WO2020114287A1 - 一种钌镍/活性炭共负载型催化剂及其制备与应用 - Google Patents

一种钌镍/活性炭共负载型催化剂及其制备与应用 Download PDF

Info

Publication number
WO2020114287A1
WO2020114287A1 PCT/CN2019/121218 CN2019121218W WO2020114287A1 WO 2020114287 A1 WO2020114287 A1 WO 2020114287A1 CN 2019121218 W CN2019121218 W CN 2019121218W WO 2020114287 A1 WO2020114287 A1 WO 2020114287A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
sugar
catalyst
activated carbon
temperature
Prior art date
Application number
PCT/CN2019/121218
Other languages
English (en)
French (fr)
Inventor
柳志强
张晓健
郑裕国
李海伟
金利群
Original Assignee
浙江工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江工业大学 filed Critical 浙江工业大学
Publication of WO2020114287A1 publication Critical patent/WO2020114287A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/26Hexahydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical

Definitions

  • the invention relates to a ruthenium nickel/activated carbon co-supported catalyst, a preparation method thereof, and its application in the preparation of sugar alcohol by catalytic hydrogenation of sugar.
  • the functional sugar alcohol has moderate sweetness, low calorific value, does not affect the secretion of insulin, does not cause fluctuations in blood sugar and other characteristics, and has important applications in the fields of food, beverages, health products, special foods and the like.
  • the main production method of sugar alcohols is the use of transition metal catalysts to hydrogenate and reduce sugar under high temperature and high pressure conditions. Among them, the performance and cost of the catalyst are the key factors restricting the production of sugar alcohol.
  • Patent CN102886260A discloses a composite palladium ruthenium/multi-wall carbon nanotube catalyst prepared by impregnation reduction method. The electrochemical performance test proves that the catalyst has high electrochemical redox activity.
  • Patent CN107649148A discloses a preparation method and application of a Pt-modified Ni-based catalyst using multi-walled carbon nanotubes as a supporting agent. The catalyst can effectively catalyze the one-step hydrogenation and rearrangement of nitrobenzene to produce p-aminophenol, but During the production process, roasting and reduction are required, and the energy consumption is large, which increases the production cost.
  • the bimetallic catalyst supported by multi-walled carbon nanotubes has good electrocatalytic performance and stability, but the cost of the multi-walled carbon nanotubes carrier is relatively high, and the catalytic activity of applying it to the series of sugar hydrogenation processes has yet to be evaluated.
  • Patent CN105859522 discloses a preparation process of a series of sugar alcohols such as sorbitol, mannitol, xylitol, arabitol, galactitol, etc.
  • the process uses formate as a hydrogen donor and uses a general-purpose precious metal catalyst.
  • the series of monosaccharides are hydrogenated under mild conditions, but the conversion rate of the catalyst is up to 88.1%, the yield of sugar alcohol is up to 78.4%, the catalytic efficiency is not high, and the selectivity is poor.
  • the catalysts currently used in sugar alcohol production processes have problems such as complicated preparation methods, high preparation costs, low catalytic efficiency, and poor versatility.
  • the purpose of the present invention is to provide a ruthenium nickel/activated carbon co-supported catalyst with simple preparation process, high efficiency, high catalytic activity and good stability, and its preparation method and its application in sugar catalytic hydrogenation to produce sugar alcohol.
  • a ruthenium nickel/activated carbon co-supported catalyst is prepared by the following method:
  • step (2) the ratio of the amounts of activated carbon, ruthenium trichloride, nickel dichloride hexahydrate, ultrapure water and ethanol is 1g: 0.1-0.2g: 0.05-0.1g: 50-100mL: 50-100mL.
  • the invention also relates to a method for preparing the ruthenium nickel/activated carbon co-supported catalyst, the method comprising:
  • step (2) the dosage of activated carbon, ruthenium trichloride, nickel dichloride hexahydrate, ultrapure water, ethanol, and sodium borohydride solution (1M) is 1g: 0.1 ⁇ 0.2g: 0.05 ⁇ 0.1g: 50 ⁇ 100 mL: 50 to 100 mL: 1 to 4 mL, preferably 1 g: 0.14 g: 0.08 g: 100 mL: 20 mL: 3 mL.
  • the invention also relates to the application of the ruthenium nickel/activated carbon co-supported catalyst in the catalytic hydrogenation of sugar to produce sugar alcohol.
  • the application is: preparing a sugar solution with a mass concentration of 5-15%, adding it to a reaction kettle, adding a Ru-Ni/AC catalyst with a mass of 5-10% of the sugar mass, sealing the reaction kettle, and replacing the air in the reaction kettle with nitrogen Adjust the temperature of the reaction kettle to 100 ⁇ 130°C and the stirring speed to 400 ⁇ 600rpm. After the temperature is stable, fill with hydrogen to the pressure of 2.0 ⁇ 5.0MPa in the kettle. After adding hydrogen to react for 90 ⁇ 130min, cool the reaction kettle and lower the temperature to room temperature At that time, hydrogen gas was released to end the reaction.
  • the sugar is one of the following: xylose, arabinose, glucose, mannose, maltose.
  • the hydrogenation reaction temperature is 110°C and the reaction time is 90 min; when the sugar is arabinose, the hydrogenation reaction temperature is 110°C and the reaction time is 95 min; when the sugar is glucose, The hydrogenation reaction temperature is 120°C and the reaction time is 110min.
  • the hydrogenation reaction temperature is 120°C and the reaction time is 115min; when the sugar is maltose, the hydrogenation reaction temperature is 130°C and the reaction time is 115min .
  • the recoverable catalyst can be reused.
  • the catalyst recovery method is as follows: the previous batch of the reaction product is centrifuged at 8000 rpm for 10 min, the supernatant is discarded, after centrifugal washing with ultrapure water for three times, vacuum drying at 60 °C, drying The dried Ru-Ni/AC catalyst is used for the next batch of sugar hydrogenation reaction.
  • the present invention provides a ruthenium nickel/activated carbon co-supported catalyst and its preparation method, as well as its application in the production of a series of sugar alcohols, the present invention adopts the impregnation reduction method to metal ruthenium and nickel
  • the Ru-Ni/AC catalyst is prepared by being supported on an activated carbon carrier.
  • the preparation method is simple, efficient and low in cost.
  • the method of the present invention fully impregnates the activated carbon in the metal salt solution under ultrasonic and stirring conditions, improves the adsorption efficiency of metal ruthenium and nickel, and increases the stability of the catalyst.
  • the activated carbon carrier used in this method has a fast adsorption speed, a large specific surface area, and can efficiently load metal ruthenium and nickel particles. At the same time, due to the difference in the electronegativity of the two components, it is conducive to the transfer of electrons on the surface of the catalyst, which can achieve xylitol , Sorbitol and other sugar alcohols with high selectivity. Secondly, the Ru-Ni/AC catalyst has good stability and is easy to recover. It is reused to the fifth time. The conversion rate of the substrate sugar in each batch is more than 95%, and the selectivity of the product sugar alcohol is more than 96%.
  • Example 1 is a TEM image of the Ru-Ni/AC catalyst prepared in Example 1 of the present invention.
  • Example 2 is an energy spectrum diagram of the Ru-Ni/AC catalyst prepared in Example 1 of the present invention.
  • Pretreatment of activated carbon Add 5.0g of activated carbon to a 250mL round bottom milled flask, and then add 100mL of 30% nitric acid solution. Place the flask in a water bath thermostat, install a reflux condenser on it, turn on the power, set the water bath thermostat to 90°C, and reflux at a constant temperature for 3 hours. After the constant temperature is finished, it is cooled to room temperature, and then washed with distilled water until the pH of the filtrate is neutral, and dried under vacuum at 60°C for 12 hours.
  • the morphology of the Ru-Ni/AC catalyst prepared in Example 1 was characterized by transmission electron microscopy (TEM).
  • the instrument used for the detection was Philip-FEI I of the Netherlands and the model was TECNAI G2 F30 S-TWIN; the results are shown in Figure 1 and As shown in Figure 2; from A in Figure 1, it can be seen that the metal ruthenium and nickel nanoparticles are evenly loaded on the surface of the activated carbon. From B in Figure 1, it can be seen that the particle size distribution of the metal is narrow, with an average particle size of 2.7nm; The existence of ruthenium and nickel in the catalyst is further confirmed from FIG. 2, wherein the loading of ruthenium is 4% and the loading of nickel is 1%.
  • Example 3 Method for selective detection of sugar conversion rate and sugar alcohol
  • the high performance liquid chromatography instrument used for the detection was a waters system 2414 differential detector, the chromatographic column was an AminexHPX-87H column (300 ⁇ 7.8mm), the mobile phase was 5mM H 2 SO 4 , the flow rate was 0.6mL/min, and the column temperature was 60.0°C. Sample volume: 20 ⁇ L.
  • the glucose conversion rate was 98.9%, and the selectivity of sorbitol was 99.5%.
  • Example 8 Hydrogenation of maltose to produce maltitol
  • the reaction product was introduced into a 50 mL centrifuge tube, centrifuged at 8000 rpm for 10 min, and 20 ⁇ L of the supernatant was subjected to liquid chromatography detection to obtain a conversion rate of xylose of 99.8%.
  • the selectivity is 99.0%; the remaining supernatant in the centrifuge tube is discarded, the precipitate is centrifugally washed three times in ultrapure water, and vacuum dried at 60°C; the dried Ru-Ni/AC catalyst is used in the next batch
  • the second xylose hydrogenation reaction the reaction conditions are the same as in Example 4; after repeating the operation 5 times, the conversion rate of xylose is more than 95%, and the selectivity of xylitol is more than 96%; each batch of xylose conversion
  • the rate and selectivity of xylitol are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及钌镍/活性炭共负载型催化剂及其制备方法和其在糖催化加氢制备糖醇中的应用。本发明通过简单的浸渍还原法将金属钌和镍共负载到吸附速度快、比表面积大的活性炭上,制备出Ru-Ni/AC催化剂,并应用于木糖醇、阿拉伯醇、山梨醇、甘露糖、麦芽醇等系列糖醇的制备。催化剂活性高,稳定性好,可多批次重复利用,产物产率高。总之,本发明的催化剂制备工艺简单、生产成本低、催化效率高、稳定性好,适用于多种糖醇的制备过程,通用性好。

Description

一种钌镍/活性炭共负载型催化剂及其制备与应用
本申请要求于2018年12月06日提交中国专利局、申请号为CN201811488619.6、发明名称为“一种钌镍/活性炭共负载型催化剂及其制备与应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种钌镍/活性炭共负载型催化剂及其制备方法和其在糖催化加氢制备糖醇中的应用。
背景技术
功能性糖醇因其具有甜度适中,热值低,不影响胰岛素分泌,不会引起血糖的波动等特性,在食品、饮料、保健品、特殊食品等领域有着重要应用。采用过渡金属催化剂,在高温、高压条件对糖进行加氢还原是糖醇的主要生产方法。其中,催化剂的性能与成本是制约糖醇生产的关键因素。
专利CN102886260A公开了一种利用浸渍还原法制备的复合型钯钌/多壁碳纳米管催化剂,通过电化学性能测试,证明该催化剂具有较高的电化学氧化还原活性。专利CN107649148A公布了一种以多壁碳纳米管为载体负载助剂Pt改性的Ni基催化剂的制备方法及应用,该催化剂能有效的催化硝基苯一步加氢重排制备对氨基苯酚,但是制作过程中需要进行焙烧和还原,能耗较大,增加了生产成本。用多壁碳纳米管负载的双金属催化剂具有良好的电催化性能和稳定性,但多壁碳纳米管载体成本较高,并且将其应用于系列糖加氢过程的催化活性尚待评价。
专利CN105859522公开了一种山梨醇、甘露醇、木糖醇、阿拉伯糖醇、半乳糖醇等系列糖醇的制备工艺,该工艺以甲酸盐为氢供体、采用通用型贵金属催化剂,在较温和的条件下氢化系列单糖,但催化剂的转化率最高为88.1%,糖醇产率最高为78.4%,催化效率不高、选择性差。
综上所述,当前用于糖醇生产工艺的催化剂存在着制备方法复杂、制备成本较高、催化效率低、通用性差等问题。
发明内容
本发明目的是提供一种制备过程简单、高效,催化活性高、稳定性好,利于回收的钌镍/活性炭共负载型催化剂及其制备方法和其在糖催化加氢制备糖醇中的应用。
本发明采用的技术方案是:
一种钌镍/活性炭共负载型催化剂,由如下方法制备获得:
(1)将活性炭在质量浓度10~40%的硝酸溶液中90~100℃恒温回流1~5h,反应完成后过滤,用蒸馏水洗涤至滤液呈中性,在60~70℃真空条件下烘干,得到预处理后的活性炭载体;
(2)在反应容器中加入超纯水和乙醇,再依次加入预处理后的活性炭载体、三氯化钌和六水合二氯化镍,混合液超声分散15~30min后,升温至60~80℃下快速搅拌1~2h后,加入硼氢化钠溶液持续搅拌8~10h,离心、洗涤,真空干燥,获得所述钌镍/活性炭共负载型催化剂,即Ru-Ni/AC催化剂。
步骤(2)中活性炭、三氯化钌、六水合二氯化镍、超纯水、乙醇用量之比为1g:0.1~0.2g:0.05~0.1g:50~100mL:50~100mL。
本发明还涉及制备所述钌镍/活性炭共负载型催化剂的方法,所述方法包括:
(1)将活性炭在质量浓度10~40%的硝酸溶液中90~100℃恒温回流1~5h,反应完成后过滤,用蒸馏水洗涤至滤液呈中性,在60~70℃真空条件下烘干,得到预处理后的活性炭载体;
(2)在反应容器中加入超纯水和乙醇,再依次加入预处理后的活性炭载体、三氯化钌和六水合二氯化镍,混合液超声分散15~30min后,升温至60~80℃下快速搅拌1~2h后,加入硼氢化钠溶液(浓度通常为1M)持续搅拌8~10h,离心、洗涤,真空干燥,获得所述钌镍/活性炭共负载型催化剂,即Ru-Ni/AC催化剂。
步骤(2)中活性炭、三氯化钌、六水合二氯化镍、超纯水、乙醇、硼氢化钠溶液(1M)用量之比为1g:0.1~0.2g:0.05~0.1g:50~100mL:50~100mL:1~4mL,优选为1g:0.14g:0.08g:100mL:20mL:3mL。
本发明还涉及所述钌镍/活性炭共负载型催化剂在糖催化加氢制备糖醇中的应用。
所述应用为:配制质量浓度5~15%的糖溶液,加入反应釜中,加入质量为糖质量5~10%的Ru-Ni/AC催化剂,密封反应釜,用氮气置换出反应釜内空气,调整反应釜温度为100~130℃、搅拌转速400~600rpm,温度稳定后,充入氢气至釜内气压为2.0~5.0MPa,加入氢气反应90~130min后,冷却反应釜,温度降到室温时,放出氢气,结束反应。
优选的,所述的糖为下列之一:木糖、阿拉伯糖、葡萄糖、甘露糖、麦芽糖。
具体的,所述糖为木糖时,加氢反应温度为110℃、反应时间90min;所述糖为阿拉伯糖时,加氢反应温度为110℃、反应时间95min;所述糖为葡萄糖时,加氢反应温度为120℃、反应时间110min,所述糖为甘露糖时,加氢反应温度为120℃、反应时间115min;所述糖为麦芽糖时,加氢反应温度为130℃、反应时间115min。
将反应产物以超纯水稀释50倍,采用高效液相色谱法进行检测分析,主要测定反应液中底物糖残留量、产物糖醇的含量,分析底物的转化率和产物的选择性,以此作为催化剂活性的评价标准。
反应结束后,可回收催化剂重复利用,所述催化剂回收方法如下:上一批次反应产物8000rpm离心10min,弃上清,用超纯水离心洗涤三次后,在60℃条件下真空烘干,烘干后的Ru-Ni/AC催化剂用于下一批次的糖加氢反应。
本发明的有益效果主要体现在:本发明提供了一种钌镍/活性炭共负载型催化剂及其制备方法,以及其在系列糖醇生产中的应用,本发明采用浸渍还原法将金属钌和镍负载到活性炭载体上制备了Ru-Ni/AC催化剂,制备方法简单、高效、成本低廉。本发明方法在超声和搅拌条件下,使活性炭在金属盐溶液中充分浸渍,提高了金属钌和镍的吸附效率,增加了催化剂的稳定性。该方法所采用的活性炭载体吸附速度快、比表面积大,并且能高效负载金属钌、镍颗粒,同时由于两组分存在电负性的差异,利于催化剂表面电子的转移,从而能够实现木糖醇、山梨醇等多种糖醇的高选择性制备。其次,Ru-Ni/AC催化剂的稳定性好,利于回收,重复使用至第5次,各批次底物糖的转化率在95%以上,产物糖醇的选择性在96%以上。
说明书附图
图1为本发明实施例1制备的Ru-Ni/AC催化剂的TEM图;
图2为本发明实施例1制备的Ru-Ni/AC催化剂的能谱图。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1:Ru-Ni/AC催化剂的制备
(1)活性炭的预处理:把5.0g活性炭加入到250mL圆底磨口烧瓶中,再加入30%的硝酸溶液100mL。把烧瓶置于水浴恒温槽内,上面装上回流冷凝管,开启电源,设定水浴恒温器为90℃,恒温回流3h。待恒温结束后冷却到室温,然后用蒸馏水洗涤至滤液pH为中性,在60℃真空条件下干燥12h。
(2)浸渍还原法制备Ru-Ni/AC催化剂:在250mL圆底烧瓶中加入50mL乙醇和50mL超纯水,依次加入1.0g硝酸处理后的活性炭、0.10-0.20g(优选0.14g)三氯化钌、0.05-0.10g(优选0.08g)六水合二氯化镍,将上述混合溶液超声分散20min后,在60℃条件下快速搅拌60min后,加入3mL浓度为1.0mol/L硼氢化钠溶液,持续搅拌8h,在8000rpm条件下离心3min,用超纯水离心洗涤3次,在60℃真空条件下干燥12h,制得具有催化活性的Ru-Ni/AC催化剂,其中,钌镍颗粒平均粒径为2.7nm,钌的负载量为4%,镍的负载量为1%。
实施例2:Ru-Ni/AC催化剂的表征
采用透射电镜(TEM)对实施例1制备的Ru-Ni/AC催化剂的形貌进行表征,检测所用的仪器是荷兰Philip-FEI Ⅰ,型号为TECNAI G2 F30 S-TWIN;所得结果如图1和图2所示;由图1中的A可以看出,金属钌和镍纳米颗粒均匀负载到活性炭表面,由图1中的B可知,金属的粒径分布较窄,平均粒径为2.7nm;由图2进一步证实了催化剂中金属钌和镍的存在,其中钌的负载量为4%,镍的负载量为1%。
实施例3:糖的转化率和糖醇的选择性检测方法
分别取密封反应釜之前的反应物和加氢反应后的产物20μL,用超纯水稀释至1mL,通过高效液相色谱法检测反应物中糖的浓度,产物中糖 的残留浓度和糖醇浓度。
检测所用高效液相色谱仪器为waters系统2414示差检测器,色谱柱为AminexHPX-87H柱(300×7.8mm),流动相5mM H 2SO 4,流速0.6mL/min,柱温:60.0℃,进样体积:20μL。
糖的转化率和糖醇的选择性计算公式如下:
Figure PCTCN2019121218-appb-000001
Figure PCTCN2019121218-appb-000002
实施例4:木糖加氢制备木糖醇
Figure PCTCN2019121218-appb-000003
称取无水木糖10.0g,加至40mL超纯水中,配置质量分数为20%的木糖溶液,将木糖溶液转移至100mL反应釜内,加入Ru-Ni/AC催化剂1.0g,密封反应釜。用氮气将反应釜置换三次,排除反应釜内空气。调整反应釜温度为110℃,搅拌转速为500rpm,待温度稳定后,充入氢气至4.0MPa,开始反应。反应90min后,开始快速冷却反应釜,当温度降到室温时,放空氢气,结束加氢反应。
采用实施例3的方法进行检测,木糖的转化率为99.8%,木糖醇的选择性为99.0%。
实施例5:阿拉伯糖加氢制备阿拉伯醇
Figure PCTCN2019121218-appb-000004
称取无水阿拉伯糖10.0g,加至40mL超纯水中,配置质量分数为20%的阿拉伯糖溶液,将阿拉伯糖溶液转移至100mL反应釜内,加入Ru-Ni/AC催化剂1.0g,密封反应釜。用氮气将反应釜置换三次,排除反应釜内空气。调整反应釜温度为110℃,搅拌转速为500rpm,待温度稳定后,充入氢气至4.0MPa,开始反应。反应95min后,开始快速冷却反应釜,当温度 降到室温时,放空氢气,结束加氢反应。
采用实施例3的方法进行检测,阿拉伯糖的转化率为100%,阿拉伯醇的选择性为98.9%。
实施例6:葡萄糖加氢制备山梨醇
Figure PCTCN2019121218-appb-000005
称取无水葡萄糖10.0g,加至40mL超纯水中,配置质量分数为20%的葡萄糖溶液,将葡萄糖溶液转移至100mL反应釜内,加入Ru-Ni/AC催化剂1.0g,密封反应釜。用氮气将反应釜置换三次,排除反应釜内空气。调整反应釜温度为120℃,搅拌转速为500rpm,待温度稳定后,充入氢气至4.0MPa,开始反应。反应110min后,开始快速冷却反应釜,当温度降到室温时,放空氢气,结束加氢反应。
采用实施例2的方法进行检测,葡萄糖的转化率为98.9%,山梨醇的选择性为99.5%。
实施例7:甘露糖加氢制备甘露醇
Figure PCTCN2019121218-appb-000006
称取无水甘露糖10.0g,加至40mL超纯水中,配置质量分数为20%的甘露糖溶液,将甘露糖溶液转移至100mL反应釜内,加入Ru-Ni/AC催化剂1.0g,密封反应釜。用氮气将反应釜置换三次,排除反应釜内空气。调整反应釜温度为120℃,搅拌转速为500rpm,待温度稳定后,充入氢气至4.0MPa,开始反应。反应115min后,开始快速冷却反应釜,当温度降到室温时,放空氢气,结束加氢反应。
采用实施例3的方法进行检测,甘露糖的转化率为96.4%,甘露醇的选择性为99.2%。
实施例8:麦芽糖加氢制备麦芽醇
Figure PCTCN2019121218-appb-000007
称取无水麦芽糖10.0g,加至40mL超纯水中,配置质量分数为20%的麦芽糖溶液,将麦芽糖溶液转移至100mL反应釜内,加入Ru-Ni/AC催化剂1.0g,密封反应釜。用氮气将反应釜置换三次,排除反应釜内空气。调整反应釜温度为130℃,搅拌转速为500rpm,待温度稳定后,充入氢气至4.0MPa,开始反应。反应115min后,开始快速冷却反应釜,当温度降到室温时,放空氢气,结束加氢反应。
采用实施例3的方法进行检测,麦芽糖的转化率为97.2%,麦芽醇的选择性为98.5%。
实施例9:催化剂的重复利用
按照实施例4的方法完成加氢反应后,将反应产物导入50mL离心管中,8000rpm离心10min,取20μL上清液进行液相色谱检测,得到木糖的转化率为99.8%,木糖醇的选择性为99.0%;弃去离心管中剩余上清液,超纯水将沉淀离心洗涤三次后,在60℃条件下真空烘干;烘干后的Ru-Ni/AC催化剂用于下一批次的木糖加氢反应,反应条件和实施例4相同;重复操作5次后,木糖的转化率在95%以上,木糖醇的选择性在96%以上;每批次的木糖转化率和木糖醇选择性如表1所示。
表1:不同批次的Ru-Ni/AC催化木糖加氢过程中木糖转化率和木糖醇选择性
Figure PCTCN2019121218-appb-000008
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发 明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种钌镍/活性炭共负载型催化剂,由如下方法制备获得:
    (1)将活性炭在质量浓度10~40%的硝酸溶液中90~100℃恒温回流1~5h,反应完成后过滤,用蒸馏水洗涤至滤液呈中性,在60~70℃真空条件下烘干,得到预处理后的活性炭载体;
    (2)在反应容器中加入超纯水和乙醇,再依次加入预处理后的活性炭载体、三氯化钌和六水合二氯化镍,混合液超声分散15~30min后,升温至60~80℃下快速搅拌1~2h后,加入硼氢化钠溶液持续搅拌8~10h,离心、洗涤,真空干燥,获得所述钌镍/活性炭共负载型催化剂,即Ru-Ni/AC催化剂。
  2. 制备权利要求1所述的钌镍/活性炭共负载型催化剂的方法,所述方法包括:
    (1)将活性炭在质量浓度10~40%的硝酸溶液中90~100℃恒温回流1~5h,反应完成后过滤,用蒸馏水洗涤至滤液呈中性,在60~70℃真空条件下烘干,得到预处理后的活性炭载体;
    (2)在反应容器中加入超纯水和乙醇,再依次加入预处理后的活性炭载体、三氯化钌和六水合二氯化镍,混合液超声分散15~30min后,升温至60~80℃下快速搅拌1~2h后,加入硼氢化钠溶液持续搅拌8~10h,离心、洗涤,真空干燥,获得所述钌镍/活性炭共负载型催化剂,即Ru-Ni/AC催化剂。
  3. 如权利要求2所述的方法,其特征在于步骤(2)中活性炭、三氯化钌、六水合二氯化镍、超纯水、乙醇、硼氢化钠溶液用量之比为1g:0.1~0.2g:0.05~0.1g:50~100mL:50~100mL:1~4mL。
  4. 权利要求1所述的钌镍/活性炭共负载型催化剂在糖催化加氢制备糖醇中的应用。
  5. 如权利要求4所述的应用,其特征在于所述应用为:配制质量浓度5~15%的糖溶液,加入反应釜中,加入质量为糖质量5~10%的Ru-Ni/AC催化剂,密封反应釜,用氮气置换出反应釜内空气,调整反应釜温度为100~130℃、搅拌转速400~600rpm,温度稳定后,充入氢气至釜内气压为 2.0~5.0MPa,加氢反应90~130min后,冷却反应釜,温度降到室温时,放出氢气,结束反应。
  6. 如权利要求5所述的应用,其特征在于所述的糖为下列之一:木糖、阿拉伯糖、葡萄糖、甘露糖、麦芽糖。
  7. 如权利要求6所述的应用,其特征在于:所述糖为木糖时,加氢反应温度为110℃、反应时间90min;所述糖为阿拉伯糖时,加氢反应温度为110℃、反应时间95min;所述糖为葡萄糖时,加氢反应温度为120℃、反应时间110min,所述糖为甘露糖时,加氢反应温度为120℃、反应时间115min;所述糖为麦芽糖时,加氢反应温度为130℃、反应时间115min。
  8. 如权利要求5所述的应用,其特征在于反应结束后,回收催化剂重复利用,所述催化剂回收方法如下:反应产物8000rpm离心10min,弃上清,用超纯水离心洗涤三次后,在60℃条件下真空烘干,烘干后的Ru-Ni/AC催化剂用于下一批次的糖加氢反应。
PCT/CN2019/121218 2018-12-06 2019-11-27 一种钌镍/活性炭共负载型催化剂及其制备与应用 WO2020114287A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811488619.6 2018-12-06
CN201811488619.6A CN109364948A (zh) 2018-12-06 2018-12-06 一种钌镍/活性炭共负载型催化剂及其制备与应用

Publications (1)

Publication Number Publication Date
WO2020114287A1 true WO2020114287A1 (zh) 2020-06-11

Family

ID=65375675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121218 WO2020114287A1 (zh) 2018-12-06 2019-11-27 一种钌镍/活性炭共负载型催化剂及其制备与应用

Country Status (2)

Country Link
CN (1) CN109364948A (zh)
WO (1) WO2020114287A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112044433A (zh) * 2020-09-21 2020-12-08 西安凯立新材料股份有限公司 一种合成山梨醇用催化剂及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109364948A (zh) * 2018-12-06 2019-02-22 浙江工业大学 一种钌镍/活性炭共负载型催化剂及其制备与应用
CN110975882B (zh) * 2019-11-28 2023-03-03 西安凯立新材料股份有限公司 一种苯甲醇合成用催化剂的制备方法和催化加氢体系
CN113293406B (zh) * 2021-06-03 2022-12-23 中国科学技术大学 纳米电催化剂及合成方法、测试电极及制备方法
CN115646508A (zh) * 2022-10-13 2023-01-31 厦门大学 一种负载型Ni-Ru催化剂、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380679A (en) * 1982-04-12 1983-04-19 Uop Inc. Hydrogenation of saccharides
CN1161252A (zh) * 1997-03-27 1997-10-08 西北有色金属研究院 一种钌/碳负载型贵金属加氢催化剂及其制备方法
WO2012050662A2 (en) * 2010-10-14 2012-04-19 Conocophillips Company Combination of zeolite upgrading with hydrogenation upgrading to produce renewable gasoline from biomass
CN102746117A (zh) * 2012-06-27 2012-10-24 中国科学院大连化学物理研究所 一种以菊芋为原料催化转化制备六元醇的方法
US20140094618A1 (en) * 2009-06-23 2014-04-03 Wisconsin Alumni Research Foundation Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities
CN106632370A (zh) * 2015-11-03 2017-05-10 中国科学院大连化学物理研究所 一种葡萄糖制备异山梨醇的方法
CN109364948A (zh) * 2018-12-06 2019-02-22 浙江工业大学 一种钌镍/活性炭共负载型催化剂及其制备与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104107691A (zh) * 2013-04-19 2014-10-22 厦门大学 一种用于葡萄糖加氢制备山梨醇的新型Ru/CNTs催化剂及其制备和使用方法
CN104370692B (zh) * 2013-08-13 2017-02-15 北京化工大学 一种葡萄糖氢解制备多元醇的方法
CN104772141B (zh) * 2014-01-15 2017-08-25 北京化工大学 一种可用于葡萄糖氢解制备低碳二元醇的催化剂的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380679A (en) * 1982-04-12 1983-04-19 Uop Inc. Hydrogenation of saccharides
CN1161252A (zh) * 1997-03-27 1997-10-08 西北有色金属研究院 一种钌/碳负载型贵金属加氢催化剂及其制备方法
US20140094618A1 (en) * 2009-06-23 2014-04-03 Wisconsin Alumni Research Foundation Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities
WO2012050662A2 (en) * 2010-10-14 2012-04-19 Conocophillips Company Combination of zeolite upgrading with hydrogenation upgrading to produce renewable gasoline from biomass
CN102746117A (zh) * 2012-06-27 2012-10-24 中国科学院大连化学物理研究所 一种以菊芋为原料催化转化制备六元醇的方法
CN106632370A (zh) * 2015-11-03 2017-05-10 中国科学院大连化学物理研究所 一种葡萄糖制备异山梨醇的方法
CN109364948A (zh) * 2018-12-06 2019-02-22 浙江工业大学 一种钌镍/活性炭共负载型催化剂及其制备与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112044433A (zh) * 2020-09-21 2020-12-08 西安凯立新材料股份有限公司 一种合成山梨醇用催化剂及其制备方法和应用
CN112044433B (zh) * 2020-09-21 2023-01-24 西安凯立新材料股份有限公司 一种合成山梨醇用催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN109364948A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
WO2020114287A1 (zh) 一种钌镍/活性炭共负载型催化剂及其制备与应用
CN104028293B (zh) 一种低温氮掺杂石墨烯负载纳米Pd加氢催化剂的制备方法
CN109550501B (zh) 一种硝基苯液相加氢制苯胺催化剂的制备方法及其应用
CN102274724B (zh) 一种高活性的芳香族硝基化合物加氢反应中的催化剂及其制备方法
CN102746117B (zh) 一种以菊芋为原料催化转化制备六元醇的方法
CN110694618B (zh) 一种钌基催化剂在深度低共熔溶剂条件下对木质素进行加氢脱氧的方法
WO2023060920A1 (zh) 一种钯单原子催化剂及其制备方法和在铃木偶联反应中的应用
CN106622224B (zh) 纳米金基催化剂在甲酸或甲酸盐合成中的应用
CN101767016B (zh) 用于对苯二甲酸精制的芳香醛选择性加氢催化剂
CN110339851A (zh) 用于2,3,5-三甲基苯醌氢化制备2,3,5-三甲基氢醌的催化剂及其制备方法
WO2021129042A1 (zh) 一种碳酸钙改性的炭材料负载纳米钯合金催化剂及其制备方法和应用
WO2024078051A1 (zh) 生物质骨架炭-金属复合微纳结构催化材料及制备方法和应用
CN109692687A (zh) 一种铂镍/活性炭共负载型催化剂及其制备与应用
CN103769088A (zh) 一种可控尺寸的纳米Pd/C催化剂的制备方法
CN110898853A (zh) 一种苯酚加氢制备环己酮的催化剂及其制备方法
CN107029764B (zh) 一种负载型磷改性钯催化剂的制备方法及应用
CN109232188A (zh) 一种氢化双酚a的制备方法
CN109174091A (zh) 一种Ru-Rh/C双金属催化剂及其制备方法和应用
CN110665546A (zh) 一种贵金属/氨基MOFs选择性加氢催化剂、制备方法及其用途
CN114433163A (zh) 一种原位改性和孔隙可调控的生物炭负载钌催化剂及其制备方法和在木质素中的应用
CN113813957B (zh) 一种双金属复合催化剂及其制备方法和应用、工作电极、电池体系
CN111389398B (zh) 分级中空二氧化硅限域氧化亚铜可见光催化剂的制备方法
CN105195147A (zh) 一种碳纳米管内部负载铜纳米粒子脱氢催化剂及其制备方法
WO2021046998A1 (zh) 钯炭催化剂及其制备方法、应用
CN114939438B (zh) 一种烯属不饱和羰基化合物选择性加氢的方法及其催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894095

Country of ref document: EP

Kind code of ref document: A1