WO2020114143A1 - 感光组件、摄像模组、摄像模组的制造方法和电子设备 - Google Patents

感光组件、摄像模组、摄像模组的制造方法和电子设备 Download PDF

Info

Publication number
WO2020114143A1
WO2020114143A1 PCT/CN2019/113348 CN2019113348W WO2020114143A1 WO 2020114143 A1 WO2020114143 A1 WO 2020114143A1 CN 2019113348 W CN2019113348 W CN 2019113348W WO 2020114143 A1 WO2020114143 A1 WO 2020114143A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
photosensitive
circuit board
photosensitive chip
lens holder
Prior art date
Application number
PCT/CN2019/113348
Other languages
English (en)
French (fr)
Inventor
赵波杰
梅哲文
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201822026719.9U external-priority patent/CN209982562U/zh
Priority claimed from CN201811493456.0A external-priority patent/CN111277734B/zh
Priority claimed from CN201811473751.XA external-priority patent/CN111277731A/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to EP19892265.0A priority Critical patent/EP3890017A4/en
Priority to US17/299,029 priority patent/US11985408B2/en
Publication of WO2020114143A1 publication Critical patent/WO2020114143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the invention relates to the field of optical imaging, in particular to a photosensitive component, a camera module, a method of manufacturing the camera module, and electronic equipment.
  • the imaging capability of the camera module depends on the number and size of electronic components in the circuit and the parameters of the photosensitive chip, such as the size of the photosensitive surface of the photosensitive chip.
  • the number and size of electronic components and the parameters of the photosensitive chip are the basis for improving the imaging capability of the camera module.
  • the existing technology for packaging camera modules has greatly increased the size of camera modules with a greater number and size of electronic components and better parameters of photosensitive chips, resulting in high-performance cameras
  • the development trend of the size of the module is contrary to the development trend of the smart device.
  • FIG. 1 shows a typical camera module of the prior art, which includes a circuit board 1P, a series of electronic components 2P, a photosensitive chip 3P, a lens holder 4P, a filter 5P, and a lens bearing part 6P and a lens 7P.
  • a series of the electronic components 2P are mounted on the circuit board 1P at intervals;
  • the photosensitive chip 3P is mounted on the circuit board 1P, and the photosensitive chip 3P passes through at least one group
  • the gold wire 8P is conductively connected to the circuit board 1P, wherein a series of the electronic components 2P surrounds the photosensitive chip 3P;
  • the mirror base 4P is surrounded by the photosensitive chip 3P is mounted on the circuit board 1P in a four-way manner, and a filter carrying arm 41P of the lens holder 4P protrudes out of the inner wall of the lens holder 4P to the photosensitive path direction of the photosensitive chip 3P Extension;
  • the lens 7P is disposed on the lens carrying portion 6P, and the lens carrying portion 6P is mounted on the lens holder 4P to maintain the photosensitive path of the lens 7P on
  • the filter 5P needs to be carried by the filter carrying arm 41P of the lens holder 4P, therefore, the lens holder 4P must be designed with the filter
  • the structure of the film carrying arm 41P causes the lens holder 4P to occupy more height space, making it difficult to reduce the height of the camera module.
  • a space needs to be reserved between the filter carrying arm 41P and the electronic component 2P, This also makes it difficult to reduce the height of the camera module.
  • An object of the present invention is to provide a photosensitive element, camera module, camera module manufacturing method and electronic equipment, wherein the height dimension of the camera module can be reduced to make the camera module particularly suitable for application For the pursuit of thin and light electronic equipment.
  • An object of the present invention is to provide a photosensitive assembly, a camera module, a method for manufacturing the camera module, and an electronic device, wherein the filter of the camera module does not need to be held on the photosensitive chip in a manner supported by the lens holder
  • the photosensitive path saves the height space occupied by the lens holder to reduce the height dimension of the camera module.
  • An object of the present invention is to provide a photosensitive component, a camera module, a method of manufacturing the camera module, and an electronic device, wherein the back focus size of the camera module can be reduced to effectively reduce the camera module Height dimension.
  • the back focus size of the camera module can be reduced to within 0.6 mm, thereby effectively reducing the height dimension of the camera module.
  • An object of the present invention is to provide a photosensitive component, a camera module, a method for manufacturing the camera module, and an electronic device, wherein the mounting surface of the lens bearing portion of the camera module and the lower surface of the filter
  • the distance can be reduced to effectively reduce the height dimension of the camera module.
  • the distance between the mounting surface of the lens carrier and the lower surface of the filter can be reduced to within 0.2 mm , Thereby effectively reducing the height dimension of the camera module.
  • An object of the present invention is to provide a photosensitive component, a camera module, a method for manufacturing the camera module, and an electronic device, wherein the camera module provides a coupling portion, wherein the coupling portion is used to couple the filter and The circuit board assembly of the camera module maintains the photosensitive path of the filter on the photosensitive chip through the coupling part. In this way, the filter does not need to be supported by the lens holder .
  • An object of the present invention is to provide a photosensitive component, a camera module, a method of manufacturing the camera module, and an electronic device, wherein the plane of the top joint surface of the joint is higher than the plane of the photosensitive area of the photosensitive chip, In addition, the height difference between the two is controlled within a suitable range. In this way, stray light generation can be reduced and staining imaging can be reduced, thereby improving the imaging quality of the camera module.
  • An object of the present invention is to provide a photosensitive component, a camera module, a method for manufacturing a camera module, and an electronic device, wherein the width of the joint is controlled within a suitable range. In this way, packaging tolerances can be compensated for, Ensure the reliability of the camera module.
  • An object of the present invention is to provide a photosensitive component, a camera module, a method for manufacturing a camera module, and an electronic device, wherein the top bonding surface of the bonding portion corresponds to the non-photosensitive area of the photosensitive chip In this manner, the flatness of the top bonding surface of the bonding portion can be ensured, thereby ensuring the flatness between the light filter and the photosensitive region of the photosensitive chip.
  • An object of the present invention is to provide a photosensitive component, a camera module, a method for manufacturing a camera module, and an electronic device, wherein the top coupling surface of the coupling portion corresponds to an electronic component arranged at a constant height. In this manner, the flatness of the top bonding surface of the bonding portion can be ensured, thereby ensuring the flatness between the light filter and the photosensitive region of the photosensitive chip.
  • An object of the present invention is to provide a photosensitive component, a camera module, a camera module manufacturing method, and an electronic device, wherein the lower surface of the lens holder is bonded to the circuit board, and the inner surface of the lens holder is bonded For the coupling part, in this way, the reliability of the camera module can be improved.
  • An object of the present invention is to provide a photosensitive component, a camera module, a method for manufacturing a camera module, and an electronic device, wherein the lens holder has at least one notch to be attached to the circuit board assembly at the lens holder In the process of being heated, the glue material forming the joint portion can be discharged from the notch of the lens holder, thereby avoiding excessive overflow of glue inward to contaminate the photosensitive area of the photosensitive chip.
  • An object of the present invention is to provide a photosensitive component, a camera module, a camera module manufacturing method, and an electronic device, in which the lens base is attached to the circuit board and is heated during The air between the inner surfaces of the lens holder can be discharged from the notch to guide the adhesive material to expand toward the inner surface of the lens holder, thereby avoiding excessive overflow of glue inward to contaminate the photosensitive chip Photosensitive area.
  • An object of the present invention is to provide a photosensitive component, a camera module, a method of manufacturing the camera module, and an electronic device, wherein the camera module is applied to an electronic device, and is beneficial to increase the screen ratio of the electronic device .
  • An object of the present invention is to provide a photosensitive component, a camera module, a method for manufacturing the camera module, and an electronic device, wherein at least one side of the camera module forms a retracted portion.
  • the camera module The group can be closer to the edge of an electronic device body, thereby helping to increase the screen ratio of the electronic device.
  • the present invention provides a camera module, which includes:
  • a circuit board assembly wherein the circuit board assembly includes a circuit board and a photosensitive chip conductively connected to the circuit board;
  • a coupling portion wherein the coupling portion has a lower coupling side, a top coupling surface, and a light path, wherein the lower coupling side of the coupling portion is coupled to the circuit board assembly, and the coupling portion surrounds Around the photosensitive area of the photosensitive chip, so that the photosensitive area of the photosensitive chip is exposed to the light path of the joint, wherein the periphery of the filter is bonded to the joint of the joint
  • the top bonding surface is used to maintain the photosensitive path of the filter on the photosensitive chip through the coupling portion, wherein the optical lens is held on the photosensitive path of the photosensitive chip.
  • the lower bonding side of the bonding portion is bonded to the non-photosensitive area of the photosensitive chip, and the top bonding surface of the bonding portion corresponds to the non-photosensitive area of the photosensitive chip Photosensitive area.
  • the lower bonding side of the bonding portion is bonded to the non-photosensitive area of the circuit board and the photosensitive chip, and the top bonding surface of the bonding portion corresponds to the The non-photosensitive area of the photosensitive chip.
  • the circuit board assembly further includes a series of electronic components, wherein at least three of the electronic components are arranged on the same height and are conductively connected to the circuit board, wherein the The coupling part embeds the electronic component, and the top coupling surface of the coupling part corresponds to the electronic component.
  • the plane on which the top bonding surface of the coupling portion is located is lower than the plane on which the top surface of the highest electronic component is located.
  • the distance between the plane on which the top bonding surface of the coupling portion is located and the plane on which the photosensitive region of the photosensitive chip is located is greater than or equal to 0.15 mm.
  • the joint portion has four sides, and the adjacent sides are connected end to end and perpendicular to each other to form the light path between the four sides, wherein the The width dimension of at least one side of the joint is greater than or equal to 0.15 mm.
  • the camera module further includes a lens holder, wherein the lens holder has a lower surface, and the lower surface of the lens holder is attached to the circuit board.
  • the camera module further includes a lens holder, wherein the lens holder has a lower surface, an upper surface corresponding to the lower surface, and extending from the upper surface to the lower surface An inner surface of the lens holder, wherein the lower surface of the lens holder is attached to the circuit board, and the inner surface of the lens holder is bonded to the coupling portion.
  • the camera module further includes a lens holder, wherein the lens holder has a lower surface, an upper surface corresponding to the lower surface, and extending from the upper surface to the lower surface An inner surface of the lens holder, wherein the lower surface of the lens holder is bonded to the circuit board, and the inner surface of the lens holder is bonded to the coupling portion.
  • the camera module further includes a lens holder, wherein the lens holder has a lower surface, an upper surface corresponding to the lower surface, and extending from the upper surface to the lower surface An inner surface of the lens holder, wherein the lower surface of the lens holder is bonded to the non-photosensitive area of the circuit board and the photosensitive chip, and the inner surface of the lens holder is bonded to the bonding portion.
  • the camera module has four sides, at least one of the sides has a side surface, a bottom surface, and a connecting surface connected to the side surface and the bottom surface, wherein the The distance between the connection between the connection surface and the side surface and the central axis of the camera module is greater than the distance between the connection between the connection surface and the bottom surface and the central axis of the camera module.
  • the connecting surface is an inclined plane; or the connecting surface is a convex curved surface; or the connecting surface is a stepped surface.
  • connection surface is formed on the lens holder and the circuit board.
  • the lens holder has at least one notch extending from the lower surface of the lens holder toward the upper surface, wherein a part of the coupling portion is accommodated in the lens holder The gap.
  • the camera module further includes a lens bearing portion, the lens bearing portion has a mounting surface, wherein the lens bearing portion is subjected to the mounting surface of the lens bearing portion
  • the lens mount is attached to the lens mount in such a manner that the lens mount is attached to the upper surface of the lens mount.
  • the value range of the distance parameter D between the mounting surface of the lens bearing portion and the lower surface of the filter is: 0.1 mm ⁇ D ⁇ 0.2 mm.
  • the value range of the back focus distance parameter L of the camera module is: 0.4 mm ⁇ L ⁇ 0.6 mm, where the back focus distance of the camera module refers to the optical lens The distance between the lower surface of one lens close to the photosensitive chip and the photosensitive area of the photosensitive chip.
  • the present invention further provides an electronic device including an electronic device body and at least one camera module disposed on the electronic device body, wherein the camera module includes:
  • a circuit board assembly wherein the circuit board assembly includes a circuit board and a photosensitive chip conductively connected to the circuit board;
  • a coupling portion wherein the coupling portion has a lower coupling side, a top coupling surface, and a light path, wherein the lower coupling side of the coupling portion is coupled to the circuit board assembly, and the coupling portion surrounds Around the photosensitive area of the photosensitive chip, so that the photosensitive area of the photosensitive chip is exposed to the light path of the joint, wherein the periphery of the filter is bonded to the joint of the joint
  • the top bonding surface is used to maintain the photosensitive path of the filter on the photosensitive chip through the coupling portion, wherein the optical lens is held on the photosensitive path of the photosensitive chip.
  • the present invention further provides a photosensitive assembly, which includes:
  • a circuit board assembly wherein the circuit board assembly includes a circuit board and a photosensitive chip conductively connected to the circuit board;
  • a coupling portion wherein the coupling portion has a lower coupling side, a top coupling surface, and a light path, wherein the lower coupling side of the coupling portion is coupled to the circuit board assembly, and the coupling portion surrounds Around the photosensitive area of the photosensitive chip, so that the photosensitive area of the photosensitive chip is exposed to the light path of the joint, wherein the periphery of the filter is bonded to the joint of the joint
  • the top bonding surface is used to maintain the photosensitive path of the filter on the photosensitive chip by the bonding portion.
  • the lower bonding side of the bonding portion is bonded to the non-photosensitive area of the photosensitive chip, and the top bonding surface of the bonding portion corresponds to the non-photosensitive area of the photosensitive chip Photosensitive area.
  • the lower bonding side of the bonding portion is bonded to the non-photosensitive area of the circuit board and the photosensitive chip, and the top bonding surface of the bonding portion corresponds to the The non-photosensitive area of the photosensitive chip.
  • the circuit board assembly further includes a series of electronic components, wherein at least three of the electronic components are arranged on the same height and are conductively connected to the circuit board, wherein the The coupling part embeds the electronic component, and the top coupling surface of the coupling part corresponds to the electronic component.
  • the plane on which the top bonding surface of the coupling portion is located is lower than the plane on which the top surface of the highest electronic component is located.
  • the distance between the plane on which the top bonding surface of the coupling portion is located and the plane on which the photosensitive region of the photosensitive chip is located is greater than or equal to 0.15 mm.
  • the joint portion has four sides, and the adjacent sides are connected end to end and perpendicular to each other to form the light path between the four sides, wherein the The width dimension of at least one side of the joint is greater than or equal to 0.15 mm.
  • the invention provides a camera module, wherein the manufacturing method includes the following steps:
  • the method further includes the steps of:
  • the glue material is cured to form the bonding portion, wherein the glue material is bonded to the side of the circuit board assembly to form the lower bonding side of the bonding portion, and the glue material is bonded to the filter
  • the side portion forms the top coupling surface of the coupling portion.
  • the filter in the step (a.2), is pressed toward the photosensitive chip in order to attach the filter to the top of the glue material.
  • the step (a) before the step (a.3), further includes the step of: attaching a mirror mount to a circuit board of the circuit board assembly, so that In (a.3), the lower surface of the lens holder is coupled to the circuit board and the inner surface of the lens holder to the coupling portion.
  • the glue material is allowed to overflow from a gap of the lens holder.
  • the guiding rubber material is expanded toward the inner surface of the lens holder.
  • the air held between the glue material and the inner surface of the lens holder is allowed to escape from a gap in the lens holder, thereby guiding the glue material toward the mirror
  • the inner surface of the seat expands in the direction.
  • an adhesive material is applied to the non-photosensitive area of the photosensitive chip, so that in the step (a.3), the The top bonding surface corresponds to the non-photosensitive area of the photosensitive chip.
  • step (a.1) at least three electrons of a circuit board allowed to be disposed on the circuit board assembly with equal height and conductively connected Components, such that in the step (a.3), the top bonding surface of the bonding portion corresponds to the electronic component.
  • the step (a.1) at least three electronic components that are allowed to be provided with the same height and are conductively connected to the circuit board are In the step (a.3), the top coupling surface of the coupling portion corresponds to the electronic component.
  • an adhesive material is applied to the circuit board assembly along the extending direction of a series of electronic components of the circuit board, and in the step Before (a.2) and the step (a.3), the gap formed between the filter and the circuit board assembly is sealed.
  • the method further includes the steps of:
  • the distance between the plane on which the top bonding surface of the coupling portion is located and the plane on which the photosensitive region of the photosensitive chip is located is greater than or equal to 0.15 mm.
  • the joint portion has four sides, and the adjacent sides are connected end to end and perpendicular to each other to form the light path between the four sides, wherein the The width dimension of at least one side of the joint is greater than or equal to 0.15 mm.
  • the annular boss is attached to the non-photosensitive area of the photosensitive chip by glue.
  • the method further includes the steps of:
  • the optical filter is attached to the annular boss by glue.
  • the manufacturing method further includes the step of: attaching a mirror mount to a circuit board of the circuit board assembly, so that in the step (c) , The lens holder holds the photosensitive path of the optical lens on the photosensitive chip.
  • the manufacturing method further includes the step of forming a circuit board with a mirror seat on the circuit board assembly, so that in the step (c), The optical path of the optical lens on the photosensitive chip is maintained by the lens holder.
  • the manufacturing method further includes the step of: removing a part of at least one side of the camera module, so that the side forms a side, a A bottom surface and a connecting surface connected to the side surface and the bottom surface, wherein a distance between a connection point of the connecting surface and the side surface and a central axis of the camera module is greater than that of the connecting surface and the bottom surface The distance between the connection point of the camera and the central axis of the camera module.
  • the side portion of the camera module is cut so that the side portion forms the side surface, the bottom surface, and the side surface and the bottom surface The connection surface.
  • the side portion of the camera module is polished so that the side portion forms the side surface, the bottom surface, and the side surface and the bottom surface The connection surface.
  • FIG. 1 is a schematic diagram of a conventional camera module.
  • FIG. 2 is a schematic cross-sectional view of one of the manufacturing processes of a camera module according to the first preferred embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the second manufacturing process of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 4 is a three-dimensional schematic diagram of the third manufacturing process of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of the fourth manufacturing process of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of the fifth manufacturing process of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the sixth manufacturing process of the camera module according to the above preferred embodiment of the present invention, which shows a cross-sectional state of the camera module after being cut along the intermediate position.
  • FIG. 8 is a schematic perspective view of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 9 is a schematic perspective view of an application state of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of a modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • 11A is a schematic cross-sectional view of an application state of the camera module according to the above preferred embodiment of the present invention.
  • 11B is a cross-sectional view of an application state of a conventional camera module.
  • 12A to 12C are schematic diagrams of different states of the relationship between the camera module and the housing of an electronic device body according to the above preferred embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of another modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional view of one of the manufacturing processes of a camera module according to the second preferred embodiment of the present invention.
  • 15 is a schematic cross-sectional view of the second manufacturing process of the camera module according to the above preferred embodiment of the present invention.
  • 16 is a schematic cross-sectional view of the third manufacturing process of the camera module according to the above preferred embodiment of the present invention.
  • 17 is a schematic cross-sectional view of the fourth manufacturing process of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional view of the fifth manufacturing process of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 19 is a schematic cross-sectional view of the sixth manufacturing process of the camera module according to the above preferred embodiment of the present invention, which shows a cross-sectional state of the camera module after being cut along the intermediate position.
  • FIG. 20 is a perspective schematic view of the camera module according to the above preferred embodiment of the present invention.
  • 21 is a schematic cross-sectional view of a first modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 22 is a schematic cross-sectional view of a second modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 23 is a schematic cross-sectional view of a third modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 24 is a schematic cross-sectional view of a fourth modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • 25 is a schematic cross-sectional view of a fourth modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • 26 is a schematic cross-sectional view of a third modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 27 is a schematic cross-sectional view of a fourth modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • FIG. 28 is a schematic cross-sectional view of a fourth modified embodiment of the camera module according to the above preferred embodiment of the present invention.
  • the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element can be one, and in other embodiments, the The number can be more than one, and the term “one” cannot be understood as a limitation on the number.
  • a camera module 1000 according to the first preferred embodiment of the present invention is disclosed and explained in the following description, in which the camera module 1000 It includes a circuit board assembly 10, a coupling portion 20, a filter 30 and an optical lens 40.
  • the circuit board assembly 10 includes a circuit board 11 and a series of electronic components 12 that are conductively connected to the circuit board 11, and between the adjacent electronic components 12 With clearance.
  • the manner in which the electronic component 12 is conductively connected to the circuit board 11 is not limited.
  • the electronic element The device 12 is conductively connected to the circuit board 11 so as to be mounted on the surface of the circuit board 11.
  • the electronic component 12 is conductively connected to the circuit board 11 so that at least a part of it is embedded in the circuit board 11.
  • the circuit board assembly 10 further includes a photosensitive chip 13 having a photosensitive area 131 and a non-photosensitive area 132 surrounding the photosensitive area 131, wherein the photosensitive chip 13 is conductively connected to the circuit board 11.
  • the manner in which the photosensitive chip 13 is conductively connected to the circuit board 11 is not limited.
  • the photosensitive chip 13 is mounted on the surface of the circuit board 11, and the two ends of at least one set of guide wires 14 formed by a wire bonding process are electrically connected to the photosensitive chip 13 and the circuit board 11, respectively, so that The photosensitive chip 13 is conductively connected to the circuit board 11.
  • the photosensitive chip 13 is mounted on the circuit board 11 by a flip-chip (Flip-Chip) process and is conductively connected to the circuit board 11.
  • a series of the electronic components 12 form two rows of the electronic components 12, and one row of the electronic components 12 is located in the On the left side of the photosensitive chip 13, another row of the electronic components 12 is located on the right side of the photosensitive chip 13.
  • a series of the electronic components 12 form three rows of the electronic components 12, wherein three rows of the electronic components 12 are respectively located on three sides of the photosensitive chip 13.
  • a series of the electronic components 12 form four rows of the electronic components 12, wherein four rows of the electronic components 12 are located on four sides of the photosensitive chip 13.
  • more than two rows of the electronic components 12 may be provided on the same side of the photosensitive chip 13. Therefore, the relative arrangement of the electronic components 12 and the photosensitive chip 13 shown in FIGS. 2 to 7 is only for reference, and should not be considered as a content and description of the camera module 1000 of the present invention. Limitation of scope.
  • the coupling portion 20 has a ring shape, and has a lower coupling side 21, a top coupling surface 22 corresponding to the lower coupling side 21, and a light path extending from the top coupling surface 22 to the lower coupling side 21 twenty three.
  • the lower coupling side 21 of the coupling portion 20 is coupled to the circuit board assembly 10, and the coupling portion 20 surrounds the photosensitive region 131 of the photosensitive chip 13 and the position of the coupling portion 20
  • the plane where the top bonding surface 22 is located is higher than the plane where the photosensitive region 131 of the photosensitive chip 13 is located, and the photosensitive region 131 of the photosensitive chip 13 corresponds to the light path 23 of the coupling portion 20.
  • the joint portion 20 is in the shape of a square ring, that is, the joint portion 20 has four sides 24, Two adjacent side edges 24 are connected end to end and perpendicular to each other, so that the light path 23 is formed between the joint portions 20 formed by the four side edges 24.
  • Each side 24 of the joint 20 is located outside the photosensitive region 131 of the photosensitive chip 13.
  • the lower coupling side 21 of the coupling portion 20 is coupled to the non-photosensitive area 132 of the photosensitive chip 13, and the coupling portion 20 extends upward from the non-photosensitive area 132 of the photosensitive chip 13 To a suitable height, and the top bonding surface 22 of the bonding portion 20 is formed, and the top bonding surface 22 of the bonding portion 20 corresponds to the non-photosensitive area 132 of the photosensitive chip 13, through such In this manner, the flatness of the top bonding surface 22 of the bonding portion 20 can be ensured by the non-photosensitive area 132 of the photosensitive chip 13, thereby ensuring that the filter 30 and the photosensitive chip 13 The flatness between the photosensitive regions 131.
  • the distance between the plane on which the top bonding surface 22 of the bonding part 20 is located and the plane on which the photosensitive region 131 of the photosensitive chip 13 is located (parameter H) is greater than or equal to 0.15 mm, in this way It is beneficial to reduce the generation of stray light and reduce the imaging of stains, thereby improving the imaging quality of the camera module 1000.
  • the width dimension (parameter W) of the side 24 of the coupling portion 20 is greater than or equal to 0.15 mm. In this way, packaging errors can be compensated, so that the filter is reliably supported by the coupling portion 20
  • the sheet 30 is placed on the photosensitive path of the photosensitive chip 13.
  • the circuit board assembly 10, the coupling portion 20 and the filter 30 form a photosensitive assembly, that is, the camera module 1000 includes the photosensitive assembly and is held in the photosensitive assembly
  • the camera module 1000 further includes a lens holder 50 and a lens bearing portion 60 attached to the lens holder 50.
  • the lens holder 50 has a lower surface 51, an upper surface 52 corresponding to the lower surface 51, and an inner surface 53 extending from the upper surface 52 to the lower surface 51.
  • the lower surface 51 of the lens holder 50 is integrally coupled to the circuit board 11 and the non-photosensitive region 132 of the photosensitive chip 13, and the inner surface 53 of the lens holder 50 is integrally coupled to the Narration unit 20.
  • the optical lens 40 is disposed on the lens carrying portion 60, and the lens carrying portion 60 has a mounting surface 61, wherein the lens carrying portion 60 is supported by the mounting surface 61 of the lens carrying portion 60
  • the lens mount 50 is attached to the lens mount 50 in a manner of being attached to the upper surface 52 of the lens mount 50 so as to hold the optical lens 40 to the lens by the lens mount 50 and the lens bearing portion 60
  • the type of the lens bearing part 60 is selected according to the type of the camera module 1000.
  • the lens carrier 60 is selected as a lens barrel, and accordingly, when the camera module 1000 is a zoom camera module, the lens carrier The part 60 is selected as a motor, such as but not limited to a voice coil motor.
  • the distance parameter between the mounting surface 61 of the lens bearing portion 60 and the lower surface of the filter 30 is D, where the value range of the parameter D is 0.1 mm -0.2mm (including 0.1mm and 0.2mm), to help reduce the height dimension of the camera module 1000.
  • the filter 30 is held by the coupling portion 20 in the photosensitive path of the photosensitive chip 13, and the lens bearing portion 60 is attached It is mounted on the lens holder 50 so as to be relative to the prior art camera module.
  • the mounting surface 61 and The distance between the lower surfaces of the filter 30 may be closer, which is particularly important for reducing the height dimension of the camera module 1000.
  • the filter 30 is held by the coupling portion 20 in the photosensitive path of the photosensitive chip 13, the The lens bearing part 60 is attached to the lens holder 50 to maintain the photosensitive path of the optical lens 40 to the photosensitive chip 13 by the lens bearing part 60 and the lens holder 50.
  • the back focus size of the camera module 1000 can be The reduction is beneficial to reduce the height dimension of the camera module 1000.
  • the back focus distance of the camera module 1000 refers to the distance between the surface of the optical lens 40 closest to the lens of the photosensitive chip 13 and the photosensitive region 131 of the photosensitive chip 13.
  • the back focus distance parameter of the camera module 1000 be L, where the value range of the parameter L is 0.4mm-0.6mm (including 0.4mm and 0.6mm), which is 0.8mm of the prior art camera module
  • the back focus distance of the camera module 1000 of the present invention can be reduced in a wide range, which is particularly advantageous for reducing the height dimension of the camera module 1000.
  • the lens bearing portion 60 and the lens holder 50 may be an integrated structure.
  • the camera module 1000 may not be configured with the lens bearing part 60. At this time, the camera module 1000 directly attaches the optical lens 40 to the camera The manner of the lens holder 50 maintains the photosensitive path of the optical lens 40 on the photosensitive chip 13.
  • the lens holder 50 is not prefabricated, wherein the lens holder 50 can be integrally formed by a molding process and combined with the circuit board assembly 10 and the
  • the coupling portion 20 allows the lower surface 51 of the lens holder 50 to be integrally coupled to the circuit board 11 and the non-photosensitive area 132 of the photosensitive chip 13 and the lens holder 50 to allow the The inner surface 53 is integrally coupled to the coupling portion 20.
  • the coupling reliability of the lens holder 50 with the circuit board 11, the photosensitive chip 13 and the coupling portion 20 is higher, resulting in It is beneficial to ensure the stability and reliability of the camera module 1000.
  • the lens holder 50 may be further integrated with the peripheral edges of the filter 30 in one piece.
  • the camera module 1000 adopts the manner that the lens holder 50 is integrated with the circuit board 11 and the non-photosensitive area 132 of the photosensitive chip 13 so that the packaging process of the camera module 1000 is no longer necessary
  • the lens holder 50 needs to be prefabricated, thereby helping to reduce the management cost and risk of the components of the camera module 1000.
  • the camera module 1000 adopts the manner that the lens holder 50 is integrally combined with the circuit board 11 and the non-photosensitive area 132 of the photosensitive chip 13, which not only helps to ensure that the circuit board 11 and the The reliability of the lamination relationship of the photosensitive chip 13, and the flatness of the photosensitive chip 13 is no longer limited by the flatness of the circuit board 11, wherein the flatness of the photosensitive chip 13 is determined by the mirror base 50 Guarantee, thereby helping to ensure the flatness of the photosensitive chip 13.
  • the mirror base 50 is integrated with the circuit board 11 and the non-photosensitive area 132 of the photosensitive chip 13 by a molding die, which can make the top surface of the mirror base 50 more flat And it is not affected by the inclination or deformation of the circuit board 11, so as to reduce the cumulative tolerance during assembly in the future. In this way, it is beneficial to ensure the coaxiality of the optical lens 40 and the photosensitive chip 13.
  • the camera module 1000 adopts a manner that the lens holder 50 is integrated with the circuit board 11 and the non-photosensitive area 132 of the photosensitive chip 13, allowing the lens holder 50 to ensure the photosensitive chip 13
  • the circuit board 11 can use a thinner size, which is beneficial to reduce the height dimension of the camera module 1000.
  • the mirror base 50 is integrally combined with the circuit board 11 through a molding process, so that the mirror base 50 can reinforce the circuit board 11, thereby ensuring the flatness of the circuit board 11
  • the circuit board 11 may be thinner, which is beneficial to reduce the overall height dimension of the camera module 1000.
  • the camera module 1000 adopts a manner that the lens holder 50 is integrally combined with the circuit board 11 and the non-photosensitive area 132 of the photosensitive chip 13 to avoid using glue to attach the lens holder 50 to
  • the circuit board 11 is beneficial to reduce the height dimension of the camera module 1000.
  • the camera module 1000 uses the coupling portion 20 to maintain the photosensitive path of the filter 30 on the photosensitive chip 13.
  • the lower surface of the filter 30 (the surface of the filter 30 facing the photosensitive chip 13) can be lower than the highest electronic component The height of the top surface of 12, so that, in conjunction with the improvement in the optical design of the camera module 1000, after reducing the back focus of the camera module 1000, the filter 30 of the camera module 1000 can Being closer to the photosensitive chip 13 allows the optical lens 40 to have the possibility of being adjusted toward the photosensitive chip 13, thereby helping to reduce the height dimension of the camera module 1000.
  • a series of electronic components 12 are mounted on the circuit board 11.
  • the type of the electronic component 12 is not limited in the camera module 1000 of the present invention.
  • the electronic component 12 may be, but not limited to, a resistor, a capacitor, a controller, or the like.
  • the photosensitive chip 13 is mounted on the circuit board 11, and at least one set of the guides electrically connected to the photosensitive chip 13 and the circuit board 11 at both ends are formed by a wire bonding process Wires 14 to form the circuit board assembly 10.
  • stage shown in FIG. 3 can precede the stage shown in FIG. 2, that is, first mount the photosensitive chip 13 on the circuit board 11, and secondly mount a series of the electronic elements
  • the device 12 is mounted on the circuit board 11 to form the circuit board assembly 10.
  • annular boss 200 is formed around one side of the filter 30 to form a filter 300 with an annular boss.
  • the ring-shaped boss can be formed around one side of the filter 30 by a screen printing process 200 to form the filter 300 with an annular boss.
  • a ring-shaped boss 200 can be formed around one side of the filter 30 through a photolithography process to form the filter 300 with the ring-shaped boss.
  • the material forming the annular boss 200 may be, but not limited to, colloid.
  • sequence of forming the circuit board assembly 10 and forming the filter 300 with a ring-shaped boss is not limited.
  • the filter 300 with a ring-shaped boss is mounted on the circuit board assembly 10, wherein the ring-shaped boss 200 is mounted on the non-photosensitive of the photosensitive chip 13
  • the area 132 for example, in one example, if the material of the annular boss 200 is a colloidal material, the annular boss 200 may be directly attached to the non-photosensitive area 132 of the photosensitive chip 13, In another example, if the material of the annular boss 200 is non-colloidal, the annular boss 200 needs to be attached to the non-photosensitive area 132 of the photosensitive chip 13 by glue or the like; secondly , Curing the ring-shaped boss 200 so that the ring-shaped boss 200 forms the coupling portion 20 and the photosensitive path of the filter 30 on the photosensitive chip 13 is maintained by the coupling portion 20
  • the surface of the ring-shaped boss 200 bonded to the photosensitive chip 13 forms the lower bonding side 21 of the bonding portion 20, and the surface of the ring-shaped boss 200 bonded to the filter 30 forms the
  • the method of curing the annular boss 200 is not limited, and it is selected according to the material forming the annular boss 200, for example, the annular boss can be cured by heating or ultraviolet light irradiation
  • the stage 200 forms the coupling portion 20.
  • the mirror base 50 is formed on the circuit board assembly 10 and the joint portion 20 through a molding process, so that the lower surface 51 of the mirror base 50 is integrally joined to the circuit board
  • the circuit board 11 and the photosensitive chip 13 of the assembly 10 and the inner surface 53 of the lens holder 50 are integrally coupled to the coupling portion 20.
  • the mirror base 50 embeds the electronic components 12 and the guide wires 14 protruding from the circuit board 11.
  • the lens holder 50 prevents the electronic components 12 from being exposed, thereby preventing the electronic components 12 Contaminants such as debris falling off the surface contaminate other electronic components 12 or contaminate the photosensitive chip 13;
  • the upper surface 52 of the lens holder 50 has a higher flatness, so that After the lens bearing portion 60 holds the optical lens 40 on the photosensitive path of the photosensitive chip 13 in a manner of being attached to the upper surface 52 of the lens holder 50, the central axis of the optical lens 40 and The central axis of the photosensitive region 13 of the photosensitive chip 13 can coincide to ensure the imaging quality of the camera module 1000; fourth, the lens holder 50 can be filled between adjacent electronic components 12 In order to isolate the adjacent electronic components 12 and avoid the adverse phenomenon of the adjacent electronic components 12 interfering with each other, in this way, the spacing between the adjacent electronic components 12 can be smaller, to
  • the optical lens 40 is mounted on the lens bearing portion 60 and the lens bearing portion 60 is mounted on the upper surface 52 of the lens holder 50 to hold the optical lens 40 Based on the photosensitive path of the photosensitive chip 13, the camera module 1000 is manufactured.
  • the ring-shaped boss 200 is formed in the non-photosensitive area 132 of the photosensitive chip 13 by a screen printing process or a photolithography process; Secondly, the filter 30 is attached to the annular boss 200, for example, the filter 30 can be attached to the annular boss 200 by glue or the like; then, the annular boss is cured 200, so that the annular boss 200 forms the coupling portion 20 and the photosensitive path of the filter 30 to the photosensitive chip 13 is maintained by the coupling portion 20, wherein the coupling of the annular boss 200
  • the lower bonding side 21 of the bonding portion 20 is formed on the surface of the photosensitive chip 13, and the upper bonding of the ring-shaped boss 200 bonded to the filter 30 forms the upper bonding of the bonding portion 20 In the surface 22, the hollow portion in the middle of the annular boss 200 forms the light passage 23 of the coupling portion 20.
  • FIG. 9 shows an application state of the camera module 1000, wherein the camera module 1000 is disposed on an electronic device body 2000, so that the electronic device body 2000 and the camera module 1000 form a Electronic equipment.
  • the example in which the electronic device shown in FIG. 9 is a smartphone is only an example, and it does not limit the application range of the camera module 1000 of the present invention.
  • the electronic device The type can be but not limited to tablet computers, laptop computers, personal digital assistants, MP3/4/5.
  • FIG. 10 shows a modified embodiment of the camera module 1000
  • FIG. 11A shows an application state of the camera module 1000
  • the camera module 1000 has four sides 101, wherein at least one side portion 101 of the camera module 1000 further has a side surface 1011, a bottom surface 1012, and a connecting surface 1013 communicating with the side surface 1011 and the bottom surface 1012, wherein the side surface 1011 and the The distance L1 between the connection of the connection surface 1013 and the central axis of the camera module 1000 is greater than the distance L2 between the connection of the bottom surface 1012 and the connection surface 1013 to the central axis of the camera module 1000 , So that at least one side 101 of the camera module 1000 has an indented portion to match the turning point of the casing of the electronic device body, in this way, the optical lens 40 of the camera module 1000 can It is closer to the edge of the casing 2001 of the electronic device body 2000 to help increase the screen ratio of
  • FIG. 12A shows the relationship between the camera module 1000 and the housing 2001 of the electronic device body 2000 after the camera module 1000 is installed on the electronic device body to form the electronic device ,
  • the side portion 101 of the camera module 1000 with the locking portion corresponds to a turning point of the housing 2001 of the electronic device body 2000, so that the optical of the camera module 1000
  • the lens 40 can be closer to the edge of the housing 2001 of the electronic device body 2000 to increase the screen ratio of the electronic device.
  • the connecting surface 1013 of the camera module 1000 is an inclined plane, referring to FIG. 12A, or the connecting surface 1013 of the camera module 1000 is a convex arc surface, referring to FIG.
  • connection surface 1013 of the camera module 1000 may be formed by removing a part of the circuit board 11 and/or a part of the lens holder 50.
  • a part of the circuit board 11 and a part of the lens holder 50 can be removed by cutting or grinding the circuit board 11 and/or the lens holder 50.
  • the connection surface 1013 of the camera module 1000 is a stepped surface, referring to FIG. 12C, wherein the connection surface 1013 of the camera module 1000 may be in the process of packaging the camera module 1000 Is formed by retracting the circuit board 11.
  • the connection surface 1013 of the camera module 1000 may also be a part where the circuit board 11 is removed or the circuit board 11 and the lens holder 50 are removed after the camera module 1000 is packaged Partially formed.
  • FIG. 13 shows another modified embodiment of the camera module 1000, which is different from the camera module 1000 shown in FIGS. 2 to 8 in that the camera module shown in FIG. 13
  • the camera module 1000 does not have the lens bearing portion 60, wherein the lens holder 50 is attached to the circuit board 11 of the circuit board assembly 10, and the optical lens 40
  • the lens holder 50 is installed to hold the photosensitive path of the optical lens 40 to the photosensitive chip 13 by the lens holder 50.
  • a camera module 1000 according to the second preferred embodiment of the present invention is disclosed and explained in the following description, in which the camera module 1000 It includes a circuit board assembly 10, a coupling portion 20, a filter 30 and an optical lens 40.
  • the circuit board assembly 10 includes a circuit board 11 and a series of electronic components 12 that are conductively connected to the circuit board 11, and between adjacent electronic components 12 With clearance.
  • the manner in which the electronic component 12 is conductively connected to the circuit board 11 is not limited.
  • the electronic element The device 12 is conductively connected to the circuit board 11 so as to be mounted on the surface of the circuit board 11.
  • the electronic component 12 is conductively connected to the circuit board 11 so that at least a part of it is embedded in the circuit board 11.
  • the circuit board assembly 10 further includes a photosensitive chip 13 having a photosensitive area 131 and a non-photosensitive area 132 surrounding the photosensitive area 131, wherein the photosensitive chip 13 is conductively connected to the circuit board 11.
  • the height difference between the photosensitive region 131 and the non-photosensitive region 132 of the photosensitive chip 13 is not limited to the height difference shown in FIGS. 15 to 19.
  • the manner in which the photosensitive chip 13 is conductively connected to the circuit board 11 is not limited. For example, in this specific example of the camera module 1000 shown in FIGS.
  • the photosensitive chip 13 is mounted on the surface of the circuit board 11, and the two ends of at least one set of guide wires 14 formed by a wire bonding process are electrically connected to the photosensitive chip 13 and the circuit board 11, respectively, so that The photosensitive chip 13 is conductively connected to the circuit board 11.
  • the photosensitive chip 13 is mounted on the circuit board 11 by a flip-chip (Flip-Chip) process and is conductively connected to the circuit board 11.
  • a series of the electronic components 12 form two columns of the electronic components 12, one of the columns of the electronic components 12 is located in the On the left side of the photosensitive chip 13, the electronic component 12 on the other side is located on the right side of the photosensitive chip 13.
  • a series of the electronic components 12 form three rows of the electronic components 12, wherein three rows of the electronic components 12 are respectively located on three sides of the photosensitive chip 13.
  • a series of the electronic components 12 form four rows of the electronic components 12, wherein four rows of the electronic components 12 are located on four sides of the photosensitive chip 13.
  • more than two rows of the electronic components 12 may be provided on the same side of the photosensitive chip 13. Therefore, the relative arrangement of the electronic components 12 and the photosensitive chip 13 shown in FIGS. 2 to 7 is only for reference, and should not be considered as a content and description of the camera module 1000 of the present invention. Limitation of scope.
  • the coupling portion 20 has a ring shape, and has a lower coupling side 21, a top coupling surface 22 corresponding to the lower coupling side 21, and a light passage 23.
  • the lower bonding side 21 of the bonding portion 20 is bonded to the circuit board assembly 10, and the bonding portion 20 surrounds the photosensitive region 131 of the photosensitive chip 13 to make the photosensitive chip
  • the photosensitive region 131 of 13 is exposed to the light channel 23 of the coupling portion 20, and the plane of the top bonding surface 22 of the coupling portion 20 is higher than the photosensitive region of the photosensitive chip 13 The plane where 131 is.
  • the periphery of the filter 30 is bonded to the top bonding surface 22 of the bonding portion 20 to allow the filter 30 to be held in the photosensitive path of the photosensitive chip 13.
  • the joint portion 20 has a ring shape, that is, the joint portion 20 has four side edges 24, and two adjacent side edges 24 are connected end to end. They are perpendicular to each other, so that the light path 24 is formed between the joints 20 formed by the four sides 24.
  • Each side 24 of the joint 20 is located outside the photosensitive region 131 of the photosensitive chip 13.
  • the lower bonding side 21 of the bonding portion 20 is bonded to the circuit board 11 of the circuit board assembly 10, the electronic component 12, the guide wire 14 and The non-photosensitive area 132 of the photosensitive chip 13, the bonding portion 20 extends upward from the circuit board assembly 10 to a suitable height, and forms the top bonding surface 22 of the bonding portion 20, and the bonding The top bonding surface 22 of the portion 20 corresponds to the electronic component 12 provided with a constant height. In this way, the flatness of the top bonding surface 22 of the bonding portion 20 can be set with the same height The electronic component 12 is guaranteed, thereby ensuring the flatness between the filter 30 and the photosensitive region 131 of the photosensitive chip 13.
  • the top bonding surface 22 of the bonding portion 20 may also correspond to the non-photosensitive area 132 of the photosensitive chip 13. In this way, the position of the bonding portion 20 The flatness of the top bonding surface 22 can be guaranteed by the non-photosensitive area 132 of the photosensitive chip 13, thereby ensuring the flatness between the filter 30 and the photosensitive area 131 of the photosensitive chip 13.
  • FIG. 21 the top bonding surface 22 of the bonding portion 20 may also correspond to the non-photosensitive area 132 of the photosensitive chip 13.
  • the height of the top bonding surface 22 of the bonding portion 20 may be lower than the highest position of the bonding portion 20, for example, the height of the top bonding surface 22 of the bonding portion 20 may be low Due to the height of the electronic component 12, in this way, in conjunction with the improvement in the optical design of the camera module 1000, the back focus of the camera module 1000 can be reduced, thereby further reducing the height of the camera module 1000 size.
  • the manner in which the filter 30 of the camera module 1000 of the present invention is closer to the photosensitive chip 13 allows the optical lens 40 to be adjusted toward the photosensitive chip 13, thereby allowing It is beneficial to reduce the height dimension of the camera module 1000.
  • the types of the electronic components 12 may be, but not limited to, resistors, capacitors, controllers, etc.
  • the devices 12 have different height dimensions. Therefore, in order to ensure that at least three of the electronic components 12 can be arranged at the same height, when conducting these electronic components 12 to the circuit board 11, the height dimension can be compared
  • the large electronic component 12 is half embedded in the circuit board 11 and the electronic component 12 with a small height dimension is mounted on the surface of the circuit board 11, so that these electronic components 12 are Equal height; or when conducting these electronic components 12 to the circuit board 11, the electronic components 12 with a larger height can be mounted on the surface of the circuit board 11 and through additional structures
  • the height of the electronic components 12 having a smaller height size is adjusted so that the electronic components 12 are arranged at the same height.
  • the additional structure may be disposed between the electronic component 12 and the circuit board 11 , May be provided on the upper part of the electronic component 12.
  • the distance dimension (parameter H) between the plane of the top joint surface 22 of the joint part 20 and the plane of the photosensitive region 131 of the photosensitive chip 13 is greater than or equal to 0.15 mm. In this way, it is beneficial to reduce the generation of stray light and reduce the imaging of stains, thereby improving the imaging quality of the camera module 1000.
  • the circuit board assembly 10, the coupling portion 20 and the filter 30 form a photosensitive assembly, that is, the camera module 1000 includes the photosensitive assembly and is held in the photosensitive assembly
  • the camera module 1000 further includes a lens holder 50 and a lens bearing portion 60 attached to the lens holder 50.
  • the lens holder 50 has a lower surface 51, an upper surface 52 corresponding to the lower surface 51, and an inner surface 53 extending from the upper surface 52 to the lower surface 51.
  • the lower surface 51 of the lens holder 50 is attached to the circuit board 11, and the inner surface 53 of the lens holder 50 is bonded to the coupling portion 20.
  • the optical lens 40 is disposed on the lens bearing portion 60, and the lens bearing portion 60 is attached to the upper surface 52 of the lens holder 50 to be carried by the lens holder 50 and the lens
  • the portion 60 holds the photosensitive path of the optical lens 40 to the photosensitive chip 13.
  • the type of the lens bearing part 60 is selected according to the type of the camera module 1000.
  • the lens carrier 60 is selected as a lens barrel, and accordingly, when the camera module 1000 is a zoom camera module, the lens carrier The part 60 is selected as a motor, such as but not limited to a voice coil motor.
  • the lens barrel carrying portion 60 and the lens holder 50 may be an integrated structure.
  • the camera module 1000 may not be configured with the lens barrel bearing portion 60. At this time, the camera module 1000 directly attaches the optical lens 40 to The manner of the lens holder 50 maintains the photosensitive path of the optical lens 40 on the photosensitive chip 13.
  • a series of electronic components 12 are mounted on the circuit board 11.
  • the type of the electronic component 12 is not limited in the camera module 1000 of the present invention.
  • the electronic component 12 may be, but not limited to, a resistor, a capacitor, a controller, or the like.
  • the photosensitive chip 13 is mounted on the circuit board 11, and at least one set of the guides electrically connected to the photosensitive chip 13 and the circuit board 11 at both ends is formed by a wire bonding process Wires 14 to form the circuit board assembly 10.
  • stage shown in FIG. 15 can precede the stage shown in FIG. 14, that is, first mount the photosensitive chip 13 on the circuit board 11, and secondly mount a series of the electronic elements
  • the device 12 is mounted on the circuit board 11 to form the circuit board assembly 10.
  • an adhesive material 400 is applied to the circuit board assembly 10, and the adhesive material 400 covers the electronic component 12.
  • the glue material 400 applied to the circuit board assembly 10 further extends inwardly to cover the non-photosensitive area 132 of the photosensitive chip 13 and extends outwardly to cover the circuit board 11, and the adhesive material 400 covers the guide wire 14.
  • the glue material 400 applied to the circuit board assembly 10 has a ring shape, for example, a ring shape, which surrounds the photosensitive region 131 of the photosensitive chip 13.
  • the adhesive 400 applied to the circuit board assembly 10 covers the highest electronic component 12.
  • the glue material 400 applied to the circuit board assembly 10 is the glue material 400 with a relatively high viscosity, so as to prevent the glue material 400 from being applied to the circuit board assembly After 10, a bad flow phenomenon occurs, so as to avoid contaminating the photosensitive region 131 of the photosensitive chip 13 during the process of packaging the camera module 1000.
  • the filter 30 is mounted on the top of the glue 400 applied to the circuit board assembly 10 to keep the filter 30 on the glue 400 The photosensitive path of the photosensitive chip 13.
  • a force is applied to the filter 30 in the direction of the photosensitive chip 13 to A flat surface is formed on the top of the adhesive material 400 applied to the circuit board assembly 10, so that the filter 30 and the photosensitive region 131 of the photosensitive chip 13 remain flat.
  • the filter 30 is mounted on the adhesive material 400 applied to the circuit board assembly 10 After the top of the glue material 400 is removed and the external force applied to the filter 30 is removed, the relative positions of the filter 30 and the photosensitive chip 13 will not change.
  • the adhesive 400 may be applied along the extending direction of the electronic component 12, for example, if the camera module 1000 The electronic components 12 are in three columns. At this time, the adhesive 400 is not applied to surround the non-photosensitive area 131 of the photosensitive chip 13, that is, the photosensitive chip 13 is not arranged. The side of the electronic component 12 is also not coated with the glue material 400. After the photosensitive chip 30 is mounted on the top of the adhesive material 400, a gap will be formed between the filter 30 and the circuit board assembly 10, and then it can be sealed and formed in a way such as by glue filling The gap between the filter 30 and the circuit board assembly 10.
  • the lens base 50 is attached to the circuit board 11 of the circuit board assembly 10.
  • the lower surface 51 of the lens holder 50 is attached to the circuit board 11 by the adhesive 400, and the lens holder 50
  • the inner surface 53 is attached to the adhesive material 400.
  • the glue 400 applied to the circuit board assembly 10 is cured to be applied by the glue material applied to the circuit board assembly 10 400 forms the coupling portion 20, so that the coupling portion 20 maintains the photosensitive path of the filter 30 on the photosensitive chip 13, wherein the adhesive 400 is coupled to the side of the circuit board assembly 10
  • the lower bonding side 21 of the bonding portion 20 the adhesive 400 is bonded to the side of the filter 30 to form the top bonding surface 22, wherein the lower surface 51 of the lens holder 50 passes through
  • the adhesive material 400 is bonded to the circuit board 11, and the inner surface 53 of the lens holder 50 is bonded to the bonding portion 20.
  • the manner of curing the adhesive material 400 applied to the circuit board assembly 10 is not limited in the camera module 1000 of the present invention, which is based on the type of the adhesive material 400 Alternatively, for example, the adhesive 400 applied to the circuit board assembly 10 can be cured by heating or ultraviolet light irradiation.
  • the top coupling surface 22 of the coupling portion 20 corresponds to the electronic components 12 that are arranged at the same height, so that the top of the coupling portion 20 is coupled
  • the flatness of the surface 22 is ensured by the electronic components 12 that are arranged at the same height, and then the flatness of the photosensitive region 131 of the filter 30 and the photosensitive chip 13 is ensured.
  • the optical lens 40 is mounted on the lens bearing portion 60 and the lens bearing portion 60 is mounted on the upper surface 52 of the lens holder 50 to keep the optical lens 40 on the The photosensitive path of the photosensitive chip 13 to manufacture the camera module 1000.
  • FIG. 22 shows a modified embodiment of the camera module 1000.
  • the camera module 1000 is not provided with the lens bearing part 60, but directly mounts the optical lens 40 to the lens holder 50 to hold the lens holder 50
  • the optical lens 40 is on the photosensitive path of the photosensitive chip 13.
  • the optical lens 40 is first installed on the lens holder 50, and then the lens holder 50 is mounted on the circuit board assembly 10
  • the circuit board 11 then cures the glue material 400 applied to the circuit board assembly 10 to form the bonding portion 20 by the glue material 400 applied to the circuit board assembly 10.
  • FIG. 23 shows a modified embodiment of the camera module 1000. Unlike the camera module 1000 shown in FIGS. 14 to 20, the camera module shown in FIG. 23 In this specific example of 1000, the adhesive material 400 is applied only to the circuit board 11 of the circuit board assembly 10, so that after the adhesive material 400 is cured, the lower portion of the bonding portion 20 is bonded The side 21 is only coupled to the circuit board 11 of the circuit board assembly 10.
  • a variant embodiment of the camera module 1000 shown in FIG. 24 is different from the camera module 1000 shown in FIGS. 14 to 20 in that the camera module shown in FIG. 24
  • the adhesive 400 is only applied to the non-photosensitive area 132 of the photosensitive chip 13 of the circuit board assembly 10, so that after the adhesive 400 is cured, the bonding
  • the lower coupling side 21 of the portion 20 is only coupled to the non-photosensitive area 132 of the photosensitive chip 13 of the circuit board assembly 10.
  • the top bonding surface 22 of the bonding portion 20 corresponds to the non-photosensitive area 132 of the photosensitive chip 13, so that The non-photosensitive area 132 of the photosensitive chip 13 ensures the flatness of the top bonding surface 22 of the coupling portion 20, and further ensures the flatness of the filter 30 and the photosensitive area 131 of the photosensitive chip 13 degree.
  • FIG. 25 shows a modified embodiment of the camera module 1000.
  • the camera module shown in FIG. 25 In this specific example of 1000, the lower surface 51 of the lens holder 50 is attached to the circuit board 11, and the lens bearing portion 60 is attached to the upper surface 52 of the lens holder 50. Therefore, the photosensitive path of the optical lens 40 to the photosensitive chip 13 is maintained by the lens holder 50 and the lens bearing portion 60.
  • the glue 400 applied to the circuit board assembly 10 is first cured to be applied to the circuit board assembly 10
  • the adhesive material 400 forms the joint part 20, and then the lower surface 51 of the lens holder 50 is mounted on the circuit board 11, and then the lens bearing part 60 is mounted on the lens holder 50
  • the upper surface 52 of the lens maintains the photosensitive path of the optical lens 40 on the photosensitive chip 13 by the lens holder 50 and the lens bearing portion 60.
  • FIG. 26 shows a modified embodiment of the camera module 1000.
  • the lens holder 50 further has at least one notch 54, The notch 54 extends from the lower surface 51 to the upper surface 52, wherein after the lens holder 54 is mounted on the circuit board 11, it is applied to the position of the circuit board assembly 10 A part of the adhesive material 400 is accommodated in the notch 54 of the lens holder 50.
  • the lens holder 50 The notch 54 allows the glue 400 to overflow from the inside of the lens holder 50 to the outside, thereby preventing the glue 400 from expanding inward to contaminate the photosensitive area 131 of the photosensitive chip 13 or block the The photosensitive path of the photosensitive chip 13.
  • the adhesive material 400 applied to the circuit board assembly 10 is cured to form the coupling portion 20
  • a part of the coupling portion 20 is accommodated in the notch 54 of the lens holder 50. That is to say, in this specific example of the camera module 1000 shown in FIG. 26, the notch 54 of the lens holder 50 forms a glue overflow.
  • FIG. 27 shows a modified embodiment of the camera module 1000.
  • the camera module 1000 shown in FIG. the camera module 1000 shown in FIG.
  • the inner surface 53 of the side of the lens holder 50 provided with the notch 54 is not attached to the adhesive material 400 applied to the circuit board assembly 10, but allows A gap is reserved between the inner surface 53 of the lens holder 50 and the glue 400 applied to the circuit board assembly 10, and in this way, the cured surface is applied to the circuit board assembly
  • the notch 54 of the lens holder 50 allows air that is held between the lens holder 50 and the adhesive material 400 applied to the circuit board assembly 10 to escape Out, thereby allowing the adhesive 400 applied to the circuit board assembly 10 to expand toward the circuit board assembly 10 of the lens holder 50, thereby preventing the adhesive 400 from expanding inward and contaminating the
  • the photosensitive area 131 of the photosensitive chip 13 may block the photosensitive path of the photosensitive chip 13.
  • FIG. 28 shows a modified embodiment of the camera module 1000.
  • the lens holder 50 is integrally formed on the circuit board 11 and the coupling portion 20.
  • the lens holder 50 is formed by a molding process so that the lens holder 50
  • the lower surface 51 is integrally coupled to the circuit board 11 and the inner surface 53 of the lens holder 50 is integrally coupled to the coupling portion 20 to obtain the camera module shown in FIG. 28 Group 1000.
  • the present invention further provides a method for manufacturing a camera module 1000, wherein the manufacturing method includes the following steps:
  • step (a) further includes steps:
  • the glue 400 applied to the circuit board assembly 10 surrounds the photosensitive area 131 of the photosensitive chip 13 so as to filter the light
  • a sealed space is formed between the filter 30, the adhesive material 400 and the photosensitive chip 13, the photosensitive of the photosensitive chip 13
  • the area 131 is kept in the sealed space, so that during the process of packaging the camera module 1000, it is possible to prevent contaminants such as dust from falling into the photosensitive area 131 of the photosensitive chip 13 and causing defective spots phenomenon.
  • the adhesive material 400 is only applied along the extending direction of the electronic component 12 of the circuit board assembly 10, and the optical filter 30 After being mounted on the top of the adhesive material 400, the gap formed between the filter 30 and the circuit board assembly 10 is sealed.
  • the glue 400 may be used to seal the gap formed between the filter 30 and the circuit board assembly 10 by means of glue filling.
  • step (a.2) pressure is applied to the filter 30 in the direction of the photosensitive chip 13 to attach the filter 30 to the top of the adhesive material 400.
  • the filter 30 can form a flat surface on the top of the adhesive 400, and at this time, the flatness between the filter 30 and the photosensitive region 131 of the photosensitive chip 13 It can be guaranteed by the glue material 400, so that after the glue material 400 is cured to form the bonding portion 20, the bonding portion 20 can ensure that the filter 30 and the photosensitive region 131 of the photosensitive chip 13 Flatness.
  • the step (a) before the step (a.3), further includes the step of: attaching the lens holder 50 to the circuit board assembly 10 Of the circuit board 11, in the step (a.3), the lower surface 51 of the lens holder 50 is combined with the inner surface 53 of the circuit board 11 and the lens holder 50 In this way, the packaging relationship between the lens holder 50, the coupling part 20 and the circuit board assembly 10 is more reliable.
  • the lens holder 50 is provided with the notch 54, so that during the process of curing the adhesive material 400, the glue material 400 is allowed to overflow from the notch 54 of the lens holder 50, thereby avoiding the The adhesive material 400 expands toward the photosensitive region 131 of the photosensitive chip 13 to cause a defect that the photosensitive region 131 of the photosensitive chip 13 is contaminated or the photosensitive path of the photosensitive chip 13 is blocked.
  • the inner surface 53 of the side of the lens holder 50 where the notch 54 is provided is not attached
  • the adhesive 400 is combined with the adhesive 400 to form a gap between the adhesive 400 and the inner surface 53 of the lens holder 50, thereby allowing the adhesive 400 to be cured during the curing of the adhesive 400
  • the air between the inner surface 53 of the lens holder 50 overflows from the notch 54 of the lens holder 50 to guide the glue 400 in the direction of the inner surface 53 of the lens holder 50 Expansion. In this way, it is possible to prevent the adhesive 400 from expanding toward the photosensitive region 131 of the photosensitive chip 13 to contaminate the photosensitive region 131 of the photosensitive chip 13 or block the photosensitive chip 13. Bad phenomenon of photosensitive path.
  • step (a) further includes steps:
  • the ring boss 200 is cured to form the bonding portion 20, wherein the ring boss 200 is bonded to the side of the non-photosensitive region 132 of the photosensitive chip 13 to form the bonding portion
  • the lower coupling side 21 of 20, the annular boss 200 is coupled to the side of the filter 30 to form the top coupling surface 22 of the coupling portion 20.
  • step (a) further includes steps:

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述摄像模组包括一光学镜头、一滤光片、一线路板、被导通地连接于所述线路板的一感光芯片以及一结合部。所述结合部具有一下部结合侧、一顶部结合面以及一光线通路,其中所述结合部的所述下部结合侧被结合于所述线路板组件,并且所述结合部环绕在所述感光芯片的感光区域的四周,以使所述感光芯片的感光区域被暴露于所述结合部的所述光线通路,其中所述滤光片的四周被结合于所述结合部的所述顶部结合面,以藉由所述结合部保持所述滤光片于所述感光芯片的感光路径,其中所述光学镜头被保持于所述感光芯片的感光路径,以供有效地降低所述摄像模组的高度尺寸。

Description

感光组件、摄像模组、摄像模组的制造方法和电子设备 技术领域
本发明涉及光学成像领域,特别涉及一感光组件、摄像模组、摄像模组的制造方法和电子设备。
背景技术
近年来,智能设备,例如智能手机,越来越朝向轻薄化、高性能的方向发展,智能设备的这种发展趋势对作为智能设备的标准配置之一的摄像模组的尺寸和成像能力提出了更加苛刻的要求。
在硬件方面,摄像模组的成像能力取决于电路中的电子元器件的数量和尺寸以及感光芯片的参数,例如感光芯片的感光面的尺寸。也就是说,电子元器件的数量和尺寸以及感光芯片的参数是提高摄像模组的成像能力的基础。然而,现有的用于封装摄像模组的技术使得具有更多数量和更高尺寸的电子元器件以及更佳参数的感光芯片的摄像模组的尺寸大幅度的增加,从而导致高性能的摄像模组的尺寸的发展趋势和智能设备的发展趋势背道而驰。
图1示出了现有技术的典型的一摄像模组,其包括一线路板1P、一系列电子元器件2P、一感光芯片3P、一镜座4P、一滤光片5P、一镜头承载部6P以及一镜头7P。首先,一系列所述电子元器件2P被相互间隔地贴装于所述线路板1P;其次,所述感光芯片3P被贴装于所述线路板1P,并且所述感光芯片3P通过至少一组金线8P被导通地连接于所述线路板1P,其中一系列所述电子元器件2P环绕在所述感光芯片3P的四周;第三,所述镜座4P被以环绕在所述感光芯片3P的四周的方式被贴装于所述线路板1P,并且所述镜座4P的一滤光片承载臂41P凸出于所述镜座4P的内壁以向所述感光芯片3P的感光路径方向延伸;第四,贴装所述滤光片5P于所述镜座4P的所述滤光片承载臂41P,以保持所述滤光片5P于所述感光芯片3P的感光路径;第五,设置所述镜头7P于所述镜头承载部6P,和贴装所述镜头承载部6P于所述镜座4P,以保持所述镜头7P于所述感光芯片3P的感光路径。在现有技术的所述摄像模组中,所述滤光片5P需要被所述 镜座4P的所述滤光片承载臂41P承载,因此,所述镜座4P必须被设计所述滤光片承载臂41P的结构,这导致所述镜座4P需要占据较多的高度空间,使得所述摄像模组的高度尺寸难以缩小。并且,为了避免所述镜座4P的所述滤光片承载臂41P与所述电子元器件2P接触,需要在所述滤光片承载臂41P和所述电子元器件2P之间预留空间,这也导致所述摄像模组的高度尺寸难以缩小。
发明内容
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述摄像模组的高度尺寸能够被缩小,以使所述摄像模组特别适于被应用于追求轻薄化的电子设备。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述摄像模组的滤光片不需要以被镜座支撑的方式被保持在感光芯片的感光路径,从而节省所述镜座占用的高度空间,以减小所述摄像模组的高度尺寸。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述摄像模组的后焦尺寸能够被减小,以有效地降低所述摄像模组的高度尺寸。具体地,在本发明的所述摄像模组的一个较佳示例中,所述摄像模组的后焦尺寸能够被降低至0.6mm以内,从而有效地降低所述摄像模组的高度尺寸。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述摄像模组的镜头承载部的贴装面和所述滤光片的下表面之间的距离能够被减小,以有效地降低所述摄像模组的高度尺寸。具体地,在本发明的所述摄像模组的另一个较佳示例中,所述镜头承载部的贴装面和所述滤光片的下表面之间的距离能够被减小至0.2mm以内,从而有效地降低所述摄像模组的高度尺寸。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述摄像模组提供一结合部,其中所述结合部用于结合所述滤光片和所述摄像模组的线路板组件,以藉由所述结合部保持所述滤光片于所述感光芯片的感光路径,通过这样的方式,所述滤光片不需要被所述镜座支撑。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和 电子设备,其中所述结合部的顶部结合面所在的平面高出所述感光芯片的感光区域所在的平面,且两者的高度差被控制在适合范围,通过这样的方式,能够减少杂散光产生和减少污坏点成像,从而提高所述摄像模组的成像品质。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述结合部的宽度尺寸被控制在适合范围,通过这样的方式,能够弥补封装公差,从而保证所述摄像模组的可靠性。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域,通过这样的方式,所述结合部的所述顶部结合面的平整度能够被保证,进而保证所述滤光片和所述感光芯片的感光区域的之间的平整度。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述结合部的所述顶部结合面对应于被等高设置的电子元器件,通过这样的方式,所述结合部的所述顶部结合面的平整度能够被保证,进而保证所述滤光片和所述感光芯片的感光区域之间的平整度。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述镜座的下表面被结合于所述线路板,所述镜座的内表面被结合于所述结合部,通过这样的方式,所述摄像模组的可靠性能够被提高。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述镜座具有至少一缺口,以在所述镜座被贴装于所述线路板组件而被加热的过程中,形成所述结合部的胶材能够自所述镜座的所述缺口排出,从而避免向内过多溢胶而污染所述感光芯片的感光区域。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中在所述镜座被贴装于所述线路板而被加热的过程中,位于胶材和所述镜座的内表面之间的空气能够自所述缺口排出,以引导所述胶材向所述镜座的内表面方向膨胀,从而避免向内过多溢胶而污染所述感光芯片的感光区域。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述摄像模组被应用于一电子设备,并有利于提高所述电子设备的屏占比。
本发明的一个目的在于提供一感光组件、摄像模组、摄像模组的制造方法和电子设备,其中所述摄像模组的至少一个侧部形成缩进部,通过这样的方式,所 述摄像模组能够更靠近一电子设备本体的边缘,从而有利于提高所述电子设备的屏占比。
依本发明的一个方面,本发明提供一摄像模组,其包括:
一光学镜头;
一滤光片;
一线路板组件,其中所述线路板组件包括一线路板和被导通地连接于所述线路板的一感光芯片;以及
一结合部,其中所述结合部具有一下部结合侧、一顶部结合面以及一光线通路,其中所述结合部的所述下部结合侧被结合于所述线路板组件,并且所述结合部环绕在所述感光芯片的感光区域的四周,以使所述感光芯片的感光区域被暴露于所述结合部的所述光线通路,其中所述滤光片的四周被结合于所述结合部的所述顶部结合面,以藉由所述结合部保持所述滤光片于所述感光芯片的感光路径,其中所述光学镜头被保持于所述感光芯片的感光路径。
根据本发明的一个实施例,所述结合部的所述下部结合侧被结合于所述感光芯片的非感光区域,并且所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
根据本发明的一个实施例,所述结合部的所述下部结合侧被结合于所述线路板和所述感光芯片的非感光区域,并且所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
根据本发明的一个实施例,所述线路板组件进一步包括一系列电子元器件,其中至少三个所述电子元器件被等高地设置于且被导通地连接于所述线路板,其中所述结合部包埋所述电子元器件,并且所述结合部的所述顶部结合面对应于所述电子元器件。
根据本发明的一个实施例,所述结合部的所述顶部结合面所在的平面低于最高的所述电子元器件的顶表面所在的平面。
根据本发明的一个实施例,所述结合部的所述顶部结合面所在的平面与所述感光芯片的感光区域所在的平面之间的距离尺寸大于或者等于0.15mm。
根据本发明的一个实施例,所述结合部具有四个侧边,相邻所述侧边首尾相接并且相互垂直,以在四个所述侧边之间形成所述光线通路,其中所述结合部的至少一个所述侧边的宽度尺寸大于或者等于0.15mm。
根据本发明的一个实施例,所述摄像模组进一步包括一镜座,其中所述镜座具有一下表面,所述镜座的所述下表面被贴装于所述线路板。
根据本发明的一个实施例,所述摄像模组进一步包括一镜座,其中所述镜座具有一下表面、对应于所述下表面的一上表面以及自所述上表面延伸至所述下表面的一内表面,其中所述镜座的所述下表面被贴装于所述线路板,所述镜座的所述内表面被结合于所述结合部。
根据本发明的一个实施例,所述摄像模组进一步包括一镜座,其中所述镜座具有一下表面、对应于所述下表面的一上表面以及自所述上表面延伸至所述下表面的一内表面,其中所述镜座的所述下表面被结合于所述线路板,所述镜座的所述内表面被结合于所述结合部。
根据本发明的一个实施例,所述摄像模组进一步包括一镜座,其中所述镜座具有一下表面、对应于所述下表面的一上表面以及自所述上表面延伸至所述下表面的一内表面,其中所述镜座的所述下表面被结合于所述线路板和所述感光芯片的非感光区域,所述镜座的所述内表面被结合于所述结合部。
根据本发明的一个实施例,所述摄像模组具有四个侧部,其中至少一个所述侧部具有一侧面、一底面以及连接于所述侧面和所述底面的一连接面,其中所述连接面与所述侧面的连接处到所述摄像模组的中心轴线之间的距离大于所述连接面与所述底面的连接处到所述摄像模组的中心轴线之间的距离。
根据本发明的一个实施例,所述连接面是一个倾斜的平面;或者所述连接面是一个外凸的弧面;或者所述连接面是一个台阶面。
根据本发明的一个实施例,所述连接面形成于所述镜座和所述线路板。
根据本发明的一个实施例,所述镜座具有至少一缺口,其自所述镜座的所述下表面向所述上表面方向延伸,其中所述结合部的一部分被容纳于所述镜座的所述缺口。
根据本发明的一个实施例,所述摄像模组进一步包括一镜头承载部,所述镜头承载部具有一贴装面,其中所述镜头承载部以所述镜头承载部的所述贴装面被贴装于所述镜座的所述上表面的方式被贴装于所述镜座,其中所述光学镜头被设置于所述镜头承载部。
根据本发明的一个实施例,所述镜头承载部的所述贴装面与所述滤光片的下表面之间的距离参数D的取值范围为:0.1mm≤D≤0.2mm。
根据本发明的一个实施例,所述摄像模组的后焦距离参数L的取值范围为:0.4mm≤L≤0.6mm,其中所述摄像模组的后焦距离是指所述光学镜头的靠近所述感光芯片的一个镜片的下表面与所述感光芯片的感光区域之间的距离。
根据本发明的另一个方面,本发明进一步提供一电子设备,包括一电子设备本体和被设置于所述电子设备本体的至少一摄像模组,其中所述摄像模组包括:
一光学镜头;
一滤光片;
一线路板组件,其中所述线路板组件包括一线路板和被导通地连接于所述线路板的一感光芯片;以及
一结合部,其中所述结合部具有一下部结合侧、一顶部结合面以及一光线通路,其中所述结合部的所述下部结合侧被结合于所述线路板组件,并且所述结合部环绕在所述感光芯片的感光区域的四周,以使所述感光芯片的感光区域被暴露于所述结合部的所述光线通路,其中所述滤光片的四周被结合于所述结合部的所述顶部结合面,以藉由所述结合部保持所述滤光片于所述感光芯片的感光路径,其中所述光学镜头被保持于所述感光芯片的感光路径。
根据本发明的另一个方面,本发明进一步提供一感光组件,其包括:
一滤光片;
一线路板组件,其中所述线路板组件包括一线路板和被导通地连接于所述线路板的一感光芯片;以及
一结合部,其中所述结合部具有一下部结合侧、一顶部结合面以及一光线通路,其中所述结合部的所述下部结合侧被结合于所述线路板组件,并且所述结合部环绕在所述感光芯片的感光区域的四周,以使所述感光芯片的感光区域被暴露于所述结合部的所述光线通路,其中所述滤光片的四周被结合于所述结合部的所述顶部结合面,以藉由所述结合部保持所述滤光片于所述感光芯片的感光路径。
根据本发明的一个实施例,所述结合部的所述下部结合侧被结合于所述感光芯片的非感光区域,并且所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
根据本发明的一个实施例,所述结合部的所述下部结合侧被结合于所述线路板和所述感光芯片的非感光区域,并且所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
根据本发明的一个实施例,所述线路板组件进一步包括一系列电子元器件,其中至少三个所述电子元器件被等高地设置于且被导通地连接于所述线路板,其中所述结合部包埋所述电子元器件,并且所述结合部的所述顶部结合面对应于所述电子元器件。
根据本发明的一个实施例,所述结合部的所述顶部结合面所在的平面低于最高的所述电子元器件的顶表面所在的平面。
根据本发明的一个实施例,所述结合部的所述顶部结合面所在的平面与所述感光芯片的感光区域所在的平面之间的距离尺寸大于或者等于0.15mm。
根据本发明的一个实施例,所述结合部具有四个侧边,相邻所述侧边首尾相接并且相互垂直,以在四个所述侧边之间形成所述光线通路,其中所述结合部的至少一个所述侧边的宽度尺寸大于或者等于0.15mm。
依本发明的一个方面,本发明提供一摄像模组,其中所述制造方法包括如下步骤:
(a)分别结合一结合部的一下部结合侧于一线路板组件和一滤光片于所述结合部的一顶部结合面,以保持所述滤光片于所述线路板组件的一感光芯片的感光路径;和
(b)保持一光学镜头于所述感光芯片的感光路径,以制得所述摄像模组。
根据本发明的一个实施例,在所述步骤(a)中,进一步包括步骤:
(a.1)围绕所述感光芯片的感光区域,施涂胶材于所述线路板组件;
(a.2)贴装所述滤光片于胶材的顶部;以及
(a.3)固化胶材以形成所述结合部,其中胶材结合于所述线路板组件的侧部形成所述结合部的所述下部结合侧,胶材结合于所述滤光片的侧部形成所述结合部的所述顶部结合面。
根据本发明的一个实施例,在所述步骤(a.2)中,朝向所述感光芯片的方向施压于所述滤光片,以贴装所述滤光片于胶材的顶部。
根据本发明的一个实施例,在所述步骤(a.3)之前,所述步骤(a)进一步包括步骤:贴装一镜座于所述线路板组件的一线路板,以在所述步骤(a.3)中,结合所述镜座的下表面于所述线路板和所述镜座的内表面于所述结合部。
根据本发明的一个实施例,在所述步骤(a.3)中,允许胶材自所述镜座的一缺口溢出。
根据本发明的一个实施例,在所述步骤(a.3)中,引导胶材朝向所述镜座的内表面方向膨胀。
根据本发明的一个实施例,在上述方法中,允许被保持在胶材和所述镜座的内表面之间的空气自所述镜座的一缺口逸出,从而引导胶材朝向所述镜座的内表面方向膨胀。
根据本发明的一个实施例,在所述步骤(a.1)中,施涂胶材于所述感光芯片的非感光区域,以在所述步骤(a.3)中,所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
根据本发明的一个实施例,在所述步骤(a.1)中,允许胶材包覆被等高地设置于且被导通地连接于所述线路板组件的一线路板的至少三个电子元器件,以在所述步骤(a.3)中,所述结合部的所述顶部结合面对应于所述电子元器件。
根据本发明的一个实施例,在所述步骤(a.1)中,允许胶材包覆被等高地设置于且被导通地连接于所述线路板的至少三个电子元器件,以在所述步骤(a.3)中,所述结合部的所述顶部结合面对应于所述电子元器件。
根据本发明的一个实施例,在所述步骤(a.1)中,沿着所述线路板的一系列电子元器件的延伸方向施涂胶材于所述线路板组件,并且在所述步骤(a.2)和所述步骤(a.3)之前,密封形成于所述滤光片和所述线路板组件之间的缝隙。
根据本发明的一个实施例,在所述步骤(a)中,进一步包括步骤:
(a.1’)形成一环形凸台于所述滤光片的四周边缘;
(a.2’)贴装所述环形凸台于所述感光芯片的非感光区域;以及
(a.3’)固化所述环形凸台以形成所述结合部,其中所述环形凸台结合于所述感光芯片的非感光区域的侧部形成所述结合部的所述下部结合侧,所述环形凸台结合于所述滤光片的侧部形成所述结合部的所述顶部结合面。
根据本发明的一个实施例,所述结合部的所述顶部结合面所在的平面与所述感光芯片的感光区域所在的平面之间的距离尺寸大于或者等于0.15mm。
根据本发明的一个实施例,所述结合部具有四个侧边,相邻所述侧边首尾相接并且相互垂直,以在四个所述侧边之间形成所述光线通路,其中所述结合部的至少一个所述侧边的宽度尺寸大于或者等于0.15mm。
根据本发明的一个实施例,在所述步骤(a.2’)中,通过胶水贴装所述环形凸台于所述感光芯片的非感光区域。
根据本发明的一个实施例,在所述步骤(a)中,进一步包括步骤:
(a.1”)形成一环形凸台于所述感光芯片的非感光区域;
(a.2”)贴装所述滤光片的四周边缘于所述环形凸台;以及
(a.3”)固化所述环形凸台以形成所述结合部,其中所述环形凸台结合于所述感光芯片的非感光区域的侧部形成所述结合部的所述下部结合侧,所述环形凸台结合于所述滤光片的侧部形成所述结合部的所述顶部结合面。
根据本发明的一个实施例,在所述步骤(a.2”)中,通过胶水贴装所述滤光片于所述环形凸台。
根据本发明的一个实施例,在所述步骤(a)之后,所述制造方法进一步包括步骤:贴装一镜座于所述线路板组件的一线路板,以在所述步骤(c)中,藉由所述镜座保持所述光学镜头于所述感光芯片的感光路径。
根据本发明的一个实施例,在所述步骤(a)之后,所述制造方法进一步包括步骤:形成一镜座于所述线路板组件的一线路板,以在所述步骤(c)中,藉由所述镜座保持所述光学镜头于所述感光芯片的感光路径。
根据本发明的一个实施例,在所述步骤(c)之后,所述制造方法进一步包括步骤:去除所述摄像模组的至少一个侧部的一部分,以使所述侧部形成一侧面、一底面以及连接于所述侧面和所述底面的一连接面,其中所述连接面与所述侧面的连接处到所述摄像模组的中心轴线之间的距离大于所述连接面与所述底面的连接处到所述摄像模组的中心轴线之间的距离。
根据本发明的一个实施例,在上述方法中,切割所述摄像模组的所述侧部,以使所述侧部形成所述侧面、所述底面以及连接于所述侧面和所述底面的所述连接面。
根据本发明的一个实施例,在上述方法中,研磨所述摄像模组的所述侧部,以使所述侧部形成所述侧面、所述底面以及连接于所述侧面和所述底面的所述连接面。
附图说明
图1是现有技术的摄像模组的示意图。
图2是依本发明的第一较佳实施例的一摄像模组的制造过程之一的剖视示意图。
图3是依本发明的上述较佳实施例的所述摄像模组的制造过程之二的剖视示意图。
图4是依本发明的上述较佳实施例的所述摄像模组的制造过程之三的立体示意图。
图5是依本发明的上述较佳实施例的所述摄像模组的制造过程之四的剖视示意图。
图6是依本发明的上述较佳实施例的所述摄像模组的制造过程之五的剖视示意图。
图7是依本发明的上述较佳实施例的所述摄像模组的制造过程之六的剖视示意图,其示出了所述摄像模组被沿着中间位置剖开后的剖视状态。
图8是依本发明的上述较佳实施例的所述摄像模组的立体示意图。
图9是依本发明的上述较佳实施例的所述摄像模组的一个应用状态立体示意图。
图10是依本发明的上述较佳实施例的所述摄像模组的一个变形实施方式的剖视示意图。
图11A是依本发明的上述较佳实施例的所述摄像模组的一个应用状态剖视示意图。
图11B是现有技术的摄像模组的应用状态剖视图。
图12A至图12C是依本发明的上述较佳实施例的所述摄像模组与一电子设备本体的外壳之间的关系的不同状态示意图。
图13是依本发明的上述较佳实施例的所述摄像模组的另一个变形实施方式的剖视示意图。
图14是依本发明的第二较佳实施例的一摄像模组的制造过程之一的剖视示意图。
图15是依本发明的上述较佳实施例的所述摄像模组的制造过程之二的剖视示意图。
图16是依本发明的上述较佳实施例的所述摄像模组的制造过程之三的剖视示意图。
图17是依本发明的上述较佳实施例的所述摄像模组的制造过程之四的剖视示意图。
图18是依本发明的上述较佳实施例的所述摄像模组的制造过程之五的剖视示意图。
图19是依本发明的上述较佳实施例的所述摄像模组的制造过程之六的剖视示意图,其示出了所述摄像模组被沿着中间位置剖开后的剖视状态。
图20是依本发明的上述较佳实施例的所述摄像模组的立体示意图。
图21是依本发明的上述较佳实施例的所述摄像模组的第一个变形实施方式的剖视示意图。
图22是依本发明的上述较佳实施例的所述摄像模组的第二个变形实施方式的剖视示意图。
图23是依本发明的上述较佳实施例的所述摄像模组的第三个变形实施方式的剖视示意图。
图24是依本发明的上述较佳实施例的所述摄像模组的第四个变形实施方式的剖视示意图。
图25是依本发明的上述较佳实施例的所述摄像模组的第四个变形实施方式的剖视示意图。
图26是依本发明的上述较佳实施例的所述摄像模组的第三个变形实施方式的剖视示意图。
图27是依本发明的上述较佳实施例的所述摄像模组的第四个变形实施方式的剖视示意图。
图28是依本发明的上述较佳实施例的所述摄像模组的第四个变形实施方式的剖视示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发 明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参考本发明的说明书附图之附图2至图8,依本发明的第一较佳实施例的一摄像模组1000在接下来的描述中被揭露和被阐述,其中所述摄像模组1000包括一线路板组件10、一结合部20、一滤光片30以及一光学镜头40。
参考附图7和图8,所述线路板组件10包括一线路板11和被导通地连接于所述线路板11的一系列电子元器件12,并且相邻所述电子元器件12之间具有间隙。所述电子元器件12被导通地连接于所述线路板11的方式不受限制,例如在附图7和图8示出的所述摄像模组1000的这个具体示例中,所述电子元器件12以被贴装于所述线路板11的表面的方式被导通地连接于所述线路板11。可选地,所述电子元器件12以至少一部分被埋入所述线路板11的内部的方式被导通地连接于所述线路板11。
继续参考附图7和图8,所述线路板组件10进一步包括一感光芯片13,其具有一感光区域131和环绕在所述感光区域131的四周的一非感光区域132,其中所述感光芯片13被导通地连接于所述线路板11。所述感光芯片13被导通地连接于所述线路板11的方式不受限制,例如在附图7和图8示出的所述摄像模组1000的这个具体的示例中,所述感光芯片13被贴装于所述线路板11的表面,并且通过打线工艺形成的至少一组导引线14的两端分别被电连接于所述感光芯片13和所述线路板11,以使所述感光芯片13被导通地连接于所述线路板11。可选地,所述感光芯片13被藉由倒装芯片(Flip-Chip)工艺被贴装于所述线路板11和被导通地连接于所述线路板11。
具体地,在附图7和图8示出的所述摄像模组1000中,一系列所述电子元器件12形成两列所述电子元器件12,其中一列所述电子元器件12位于所述感光芯片13的左侧,另一列所述电子元器件12位于所述感光芯片13的右侧。可选地,一系列所述电子元器件12形成三列所述电子元器件12,其中三列所述电子元器件12分别位于所述感光芯片13的三侧。可选地,一系列所述电子元器件12形成四列所述电子元器件12,其中四列所述电子元器件12位于所述感光芯片 13的四侧。可选地,在所述感光芯片13的同一侧也可以设置有两列以上的所述电子元器件12。因此,附图2至图7中示出的所述电子元器件12和所述感光芯片13的相对排列方式仅作为参考,并不应被视为对本发明的所述摄像模组1000的内容和范围的限制。
所述结合部20呈环形,其具有一下部结合侧21、对应于所述下部结合侧21的一顶部结合面22以及自所述顶部结合面22延伸至所述下部结合侧21的一光线通路23。所述结合部20的所述下部结合侧21结合于所述线路板组件10,并且所述结合部20环绕在所述感光芯片13的所述感光区域131的四周,所述结合部20的所述顶部结合面22所在的平面高出所述感光芯片13的所述感光区域131所在的平面,所述感光芯片13的所述感光区域131对应于所述结合部20的所述光线通路23。所述滤光片30的四周被结合于所述结合部20的所述顶部结合面22,以允许所述滤光片30被保持在所述感光芯片13的感光路径。所述光学镜头40被保持在所述感光芯片13的感光路径。在附图7和图8示出的本发明的所述摄像模组1000的这个较佳示例中,所述结合部20呈方框环形,即,所述结合部20具有四个侧边24,其中相邻两个所述侧边24首尾相接并相互垂直,从而在四个所述侧边24形成的所述结合部20之间形成所述光线通路23。所述结合部20的每个所述侧边24分别位于所述感光芯片13的所述感光区域131的外侧。
优选地,所述结合部20的所述下部结合侧21结合于所述感光芯片13的所述非感光区域132,所述结合部20自所述感光芯片13的所述非感光区域132向上延伸至适合高度,且形成所述结合部20的所述顶部结合面22,并且所述结合部20的所述顶部结合面22对应于所述感光芯片13的所述非感光区域132,通过这样的方式,所述结合部20的所述顶部结合面22的平整度能够被所述感光芯片13的所述非感光区域132保证,从而保证所述滤光片30和所述感光芯片13的所述感光区域131之间的平整度。
所述结合部20的所述顶部结合面22所在的平面与所述感光芯片13的所述感光区域131所在的平面之间的距离尺寸(参数为H)大于或者等于0.15mm,通过这样的方式,有利于减少杂散光产生和减少污坏点成像,从而提高所述摄像模组1000的成像品质。
所述结合部20的所述侧边24的宽度尺寸(参数为W)大于或者等于0.15mm,通过这样的方式,能够弥补封装误差,从而藉由所述结合部20可靠地支撑所述 滤光片30于所述感光芯片13的感光路径。
在本发明中,所述线路板组件10、所述结合部20和所述滤光片30形成一感光组件,即,所述摄像模组1000包括所述感光组件和被保持在所述感光组件的所述感光芯片13的感光路径的所述光学镜头40,其中自所述光学镜头40进入所述摄像模组1000的内部的光线能够被所述感光芯片13接收和进行光电转化。
继续参考附图7和图8,所述摄像模组1000进一步包括一镜座50和被贴装于所述在镜座50的一镜头承载部60。所述镜座50具有一下表面51、对应于所述下表面51的一上表面52以及自所述上表面52延伸至所述下表面51的一内表面53。所述镜座50的所述下表面51一体地结合于所述线路板11和所述感光芯片13的所述非感光区域132,所述镜座50的所述内表面53一体地结合于所述结合部20。所述光学镜头40被设置于所述镜头承载部60,所述镜头承载部60具有一贴装面61,其中所述镜头承载部60以所述镜头承载部60的所述贴装面61被贴装于所述镜座50的所述上表面52的方式被贴装于所述镜座50,以藉由所述镜座50和所述镜头承载部60保持所述光学镜头40于所述感光芯片13的感光路径。
所述镜头承载部60的类型根据所述摄像模组1000的类型被选择。例如,当所述摄像模组1000为定焦摄像模组时,所述镜头承载部60被选择为镜筒,相应地,当所述摄像模组1000为变焦摄像模组时,所述镜头承载部60被选择为马达,例如但不限于音圈马达。
参考附图7,优选地,设所述镜头承载部60的所述贴装面61与所述滤光片30的下表面之间的距离参数为D,其中参数D的取值范围为0.1mm-0.2mm(包括0.1mm和0.2mm),以有利于降低所述摄像模组1000的高度尺寸。值得一提的是,在本发明的所述摄像模组1000中,所述滤光片30藉由所述结合部20被保持于所述感光芯片13的感光路径,所述镜头承载部60贴装于所述镜座50,从而相对于现有技术的摄像模组,在本发明的所述摄像模组1000的这个较佳示例中,所述镜头承载部60的所述贴装面61和所述滤光片30的下表面之间的距离可以更近,这对于降低所述摄像模组1000的高度尺寸来说是特别重要的。
继续参考附图7,在本发明的所述摄像模组1000的这个较佳示例中,所述滤光片30藉由所述结合部20被保持于所述感光芯片13的感光路径,所述镜头承载部60贴装于所述镜座50,以藉由所述镜头承载部60和所述镜座50保持所 述光学镜头40于所述感光芯片13的感光路径。因为所述镜座50不需要保持所述滤光片30于所述感光芯片13的感光路径,从而所述镜座50的所述上表面52的高度(所述上表面52距离所述感光芯片13的距离)能够被降低,进而减小所述光学镜头40与所述感光芯片13的所述感光区域131之间的距离,通过这样的方式,所述摄像模组1000的后焦尺寸能够被减小,以有利于降低所述摄像模组1000的高度尺寸。所述摄像模组1000的后焦距离是指所述光学镜头40的最靠近所述感光芯片13的镜片的表面与所述感光芯片13的所述感光区域131之间的距离。设所述摄像模组1000的后焦距离参数为L,其中参数L的取值范围为0.4mm-0.6mm(包括0.4mm和0.6mm),相对于现有技术的摄像模组的0.8mm的后焦距离来说,本发明的所述摄像模组1000的后焦距离能够被大范围的减小,从而特别有利于降低所述摄像模组1000的高度尺寸。
可选地,在所述摄像模组1000的一个示例中,所述镜头承载部60和所述镜座50可以是一体式结构。在所述摄像模组1000的另一个示例中,所述摄像模组1000可以没有被配置所述镜头承载部60,此时,所述摄像模组1000通过直接贴装所述光学镜头40于所述镜座50的方式保持所述光学镜头40于所述感光芯片13的感光路径。
在附图7和图8示出的所述摄像模组1000中,所述镜座50没有被预制,其中所述镜座50可以通过模塑工艺一体成型并结合所述线路板组件10和所述结合部20,从而允许所述镜座50的所述下表面51一体地结合于所述线路板11和所述感光芯片13的所述非感光区域132以及允许所述镜座50的所述内表面53一体地结合于所述结合部20,通过这样的方式,所述镜座50与所述线路板11、所述感光芯片13和所述结合部20的结合可靠性更高,从而有利于保证所述摄像模组1000的稳定、可靠。可选地,所述镜座50可以进一步一体地结合于所述滤光片30的四周边缘。
所述摄像模组1000采用所述镜座50被一体地结合于所述线路板11和所述感光芯片13的所述非感光区域132的方式,使得所述摄像模组1000的封装过程不再需要被预制所述镜座50,从而有利于降低所述摄像模组1000的零部件的管控成本和管控风险。
所述摄像模组1000采用所述镜座50被一体地结合于所述线路板11和所述感光芯片13的所述非感光区域132的方式,不仅有利于保证所述线路板11和所 述感光芯片13的贴合关系的可靠性,而且所述感光芯片13的平整度不再受限于所述线路板11的平整度,其中所述感光芯片13的平整度藉由所述镜座50保证,从而有利于保证所述感光芯片13的平整度。具体地说,所述镜座50依靠成型模具一体地结合于所述线路板11和所述感光芯片13的所述非感光区域132的方式,能够使得所述镜座50的顶表面更为平整,且不受所述线路板11的倾斜或者变形的影响,从而在后续减少组装时的累积公差,通过这样的方式,有利于保证所述光学镜头40和所述感光芯片13的同轴度。
所述摄像模组1000采用所述镜座50被一体地结合于所述线路板11和所述感光芯片13的所述非感光区域132的方式,允许所述镜座50保证所述感光芯片13的平整度,通过这样的方式,所述线路板11可以选用更薄的尺寸,从而有利于降低所述摄像模组1000的高度尺寸。具体地说,所述镜座50通过模塑工艺一体地结合于所述线路板11的方式,使得所述镜座50能够补强所述线路板11,从而在保证所述线路板11的平整度的前提下,所述线路板11可以更薄,这样的方式有利于降低所述摄像模组1000的整体高度尺寸。
所述摄像模组1000采用所述镜座50被一体地结合于所述线路板11和所述感光芯片13的所述非感光区域132的方式,可以避免采用胶水贴装所述镜座50于所述线路板11,从而有利于降低所述摄像模组1000的高度尺寸。
参考附图7,所述摄像模组1000通过采用所述结合部20保持所述滤光片30于所述感光芯片13的感光路径的方式,一方面能够通过减小所述滤光片30的尺寸来降低所述摄像模组1000的成本,另一方面所述滤光片30的下表面(所述滤光片30朝向所述感光芯片13的表面)能够低于最高的所述电子元器件12的顶表面的高度,这样,配合所述摄像模组1000的光学设计上的改进,减小所述摄像模组1000的后焦后,所述摄像模组1000的所述滤光片30能够进一步靠近所述感光芯片13,允许所述光学镜头40具有朝向所述感光芯片13的方向调整的可能性,从而有利于降低所述摄像模组1000的高度尺寸。
附图2至图7示出了所述摄像模组1000的封装流程。
参考附图2,贴装一系列所述电子元器件12于所述线路板11。所述电子元器件12的类型在本发明的所述摄像模组1000中不受限制,例如,所述电子元器件12可以是但不限于电阻、电容、控制器等。
参考附图3,贴装所述感光芯片13于所述线路板11,并通过打线工艺形成 两端分别电连接于所述感光芯片13和所述线路板11的至少一组所述导引线14,以形成所述线路板组件10。
值得一提的是,附图3示出的阶段可以在附图2示出的阶段之前,即,首先贴装所述感光芯片13于所述线路板11,其次贴装一系列所述电子元器件12于所述线路板11,以形成所述线路板组件10。
参考附图4,形成一环形凸台200于所述滤光片30的一个侧部的四周,以形成一带有环形凸台的滤光片300。例如,在附图7和图8示出的所述摄像模组1000的这个较佳示例中,通过丝网印刷工艺能够在所述滤光片30的一个侧部的四周形成所述环形凸台200,以形成所述带有环形凸台的滤光片300。可选地,通过光刻工艺也能够在所述滤光片30的一个侧部的四周形成环形凸台200,以形成所述带有环形凸台的所述滤光片300。形成所述环形凸台200的材料可以是但不限于胶体。
值得一提的是,形成所述线路板组件10和形成所述带有环形凸台的滤光片300的先后顺序不受限制。
参考附图5,首先,贴装所述带有环形凸台的滤光片300于所述线路板组件10,其中所述环形凸台200被贴装于所述感光芯片13的所述非感光区域132,例如,在一个示例中,若所述环形凸台200的材料为胶体材料,则所述环形凸台200可以被直接地贴装于所述感光芯片13的所述非感光区域132,在另一个示例中,若所述环形凸台200的材料为非胶体,则需要通过胶水或者类似的物质贴装所述环形凸台200于所述感光芯片13的所述非感光区域132;其次,固化所述环形凸台200,以使所述环形凸台200形成所述结合部20而藉由所述结合部20保持所述滤光片30于所述感光芯片13的感光路径,其中所述环形凸台200的结合于所述感光芯片13的表面形成所述结合部20的所述下部结合侧21,所述环形凸台200的结合于所述滤光片30的表面形成所述结合部20的所述上部结合面22,所述环形凸台200的中部镂空部分形成所述结合部20的所述光线通路23。
值得一提的是,固化所述环形凸台200的方式不受限制,其根据形成所述环形凸台200的材料被选择,例如可以通过加热的方式或者紫外光照射的方式固化所述环形凸台200而形成所述结合部20。
参考附图6,通过模塑工艺形成所述镜座50于所述线路板组件10和所述结合部20,以使所述镜座50的所述下表面51一体地结合于所述线路板组件10的 所述线路板11和所述感光芯片13,和使所述镜座50的所述内表面53一体地结合于所述结合部20。优选地,所述镜座50包埋凸出于所述线路板11的所述电子元器件12和所述导引线14,通过这样的方式,首先,在所述镜座50和所述电子元器件12之间不需要预留安全空间,以有利于降低所述摄像模组1000的高度尺寸;其次,所述镜座50避免所述电子元器件12暴露,从而防止所述电子元器件12表面脱落的碎屑等污染物污染其他的所述电子元器件12或者污染所述感光芯片13;第三,所述镜座50的所述上表面52具有更高的平整度,从而在藉由所述镜头承载部60以被贴装于所述镜座50的所述上表面52的方式保持所述光学镜头40于所述感光芯片13的感光路径后,所述光学镜头40的中心轴线和所述感光芯片13的所述感光区域13的中心轴线能够重合,以保证所述摄像模组1000的成像品质;第四,所述镜座50能够填充在相邻所述电子元器件12之间,以隔离相邻所述电子元器件12并避免相邻所述电子元器件12出现相互干扰的不良现象,通过这样的方式,相邻所述电子元器件12之间的间距能够更小,以允许所述摄像模组1000被配置数量更多、尺寸更大的所述电子元器件12。
参考附图7和图8,安装所述光学镜头40于所述镜头承载部60和贴装所述镜头承载部60于所述镜座50的所述上表面52,以保持所述光学镜头40于所述感光芯片13的感光路径,从而制得所述摄像模组1000。
可选地,在所述摄像模组1000的另一个制造过程中,首先,通过丝网印刷工艺或者光刻工艺在所述感光芯片13的所述非感光区域132形成所述环形凸台200;其次,贴装所述滤光片30于所述环形凸台200,例如可以通过胶水或者类似的物质贴装所述滤光片30于所述环形凸台200;然后,固化所述环形凸台200,以使所述环形凸台200形成所述结合部20而藉由所述结合部20保持所述滤光片30于所述感光芯片13的感光路径,其中所述环形凸台200的结合于所述感光芯片13的表面形成所述结合部20的所述下部结合侧21,所述环形凸台200的结合于所述滤光片30的表面形成所述结合部20的所述上部结合面22,所述环形凸台200的中部镂空部分形成所述结合部20的所述光线通路23。
附图9示出了所述摄像模组1000的一个应用状态,其中所述摄像模组1000被设置于一电子设备本体2000,以使所述电子设备本体2000和所述摄像模组1000形成一电子设备。值得一提的是,在附图9中示出的所述电子设备为智能手机的示例仅为举例,其并不限制本发明的所述摄像模组1000的应用范围,例 如,所述电子设备的类型可以是但不限于平板电脑、笔记本电脑、个人数字助理、MP3/4/5。
附图10示出了所述摄像模组1000的一个变形实施方式,附图11A示出了所述摄像模组1000的一个应用状态。与附图7和图8示出的所述摄像模组1000不同的是,在附图10示出的所述摄像模组1000的这个具体示例中,所述摄像模组1000具有四个侧部101,其中所述摄像模组1000的至少一个侧部101进一步具有一侧面1011、一底面1012以及连通于所述侧面1011和所述底面1012的一连接面1013,其中所述侧面1011与所述连接面1013的连接处到所述摄像模组1000的中心轴线之间的距离L1大于所述底面1012与所述连接面1013的连接处到所述摄像模组1000的中心轴线之间的距离L2,从而使得所述摄像模组1000的至少一个侧部101具有缩进部,以匹配所述电子设备本体的外壳转折处,通过这样的方式,所述摄像模组1000的所述光学镜头40能够更靠近所述电子设备本体2000的外壳2001的边缘,以有利于提高所述电子设备的屏占比。具体地说,对比附图11B示出的现有技术的摄像模组与电子设备的外壳之间的关系可知,本发明的所述摄像模组1000与所述电子设备本体2000的所述外壳2001的边缘之间的距离更小,从而有利于提高所述电子设备的屏占比。
附图12A示出了所述摄像模组1000被设置于所述电子设备本体而形成所述电子设备后,所述摄像模组1000与所述电子设备本体2000的所述外壳2001之间的关系,其中所述摄像模组1000的具有所述锁紧部的所述侧部101对应于所述电子设备本体2000的所述外壳2001的转折处,从而使得所述摄像模组1000的所述光学镜头40能够更靠近所述电子设备本体2000的所述外壳2001的边缘,以提高所述电子设备的屏占比。所述摄像模组1000的所述连接面1013是一个倾斜的平面,参考附图12A,或者所述摄像模组1000的所述连接面1013是一个外凸的弧面,参考附图12B,其中所述摄像模组1000的所述连接面1013可以通过去除所述线路板11的一部分和/或所述镜座50的一部分的方式形成。例如,通过切割或者研磨所述线路板11和/或所述镜座50的方式能够去除所述线路板11的一部分和所述镜座50的一部分。可选地,所述摄像模组1000的所述连接面1013是一个台阶面,参考附图12C,其中所述摄像模组1000的所述连接面1013可以在封装所述摄像模组1000的过程中通过回缩所述线路板11的方式形成。可选地,所述摄像模组1000的所述连接面1013也可以是在封装所述摄像模组1000 后去除所述线路板11的一部分或者去除所述线路板11和所述镜座50的一部分的方式形成。
附图13示出了所述摄像模组1000的另一个变形实施方式,与附图2至图8示出的所述摄像模组1000不同的是,在附图13示出的所述摄像模组的这个较佳示例中,所述摄像模组1000没有所述镜头承载部60,其中所述镜座50被贴装于所述线路板组件10的所述线路板11,所述光学镜头40被安装于所述镜座50,以藉由所述镜座50保持所述光学镜头40于所述感光芯片13的感光路径。
参考本发明的说明书附图之附图14至图20,依本发明的第二较佳实施例的一摄像模组1000在接下来的描述中被揭露和被阐述,其中所述摄像模组1000包括一线路板组件10、一结合部20、一滤光片30以及一光学镜头40。
参考附图19和图20,所述线路板组件10包括一线路板11和被导通地连接于所述线路板11的一系列电子元器件12,并且相邻所述电子元器件12之间具有间隙。所述电子元器件12被导通地连接于所述线路板11的方式不受限制,例如在附图19和图20示出的所述摄像模组1000的这个具体示例中,所述电子元器件12以被贴装于所述线路板11的表面的方式被导通地连接于所述线路板11。可选地,所述电子元器件12以至少一部分被埋入所述线路板11的内部的方式被导通地连接于所述线路板11。
继续参考附图19和图20,所述线路板组件10进一步包括一感光芯片13,其具有一感光区域131和环绕在所述感光区域131的四周的一非感光区域132,其中所述感光芯片13被导通地连接于所述线路板11。另外,所述感光芯片13的所述感光区域131和所述非感光区域132的高度差也不限于附图15至图19中示出的高度差。所述感光芯片13被导通地连接于所述线路板11的方式不受限制,例如在附图19和图20示出的所述摄像模组1000的这个具体的示例中,所述感光芯片13被贴装于所述线路板11的表面,并且通过打线工艺形成的至少一组导引线14的两端分别被电连接于所述感光芯片13和所述线路板11,以使所述感光芯片13被导通地连接于所述线路板11。可选地,所述感光芯片13被藉由倒装芯片(Flip-Chip)工艺被贴装于所述线路板11和被导通地连接于所述线路板11。
具体地,在附图19和图20示出的所述摄像模组1000中,一系列所述电子元器件12形成两列所述电子元器件12,其中一列所述电子元器件12位于所述 感光芯片13的左侧,另一侧所述电子元器件12位于所述感光芯片13的右侧。可选地,一系列所述电子元器件12形成三列所述电子元器件12,其中三列所述电子元器件12分别位于所述感光芯片13的三侧。可选地,一系列所述电子元器件12形成四列所述电子元器件12,其中四列所述电子元器件12位于所述感光芯片13的四侧。可选地,在所述感光芯片13的同一侧也可以设置有两列以上的所述电子元器件12。因此,附图2至图7中示出的所述电子元器件12和所述感光芯片13的相对排列方式仅作为参考,并不应被视为对本发明的所述摄像模组1000的内容和范围的限制。
所述结合部20呈环形,其具有一下部结合侧21、对应于所述下部结合侧21的一顶部结合面22以及一光线通路23。所述结合部20的所述下部结合侧21被结合于所述线路板组件10,并且所述结合部20环绕在所述感光芯片13的所述感光区域131的四周,以使所述感光芯片13的所述感光区域131被暴露在所述结合部20的所述光线通络23,所述结合部20的所述顶部结合面22所在的平面高出所述感光芯片13的所述感光区域131所在的平面。所述滤光片30的四周被结合于所述结合部20的所述顶部结合面22,以允许所述滤光片30被保持在所述感光芯片13的感光路径。所述光学镜头40被保持在所述感光芯片13的感光路径。在本发明的所述摄像模组1000中,所述结合部20呈方框环形,即,所述结合部20具有四个侧边24,其中相邻两个所述侧边24首尾相接并相互垂直,从而在四个所述侧边24形成的所述结合部20之间形成所述光线通路24。所述结合部20的每个所述侧边24分别位于所述感光芯片13的所述感光区域131的外侧。
优选地,参考附图19,所述结合部20的所述下部结合侧21被结合于所述线路板组件10的所述线路板11、所述电子元器件12、所述导引线14和所述感光芯片13的所述非感光区域132,所述结合部20自所述线路板组件10向上延伸至适合高度,且形成所述结合部20的所述顶部结合面22,并且所述结合部20的所述顶部结合面22对应于等高设置的所述电子元器件12,通过这样的方式,所述结合部20的所述顶部结合面22的平整度能够被等高设置的所述电子元器件12保证,从而保证所述滤光片30和所述感光芯片13的所述感光区域131之间的平整度。
可选地,参考附图21,所述结合部20的所述顶部结合面22也可以对应于 所述感光芯片13的所述非感光区域132,通过这样的方式,所述结合部20的所述顶部结合面22的平整度能够被所述感光芯片13的所述非感光区域132保证,从而保证所述滤光片30和所述感光芯片13的所述感光区域131之间的平整度。继续参考附图21,所述结合部20的所述顶部结合面22的高度可以低于所述结合部20的最高位置,例如,所述结合部20的所述顶部结合面22的高度可以低于所述电子元器件12的高度,这样,配合所述摄像模组1000的光学设计上的改进,能够减小所述摄像模组1000的后焦,从而进一步降低所述摄像模组1000的高度尺寸。另外,本发明的所述摄像模组1000的所述滤光片30进一步靠近所述感光芯片13的方式,允许所述光学镜头40具有朝向所述感光芯片13的方向调整的可能性,从而有利于降低所述摄像模组1000的高度尺寸。
继续参考附图19,在本发明的所述摄像模组1000中,所述电子元器件12的类型可以是但不限于电阻、电容、控制器等,通常情况下,不同类型的所述电子元器件12具有不同的高度尺寸,因此,为了保证至少三个所述电子元器件12能够被等高地设置,在导通这些所述电子元器件12于所述线路板11时,可以将高度尺寸较大的所述电子元器件12半埋入所述线路板11和将高度尺寸较小的所述电子元器件12贴装于所述线路板11的表面,从而使得这些所述电子元器件12被等高地设置;或者在导通这些所述电子元器件12于所述线路板11时,可以将高度尺寸较大的所述电子元器件12贴装于所述线路板11的表面和通过附加结构调整高度尺寸较小的所述电子元器件12的高度,从而使得这些所述电子元器件12被等高地设置。
值得一提的是,在通过所述附加结构调整高度尺寸较小的所述电子元器件12的高度时,所述附加结构可以被设置于所述电子元器件12和所述线路板11之间,也可以被设置于所述电子元器件12的上部。
所述结合部20的所述顶部结合面22所在的平面与所述感光芯片13的所述感光区域131所在的平面之间的距离尺寸(参数为H)大于或者能与0.15mm,通过这样的方式,有利于减少杂散光产生和减少污坏点成像,从而提高所述摄像模组1000的成像品质。
在本发明中,所述线路板组件10、所述结合部20和所述滤光片30形成一感光组件,即,所述摄像模组1000包括所述感光组件和被保持在所述感光组件的所述感光芯片13的感光路径的所述光学镜头40,其中自所述光学镜头40进 入所述摄像模组1000的内部的光线能够被所述感光芯片13接收和进行光电转化。
继续参考附图19和图20,所述摄像模组1000进一步包括一镜座50和被贴装于所述镜座50的一镜头承载部60。所述镜座50具有一下表面51、对应于所述下表面51的一上表面52以及自所述上表面52延伸至所述下表面51的一内表面53。所述镜座50的所述下表面51被贴装于所述线路板11,所述镜座50的所述内表面53被结合于所述结合部20。所述光学镜头40被设置于所述镜头承载部60,所述镜头承载部60被贴装于所述镜座50的所述上表面52,以藉由所述镜座50和所述镜头承载部60保持所述光学镜头40于所述感光芯片13的感光路径。
所述镜头承载部60的类型根据所述摄像模组1000的类型被选择。例如,当所述摄像模组1000为定焦摄像模组时,所述镜头承载部60被选择为镜筒,相应地,当所述摄像模组1000为变焦摄像模组时,所述镜头承载部60被选择为马达,例如但不限于音圈马达。
可选地,在所述摄像模组1000的一个示例中,所述镜筒承载部60和所述镜座50可以是一体式结构。在所述摄像模组1000的另一个示例中,所述摄像模组1000可以没有被配置所述镜筒承载部60,此时,所述摄像模组1000通过直接贴装所述光学镜头40于所述镜座50的方式保持所述光学镜头40于所述感光芯片13的感光路径。
附图14至图19示出了所述摄像模组1000的封装流程。
参考附图14,贴装一系列所述电子元器件12于所述线路板11。所述电子元器件12的类型在本发明的所述摄像模组1000中不受限制,例如,所述电子元器件12可以是但不限于电阻、电容、控制器等。
参考附图15,贴装所述感光芯片13于所述线路板11,并通过打线工艺形成两端分别电连接于所述感光芯片13和所述线路板11的至少一组所述导引线14,以形成所述线路板组件10。
值得一提的是,附图15示出的阶段可以在附图14示出的阶段之前,即,首先贴装所述感光芯片13于所述线路板11,其次贴装一系列所述电子元器件12于所述线路板11,以形成所述线路板组件10。
参考附图16,施涂胶材400于所述线路板组件10,并使所述胶材400包覆所述电子元器件12。优选地,被施凃于所述线路板组件10的所述胶材400进一 步向内延伸至并包覆所述感光芯片13的所述非感光区域132和向外延伸并包覆所述线路板11,并且所述胶材400包覆所述导引线14。更优选地,被施凃于所述线路板组件10的所述胶材400呈环形,例如方框环形,其环绕在所述感光芯片13的所述感光区域131的四周。在附图19和图20示出的所述摄像模组1000的这个较佳示例中,被施凃于所述线路板组件10的所述胶材400包覆最高的所述电子元器件12。
值得一提的是,被施凃于所述线路板组件10的所述胶材400为粘度较大的所述胶材400,以避免所述胶材400在被施凃于所述线路板组件10后出现流动的不良现象,从而在封装所述摄像模组1000的过程中避免污染所述感光芯片13的所述感光区域131。
参考附图17,贴装所述滤光片30于被施凃于所述线路板组件10的所述胶材400的顶部,以藉由所述胶材400将所述滤光片30保持在所述感光芯片13的感光路径。在贴装所述滤光片30于被施凃于所述线路板组件10的所述胶材400的顶部时,朝向所述感光芯片13所在的方向施力于所述滤光片30,以使被施凃于所述线路板组件10的所述胶材400的顶部形成一个平整面,从而使得所述滤光片30和所述感光芯片13的所述感光区域131保持平整。因为被施凃于所述线路板组件10的所述胶材400为粘度较大的所述胶材400,从而在贴装所述滤光片30于被施凃于所述线路板组件10的所述胶材400的顶部且撤销施加于所述滤光片30的外力后,所述滤光片30和所述感光芯片13的相对位置不会产生变化。
可选地,在本发明的所述摄像模组1000的另外一些示例中,所述胶材400可以被沿着所述电子元器件12的延伸方向施涂,例如,若所述摄像模组1000的所述电子元器件12为三列,此时,所述胶材400并没有施涂成环绕所述感光芯片13的所述非感光区域131的状态,即,在所述感光芯片13的没有被排列所述电子元器件12的一侧,同样没有被施涂所述胶材400。在所述感光芯片30被贴装于所述胶材400的顶部后,在所述滤光片30和所述线路板组件10之间会形成缝隙,然然后通过补胶等方式可以密封形成在所述滤光片30和所述线路板组件10之间的缝隙。
参考附图18,贴装所述镜座50于所述线路板组件10的所述线路板11。在本发明的所述摄像模组1000的这个较佳示例中,所述镜座50的所述下表面51藉由所述胶材400被贴装于所述线路板11,所述镜座50的所述内表面53贴合 于所述胶材400。
在贴装所述镜座50于所述线路板11之后,固化被施凃于所述线路板组件10的所述胶材400,以藉由被施凃于线路板组件10的所述胶材400形成所述结合部20,从而所述结合部20保持所述滤光片30于所述感光芯片13的感光路径,其中所述胶材400结合于所述线路板组件10的侧部形成所述结合部20的所述下部结合侧21,所述胶材400结合于所述滤光片30的侧部形成所述顶部结合面22,其中所述镜座50的所述下表面51通过所述胶材400被贴合于所述线路板11,所述镜座50的所述内表面53被结合于所述结合部20。
值得一提的是,固化被施凃于所述线路板组件10的所述胶材400的方式在本发明的所述摄像模组1000中不受限制,其根据所述胶材400的类型被选择,例如通过加热或者紫外光照射的方式能够固化被施凃于所述线路板组件10的所述胶材400。
在本发明的所述摄像模组1000中,所述结合部20的所述顶部结合面22对应于被等高设置的这些所述电子元器件12,从而所述结合部20的所述顶部结合面22的平整度藉由这些被等高设置的所述电子元器件12保证,继而保证所述滤光片30和所述感光芯片13的所述感光区域131的平整度。
参考附图19,安装所述光学镜头40于所述镜头承载部60和贴装所述镜头承载部60于所述镜座50的所述上表面52,以保持所述光学镜头40于所述感光芯片13的感光路径,从而制得所述摄像模组1000。
附图22示出了所述摄像模组1000的一个变形实施方式,与附图14至图20示出的所述摄像模组1000不同的是,在附图22示出的所述摄像模组1000的这个具体示例中,所述摄像模组1000没有被设置所述镜头承载部60,而是直接安装所述光学镜头40于所述镜座50,以藉由所述镜座50保持所述光学镜头40于所述感光芯片13的感光路径。在附图22示出的所述摄像模组1000的封装过程中,首先安装所述光学镜头40于所述镜座50,其次贴装所述镜座50于所述线路板组件10的所述线路板11,然后固化被施凃于所述线路板组件10的所述胶材400,以藉由被施凃于所述线路板组件10的所述胶材400形成所述结合部20。
附图23示出了所述摄像模组1000的一个变形实施方式,与附图14至图20示出的所述摄像模组1000不同的是,在附图23示出的所述摄像模组1000的这个具体示例中,所述胶材400仅被施凃于所述线路板组件10的所述线路板11, 从而在所述胶材400固化后,所述结合部20的所述下部结合侧21仅结合于所述线路板组件10的所述线路板11。
附图24示出的所述摄像模组1000的一个变形实施方式,与附图14至图20示出的所述摄像模组1000不同的是,在附图24示出的所述摄像模组1000的这个具体示例中,所述胶材400仅被施凃于所述线路板组件10的所述感光芯片13的所述非感光区域132,从而在所述胶材400固化后,所述结合部20的所述下部结合侧21仅结合于所述线路板组件10的所述感光芯片13的所述非感光区域132。在附图24示出的所述摄像模组1000的这个具体示例中,所述结合部20的所述顶部结合面22对应于所述感光芯片13的所述非感光区域132,从而藉由所述感光芯片13的所述非感光区域132保证所述结合部20的所述顶部结合面22的平整度,进而保证所述滤光片30和所述感光芯片13的所述感光区域131的平整度。
附图25示出了所述摄像模组1000的一个变形实施方式,与附图14至图20示出的所述摄像模组1000不同的是,在附图25示出的所述摄像模组1000的这个具体示例中,所述镜座50的所述下表面51被贴装于所述线路板11,所述镜头承载部60被贴装于所述镜座50的所述上表面52,从而藉由所述镜座50和所述镜头承载部60保持所述光学镜头40于所述感光芯片13的感光路径。在附图25示出的所述摄像模组1000的封装过程中,首先固化被施凃于所述线路板组件10的所述胶材400,以藉由被施凃于所述线路板组件10的所述胶材400形成所述结合部20,其次贴装所述镜座50的所述下表面51于所述线路板11,然后再贴装所述镜头承载部60于所述镜座50的所述上表面52,从而藉由所述镜座50和所述镜头承载部60保持所述光学镜头40于所述感光芯片13的感光路径。
附图26示出了所述摄像模组1000的一个变形实施方式,与附图14至图20示出的所述摄像模组1000不同的是,所述镜座50进一步具有至少一缺口54,其中所述缺口54自所述下表面51向所述上表面52方向延伸,其中在所述镜座54被贴装于所述线路板11后,被施凃于所述线路板组件10的所述胶材400的一部分被容纳于所述镜座50的所述缺口54,通过这样的方式,在固化被施凃于所述线路板组件10的所述胶材400时,所述镜座50的所述缺口54允许所述胶材400自所述镜座50的内部向外部溢出,从而避免所述胶材400向内膨胀而污染所述感光芯片13的所述感光区域131或者遮挡所述感光芯片13的感光路径。 当被施凃于所述线路板组件10的所述胶材400固化而形成所述结合部20后,所述结合部20的一部分被容纳于所述镜座50的所述缺口54。也就是说,在附图26示出的所述摄像模组1000的这个具体的示例中,所述镜座50的所述缺口54形成溢胶口。
附图27示出了所述摄像模组1000的一个变形实施方式,与附图26示出的所述摄像模组1000不同的是,在附图27示出的所述摄像模组1000的这个具体示例中,所述镜座50被设有所述缺口54的侧部的所述内表面53没有贴附在被施凃于所述线路板组件10的所述胶材400上,而是允许所述镜座50的所述内表面53和被施凃于所述线路板组件10的所述胶材400之间预留间隙,通过这样的方式,在固化被施凃于所述线路板组件10的所述胶材400时,所述镜座50的所述缺口54允许被保持在所述镜座50和被施凃于所述线路板组件10的所述胶材400之间的空气逸出,进而允许被施凃于所述线路板组件10的所述胶材400向所述镜座50的所述线路板组件10方向膨胀,从而避免所述胶材400向内膨胀而污染所述感光芯片13的所述感光区域131或者遮挡所述感光芯片13的感光路径。当被施凃于所述线路板组件10的所述胶材400固化而形成所述结合部20后,通过所述胶材400或者其他的材料封闭所述镜座50的所述缺口54。
附图28示出了所述摄像模组1000的一个变形实施方式,与附图14至图20示出的所述摄像模组1000不同的是,在附图28示出的所述摄像模组1000中,所述镜座50一体地成型于所述线路板11和所述结合部20。具体地说,在被施凃于所述线路板组件10的所述胶材400固化而形成所述结合部20后,通过模塑工艺形成所述镜座50,以使所述镜座50的所述下表面51一体地结合于所述线路板11和使所述镜座50的所述内表面53一体地结合于所述结合部20,以制得附图28示出的所述摄像模组1000。
依本发明的另一个方面,本发明进一步提供一摄像模组1000的制造方法,其中所述制造方法包括如下步骤:
(a)分别结合所述结合部20的所述下部结合侧21于所述线路板组件10和所述滤光片30于所述结合部20的所述顶部结合面22,以保持所述滤光片30于所述线路板组件10的所述感光芯片13的感光路径;和
(b)保持所述光学镜头40于所述感光芯片13的感光路径,以制得所述摄像模组1000。
在本发明的所述制造方法的一个较佳示例中,所述步骤(a)进一步包括步骤:
(a.1)围绕所述感光芯片13的所述感光区域131,施涂所述胶材400于所述线路板组件10;
(a.2)贴装所述滤光片30于所述胶材400的顶部;以及
(a.3)固化所述胶材400以形成所述结合部20,其中所述胶材400结合于所述线路板组件10的侧部形成所述结合部20的所述下部结合侧21,所述胶材400结合于所述滤光片30的侧部形成所述结合部20的所述顶部结合面22。
优选地,在所述步骤(a.1)中,被施凃于所述线路板组件10的所述胶材400环绕在所述感光芯片13的所述感光区域131,从而在所述滤光片30被贴装于所述胶材400的顶部后,在所述滤光片30、所述胶材400和所述感光芯片13之间形成一个密封空间,所述感光芯片13的所述感光区域131被保持在所述密封空间,这样,在封装所述摄像模组1000的过程中,能够避免灰尘等污染物落入所述感光芯片13的所述感光区域131而出现污坏点的不良现象。可选地,在所述步骤(a.1)中,所述胶材400仅被沿着所述线路板组件10的所述电子元器件12的延伸方向施涂,在所述滤光片30被贴装于所述胶材400的顶部后,密封形成于所述滤光片30和所述线路板组件10之间的缝隙。例如,可以通过补胶的方式利用所述胶材400密封形成于所述滤光片30和所述线路板组件10之间的缝隙。
在所述步骤(a.2)中,朝向所述感光芯片13的方向施压于所述滤光片30,以贴装所述滤光片30于所述胶材400的顶部,通过这样的方式,所述滤光片30能够使所述胶材400的顶部形成一个平整面,并且在此时,所述滤光片30与所述感光芯片13的所述感光区域131之间的平整度能够被所述胶材400保证,从而在固化所述胶材400而形成结合部20之后,所述结合部20能够保证所述滤光片30和所述感光芯片13的所述感光区域131之间的平整度。
在本发明的所述制造方法的一个较佳示例中,在所述步骤(a.3)之前,所述步骤(a)进一步包括步骤:贴装所述镜座50于所述线路板组件10的所述线路板11,以在所述步骤(a.3)中,结合所述镜座50的所述下表面51于所述线路板11和所述镜座50的所述内表面53于所述结合部20,通过这样的方式,所述镜座50、所述结合部20和所述线路板组件10之间的封装关系更可靠。
优选地,所述镜座50设有所述缺口54,从而在固化所述胶材400的过程中, 允许所述胶材400自所述镜座50的所述缺口54溢出,从而避免所述胶材400向所述感光芯片13的所述感光区域131方向膨胀而出现污染所述感光芯片13的所述感光区域131或者遮挡所述感光芯片13的感光路径的不良现象。可选地,在贴装所述镜座50于所述线路板10的所述线路板11时,所述镜座50的被设有所述缺口54的侧部的所述内表面53没有贴合于所述胶材400,以在所述胶材400和所述镜座50的所述内表面53之间形成缝隙,从而在固化所述胶材400的过程中,允许所述胶材400和所述镜座50的所述内表面53之间的空气自所述镜座50的所述缺口54溢出,以引导所述胶材400向所述镜座50的所述内表面53的方向膨胀,通过这样的方式,能够避免所述胶材400向所述感光芯片13的所述感光区域131方向膨胀而出现污染所述感光芯片13的所述感光区域131或者遮挡所述感光芯片13的感光路径的不良现象。
在本发明的所述制造方法的一个较佳示例中,所述步骤(a)进一步包括步骤:
(a.1’)形成所述环形凸台200于所述滤光片30的四周边缘;
(a.2’)贴装所述环形凸台200于所述感光芯片13的所述非感光区域132;以及
(a.3’)固化所述环形凸台200以形成所述结合部20,其中所述环形凸台200结合于所述感光芯片13的所述非感光区域132的侧部形成所述结合部20的所述下部结合侧21,所述环形凸台200结合于所述滤光片30的侧部形成所述结合部20的所述顶部结合面22。
在本发明的所述制造方法的另一个较佳示例中,所述步骤(a)进一步包括步骤:
(a.1”)形成所述环形凸台200于所述感光芯片13的所述非感光区域131;
(a.2”)贴装所述滤光片30的四周边缘于所述环形凸台200;以及
(a.3”)固化所述环形凸台200以形成所述结合部20,其中所述环形凸台20结合于所述感光芯片13的所述非感光区域132的侧部形成所述结合部20的所述下部结合侧21,所述环形凸台200结合于所述滤光片30的侧部形成所述结合部20的所述顶部结合面22。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有 明确指出的实施方式。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (30)

  1. 一感光组件,其特征在于,包括:
    一滤光片;
    一线路板组件,其中所述线路板组件包括一线路板和被导通地连接于所述线路板的一感光芯片;以及
    一结合部,其中所述结合部具有一下部结合侧、一顶部结合面以及一光线通路,其中所述结合部的所述下部结合侧被结合于所述线路板组件,并且所述结合部环绕在所述感光芯片的感光区域的四周,以使所述感光芯片的感光区域被暴露于所述结合部的所述光线通路,其中所述滤光片的四周被结合于所述结合部的所述顶部结合面,以藉由所述结合部保持所述滤光片于所述感光芯片的感光路径。
  2. 根据权利要求1所述的感光组件,其中所述结合部的所述下部结合侧被结合于所述感光芯片的非感光区域,并且所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
  3. 根据权利要求1所述的感光组件,其中所述结合部的所述下部结合侧被结合于所述线路板和所述感光芯片的非感光区域,并且所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
  4. 根据权利要求1所述的感光组件,其中所述线路板组件进一步包括一系列电子元器件,其中至少三个所述电子元器件被等高地设置于且被导通地连接于所述线路板,其中所述结合部包埋所述电子元器件,并且所述结合部的所述顶部结合面对应于所述电子元器件。
  5. 根据权利要求4所述的感光组件,其中所述结合部的所述顶部结合面所在的平面低于最高的所述电子元器件的顶表面所在的平面。
  6. 根据权利要求1至5中任一所述的感光组件,其中所述结合部的所述顶部结合面所在的平面与所述感光芯片的感光区域所在的平面之间的距离尺寸大于或者等于0.15mm。
  7. 根据权利要求2所述的感光组件,其中所述结合部具有四个侧边,相邻所述侧边首尾相接并且相互垂直,以在四个所述侧边之间形成所述光线通路,其中所述结合部的至少一个所述侧边的宽度尺寸大于或者等于0.15mm。
  8. 一摄像模组,其特征在于,包括:
    一光学镜头;
    一滤光片;
    一线路板组件,其中所述线路板组件包括一线路板和被导通地连接于所述线路板的一感光芯片;以及
    一结合部,其中所述结合部具有一下部结合侧、一顶部结合面以及一光线通路,其中所述结合部的所述下部结合侧被结合于所述线路板组件,并且所述结合部环绕在所述感光芯片的感光区域的四周,以使所述感光芯片的感光区域被暴露于所述结合部的所述光线通路,其中所述滤光片的四周被结合于所述结合部的所述顶部结合面,以藉由所述结合部保持所述滤光片于所述感光芯片的感光路径,其中所述光学镜头被保持于所述感光芯片的感光路径。
  9. 根据权利要求8所述的摄像模组,其中所述结合部的所述下部结合侧被结合于所述感光芯片的非感光区域,并且所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
  10. 根据权利要求8所述的摄像模组,其中所述结合部的所述下部结合侧被结合于所述线路板和所述感光芯片的非感光区域,并且所述结合部的所述顶部结合面对应于所述感光芯片的非感光区域。
  11. 根据权利要求8所述的摄像模组,其中所述线路板组件进一步包括一系列电子元器件,其中至少三个所述电子元器件被等高地设置于且被导通地连接于所述线路板,其中所述结合部包埋所述电子元器件,并且所述结合部的所述顶部结合面对应于所述电子元器件。
  12. 根据权利要求11所述的摄像模组,其中所述结合部的所述顶部结合面所在的平面低于最高的所述电子元器件的顶表面所在的平面。
  13. 根据权利要求8所述的摄像模组,其中所述结合部的所述顶部结合面所在的平面与所述感光芯片的感光区域所在的平面之间的距离尺寸大于或者等于0.15mm。
  14. 根据权利要求9所述的摄像模组,其中所述结合部具有四个侧边,相邻所述侧边首尾相接并且相互垂直,以在四个所述侧边之间形成所述光线通路,其中所述结合部的至少一个所述侧边的宽度尺寸大于或者等于0.15mm。
  15. 根据权利要求8至14中任一所述的摄像模组,进一步包括一镜座,其中所述镜座具有一下表面,所述镜座的所述下表面被贴装于所述线路板。
  16. 根据权利要求8至14中任一所述的摄像模组,进一步包括一镜座,其中所述镜座具有一下表面、对应于所述下表面的一上表面以及自所述上表面延伸至所述下表面的一内表面,其中所述镜座的所述下表面被贴装于所述线路板,所述镜座的所述内表面被结合于所述结合部。
  17. 根据权利要求8至14中任一所述的摄像模组,进一步包括一镜座,其中所述镜座具有一下表面、对应于所述下表面的一上表面以及自所述上表面延伸至所述下表面的一内表面,其中所述镜座的所述下表面被结合于所述线路板,所述镜座的所述内表面被结合于所述结合部。
  18. 根据权利要求9所述的摄像模组,进一步包括一镜座,其中所述镜座具有一下表面、对应于所述下表面的一上表面以及自所述上表面延伸至所述下表面的一内表面,其中所述镜座的所述下表面被结合于所述线路板和所述感光芯片的非感光区域,所述镜座的所述内表面被结合于所述结合部。
  19. 根据权利要求17所述的摄像模组,其具有四个侧部,其中至少一个所述侧部具有一侧面、一底面以及连接于所述侧面和所述底面的一连接面,其中所述连接面与所述侧面的连接处到所述摄像模组的中心轴线之间的距离大于所述连接面与所述底面的连接处到所述摄像模组的中心轴线之间的距离。
  20. 根据权利要求18所述的摄像模组,其具有四个侧部,其中至少一个所述侧部具有一侧面、一底面以及连接于所述侧面和所述底面的一连接面,其中所述连接面与所述侧面的连接处到所述摄像模组的中心轴线之间的距离大于所述连接面与所述底面的连接处到所述摄像模组的中心轴线之间的距离。
  21. 根据权利要求19所述的摄像模组,其中所述连接面是一个倾斜的平面;或者所述连接面是一个外凸的弧面;或者所述连接面是一个台阶面。
  22. 根据权利要求20所述的摄像模组,其中所述连接面是一个倾斜的平面;或者所述连接面是一个外凸的弧面;或者所述连接面是一个台阶面。
  23. 根据权利要求21所述的摄像模组,其中所述连接面形成于所述镜座和所述线路板。
  24. 根据权利要求22所述的摄像模组,其中所述连接面形成于所述镜座和所述线路板。
  25. 根据权利要求16所述的摄像模组,其中所述镜座具有至少一缺口,其自所述镜座的所述下表面向所述上表面方向延伸,其中所述结合部的一部分被容 纳于所述镜座的所述缺口。
  26. 根据权利要求18至25中任一所述的摄像模组,进一步包括一镜头承载部,所述镜头承载部具有一贴装面,其中所述镜头承载部以所述镜头承载部的所述贴装面被贴装于所述镜座的所述上表面的方式被贴装于所述镜座,其中所述光学镜头被设置于所述镜头承载部。
  27. 根据权利要求26所述的摄像模组,其中所述镜头承载部的所述贴装面与所述滤光片的下表面之间的距离参数D的取值范围为:0.1mm≤D≤0.2mm。
  28. 根据权利要求8至14中任一所述的摄像模组,其中所述摄像模组的后焦距离参数L的取值范围为:0.4mm≤L≤0.6mm,其中所述摄像模组的后焦距离是指所述光学镜头的靠近所述感光芯片的一个镜片的下表面与所述感光芯片的感光区域之间的距离。
  29. 根据权利要求26所述的摄像模组,其中所述摄像模组的后焦距离参数L的取值范围为:0.4mm≤L≤0.6mm,其中所述摄像模组的后焦距离是指所述光学镜头的靠近所述感光芯片的一个镜片的下表面与所述感光芯片的感光区域之间的距离。
  30. 一电子设备,其特征在于,包括:
    一电子设备本体;和
    根据权利要求8至29中任一所述的至少一个所述摄像模组,其中所述摄像模组被设置于所述电子设备本体。
PCT/CN2019/113348 2018-12-04 2019-10-25 感光组件、摄像模组、摄像模组的制造方法和电子设备 WO2020114143A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19892265.0A EP3890017A4 (en) 2018-12-04 2019-10-25 PHOTOSENSITIVE ASSEMBLY, PHOTOGRAPHIC MODULE, METHOD FOR MANUFACTURING A PHOTOGRAPHIC ASSEMBLY AND ELECTRONIC DEVICE
US17/299,029 US11985408B2 (en) 2018-12-04 2019-10-25 Photosensitive assembly, camera module, method for manufacturing camera module, and electronic device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811473751.X 2018-12-04
CN201822026719.9 2018-12-04
CN201822026719.9U CN209982562U (zh) 2018-12-04 2018-12-04 感光组件、摄像模组和带有摄像模组的电子设备
CN201811493456.0A CN111277734B (zh) 2018-12-04 2018-12-04 摄像模组及其制造方法
CN201811493456.0 2018-12-04
CN201811473751.XA CN111277731A (zh) 2018-12-04 2018-12-04 摄像模组和带有摄像模组的电子设备

Publications (1)

Publication Number Publication Date
WO2020114143A1 true WO2020114143A1 (zh) 2020-06-11

Family

ID=70974887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113348 WO2020114143A1 (zh) 2018-12-04 2019-10-25 感光组件、摄像模组、摄像模组的制造方法和电子设备

Country Status (3)

Country Link
US (1) US11985408B2 (zh)
EP (1) EP3890017A4 (zh)
WO (1) WO2020114143A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112954163A (zh) * 2021-02-05 2021-06-11 南昌欧菲光电技术有限公司 光传感模组、摄像模组及电子设备
RU2809389C2 (ru) * 2019-04-24 2023-12-11 Такара Байо Инк. Мутант aav, обладающий способностью нацеливаться на головной мозг

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115426441B (zh) * 2022-08-02 2023-08-25 荣耀终端有限公司 一种摄像头模组及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511206A (zh) * 2014-09-26 2016-04-20 宁波舜宇光电信息有限公司 一种影像模组及其感光芯片封装结构及方法
US20170155807A1 (en) * 2015-12-01 2017-06-01 Ningbo Sunny Opotech Co., Ltd. Electrical Bracket and Circuit Conducting Method for Camera Module
CN206743373U (zh) * 2017-04-28 2017-12-12 南昌欧菲光电技术有限公司 摄像模组及其具有防移结构的感光组件
CN208077979U (zh) * 2017-11-29 2018-11-09 宁波舜宇光电信息有限公司 一体光刻成型的感光组件和包括其的模塑感光组件和摄像模组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186120A2 (zh) * 2016-04-28 2017-11-02 宁波舜宇光电信息有限公司 摄像模组及其模塑感光组件、模塑感光组件的半成品和制造方法以及电子设备
CN107277336B (zh) 2017-08-07 2023-03-24 宁波舜宇光电信息有限公司 摄像模组及其制作方法以及相应的智能终端
CN207820032U (zh) 2017-10-13 2018-09-04 宁波舜宇光电信息有限公司 摄像模组和感光组件及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511206A (zh) * 2014-09-26 2016-04-20 宁波舜宇光电信息有限公司 一种影像模组及其感光芯片封装结构及方法
US20170155807A1 (en) * 2015-12-01 2017-06-01 Ningbo Sunny Opotech Co., Ltd. Electrical Bracket and Circuit Conducting Method for Camera Module
CN206743373U (zh) * 2017-04-28 2017-12-12 南昌欧菲光电技术有限公司 摄像模组及其具有防移结构的感光组件
CN208077979U (zh) * 2017-11-29 2018-11-09 宁波舜宇光电信息有限公司 一体光刻成型的感光组件和包括其的模塑感光组件和摄像模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3890017A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809389C2 (ru) * 2019-04-24 2023-12-11 Такара Байо Инк. Мутант aav, обладающий способностью нацеливаться на головной мозг
CN112954163A (zh) * 2021-02-05 2021-06-11 南昌欧菲光电技术有限公司 光传感模组、摄像模组及电子设备

Also Published As

Publication number Publication date
EP3890017A1 (en) 2021-10-06
EP3890017A4 (en) 2022-03-16
US11985408B2 (en) 2024-05-14
US20220038609A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US20220021792A1 (en) Array camera module and application thereof
KR102360319B1 (ko) 카메라 모듈, 그 감광성 부품 및 그 제조 방법
JP6876812B2 (ja) レンズ群及びカメラモジュール並びにその製造方法
WO2017220015A1 (zh) 定焦摄像模组及其制造方法
TWM565451U (zh) 陣列攝像模組及其模塑感光元件以及電子設備
KR100730726B1 (ko) 카메라 모듈
TWI657306B (zh) 陣列攝像模組及其模塑感光組件、線路板組件和製造方法以及電子設備
WO2019015692A1 (zh) 摄像模组及其支座、感光装置和制造方法以及电子设备
US11721709B2 (en) Circuit board assembly with photosensitive element mounted to back side of circuit board
WO2018113794A2 (zh) 摄像模组及其电路板组件和制造方法以及带有摄像模组的电子设备
EP3484139A1 (en) Photosensitive component, and camera module and manufacturing method therefor
WO2020114143A1 (zh) 感光组件、摄像模组、摄像模组的制造方法和电子设备
US8952412B2 (en) Method for fabricating a solid-state imaging package
CN110636185A (zh) 感光组件、摄像模组及智能终端设备
JP2008028838A (ja) カメラモジュールおよびその製造方法
CN209982562U (zh) 感光组件、摄像模组和带有摄像模组的电子设备
TWI761670B (zh) 鏡頭模組及電子裝置
TWI706180B (zh) 減少雜散光的攝像模組及其感光組件和電子設備
CN109672806B (zh) 摄像模组和感光组件及其封装方法
US20200271885A1 (en) Lens module and electronic device using the lens module
CN111277734B (zh) 摄像模组及其制造方法
CN111277731A (zh) 摄像模组和带有摄像模组的电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019892265

Country of ref document: EP

Effective date: 20210630