WO2020116403A1 - Flux sheet and solder bonding method using flux sheet - Google Patents

Flux sheet and solder bonding method using flux sheet Download PDF

Info

Publication number
WO2020116403A1
WO2020116403A1 PCT/JP2019/047087 JP2019047087W WO2020116403A1 WO 2020116403 A1 WO2020116403 A1 WO 2020116403A1 JP 2019047087 W JP2019047087 W JP 2019047087W WO 2020116403 A1 WO2020116403 A1 WO 2020116403A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
flux sheet
flux
solder
substrate
Prior art date
Application number
PCT/JP2019/047087
Other languages
French (fr)
Japanese (ja)
Inventor
今村 圭吾
一浩 宮内
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to JP2020559193A priority Critical patent/JP7407733B2/en
Priority to KR1020217011948A priority patent/KR20210097105A/en
Priority to CN201980075479.6A priority patent/CN113165092B/en
Publication of WO2020116403A1 publication Critical patent/WO2020116403A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • Patent Document 1 in order to solve the above problems, a resin (A1) having a structure derived from polyvinyl alcohol, or a resin (A2) having a structure derived from polyvinylpyrrolidone and a flux agent (B) are used.
  • a flip chip bonding method using a flux film is disclosed.
  • the resin (A) has a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa ⁇ s (measured at a shear rate of 10 mm/min) or less. It is characterized by containing 35 to 99% by mass of a resin (a1) and 1 to 65% by mass of a resin (a2) having a glass transition point higher than that of the resin (a1). According to this feature, the adhesiveness to the substrate is good, and the effect of not causing the deviation of the solder balls during the reflow can be exhibited, and the adhesiveness and the tackiness of the flux sheet can be controlled. You can exercise your sexuality.
  • the flux sheet of the present invention contains a flux agent (B). According to this feature, the wettability of the solder balls can be improved, and the effect (self-alignment effect) of correcting the positional deviation between the solder balls and the electrodes during solder reflow can be exhibited.
  • the flux sheet of the present invention is characterized in that it does not substantially contain a low-molecular compound other than (B). According to this feature, it is possible to exert an effect that it is possible to suppress substrate contamination due to vaporization of a low molecular weight compound during solder reflow and misalignment due to solder rolling.
  • one embodiment of the flux sheet of the present invention is characterized in that the resin (a1) is water-soluble.
  • an aqueous solvent can be used when the flux sheet is manufactured, mounted, or after solder reflow, and when the flux sheet is washed. This makes it possible to wash the flux sheet without using a highly volatile organic solvent, and thus it is possible to reduce the environmental load due to the evaporation of the organic solvent.
  • the resin (a1) has a partial structure in which one or more alkylene oxide chains are linked to a part of hydroxy groups (-OH) of polyvinyl alcohol-(CH( R 1 )CH(R 2 )O) n —R 3 (n represents the number of repeating alkylene oxide chains (average value) and is 1.0 or more.
  • R 1 , R 2 and R 3 are independent of each other. Represents a hydrogen atom or an organic group.
  • R 1 , R 2 and R 3 may be the same or different, and are selected from modified polyvinyl alcohol, polyamide and polyester. It is characterized by containing one or more kinds. According to this feature, the adhesiveness to the substrate is good, and it is possible to further exert the effect that the deviation of the solder ball does not occur during the reflow.
  • one embodiment of the flux sheet of the present invention is characterized by containing polyvinyl alcohol as (a2). According to this feature, the adhesiveness and the tackiness can be controlled to improve the handleability during work, the reworkability is excellent, and the apparent water solubility can be improved.
  • the content of the resin (A) in the flux sheet is 50% by mass or more. According to this feature, it is possible to achieve both a solder ball holding force and good handleability.
  • the solder joining method of the present invention for solving the above-mentioned problems is a solder joining method using the above-mentioned flux sheet, and is characterized by having the following steps (1) to (4).
  • (1) Step of disposing the flux sheet on the surface of the substrate having the electrodes having the electrodes (2) Step of disposing solder balls on the flux sheet (3) Heating to a temperature at which the flux sheet melts or softens Steps (4) and (3) are performed simultaneously with or after that, a step of heating to a temperature equal to or higher than the melting point of the solder.
  • a flux sheet having a strong adhesiveness to the substrate and causing no deviation of the solder balls during reflow is formed. Since it is used, it is possible to exert the effect of not causing defects in solder joints.
  • solder joining method of the present invention It is a schematic diagram for explaining the solder joining method of the present invention, and is a schematic cross-sectional view showing an example of a solder joining substrate in which a solder ball is joined to an electrode of the substrate in the step (3). It is a schematic diagram for explaining the solder joining method of the present invention, and is a schematic sectional view showing an example of the solder joining substrate from which the flux sheet has been removed after the step (4).
  • the flux sheet of the present invention is a flux sheet containing a resin (A), wherein the resin (A) has a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa ⁇ s (shear rate of 10 mm/min.
  • the resin (a1) having the following content is measured.
  • the “flux sheet” is a sheet used for forming a solder joint and is used for removing an oxide film on the solder surface.
  • the resin (A) of the present invention is characterized by containing a resin (a1) having a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa ⁇ s or lower.
  • the glass transition point is the temperature at which the glass transition of the substance occurs (the temperature at which the micro Brownian motion occurs). Generally, in the temperature range below the glass transition point, it shows a hard and glassy property, and the temperature range higher than the glass transition point. Shows soft and rubber-like or liquid-like properties.
  • a polymer sheet having an amorphous structure is in a hard glass state at a temperature lower than the glass transition temperature and a soft rubber state at a high temperature. Therefore, a sheet containing a resin having a low glass transition temperature (near room temperature, or even below room temperature) is soft in the temperature range to be handled, and when the sheet is placed on the substrate, the adhesiveness at the interface with the substrate is improved. It can be said that the adhesive strength of is stronger.
  • a sheet containing a resin having a low glass transition temperature can be laminated without biting voids even in a relatively low temperature region (about 60 to 80° C.) in which there is little possibility of adverse effects such as warpage or thermal decomposition of the substrate. Can be said.
  • a flux sheet having good adhesion to the substrate/solder ball can be obtained without adding a tackifier or the like.
  • the glass transition point of the resin (a1) is 40° C. or lower, and the upper limit value is preferably 30° C. or lower, more preferably 20° C. or lower, further preferably 10° C. or lower, It is particularly preferably 0° C. or lower, and most preferably ⁇ 20° C. or lower.
  • the resin (a1) is characterized by having a melt viscosity at 150° C. of 500 Pa ⁇ s or less.
  • the upper limit value is preferably 400 Pa ⁇ s or less, more preferably 350 Pa ⁇ s or less, and further preferably 200 Pa ⁇ s or less.
  • the melt viscosity at 150° C. can be measured by a capillary rheometer (Capirograph ID, manufactured by Toyo Seiki Seisakusho Co., Ltd.) under a shear rate of 10 mm/min.
  • the resin (a1) having a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa ⁇ s or lower is not particularly limited, but is preferably a thermoplastic resin such as polyethylene, polypropylene, polybutylene or poly.
  • Vinyl chloride ethylene-cyclic olefin copolymer, polystyrene-based resin, poly(meth)acrylic acid-based resin, polyvinyl alcohol, polyvinyl alcohol-based resin such as modified polyvinyl alcohol, polyvinyl acetate, poly(meth)acrylamide-based resin, polybutadiene ,
  • Addition resin such as polyisoprene, styrene maleic acid resin, carboxyl group terminated butadiene nitrile copolymer (CTBN), condensation resin such as polyester, polyamide, polyimide, polyurethane, polycarbonate resin, polyetherketone and polyethersulfone ,
  • Polyether glycols such as polyethylene glycol and polypropylene glycol, polyalkyleneimine resins such as polyethyleneimine, and ring-opening polymerization resins such as polycycloolefin. These may be used alone or in combination of two or more. Among these, it is preferable to contain at least
  • polyvinyl alcohol preferably has a saponification degree of 75 to 90 mol %, more preferably 85 to 90 mol %.
  • saponification degree of the polyvinyl alcohol By setting the saponification degree of the polyvinyl alcohol within the above range, it is possible to prevent the crystallization from becoming difficult to dissolve in water and the decrease in hydrophilic groups to make it difficult to dissolve in water.
  • polyvinyl alcohol modified with a hydrophilic group it is soluble in water even with a lower saponification degree.
  • the saponification degree is preferably 30 to 60 mol% because the solubility can be improved by grafting a hydrophilic group other than the hydroxy group or blocking it in the main chain. More preferably 40 to 50 mol %.
  • the hydrophilic group used for modifying the hydrophilic group for example, an alkylene oxide compound such as ethylene glycol is preferable.
  • the resin containing a hydroxy group, a carboxyl group, or an amino group can be used as a flux sheet without blending a flux agent because the resin itself has a flux function.
  • resins such as poly(meth)acrylic acid-based resin, polyvinyl alcohol-based resin, polyamide, polyester, carboxyl group-terminated butadiene nitrile copolymer (CTBN), and polyurethane may exhibit flux activity in a molten state. it can.
  • the weight average molecular weight of the resin (a1) is preferably 1 ⁇ 10 3 to 2.0 ⁇ 10 5 .
  • the lower limit value is preferably 3.0 ⁇ 10 3 or more, more preferably 8.0 ⁇ 10 3 or more.
  • the upper limit value is preferably 1.5 ⁇ 10 5 or less, more preferably 1.0 ⁇ 10 5 or less. More preferably, it is 5.0 ⁇ 10 4 or less.
  • the molecular weight distribution (Mw/Mn) of the resin (a1) is preferably 1-30.
  • the lower limit is preferably 1.5 or more, more preferably 1.8 or more.
  • the upper limit is preferably 15 or less, more preferably 8 or less.
  • the molecular weight of the resin (a1) is measured by a gel permeation chromatography method (GPC method) using tetrahydrofuran (THF) as an eluent, and the molecular weight of the resin (a1) is a polystyrene equivalent value.
  • the resin (a1) of the present invention is preferably water-soluble.
  • Water-soluble means that the resin (a1) dissolves in 5 parts by mass or more with respect to 100 parts by mass of water under the conditions of 25° C. and 1 atm.
  • the lower limit is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, further preferably 30 parts by mass or more. Since the resin (a1) is water-soluble, it can be produced using an aqueous solvent when producing the flux sheet. In addition, when cleaning the flux sheet, an aqueous solvent can be used, and the effect that the environmental load due to the volatilization of the organic solvent can be reduced can be exhibited.
  • Examples of the resin (a1) include a partial structure in which one or more alkylene oxide chains are linked to a partial hydroxy group (—OH) of polyvinyl alcohol —(CH(R 1 )CH(R 2 )O).
  • a modified polyvinyl alcohol having n ⁇ R 3 ) substituted therein is included.
  • n represents the number of repeating alkylene oxide chains (average value), and is preferably 1.0 or more.
  • the lower limit of n is preferably 1.0 or more, more preferably 2.0 or more, still more preferably 5.0 or more, and particularly preferably 6.0 or more.
  • the upper limit is preferably 300.0 or less, more preferably 200.0 or less, and further preferably 65.0 or less.
  • Each of R 1 and R 2 is preferably a hydrogen atom or an organic group, and the organic group is preferably an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, butyl group, pentyl group and hexyl group.
  • R 3 is preferably a hydrogen atom or an organic group, and as the organic group, an alkyl group having 1 to 10 carbon atoms, an acyl group having 1 to 10 carbon atoms, an alkyl ester group having 1 to 10 carbon atoms, or 1 carbon atom Alkyl amide groups of 10 and sulfonate groups are preferred.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, butyl group, pentyl group and hexyl group.
  • Examples of the acyl group having 1 to 10 carbon atoms include methylcarbonyl group, ethylcarbonyl group, n-propylcarbonyl group, i-propylcarbonyl group, butylcarbonyl group, pentylcarbonyl group and hexyl group carbonyl.
  • Examples of the alkyl ester group having 1 to 10 carbon atoms include a methyloxycarbonylmethylene group, a methylcarbonyloxymethylene group, an ethyloxycarbonylethylene group and an ethylcarbonyloxyethylene group.
  • Examples of the alkylamido group having 1 to 10 carbon atoms include N,N'-dimethylamidoalkylene group and N,N'-diethylamidoalkylene group.
  • modified polyvinyl alcohol specifically, the trade name "GOHSENX (registered trademark) LW-100 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.; glass transition point -0.5°C, melt viscosity at 150°C: 63 Pa ⁇ s (shear) Speed 10 mm/min) and saponification degree 43.1 mol%").
  • polyester examples include trade name “Pethresin A-680 (manufactured by Takamatsu Yushi Co., Ltd.; glass transition point 30° C., melt viscosity at 150° C.: 29 Pa ⁇ s (shear rate 10 mm/min)), and the polyamide Specifically, the trade name “AQ nylon T-70 (manufactured by Toray Industries, Inc.; glass transition point ⁇ 46° C., melt viscosity at 150° C.: 17 Pa ⁇ s (shear rate 10 mm/min)) can be mentioned.
  • the resin (A) of the present invention preferably contains the resin (a1) in an amount of 35% by mass or more. Further, the resin (A) of the present invention can contain other resins in addition to the above resin (a1). As the other resin, it is preferable to contain a resin (a2) having a glass transition point higher than that of the resin (a1).
  • the resin (a2) is not limited as long as it has a glass transition point higher than that of the resin (a1), and for example, the thermoplastic resin exemplified in the above resin (a1) can be used. Further, in addition to the above-mentioned thermoplastic resin, a thermosetting resin or the like can be contained, but from the viewpoint of detergency, the thermosetting resin content is preferably 45% by mass or less.
  • thermosetting resin By setting the content of the thermosetting resin to 60% by mass or less, the thermosetting resin can form an island phase in the composition, and good detergency can be obtained, which is preferable.
  • the glass transition point of the resin (a2) is preferably higher than 40°C.
  • the lower limit is more preferably 50°C or higher, and further preferably 60°C or higher.
  • Examples of the resin (a2) having a glass transition point higher than that of the resin (a1) include, for example, polyethylene, polypropylene, polybutylene, polyvinyl chloride, ethylene-cyclic olefin copolymer, polystyrene resin, poly(meth)acrylic acid resin.
  • Polyvinyl alcohol resin polyvinyl acetate, poly(meth)acrylamide resin, polybutadiene, polyisoprene styrene Maleic acid resin and other addition resins, polyester, polyamide, polyimide, polyurethane, polycarbonate resin, polyether ketone, polyether Examples thereof include condensation resins such as sulfone, polyether resins such as polyethylene glycol and polypropylene glycol, polyalkyleneimine resins such as polyethyleneimine, and ring-opening polymerization resins such as polycycloolefin. These may be used alone or in combination of two or more.
  • the resin (A) of the present invention contains the resin (a2), it preferably contains 35 to 99% by mass of the resin (a1) and 1 to 65% by mass of the resin (a2).
  • the lower limit of the content of the resin (a1) is preferably 60% by mass or more, more preferably 65% by mass or more, and further preferably 70% by mass or more.
  • the upper limit is 95% by mass or less, and more preferably 90% by mass or less.
  • the lower limit of the content of the resin (a2) is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the upper limit is 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less.
  • the resin (A) of the invention can control the adhesive force to the substrate or the like by adding the resin (a2) in addition to the resin (a1). Further, the position of the arranged solder ball can be easily corrected, and the reworkability is improved. Further, the sheet itself has excellent flexibility and handleability. Further, by setting the content of the resin (a2) within the above range, it becomes possible to wash with a water-based solvent.
  • compatibility between the resin (a1) and the resin (a2) is poor, the compatibility can be improved by using a compatibilizer/modifier/dispersant.
  • a compatibilizer/modifier/dispersant a block (co)polymer or a graft (segment) having a high affinity with the resin (a1) and the resin (a2) is chemically bonded at one or more positions, respectively. Co)polymers may be used.
  • the modified polyvinyl alcohol has a polyvinyl alcohol chain and a (poly)alkylene oxide chain in the molecule, it functions as a compatibilizer/modifier/dispersant with polyvinyl alcohol and polyalkylene oxide, respectively.
  • a compatibilizer/modifier/dispersant preferably polyalkylene oxide, carboxymethyl cellulose, sodium salt of carboxymethyl cellulose, potassium salt of carboxymethyl cellulose or the like is used. Can be used.
  • the amount of the compatibilizer/modifier/dispersant is not particularly limited, but the total amount of the resin (a1) and the resin (a2) is taken into consideration in consideration of the effect of compatibilization and the reduction of low molecular weight components.
  • the lower limit value is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and further preferably 0.5 parts by mass or more.
  • the upper limit is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less.
  • the flux sheet of the present invention may contain, for example, a flux agent (B) in addition to the resin (A).
  • a flux agent B
  • the flux agent (B) is not particularly limited as long as it is a component capable of removing the metal oxide having a high melting point on the solder surface, and an acidic substance, a basic substance, an alcohol or the like is preferably used. Further, any of those which are active at room temperature and those which are active by heating can be used.
  • the flux agent (B) include carboxylic acids such as adipic acid, malonic acid, succinic acid, maleic acid, pentanoic acid, salicylic acid, benzoic acid, m-dihydroxybenzoic acid and sebacic acid, dodecylamine, etc. Amines, hydrohalides of amines, rosin resins and the like.
  • the flux agent may be used alone or in combination of two or more kinds.
  • As the flux agent (B) contained in the flux sheet of the present invention from the viewpoint of improving the removability of the oxide film of the solder particles, the fluidity of the sheet, the removability of the resin after solder bonding, and the wettability with solder.
  • Adipic acid, salicylic acid, dodecylamine, benzoic acid, m-dihydroxybenzoic acid and sebacic acid are preferable, and adipic acid, salicylic acid and dodecylamine are more preferable.
  • the content of the flux agent (B) can be appropriately set depending on the number of solder balls, the size (surface area), the thickness of the oxide film on the surface, the thickness of the flux sheet, etc., but the resin (A) 100 It is preferably 10 parts by mass or less with respect to parts by mass. Further, the upper limit is more preferably 8 parts by mass or less, further preferably 7 parts by mass or less, and particularly preferably 6 parts by mass or less. On the other hand, the lower limit is preferably 1 part by mass or more, more preferably 3 parts by mass or more.
  • the flux sheet of the present invention may contain, for example, an additive contained in a general flux within a range that does not impair the effects of the present invention.
  • the additive include a thixotropic agent, a flux activation auxiliary agent, and a defoaming agent.
  • thixotropic agent examples include fatty acid amides such as m-xylylenebisstearic acid amide, polyolefin waxes such as castor wax (hardened castor oil), substituted urea waxes such as N-butyl-N′-stearyl urea, polyethylene glycol, Examples thereof include polymer compounds such as methyl cellulose, ethyl cellulose and hydroxyethyl cellulose, and inorganic particles such as silica particles and kaolin particles.
  • the thixotropy-imparting agents may be used alone or in combination of two or more.
  • the thixotropic agent When the thixotropic agent is used in the flux of the present invention, its content is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer (A).
  • the lower limit is preferably 0.2 part by mass or more, more preferably 0.5 part by mass or more.
  • the upper limit is preferably 15 parts by mass or less, more preferably 10 parts by mass or less.
  • Examples of the flux activating auxiliary agent include amine hydrohalides such as diethylamine hydrobromide and cyclohexylamine hydrobromide, organic acids such as stearic acid, organic amines such as tributylamine, and trans- Examples include activators such as organic halides such as 2,3-dibromo-2-butene-1,4-diol.
  • the defoaming agent examples include alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, eicosanol, and docosanol, polyethylene wax, paraffin wax, hydrocarbon compounds such as white oil, carboxylic acid (for example, palmitic acid, oleic acid, Stearic acid, etc.) and fatty acids esters obtained by condensation with alcohols (eg, methanol, ethanol, octanol, etc.), natural fats and oils such as beef tallow, soybean oil, linseed oil, siloxanes such as polydimethylsiloxane, polymethylphenylsiloxane And the like.
  • a highly lipophilic surfactant such as a cationic surfactant, an anionic surfactant, or a nonionic surfactant can also be used.
  • the flux sheet of the present invention preferably contains substantially no low molecular weight compound other than (B).
  • the low molecular weight compound other than (B) include those having a molecular weight of 1000 or less, and typical examples thereof include plasticizers such as glycerin, phthalic acid ester, adipic acid ester, and trimellitic acid ester. ..
  • plasticizers such as glycerin, phthalic acid ester, adipic acid ester, and trimellitic acid ester. ..
  • substantially free from means that a low molecular weight compound other than (B) is not intentionally added as a constituent of the flux sheet.
  • a solvent necessary for the sheet preparation process or a low molecular weight compound derived from the raw material monomer of the (A) resin may remain, but in that case, for example, the content is less than 10% by mass, and the upper limit is The value is preferably less than 5% by mass, more preferably less than 3% by mass, further preferably less than 2% by mass, and particularly preferably less than 1% by mass.
  • the resin (A) contains a resin (a1) having a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa ⁇ s (measured at a shear rate of 10 mm/min) or lower. Because of this feature, the adhesiveness to the substrate is strong, and the solder balls are not displaced during reflow. Further, since the resin (a1) having a melt viscosity at 150° C. of 500 Pa ⁇ s or less is contained, the solder ball can sink under its own weight during the solder reflow, and the displacement of the solder ball can be suppressed. .. Therefore, it is possible to exert an excellent effect on solder bondability.
  • the flux sheet of the present invention does not have fluidity at room temperature like liquid and pasty flux, even if a flux agent is contained, flux aggregation, separation, sedimentation, etc. are unlikely to occur and storage stability is stable. It has excellent properties. Further, when the liquid and paste fluxes are applied by printing or the like, since the variation in the coating amount is large, it is necessary to appropriately adjust the coating amount and the like, and the workability is poor, but the flux sheet of the present invention has a predetermined amount. It is only necessary to place the sheet on the substrate and laminate it, and it has excellent workability. If the solvent remains, it may evaporate into voids at the time of joining, so the flux sheet of the present invention preferably has a residual solvent content of less than 10% by mass. This content can be measured, for example, by the Karl Fischer method or weight reduction by heating.
  • the flux sheet of the present invention contains a water-soluble resin (a1)
  • water can be used when the flux sheet is manufactured or mounted, or when the flux sheet is washed. Therefore, it is not necessary to use an organic solvent that is volatilized and released into the atmosphere, so that the environmental load can be reduced.
  • the thickness of the flux sheet of the present invention can be appropriately set in consideration of the flux activity, cleaning property, etc., but is preferably 1 to 500 ⁇ m.
  • the lower limit is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the size (area) of the flux sheet can be appropriately set in consideration of the size of the substrate, chip, wafer, etc. to be used. Specifically, it is preferable to set the area to be slightly larger than the area where the electrode (group) on the substrate is located. Alternatively, it may be formed in a size larger than the size to be used in advance, and cut into a desired size at the time of use. The sheet can be transferred and laminated by directly pressing the target substrate onto the sheet without cutting it.
  • the area of the flux sheet is preferably 30,000 mm 2 or more.
  • the area of the flux sheet is preferably 30,000 mm 2 or more.
  • the large-area electronic member substrate includes a wafer having a diameter of 200 mm (8 inches) or more and a panel having a 300 mm square or more.
  • the wafer includes a silicon wafer, a sapphire wafer, a compound semiconductor wafer, a glass substrate, a resin substrate (glass epoxy substrate (FR-4), bismaleimide triazine substrate, polyimide resin substrate, fluororesin, etc.), printed wiring board, etc. Be done.
  • the size of the wafer includes a wafer having a diameter of 200 mm (8 inches), a wafer having a diameter of 300 mm (12 inches), and the like.
  • the panel includes a glass substrate, a silicon substrate, a resin substrate (glass epoxy substrate (FR-4), a bismaleimide triazine substrate, a polyimide resin substrate, a fluororesin, etc.), a compound semiconductor substrate, a printed wiring board, and the like.
  • the size is, for example, 250 mm square or more, 250 mm ⁇ 350 mm, 300 mm square or more, and there are panels of 320 mm ⁇ 320 mm, 370 ⁇ 470 mm, or the like. Further, a panel of 400 mm square or more, 410 mm ⁇ 515 mm, 508 mm ⁇ 610 mm, 500 mm ⁇ 510 mm panel, 610 mm ⁇ 457 mm panel, etc. are included.
  • the method for producing the flux sheet is not particularly limited, but, for example, the resin component (A) is dissolved in a solvent to prepare a resin solution, and the support or the like having the surface subjected to release treatment is coated with a roll coater, a comma coater, Examples thereof include a method of applying a known method such as a gravure coater to form a coating film, drying the coating film, and removing the solvent. Moreover, you may add a flux agent (B) etc. as needed.
  • the sheet may be formed by kneading and melting (A), (B) and the like without using a solvent, instead of forming a solution.
  • Examples of the solvent for dissolving the resin component (A) include water, an organic solvent, a mixed solvent of water and an organic solvent, and the like, and water is preferable from the viewpoint of reducing the environmental load.
  • Examples of the organic solvent include alcohol and ketone, and alcohol is preferable.
  • As water distilled water, ion-exchanged water, tap water, etc. can be used, and distilled water, ion-exchanged water, and ultrapure water with few impurities are preferable.
  • Examples of alcohols include methanol, ethanol, n-propanol, n-butanol and the like, and examples of ketones include acetone and methyl ethyl ketone.
  • an organic solvent When an organic solvent is used, it may be used alone or in combination of two or more kinds.
  • the resin component (A) When the resin component (A) is dissolved in water, it is preferable to use warm water heated to 40 to 95° C. from the viewpoint of increasing the dissolution rate.
  • the solid content concentration of the resin component (A) is preferably 0.1 to 60 mass %.
  • the flux agent (B) When the flux agent (B) is added, it is preferable that the flux agent (B) is dissolved in the same solvent as the solvent for dissolving the resin component (A), and the flux agent (B) is directly added when it is a liquid. Good.
  • the drying temperature and the drying time of the coating film can be appropriately set depending on the solvent for the resin solution, the film thickness, etc., for example, in consideration of the thermal stability (heat decomposition resistance) of the sheet material and the volatilization of the solvent, It is preferable to dry at a drying temperature of 25 to 180° C., more preferably 40 to 100° C., from the viewpoint of suppressing changes in the physical properties of the obtained flux sheet such as deterioration of fluidity of the sheet during reflow. Furthermore, it is preferable to provide a plurality of drying ovens and perform the stepwise drying.
  • the drying time is, for example, preferably 1 to 90 minutes, more preferably 10 to 70 minutes.
  • the solder joining method of the present invention is a method including the following steps using the flux sheet of the present invention.
  • (1) Step of disposing the flux sheet on the surface having the electrodes of the substrate having the electrodes (2) Step of disposing the solder balls on the flux sheet (3)
  • the flux sheet is at a temperature equal to or higher than the melting point of the solder.
  • the solder joining method according to the present invention does not require a complicated coating process such as printing, and is excellent in workability since it is sufficient to dispose the flux sheet between the solder ball and the electrode of the substrate.
  • a complicated coating process such as printing
  • the substrate and the solder balls used in the bonding method will be described, and then the details of each step will be described with reference to the drawings.
  • FIG. 1 is a schematic plan view of a substrate provided with electrodes.
  • FIG. 2 is a schematic view of a substrate having electrodes as seen from a side surface.
  • the flux sheet of the present invention is arranged on the electrode surface side of the substrate provided with the electrodes.
  • the substrate electrodes may be laminated so as to be embedded in the flux sheet. It is preferable to degrease the substrate in advance before disposing the flux sheet.
  • the method for arranging the flux sheet on the substrate is not particularly limited, and the flux sheet may be placed as it is. However, it is preferable that the flux sheet is placed and then temporarily fixed using a laminating apparatus under atmospheric pressure or vacuum conditions.
  • a laminating device a vacuum laminating device or a roll laminator device can be used as the laminating device.
  • the temperature for laminating is preferably a glass transition temperature or higher, more preferably 20° C.
  • the temperature is, for example, 30 to 100° C., though it varies depending on the type of the resin component (A).
  • the substrate used in the solder joining method of the present invention is a substrate provided with electrodes, and may be provided with one or more electrodes, for example, a substrate provided with a plurality of electrodes shown in FIG. 1, a chip, Wafers and the like can be mentioned. Further, a solder resist is formed in a region other than the electrodes on a part of the upper surface of the substrate (note that the solder resist is not shown in FIGS. 2 to 5 for simplification). Examples of the substrate provided with such an electrode include the printed wiring board shown above.
  • a UBM made of Cu/Ni/Pd/Au, Cu/Ni/Au, Cu/Ni-P/Au, etc. It is preferable to form a (Under Bump Metallization) layer or a Surface Finish treatment layer.
  • the solder balls are arranged and fixed so as to be positioned on the electrodes of the substrate via the flux sheets.
  • various ball mounters may be used, a method of dropping the ball with a brush using a metal mask opened on the electrode, or a fine wire or pin with an adhesive applied to the tip. It is also possible to use a method in which the balls are carried to the electrodes by using and then the balls are adhered to the flux sheet and arranged.
  • the temperature is almost the same as the temperature when laminating the flux sheet, that is, preferably the glass transition point or higher, more preferably the glass transition point or higher. It is preferable to heat at a temperature higher by 20° C. or more or at a temperature of a softening point or higher (a rubber state having a glass transition point or higher when there is no softening point).
  • the temperature is, for example, 30 to 100° C., though it varies depending on the type of the resin component (A).
  • the solder ball when the solder ball is placed on the electrode of the substrate via the flux sheet, the solder ball may be pressed, but the sheet of the present invention contains the resin (a1) having a glass transition point of 40° C. or lower and is flexible. Since it has a simple structure, it is not necessary to press it positively.
  • the flux sheet of the present invention the solder ball is embedded in the flux sheet by its own weight, so that the adhesion between the solder ball and the flux sheet and the substrate is improved.
  • solder ball examples of the composition of the solder ball used in the solder joining method of the present invention include Sn-Pb type, Pb-Sn-Sb type, Sn-Sb type, Sn-Pb-Bi type, lead-free Sn-Ag type, Examples thereof include Sn-Ag-Cu type, Bi-Sn type, Sn-Cu type, Sn-Ag-Bi-In type and Sn-Zn-Bi type.
  • lead-free and low-melting-point solders such as Sn—Bi solder (Sn58Bi: melting temperature: 138° C.) and In—Sn solder (In48Sn: melting temperature: 118° C.) can also be used.
  • lead-free solder that does not contain lead.
  • Sn—Ag—Cu based solders are preferable from the viewpoint of mechanical properties, and Sn3Ag0.5Cu (melting temperature: about 217° C.) is more preferable.
  • a lead-free, low-melting-point solder for a material such as a liquid crystal that deteriorates itself in a high temperature process exceeding 200° C.
  • the size of the solder balls used in the solder joining method of the present invention is, for example, 10 ⁇ m or more and 1000 ⁇ m or less.
  • the lower limit value is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, and further preferably 50 ⁇ m or more.
  • the upper limit is preferably 760 ⁇ m or less, more preferably 610 ⁇ m or less, still more preferably 450 ⁇ m or less, and particularly preferably 300 ⁇ m or less.
  • Step (3) Step of heating the flux sheet to a temperature at which it melts or softens>
  • This step is a step of performing heat treatment at a temperature at which the flux sheet is melted or softened.
  • the heat treatment at the above temperature can remove the metal oxide formed on the surface of the solder ball by the flux action of the sheet when the heat-activated flux component is included. Further, not only the surface of the solder but also the oxide existing on the surface of the electrode can be removed together.
  • the flux sheet containing the resin (a1) in the resin (A) is used, in this step (3), there is no deviation between the electrode and the solder as shown in FIG. Can easily penetrate the substrate by its own weight, and the solder bondability becomes good.
  • Step (4) Step of heating to a temperature equal to or higher than the melting point of solder at the same time as or after (3)>
  • This step is a step of performing temperature treatment at the melting point of the solder or higher. By performing the heat treatment at the above temperature, the solder balls can be melted and soldered.
  • the step (4) may be performed simultaneously with (3) or may be performed after (3).
  • the heating temperature (maximum reaching temperature) and the heating time (holding time) at the temperature in steps (3) and (4) are the melting temperature of the solder ball, the temperature at which the resin component (A) is softened, and the resin component ( It can be appropriately set according to the conditions such as the melt viscosity of A), the boiling point of the flux agent, the size of the electrodes on the substrate, and the pitch between the electrodes.
  • the heating temperature is equal to or higher than the melting temperature or softening temperature of the resin sheet, and is preferably, for example, melting temperature (softening temperature)+20° C. or higher+100° C. or lower.
  • the heating time is preferably 5 seconds to 10 minutes, for example.
  • the heating temperature (maximum reaching temperature) is, for example, T+10° C. or higher and T+80° C. or lower, where T (° C.) is the melting temperature of the solder ball.
  • the lower limit value is preferably T+20° C. or higher, more preferably T+30° C. or higher.
  • the upper limit is preferably T+70° C. or lower, and more preferably T+45° C. or lower.
  • the heating time can be appropriately set according to the heating temperature (maximum attainable temperature), but when the heating temperature (maximum attainable temperature) is within the above range, the heating time (holding time) is, for example, 5 seconds to 10 minutes. Is.
  • the lower limit value is preferably 10 seconds or more, more preferably 20 seconds or more.
  • the upper limit is 5 minutes or less, more preferably 3 minutes or less. Further, this step may be carried out under atmospheric pressure or in an atmosphere of an inert gas such as nitrogen, but it is more preferably carried out in an atmosphere of an inert
  • the temperature profile is preferably a condition recommended by the Semiconductor Technology Association (JEDEC) (in accordance with IPC/JEDEC J-STD-020C). Further, since the flux sheet of the present invention has a glass transition point of 40° C. or lower and contains a resin (a1) having a melt viscosity of 500 Pa ⁇ s or lower at 150° C., it is pressed from the solder ball toward the substrate. There is no need to perform heat treatment at. After this step is completed, as shown in FIG.
  • JEDEC Semiconductor Technology Association
  • the flux sheet of the present invention may be dissolved and removed with a solvent after the above solder joining method is completed.
  • a solvent By dissolving and removing the flux sheet with a solvent, the flux sheet existing in the regions other than the solder-bonded regions is dissolved and removed with the solvent, and the solder-bonded portions are exposed as shown in FIG.
  • the cleaning solvent for dissolving and removing the flux sheet is not particularly limited, and examples thereof include water, an organic solvent, and a mixed solvent of water and an organic solvent, but from the viewpoint of low environmental load and easy availability, Water is preferred.
  • the organic solvent include alcohol and ketone, and alcohol is preferable. When an organic solvent is used, it may be used alone or in combination of two or more kinds.
  • the mixing ratio is not particularly limited, but a lower ratio of the organic solvent is preferable from the viewpoint of reducing the environmental load.
  • water distilled water, ion-exchanged water, tap water, etc. can be used, and distilled water, ion-exchanged water, and ultrapure water with few impurities are preferable.
  • alcohols include methanol, ethanol, n-propanol, n-butanol and the like
  • examples of ketone solvents include acetone and methyl ethyl ketone.
  • the temperature of the solvent to be used can be appropriately set depending on the resin component (A) contained in the flux sheet, but from the viewpoint of workability, it is preferably performed at room temperature.
  • a heated solvent may be used or a solvent containing a surfactant may be used.
  • the temperature of the heated solvent the higher the temperature, the more easily the flux sheet is dissolved, but the temperature is preferably lower than the boiling point of the solvent.
  • surface active agents such as anionic surface active agents, cationic surface active agents, zwitterionic surface active agents and nonionic surface active agents can be used.
  • the flux agent (B) it is preferable to dissolve and remove while irradiating ultrasonic waves.
  • the flux agent (B) it is preferable to dissolve and remove while irradiating ultrasonic waves.
  • the flux agent (B) it is preferable to perform the cleaning treatment while irradiating with ultrasonic waves.
  • it is preferable to wash with a water flow generator such as a submerged jet or a direct path in order to improve the effect of removing the flux agent.
  • a flux sheet having a film thickness of 30 ⁇ m was produced in the same manner as in Production Example 1 except that 5 parts by mass of adipic acid (based on 100 parts by mass of resin solid content of LW-100) was used as the fluxing agent.
  • a flux sheet having a film thickness of 30 ⁇ m was produced in the same manner as in Production Example 1 except that 5 parts by mass of salicylic acid (based on 100 parts by mass of the resin solid content of LW-100) was used as the fluxing agent.
  • a flux sheet having a thickness of 30 ⁇ m was produced in the same manner as in Production Example 4 except that 5 parts by mass of adipic acid (100 parts by mass of resin solid content of T-70) was used as the fluxing agent.
  • Polyester (PEs) (Takamatsu Yushi Co., Ltd., trade name “Pethresin A-680; glass transition temperature 30° C., melt viscosity at 150° C.: 29 Pa ⁇ s (shear rate 10 mm/min) (water volatilizes and resin alone) (Measurement))
  • aqueous solution in which 5 parts by mass of adipic acid (based on 100 parts by mass of resin solids of pesresin A-680) is dissolved in distilled water is added as a fluxing agent.
  • a resin solution was prepared by stirring, and a flux sheet having a film thickness of 30 ⁇ m was prepared using the prepared resin solution in the same manner as in Example 1.
  • a flux sheet having a film thickness of 30 ⁇ m was produced in the same manner as in Production Example 1 except that 43 parts by mass of salicylic acid (based on 100 parts by mass of the resin solid content of LW-100) was used as the fluxing agent.
  • the solid content of LW-100 was 70 parts by mass, and 30 parts by mass of polyvinyl alcohol (PVA) (manufactured by Nippon Vinegar Bipovar Co., Ltd., trade name "Poval JP-03"; glass transition point 63° C.) was used, and 5 parts by mass of adipic acid.
  • a flux sheet having a film thickness of 30 ⁇ m was produced in the same manner as in Production Example 1 except that parts (based on the total 100 parts by mass of LW-100 and JP-03) were used.
  • a flux sheet having a film thickness of 30 ⁇ m was produced in the same manner as in Production Example 9 except that the solid content of LW-100 was 50 parts by mass and the blending amount of JP-03 was 50 parts by mass.
  • a flux sheet having a film thickness of 30 ⁇ m was produced in the same manner as in Production Example 10, except that the solid content of LW-100 was 40 parts by mass and the JP-03 content was 60 parts by mass.
  • a fluxing agent 100 parts by mass of ethylene/vinyl acetate copolymer (EVA) (manufactured by Denka Co., Ltd., trade name “Denka EVA Latex 55N”; glass transition point ⁇ 10° C., not melted at 150° C.) is added as a fluxing agent.
  • EVA ethylene/vinyl acetate copolymer
  • An aqueous solution prepared by dissolving 5 parts by mass of adipic acid (based on 100 parts by mass of resin solid content of Denka EVA latex 55N) in distilled water was added and stirred to prepare a resin solution. Then, using this adjusted resin solution, a flux sheet having a film thickness of 30 ⁇ m was produced in the same manner as in Production Example 1.
  • solder joint test using flux sheet The substrates and solder balls used in the solder joint test are as follows.
  • Substrate FR-4 (glass epoxy substrate, electrodes made of copper, UBM layer on the electrode surface made of Cu/Ni/Au (Ni layer thickness 3 ⁇ m, Au layer thickness 0.03 ⁇ m) It is.)
  • Solder ball Solder composition (diameter 760 ⁇ m, Sn—Ag—Cu; Sn: 96.5% by mass, Ag: 3.0% by mass, Cu: 0.5% by mass (melting temperature 217 to 219° C.))
  • solder ball holding power 36 solder balls were placed on the substrate laminated with the flux sheet using a metal mask, and the solder ball was held at 80°C once. The temperature was raised to room temperature and the temperature was returned to room temperature. The substrate after the solder balls were arranged was tilted at a specific angle, and the holding force of the solder balls by the flux sheet was measured. A: Solder balls do not fall when tilted 90 degrees after the solder balls are arranged. C: The solder balls fell when tilted 90 degrees after the solder balls were arranged.

Abstract

The present invention addresses the problem of providing a flux sheet which exhibits strong adhesion to a substrate, while being free from displacement of a solder ball during a reflow process. In order to solve the above-described problem, the present invention provides a flux sheet containing a resin (A), which is characterized in that the resin (A) contains a resin (a1) which has a glass transition point of 40°C or less and a melt viscosity at 150°C of 500 Pa∙s or less (as measured at a shear rate of 10 mm/minute). Consequently, this flux sheet exhibits strong adhesion to a substrate during bonding of the substrate and a solder, and is able to achieve such an effect that displacement of a solder ball does not occur during a reflow process.

Description

フラックスシート及びフラックスシートを用いたはんだ接合方法Flux sheet and solder joining method using flux sheet
 本発明は、電子部品、配線板、基板、半導体チップ、ウエハ、パネル等のはんだ接合等に使用されるフラックスシート、及び、当該フラックスシートを用いたはんだ接合方法に関する。更に詳しくは、基板との接着性に優れるフラックスシートに関するものである。 The present invention relates to a flux sheet used for solder joining of electronic components, wiring boards, substrates, semiconductor chips, wafers, panels, etc., and a solder joining method using the flux sheet. More specifically, it relates to a flux sheet having excellent adhesiveness to a substrate.
 電子部品を基板などへ実装する手法として、例えば、基板の表面にはんだ付けを行う表面実装手法と、基板の穴に電極リード端子を挿入してはんだ付けを行うスルーホール実装手法等が知られている。表面実装手法としては、例えば、基板の電極上に予めはんだバンプを形成し、このはんだを介して電子部品と基板を電気的に接合する等の手法がある。はんだバンプを形成する方法としては、はんだボール等を基板等の回路電極上に搭載する方法等が知られている。 Known methods for mounting electronic components on a board or the like include, for example, a surface mounting method in which soldering is performed on the surface of the board and a through-hole mounting method in which electrode lead terminals are inserted into holes in the board and soldering There is. As the surface mounting method, for example, there is a method of forming solder bumps on the electrodes of the substrate in advance and electrically connecting the electronic component and the substrate via the solder. As a method of forming solder bumps, a method of mounting solder balls or the like on a circuit electrode such as a substrate is known.
 一方、はんだボール等に使用されるはんだの表面は酸化されやすく、正常なはんだ接合を形成させるためには、はんだ表面を覆っている金属酸化物を除去する必要がある。金属酸化物を除去する方法としては、例えば、液状やペースト状のフラックス(融剤)を予めはんだに塗布する方法が知られている。 On the other hand, the surface of the solder used for solder balls and the like is easily oxidized, and in order to form a normal solder joint, it is necessary to remove the metal oxide covering the solder surface. As a method of removing the metal oxide, for example, a method of applying a liquid or paste flux (flux agent) to the solder in advance is known.
 液状やペースト状のフラックスは、塗布量の調整が難しく、作業性に劣ると共に、フラックスの塗布量が少ないバンプでは、酸化物除去作用が弱いため、はんだ接合の不良を起こすことが問題であった。そこで、例えば、特許文献1では、前記問題を解決するために、ポリビニルアルコールに由来する構造を有する樹脂(A1)、もしくはポリビニルピロリドンに由来する構造を有する樹脂(A2)とフラックス剤(B)とを含む、フラックスフィルムを用いたフリップチップ接合方法が開示されている。 Liquid or pasty flux is difficult to adjust the coating amount and is inferior in workability, and in the bump with a small coating amount of the flux, the oxide removing action is weak, so that there is a problem of causing solder joint failure. . Therefore, for example, in Patent Document 1, in order to solve the above problems, a resin (A1) having a structure derived from polyvinyl alcohol, or a resin (A2) having a structure derived from polyvinylpyrrolidone and a flux agent (B) are used. A flip chip bonding method using a flux film is disclosed.
特開2014-168791号公報JP, 2014-168791, A
 しかしながら、上記先行技術文献に開示されたフラックスフィルムは基板との接着性が弱いため、作業時、又は、はんだリフロー中にフィルムと基板とがズレ、その結果はんだボールと基板上の電極とのズレが生じており、そのため、ポリイミドテープ等で別途固定するといった作業が必要になるといった問題が生じている。
 そこで、本発明の課題は、基板との接着性が強く、リフロー中にはんだボールのズレが生じないフラックスシートを提供することである。
However, since the flux film disclosed in the above-mentioned prior art documents has weak adhesion to the substrate, the film and the substrate are displaced during the work or during the solder reflow, and as a result, the displacement between the solder ball and the electrode on the substrate was caused. Therefore, there is a problem that a work of separately fixing with a polyimide tape or the like is required.
Therefore, an object of the present invention is to provide a flux sheet which has a strong adhesiveness to a substrate and does not cause a solder ball shift during reflow.
 発明者は、上記課題に対して鋭意検討した結果、ガラス転移点が40℃以下で、150℃の溶融粘度が500Pa・s(せん断速度10mm/分で測定)以下である樹脂(a1)を含有することで、基板との接着が良好であり、リフロー中にはんだボールのズレが生じないフラックスシートが得られることを見出して、本発明を完成した。
 すなわち、本発明は、以下のフラックスシート及びはんだ接合方法である。
As a result of earnest studies on the above problems, the inventor contains a resin (a1) having a glass transition point of 40° C. or less and a melt viscosity at 150° C. of 500 Pa·s (measured at a shear rate of 10 mm/min) or less. By doing so, it was found that a flux sheet having good adhesion to a substrate and free from deviation of solder balls during reflow can be obtained, and the present invention was completed.
That is, the present invention is the following flux sheet and solder joining method.
 上記課題を解決するための本発明のフラックスシートは、樹脂(A)を含むことを特徴とするフラックスシートであって、前記樹脂(A)が、ガラス転移点が40℃以下で、150℃の溶融粘度が500Pa・s(せん断速度10mm/分で測定)以下である樹脂(a1)を含有することを特徴とする。
 この特徴によれば、基板との接着性及びはんだボールの保持力が強く、シートの平坦性が良好であるため、シート軟化後にはんだボールが真下に沈むことができ、はんだボールのズレが生じないという効果を発揮することができる。さらに、本発明のフラックスシートは、低温でもラミネートすることができ、またラミネートしなくても基板との接着性が良好であるという効果を生じる。
The flux sheet of the present invention for solving the above-mentioned problems is a flux sheet characterized by containing a resin (A), wherein the resin (A) has a glass transition point of 40°C or lower and a temperature of 150°C. A resin (a1) having a melt viscosity of 500 Pa·s (measured at a shear rate of 10 mm/min) or less is contained.
According to this feature, since the adhesiveness to the substrate and the holding force of the solder ball are strong and the flatness of the sheet is good, the solder ball can be sunk directly below after the softening of the sheet, and the deviation of the solder ball does not occur. That effect can be demonstrated. Furthermore, the flux sheet of the present invention can be laminated even at a low temperature, and has an effect of having good adhesiveness to a substrate without being laminated.
 また、本発明のフラックスシートの一実施態様としては、前記樹脂(A)が、ガラス転移点が40℃以下で、150℃の溶融粘度が500Pa・s(せん断速度10mm/分で測定)以下である樹脂(a1)を35~99質量%、ガラス転移点が前記樹脂(a1)より大きい樹脂(a2)を1~65質量%含有することを特徴とする。
 この特徴によれば、基板との接着性が良好であり、リフロー中にはんだボールのズレが生じないという効果を発揮できるとともに、フラックスシートの接着性やタック性を制御できるという効果により優れたリワーク性を発揮することができる。
In one embodiment of the flux sheet of the present invention, the resin (A) has a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa·s (measured at a shear rate of 10 mm/min) or less. It is characterized by containing 35 to 99% by mass of a resin (a1) and 1 to 65% by mass of a resin (a2) having a glass transition point higher than that of the resin (a1).
According to this feature, the adhesiveness to the substrate is good, and the effect of not causing the deviation of the solder balls during the reflow can be exhibited, and the adhesiveness and the tackiness of the flux sheet can be controlled. You can exercise your sexuality.
 また、本発明のフラックスシートの一実施態様としては、前記フラックスシートが、フラックス剤(B)を含有することを特徴とする。
 この特徴によれば、はんだボールの濡れ性を向上させることができ、はんだリフロー時に、はんだボールと電極との位置ズレを補正することができるという効果(セルフアライメント効果)を発揮することができる。
Further, as an embodiment of the flux sheet of the present invention, the flux sheet contains a flux agent (B).
According to this feature, the wettability of the solder balls can be improved, and the effect (self-alignment effect) of correcting the positional deviation between the solder balls and the electrodes during solder reflow can be exhibited.
 また、本発明のフラックスシートの一実施態様としては、前記フラックスシートは、実質的に(B)以外の低分子化合物を含有しないことを特徴とする。
 この特徴によれば、はんだリフロー時における低分子化合物の気化等による基板汚染や、はんだの転がりによるズレを抑制することができるという効果を発揮することができる。
Moreover, as one embodiment of the flux sheet of the present invention, the flux sheet is characterized in that it does not substantially contain a low-molecular compound other than (B).
According to this feature, it is possible to exert an effect that it is possible to suppress substrate contamination due to vaporization of a low molecular weight compound during solder reflow and misalignment due to solder rolling.
 また、本発明のフラックスシートの一実施態様としては、前記樹脂(a1)が水溶性であることを特徴とする。
 この特徴によれば、フラックスシートの作製時や実装時やはんだリフロー後、フラックスシートを洗浄する際に、水系の溶媒を用いることができる。これにより揮発性の高い有機溶媒を使用せずにフラックスシートを洗浄することが可能となるため、有機溶媒の揮発による環境負荷を低減することができるという効果を発揮することができる。
Moreover, one embodiment of the flux sheet of the present invention is characterized in that the resin (a1) is water-soluble.
According to this feature, an aqueous solvent can be used when the flux sheet is manufactured, mounted, or after solder reflow, and when the flux sheet is washed. This makes it possible to wash the flux sheet without using a highly volatile organic solvent, and thus it is possible to reduce the environmental load due to the evaporation of the organic solvent.
 また、本発明のフラックスシートの一実施態様としては、前記樹脂(a1)がポリビニルアルコールの一部のヒドロキシ基(-OH)を、アルキレンオキサイド鎖が1つ又は複数連結した部分構造―(CH(R)CH(R)O)―R(nはアルキレンオキサイド鎖の繰り返し数(平均値)を表し、1.0以上である。R,R及びRは、互いに独立して水素原子又は有機基を示す。R,R及びRが複数ある場合、それぞれ同一であってもよく異なっていてもよい。)に置換した変性ポリビニルアルコール、ポリアミド及びポリエステルから選択される1種以上を含むことを特徴とする。
 この特徴によれば、基板との接着性が良好であり、リフロー中にはんだボールのズレが生じないという効果をより発揮することができる。
In one embodiment of the flux sheet of the present invention, the resin (a1) has a partial structure in which one or more alkylene oxide chains are linked to a part of hydroxy groups (-OH) of polyvinyl alcohol-(CH( R 1 )CH(R 2 )O) n —R 3 (n represents the number of repeating alkylene oxide chains (average value) and is 1.0 or more. R 1 , R 2 and R 3 are independent of each other. Represents a hydrogen atom or an organic group. When there are a plurality of R 1 , R 2 and R 3 , they may be the same or different, and are selected from modified polyvinyl alcohol, polyamide and polyester. It is characterized by containing one or more kinds.
According to this feature, the adhesiveness to the substrate is good, and it is possible to further exert the effect that the deviation of the solder ball does not occur during the reflow.
 また、本発明のフラックスシートの一実施態様としては、(a2)としてポリビニルアルコールを含有することを特徴とする。
 この特徴によれば、接着性やタック性を制御して作業時の取り扱い性をよくし、リワーク性に優れ、また見かけの水溶性を向上させることができる。
Further, one embodiment of the flux sheet of the present invention is characterized by containing polyvinyl alcohol as (a2).
According to this feature, the adhesiveness and the tackiness can be controlled to improve the handleability during work, the reworkability is excellent, and the apparent water solubility can be improved.
 また、本発明のフラックスシートの一実施態様としては、前記フラックスシートにおいて、前記樹脂(A)の含有量が50質量%以上であること特徴とする。
 この特徴によれば、はんだボール保持力と、良好な取り扱い性を両立させることができる。
Further, as an embodiment of the flux sheet of the present invention, the content of the resin (A) in the flux sheet is 50% by mass or more.
According to this feature, it is possible to achieve both a solder ball holding force and good handleability.
 また、本発明のフラックスシートの一実施態様としては、前記フラックスシートの面積が30000mm以上であることを特徴とする。
 この特徴によれば、はんだボールと電極との位置ズレがより大きく発生する大面積のウエハや基板に対して、位置ズレをより抑制することができるという効果を発揮することができる。
Moreover, as one embodiment of the flux sheet of the present invention, the area of the flux sheet is 30,000 mm 2 or more.
According to this feature, it is possible to exert an effect that it is possible to further suppress the positional deviation with respect to a large area wafer or substrate in which the positional deviation between the solder ball and the electrode occurs more greatly.
 上記課題を解決するための本発明のはんだ接合方法は、前記フラックスシートを用いたはんだ接合方法であって、下記(1)~(4)のステップを有することを特徴とする。
 (1)電極を有する基板の電極を有する面に前記フラックスシートを配置するステップ
 (2)前記フラックスシートの上に、はんだボールを配置するステップ
 (3)前記フラックスシートが溶融或いは軟化する温度に加熱するステップ
 (4)(3)と同時或いはその後、はんだの融点以上の温度に加熱するステップ
 この特徴によれば、基板との接着性が強く、リフロー中にはんだボールのズレが生じないフラックスシートを用いることから、はんだ接合の不良等が生じないという効果を発揮することができる。
The solder joining method of the present invention for solving the above-mentioned problems is a solder joining method using the above-mentioned flux sheet, and is characterized by having the following steps (1) to (4).
(1) Step of disposing the flux sheet on the surface of the substrate having the electrodes having the electrodes (2) Step of disposing solder balls on the flux sheet (3) Heating to a temperature at which the flux sheet melts or softens Steps (4) and (3) are performed simultaneously with or after that, a step of heating to a temperature equal to or higher than the melting point of the solder. According to this feature, a flux sheet having a strong adhesiveness to the substrate and causing no deviation of the solder balls during reflow is formed. Since it is used, it is possible to exert the effect of not causing defects in solder joints.
 本発明によれば、基板との接着性が強く、リフロー中にはんだボールのズレが生じないフラックスシートを提供することができる。 According to the present invention, it is possible to provide a flux sheet that has strong adhesion to a substrate and that does not cause a solder ball shift during reflow.
本発明のはんだ接合方法を説明するための概略図であり、電極を備える基板の概略平面図である。It is a schematic diagram for explaining the solder joining method of the present invention, and is a schematic plan view of a substrate provided with electrodes. 本発明のはんだ接合方法を説明するための概略図であり、電極を備える基板の概略断面図である。It is a schematic diagram for explaining the solder joining method of the present invention, and is a schematic sectional view of a substrate provided with an electrode. 本発明のはんだ接合方法を説明するための概略図であり、工程(1)における、電極を備える基板の電極面側に、本発明のフラックスシートを配置する方法の一例を示した概略断面図である。It is a schematic diagram for explaining the solder joining method of the present invention, and is a schematic sectional view showing an example of a method of arranging the flux sheet of the present invention on the electrode surface side of a substrate provided with an electrode in step (1). is there. 本発明のはんだ接合方法を説明するための概略図であり、工程(2)における、はんだボールを本発明のフラックスシートを介して、基板の電極上に位置するように配置する方法の一例を示した概略断面図である。It is a schematic diagram for explaining the solder joining method of the present invention, showing an example of a method of arranging the solder balls so as to be positioned on the electrodes of the substrate via the flux sheet of the present invention in the step (2). FIG. 本発明のはんだ接合方法を説明するための概略図であり、工程(3)における、はんだボールを、基板の電極と接合させた、はんだ接合基板の一例を示した概略断面図である。It is a schematic diagram for explaining the solder joining method of the present invention, and is a schematic cross-sectional view showing an example of a solder joining substrate in which a solder ball is joined to an electrode of the substrate in the step (3). 本発明のはんだ接合方法を説明するための概略図であり、工程(4)終了後に、フラックスシートを除去した、はんだ接合基板の一例を示した概略断面図である。It is a schematic diagram for explaining the solder joining method of the present invention, and is a schematic sectional view showing an example of the solder joining substrate from which the flux sheet has been removed after the step (4).
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
[フラックスシート]
 本発明のフラックスシートは、樹脂(A)を含むフラックスシートであって、前記樹脂(A)が、ガラス転移点が40℃以下で、150℃の溶融粘度が500Pa・s(せん断速度10mm/分で測定)以下である樹脂(a1)を含有することを特徴とする。本発明において、「フラックスシート」とは、はんだ接合の形成のために用いられるシートであって、はんだ表面の酸化皮膜を除去するために用いるものである。具体的には、樹脂(A)としてフラックス作用を有する樹脂を含有する、もしくはフラックスシートがフラックス剤(B)を含有する、のうち少なくとも一方を満たすことで、フラックス効果を有するシート(フラックスシート)とすることができる。
[Flux sheet]
The flux sheet of the present invention is a flux sheet containing a resin (A), wherein the resin (A) has a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa·s (shear rate of 10 mm/min. The resin (a1) having the following content is measured. In the present invention, the “flux sheet” is a sheet used for forming a solder joint and is used for removing an oxide film on the solder surface. Specifically, a sheet having a flux effect by containing at least one of a resin (A) containing a resin having a flux action or a flux sheet containing a flux agent (B) (flux sheet). Can be
<樹脂(A)>
 本発明の樹脂(A)は、ガラス転移点が40℃以下で、150℃の溶融粘度が500Pa・s以下である樹脂(a1)を含有することを特徴とする。
 ガラス転移点は、物質のガラス転移が起こる温度(ミクロブラウン運動が起こる温度)であり、一般的にガラス転移点未満の温度領域では、硬くガラス状の性質を示し、ガラス転移点より高い温度領域では、軟らかくゴム状や液体状の性質を示す。
 上記樹脂(a1)のガラス転移点と接着性の関係について説明すると、アモルファス構造をもつ高分子シートでは、ガラス転移温度より低温で硬いガラス状態、高温で軟らかいゴム状態となる。そのため、ガラス転移温度が低い(室温付近、更には室温以下)樹脂を含むシートは、取り扱う温度領域で軟らかく、基板にシートを配置する際に、基板と界面での密着性が向上するため、シートの接着力が強くなるといえる。またガラス転移温度が低い樹脂を含むシートは、基板の反り発生や熱分解などの悪影響を及ぼす可能性の低い、比較的低温(60~80℃程度)の領域でも、ボイドをかむことなくラミネートできるといえる。結果、ガラス転移点を40℃以下とすることで粘着付与剤等を添加することなく基板・はんだボールと接着性が良好なフラックスシートが得られる。
<Resin (A)>
The resin (A) of the present invention is characterized by containing a resin (a1) having a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa·s or lower.
The glass transition point is the temperature at which the glass transition of the substance occurs (the temperature at which the micro Brownian motion occurs). Generally, in the temperature range below the glass transition point, it shows a hard and glassy property, and the temperature range higher than the glass transition point. Shows soft and rubber-like or liquid-like properties.
Explaining the relationship between the glass transition point and the adhesiveness of the resin (a1), a polymer sheet having an amorphous structure is in a hard glass state at a temperature lower than the glass transition temperature and a soft rubber state at a high temperature. Therefore, a sheet containing a resin having a low glass transition temperature (near room temperature, or even below room temperature) is soft in the temperature range to be handled, and when the sheet is placed on the substrate, the adhesiveness at the interface with the substrate is improved. It can be said that the adhesive strength of is stronger. Further, a sheet containing a resin having a low glass transition temperature can be laminated without biting voids even in a relatively low temperature region (about 60 to 80° C.) in which there is little possibility of adverse effects such as warpage or thermal decomposition of the substrate. Can be said. As a result, by setting the glass transition point to 40° C. or lower, a flux sheet having good adhesion to the substrate/solder ball can be obtained without adding a tackifier or the like.
 本発明において、樹脂(a1)のガラス転移点は40℃以下であり、上限値としては、好ましくは30℃以下であり、より好ましくは20℃以下であり、更に好ましくは10℃以下であり、特に好ましくは0℃以下であり、最も好ましくは-20℃以下である。樹脂(a1)のガラス転移点を40℃以下とすることで、樹脂(a1)を含有する樹脂(A)が軟らかくなり、基板とフラックスシートとの接着性が向上する。また、はんだボールが自重で沈み込むことができ、はんだボールの位置ずれを抑制することができる。
 本発明において、ガラス転移点は、示差走査熱量測定装置(X-DSC7000 セイコーインスツル株式会社製)を用いて測定することができる。
In the present invention, the glass transition point of the resin (a1) is 40° C. or lower, and the upper limit value is preferably 30° C. or lower, more preferably 20° C. or lower, further preferably 10° C. or lower, It is particularly preferably 0° C. or lower, and most preferably −20° C. or lower. By setting the glass transition point of the resin (a1) to 40° C. or lower, the resin (A) containing the resin (a1) becomes soft and the adhesion between the substrate and the flux sheet is improved. In addition, the solder balls can sink due to their own weight, and the displacement of the solder balls can be suppressed.
In the present invention, the glass transition point can be measured using a differential scanning calorimeter (X-DSC7000 manufactured by Seiko Instruments Inc.).
 更に、本発明において、樹脂(a1)は150℃の溶融粘度が500Pa・s以下であることを特徴とする。上限値としては、好ましくは、400Pa・s以下であり、より好ましくは350Pa・s以下であり、更に好ましくは200Pa・s以下である。樹脂(a1)の150℃の溶融粘度を500Pa・s以下とすることで、はんだリフロー時に、はんだボールが自重で沈み、基板の電極上に接する(シートを貫通すること)ことができ、はんだの融点以上に昇温されると、ボールと電極は濡れてはんだ接合を形成でき、はんだボールの位置ずれを抑制することができる。
 本発明において、150℃の溶融粘度はせん断速度10mm/minの条件で、キャピラリーレオメーター(キャピログラフID 株式会社東洋精機製作所製)により測定することができる。
Furthermore, in the present invention, the resin (a1) is characterized by having a melt viscosity at 150° C. of 500 Pa·s or less. The upper limit value is preferably 400 Pa·s or less, more preferably 350 Pa·s or less, and further preferably 200 Pa·s or less. By setting the melt viscosity of the resin (a1) at 150° C. to 500 Pa·s or less, the solder balls sink under their own weight during solder reflow and can come into contact with the electrodes of the substrate (penetrate the sheet), and When the temperature is raised above the melting point, the ball and the electrode become wet and a solder joint can be formed, and the positional deviation of the solder ball can be suppressed.
In the present invention, the melt viscosity at 150° C. can be measured by a capillary rheometer (Capirograph ID, manufactured by Toyo Seiki Seisakusho Co., Ltd.) under a shear rate of 10 mm/min.
 ガラス転移点が40℃以下で、150℃の溶融粘度が500Pa・s以下である樹脂(a1)としては特に限定されないが、熱可塑性樹脂であることが好ましく、例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリ塩化ビニル、エチレン-環状オレフィン共重合体、ポリスチレン系樹脂、ポリ(メタ)アクリル酸系樹脂、ポリビニルアルコール、変性ポリビニルアルコール等のポリビニルアルコール系樹脂、ポリ酢酸ビニル、ポリ(メタ)アクリルアミド系樹脂、ポリブタジエン、ポリイソプレン、スチレンマレイン酸樹脂、カルボキシル基末端ブタジエンニトリル共重合体(CTBN)等の付加系樹脂、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリカーボネート系樹脂、ポリエーテルケトン、ポリエーテルスルホン等の縮合系樹脂、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル系樹脂、ポリエチレンイミン等のポリアルキレンイミン系樹脂、ポリシクロオレフィン等の開環重合系樹脂が挙げられる。これらは1種類を単独で用いてもよいし、2種以上混合して用いることもできる。これらのなかでも、変性ポリビニルアルコール、ポリアミド及びポリエステルから選択される1種以上を含むことが好ましい。 The resin (a1) having a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa·s or lower is not particularly limited, but is preferably a thermoplastic resin such as polyethylene, polypropylene, polybutylene or poly. Vinyl chloride, ethylene-cyclic olefin copolymer, polystyrene-based resin, poly(meth)acrylic acid-based resin, polyvinyl alcohol, polyvinyl alcohol-based resin such as modified polyvinyl alcohol, polyvinyl acetate, poly(meth)acrylamide-based resin, polybutadiene , Addition resin such as polyisoprene, styrene maleic acid resin, carboxyl group terminated butadiene nitrile copolymer (CTBN), condensation resin such as polyester, polyamide, polyimide, polyurethane, polycarbonate resin, polyetherketone and polyethersulfone , Polyether glycols such as polyethylene glycol and polypropylene glycol, polyalkyleneimine resins such as polyethyleneimine, and ring-opening polymerization resins such as polycycloolefin. These may be used alone or in combination of two or more. Among these, it is preferable to contain at least one selected from modified polyvinyl alcohol, polyamide and polyester.
 またポリビニルアルコールは、水溶性の観点から、ケン化度が75~90mol%であることが好ましく、85~90mol%であることがより好ましい。ポリビニルアルコールのケン化度を上記範囲内とすることで、結晶化して水に溶けにくくなることや親水性基が少なくなり水に溶けにくくなることを抑制することができる。一方、親水性基変性したポリビニルアルコールの場合は、より低いケン化度でも水に溶ける。後述の変性ポリビニルアルコールの場合は、ヒドロキシ基以外の親水性基をグラフト化あるいは主鎖中にブロック化などすることで溶解性を改善できるので、ケン化度は30~60mol%であることが好ましく、40~50mol%であることが更に好ましい。親水性基変性に用いる親水性基としては、例えば、エチレングリコール等のアルキレンオキサイド化合物等が好ましい。 From the viewpoint of water solubility, polyvinyl alcohol preferably has a saponification degree of 75 to 90 mol %, more preferably 85 to 90 mol %. By setting the saponification degree of the polyvinyl alcohol within the above range, it is possible to prevent the crystallization from becoming difficult to dissolve in water and the decrease in hydrophilic groups to make it difficult to dissolve in water. On the other hand, in the case of polyvinyl alcohol modified with a hydrophilic group, it is soluble in water even with a lower saponification degree. In the case of the modified polyvinyl alcohol described below, the saponification degree is preferably 30 to 60 mol% because the solubility can be improved by grafting a hydrophilic group other than the hydroxy group or blocking it in the main chain. More preferably 40 to 50 mol %. As the hydrophilic group used for modifying the hydrophilic group, for example, an alkylene oxide compound such as ethylene glycol is preferable.
 これらの樹脂において、ヒドロキシ基またはカルボキシル基、アミノ基を含む樹脂は、樹脂自体がフラックス作用を有するため、フラックス剤を配合しなくても、フラックスシートとして用いることができる。具体的には、ポリ(メタ)アクリル酸系樹脂、ポリビニルアルコール系樹脂、ポリアミド、ポリエステル、カルボキシル基末端ブタジエンニトリル共重合体(CTBN)、ポリウレタンなどの樹脂が、溶融状態でフラックス活性を示すことができる。 Among these resins, the resin containing a hydroxy group, a carboxyl group, or an amino group can be used as a flux sheet without blending a flux agent because the resin itself has a flux function. Specifically, resins such as poly(meth)acrylic acid-based resin, polyvinyl alcohol-based resin, polyamide, polyester, carboxyl group-terminated butadiene nitrile copolymer (CTBN), and polyurethane may exhibit flux activity in a molten state. it can.
 本発明において、樹脂(a1)の重量平均分子量は、好ましくは1×10~2.0×10である。下限値としては、好ましくは3.0×10以上であり、より好ましくは8.0×10以上である。上限値としては、好ましくは1.5×10以下であり、より好ましく1.0×10以下である。更に好ましくは5.0×10以下である。樹脂(a1)の重量平均分子量を前記範囲内とすることで、シートの成形性が良好となり、はんだ接合後のシートの溶解除去やボールのシート貫通性が良好となる。 In the present invention, the weight average molecular weight of the resin (a1) is preferably 1×10 3 to 2.0×10 5 . The lower limit value is preferably 3.0×10 3 or more, more preferably 8.0×10 3 or more. The upper limit value is preferably 1.5×10 5 or less, more preferably 1.0×10 5 or less. More preferably, it is 5.0×10 4 or less. When the weight average molecular weight of the resin (a1) is within the above range, the moldability of the sheet becomes good, and the sheet can be dissolved and removed after solder bonding and the sheet penetrability of the ball becomes good.
 樹脂(a1)の分子量分布(Mw/Mn)は、好ましくは1~30である。下限値としては、好ましくは1.5以上であり、より好ましくは1.8以上である。上限値としては、好ましくは15以下であり、より好ましくは8以下である。樹脂(a1)の上記分子量は、テトラヒドロフラン(THF)を溶離液に用いたゲルパーミエーションクロマトグラフィー法(GPC法)により測定し、樹脂(a1)の分子量はポリスチレン換算値である。 The molecular weight distribution (Mw/Mn) of the resin (a1) is preferably 1-30. The lower limit is preferably 1.5 or more, more preferably 1.8 or more. The upper limit is preferably 15 or less, more preferably 8 or less. The molecular weight of the resin (a1) is measured by a gel permeation chromatography method (GPC method) using tetrahydrofuran (THF) as an eluent, and the molecular weight of the resin (a1) is a polystyrene equivalent value.
 本発明の樹脂(a1)は、好ましくは水溶性である。水溶性とは、25℃、1気圧の条件下において、水100質量部に対して、樹脂(a1)が5質量部以上溶解することを意味する。下限値としては、好ましくは、10質量部以上溶解し、より好ましくは20質量部以上であり、更に好ましくは30質量部以上である。
 樹脂(a1)が、水溶性であることで、フラックスシートを製造する際に、水系の溶媒を用いて製造することができる。また、フラックスシートを洗浄する際に、水系の溶媒を用いることができ、有機溶媒の揮発による環境負荷を低減することができるという効果を発揮することができる。
The resin (a1) of the present invention is preferably water-soluble. Water-soluble means that the resin (a1) dissolves in 5 parts by mass or more with respect to 100 parts by mass of water under the conditions of 25° C. and 1 atm. The lower limit is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, further preferably 30 parts by mass or more.
Since the resin (a1) is water-soluble, it can be produced using an aqueous solvent when producing the flux sheet. In addition, when cleaning the flux sheet, an aqueous solvent can be used, and the effect that the environmental load due to the volatilization of the organic solvent can be reduced can be exhibited.
 上記樹脂(a1)としては、例えば、ポリビニルアルコールの一部のヒドロキシ基(-OH)を、アルキレンオキサイド鎖が1つ又は複数連結した部分構造-(CH(R)CH(R)O)-R)に置換した変性ポリビニルアルコールが挙げられる。 Examples of the resin (a1) include a partial structure in which one or more alkylene oxide chains are linked to a partial hydroxy group (—OH) of polyvinyl alcohol —(CH(R 1 )CH(R 2 )O). A modified polyvinyl alcohol having n − R 3 ) substituted therein is included.
 nはアルキレンオキサイド鎖の繰り返し数(平均値)を表し、好ましくは1.0以上である。nの下限値としては、好ましくは1.0以上であり、より好ましくは2.0以上であり、更に好ましくは5.0以上であり、特に好ましくは6.0以上である。上限値としては、好ましくは300.0以下であり、より好ましくは200.0以下であり、更に好ましくは65.0以下である。
 nを上記範囲内とすることで、接着性に優れたフラックスシートを得ることができる。
n represents the number of repeating alkylene oxide chains (average value), and is preferably 1.0 or more. The lower limit of n is preferably 1.0 or more, more preferably 2.0 or more, still more preferably 5.0 or more, and particularly preferably 6.0 or more. The upper limit is preferably 300.0 or less, more preferably 200.0 or less, and further preferably 65.0 or less.
By setting n within the above range, a flux sheet having excellent adhesiveness can be obtained.
 R、Rとしては、それぞれ水素原子又は有機基が好ましく、有機基としては炭素原子数1~10のアルキル基が好ましい。炭素原子数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。 Each of R 1 and R 2 is preferably a hydrogen atom or an organic group, and the organic group is preferably an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, butyl group, pentyl group and hexyl group.
 Rとしては水素原子又は有機基が好ましく、有機基としては炭素原子数1~10のアルキル基、炭素原子数1~10アシル基、炭素原子数1~10のアルキルエステル基、炭素原子数1~10のアルキルアミド基、スルホン酸塩基が好ましい。
 炭素原子数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 炭素原子数1~10アシル基としては、メチルカルボニル基、エチルカルボニル基、n-プロピルカルボニル基、i-プロピルカルボニル基、ブチルカルボニル基、ペンチルカルボニル基、ヘキシル基カルボニル等が挙げられる。
 炭素原子数1~10のアルキルエステル基としては、メチルオキシカルボニルメチレン基、メチルカルボニルオキシメチレン基、エチルオキシカルボニルエチレン基、エチルカルボニルオキシエチレン基等が挙げられる。
 炭素原子数1~10のアルキルアミド基としては、N,N’-ジメチルアミドアルキレン基、N,N’-ジエチルアミドアルキレン基等が挙げられる。
R 3 is preferably a hydrogen atom or an organic group, and as the organic group, an alkyl group having 1 to 10 carbon atoms, an acyl group having 1 to 10 carbon atoms, an alkyl ester group having 1 to 10 carbon atoms, or 1 carbon atom Alkyl amide groups of 10 and sulfonate groups are preferred.
Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, butyl group, pentyl group and hexyl group.
Examples of the acyl group having 1 to 10 carbon atoms include methylcarbonyl group, ethylcarbonyl group, n-propylcarbonyl group, i-propylcarbonyl group, butylcarbonyl group, pentylcarbonyl group and hexyl group carbonyl.
Examples of the alkyl ester group having 1 to 10 carbon atoms include a methyloxycarbonylmethylene group, a methylcarbonyloxymethylene group, an ethyloxycarbonylethylene group and an ethylcarbonyloxyethylene group.
Examples of the alkylamido group having 1 to 10 carbon atoms include N,N'-dimethylamidoalkylene group and N,N'-diethylamidoalkylene group.
 前記変性ポリビニルアルコールとして、具体的には、商品名「ゴーセネックス(登録商標)LW-100(日本合成化学工業社製;ガラス転移点-0.5℃、150℃の溶融粘度:63Pa・s(せん断速度10mm/分)、ケン化度43.1mol%」)が挙げられる。
 前記ポリエステルとして、具体的には、商品名「ペスレジンA-680(高松油脂株式会社製;ガラス転移点30℃、150℃の溶融粘度:29Pa・s(せん断速度10mm/分))、前記ポリアミドとして、具体的には、商品名「AQナイロン T-70(東レ株式会社製;ガラス転移点-46℃、150℃の溶融粘度:17Pa・s(せん断速度10mm/分))が挙げられる。
As the modified polyvinyl alcohol, specifically, the trade name "GOHSENX (registered trademark) LW-100 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.; glass transition point -0.5°C, melt viscosity at 150°C: 63 Pa·s (shear) Speed 10 mm/min) and saponification degree 43.1 mol%").
Specific examples of the polyester include trade name “Pethresin A-680 (manufactured by Takamatsu Yushi Co., Ltd.; glass transition point 30° C., melt viscosity at 150° C.: 29 Pa·s (shear rate 10 mm/min)), and the polyamide Specifically, the trade name “AQ nylon T-70 (manufactured by Toray Industries, Inc.; glass transition point −46° C., melt viscosity at 150° C.: 17 Pa·s (shear rate 10 mm/min)) can be mentioned.
 本発明の樹脂(A)は、上記樹脂(a1)を35質量%以上含有することが好ましい。また、本発明の樹脂(A)は、上記樹脂(a1)に加えて、その他の樹脂を含有することも可能である。その他の樹脂としては、ガラス転移点が前記樹脂(a1)より高い樹脂(a2)を含有することが好ましい。
 樹脂(a2)としては、ガラス転移点が前記樹脂(a1)より高い樹脂であれば、限定されないが、例えば、上記樹脂(a1)において例示した熱可塑性樹脂を用いることができる。更に、上記熱可塑性樹脂に加えて、熱硬化性樹脂等も含有することができるが、洗浄性の観点からは熱硬化性樹脂は45質量%以下であることが好ましい。熱硬化性樹脂の含有量を60質量%以下とすることで、熱硬化性樹脂が組成物中において島相を形成することができ、良好な洗浄性を得ることができるため好ましい。
 樹脂(a2)のガラス転移点としては、40℃より高いことが好ましい。また、下限値としては、より好ましくは50℃以上であり、更に好ましくは60℃以上である。
The resin (A) of the present invention preferably contains the resin (a1) in an amount of 35% by mass or more. Further, the resin (A) of the present invention can contain other resins in addition to the above resin (a1). As the other resin, it is preferable to contain a resin (a2) having a glass transition point higher than that of the resin (a1).
The resin (a2) is not limited as long as it has a glass transition point higher than that of the resin (a1), and for example, the thermoplastic resin exemplified in the above resin (a1) can be used. Further, in addition to the above-mentioned thermoplastic resin, a thermosetting resin or the like can be contained, but from the viewpoint of detergency, the thermosetting resin content is preferably 45% by mass or less. By setting the content of the thermosetting resin to 60% by mass or less, the thermosetting resin can form an island phase in the composition, and good detergency can be obtained, which is preferable.
The glass transition point of the resin (a2) is preferably higher than 40°C. The lower limit is more preferably 50°C or higher, and further preferably 60°C or higher.
 ガラス転移点が前記樹脂(a1)より高い樹脂(a2)としては、例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリ塩化ビニル、エチレン-環状オレフィン共重合体、ポリスチレン系樹脂、ポリ(メタ)アクリル酸系樹脂、ポリビニルアルコール系樹脂、ポリ酢酸ビニル、ポリ(メタ)アクリルアミド系樹脂、ポリブタジエン、ポリイソプレンスチレンマレイン酸樹脂等の付加系樹脂、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリカーボネート系樹脂、ポリエーテルケトン、ポリエーテルスルホン等の縮合系樹脂、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル系樹脂、ポリエチレンイミン等のポリアルキレンイミン系樹脂、ポリシクロオレフィン等の開環重合系樹脂が挙げられる。これらは1種類を単独で用いてもよいし、2種以上混合して用いることもできる。 Examples of the resin (a2) having a glass transition point higher than that of the resin (a1) include, for example, polyethylene, polypropylene, polybutylene, polyvinyl chloride, ethylene-cyclic olefin copolymer, polystyrene resin, poly(meth)acrylic acid resin. Polyvinyl alcohol resin, polyvinyl acetate, poly(meth)acrylamide resin, polybutadiene, polyisoprene styrene Maleic acid resin and other addition resins, polyester, polyamide, polyimide, polyurethane, polycarbonate resin, polyether ketone, polyether Examples thereof include condensation resins such as sulfone, polyether resins such as polyethylene glycol and polypropylene glycol, polyalkyleneimine resins such as polyethyleneimine, and ring-opening polymerization resins such as polycycloolefin. These may be used alone or in combination of two or more.
 本発明の樹脂(A)は、樹脂(a2)を含有する場合は、好ましくは樹脂(a1)を35~99質量%、樹脂(a2)を1~65質量%含有する。
 樹脂(a1)の含有量は、下限値としては、好ましくは60質量%以上であり、より好ましくは65質量%以上であり、更に好ましくは、70質量%以上である。上限値としては、95質量%以下であり、より好ましくは、90質量%以下である。
When the resin (A) of the present invention contains the resin (a2), it preferably contains 35 to 99% by mass of the resin (a1) and 1 to 65% by mass of the resin (a2).
The lower limit of the content of the resin (a1) is preferably 60% by mass or more, more preferably 65% by mass or more, and further preferably 70% by mass or more. The upper limit is 95% by mass or less, and more preferably 90% by mass or less.
 樹脂(a2)の含有量は、下限値としては、好ましくは5質量%以上であり、より好ましくは10質量%以上である。上限値としては、40質量%以下であり、より好ましくは、35質量%以下であり、更に好ましくは30質量%以下である。
 発明の樹脂(A)は、樹脂(a1)に加えて、樹脂(a2)を加えることで、基板等に対する粘着力を制御することができる。また配置されたはんだボールの位置を簡単に補正することができ、リワーク性が向上する。更に、シート自体の柔軟性や取扱い性に優れる。また、樹脂(a2)の含有量を上記範囲内とすることで、水系の溶媒で洗浄することが可能となる。
The lower limit of the content of the resin (a2) is preferably 5% by mass or more, and more preferably 10% by mass or more. The upper limit is 40% by mass or less, more preferably 35% by mass or less, and further preferably 30% by mass or less.
The resin (A) of the invention can control the adhesive force to the substrate or the like by adding the resin (a2) in addition to the resin (a1). Further, the position of the arranged solder ball can be easily corrected, and the reworkability is improved. Further, the sheet itself has excellent flexibility and handleability. Further, by setting the content of the resin (a2) within the above range, it becomes possible to wash with a water-based solvent.
 樹脂(a1)と樹脂(a2)との相容性が悪いときには、相容化剤・改質剤・分散剤を用いて相容性を向上させることができる。相容化剤・改質剤・分散剤としては、樹脂(a1)及び樹脂(a2)と親和性の高いセグメントが、それぞれ1ヶ所又は複数個所で化学結合したブロック(共)重合体やグラフト(共)重合体などを用いればよい。 When the compatibility between the resin (a1) and the resin (a2) is poor, the compatibility can be improved by using a compatibilizer/modifier/dispersant. As the compatibilizer/modifier/dispersant, a block (co)polymer or a graft (segment) having a high affinity with the resin (a1) and the resin (a2) is chemically bonded at one or more positions, respectively. Co)polymers may be used.
 前記変性ポリビニルアルコールは、分子中にポリビニルアルコール鎖及び(ポリ)アルキレンオキサイド鎖をもつことから、それぞれポリビニルアルコール及びポリアルキレンオキサイドなどとの、相容化剤・改質剤・分散剤としての機能を発現する。また、前記変性ポリビニルアルコールとポリビニルアルコールとの混合には、相容化剤・改質剤・分散剤として、好ましくはポリアルキレンオキサイド、カルボキシルメチルセルロース、カルボキシルメチルセルロースのナトリウム塩、カルボキシルメチルセルロースのカリウム塩などを用いることができる。 Since the modified polyvinyl alcohol has a polyvinyl alcohol chain and a (poly)alkylene oxide chain in the molecule, it functions as a compatibilizer/modifier/dispersant with polyvinyl alcohol and polyalkylene oxide, respectively. Express. Further, in the case of mixing the modified polyvinyl alcohol and polyvinyl alcohol, as a compatibilizer/modifier/dispersant, preferably polyalkylene oxide, carboxymethyl cellulose, sodium salt of carboxymethyl cellulose, potassium salt of carboxymethyl cellulose or the like is used. Can be used.
 相容化剤・改質剤・分散剤の配合量は特に制限はないが、相容化の効果や低分子量成分の低減化を考慮して、樹脂(a1)と樹脂(a2)との合計100質量部に対して、下限値としては、好ましくは0.1質量部以上であり、より好ましくは0.2質量部以上であり、更に好ましくは0.5質量部以上である。上限値としては、好ましくは15質量部以下であり、より好ましくは10質量部以下であり、更に好ましくは5質量部以下である。 The amount of the compatibilizer/modifier/dispersant is not particularly limited, but the total amount of the resin (a1) and the resin (a2) is taken into consideration in consideration of the effect of compatibilization and the reduction of low molecular weight components. With respect to 100 parts by mass, the lower limit value is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, and further preferably 0.5 parts by mass or more. The upper limit is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and further preferably 5 parts by mass or less.
<フラックス剤(B)>
 本発明のフラックスシートは、樹脂(A)に加えて、例えば、フラックス剤(B)を含有させてもよい。フラックス剤を含有させることで、より強いフラックス作用を発現或いは向上させ、はんだ接合の形成性を良好にすると共に、電気伝導性を向上させることができる。また、はんだの濡れ性を向上させることができ、はんだリフロー時に、はんだボールと電極との位置ズレを補正することができるという効果(セルフアライメント効果)をより発揮することができる。
 フラックス剤(B)は、はんだ表面にある高融点の金属酸化物を取り除くことができる成分であれば特に限定されず、酸性物質、塩基性物質又はアルコール等が好ましく用いられる。また常温で活性を有するもの、加熱により活性するもの、いずれも用いることができる。
<Flux agent (B)>
The flux sheet of the present invention may contain, for example, a flux agent (B) in addition to the resin (A). By containing the flux agent, a stronger flux action can be exhibited or improved, the solder joint formability can be improved, and the electrical conductivity can be improved. In addition, the wettability of the solder can be improved, and the effect that the positional deviation between the solder ball and the electrode can be corrected during the solder reflow (self-alignment effect) can be further exerted.
The flux agent (B) is not particularly limited as long as it is a component capable of removing the metal oxide having a high melting point on the solder surface, and an acidic substance, a basic substance, an alcohol or the like is preferably used. Further, any of those which are active at room temperature and those which are active by heating can be used.
 フラックス剤(B)として、具体的には、例えば、アジピン酸、マロン酸、コハク酸、マレイン酸、ペンタン酸、サリチル酸、安息香酸、m-ジヒドロキシ安息香酸、セバシン酸等のカルボン酸類、ドデシルアミン等のアミン類、アミンのハロゲン化水素酸塩、ロジン樹脂等が挙げられる。またフラックス剤は単独で用いてもよく、2種類以上を併用してもよい。本発明のフラックスシート中に含まれるフラックス剤(B)としては、はんだ粒子の酸化皮膜の除去性、シートの流動性、はんだ接合後の樹脂の溶解除去性、はんだとの濡れ性向上の観点から、アジピン酸、サリチル酸、ドデシルアミン、安息香酸、m-ジヒドロキシ安息香酸、セバシン酸が好ましく、アジピン酸、サリチル酸、ドデシルアミンがより好ましい。 Specific examples of the flux agent (B) include carboxylic acids such as adipic acid, malonic acid, succinic acid, maleic acid, pentanoic acid, salicylic acid, benzoic acid, m-dihydroxybenzoic acid and sebacic acid, dodecylamine, etc. Amines, hydrohalides of amines, rosin resins and the like. The flux agent may be used alone or in combination of two or more kinds. As the flux agent (B) contained in the flux sheet of the present invention, from the viewpoint of improving the removability of the oxide film of the solder particles, the fluidity of the sheet, the removability of the resin after solder bonding, and the wettability with solder. , Adipic acid, salicylic acid, dodecylamine, benzoic acid, m-dihydroxybenzoic acid and sebacic acid are preferable, and adipic acid, salicylic acid and dodecylamine are more preferable.
 フラックス剤(B)の含有量は、はんだボールの数、大きさ(表面積)、表面の酸化皮膜の厚さ、及びフラックスシートの厚さ等により適宜設定することができるが、樹脂(A)100質量部に対して、10質量部以下であることが好ましい。また、上限値としては、より好ましくは8質量部以下であり、更に好ましくは7質量部以下であり、特に好ましくは6質量部以下である。一方、下限値としては、好ましくは1質量部以上であり、より好ましくは3質量部以上である。
 フラックス剤(B)の含有量を上記範囲内とすることで、フラックス剤と基板との接着性を抑制せずに、はんだ表面の酸化皮膜を充分に除去することができる。更に基板中にフラックス剤が残留することを抑制することで高温高湿での絶縁抵抗の低下抑制や、金属の腐食やマイグレーションを防ぐことができる。
The content of the flux agent (B) can be appropriately set depending on the number of solder balls, the size (surface area), the thickness of the oxide film on the surface, the thickness of the flux sheet, etc., but the resin (A) 100 It is preferably 10 parts by mass or less with respect to parts by mass. Further, the upper limit is more preferably 8 parts by mass or less, further preferably 7 parts by mass or less, and particularly preferably 6 parts by mass or less. On the other hand, the lower limit is preferably 1 part by mass or more, more preferably 3 parts by mass or more.
By setting the content of the flux agent (B) within the above range, the oxide film on the solder surface can be sufficiently removed without suppressing the adhesiveness between the flux agent and the substrate. Furthermore, by suppressing the flux agent from remaining in the substrate, it is possible to suppress a decrease in insulation resistance at high temperature and high humidity and prevent metal corrosion and migration.
<その他添加剤>
 本発明のフラックスシートは、上記樹脂(A)及びフラックス剤(B)に加えて、本発明の効果を損なわない範囲で、例えば、一般的なフラックスに含まれる添加剤を含有してもよい。添加剤としては、チクソトロピー性付与剤やフラックス活性補助剤、消泡剤などが挙げられる。
 チクソトロピー性付与剤としては、m-キシリレンビスステアリン酸アミドなどの脂肪酸アミド、カスターワックス(硬化ひまし油)などのポリオレフィン系ワックス、N-ブチル-N'-ステアリル尿素などの置換尿素ワックス、ポリエチレングリコール、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロースなどの高分子化合物、シリカ粒子、カオリン粒子などの無機粒子、などが挙げられる。
 チクソトロピー性付与剤は1種単独で用いてもよく、2種以上を併用してもよい。
<Other additives>
In addition to the resin (A) and the flux agent (B), the flux sheet of the present invention may contain, for example, an additive contained in a general flux within a range that does not impair the effects of the present invention. Examples of the additive include a thixotropic agent, a flux activation auxiliary agent, and a defoaming agent.
Examples of the thixotropic agent include fatty acid amides such as m-xylylenebisstearic acid amide, polyolefin waxes such as castor wax (hardened castor oil), substituted urea waxes such as N-butyl-N′-stearyl urea, polyethylene glycol, Examples thereof include polymer compounds such as methyl cellulose, ethyl cellulose and hydroxyethyl cellulose, and inorganic particles such as silica particles and kaolin particles.
The thixotropy-imparting agents may be used alone or in combination of two or more.
 本発明のフラックスにおいてチクソトロピー性付与剤を使用する場合、その含有量は、重合体(A)100質量部に対して、好ましくは0.1~20質量部である。下限値としては、好ましくは0.2質量部以上であり、より好ましくは0.5質量部以上である。上限値としては、好ましくは15質量部以下であり、より好ましくは10質量部以下である。チクソトロピー性付与剤の含有量を前記範囲とすることにより、はんだボールや基板との接着力を調整することができる。 When the thixotropic agent is used in the flux of the present invention, its content is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the polymer (A). The lower limit is preferably 0.2 part by mass or more, more preferably 0.5 part by mass or more. The upper limit is preferably 15 parts by mass or less, more preferably 10 parts by mass or less. By setting the content of the thixotropy imparting agent within the above range, the adhesive force with the solder balls and the substrate can be adjusted.
 フラックス活性補助剤としては、例えば、ジエチルアミン臭化水素酸塩、シクロヘキシルアミン臭化水素酸塩等のアミンのハロゲン化水素酸塩、ステアリン酸等の有機酸類、トリブチルアミン等の有機アミン類、トランス-2,3-ジブロモ-2-ブテン-1,4-ジオール等の有機ハロゲン化物等の活性剤等が挙げられる。
 消泡剤としては、例えば、ラウリルアルコール、セチルアルコール、ステアリルアルコール、エイコサノール、ドコサノール等のアルコール、ポリエチレンワックス、パラフィンワックス、白油などの炭化水素系化合物、カルボン酸(例えば、パルミチン酸、オレイン酸、ステアリン酸など)とアルコール(例えば、メタノール、エタノール、オクタノールなど)と縮合により得られる脂肪酸エステル類、牛脂、大豆油、アマニ油、などの天然物油脂、ポリジメチルシロキサン、ポリメチルフェニルシロキサンなどのシロキサン類などが挙げられる。また、カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤等の親油性の高い界面活性剤も用いることができる。
Examples of the flux activating auxiliary agent include amine hydrohalides such as diethylamine hydrobromide and cyclohexylamine hydrobromide, organic acids such as stearic acid, organic amines such as tributylamine, and trans- Examples include activators such as organic halides such as 2,3-dibromo-2-butene-1,4-diol.
Examples of the defoaming agent include alcohols such as lauryl alcohol, cetyl alcohol, stearyl alcohol, eicosanol, and docosanol, polyethylene wax, paraffin wax, hydrocarbon compounds such as white oil, carboxylic acid (for example, palmitic acid, oleic acid, Stearic acid, etc.) and fatty acids esters obtained by condensation with alcohols (eg, methanol, ethanol, octanol, etc.), natural fats and oils such as beef tallow, soybean oil, linseed oil, siloxanes such as polydimethylsiloxane, polymethylphenylsiloxane And the like. Further, a highly lipophilic surfactant such as a cationic surfactant, an anionic surfactant, or a nonionic surfactant can also be used.
 更に、本発明のフラックスシートは、実質的に(B)以外の低分子化合物を含有しないことが好ましい。(B)以外の低分子化合物としては、例えば分子量が1000以下のものであり、代表的なものとしてはグリセリン、フタル酸エステル、アジピン酸エステル、トリメリット酸エステル等の可塑剤を挙げることができる。
 実質的に(B)以外の低分子化合物を含有しないことで、はんだリフロー時における低分子化合物の気化等による基板汚染や、突発的な気化によるはんだの転がりによるズレを抑制することができるという効果を発揮することができる。
 実質的に含有しないとは、フラックスシートの構成成分として、意図的に(B)以外の低分子化合物を添加しないことを意味する。フラックスシートにおいて、シート作成工程上必要となる溶媒や(A)樹脂の原料モノマー由来の低分子化合物などが残存することがあるが、その場合、例えば、含有量として10質量%未満であり、上限値としては、好ましくは5質量%未満であり、より好ましくは3質量%未満であり、更に好ましくは2質量%未満であり、特に好ましくは1質量%未満である。
Further, the flux sheet of the present invention preferably contains substantially no low molecular weight compound other than (B). Examples of the low molecular weight compound other than (B) include those having a molecular weight of 1000 or less, and typical examples thereof include plasticizers such as glycerin, phthalic acid ester, adipic acid ester, and trimellitic acid ester. ..
By substantially not containing a low-molecular compound other than (B), it is possible to suppress substrate contamination due to vaporization of the low-molecular compound at the time of solder reflow and deviation due to rolling of solder due to sudden vaporization. Can be demonstrated.
The term “substantially free from” means that a low molecular weight compound other than (B) is not intentionally added as a constituent of the flux sheet. In the flux sheet, a solvent necessary for the sheet preparation process or a low molecular weight compound derived from the raw material monomer of the (A) resin may remain, but in that case, for example, the content is less than 10% by mass, and the upper limit is The value is preferably less than 5% by mass, more preferably less than 3% by mass, further preferably less than 2% by mass, and particularly preferably less than 1% by mass.
<フラックスシートの特徴>
 本発明のフラックスシートは、樹脂(A)が、ガラス転移点が40℃以下で、150℃の溶融粘度が500Pa・s(せん断速度10mm/分で測定)以下である樹脂(a1)を含有することを特徴としているため、基板との接着性が強く、リフロー中にはんだボールのズレが生じないという効果を有する。更に、150℃の溶融粘度が500Pa・s以下である樹脂(a1)を含有することから、はんだリフロー時に、はんだボールが自重で沈み込むことができ、はんだボールの位置ずれを抑制することができる。そのため、はんだ接合性に優れた効果を発揮することができる。
<Characteristics of flux sheet>
In the flux sheet of the present invention, the resin (A) contains a resin (a1) having a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa·s (measured at a shear rate of 10 mm/min) or lower. Because of this feature, the adhesiveness to the substrate is strong, and the solder balls are not displaced during reflow. Further, since the resin (a1) having a melt viscosity at 150° C. of 500 Pa·s or less is contained, the solder ball can sink under its own weight during the solder reflow, and the displacement of the solder ball can be suppressed. .. Therefore, it is possible to exert an excellent effect on solder bondability.
 本発明のフラックスシートは、液状及びペースト状フラックスのような常温での流動性を有していないため、フラックス剤を含有させたとしてもフラックスの凝集、分離、沈降などが発生しにくく、保存安定性に優れている。       
 また、液状及びペースト状フラックスを印刷等で塗布する場合、塗布量のばらつきが大きいので、適宜、塗布量の調整等が必要であり、作業性が劣るが、本発明のフラックスシートは、所定量のシートを基板上に載置、ラミネートするのみでよく、作業性に優れている。
 溶媒が残存すると接合時に蒸発してボイドとなることがあるため、本発明のフラックスシートは、残存溶媒の含有率を10質量%未満とすることが好ましい。この含有率は、例えば、カールフィッシャ―法や加熱による重量減少により測定することができる。
Since the flux sheet of the present invention does not have fluidity at room temperature like liquid and pasty flux, even if a flux agent is contained, flux aggregation, separation, sedimentation, etc. are unlikely to occur and storage stability is stable. It has excellent properties.
Further, when the liquid and paste fluxes are applied by printing or the like, since the variation in the coating amount is large, it is necessary to appropriately adjust the coating amount and the like, and the workability is poor, but the flux sheet of the present invention has a predetermined amount. It is only necessary to place the sheet on the substrate and laminate it, and it has excellent workability.
If the solvent remains, it may evaporate into voids at the time of joining, so the flux sheet of the present invention preferably has a residual solvent content of less than 10% by mass. This content can be measured, for example, by the Karl Fischer method or weight reduction by heating.
 本発明のフラックスシートは、水溶性である樹脂(a1)を含有している場合、フラックスシートの作製時や実装時、または、フラックスシートを洗浄する際には水を使用することできる。そのため、揮発して大気中に放出される有機溶媒を用いる必要がないため、環境負荷を低減させることができる。 When the flux sheet of the present invention contains a water-soluble resin (a1), water can be used when the flux sheet is manufactured or mounted, or when the flux sheet is washed. Therefore, it is not necessary to use an organic solvent that is volatilized and released into the atmosphere, so that the environmental load can be reduced.
 本発明のフラックスシートの厚さとして、フラックス活性、洗浄性等を考慮して適宜設定することができるが、好ましくは1~500μmである。下限値としては、好ましくは3μm以上であり、より好ましくは5μm以上である。上限値としては、好ましくは100μm以下であり、より好ましくは50μm以下である。 The thickness of the flux sheet of the present invention can be appropriately set in consideration of the flux activity, cleaning property, etc., but is preferably 1 to 500 μm. The lower limit is preferably 3 μm or more, more preferably 5 μm or more. The upper limit is preferably 100 μm or less, more preferably 50 μm or less.
 また、フラックスシートの大きさ(面積)としては、使用する基板、チップ、ウエハ等の大きさを考慮して、適宜設定することができる。具体的には、基板上の電極(群)が位置する領域よりも若干広い面積に設定することが好ましい。あるいは、予め使用する予定の大きさよりも大きく形成し、使用時に所望の大きさに切り取って使用してもよい。なおシートは切り取らずに直接目的の基板をシートに押し付けることで転写、ラミネートすることも可能である。 Also, the size (area) of the flux sheet can be appropriately set in consideration of the size of the substrate, chip, wafer, etc. to be used. Specifically, it is preferable to set the area to be slightly larger than the area where the electrode (group) on the substrate is located. Alternatively, it may be formed in a size larger than the size to be used in advance, and cut into a desired size at the time of use. The sheet can be transferred and laminated by directly pressing the target substrate onto the sheet without cutting it.
 本発明において、フラックスシートの面積は、好ましくは30000mm以上である。
 フラックスシートの面積を30000mm以上とすることで、大面積のパネルやウエハ等の電子部材基板に対しても前記基板の全面に一度で貼付することができる。
 大面積電子部材基板とは、直径が200mm(8インチ)以上のウエハや、300mm角以上パネルを含むものである。
In the present invention, the area of the flux sheet is preferably 30,000 mm 2 or more.
By setting the area of the flux sheet to 30000 mm 2 or more, it is possible to attach the entire surface of the electronic member substrate such as a panel or a wafer having a large area at one time.
The large-area electronic member substrate includes a wafer having a diameter of 200 mm (8 inches) or more and a panel having a 300 mm square or more.
 前記ウエハとは、シリコンウエハ、サファイアウエハ、化合物半導体ウエハ、ガラス基板、樹脂基板(ガラスエポキシ基板(FR-4)、ビスマレイミドトリアジン基板、ポリイミド樹脂基板、フッ素樹脂など)、プリント配線基板等が含まれる。
 ウエハのサイズとしては、直径が200mm(8インチ)のウエハ、直径が300mm(12インチ)のウエハ等が含まれる。
The wafer includes a silicon wafer, a sapphire wafer, a compound semiconductor wafer, a glass substrate, a resin substrate (glass epoxy substrate (FR-4), bismaleimide triazine substrate, polyimide resin substrate, fluororesin, etc.), printed wiring board, etc. Be done.
The size of the wafer includes a wafer having a diameter of 200 mm (8 inches), a wafer having a diameter of 300 mm (12 inches), and the like.
 前記パネルとは、ガラス基板、シリコン基板、樹脂基板(ガラスエポキシ基板(FR-4)、ビスマレイミドトリアジン基板、ポリイミド樹脂基板、フッ素樹脂など)、化合物半導体基板、プリント配線基板等が含まれ、そのサイズは、例えば、250mm角以上のもので、250mm×350mm、300mm角以上のもので、320mm×320mm、370×470mm等のパネルがある。更に、400mm角以上のパネル、410mm×515mm、508mm×610mm、500mm×510mmのパネル、610mm×457mmのパネル等が含まれる。 The panel includes a glass substrate, a silicon substrate, a resin substrate (glass epoxy substrate (FR-4), a bismaleimide triazine substrate, a polyimide resin substrate, a fluororesin, etc.), a compound semiconductor substrate, a printed wiring board, and the like. The size is, for example, 250 mm square or more, 250 mm×350 mm, 300 mm square or more, and there are panels of 320 mm×320 mm, 370×470 mm, or the like. Further, a panel of 400 mm square or more, 410 mm×515 mm, 508 mm×610 mm, 500 mm×510 mm panel, 610 mm×457 mm panel, etc. are included.
[フラックスシートの作製方法]
 フラックスシートの作製方法としては、特に限定されないが、例えば、樹脂成分(A)を溶媒に溶解させ、樹脂溶液を調製し、表面に離型処理された支持体等に、ロールコーター、コンマコーター、グラビアコーター等の公知の方法により塗布して塗布膜を形成し、該塗膜を乾燥させて溶媒を除去して得る方法が挙げられる。また、必要に応じてフラックス剤(B)等を添加してもよい。なお、溶媒を用いて溶液化せず、(A)(B)等を無溶剤で混練溶融してシート化してもよい。
[Flux sheet manufacturing method]
The method for producing the flux sheet is not particularly limited, but, for example, the resin component (A) is dissolved in a solvent to prepare a resin solution, and the support or the like having the surface subjected to release treatment is coated with a roll coater, a comma coater, Examples thereof include a method of applying a known method such as a gravure coater to form a coating film, drying the coating film, and removing the solvent. Moreover, you may add a flux agent (B) etc. as needed. The sheet may be formed by kneading and melting (A), (B) and the like without using a solvent, instead of forming a solution.
 樹脂成分(A)を溶解させる溶媒としては、例えば、水、有機溶媒、水と有機溶媒の混合溶媒等が挙げられるが、環境負荷の低減の観点から、水が好ましい。有機溶媒としては、アルコール、ケトン等をあげることができるが、好ましくはアルコールである。水は蒸留水、イオン交換水、水道水等を使うことができ、不純物の少ない蒸留水やイオン交換水、超純水が好ましい。アルコールの例としては、メタノール、エタノール、n-プロパノール、n-ブタノール等が挙げられ、ケトンとしてはアセトン、メチルエチルケトン等が挙げられる。有機溶媒を使用する場合、単独で使用してもよく、2種以上を併用してもよい。 Examples of the solvent for dissolving the resin component (A) include water, an organic solvent, a mixed solvent of water and an organic solvent, and the like, and water is preferable from the viewpoint of reducing the environmental load. Examples of the organic solvent include alcohol and ketone, and alcohol is preferable. As water, distilled water, ion-exchanged water, tap water, etc. can be used, and distilled water, ion-exchanged water, and ultrapure water with few impurities are preferable. Examples of alcohols include methanol, ethanol, n-propanol, n-butanol and the like, and examples of ketones include acetone and methyl ethyl ketone. When an organic solvent is used, it may be used alone or in combination of two or more kinds.
 樹脂成分(A)を水に溶解させる場合、溶解速度を上げる観点から、40~95℃に加熱した温水を用いることが好ましい。樹脂成分(A)の固形分濃度としては、好ましくは0.1~60質量%である。また、フラックス剤(B)を添加する場合、上記樹脂成分(A)を溶解させる溶媒と同様のものに溶解させて添加することが好ましく、フラックス剤(B)が液体の場合は直接添加してもよい。なお、添加混合により分離しやすい場合は、界面活性剤などにより乳化させて加えることが好ましい。前記溶媒を用いて、適切な溶融粘度を有する樹脂溶液とすることで、塗布膜表面の平滑性が悪くなる現象や、ピンホールの発生を抑制することができる。 When the resin component (A) is dissolved in water, it is preferable to use warm water heated to 40 to 95° C. from the viewpoint of increasing the dissolution rate. The solid content concentration of the resin component (A) is preferably 0.1 to 60 mass %. When the flux agent (B) is added, it is preferable that the flux agent (B) is dissolved in the same solvent as the solvent for dissolving the resin component (A), and the flux agent (B) is directly added when it is a liquid. Good. In addition, when it is easy to separate by adding and mixing, it is preferable to add by emulsifying with a surfactant or the like. By using the solvent to prepare a resin solution having an appropriate melt viscosity, it is possible to suppress the phenomenon that the smoothness of the coating film surface is deteriorated and the occurrence of pinholes.
 塗布膜の乾燥温度及び乾燥時間は、樹脂溶液用溶媒、膜厚等により、適宜設定することができるが、例えば、シート原料の熱安定性(耐熱分解性)や溶媒の揮発などを考慮し、リフロー時にシートの流動性が低下する等の得られるフラックスシートの物性の変化を抑制する観点から、乾燥温度が25~180℃、より好ましくは40~100℃で乾燥することが好ましい。更に、複数の乾燥炉を設けて、段階的に乾燥を行うことが好ましい。乾燥時間は例えば1~90分間が好ましく、10~70分間がより好ましい。 The drying temperature and the drying time of the coating film can be appropriately set depending on the solvent for the resin solution, the film thickness, etc., for example, in consideration of the thermal stability (heat decomposition resistance) of the sheet material and the volatilization of the solvent, It is preferable to dry at a drying temperature of 25 to 180° C., more preferably 40 to 100° C., from the viewpoint of suppressing changes in the physical properties of the obtained flux sheet such as deterioration of fluidity of the sheet during reflow. Furthermore, it is preferable to provide a plurality of drying ovens and perform the stepwise drying. The drying time is, for example, preferably 1 to 90 minutes, more preferably 10 to 70 minutes.
[はんだ接合方法]
 本発明のはんだ接合方法は、本発明のフラックスシートを用いた、下記ステップを含む方法であることを特徴とする。
 (1)電極を有する基板の電極を有する面に前記フラックスシートを配置するステップ
 (2)前記フラックスシート上に、はんだボールを配置するステップ
 (3)前記フラックスシートをはんだの融点以上の温度であって、かつ前記樹脂シートが液状化する温度に加熱するステップ
 (4)(3)と同時或いはその後、はんだの融点以上の温度に加熱するステップ
 この特徴によれば、基板との接着性が良好であり、リフロー中にはんだボールのズレが生じないフラックスシートを用いることから、はんだ接合の不良等が生じないという効果を発揮することができる。
 本発明に係るはんだ接合方法では、煩雑な印刷等の塗布工程が不要で、はんだボールと基板の電極との間にフラックスシートを配置するのみでよく作業性に優れている。
 以下、上記接合方法に用いる基板及びはんだボールについて説明した上で、各工程の詳細について、図面を参照しながら、説明する。
[Solder joining method]
The solder joining method of the present invention is a method including the following steps using the flux sheet of the present invention.
(1) Step of disposing the flux sheet on the surface having the electrodes of the substrate having the electrodes (2) Step of disposing the solder balls on the flux sheet (3) The flux sheet is at a temperature equal to or higher than the melting point of the solder. And the step of heating to a temperature at which the resin sheet is liquefied (4) and (3), or simultaneously with the step of heating to a temperature equal to or higher than the melting point of the solder. Therefore, since the flux sheet which does not cause the deviation of the solder balls during the reflow is used, it is possible to exert an effect that the defect of the solder joint does not occur.
The solder joining method according to the present invention does not require a complicated coating process such as printing, and is excellent in workability since it is sufficient to dispose the flux sheet between the solder ball and the electrode of the substrate.
Hereinafter, the substrate and the solder balls used in the bonding method will be described, and then the details of each step will be described with reference to the drawings.
 以下、本発明のはんだ接合方法の各工程について、図1~5を適宜参照しながら説明する。なお、図1~5は、本発明のはんだ接合方法を説明するための概略図であって、本発明のはんだ接合方法はこれに限定されるものではない。
<ステップ(1)電極を有する基板の電極を有する面に前記フラックスシートを配置するステップ>
 本ステップは、基板の電極を有する面に前記フラックスシートを配置するステップである。図1は、電極を備える基板の概略平面図である。また、図2は、電極を有する基板を側面からみた概略図である。次に図3(A)に示すように、基板の電極を備える電極面側に、本発明のフラックスシートを配置する。また、図3(B)に示すように、基板電極がフラックスシートに埋め込まれるようにラミネートしてもよい。フラックスシートを配置する前に、基板を予め脱脂しておくことが好ましい。基板上にフラックスシートを配置する方法は、特に限定されず、そのまま置くのみでもよいが、フラックスシートを置いた後、大気圧下または真空条件でラミネート装置を用いて仮固定することが好ましい。ラミネート装置としては真空ラミネートやロールラミネータ装置を用いることができる。ラミネートする際の温度は、好ましくはガラス転移温度以上、より好ましくはガラス転移温度より20℃以上高い温度もしくは軟化点以上である(軟化点がない場合は、ガラス転移温度以上のゴム状態である)ことが好ましい。樹脂成分(A)の種類などにより異なるが、例えば、30~100℃である。
Hereinafter, each step of the solder joining method of the present invention will be described with reference to FIGS. 1 to 5 are schematic diagrams for explaining the solder joining method of the present invention, and the solder joining method of the present invention is not limited to this.
<Step (1) Step of disposing the flux sheet on the surface having the electrodes of the substrate having the electrodes>
This step is a step of disposing the flux sheet on the surface of the substrate having the electrodes. FIG. 1 is a schematic plan view of a substrate provided with electrodes. Further, FIG. 2 is a schematic view of a substrate having electrodes as seen from a side surface. Next, as shown in FIG. 3A, the flux sheet of the present invention is arranged on the electrode surface side of the substrate provided with the electrodes. Further, as shown in FIG. 3B, the substrate electrodes may be laminated so as to be embedded in the flux sheet. It is preferable to degrease the substrate in advance before disposing the flux sheet. The method for arranging the flux sheet on the substrate is not particularly limited, and the flux sheet may be placed as it is. However, it is preferable that the flux sheet is placed and then temporarily fixed using a laminating apparatus under atmospheric pressure or vacuum conditions. As the laminating device, a vacuum laminating device or a roll laminator device can be used. The temperature for laminating is preferably a glass transition temperature or higher, more preferably 20° C. or higher higher than the glass transition temperature or a softening point or higher (when there is no softening point, it is in a rubber state above the glass transition temperature). Preferably. The temperature is, for example, 30 to 100° C., though it varies depending on the type of the resin component (A).
(基板)
 本発明のはんだ接合方法で用いる基板は、電極を備える基板であって、一つ以上の電極を備えていればよく、例えば、図1に示された複数の電極が備えられた基板、チップ、ウエハ等が挙げられる。また、一部の基板上面の電極以外の領域には、ソルダーレジストが形成されている(なお、図2~5では簡略化のためソルダーレジストを図示しない)。このような電極を備える基板としては、例えば、上記で示したプリント配線基板等が挙げられる。電極表面には、はんだボールとの濡れ性を向上させるために、例えば、Cu電極表面には、Cu/Ni/Pd/Au、Cu/Ni/Au、Cu/Ni-P/Au等からなるUBM(Under Bump Metallization)層又は、Surface Finish処理層を形成していることが好ましい。
(substrate)
The substrate used in the solder joining method of the present invention is a substrate provided with electrodes, and may be provided with one or more electrodes, for example, a substrate provided with a plurality of electrodes shown in FIG. 1, a chip, Wafers and the like can be mentioned. Further, a solder resist is formed in a region other than the electrodes on a part of the upper surface of the substrate (note that the solder resist is not shown in FIGS. 2 to 5 for simplification). Examples of the substrate provided with such an electrode include the printed wiring board shown above. In order to improve the wettability with solder balls on the electrode surface, for example, on the Cu electrode surface, a UBM made of Cu/Ni/Pd/Au, Cu/Ni/Au, Cu/Ni-P/Au, etc. It is preferable to form a (Under Bump Metallization) layer or a Surface Finish treatment layer.
 また、基板の電極表面に油脂等の汚れが付着していると、はんだボールとのぬれ性が低下し接合性に悪影響を及ぼすので、あらかじめ有機溶媒、酸性水溶液、塩基性水溶液等で脱脂するのが好ましい。脱脂の際には、超音波をかけると洗浄効果が更に高くなるのでより好ましい。電極表面にUBM層又は、Surface Finish処理層がない場合には、電極表面に酸化皮膜が形成されやすいため、酸性水溶液や塩基性水溶液等によりあらかじめ基板を洗浄してもよい。 Also, if dirt such as oil and fat adheres to the electrode surface of the substrate, the wettability with the solder balls decreases and the bondability is adversely affected, so degreasing with an organic solvent, acidic aqueous solution, basic aqueous solution, etc. in advance Is preferred. At the time of degreasing, it is more preferable to apply ultrasonic waves because the cleaning effect is further enhanced. If the UBM layer or the Surface Finish treatment layer is not present on the electrode surface, an oxide film is likely to be formed on the electrode surface, so the substrate may be washed in advance with an acidic aqueous solution or a basic aqueous solution.
<ステップ(2)前記フラックスシート上に、はんだボールを配置するステップ>
 本ステップは、図4のように、はんだボールを、フラックスシートを介して基板の電極上に位置するように配置して固定する工程である。配置に関しては、各種のボールマウンター装置を用いてもよいし、電極上に開口したメタルマスクなどを用いて刷毛などでボールを落としこみ配置する方法や、先端に接着剤を塗布した細いワイヤーやピンを用いてボールを電極に運んだ後フラックスシートに粘着させ配置する方法などを用いてもよい。フラックスシートを介してはんだボールと基板に仮固定するために、はんだを配置する際、フラックスシートをラミネートする際の温度と同程度、即ち、好ましくはガラス転移点以上、より好ましくはガラス転移点より20℃以上高い温度もしくは軟化点以上(軟化点がない場合は、ガラス転移点以上のゴム状態)の温度で加熱することが好ましい。樹脂成分(A)の種類などにより異なるが、例えば、30~100℃である。また、はんだボールを、フラックスシートを介して基板の電極上に配置する際、押圧してもよいが、本発明のシートはガラス転移点が40℃以下である樹脂(a1)を含有し、柔軟な構造であることから、積極的に押圧する必要はない。本発明のフラックスシートを用いることで、はんだボールが自重でフラックスシート中に埋まるため、はんだボールとフラックスシート及び基板との接着が向上する。
<Step (2) Step of placing solder balls on the flux sheet>
In this step, as shown in FIG. 4, the solder balls are arranged and fixed so as to be positioned on the electrodes of the substrate via the flux sheets. Regarding the placement, various ball mounters may be used, a method of dropping the ball with a brush using a metal mask opened on the electrode, or a fine wire or pin with an adhesive applied to the tip. It is also possible to use a method in which the balls are carried to the electrodes by using and then the balls are adhered to the flux sheet and arranged. In order to temporarily fix the solder balls and the substrate via the flux sheet, when arranging the solder, the temperature is almost the same as the temperature when laminating the flux sheet, that is, preferably the glass transition point or higher, more preferably the glass transition point or higher. It is preferable to heat at a temperature higher by 20° C. or more or at a temperature of a softening point or higher (a rubber state having a glass transition point or higher when there is no softening point). The temperature is, for example, 30 to 100° C., though it varies depending on the type of the resin component (A). Further, when the solder ball is placed on the electrode of the substrate via the flux sheet, the solder ball may be pressed, but the sheet of the present invention contains the resin (a1) having a glass transition point of 40° C. or lower and is flexible. Since it has a simple structure, it is not necessary to press it positively. By using the flux sheet of the present invention, the solder ball is embedded in the flux sheet by its own weight, so that the adhesion between the solder ball and the flux sheet and the substrate is improved.
(はんだボール)
 本発明のはんだ接合方法で使用するはんだボールの組成としては、例えば、Sn-Pb系、Pb-Sn-Sb系、Sn-Sb系、Sn-Pb-Bi系、鉛フリーのSn-Ag系、Sn-Ag-Cu系、Bi-Sn系、Sn-Cu系、Sn-Ag-Bi-In系、Sn-Zn-Bi系等が挙げられる。また、鉛フリーで、且つ低融点はんだであるSn-Bi系(Sn58Bi:融解温度:138℃)やIn-Sn系(In48Sn:融解温度:118℃)のはんだも使用することができる。本発明では、鉛を含有しない鉛フリーはんだを用いることが好ましい。鉛フリーはんだの中では、機械特性等の観点から、Sn-Ag-Cu系のはんだが好ましく、例えば、Sn3Ag0.5Cu(融解温度:約217℃)がより好ましい。また、200℃を超える高温プロセスにおいて、液晶のような材料自体が劣化してしまう材料に対しては、鉛フリーで低融点のはんだを用いることが好ましい。
(Solder ball)
Examples of the composition of the solder ball used in the solder joining method of the present invention include Sn-Pb type, Pb-Sn-Sb type, Sn-Sb type, Sn-Pb-Bi type, lead-free Sn-Ag type, Examples thereof include Sn-Ag-Cu type, Bi-Sn type, Sn-Cu type, Sn-Ag-Bi-In type and Sn-Zn-Bi type. In addition, lead-free and low-melting-point solders such as Sn—Bi solder (Sn58Bi: melting temperature: 138° C.) and In—Sn solder (In48Sn: melting temperature: 118° C.) can also be used. In the present invention, it is preferable to use lead-free solder that does not contain lead. Among the lead-free solders, Sn—Ag—Cu based solders are preferable from the viewpoint of mechanical properties, and Sn3Ag0.5Cu (melting temperature: about 217° C.) is more preferable. Further, it is preferable to use a lead-free, low-melting-point solder for a material such as a liquid crystal that deteriorates itself in a high temperature process exceeding 200° C.
 本発明のはんだ接合方法で使用するはんだボールの大きさとしては、例えば10μm以上であり1000μm以下である。下限値としては、好ましくは30μm以上であり、より好ましくは40μm以上であり、更に好ましくは50μm以上である。上限値としては、好ましくは760μm以下であり、より好ましくは610μm以下であり、更に好ましくは450μm以下であり、特に好ましくは300μm以下である。 The size of the solder balls used in the solder joining method of the present invention is, for example, 10 μm or more and 1000 μm or less. The lower limit value is preferably 30 μm or more, more preferably 40 μm or more, and further preferably 50 μm or more. The upper limit is preferably 760 μm or less, more preferably 610 μm or less, still more preferably 450 μm or less, and particularly preferably 300 μm or less.
<ステップ(3)前記フラックスシートが溶融或いは軟化する温度に加熱するステップ>
 本ステップは、前記フラックスシートが溶融或いは軟化する温度以上で加熱処理する工程である。上記温度で加熱処理をすることで、熱により活性化するフラックス成分を含む場合は、シートのフラックス作用により、はんだボールの表面に形成される金属酸化物を除去することができる。また、はんだの表面だけでなく、電極の表面に存在する酸化物も併せて除去できる。なお、本発明においては、樹脂(A)に樹脂(a1)を含むフラックスシートを用いているため、本ステップ(3)において、図5のように電極とはんだとのズレが生じず、更にはんだが基板へ自重で簡単に貫通することができ、はんだ接合性が良好となる。
<Step (3) Step of heating the flux sheet to a temperature at which it melts or softens>
This step is a step of performing heat treatment at a temperature at which the flux sheet is melted or softened. The heat treatment at the above temperature can remove the metal oxide formed on the surface of the solder ball by the flux action of the sheet when the heat-activated flux component is included. Further, not only the surface of the solder but also the oxide existing on the surface of the electrode can be removed together. In the present invention, since the flux sheet containing the resin (a1) in the resin (A) is used, in this step (3), there is no deviation between the electrode and the solder as shown in FIG. Can easily penetrate the substrate by its own weight, and the solder bondability becomes good.
<ステップ(4):(3)と同時或いはその後、はんだの融点以上の温度に加熱するステップ>
 本ステップは、はんだの融点以上で温度処理する工程である。上記温度で加熱処理をすることで、はんだボールを融解して、はんだ付けすることができる。(4)のステップは、(3)と同時であってもよく、(3)の後に実施してもよい。
<Step (4): Step of heating to a temperature equal to or higher than the melting point of solder at the same time as or after (3)>
This step is a step of performing temperature treatment at the melting point of the solder or higher. By performing the heat treatment at the above temperature, the solder balls can be melted and soldered. The step (4) may be performed simultaneously with (3) or may be performed after (3).
 ステップ(3)(4)での、加熱温度(最高到達温度)及び、当該温度での加熱時間(保持時間)は、はんだボールの融解温度、樹脂成分(A)が軟化する温度、樹脂成分(A)の溶融粘度、フラックス剤の沸点、基板の電極の大きさ、電極間ピッチ等の条件により、適宜設定することができる。
 (3)加熱温度としては、樹脂シートの溶融温度或いは軟化温度以上であり、例えば溶融温度(軟化温度)+20℃以上+100℃以下であることが好ましい。加熱時間としては、例えば、5秒~10分間が好ましい。(4)加熱温度(最高到達温度)としては、はんだボールの融解温度をT(℃)としたとき、例えば、T+10℃以上T+80℃以下である。下限値としては、好ましくはT+20℃以上であり、より好ましくはT+30℃以上である。上限値としては、好ましくはT+70℃以下であり、より好ましくはT+45℃以下である。加熱時間としては、加熱温度(最高到達温度)によって適宜設定できるが、加熱温度(最高到達温度)が上記範囲の温度である場合、加熱時間(保持時間)としては、例えば、5秒~10分間である。下限値としては、好ましくは10秒以上であり、より好ましくは20秒以上である。上限値としては5分間以下であり、より好ましくは3分間以下である。また、本工程は、大気圧条件下や窒素等の不活性ガス雰囲気下で行ってもよいが、窒素等の不活性ガス雰囲気下で行うことがより好ましい。
The heating temperature (maximum reaching temperature) and the heating time (holding time) at the temperature in steps (3) and (4) are the melting temperature of the solder ball, the temperature at which the resin component (A) is softened, and the resin component ( It can be appropriately set according to the conditions such as the melt viscosity of A), the boiling point of the flux agent, the size of the electrodes on the substrate, and the pitch between the electrodes.
(3) The heating temperature is equal to or higher than the melting temperature or softening temperature of the resin sheet, and is preferably, for example, melting temperature (softening temperature)+20° C. or higher+100° C. or lower. The heating time is preferably 5 seconds to 10 minutes, for example. (4) The heating temperature (maximum reaching temperature) is, for example, T+10° C. or higher and T+80° C. or lower, where T (° C.) is the melting temperature of the solder ball. The lower limit value is preferably T+20° C. or higher, more preferably T+30° C. or higher. The upper limit is preferably T+70° C. or lower, and more preferably T+45° C. or lower. The heating time can be appropriately set according to the heating temperature (maximum attainable temperature), but when the heating temperature (maximum attainable temperature) is within the above range, the heating time (holding time) is, for example, 5 seconds to 10 minutes. Is. The lower limit value is preferably 10 seconds or more, more preferably 20 seconds or more. The upper limit is 5 minutes or less, more preferably 3 minutes or less. Further, this step may be carried out under atmospheric pressure or in an atmosphere of an inert gas such as nitrogen, but it is more preferably carried out in an atmosphere of an inert gas such as nitrogen.
 (3)の後に(4)を実施する場合の温度プロファイルは、例えば、Sn37Pbの場合、(3)100~150℃、60~120秒、(4)183℃以上60~150秒、ピーク温度225~240℃(昇温速度3℃/秒以下)であってよい。またSn3Ag0.5Cuの場合は、(3)150~200℃、60~180秒、(4)217℃以上60~150秒、ピーク温度245~260℃(昇温速度3℃/秒以下)であってよい。必要に応じてこれらステップは複数回実施してもよい。温度プロファイルとしては、半導体技術協会(JEDEC)の推奨条件であることが好ましい(IPC/JEDEC J-STD-020Cに準拠)。
 また、本発明のフラックスシートは、ガラス転移点が40℃以下であり、150℃の溶融粘度が500Pa・s以下の樹脂(a1)を含有するから、はんだボールから基板へ向けて、押圧した状態で加熱処理を行う必要が無い。本ステップ終了後、図5に示すように、はんだ接合した状態となる。
When (4) is carried out after (3), for example, in the case of Sn37Pb, (3) 100 to 150° C., 60 to 120 seconds, (4) 183° C. or more 60 to 150 seconds, peak temperature 225 It may be up to 240° C. (heating rate 3° C./sec or less). In the case of Sn3Ag0.5Cu, (3) 150 to 200° C., 60 to 180 seconds, (4) 217° C. or more and 60 to 150 seconds, and peak temperature 245 to 260° C. (heating rate 3° C./second or less). You may. These steps may be performed multiple times if desired. The temperature profile is preferably a condition recommended by the Semiconductor Technology Association (JEDEC) (in accordance with IPC/JEDEC J-STD-020C).
Further, since the flux sheet of the present invention has a glass transition point of 40° C. or lower and contains a resin (a1) having a melt viscosity of 500 Pa·s or lower at 150° C., it is pressed from the solder ball toward the substrate. There is no need to perform heat treatment at. After this step is completed, as shown in FIG.
 更に、上記のはんだ接合方法の終了後に、本発明のフラックスシートを溶媒により溶解除去してもよい。フラックスシートを溶媒により溶解除去することによって、はんだ接合した以外の領域に存在しているフラックスシートを溶媒により溶解除去され、図6に示されるように、はんだ接合部位が露出した状態となる。フラックスシートを溶解除去する洗浄用の溶媒としては、特に制限はなく、水、有機溶媒、水と有機溶媒との混合溶媒等が挙げられるが、環境負荷が低く、入手しやすいとの観点から、水が好ましい。有機溶媒としては、アルコール、ケトンなどをあげることができるが、好ましくはアルコールである。有機溶媒を使用する場合、単独で使用してもよく、2種以上を併用してもよい。なお、樹脂成分(A)が水に溶けにくい場合は、有機溶媒、又は水と有機溶媒との混合溶媒を用いることが好ましい。水と有機溶媒との混合溶媒において、混合比は、特に制限はないが、環境負荷の低減の観点から、有機溶媒の比率が低いほうが好ましい。水は蒸留水、イオン交換水、水道水等を使うことができ、不純物の少ない蒸留水やイオン交換水、超純水が好ましい。アルコールの例としては、メタノール、エタノール、n-プロパノール、n-ブタノール等を挙げられ、ケトン系溶媒としてはアセトン、メチルエチルケトン等が挙げられる。使用する溶媒の温度としては、フラックスシート中に含まれる樹脂成分(A)により適宜設定することができるが、作業性の観点から、室温で行うのが好ましい。 Furthermore, the flux sheet of the present invention may be dissolved and removed with a solvent after the above solder joining method is completed. By dissolving and removing the flux sheet with a solvent, the flux sheet existing in the regions other than the solder-bonded regions is dissolved and removed with the solvent, and the solder-bonded portions are exposed as shown in FIG. The cleaning solvent for dissolving and removing the flux sheet is not particularly limited, and examples thereof include water, an organic solvent, and a mixed solvent of water and an organic solvent, but from the viewpoint of low environmental load and easy availability, Water is preferred. Examples of the organic solvent include alcohol and ketone, and alcohol is preferable. When an organic solvent is used, it may be used alone or in combination of two or more kinds. When the resin component (A) is difficult to dissolve in water, it is preferable to use an organic solvent or a mixed solvent of water and an organic solvent. In the mixed solvent of water and the organic solvent, the mixing ratio is not particularly limited, but a lower ratio of the organic solvent is preferable from the viewpoint of reducing the environmental load. As water, distilled water, ion-exchanged water, tap water, etc. can be used, and distilled water, ion-exchanged water, and ultrapure water with few impurities are preferable. Examples of alcohols include methanol, ethanol, n-propanol, n-butanol and the like, and examples of ketone solvents include acetone and methyl ethyl ketone. The temperature of the solvent to be used can be appropriately set depending on the resin component (A) contained in the flux sheet, but from the viewpoint of workability, it is preferably performed at room temperature.
 なお、フラックスシートを溶解しにくいときや、溶解するのに時間がかかるときには、加熱した溶媒を用いることや、界面活性剤を含有する溶媒を用いてもよい。この加熱した溶媒の温度としては、高いほどフラックスシートを溶解しやすくなるが、その溶媒の沸点未満の温度であることが好ましい。
 界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、両性イオン系界面活性剤、ノニオン系界面活性剤等の界面活性剤を用いることができる。
In addition, when it is difficult to dissolve the flux sheet, or when it takes a long time to dissolve the flux sheet, a heated solvent may be used or a solvent containing a surfactant may be used. As the temperature of the heated solvent, the higher the temperature, the more easily the flux sheet is dissolved, but the temperature is preferably lower than the boiling point of the solvent.
As the surface active agent, surface active agents such as anionic surface active agents, cationic surface active agents, zwitterionic surface active agents and nonionic surface active agents can be used.
 また、フラックスシートの溶解除去の効率を向上させる観点から、超音波を照射つつ溶解除去させることが好ましい。フラックス剤(B)を用いた場合、フラックス剤が残存すると、はんだ接合部位を腐食する可能性があり、長期使用の信頼性低下を招く原因となるため、フラックス剤の除去効率を向上させるために、超音波を照射しつつ洗浄処理を行うことが好ましい。なお、超音波の強さとしては、形成したはんだ接合が破断しない程度に調整することが好ましい。また、液中ジェット、ダイレクトパスなどの水流発生装置により洗浄することが、フラックス剤の除去効果を向上させるために好ましい。 Also, from the viewpoint of improving the efficiency of dissolving and removing the flux sheet, it is preferable to dissolve and remove while irradiating ultrasonic waves. When the flux agent (B) is used, if the flux agent remains, the solder joint part may be corroded, which causes a decrease in reliability in long-term use. Therefore, in order to improve the flux agent removal efficiency. It is preferable to perform the cleaning treatment while irradiating with ultrasonic waves. In addition, it is preferable to adjust the strength of the ultrasonic wave so that the formed solder joint is not broken. Further, it is preferable to wash with a water flow generator such as a submerged jet or a direct path in order to improve the effect of removing the flux agent.
 以下に、本発明を実施例により詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例で使用した各成分の物性値については、下記の方法に基づいて測定した値を使用した。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples. Regarding the physical property values of each component used in the following examples, the values measured based on the following methods were used.
(樹脂溶液の作製)
[製造例1]
 変性ポリビニルアルコール(ポリエチレングリコールが付加されたポリビニルアルコール:日本合成化学工業社製、商品名「ゴーセネックス(登録商標)LW-100;ガラス転移点-0.5℃、150℃の溶融粘度:63Pa・s(せん断速度10mm/分)(水を揮発させて樹脂単独で測定)、ケン化度39.0~46.0)を樹脂溶液とした(固形分40質量%水溶液)。
(Preparation of resin solution)
[Production Example 1]
Modified polyvinyl alcohol (polyvinyl alcohol to which polyethylene glycol is added: manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “GOHSENX (registered trademark) LW-100; glass transition point-0.5° C., melt viscosity at 150° C.: 63 Pa·s) (Shearing rate 10 mm/min) (measured by volatilizing water to measure resin alone) and saponification degree 39.0 to 46.0 were used as a resin solution (solid content 40 mass% aqueous solution).
(フラックスシートの作製)
 支持体である、表面に離型処理が施されたポリエチレンテレフタレートフィルム(リンテック株式会社製6502)(以下、離型フィルムとする。)上に、上記調製した樹脂溶液を塗布し、塗膜を形成した。そして、この塗膜を、80℃、60分間加熱乾燥して、支持体上に膜厚が30μmのフラックスシートを作製した。
(Preparation of flux sheet)
The above-prepared resin solution is applied onto a polyethylene terephthalate film (6502 manufactured by Lintec Co., Ltd.), which has been subjected to a release treatment on its surface, which is a support, to form a coating film. did. Then, this coating film was heated and dried at 80° C. for 60 minutes to prepare a flux sheet having a film thickness of 30 μm on the support.
[製造例2]
 フラックス剤として、アジピン酸5質量部(LW-100の樹脂固形分100質量部に対して)を用いたこと以外は、製造例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 2]
A flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 1 except that 5 parts by mass of adipic acid (based on 100 parts by mass of resin solid content of LW-100) was used as the fluxing agent.
[製造例3]
 フラックス剤として、サリチル酸5質量部(LW-100の樹脂固形分100質量部に対して)を用いたこと以外は、製造例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 3]
A flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 1 except that 5 parts by mass of salicylic acid (based on 100 parts by mass of the resin solid content of LW-100) was used as the fluxing agent.
[製造例4]
 ポリアミド(PA)(東レ株式会社製、商品名「AQナイロン T-70;ガラス転移点-46℃、150℃の溶融粘度:17Pa・s(せん断速度10mm/分)(水を揮発させて樹脂単独で測定))100質量部(固形分51質量%)に、フラックス剤として、ドデシルアミン5質量部(T-70の樹脂固形分100質量部に対して)を加えて攪拌し、樹脂溶液を作製した。そして、この調整した樹脂溶液を用いて、製造例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 4]
Polyamide (PA) (manufactured by Toray Industries, Inc., trade name “AQ Nylon T-70; glass transition point −46° C., melt viscosity at 150° C.: 17 Pa·s (shear rate 10 mm/min) (water volatilizes resin alone Measurement))) to 100 parts by mass (solid content 51% by mass), 5 parts by mass of dodecylamine (based on 100 parts by mass of resin solid content of T-70) as a fluxing agent, and stirred to prepare a resin solution. Then, using this adjusted resin solution, a flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 1.
[製造例5]
 フラックス剤として、アジピン酸5質量部(T-70の樹脂固形分100質量部に対してを用いたこと以外は、製造例4と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 5]
A flux sheet having a thickness of 30 μm was produced in the same manner as in Production Example 4 except that 5 parts by mass of adipic acid (100 parts by mass of resin solid content of T-70) was used as the fluxing agent.
[製造例6]
 ポリエステル(PEs)(高松油脂株式会社製、商品名「ペスレジンA-680;ガラス転移点30℃、150℃の溶融粘度:29Pa・s(せん断速度10mm/分)(水を揮発させて樹脂単独で測定))100質量部(固形分20質量%)に、フラックス剤として、アジピン酸5質量部(ペスレジンA-680の樹脂固形分100質量部に対して)を蒸留水に溶解した水溶液を加えて攪拌し、樹脂溶液を作製した。そして、この調整した樹脂溶液を用いて、実施例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 6]
Polyester (PEs) (Takamatsu Yushi Co., Ltd., trade name “Pethresin A-680; glass transition temperature 30° C., melt viscosity at 150° C.: 29 Pa·s (shear rate 10 mm/min) (water volatilizes and resin alone) (Measurement)) To 100 parts by mass (solid content 20% by mass), an aqueous solution in which 5 parts by mass of adipic acid (based on 100 parts by mass of resin solids of pesresin A-680) is dissolved in distilled water is added as a fluxing agent. A resin solution was prepared by stirring, and a flux sheet having a film thickness of 30 μm was prepared using the prepared resin solution in the same manner as in Example 1.
[製造例7]
 フラックス剤として、サリチル酸43質量部(LW-100の樹脂固形分100質量部に対して)を用いたこと以外は、製造例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 7]
A flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 1 except that 43 parts by mass of salicylic acid (based on 100 parts by mass of the resin solid content of LW-100) was used as the fluxing agent.
[製造例8]
 LW-100の固形分を70質量部とし、ポリビニルアルコール(PVA)(日本酢ビポバール株式会社製、商品名「ポバールJP-03」;ガラス転移点63℃)30質量部を用い、アジピン酸5質量部(前記LW-100とJP-03の合計100質量部に対して)を用いたこと以外は、製造例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
 [製造例9]
 LW-100の固形分の配合量を60質量部とし、JP-03の配合量を40質量部、相容化剤としてカルボキシメチルセルロース(CMC)(ダイセルファインケム株式会社製、商品名「CMC1220」)5重量部を用いたこと以外は、製造例8と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 8]
The solid content of LW-100 was 70 parts by mass, and 30 parts by mass of polyvinyl alcohol (PVA) (manufactured by Nippon Vinegar Bipovar Co., Ltd., trade name "Poval JP-03"; glass transition point 63° C.) was used, and 5 parts by mass of adipic acid. A flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 1 except that parts (based on the total 100 parts by mass of LW-100 and JP-03) were used.
[Production Example 9]
The solid content of LW-100 is 60 parts by mass, the blending amount of JP-03 is 40 parts by mass, and carboxymethyl cellulose (CMC) as a compatibilizer (manufactured by Daicel Finechem Co., Ltd., trade name "CMC1220") 5 A flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 8 except that parts by weight were used.
[製造例10]
 LW-100の固形分の配合量を50質量部とし、JP-03の配合量を50質量部とした以外は、製造例9と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 10]
A flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 9 except that the solid content of LW-100 was 50 parts by mass and the blending amount of JP-03 was 50 parts by mass.
[製造例11]
 LW-100の固形分の配合量を40質量部とし、JP-03の配合量を60質量部とした以外は、製造例10と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Production Example 11]
A flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 10, except that the solid content of LW-100 was 40 parts by mass and the JP-03 content was 60 parts by mass.
[比較製造例1]
 ポリビニルブチラール(PVB)(積水化学工業株式会社製、商品名「エスレック KW-1;ガラス転移点65℃、150℃の溶融粘度:1444Pa・s(せん断速度10mm/分)(水を揮発させて樹脂単独で測定))の固形分100質量部(固形分20質量%)に、フラックス剤として、アジピン酸5質量部(KW-1の樹脂固形分100質量部に対して)を蒸留水に溶解した水溶液を加えて攪拌し、樹脂溶液を作製した。そして、この調整した樹脂溶液を用いて、製造例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Comparative Production Example 1]
Polyvinyl butyral (PVB) (manufactured by Sekisui Chemical Co., Ltd., trade name “S-REC KW-1; glass transition point 65° C., melt viscosity at 150° C.: 1444 Pa·s (shear rate 10 mm/min) (resin by volatilizing water) 5 parts by mass of adipic acid (based on 100 parts by mass of the resin solid content of KW-1) as a fluxing agent was dissolved in 100 parts by mass of solid content (measured by itself) (20 mass% of solid content) in distilled water. An aqueous solution was added and stirred to prepare a resin solution, and the prepared resin solution was used to prepare a flux sheet having a film thickness of 30 μm in the same manner as in Production Example 1.
[比較製造例2]
 ポリビニルアルコール(PVA)(日本酢ビポバール株式会社製、商品名「ポバール JP-03;ガラス転移点63℃、150℃では溶融しない)の固形分100質量部に、フラックス剤として、アジピン酸5質量部(JP-03の樹脂固形分100質量部に対して)を加えて攪拌し、樹脂溶液を作製した。そして、この調整した樹脂溶液を用いて、製造例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Comparative Production Example 2]
5 parts by mass of adipic acid as a fluxing agent, to 100 parts by mass of a solid content of polyvinyl alcohol (PVA) (manufactured by Nippon Vinegar Bipovar Co., Ltd., trade name “Poval JP-03; glass transition point 63° C., not melting at 150° C.) A resin solution was prepared by adding (to 100 parts by mass of the resin solid content of JP-03) and stirring, and using this adjusted resin solution, a film thickness of 30 μm was obtained in the same manner as in Production Example 1. The flux sheet of was produced.
[比較製造例3]
 エチレン・酢酸ビニル共重合体(EVA)(デンカ株式会社製、商品名「デンカEVAラテックス55N」;ガラス転移点-10℃、150℃では溶融しない)の固形分100質量部に、フラックス剤として、アジピン酸5質量部(デンカEVAラテックス55Nの樹脂固形分100質量部に対して)を蒸留水に溶解した水溶液を加えて攪拌し、樹脂溶液を作製した。そして、この調整した樹脂溶液を用いて、製造例1と同様の方法により、膜厚30μmのフラックスシートを作製した。
[Comparative Production Example 3]
As a fluxing agent, 100 parts by mass of ethylene/vinyl acetate copolymer (EVA) (manufactured by Denka Co., Ltd., trade name “Denka EVA Latex 55N”; glass transition point −10° C., not melted at 150° C.) is added as a fluxing agent. An aqueous solution prepared by dissolving 5 parts by mass of adipic acid (based on 100 parts by mass of resin solid content of Denka EVA latex 55N) in distilled water was added and stirred to prepare a resin solution. Then, using this adjusted resin solution, a flux sheet having a film thickness of 30 μm was produced in the same manner as in Production Example 1.
[フラックスシートを用いたはんだ接合試験]
 はんだ接合試験にあたり、使用した、基板及びはんだボールは以下の通りである。
基板:FR-4(ガラスエポキシ基板で、電極は銅からなり、電極表面のUBM層はCu/Ni/Au(Ni層の厚さは3μm、Au層の厚さは0.03μm)からなるものである。)
はんだボール:はんだ組成(直径760μm、Sn-Ag-Cu;Sn:96.5質量%、Ag:3.0質量%、Cu:0.5質量%(融解温度217~219℃)))
[Solder joint test using flux sheet]
The substrates and solder balls used in the solder joint test are as follows.
Substrate: FR-4 (glass epoxy substrate, electrodes made of copper, UBM layer on the electrode surface made of Cu/Ni/Au (Ni layer thickness 3 μm, Au layer thickness 0.03 μm) It is.)
Solder ball: Solder composition (diameter 760 μm, Sn—Ag—Cu; Sn: 96.5% by mass, Ag: 3.0% by mass, Cu: 0.5% by mass (melting temperature 217 to 219° C.))
[実施例1~11、比較例1~3]
 上記製造例1~11、比較製造例1~3で作製したフラックスシートに用いて下記(1)~(6)の項目について、以下の方法に基づいて評価を行った。評価結果を表1に示す。
(1)フラックスシートと基板との接着性
 上記で作製した離型フィルム付フラックスシートを80℃に加熱し、基板に真空で押し当て、基板にラミネートした。室温に戻して、離型フィルムを引き剥がしたときの基板の様子を観察した。
A:フラックスシートが離型フィルムから離れ基板に転写された。
C:フラックスシート/基板界面での剥離、又は/且つ、フラックスシート内での破壊が起こった。
(2)フラックスシートのタック性
 上記で作製したフラックスシートについて指触し、室温でのタック性を官能評価した。
A:適度なタックを有する(べたつきがある)
C:タックがない(べたつきがなく他材への貼着が不可のもの)
(3)フラックスシートのリワーク性・取り扱い性
 上記で作製したフラックスシートについて、シートに指触後、シートに押し当てた指を他の指に押し当てたときの粘着の有無でのり残りを確認し、室温(体温)でのリワーク性・取り扱い性を官能評価した。
A:指へののり残りない
C:指へののり残りあり
(4)はんだボールの保持力
 メタルマスクを用いて、フラックスシートでラミネートされた基板上にはんだボール36個を配置させ、一旦80℃に昇温し、室温に戻した。
 はんだボールが配置後の基板を特定角度で傾け、フラックスシートによるはんだボールの保持力を測定した。
A:はんだボール配置後90度傾けたとき、はんだボールが落ちない。
C:はんだボール配置後90度傾けたとき、はんだボールが落ちた。
[Examples 1 to 11 and Comparative Examples 1 to 3]
The flux sheets produced in the above Production Examples 1 to 11 and Comparative Production Examples 1 to 3 were evaluated for the following items (1) to (6) based on the following methods. The evaluation results are shown in Table 1.
(1) Adhesion between Flux Sheet and Substrate The flux sheet with a release film prepared above was heated to 80° C., pressed against the substrate in a vacuum, and laminated on the substrate. After returning to room temperature, the state of the substrate when the release film was peeled off was observed.
A: The flux sheet was separated from the release film and transferred to the substrate.
C: Peeling at the flux sheet/substrate interface and/or destruction in the flux sheet occurred.
(2) Tackability of Flux Sheet The flux sheet prepared above was touched with fingers and sensory evaluated for tackiness at room temperature.
A: Moderate tack (sticky)
C: No tack (no stickiness and cannot be attached to other materials)
(3) Reworkability/Handlability of the flux sheet Regarding the flux sheet produced above, after the finger touches the sheet, the adhesive residue when the finger pressed against the sheet is pressed against the other fingers is checked to see if there is adhesive residue. A sensory evaluation of reworkability and handleability at room temperature (body temperature) was performed.
A: No sticking on the finger C: Sticking on the finger remains (4) Solder ball holding power 36 solder balls were placed on the substrate laminated with the flux sheet using a metal mask, and the solder ball was held at 80°C once. The temperature was raised to room temperature and the temperature was returned to room temperature.
The substrate after the solder balls were arranged was tilted at a specific angle, and the holding force of the solder balls by the flux sheet was measured.
A: Solder balls do not fall when tilted 90 degrees after the solder balls are arranged.
C: The solder balls fell when tilted 90 degrees after the solder balls were arranged.
(5)溶解除去性(目視及びルーペによる観察)
 はんだボールを搭載した基板を、250℃、大気下で加熱処理を行い、はんだと基板を接合させた。
 はんだ接合を形成した基板を、超音波洗浄機「プランソニック」(製品名5510、BRANSON社製)を用いて、42kHzで揺動した25℃の蒸留水に浸漬し、5分間の洗浄処理を行った。なお、実施例6においては、蒸留水の代わりに、メタノール/蒸留水=1/1(質量比)の混合溶媒を用いた。以上の工程を経て、フラックスシートを用いた場合のはんだ接合体を得た。
 洗浄後の基板を目視及びルーペを用いて、はんだ/基板間の隙間に残存するフラックスシートの有無を観察し、以下の基準により評価した。
 A:フラックスシートが全く残存していない。
 B:フラックスシートがはんだ端部に少し観察される。
 C:フラックスシートが全体にわたって残存している。
(6)はんだ接合力
 ダイシェアテスターにより、接合したはんだボール5個についてシェアテストを行い、はんだ接合力を確認した。
 A:全て凝集破壊である。
 C:一部または全て界面破壊である。
(5) Dissolvability and removability (visual and loupe observation)
The substrate on which the solder balls were mounted was heated at 250° C. in the atmosphere to bond the solder and the substrate.
The substrate on which the solder joints were formed was immersed in distilled water at 25° C. that oscillated at 42 kHz for 5 minutes using an ultrasonic cleaner “Plansonic” (product name 5510, manufactured by BRANSON). It was In Example 6, a mixed solvent of methanol/distilled water=1/1 (mass ratio) was used instead of the distilled water. Through the above steps, a solder joint using a flux sheet was obtained.
The presence or absence of the flux sheet remaining in the gap between the solder and the substrate was observed visually and using a loupe on the washed substrate, and the evaluation was made according to the following criteria.
A: No flux sheet remains.
B: Flux sheet is slightly observed on the solder edge.
C: The flux sheet remains all over.
(6) Solder joint strength A die shear tester performed a shear test on five joined solder balls to confirm the solder joint strength.
A: All are cohesive failure.
C: Partial or complete interface destruction.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~11は、ガラス転移点が40℃以下、150℃の溶融粘度が500Pa・s以下の樹脂を含むフラックスシートを用いていることから、接着性、タック性、リワーク性、はんだ保持力、溶解除去性、はんだ接合力のいずれの評価においても、良好な結果が得られた。なお、実施例1~5、7~11と実施例6を比較すると、水との水素結合がより弱い実施例1~5、7~11のシートは、実施例6のシートに比べて、水に対する溶解性がより優れる結果となった。実施例8~11では、ガラス転移点が40℃以下、150℃の溶融粘度が500Pa・s以下の樹脂を含み、かつガラス転移点が前記樹脂より高い樹脂を含有していることからリワーク性・取り扱い性が向上することがわかった。 In Examples 1 to 11, since the flux sheets containing a resin having a glass transition point of 40° C. or lower and a melt viscosity of 150° C. of 500 Pa·s or lower are used, adhesion, tackiness, reworkability, and solder holding power are obtained. Good results were obtained in any of the evaluations of dissolution, removability, and solder joint strength. In addition, comparing Examples 1 to 5 and 7 to 11 with Example 6, the sheets of Examples 1 to 5 and 7 to 11 having a weaker hydrogen bond with water are more water-soluble than the sheet of Example 6. The result was that the solubility in In Examples 8 to 11, the glass transition point contains a resin having a glass transition point of 40° C. or less and a melt viscosity at 150° C. of 500 Pa·s or less, and the resin having a glass transition point higher than that of the resin is included, so that reworkability It was found that handleability was improved.
 比較例1~2は、ガラス転移点が40℃以下である樹脂を用いていないことから、基板との接着力が弱く、はんだボール保持力が弱いため、はんだ接合力が劣る結果となった。また、比較例3は、150℃の溶融粘度が500Pa・s以下である樹脂を用いていないため、基板との接着力が弱く、はんだボールの沈み込み不足のため、はんだ接合力等が劣る結果となった。 Since Comparative Examples 1 and 2 did not use a resin having a glass transition point of 40° C. or lower, the adhesive strength to the substrate was weak and the solder ball holding power was weak, resulting in poor solder joint strength. Further, in Comparative Example 3, since the resin whose melt viscosity at 150° C. is 500 Pa·s or less is not used, the adhesive force with the substrate is weak, and the solder ball sinking is insufficient, resulting in poor solder joint strength and the like. Became.
 本発明によれば、基板との接着性が強く、リフロー中にはんだボールのズレが生じないフラックスシートを提供することができる。 According to the present invention, it is possible to provide a flux sheet which has strong adhesion to a substrate and does not cause a solder ball shift during reflow.
 更に、本発明によれば、多数のはんだバンプを均一性良く形成でき、かつ生産性が高く、環境負荷が小さいはんだ接合方法を提供することができる。 Further, according to the present invention, it is possible to provide a solder joining method capable of forming a large number of solder bumps with high uniformity, high productivity, and a small environmental load.
1・・・電極、2・・・ソルダーレジスト、3・・・フラックスシート、4・・・はんだボール、100・・・基板

 
1... Electrode, 2... Solder resist, 3... Flux sheet, 4... Solder ball, 100... Substrate

Claims (10)

  1.  樹脂(A)を含むフラックスシートであって、前記樹脂(A)が、ガラス転移点が40℃以下で、150℃の溶融粘度が500Pa・s(せん断速度10mm/分で測定)以下である樹脂(a1)を含有することを特徴とする、フラックスシート。 A flux sheet containing a resin (A), wherein the resin (A) has a glass transition point of 40° C. or lower and a melt viscosity at 150° C. of 500 Pa·s (measured at a shear rate of 10 mm/min) or less. A flux sheet containing (a1).
  2.  前記樹脂(A)が、ガラス転移点が40℃以下で、150℃の粘度が500Pa・s(せん断速度10mm/分で測定)以下である樹脂(a1)を35~99質量%、ガラス転移点が前記樹脂(a1)より高い樹脂(a2)を1~65質量%含有することを特徴とする、請求項1に記載のフラックスシート。 The resin (A) has a glass transition point of 40 to 40° C., a viscosity at 150° C. of 500 Pa·s (measured at a shear rate of 10 mm/min) or less, 35 to 99% by mass, and a glass transition point of the resin (a1). 2. The flux sheet according to claim 1, wherein the flux sheet contains the resin (a2) higher than the resin (a1) in an amount of 1 to 65 mass %.
  3.  前記フラックスシートが、フラックス剤(B)を含有することを特徴とする、請求項1又は2に記載のフラックスシート。 The flux sheet according to claim 1 or 2, wherein the flux sheet contains a flux agent (B).
  4.  前記フラックスシートは、実質的に(B)以外の低分子化合物を含有しないことを特徴とする、請求項1~3のいずれか一項に記載のフラックスシート。 The flux sheet according to any one of claims 1 to 3, wherein the flux sheet does not substantially contain a low molecular weight compound other than (B).
  5.  前記樹脂(a1)が水溶性であることを特徴とする、請求項1~4のいずれか一項に記載のフラックスシート。 The flux sheet according to any one of claims 1 to 4, wherein the resin (a1) is water-soluble.
  6.  前記樹脂(a1)がポリビニルアルコールの一部のヒドロキシ基(-OH)を、アルキレンオキサイド鎖が1つ又は複数連結した部分構造-(CH(R)CH(R)O)―R(nはアルキレンオキサイド鎖の繰り返し数(平均値)を表し、1.0以上である。R,R及びRは、互いに独立して水素原子又は有機基を示す。R,R及びRが複数ある場合、それぞれ同一であってもよく異なっていてもよい。)に置換した変性ポリビニルアルコール、ポリアミド及びポリエステルから選択される1種以上を含むことを特徴とする、請求項1~5のいずれか一項に記載のフラックスシート。 The resin (a1) has a partial structure in which one or more hydroxy groups (—OH) of polyvinyl alcohol are linked by an alkylene oxide chain —(CH(R 1 )CH(R 2 )O) n —R 3 (N represents the repeating number (average value) of the alkylene oxide chain, and is 1.0 or more. R 1 , R 2 and R 3 each independently represent a hydrogen atom or an organic group. R 1 , R 2 And a plurality of R 3's , each may be the same or different.) and at least one selected from the group consisting of modified polyvinyl alcohol, polyamide and polyester. 5. The flux sheet according to any one of 5 to 5.
  7.  前記樹脂(a2)としてポリビニルアルコールを含有することを特徴とする、請求項2~6の何れか一項に記載のフラックスシート。 The flux sheet according to any one of claims 2 to 6, characterized by containing polyvinyl alcohol as the resin (a2).
  8.  前記フラックスシートにおいて、前記樹脂(A)の含有量が50質量%以上であること特徴とする、請求項1~7のいずれか一項に記載のフラックスシート。 The flux sheet according to any one of claims 1 to 7, wherein the content of the resin (A) in the flux sheet is 50% by mass or more.
  9.  前記フラックスシートの面積が30000mm以上であることを特徴とする、請求項1~8のいずれか一項に記載のフラックスシート。 The flux sheet according to any one of claims 1 to 8, wherein the area of the flux sheet is 30,000 mm 2 or more.
  10.  請求項1~9のいずれか一項に記載のフラックスシートを用いたはんだ接合方法であって、下記(1)~(4)のステップを有することを特徴とする、はんだ接合方法。
     (1)電極を有する基板の電極を有する面に前記フラックスシートを配置するステップ
     (2)前記フラックスシートの上に、はんだボールを配置するステップ
     (3)前記フラックスシートが溶融或いは軟化する温度に加熱するステップ
     (4)(3)と同時或いはその後、はんだの融点以上の温度に加熱するステップ

     
    A solder joining method using the flux sheet according to any one of claims 1 to 9, comprising the following steps (1) to (4).
    (1) Step of disposing the flux sheet on the surface of the substrate having electrodes having electrodes (2) Step of disposing solder balls on the flux sheet (3) Heating to a temperature at which the flux sheet melts or softens Step (4) Step of heating to a temperature above the melting point of the solder simultaneously with or after (3)

PCT/JP2019/047087 2018-12-03 2019-12-02 Flux sheet and solder bonding method using flux sheet WO2020116403A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020559193A JP7407733B2 (en) 2018-12-03 2019-12-02 Flux sheet and soldering method using flux sheet
KR1020217011948A KR20210097105A (en) 2018-12-03 2019-12-02 Solder bonding method using flux sheet and flux sheet
CN201980075479.6A CN113165092B (en) 2018-12-03 2019-12-02 Soldering flux sheet and solder bonding method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-226329 2018-12-03
JP2018226329 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020116403A1 true WO2020116403A1 (en) 2020-06-11

Family

ID=70974266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047087 WO2020116403A1 (en) 2018-12-03 2019-12-02 Flux sheet and solder bonding method using flux sheet

Country Status (4)

Country Link
JP (1) JP7407733B2 (en)
KR (1) KR20210097105A (en)
CN (1) CN113165092B (en)
WO (1) WO2020116403A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022158461A1 (en) * 2021-01-19 2022-07-28

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075043A (en) * 1996-08-29 1998-03-17 Toyota Motor Corp Flux for circuit board soldering and circuit board
JP2003103398A (en) * 2001-09-26 2003-04-08 Sumitomo Bakelite Co Ltd Hardenable flux and hardenable flux sheet
JP2004291054A (en) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd Adhesive with hardening flux function, and sheet thereof
JP2006102753A (en) * 2004-09-30 2006-04-20 Sumitomo Bakelite Co Ltd Thermosetting flux, flux sheet, and multilayer printed circuit board
JP2014168791A (en) * 2013-03-01 2014-09-18 Hitachi Chemical Co Ltd Flux film, flip-chip connection method, and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256622A (en) * 2003-02-25 2004-09-16 Dainippon Ink & Chem Inc Curing agent for epoxy resin
JP2004277640A (en) * 2003-03-18 2004-10-07 Toyobo Co Ltd Polyester resin for molding, resin composition and molded article obtained using the same
JP4466397B2 (en) * 2005-02-10 2010-05-26 住友ベークライト株式会社 Adhesive film for semiconductor and semiconductor device using the same
JP2009203371A (en) * 2008-02-28 2009-09-10 Unitika Ltd Resin pellet and binder comprising it
JP6553427B2 (en) * 2015-06-30 2019-07-31 デクセリアルズ株式会社 Method for producing reinforced flexible printed wiring board, thermosetting resin composition, and thermosetting adhesive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075043A (en) * 1996-08-29 1998-03-17 Toyota Motor Corp Flux for circuit board soldering and circuit board
JP2003103398A (en) * 2001-09-26 2003-04-08 Sumitomo Bakelite Co Ltd Hardenable flux and hardenable flux sheet
JP2004291054A (en) * 2003-03-27 2004-10-21 Sumitomo Bakelite Co Ltd Adhesive with hardening flux function, and sheet thereof
JP2006102753A (en) * 2004-09-30 2006-04-20 Sumitomo Bakelite Co Ltd Thermosetting flux, flux sheet, and multilayer printed circuit board
JP2014168791A (en) * 2013-03-01 2014-09-18 Hitachi Chemical Co Ltd Flux film, flip-chip connection method, and semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022158461A1 (en) * 2021-01-19 2022-07-28
WO2022158461A1 (en) * 2021-01-19 2022-07-28 ナガセケムテックス株式会社 Flux sheet for semiconductor transfer
JP7313584B2 (en) 2021-01-19 2023-07-24 ナガセケムテックス株式会社 Flux sheet for semiconductor transfer

Also Published As

Publication number Publication date
JPWO2020116403A1 (en) 2021-11-04
JP7407733B2 (en) 2024-01-04
KR20210097105A (en) 2021-08-06
CN113165092B (en) 2023-09-22
CN113165092A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
EP2826589B1 (en) Flux, solder composition and method for producing electronic circuit mounting substrate
JP5856747B2 (en) Soldering flux and solder paste composition
JP5012794B2 (en) Circuit board manufacturing method and circuit board
JP5218686B2 (en) Flux composition, method of forming electrical connection structure, electrical connection structure, and semiconductor device
KR102242412B1 (en) Flux composition, solder paste composition, and electronic circuit board
KR20200029353A (en) Solder composition for jet dispenser and manufacturing method for electronic substrate
JP2015047616A (en) Solder composition for jet dispenser
EP1829639A1 (en) Solder precoating method and work for electronic device
JP6136851B2 (en) Solder flux and solder paste
WO2004041475A1 (en) Solder flux compositions undergoing phase separation during soldering reflow process
JP7407733B2 (en) Flux sheet and soldering method using flux sheet
KR101117884B1 (en) Flux for soldering, soldering method, and printed curcuit board
US20070284412A1 (en) Solder flux composition
JP2014168791A (en) Flux film, flip-chip connection method, and semiconductor device
JP2011104638A (en) Water-soluble flux, conductive paste, and bonded component
JP7066798B2 (en) Solder composition
WO2019022193A1 (en) Solder paste flux, solder paste, method for forming solder bump using solder paste, and method for producing joined body
TWI686259B (en) Flux for solder paste, solder paste, method of forming solder bump using solder paste, and method of producing bonded body
JP6071161B2 (en) Soldering flux and solder paste composition using the same
KR101825633B1 (en) Flux for solder and the manufacturing method thereof and the electric device comprising thereof
JP6148267B2 (en) Anisotropic conductive paste and method for manufacturing printed wiring board using the same
JP2004001030A (en) Soldering paste and method for manufacturing semiconductor device
JPH0825082A (en) Tack fixable flux
JP2022145325A (en) Flux sheet for semiconductor transfer
JP2016181600A (en) Method for bonding electronic component, solder composition used therein, and pretreatment agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893153

Country of ref document: EP

Kind code of ref document: A1