDS (SINA) |
US10174314B2 (en) * | 2011-12-22 | 2019-01-08 | Interna Technologies B.V. | MiRNA for treating head and neck cancer |
CA2909380A1 (en) * | 2013-04-21 | 2014-10-30 | Yeda Research And Development Co. Ltd. | Agents for downregulation of the activity and/or amount of bcl-xl and/or bcl-w |
CN106177955B (zh) * | 2016-08-18 | 2018-03-16 | 广州威溶特医药科技有限公司 | Bcl‑xL抑制剂和溶瘤病毒在制备抗肿瘤药物中的应用 |
-
2019
- 2019-12-04 CN CN201980075669.8A patent/CN113038956A/zh active Pending
- 2019-12-04 EP EP19894146.0A patent/EP3906930A4/en not_active Withdrawn
- 2019-12-04 WO PCT/JP2019/047505 patent/WO2020116537A1/ja unknown
- 2019-12-04 US US17/299,621 patent/US20220016156A1/en active Pending
- 2019-12-04 JP JP2020559989A patent/JPWO2020116537A1/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004083240A2 (en) * | 2003-03-18 | 2004-09-30 | Jo Milner | Regulation of gene expression |
WO2006047842A2 (en) | 2004-11-08 | 2006-05-11 | K.U. Leuven Research And Development | Modified nucleosides for rna interference |
US20060166920A1 (en) * | 2005-12-27 | 2006-07-27 | Regents Of The University Of Michigan | Oligonucleotide based therapeutics |
JP2009540857A (ja) * | 2006-06-26 | 2009-11-26 | サントル レジオナル ド ルッテ コントル ル キャンサー−サントル フランソワ バクレシー | Bcl−XL特異的siNAを用いる癌治療法 |
WO2011046983A2 (en) * | 2009-10-12 | 2011-04-21 | Smith Holdings, Llc | Methods and compositions for modulating gene expression using oligonucleotide based drugs administered in vivo or in vitro |
JP2018513668A (ja) * | 2014-12-26 | 2018-05-31 | 日東電工株式会社 | P21遺伝子調節のためのrna剤 |
Non-Patent Citations (10)
Title |
---|
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING CO. |
BRAMSENKJEMS, J. FRONT GENET., vol. 3, 2012, pages 154 |
DELEAVEYDAMHA, CHEM BIOL., vol. 19, no. 8, 2012, pages 937 - 54 |
GAGLIONEMESSERE, MINI REV MED CHEM., vol. 10, no. 7, 2010, pages 578 - 95 |
HONGNAM, THERANOSTICS, vol. 4, no. 12, 2014, pages 1211 - 32 |
KACZMAREK ET AL., GENOME MED., vol. 9, no. 1, 2017, pages 60 |
KRAFT ET AL., J PHARM SCI., vol. 103, no. 1, 2014, pages 29 - 52 |
RETTIGBEHLKE, MOL THER., vol. 20, no. 3, 2012, pages 483 - 512 |
SAROSIEKLETA, FEBS J., vol. 283, no. 19, 2016, pages 3523 - 3533 |
See also references of EP3906930A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3906930A4 (en) | 2022-08-24 |
US20220016156A1 (en) | 2022-01-20 |
JPWO2020116537A1 (ja) | 2021-10-21 |
EP3906930A1 (en) | 2021-11-10 |
CN113038956A (zh) | 2021-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7039539B2 (ja) | 乳酸デヒドロゲナーゼ及びその薬剤の治療的阻害 | |
ES2586593T3 (es) | Liposomas de retinoide para potenciar la modulación de la expresión de hsp47 | |
JP5362350B2 (ja) | 小分子活性化rna分子及び使用方法 | |
BR112017013597B1 (pt) | Molécula de ácido nucleico, composição farmacêutica, vetor, célula,e, uso de uma molécula de ácido nucleico | |
ES2865030T3 (es) | Estructuras de ARNip para una alta actividad y una inespecificidad reducida | |
TW202200163A (zh) | 用於抑制angptl3表現之組合物及方法 | |
JP2023539341A (ja) | Dux4阻害剤およびその使用方法 | |
US20240043837A1 (en) | Modulation of signal transducer and activator of transcription 3 (stat3) expression | |
KR20220069103A (ko) | 최소 플루오린 함량을 갖는 작은 간섭 rna의 화학적 변형 | |
BR112021012516A2 (pt) | Composições e métodos para inibir a expressão de hmgb1 | |
JP2021520355A (ja) | Tm上昇ヌクレオチドで修飾された二本鎖核酸阻害剤分子 | |
JPWO2006038608A1 (ja) | オリゴ二本鎖rna及び医薬組成物 | |
WO2020116537A1 (ja) | がん処置用RNAi分子 | |
WO2020196736A1 (ja) | RNAi分子 | |
ES2844398T3 (es) | ARNip modificado y composición farmacéutica que comprende el mismo | |
KR20200127008A (ko) | 담관 부족-연관된 상태의 치료를 위한 방법 및 조성물 | |
US20220251561A1 (en) | Eph2a aptamer and uses thereof | |
JP7208911B2 (ja) | 核酸分子発現の調節 | |
JP6751185B2 (ja) | GST−π遺伝子を調節するためのRNA干渉剤 | |
WO2024004779A1 (ja) | RecQL1ヘリカーゼ遺伝子を標的とするsiRNA | |
WO2022092279A1 (ja) | siRNA及び医薬組成物並びに予防及び/又は治療剤 | |
TWI715594B (zh) | 用於麩胱甘肽S轉移酶Pi(GST-π)基因調控之RNA干擾劑 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19894146 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020559989 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019894146 Country of ref document: EP Effective date: 20210705 |