WO2020115872A1 - 遠心送風機 - Google Patents

遠心送風機 Download PDF

Info

Publication number
WO2020115872A1
WO2020115872A1 PCT/JP2018/044955 JP2018044955W WO2020115872A1 WO 2020115872 A1 WO2020115872 A1 WO 2020115872A1 JP 2018044955 W JP2018044955 W JP 2018044955W WO 2020115872 A1 WO2020115872 A1 WO 2020115872A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
downstream end
suction
blade
shaft
Prior art date
Application number
PCT/JP2018/044955
Other languages
English (en)
French (fr)
Inventor
一輝 岡本
一樹 蓮池
千景 門井
健一 迫田
菊地 仁
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020558760A priority Critical patent/JP6972385B2/ja
Priority to PCT/JP2018/044955 priority patent/WO2020115872A1/ja
Publication of WO2020115872A1 publication Critical patent/WO2020115872A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • the present invention relates to a centrifugal blower provided with a scroll casing.
  • the centrifugal blower houses the impeller inside the scroll casing. Since the centrifugal blower has a structure in which the air sucked into the scroll casing from the suction port along the axial direction of the rotary shaft of the impeller is blown out in the centrifugal direction of the rotary shaft of the impeller, an inertial force acts on the suction flow. Therefore, the air flow blown into the scroll casing through the impeller forms a velocity distribution that is biased toward the bottom surface side of the scroll casing. Then, a part of the air blown into the scroll casing forms a circulating flow that flows along the bottom surface and then rolls up from the main plate side of the impeller toward the tip of the blade along the inner wall surface of the scroll casing. To do. The circulating flow and the air flow blown out from the impeller collide or interfere with each other, which causes a decrease in the blowing performance of the centrifugal blower and an increase in noise.
  • the velocity distribution of the air flow in the impeller and scroll casing changes depending on the operating point used. For example, at the operating point on the open side where the air volume increases, the airflow blown into the scroll casing through the impeller becomes faster, and the inertial force acts strongly on the airflow. Therefore, the airflow blown out from the impeller has a larger velocity component toward the main plate as it is closer to the suction port. Therefore, since the velocity component toward the main plate is smaller toward the bottom side of the scroll casing and the velocity component toward the centrifugal direction is greater than that of the scroll casing, the air volume of the air toward the centrifugal direction is greater toward the bottom side. Further, the circulation flow that winds up from the main plate side of the impeller toward the tip of the blade along the inner wall surface of the scroll casing is likely to be greatly developed.
  • Patent Document 1 discloses a centrifugal blower in which a first extending portion extending from the suction port toward the main plate side of the impeller is formed so as to approach the inner circumference and the outer circumference of the impeller.
  • the centrifugal blower disclosed in Patent Document 1 forms the first extending portion to form a region where no air flows near the leading edge of the blade tip, and prevents the generation of a circulating flow.
  • the centrifugal blower disclosed in Patent Document 1 prevents interference between the blade and the circulating flow at the blade tip, but since the air passage is blocked by the first extending portion, the air blow performance of the blade deteriorates.
  • the air flow blown into the scroll casing through the impeller becomes faster and the air volume increases, so that the centrifugal blower disclosed in Patent Document 1 has a suction port.
  • the formed first extension portion has a large air resistance, which reduces the blowing performance and increases noise.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a centrifugal blower that prevents the generation of a circulating flow in a scroll casing without reducing the blowing performance or increasing the noise. ..
  • the present invention comprises a drive motor, a main plate attached to the shaft of the drive motor, and a plurality of blades annularly arranged on the peripheral edge of the main plate.
  • An impeller a suction port that faces the main plate, a bell mouth that guides the airflow toward the suction port, a scroll portion that rotatably accommodates the impeller, an air outlet that blows out the airflow generated by the impeller, and a blade.
  • a scroll casing provided with a tongue portion that guides the airflow generated by the vehicle to the air outlet, and a diffuser that connects the scroll portion and the air outlet and has a diffused air passage cross-sectional area that increases from the tongue portion toward the air outlet.
  • the bell mouth is provided with a shielding portion whose suction downstream end portion blocks the inner diameter side of the blade tip of the blade to block a part of the suction flow flowing from the suction port into the scroll casing.
  • the shield part rotates from the first suction downstream end point, which is the intersection of the line segment connecting the shaft and the apex of the tongue and the suction downstream end part when viewed along the axial direction of the shaft, to the rotation of the impeller.
  • the first angle is 30° or more and 120° or less.
  • the height from the upper surface of the main plate to the suction downstream end at the outer peripheral portion of the impeller is lower than the height of the blade.
  • the height from the upper surface of the main plate to the suction downstream end at the outer peripheral part of the impeller is higher than the height of the blade.
  • the centrifugal blower according to the present invention has an effect that it is possible to prevent the generation of a circulating flow in the scroll casing without reducing the blowing performance or increasing the noise.
  • FIG. 1 is a perspective view of a centrifugal blower according to Embodiment 1 of the present invention.
  • Plan view of the centrifugal blower according to the first embodiment Sectional drawing in the plane which passes along the rotating shaft of the impeller of the centrifugal fan which concerns on Embodiment 1.
  • a centrifugal blower according to an embodiment of the present invention will be described in detail below with reference to the drawings.
  • the present invention is not limited to this embodiment.
  • FIG. 1 is a perspective view of a centrifugal blower according to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view of the centrifugal blower according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along a plane passing through the rotation axis of the impeller of the centrifugal blower according to the first embodiment.
  • FIG. 3 shows a cross section taken along line III-III in FIG.
  • FIG. 4 is a cross-sectional view on a plane perpendicular to the rotation axis of the impeller of the centrifugal blower according to the first embodiment.
  • FIG. 4 shows a cross section taken along line IV-IV in FIG.
  • the centrifugal blower 1 has a drive motor 2, an impeller 3, and a scroll casing 4.
  • the impeller 3 includes a main plate 5 attached to the shaft 2 a of the drive motor 2, a plurality of blades 6 annularly arranged on the peripheral edge of the main plate 5, and an annular reinforcing ring 7 attached to the outer periphery of the blade 6. Have and.
  • the impeller 3 rotates around the shaft 2a. When viewed along the axial direction of the shaft 2a, the rotation center O of the impeller 3 is located on the shaft 2a.
  • the scroll casing 4 includes a suction port 9 that faces the main plate 5, a bell mouth 8 that guides an airflow toward the suction port 9, a scroll portion 41 that rotatably accommodates the impeller 3, and an impeller 3.
  • the air outlet 10 that blows out the airflow, the tongue portion 11 that guides the airflow generated by the impeller 3 to the air outlet 10, the scroll portion 41 and the air outlet 10 are connected, and the wind from the tongue portion 11 is directed toward the air outlet 10.
  • the diffuser 12 has an enlarged road cross-sectional area.
  • the bell mouth 8 is provided with a shield portion 13 that closes the inner diameter side of the wing tip 6a to block a part of the suction flow.
  • the shielding portion 13 includes a line segment connecting the shaft 2a and the apex of the tongue portion 11 and a suction downstream end portion 8a of the bell mouth 8 when viewed from the axial direction of the shaft 2a.
  • the first suction downstream end point A located at the intersection is provided as a starting point, and the angle toward the traveling direction of the rotation of the impeller 3 is provided in an area up to an angle ⁇ . That is, the shielding portion 13 is formed from the first suction downstream end point A to the second suction downstream end point B advanced by the first angle ⁇ in the rotation direction of the impeller 3.
  • the height Hr from the upper surface 5a of the main plate 5 to the suction downstream end 8a of the bell mouth 8 at the outer peripheral portion of the impeller 3 is lower than the total height Hb of the blade 6. There is. In the region on the downstream side that advances in the rotational direction from the second suction downstream end point B, since the shielding portion 13 is not formed, the suction downstream end portion of the bell mouth 8 from the upper surface 5a of the main plate 5 on the outer peripheral portion of the impeller 3 is formed. The height Hr up to 8a is higher than the total height Hb.
  • the air sucked from the suction port 9 passes through the impeller 3 and is blown out into the scroll casing 4. Since inertial force acts on the airflow, the airflow passing through the impeller 3 forms a velocity distribution that is biased toward the main plate 5. A part of the air blown out from the impeller 3 into the scroll casing 4 forms an airflow that winds up from the main plate 5 side toward the blade tip 6a along the side wall surface 4a of the scroll casing 4, and eventually the blade tip 6a.
  • the circulating flow U reaches the vicinity. If the circulation flow U and the air flow blown out from the impeller 3 collide or interfere with each other in the scroll casing 4, it causes a decrease in the blowing performance of the centrifugal blower 1 and an increase in noise.
  • the circulation flow U is generated by the air flow blown out from the impeller 3, but it takes some time for the circulation flow U to reach the vicinity of the blade tips 6a in the scroll casing 4.
  • the centrifugal blower 1 performs a fluid analysis of the air flow inside the centrifugal blower that does not include the shielding unit 13, obtains the velocity distribution of the air flow near the outer circumference of the impeller, and shields based on this velocity distribution.
  • Part 13 is designed.
  • the size of the impeller used for the fluid analysis was 180 mm in diameter, the height of the blade was 100 mm, and the impeller was rotated under the conditions of the impeller rotating speed of 800 times/min and the operating air volume of 8 m 3 /min. The radial velocity at the position of 95 mm from the center was obtained.
  • FIG. 5 is a diagram showing a result of wind velocity distribution in the blade height direction by fluid analysis for designing the shielding portion of the centrifugal blower according to the first embodiment.
  • FIG. 6 is a diagram showing a result of wind velocity distribution in the rotation direction of the impeller by fluid analysis for designing the shielding portion of the centrifugal blower according to the first embodiment.
  • the velocity distribution of the airflow blown from the impeller in the centrifugal blower that does not include the shield 13 changes depending on the position in the scroll casing in the rotational direction and the position in the height direction of the blades. ..
  • the velocity v2 at the central portion of the wing is a positive value. This indicates that the circulation flow U generated in the scroll casing does not reach the vicinity of the blade tip, and the air flow blown out from the impeller is not blocked by the circulation flow U.
  • the velocity v2 at the central portion of the blade has a positive value, but the velocity v1 at the blade tip side has a negative value. This indicates that the circulation flow U reaches the vicinity of the blade tip and the air flow blown out from the impeller is blocked.
  • the velocity v1 on the blade tip side has a negative value in the region where the angle ⁇ ′ exceeds 120° and 250° or less because the impeller is in the scroll casing in the region where the angle ⁇ ′ exceeds 0° and 120° or less. This is a result of the fact that a part of the air flow blown out into is involved in the circulation flow U.
  • both the velocity v1 at the blade tip side and the velocity v2 at the central portion of the blade have positive values. This is because the side wall surface of the scroll casing is separated from the impeller, and the airflow blown out from the impeller becomes a circulation flow U and passes through the diffuser before reaching the vicinity of the blade tip toward the outlet. , That the air flow blown out from the impeller is not blocked by the circulation flow U.
  • the centrifugal blower 1 is based on the above fluid analysis result, and is an angle that is an angle along the rotation direction of the impeller 3 from the first suction downstream end point A to the second suction downstream end point B.
  • is an angle that is an angle along the rotation direction of the impeller 3 from the first suction downstream end point A to the second suction downstream end point B.
  • the shielding portion 13 closes the inner diameter side of the blade tip 6a to block a part of the suction flow, so that the impeller 3 blows into the scroll casing 4.
  • the flow of air that flows in the scroll casing 4 is weakened, and the development of the circulation flow U generated in the scroll casing 4 is reduced. Therefore, the air flow blown out from the impeller 3 can easily pass through the scroll casing 4 without being obstructed by the circulation flow U, and the blowing performance of the centrifugal blower 1 can be improved.
  • the centrifugal blower 1 according to the first embodiment can reduce the collision and the interference between the air flow blown out from the impeller 3 and the circulation flow U in the scroll casing 4, so that the noise can be reduced.
  • the centrifugal blower 1 according to the first embodiment also enhances the blowing performance of the entire centrifugal blower 1 by improving the blowing characteristics in the region where the angle ⁇ is large.
  • the development of the circulation flow U is reduced on the downstream side that advances in the rotational direction from the second suction downstream end point B, and thus is blown out from the impeller 3.
  • the air flow is not obstructed by the circulation flow U and easily passes through the scroll casing 4. Therefore, by further widening the air passage around the blade 6 so that the blade 6 can function easily, the air blow performance of the centrifugal blower 1 can be achieved by the synergistic effect of facilitating the function of the blade 6 and widening the air passage. Can be increased.
  • FIG. 7 is a diagram showing an enlarged angle of the scroll casing of the centrifugal blower according to the first embodiment.
  • the enlargement angle of the scroll casing 4 is defined by the angle formed by the outer diameter of the impeller 3 and the side wall surface 4a of the scroll casing 4 when they are developed in a plane. As shown in FIG. 7, the angle ⁇ on the downstream side advanced in the rotational direction is larger than the enlarged angle ⁇ 1 of the scroll casing 4 in the region where the angle ⁇ advanced in the rotational direction from the apex of the tongue portion 11 is 120° or less.
  • the enlargement angle ⁇ 2 of the scroll casing 4 in the region of more than 120° and less than 250° is larger.
  • the distance from the rotation center O of the impeller 3 to the side wall surface 4a of the scroll casing 4 is extended and the inside of the scroll casing 4 is larger than when the enlargement angle of the scroll casing 4 is constant at the enlargement angle ⁇ .
  • the cross-sectional area of the air passage will be expanded. Therefore, the air sucked from the suction port 9 easily passes through the impeller 3 and is blown out into the scroll casing 4, so that the air blowing performance can be further improved.
  • the enlargement angle ⁇ 1 to be smaller than the enlargement angle ⁇ it is possible to improve the blowing performance of the centrifugal blower 1 while suppressing the scroll casing 4 from becoming large in size.
  • FIG. 8 is a diagram showing the shape of the suction port of the centrifugal blower according to the first embodiment.
  • the distance L2 between the rotation center O of the impeller 3 and the third suction downstream end point C which is axially symmetrical to the second suction downstream end point B with respect to the rotation center O of the impeller 3 is , L is longer than the distance L1 between the rotation center O of the impeller 3 and the second suction downstream end point B.
  • the distance L2 between the shaft 2a and the third suction downstream end point C located on the opposite side of the second suction downstream end point B across the shaft 2a is 2 is longer than the distance L1 between the suction downstream end point B and the shaft 2a.
  • FIG. 9 is a diagram showing a modification of the centrifugal blower according to the first embodiment.
  • the impeller 3 may be formed such that the blade inner diameter increases from the middle portion of the blade 6 toward the blade tip 6a, or both the blade inner diameter and the blade outer diameter increase.
  • the blade inner diameter increases from DI1 to DI2 from the middle portion of the blade 6 toward the blade tip 6a, and the blade outer diameter increases from DO1 to DO2.
  • the opening area of the suction port 9 can be further expanded according to the inner diameter of the blade, the average wind speed of the suction flow is reduced to reduce the air passage pressure loss, and the airflow easily passes through the impeller 3 to further blow air.
  • the performance can be improved.
  • the blowing performance can be improved with the change in the shape of the blade 6.
  • FIG. 10 is a diagram showing the shape of the shielding portion of the centrifugal blower according to the first embodiment.
  • a plurality of shielding portions 13a, 13b, 13c may be provided in order to block a part of the suction flow flowing from the suction port 9 into the scroll casing 4.
  • the centrifugal blower 1 when mounted and used in the housing of a device such as an air conditioner, the suction flow locally accelerates. Therefore, by individually adjusting the shape and size of the shielding portion 13, It can be expected to effectively block a part of the suction flow and improve the blowing performance.
  • FIG. 10 shows the structure in which three shields 13 are provided, the plurality of shields 13 may be two or four or more.
  • FIG. 11 is a diagram showing the relationship between the size of the shielding portion of the centrifugal blower according to the first embodiment and the improvement amount of fan efficiency.
  • the size of the shielding portion 13 is the central angle of the shielding portion 13 formed by the first suction downstream end point A, the shaft 2a, and the second suction downstream end point B in the plane perpendicular to the axial direction of the shaft 2a ⁇ It is represented by AOB.
  • AOB As shown in FIG. 11, from the relationship between the size of the shield 13 and the improvement amount ⁇ of the fan efficiency ⁇ of the centrifugal blower 1, the central angle ⁇ AOB of the shield 13 is 30° ⁇ AOB ⁇ 120°. If the shielding portion 13 is formed so that the fan efficiency ⁇ can be improved by 0.5 point or more.
  • FIG. 12 is a diagram showing the relationship between the static pressure efficiency and the air volume of the centrifugal blower according to the first embodiment.
  • the centrifugal blower 1 according to the first embodiment has a maximum improvement in static pressure efficiency of 1.5 points as compared with the centrifugal blower that does not include the shielding portion 13.
  • FIG. 13 is a diagram showing a relationship between suction noise and air volume of the centrifugal blower according to the first embodiment.
  • the centrifugal blower 1 according to the first embodiment has a noise reduction effect of up to -1 dB compared to the centrifugal blower that does not include the shield 13.
  • the centrifugal blower 1 according to the first embodiment is provided with the shielding portion 13 in a region from the first suction downstream end point A to the second suction downstream end point B as viewed from the axial direction of the shaft 2a. Therefore, the generation of the circulation flow U in the scroll casing 4 can be prevented without lowering the blowing performance or increasing the noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

遠心送風機(1)は、駆動モータ(2)と、駆動モータ(2)のシャフト(2a)に取り付けられた主板(5)と、複数枚の翼(6)とを備える羽根車(3)と、ベルマウス(8)及び舌部を備えたスクロールケーシング(4)とを有し、ベルマウス(8)は、吸込下流端部(8a)が翼端(6a)の内径側を塞ぐ遮蔽部(13)を備え、遮蔽部(13)は、シャフト(2a)の軸方向に沿って見た状態でシャフト(2a)と舌部の頂点とを結ぶ線分と吸込下流端部(8a)との交点である第1の吸込下流端点を起点に、羽根車(3)の回転の進行方向に向かう角度が第1の角度である第2の吸込下流端点までの領域に設けられており、第1の角度は、30°以上120°以下であり、遮蔽部(13)が設けられている領域では、羽根車(3)の外周部での主板(5)の上面(5a)から吸込下流端部(8a)までの高さが、翼(6)の高さよりも低い。

Description

遠心送風機
 本発明は、スクロールケーシングを備えた遠心送風機に関する。
 遠心送風機は、スクロールケーシング内に羽根車を収容している。遠心送風機は、羽根車の回転軸の軸方向に沿って吸込口からスクロールケーシングに吸い込んだ空気を羽根車の回転軸の遠心方向に吹き出す構造であるため、吸込流れに慣性力が作用する。このため、羽根車内を通ってスクロールケーシング内に吹き出される気流は、スクロールケーシングの底面側に偏った速度分布を形成する。そして、スクロールケーシング内に吹き出された空気の一部は、底面に沿って流れた後に、スクロールケーシングの内壁面に沿うように羽根車の主板側から翼の先端方向へと巻き上がる循環流れを形成する。この循環流れと羽根車から吹き出される気流とが、衝突又は干渉することで、遠心送風機の送風性能の低下及び騒音の増大の原因となっている。
 また、遠心送風機は、使用する動作点によって羽根車内及びスクロールケーシング内の気流の速度分布が変化する。例えば、風量が大きくなる開放側の動作点においては、羽根車内を通ってスクロールケーシング内に吹き出される気流が速くなり、気流に対して慣性力が強く作用する。このため、羽根車から吹き出される気流は、吸込口に近いほど主板側への速度成分が大きい。したがって、スクロールケーシングの底面側ほど主板側への速度成分が小さく遠心方向への速度成分が大きくなるため、底面側ほど遠心方向へ向かう空気の風量が大きくなる。また、スクロールケーシングの内壁面に沿うように羽根車の主板側から翼の先端方向へと巻き上がる循環流れも大きく発達しやすくなる。
 特許文献1には、羽根車の内周及び外周に近づくように、吸込口から羽根車の主板側に向けて延出する第1延設部を形成した遠心送風機が開示されている。特許文献1に開示される遠心送風機は、第1延設部を形成することで、翼端の前縁付近に空気の流れのない領域を形成して、循環流れの発生を防止する。
特開平7-293497号公報
 特許文献1に開示される遠心送風機は、翼端において翼と循環流れとの干渉を防止するものの、第1延設部によって風路が塞がれるため、翼の送風性能が低下する。特に、送風機を使用する動作点が開放側の場合、羽根車内を通ってスクロールケーシング内に吹き出される気流が速くなり風量が増大するため、特許文献1に開示される遠心送風機では、吸込口に形成した第1延設部が大きな空気抵抗となり、送風性能を低下させるとともに騒音も増大してしまう。
 したがって、送風性能を低下させたり騒音を増大させたりすることなくスクロールケーシング内での循環流れの発生を防止した遠心送風機を実現することが望まれていた。
 本発明は、上記に鑑みてなされたものであって、送風性能を低下させたり騒音を増大させたりすることなくスクロールケーシング内での循環流れの発生を防止した遠心送風機を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、駆動モータと、駆動モータのシャフトに取り付けられた主板と、主板の周縁部に環状に配列された複数枚の翼とを備える羽根車と、主板に対向する吸込口と、吸込口に向かう気流を案内するベルマウスと、羽根車を回転可能に収容するスクロール部と、羽根車が発生させた気流を吹き出す吹出口と、羽根車が発生させた気流を吹出口に導く舌部と、スクロール部と吹出口とを接続し、舌部から吹出口に向かって風路断面積が拡大するディフューズとを備えたスクロールケーシングとを有する。ベルマウスは、吸込下流端部が翼の翼端の内径側を塞いで吸込口からスクロールケーシングに流入する吸込流れの一部を遮断する遮蔽部を備える。遮蔽部は、シャフトの軸方向に沿って見た状態でシャフトと舌部の頂点とを結ぶ線分と吸込下流端部との交点である第1の吸込下流端点を起点に、羽根車の回転の進行方向に向かう角度が第1の角度である第2の吸込下流端点までの領域に設けられている。第1の角度は、30°以上120°以下である。遮蔽部が設けられている領域では、羽根車の外周部での主板の上面から吸込下流端部までの高さが、翼の高さよりも低い。遮蔽部が設けられている領域よりも羽根車の回転の進行方向の前方の領域では、羽根車の外周部での主板の上面から吸込下流端部までの高さが、翼の高さよりも高い。
 本発明に係る遠心送風機は、送風性能を低下させたり騒音を増大させたりすることなくスクロールケーシング内での循環流れの発生を防止できるという効果を奏する。
本発明の実施の形態1に係る遠心送風機の斜視図 実施の形態1に係る遠心送風機の平面図 実施の形態1に係る遠心送風機の羽根車の回転軸を通る平面での断面図 実施の形態1に係る遠心送風機の羽根車の回転軸に垂直な平面での断面図 実施の形態1に係る遠心送風機の遮蔽部の設計のための流体解析による翼の高さ方向の風速分布結果を示す図 実施の形態1に係る遠心送風機の遮蔽部の設計のための流体解析による羽根車の回転方向の風速分布結果を示す図 実施の形態1に係る遠心送風機のスクロールケーシングの拡大角を示す図 実施の形態1に係る遠心送風機の吸込口の形状を示す図 実施の形態1に係る遠心送風機の変形例を示す図 実施の形態1に係る遠心送風機の遮蔽部の形状を示す図 実施の形態1に係る遠心送風機の遮蔽部の大きさとファン効率の改善量との関係を示す図 実施の形態1に係る遠心送風機の静圧効率と風量との関係を示す図 実施の形態1に係る遠心送風機の吸込騒音と風量との関係を示す図
 以下に、本発明の実施の形態に係る遠心送風機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る遠心送風機の斜視図である。図2は、実施の形態1に係る遠心送風機の平面図である。図3は、実施の形態1に係る遠心送風機の羽根車の回転軸を通る平面での断面図である。図3は、図2中のIII-III線に沿った断面を示している。図4は、実施の形態1に係る遠心送風機の羽根車の回転軸に垂直な平面での断面図である。図4は、図3中のIV-IV線に沿った断面を示している。実施の形態1に係る遠心送風機1は、駆動モータ2と、羽根車3と、スクロールケーシング4とを有する。羽根車3は、駆動モータ2のシャフト2aに取り付けられた主板5と、主板5の周縁部に環状に配列された複数枚の翼6と、翼6の外周に取り付けられた環状の補強リング7とを有する。羽根車3は、シャフト2aを中心に回転する。シャフト2aの軸方向に沿って見た場合、羽根車3の回転中心Oは、シャフト2a上に位置する。
 スクロールケーシング4は、主板5に対向する吸込口9と、吸込口9に向かう気流を案内するベルマウス8と、羽根車3を回転可能に収容するスクロール部41と、羽根車3が発生させた気流を吹き出す吹出口10と、羽根車3が発生させた気流を吹出口10に導く舌部11と、スクロール部41と吹出口10とを接続し、舌部11から吹出口10に向かって風路断面積が拡大するディフューズ12とを備えている。ベルマウス8は、翼端6aの内径側を塞いで吸込流れの一部を遮断する遮蔽部13を備えている。
 図3及び図4に示すように、遮蔽部13は、シャフト2aの軸方向から見た状態でシャフト2aと舌部11の頂点とを結ぶ線分とベルマウス8の吸込下流端部8aとの交点に位置する第1の吸込下流端点Aを起点に、羽根車3の回転の進行方向に向かう角度が角度θまでの領域に設けられている。すなわち、第1の吸込下流端点Aから羽根車3の回転方向に第1の角度である角度θ進んだ第2の吸込下流端点Bにかけて、遮蔽部13が形成されている。遮蔽部13が設けられた領域では、羽根車3の外周部での主板5の上面5aからベルマウス8の吸込下流端部8aまでの高さHrが、翼6の全高Hbよりも低くなっている。第2の吸込下流端点Bから回転方向に進んだ下流側の領域では、遮蔽部13が形成されていないため、羽根車3の外周部の主板5の上面5aからベルマウス8の吸込下流端部8aまでの高さHrは、全高Hbよりも高くなっている。
 吸込口9から吸い込まれた空気は、羽根車3を通過して、スクロールケーシング4内に吹き出される。気流には慣性力が作用するため、羽根車3を通過する気流は主板5側に偏った速度分布を形成する。羽根車3からスクロールケーシング4内に吹き出された空気の一部は、スクロールケーシング4の側壁面4aに沿うように主板5側から翼端6a方向へと巻き上がる気流を形成し、やがて翼端6a付近まで到達する循環流れUとなる。循環流れUと羽根車3から吹き出される気流とがスクロールケーシング4内で衝突又は干渉すると、遠心送風機1の送風性能の低下及び騒音増大の原因となる。なお、循環流れUは、羽根車3から吹き出される気流によって生じるが、スクロールケーシング4内において循環流れUが翼端6a付近に到達するには、ある程度の時間を要する。
 実施の形態1に係る遠心送風機1は、遮蔽部13を備えない遠心送風機の内部の気流の流体解析を行って、羽根車の外周付近における気流の速度分布を求め、この速度分布に基づいて遮蔽部13を設計している。なお、流体解析に用いた羽根車の大きさは直径180mm、翼の高さは100mmであり、羽根車の回転速度800回/分及び作動風量8m/分の条件下において、羽根車の回転中心から95mmの位置での径方向速度を求めた。
 図5は、実施の形態1に係る遠心送風機の遮蔽部の設計のための流体解析による翼の高さ方向の風速分布結果を示す図である。図6は、実施の形態1に係る遠心送風機の遮蔽部の設計のための流体解析による羽根車の回転方向の風速分布結果を示す図である。図5及び図6に示すように、遮蔽部13を備えない遠心送風機における羽根車から吹き出される気流の速度分布は、スクロールケーシング内の回転方向位置と翼の高さ方向の位置とによって変化する。ここで、羽根車の翼の全高をHb’、羽根車の回転中心と舌部の頂点とを結んだ直線を起点にして羽根車の回転方向への角度を角度θ’としたとき、角度θ’が0°の舌部から角度θ’が120°以下の領域では、根元からの高さh=0.9Hb’である翼端側における速度v1及び根元からの高さh=0.5Hb’である翼の中央部における速度v2は、ともに正の値となる。これは、スクロールケーシング内において生じる循環流れUが翼端付近まで到達しておらず、羽根車から吹き出される気流が循環流れUによって阻害されていないことを示している。
 角度θ’が120°を超え250°以下の領域では、翼の中央部における速度v2は正の値であるが、翼端側における速度v1は負の値となる。これは、翼端付近まで循環流れUが到達し、羽根車から吹き出される気流が阻害されていることを示している。角度θ’が120°を超え250°以下の領域での翼端側における速度v1が負の値となるのは、角度θ’が0°を超え120°以下の領域で羽根車からスクロールケーシング内に吹き出された気流の一部が循環流れUに関与した結果である。角度θ’が250°を超え360°未満の領域では、翼端側における速度v1、翼の中央部における速度v2ともに正の値となる。これは、スクロールケーシングの側壁面が羽根車から離れており、羽根車から吹き出された気流が、循環流れUとなって翼端付近に到達する前にディフューズを通って吹出口へと向かうため、羽根車から吹き出される気流が循環流れUによって阻害されていないことを示している。
 実施の形態1に係る遠心送風機1は、上記の流体解析結果に基づいて、第1の吸込下流端点Aから第2の吸込下流端点Bまでの羽根車3の回転方向に沿った角度となる角度θを30°以上120°にすることで、角度θが120°を超え250°以下の領域において翼端6aに到達する循環流れUを低減させ、速度v1が低下することを防いでいる。
 このように、実施の形態1に係る遠心送風機1は、遮蔽部13が翼端6aの内径側を塞いで吸込流れの一部を遮断することにより、羽根車3からスクロールケーシング4内に吹き出される気流を弱め、スクロールケーシング4内に生じる循環流れUの発達を低減する。したがって、羽根車3から吹き出される気流が循環流れUに阻害されずにスクロールケーシング4内を通過しやすくなり、遠心送風機1の送風性能を向上させることができる。また、実施の形態1に係る遠心送風機1は、羽根車3から吹き出される気流とスクロールケーシング4内の循環流れUとの衝突及び干渉を低減できるため、騒音を低減することができる。
 遮蔽部13が翼端6aを塞いで吸込流れの一部を遮断することは、一見すると、遠心送風機1の送風性能を低下させるようにみえる。しかし、図5及び図6に示すように、遮蔽部13を備えない遠心送風機の羽根車からスクロールケーシング内に吹き出される空気は角度θ’の大きい下流側において速くなり、風量が増える。これは、スクロールケーシングの風路断面積が徐々に拡大していくことで空気が流れやすくなるためである。したがって、実施の形態1に係る遠心送風機1は、角度θの大きい領域における送風特性を高めることで遠心送風機1全体の送風性能をも高めている。
 上述したように、実施の形態1に係る遠心送風機1では、第2の吸込下流端点Bから回転方向に進んだ下流側において循環流れUの発達が低減されるため、羽根車3から吹き出される気流が循環流れUに阻害されずにスクロールケーシング4内を通過しやすくなる。したがって、翼6のまわりの風路をさらに広くして翼6が機能しやすくすることにより、翼6が機能しやすくなることと風路が広がることとの相乗効果で、遠心送風機1の送風性能をより高めることができる。
 図7は、実施の形態1に係る遠心送風機のスクロールケーシングの拡大角を示す図である。スクロールケーシング4の拡大角は、羽根車3の外径とスクロールケーシング4の側壁面4aとを各々平面状に展開した場合に、両者がなす角度で定義される。図7に示すように、舌部11の頂点を起点に回転方向に進んだ角度θが120°以下の領域におけるスクロールケーシング4の拡大角α1よりも、回転方向へ進んだ下流側の角度θが120°を超え250°以下の領域におけるスクロールケーシング4の拡大角α2の方が大きくなっている。このようにすることで、スクロールケーシング4の拡大角が拡大角αで一定の場合よりも、羽根車3の回転中心Oからスクロールケーシング4の側壁面4aまでの距離が延びてスクロールケーシング4内の風路断面積が拡大することになる。このため、吸込口9から吸い込まれた空気が羽根車3内を通って、スクロールケーシング4内に吹き出されやすくなり、さらなる送風性能の向上を実現できる。また、拡大角α1を拡大角αよりも小さく抑えることで、スクロールケーシング4全体が大型化することを抑制しつつ、遠心送風機1の送風性能を向上させることができる。
 図8は、実施の形態1に係る遠心送風機の吸込口の形状を示す図である。図8に示すように、羽根車3の回転中心Oに対して第2の吸込下流端点Bと軸対称に位置する第3の吸込下流端点Cと羽根車3の回転中心Oとの距離L2は、羽根車3の回転中心Oと第2の吸込下流端点Bとの距離L1よりも長くなっている。すなわち、シャフト2aの軸方向に沿って見た状態で、シャフト2aを挟んで第2の吸込下流端点Bの反対側に位置する第3の吸込下流端点Cとシャフト2aとの距離L2は、第2の吸込下流端点Bとシャフト2aとの距離L1よりも長い。こうすることで、吸込口9の開口面積が拡がり、吸込流れの平均風速が低下して風路圧損が減少するとともに、羽根車3内を空気が流れやすくなるため、さらに送風性能を向上させることができる。
 図9は、実施の形態1に係る遠心送風機の変形例を示す図である。図9に示すように、翼6の中間部から翼端6aに向かって羽根内径が増加するように、又は羽根内径及び羽根外径がともに増加するように羽根車3を形成してもよい。図9に示す例では、翼6の中間部から翼端6aに向かって羽根内径はDI1からDI2まで増加しており、羽根外径はDO1からDO2まで増加している。このようにすることで、遮蔽部13と翼6との隙間が広がるため、遮蔽部13を設計しやすくなる。また、羽根内径に合わせて吸込口9の開口面積をより拡げられるため、吸込流れの平均風速を低下させて風路圧損を減少させるとともに、羽根車3内を気流が通過しやすくなり、さらに送風性能を向上させることができる。さらに、翼6の形状変化に伴い、送風性能を向上させることができる。
 図10は、実施の形態1に係る遠心送風機の遮蔽部の形状を示す図である。図10に示すように、吸込口9からスクロールケーシング4に流入する吸込流れの一部を遮断するために、複数の遮蔽部13a,13b,13cを設けてもよい。特に、遠心送風機1を空気調和機のような装置の筐体内に実装して使用する場合には吸込流れが局所的に速まるため、遮蔽部13の形状及び大きさを個別に調整することで、吸込流れの一部を効果的に遮断し、送風性能を向上させることが期待できる。なお、図10には、遮蔽部13を三つ設けた構造を示したが、複数の遮蔽部13は、二つでも四つ以上でもよい。
 図11は、実施の形態1に係る遠心送風機の遮蔽部の大きさとファン効率の改善量との関係を示す図である。なお、遮蔽部13の大きさは、シャフト2aの軸方向と垂直な平面において第1の吸込下流端点Aとシャフト2aと第2の吸込下流端点Bとがなす遮蔽部13の中心角である∠AOBで表している。図11に示すように、遮蔽部13の大きさと遠心送風機1のファン効率ηの改善量Δηとの関係から、遮蔽部13の中心角である∠AOBが、30°≦∠AOB≦120°となるように遮蔽部13を形成するとファン効率ηを0.5ポイント以上改善できる。同じく60°<∠AOB<110°となるように遮蔽部13を形成すると、ファン効率ηを1ポイント以上改善できる。なお、遠心送風機1のファン効率ηは、静圧P[Pa]、風量Q[m/分]及び軸出力W[W]に基づいて、η=P・Q/60Wの演算を行って算出した。
 図12は、実施の形態1に係る遠心送風機の静圧効率と風量との関係を示す図である。実施の形態1に係る遠心送風機1は、遮蔽部13を備えない遠心送風機に対して、最大で静圧効率が1.5ポイント向上した。図13は、実施の形態1に係る遠心送風機の吸込騒音と風量との関係を示す図である。実施の形態1に係る遠心送風機1は、遮蔽部13を備えない遠心送風機に対して、最大で-1dBの騒音低減の効果を得られた。
 実施の形態1に係る遠心送風機1は、シャフト2aの軸方向に沿って見た状態で第1の吸込下流端点Aを起点に、第2の吸込下流端点Bまでの領域に遮蔽部13を設けているため、送風性能を低下させたり騒音を増大させたりすることなくスクロールケーシング4内での循環流れUの発生を防止することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 遠心送風機、2 駆動モータ、2a シャフト、3 羽根車、4 スクロールケーシング、4a 側壁面、5 主板、5a 上面、6 翼、6a 翼端、7 補強リング、8 ベルマウス、8a 吸込下流端部、9 吸込口、10 吹出口、11 舌部、12 ディフューズ、13,13a,13b,13c 遮蔽部、41 スクロール部。

Claims (4)

  1.  駆動モータと、
     前記駆動モータのシャフトに取り付けられた主板と、前記主板の周縁部に環状に配列された複数枚の翼とを備える羽根車と、
     前記主板に対向する吸込口と、前記吸込口に向かう気流を案内するベルマウスと、前記羽根車を回転可能に収容するスクロール部と、前記羽根車が発生させた気流を吹き出す吹出口と、前記羽根車が発生させた気流を前記吹出口に導く舌部と、前記スクロール部と前記吹出口とを接続し、前記舌部から前記吹出口に向かって風路断面積が拡大するディフューズとを備えたスクロールケーシングとを有し、
     前記ベルマウスは、吸込下流端部が前記翼の翼端の内径側を塞いで前記吸込口から前記スクロールケーシングに流入する吸込流れの一部を遮断する遮蔽部を備え、
     前記遮蔽部は、前記シャフトの軸方向に沿って見た状態で前記シャフトと前記舌部の頂点とを結ぶ線分と前記吸込下流端部との交点である第1の吸込下流端点を起点に、前記羽根車の回転の進行方向に向かう角度が第1の角度である第2の吸込下流端点までの領域に設けられており、
     前記第1の角度は、30°以上120°以下であり、
     前記遮蔽部が設けられている領域では、前記羽根車の外周部での前記主板の上面から前記吸込下流端部までの高さが、前記翼の高さよりも低く、
     前記遮蔽部が設けられている領域よりも前記羽根車の回転の進行方向の前方の領域では、前記羽根車の外周部での前記主板の上面から前記吸込下流端部までの高さが、前記翼の高さよりも高いことを特徴とする遠心送風機。
  2.  前記遮蔽部が設けられている領域での前記スクロールケーシングの拡大角は、前記遮蔽部が設けられている領域よりも前記羽根車の回転の進行方向の前方の領域での前記スクロールケーシングの拡大角よりも小さいことを特徴とする請求項1に記載の遠心送風機。
  3.  前記シャフトの軸方向に沿って見た状態で、前記シャフトを挟んで前記第2の吸込下流端点の反対側に位置する第3の吸込下流端点と前記シャフトとの距離は、前記第2の吸込下流端点と前記シャフトとの距離よりも長いことを特徴とする請求項1又は2に記載の遠心送風機。
  4.  前記翼は、高さ方向の中間部から翼端に向かって、羽根内径及び羽根外径のうち少なくとも羽根内径が増加することを特徴とする請求項1から3のいずれか1項に記載の遠心送風機。
PCT/JP2018/044955 2018-12-06 2018-12-06 遠心送風機 WO2020115872A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020558760A JP6972385B2 (ja) 2018-12-06 2018-12-06 遠心送風機
PCT/JP2018/044955 WO2020115872A1 (ja) 2018-12-06 2018-12-06 遠心送風機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/044955 WO2020115872A1 (ja) 2018-12-06 2018-12-06 遠心送風機

Publications (1)

Publication Number Publication Date
WO2020115872A1 true WO2020115872A1 (ja) 2020-06-11

Family

ID=70974162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044955 WO2020115872A1 (ja) 2018-12-06 2018-12-06 遠心送風機

Country Status (2)

Country Link
JP (1) JP6972385B2 (ja)
WO (1) WO2020115872A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060319A (zh) * 2020-08-10 2022-02-18 佛山市顺德区美的洗涤电器制造有限公司 离心风机和抽油烟机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126193A (ja) * 1995-10-31 1997-05-13 Denso Corp 遠心式送風機
JPH11132196A (ja) * 1997-10-29 1999-05-18 Matsushita Seiko Co Ltd 多翼送風機
JP2001082394A (ja) * 1999-09-20 2001-03-27 Daikin Ind Ltd 遠心ファン装置および加湿装置
JP2001271791A (ja) * 2000-03-27 2001-10-05 Matsushita Seiko Co Ltd 多翼ファン
JP2008082230A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd 多翼送風機
JP2017160807A (ja) * 2016-03-07 2017-09-14 株式会社富士通ゼネラル 送風機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126193A (ja) * 1995-10-31 1997-05-13 Denso Corp 遠心式送風機
JPH11132196A (ja) * 1997-10-29 1999-05-18 Matsushita Seiko Co Ltd 多翼送風機
JP2001082394A (ja) * 1999-09-20 2001-03-27 Daikin Ind Ltd 遠心ファン装置および加湿装置
JP2001271791A (ja) * 2000-03-27 2001-10-05 Matsushita Seiko Co Ltd 多翼ファン
JP2008082230A (ja) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd 多翼送風機
JP2017160807A (ja) * 2016-03-07 2017-09-14 株式会社富士通ゼネラル 送風機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114060319A (zh) * 2020-08-10 2022-02-18 佛山市顺德区美的洗涤电器制造有限公司 离心风机和抽油烟机

Also Published As

Publication number Publication date
JP6972385B2 (ja) 2021-11-24
JPWO2020115872A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
US11506211B2 (en) Counter-rotating fan
US7163371B2 (en) Centrifugal fan
JP4358965B2 (ja) 遠心型羽根車および空気清浄装置
JP3879764B2 (ja) 遠心送風機
WO2007061051A1 (ja) 多翼遠心送風機
WO2015121989A1 (ja) 軸流送風機
WO2019150567A1 (ja) 軸流送風機
WO2014128908A1 (ja) プロペラファン及びこれを備えた空気調和機
JP2006233886A (ja) プロペラファン
JP2006194245A (ja) 遠心送風機および該遠心送風機を備えた空気調和装置
AU2007234497B8 (en) Multiblade centrifugal blower
JP4818310B2 (ja) 軸流送風機
WO2020115872A1 (ja) 遠心送風機
JP2001032794A (ja) 遠心ファン
JPH01193099A (ja) 遠心送風機の羽根車
JP6932295B1 (ja) 送風機
CN115388031A (zh) 一种叶片结构、叶轮、风机系统及吸油烟机
JP7487854B1 (ja) 送風機
JP7466707B2 (ja) 遠心送風機
JP7217176B2 (ja) 遠心送風機のブレード構造
CN113167290B (zh) 叶轮、送风机以及空调机
JPWO2019146015A1 (ja) 遠心送風機
JP6771589B2 (ja) 遠心送風機
JP4670454B2 (ja) 送風装置
JP4915791B2 (ja) 遠心式多翼送風機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942507

Country of ref document: EP

Kind code of ref document: A1