WO2020114338A1 - 一种超级电容器电解液及超级电容器 - Google Patents

一种超级电容器电解液及超级电容器 Download PDF

Info

Publication number
WO2020114338A1
WO2020114338A1 PCT/CN2019/122300 CN2019122300W WO2020114338A1 WO 2020114338 A1 WO2020114338 A1 WO 2020114338A1 CN 2019122300 W CN2019122300 W CN 2019122300W WO 2020114338 A1 WO2020114338 A1 WO 2020114338A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
tetrafluoroborate
supercapacitor
amine
imide salt
Prior art date
Application number
PCT/CN2019/122300
Other languages
English (en)
French (fr)
Inventor
向晓霞
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Priority to KR1020217016491A priority Critical patent/KR102495382B1/ko
Publication of WO2020114338A1 publication Critical patent/WO2020114338A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to a supercapacitor electrolyte and supercapacitor.
  • Supercapacitors also called gold capacitors and electrochemical capacitors, use ion adsorption (electric double layer capacitors) or rapid surface redox reactions (pseudocapacitors) to store energy.
  • Supercapacitor is a new type of energy storage device between battery and traditional electrostatic capacitor. Supercapacitors store hundreds of thousands of times the charge of traditional solid electrolytic capacitors, can be fully charged and discharged in seconds, have higher power input or output than batteries, and can be reached in a shorter time.
  • super capacitors have the advantages of short charge and discharge time, long storage life, high stability, wide operating temperature range (-40°C ⁇ 70°C), etc., so they are widely used in the field of consumer electronics, new energy power generation systems, distribution
  • Energy-saving buildings, industrial energy-saving emission reduction and other industries belong to the standard full series of low-carbon economic core products.
  • supercapacitors As one of the most promising energy storage devices in the field of new energy, supercapacitors have become one of the research hotspots in the interdisciplinary fields of materials, electricity, physics, chemistry, and other countries in the United States, Japan, South Korea, and Russia.
  • the main research goal is to prepare electrode materials with excellent performance and low cost and electrolyte system materials with high electrical conductivity, good chemical and thermal stability, and high operating voltage (wide electrochemical stability window), and on this basis, to prepare high energy density , High power density and long service life, it can be used as a super capacitor energy storage device for various electric hybrid vehicles, hybrid power systems, and backup power supplies for electronic equipment.
  • propylene carbonate and acetonitrile have better electrochemical and chemical stability and better solubility to organic quaternary ammonium salts, they are widely used in the electrolyte system of supercapacitors.
  • the commercial supercapacitor electrolyte mainly uses acetonitrile (AN) or propylene carbonate (PC) of tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) or methyltriethylammonium tetrafluoroborate (Et 3 MeNBF 4 ).
  • AN acetonitrile
  • PC propylene carbonate
  • Et 4 NBF 4 tetraethylammonium tetrafluoroborate
  • Et 3 MeNBF 4 methyltriethylammonium tetrafluoroborate
  • the upper voltage limit of the super capacitor of the AN system is only 2.7V, and the operating temperature range is -40°C ⁇ 65°C; the upper limit voltage of the super capacitor of the PC system is only 2.5V, and the operating temperature range is -40°C ⁇ 70°C.
  • the current conventional electrolyte can no longer meet the customer's requirements for high temperature resistance and high pressure resistance of supercapacitors.
  • the operation of the conventional electrolyte at high voltage and high temperature will cause the electrochemical decomposition of the electrolyte, resulting in a significant increase in the pressure in the capacitor, a significant decrease in electrochemical performance, and eventually a failure of the capacitor.
  • the technical problem to be solved by the present invention is to provide a supercapacitor electrolyte for the problems of short cycle life and large gas production of the electrolyte in the prior art at high temperature and high voltage.
  • an electrolyte solution for a supercapacitor which includes a polar aprotic solvent, an organic electrolyte, and an additive.
  • the additive is selected from the compounds represented by Structural Formula 1:
  • R is an alkanonitrile containing 1-3 carbon atoms or containing structural formula 2:
  • R 1 to R 3 are selected from hydrogen, alkyl groups containing 1-3 carbon atoms, alkoxy groups containing 1-3 carbon atoms or aromatic hydrocarbons; R 1 to R 3 may be the same or different.
  • the present invention also provides a supercapacitor, including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and the supercapacitor electrolyte as described above.
  • the supercapacitor electrolyte provided by the present invention includes a polar aprotic solvent, an organic electrolyte, and additives, and the additives are selected from the compounds represented by Structural Formula 1:
  • R is an alkanonitrile containing 1-3 carbon atoms or containing structural formula 2:
  • R 1 to R 3 are selected from hydrogen, alkyl groups containing 1-3 carbon atoms, alkoxy groups containing 1-3 carbon atoms or aromatic hydrocarbons; R 1 to R 3 may be the same or different.
  • R may be an alkanonitrile containing 1 to 3 carbon atoms, and may be, for example, formnitrile, acetonitrile, propionitrile, preferably formnitrile.
  • R if the number of carbon atoms of the alkanonitrile exceeds 3, the capacity of the supercapacitor will be significantly reduced.
  • R in the above structural formula 1 may also be a silicon-containing substituent represented by the structural formula 2.
  • R 1 , R 2 , and R 3 are each independently selected from hydrogen, methyl, methoxy, ethoxy, and phenyl.
  • the above additives are selected from benzonitrile, phenylsilane, phenyltrimethoxysilane, phenyltriethoxysilane, methylphenyldimethoxysilane, diphenyldimethoxysilane At least one kind of silane.
  • the content of the above additives in the electrolyte of the supercapacitor can vary within a wide range.
  • the The content is 0.1%-5%, more preferably 0.5%-5%.
  • the electrolyte of the supercapacitor Generally, a small amount of moisture is inevitably present in the electrolyte of the supercapacitor, including the moisture brought by the electrolyte, the moisture brought by other parts of the supercapacitor (such as the positive and negative electrodes, the separator), and the process of making the capacitor Moisture in the air.
  • the inventor has found that the above-mentioned side reactions caused by moisture will have a significant impact on the performance of the supercapacitor, especially at high temperatures and high voltages.
  • the electrolyte contains the above additives, at high temperature and high voltage, it can effectively avoid the occurrence of side reactions caused by water, thereby increasing the life of the supercapacitor at high temperature and high voltage, and reducing gas production.
  • the organic electrolyte can use various commonly used substances, for example, the organic electrolyte is selected from tetraethylammonium tetrafluoroborate, tetramethylammonium tetrafluoroborate, tetrapropylammonium tetrafluoroborate, tetrabutyltetrafluoroborate Ammonium fluoroborate, methyltriethylammonium tetrafluoroborate, diethyldimethylammonium tetrafluoroborate, trimethylethylammonium tetrafluoroborate, N,N-dimethylpyrrolidine amine tetrafluoroborate, N -Ethyl-N-methylpyrrolidine amine tetrafluoroborate, N-propyl-N-methylpyrrolidine amine tetrafluoroborate, NN-tetramethylenepyrrolidine amine tetrafluoroborate,
  • the organic electrolyte is selected from N,N-dimethylpyrrolidine amine tetrafluoroborate, tetraethylammonium tetrafluoroborate, methyltriethylammonium tetrafluoroborate, spiro-(1,1' )-Dipyrrolidine amine tetrafluoroborate, N,N-dimethylpyrrolidine bis(trifluoromethylsulfonyl)imide salt; N,N-dimethylpyrrolidine bis(fluorosulfonyl)imide salt , N,N-dimethylpyrrolidine hexafluorophosphate.
  • the content of the above-mentioned organic electrolyte may vary within a wide range.
  • the concentration of the organic electrolyte in the electrolyte of the supercapacitor is 0.5-3.0 mol/L, and more preferably 0.8-2.0 mol/L.
  • the above polar aprotic solvent can use conventional materials in the art, for example, the polar aprotic solvent is selected from acetonitrile, propionitrile, methoxypropionitrile, ⁇ -butyrolactone, ⁇ -valerolide Ester, ethylene carbonate, propylene carbonate, N,N-dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidone, dimethoxyethane, 2-methoxyethyl ether, tetrahydrofuran , Dioxolane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, sulfolane, dimethyl sulfoxide, dimethyl sulfone, methyl ethyl sulfone, methyl isopropyl sulfone, ethyl iso One or more of propyl sulfone, ethyl isobutyl sulfone,
  • It is preferably one or two of acetonitrile, propylene carbonate, sulfolane, dimethyl sulfone, and ethyl isopropyl sulfone.
  • acetonitrile when R in the additive is alkanenitrile, the effect is more significant.
  • the invention also discloses a supercapacitor, including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and the supercapacitor electrolyte as described above.
  • the positive electrode, the negative electrode and the separator of the supercapacitor can be conventional ones.
  • the positive electrode and the negative electrode are carbon material electrodes
  • the separator is a fiber cloth separator.
  • the battery core includes two collectors made of aluminum foil, two working electrodes made of activated carbon, and a fiber cloth membrane inserted between them, but it is not limited to this structure.
  • the battery cell was immersed in the electrolytes in the following comparative examples and examples, and an aluminum shell and colloidal particles were used to form a seal to test the high and low temperature performance; an aluminum plastic film vacuum seal was used to test the gas production.
  • the super capacitor test process is:
  • solute, solvent, additives and concentration of the electrolyte are different from those in Example 1.
  • the solutes, solvents, additives, and concentration compositions of the electrolytes of the examples are listed in Tables 1 and 2, and the conductivity of the electrolyte at 25°C was measured. The results are listed in Tables 1 and 2, respectively. Using these electrolytes to make supercapacitors and perform electrochemical performance tests on them, life, capacity and ESR test results are listed in Table 1 and Table 2, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

为克服现有技术中电解液在高温高电压下循环寿命短、产气量大的问题,提供了一种超级电容器电解液,包括极性非质子溶剂、有机电解质和添加剂,所述添加剂选自结构式1所示化合物:结构式1:其中,R为含1-3个碳原子的烷腈或者含结构式2:结构式2:其中R 1~R 3选自氢、含1-3个碳原子的烷基、含1-3个碳原子的烷氧基或芳烃;R 1~R 3可相同可不同。同时,还公开了采用上述电解液的超级电容器。含所述的超级电容器电解液的超级电容器在高温高电压下的循环寿命长,产气量小。

Description

一种超级电容器电解液及超级电容器 技术领域
本发明涉及一种超级电容器电解液及超级电容器。
背景技术
超级电容器,也叫金电容、电化学电容器,采用离子吸附(双电层电容器)或者表面快速氧化还原反应(赝电容器)来存储能量。超级电容器是一种介于电池与传统静电电容器之间的新型储能器件。超级电容器存储的电荷是传统固态电解电容的成百上千倍,能在数秒内完全充放电,具有比电池更高的功率输入或输出,且能在更短的时间内达到。同时,超级电容器具有充放电时间短、储存寿命长、稳定性高、工作温度范围宽(-40℃~70℃)等优点,因而广泛应用于消费类电子产品领域、新能源发电系统领域、分布式储能系统领域、智能分布式电网系统领域、新能源汽车等交通领域、节能电梯吊车等负载领域、电磁炸弹等军用设备领域和运动控制领域等,涉及新能源发电、智能电网、新能源汽车、节能建筑、工业节能减排等各个行业,属于标准的全系列低碳经济核心产品。
超级电容器作为新能源领域中最具有前景的储能装置之一,目前已成为美国、日本、韩国和俄罗斯等国家在材料、电力、物理、化学等多学科交叉领域研究的热点之一。主要研究目标是制备性能优良和低成本的电极材料和电导率高、化学和热稳定性好、工作电压高(电化学稳定窗口宽)的电解液体系材料,并在此基础上制备高能量密度、高功率密度和使用寿命长的可用于各种电动混合汽车混合动力系统和电子设备的后备电源等方面的超级电容器储能器件。
由于碳酸丙烯酯和乙腈具有较好的电化学和化学稳定性以及对有机季铵盐类较好的溶解性,被广泛应用于超级电容器的电解液体系中。目前商业化的超级电容器电解液主要采用四乙基四氟硼酸铵(Et 4NBF 4)或甲基三乙基四氟硼酸铵(Et 3MeNBF 4)的乙腈(AN)或碳酸丙烯酯(PC)的溶液。AN体系超级电容器的电压上限仅为2.7V,工作温度范围为-40℃~65℃;PC体系超级电容器的电压上限仅为2.5V,工作温度范围为-40℃~70℃。随着超容市场的发展,为了 安全起见和增加市场竞争能力,目前的常规电解液已经不能满足客户对超级电容器的耐高温、耐高压性能的要求。常规电解液在高电压、高温下工作会引起电解液的电化学分解,导致电容器内压力显著增大,电化学性能明显降低,最终导致电容器失效。
发明内容
本发明所要解决的技术问题是针对现有技术中的电解液在高温高电压下循环寿命短、产气量大的问题,提供一种超级电容器电解液。
本发明解决上述技术问题所采用的技术方案如下:
提供一种超级电容器电解液,包括极性非质子溶剂、有机电解质和添加剂,所述添加剂选自结构式1所示化合物:
Figure PCTCN2019122300-appb-000001
其中,R为含1-3个碳原子的烷腈或者含结构式2:
Figure PCTCN2019122300-appb-000002
其中R 1~R 3选自氢、含1-3个碳原子的烷基、含1-3个碳原子的烷氧基或芳烃;R 1~R 3可相同可不同。
同时,本发明还提供了一种超级电容器,包括正极、负极、介于正极和负极间的隔膜和如前所述的超级电容器电解液。
发明人通过大量的实验发现,在超级电容器中,上述添加剂能在高温和高电压下与电容器中的水发生反应,减少因水导致的副反应的发生,从而提高电解液的稳定性,减少电容器的自放电及产气,特别是大大的延长了超级电容器的工作寿命,使电容器具有良好的循环寿命和高低温性能。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体 实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的超级电容器电解液包括极性非质子溶剂、有机电解质和添加剂,所述添加剂选自结构式1所示化合物:
Figure PCTCN2019122300-appb-000003
其中,R为含1-3个碳原子的烷腈或者含结构式2:
Figure PCTCN2019122300-appb-000004
其中R 1~R 3选自氢、含1-3个碳原子的烷基、含1-3个碳原子的烷氧基或芳烃;R 1~R 3可相同可不同。
如上所述,结构式1中,R可以为含1-3个碳原子的烷腈,例如可以为甲腈、乙腈、丙腈,优选为甲腈。上述R中,若烷腈的碳原子数超过3个,将导致超级电容器的容量明显降低。
同时,上述结构式1中的R还可以为结构式2所示的含硅取代基。具体的,结构式2中,R 1、R 2、R 3各自独立的选自氢、甲基、甲氧基、乙氧基、苯基。
本发明中,优选情况下,上述添加剂选自苯甲腈、苯硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷中的至少一种。
根据本发明,上述添加剂在超级电容器电解液中的含量可以在较大范围内变动,优选情况下,在所述超级电容器电解液中,以超级电容器电解液的总重量为基准,所述添加剂的含量为0.1%-5%,更优选为0.5%-5%。
通常,超级电容器的电解液中不可避免的会存在少量水分,包括电解液所带入的水分、超级电容器其他零部件(例如正负极、隔膜)带入的水分以及制作电容器过程中所带入的空气中的水分。发明人发现,上述水分发生的副反应会对超级电容器性能产生明显影响,尤其是在高温高电压下,影响更为显著。当电解液中含上述添加剂时,在高温高电压下,可有效的避免因水导致的副反应的发生,从由提高超级电容器在高温高电压下的寿命,降低产气。
本发明中,有机电解质可采用常用的各种物质,例如,所述有机电解质选 自四氟硼酸四乙基铵、四甲基四氟硼酸铵、四丙基四氟硼酸铵、四丁基四氟硼酸铵、甲基三乙基四氟硼酸铵、二乙基二甲基四氟硼酸铵、三甲基乙基四氟硼酸铵、N,N-二甲基吡咯烷四氟硼酸胺、N-乙基-N-甲基吡咯烷四氟硼酸胺、N-丙基-N-甲基吡咯烷四氟硼酸胺、N-N-四亚甲基吡咯烷四氟硼酸胺、螺环-(1,1’)-二吡咯烷四氟硼酸胺、N,N-二甲基哌啶四氟硼酸胺、N,N-二乙基哌啶四氟硼酸胺、N,N-二甲基吗啉四氟硼酸胺、1-乙基-3-甲基咪唑四氟硼酸胺、双(三氟甲基磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(三氟甲基磺酰)亚胺盐、四丙基双(三氟甲基磺酰)亚胺盐、四丁基双(三氟甲基磺酰)亚胺盐、甲基三乙基双(三氟甲基磺酰)亚胺盐、二乙基二甲基双(三氟甲基磺酰)亚胺盐、三甲基乙基双(三氟甲基磺酰)亚胺盐、N,N-二甲基吡咯烷双(三氟甲基磺酰)亚胺盐、双(氟磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(氟磺酰)亚胺盐、四丙基双(氟磺酰)亚胺盐、四丁基双(氟磺酰)亚胺盐、甲基三乙基双(氟磺酰)亚胺盐、二乙基二甲基双(氟磺酰)亚胺盐、三甲基乙基双(氟磺酰)亚胺盐、N,N-二甲基吡咯烷双(氟磺酰)亚胺盐、六氟磷酸铵类如四乙基六氟磷酸铵、四甲基六氟磷酸铵、四丙基六氟磷酸铵、四丁基六氟磷酸铵、甲基三乙基六氟磷酸铵、三乙基甲基六氟磷酸铵或二乙基二甲基六氟磷酸铵中的一种或多种。
优选情况下,所述有机电解质选自N,N-二甲基吡咯烷四氟硼酸胺、四氟硼酸四乙基铵、甲基三乙基四氟硼酸铵、螺环-(1,1’)-二吡咯烷四氟硼酸胺、N,N-二甲基吡咯烷双(三氟甲基磺酰)亚胺盐;N,N-二甲基吡咯烷双(氟磺酰)亚胺盐、N,N-二甲基吡咯烷六氟磷酸盐。
上述有机电解质的含量可在较大范围内变动,优选情况下,所述超级电容器电解液中,有机电解质的浓度为0.5-3.0mol/L,更优选为0.8-2.0mol/L。
根据本发明,上述极性非质子溶剂可以采用本领域常规的物质,例如,所述极性非质子溶剂选自乙腈、丙腈、甲氧基丙腈、γ-丁内酯、γ-戊内酯、碳酸乙烯酯、碳酸丙烯酯、N,N-二甲基甲酰胺、二甲基乙酰胺、1-甲基-2-吡咯烷酮、二甲氧基乙烷、2-甲氧基乙醚、四氢呋喃、二氧戊环、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、环丁砜、二甲基亚砜、二甲基砜、甲基乙基砜、甲基异丙基砜、乙基异丙基砜、乙基异丁基砜、异丙基异丁基砜、异丙基-s-丁基砜、丁基异丁基砜中的一种或多种。优选为乙腈、碳酸丙烯酯、环丁砜、二甲基砜、乙基异丙基砜中的一种或两种。尤其是乙腈,当添加剂中的R为烷腈时,效果更显著。
本发明还公开了一种超级电容器,包括正极、负极、介于正极和负极间的 隔膜和如前所述的超级电容器电解液。
上述超级电容器的正极、负极和隔膜可采用常规的,例如所述正极和负极为碳材料电极,所述隔膜为纤维布隔膜。
以下通过实施例对本发明进行进一步的说明。
在手套箱中组立超级电容器模型:电芯包括铝箔制作的两集电极、由活性炭制作的两工作电极和在其间插入的纤维布隔膜,但并不局限于此种结构。将电芯浸入以下对比例和实施例中的电解液中,采用铝壳和胶粒组立封口,测试高低温性能;采用铝塑膜真空封口测试产气量。
超级电容器测试过程为:
(1)预循环(10次):25℃,充电截止电压U、恒定电流10mA/F进行充电;然后按下限电压U/2,恒定电流10mA/F进行放电;
(2)65℃~70℃高温箱中,恒定电流10mA/F充电至上限电压U,恒压(U)一定时间;取出超级电容器并冷却至25℃,再进行充放电测试,测试条件同预循环,并计算超级电容器的容量保持率、ESR增长率;
(3)以容量保持率≤80%,和(或)ESR增长率≥100%时,作为超容寿命的判断标准。
实施例1
以N,N-二甲基吡咯烷四氟硼酸铵为溶质,乙腈(AN)为溶剂,配制2.0mol/L电解液,再加入按电解液总质量计为0.2%的苯硅烷,电解液组成列于表1中,并测定电解液的在25℃时的电导率,结果列于表1中。用该电解液制作超级电容器并对其进行电化学性能测试,寿命、容量和ESR测试结果分别列于表1中。
实施例2-13
除了电解液的溶质、溶剂、添加剂及浓度与实施例1不同以外,其他都一样。各实施例的电解液的溶质、溶剂、添加剂及浓度组成列于表1和表2中,并测定电解液在25℃时的电导率,结果分别列于表1和表2中。用这些电解液制作超级电容器并对其进行电化学性能测试,寿命、容量和ESR测试结果分别列于表1和表2中。
对比例1
以四乙基四氟硼酸铵为溶质,AN为溶剂,配制1.0mol/L电解液,电解液组成列于表1中,并测定电解液在25℃时的电导率,结果分别列于表1中。用该电解液制作超级电容器并对其进行电化学性能测试,寿命、容量和ESR测试结 果分别列于表1中。
对比例2-8
除了电解液的溶质、溶剂、添加剂及浓度与对比例1不同以外,其他都一样。各对比例的电解液的溶质、溶剂、添加剂及浓度组成列于表1和表2中,并测定电解液在25℃时的电导率,结果分别列于表1和表2中。用这些电解液制作超级电容器并对其进行电化学性能测试,寿命、容量和ESR测试结果分别列于表1和表2中。
表1
Figure PCTCN2019122300-appb-000005
从表1的测试结果可以看出,在不同溶质和乙腈溶剂体系下,添加本发明提供的添加剂后,超级电容器在高温和高电压情况下的寿命得到了显著提高,产气量显著降低。并且,随着添加剂含量的增加,提高寿命、抑制产气的效果更显著。
表2
Figure PCTCN2019122300-appb-000006
从表2的测试结果可以看出,在不同溶质和碳酸丙烯酯溶剂体系下,添加本发明提供的添加剂后,超级电容器在高温和高电压情况下的寿命得到了显著提高,产气量显著降低。并且,随着添加剂含量的增加,提高寿命、抑制产气的效果更显著。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超级电容器电解液,其特征在于,包括极性非质子溶剂、有机电解质和添加剂,所述添加剂选自结构式1所示化合物:
    Figure PCTCN2019122300-appb-100001
    其中,R为含1-3个碳原子的烷腈或者含结构式2:
    Figure PCTCN2019122300-appb-100002
    其中R 1~R 3选自氢、含1-3个碳原子的烷基、含1-3个碳原子的烷氧基或芳烃;R 1~R 3可相同可不同。
  2. 根据权利要求1所述的超级电容器电解液,其特征在于,所述结构式1中,所述含1-3个碳原子的烷腈为甲腈;所述结构式2中,R 1、R 2、R 3各自独立的选自氢、甲基、甲氧基、乙氧基、苯基。
  3. 根据权利要求1所述的超级电容器电解液,其特征在于,所述添加剂选自苯甲腈、苯硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、甲基苯基二甲氧基硅烷、二苯基二甲氧基硅烷中的至少一种。
  4. 根据权利要求1-3中任意一项所述的超级电容器电解液,其特征在于,在所述超级电容器电解液中,以超级电容器电解液的总重量为基准,所述添加剂的含量为0.1%-5%。
  5. 根据权利要求4所述的超级电容器电解液,其特征在于,所述超级电容器电解液中,有机电解质的浓度为0.5-3.0mol/L。
  6. 根据权利要求4所述的超级电容器电解液,其特征在于,所述超级电容器电解液中,有机电解质的浓度为0.8-2.0mol/L。
  7. 根据权利要求1-3、5、6中任意一项所述的超级电容器电解液,其特征在于,所述有机电解质选自四氟硼酸四乙基铵、四甲基四氟硼酸铵、四丙基四氟硼酸铵、四丁基四氟硼酸铵、甲基三乙基四氟硼酸铵、二乙基二甲基四氟硼酸铵、三甲基乙基四氟硼酸铵、N,N-二甲基吡咯烷四氟硼酸胺、N-乙基-N-甲基吡咯烷四氟硼酸胺、N-丙基-N-甲基吡咯烷四氟硼酸胺、N-N-四亚甲基吡咯烷四氟硼酸胺、螺环-(1,1’)-二吡咯烷四氟硼酸胺、N,N-二甲基哌啶四氟硼酸胺、N,N-二乙基哌啶四氟硼酸胺、N,N-二甲基吗啉四氟硼酸胺、1-乙基-3-甲基咪唑四氟硼酸胺、双(三氟甲基磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(三氟甲基磺酰)亚胺盐、四丙基双(三氟甲基磺酰)亚胺盐、四丁基双(三氟甲基磺酰)亚胺盐、甲基三乙基双(三氟甲基磺酰)亚胺盐、二乙基二甲基双(三氟甲基磺酰)亚胺盐、三甲基乙基双(三氟甲基磺酰)亚胺盐、N,N-二甲基吡咯烷双(三氟甲基磺酰)亚胺盐、双(氟磺酰)亚胺类如四氟硼酸四乙基铵、四甲基双(氟磺酰)亚胺盐、四丙基双(氟磺酰)亚胺盐、四丁基双(氟磺酰)亚胺盐、甲基三乙基双(氟磺酰)亚胺盐、二乙基二甲基双(氟磺酰)亚胺盐、三甲基乙基双(氟磺酰)亚胺盐、N,N-二甲基吡咯烷双(氟磺酰)亚胺盐、六氟磷酸铵类如四乙基六氟磷酸铵、四甲基六氟磷酸铵、四丙基六氟磷酸铵、四丁基六氟磷酸铵、甲基三乙基六氟磷酸铵、三乙基甲基六氟磷酸铵或二乙基二甲基六氟磷酸铵中的一种或多种。
  8. 根据权利要求1-3、5、6中任意一项所述的超级电容器电解液,其特征在于,所述有机电解质选自N,N-二甲基吡咯烷四氟硼酸胺、四氟硼酸四乙基铵、甲基三乙基四氟硼酸铵、螺环-(1,1’)-二吡咯烷四氟硼酸胺、N,N-二甲基吡咯烷双(三氟甲基磺酰)亚胺盐;N,N-二甲基吡咯烷双(氟磺酰)亚胺盐、N,N-二甲基吡咯烷六氟磷酸盐。
  9. 根据权利要求1-3、5、6中任意一项所述的超级电容器电解液,其特征在于,所述极性非质子溶剂选自乙腈、丙腈、甲氧基丙腈、γ-丁内酯、γ-戊内酯、碳酸乙烯酯、碳酸丙烯酯、N,N-二甲基甲酰胺、二甲基乙酰胺、1-甲基-2-吡咯烷酮、二甲氧基乙烷、2-甲氧基乙醚、四氢呋喃、二氧戊环、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、环丁砜、二甲基亚砜、二甲基砜、甲基乙基砜、甲基异丙基砜、乙基异丙基砜、乙基异丁基砜、异丙基异丁基砜、异丙基-s-丁基砜、 丁基异丁基砜中的一种或多种。
  10. 一种超级电容器,包括正极、负极、介于正极和负极间的隔膜和如权利要求1-9中任意一项所述的超级电容器电解液。
PCT/CN2019/122300 2018-12-03 2019-12-02 一种超级电容器电解液及超级电容器 WO2020114338A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217016491A KR102495382B1 (ko) 2018-12-03 2019-12-02 슈퍼커패시터 전해액 및 슈퍼커패시터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811465140.0 2018-12-03
CN201811465140.0A CN111261426B (zh) 2018-12-03 2018-12-03 一种超级电容器电解液及超级电容器

Publications (1)

Publication Number Publication Date
WO2020114338A1 true WO2020114338A1 (zh) 2020-06-11

Family

ID=70951995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122300 WO2020114338A1 (zh) 2018-12-03 2019-12-02 一种超级电容器电解液及超级电容器

Country Status (3)

Country Link
KR (1) KR102495382B1 (zh)
CN (1) CN111261426B (zh)
WO (1) WO2020114338A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113206283A (zh) * 2021-05-01 2021-08-03 南开大学 一种基于共熔盐电解质的水系锌离子电池电解液
CN115959645B (zh) * 2022-12-30 2023-09-08 深圳新宙邦科技股份有限公司 一种六氟磷酸碱金属盐的制备方法、电解液及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620714A (zh) * 2011-05-10 2014-03-05 Cap-Xx有限公司 电解液
CN105359238A (zh) * 2013-07-12 2016-02-24 Ioxus公司 用于电化学装置的稳定性增强添加剂
CN107210144A (zh) * 2015-01-26 2017-09-26 Ioxus公司 用于减小电化学双层电容器中的esr增益的添加剂
CN108475821A (zh) * 2015-12-17 2018-08-31 巴斯夫欧洲公司 用于高能锂离子电池组用电解质组合物的氰基烷基磺酰氟

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126721A1 (ja) * 2005-05-27 2006-11-30 Sumitomo Chemical Company, Limited 電気二重層キャパシタ
JP6772834B2 (ja) * 2014-09-30 2020-10-21 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6690275B2 (ja) * 2016-02-09 2020-04-28 三菱ケミカル株式会社 非水系電解液及び非水系電解液二次電池
CN108899212A (zh) * 2018-07-17 2018-11-27 中国科学院过程工程研究所 一种三元聚离子液体基固态电解质的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620714A (zh) * 2011-05-10 2014-03-05 Cap-Xx有限公司 电解液
CN105359238A (zh) * 2013-07-12 2016-02-24 Ioxus公司 用于电化学装置的稳定性增强添加剂
CN107210144A (zh) * 2015-01-26 2017-09-26 Ioxus公司 用于减小电化学双层电容器中的esr增益的添加剂
CN108475821A (zh) * 2015-12-17 2018-08-31 巴斯夫欧洲公司 用于高能锂离子电池组用电解质组合物的氰基烷基磺酰氟

Also Published As

Publication number Publication date
KR20210094553A (ko) 2021-07-29
CN111261426A (zh) 2020-06-09
CN111261426B (zh) 2022-08-09
KR102495382B1 (ko) 2023-02-06

Similar Documents

Publication Publication Date Title
KR101138584B1 (ko) 리튬이온 커패시터
CN103730263A (zh) 一种用于超级电容器的有机电解液及超级电容器
US9870874B2 (en) Electrolyte solute, electrolyte, and high-voltage supercapacitor
WO2020114338A1 (zh) 一种超级电容器电解液及超级电容器
Sun et al. Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors
NL2015030B1 (en) Electrolyte, and high-voltage supercapacitor.
CN107887176B (zh) 一种用于超级电容器的有机电解液及超级电容器
WO2017004884A1 (zh) 一种电解液溶质、电解液及超级电容器
KR20130017985A (ko) 전극 활물질 슬러리 조성물 및 이를 이용한 전극을 포함하는 전기화학 캐패시터
CN108807012A (zh) 一种锂离子电容器电解液及包含该电解液的锂离子电容器
CN111224197B (zh) 一种锂氟化碳-超级电容器快速响应复合电池
CN110349759B (zh) 一种超级电容器电解液及超级电容器
CN102254691A (zh) 一种低温型超级电容器电解液
CN108573816B (zh) 用于超级电容器的有机电解液及超级电容器
CN104779075A (zh) 一种超级电容器高电压非水电解液
CN112490015A (zh) 一种非对称的高电压超级电容器
CN103956268A (zh) 一种电解液溶质和电解液及高电压超级电容器
CN111276339B (zh) 一种超级电容器赝电容型电解液及其制备方法和应用
Tian Ionic Liquids for Supercapacitors
JP2014090024A (ja) 電気化学デバイス及びそれに用いるセパレータ
CN107845506A (zh) 一种增强型石墨烯基超级电容器及其制备方法
CN102760575A (zh) 一种电容器电解液以及使用该电解液的电容器
JP4158412B2 (ja) 電気化学キャパシタ用電解液及びそれを用いた電気化学キャパシタ
WO2015172358A1 (zh) 一种电解液溶质和电解液及高电压超级电容器
CN117374277A (zh) 一种基于季铵根阳离子的可充电氟碳电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893690

Country of ref document: EP

Kind code of ref document: A1