WO2020114045A1 - 一种燃气轮机的点火方法及点火装置 - Google Patents

一种燃气轮机的点火方法及点火装置 Download PDF

Info

Publication number
WO2020114045A1
WO2020114045A1 PCT/CN2019/107619 CN2019107619W WO2020114045A1 WO 2020114045 A1 WO2020114045 A1 WO 2020114045A1 CN 2019107619 W CN2019107619 W CN 2019107619W WO 2020114045 A1 WO2020114045 A1 WO 2020114045A1
Authority
WO
WIPO (PCT)
Prior art keywords
ignition device
ignition
gas turbine
combustion chamber
control module
Prior art date
Application number
PCT/CN2019/107619
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2020114045A1 publication Critical patent/WO2020114045A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/264Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/264Ignition
    • F02C7/266Electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants

Definitions

  • the invention relates to the technical field of gas turbines, in particular to an ignition method and an ignition device of a gas turbine.
  • Gas turbine is an advanced and complex complete set of power machinery equipment, which is a typical high-tech intensive product.
  • gas turbines represent a comprehensive level of development in multiple theoretical disciplines and multiple engineering fields, and are the leading technology in the 21st century.
  • the development of the gas turbine industry integrating new technologies, new materials and new processes is one of the important symbols of the country's high technological level and scientific and technological strength, and has a very prominent strategic position.
  • a gas turbine is an internal combustion power machine that uses continuous flowing gas as a working substance to drive an impeller to rotate at high speed and convert the energy of fuel into useful work. It is a rotating impeller heat engine.
  • the entire start-up process of a gas turbine refers to a process in which the rotor gradually accelerates from a stationary state to a rated speed, and the load gradually increases from zero to a rated value or a predetermined value.
  • fuel atomization is achieved by high-temperature and high-pressure gas.
  • the gas turbine itself cannot provide high-temperature and high-pressure gas, and an external air pump is required to realize the function of fuel atomization.
  • the external air pump has a large volume and high power requirements, which limits the application of gas turbines equipped with air pumps and cannot achieve the miniaturization of gas turbines, especially restricting the development of gas turbines in vehicles.
  • the purpose of the embodiments of the present invention is to provide an ignition method and an ignition device for a gas turbine.
  • the ignition method is used to start the gas turbine in three steps, which overcomes the shortcoming that the gas atomizer must be equipped with an air pump when the gas turbine is started, which greatly reduces the gas turbine
  • the overall volume and weight also avoid the need for a high-power power supply when the air pump is working, increase the level of miniaturization of the gas turbine, and broaden the scope of application of the gas turbine.
  • a first aspect of the embodiments of the present invention provides a gas turbine ignition method.
  • the gas turbine includes a compressor connected through a rotating shaft, a turbine, and is disposed between the compressor and the turbine.
  • the combustion chamber further includes: a first ignition device, a second ignition device and a third ignition device provided in the combustion chamber.
  • the ignition method includes the following steps: starting the first ignition device, the first An ignition device heats and vaporizes the liquid fuel entering the combustion chamber and ignites it.
  • the combustion gas drives the turbine to rotate.
  • the turbine drives the compressor to work through the rotating shaft.
  • the gas turbine further includes a temperature detection device disposed in the combustion chamber for detecting the temperature in the combustion chamber, and the temperature detection device is simultaneously connected to the first ignition device, the second ignition device, and The third ignition device; the first preset temperature is 100°C-300°C; and the second preset temperature is 500°C-1200°C.
  • the gas turbine further includes a rotation speed detection device provided on the rotation shaft for detecting the rotation shaft, and the rotation speed detection device is simultaneously connected to the first ignition device, the second ignition device, and the first Three ignition devices; the first predetermined speed is 0-10% of the rated speed of the gas turbine; the second predetermined speed is 30-80% of the rated speed of the gas turbine.
  • the gas turbine further includes a control module, one end of the control module is connected to the temperature detection device or the rotation speed detection device, and the other end is simultaneously connected to the first ignition device, the second ignition device, and the A third ignition device; the control module switches the first ignition device, the second ignition device, and the third ignition device according to the temperature detected by the temperature detection device; or the control module according to The rotation speed detected by the rotation speed detection device switches the first ignition device, the second ignition device, and the third ignition device.
  • a control module one end of the control module is connected to the temperature detection device or the rotation speed detection device, and the other end is simultaneously connected to the first ignition device, the second ignition device, and the A third ignition device; the control module switches the first ignition device, the second ignition device, and the third ignition device according to the temperature detected by the temperature detection device; or the control module according to The rotation speed detected by the rotation speed detection device switches the first ignition device, the second ignition device, and the third ignition device.
  • the first ignition device is an electric heating device, and the liquid fuel is heated and gasified by the electric heating device, and ignited; or the second ignition device is an evaporation tube heating device, by using the High-temperature gas in the combustion chamber heats and vaporizes the liquid fuel in the evaporator heating device; then the third ignition device is a pneumatic atomizing nozzle that uses compressed air generated by the compressor The pressure and flow rate vaporize the liquid fuel and burn.
  • a second aspect of an embodiment of the present invention provides an ignition device for a gas turbine, including: a first ignition device, a second ignition device, a third ignition device, a control module, and a detection device;
  • the second ignition device and the third ignition device are respectively provided on the side wall of the combustion chamber, and one end of the first ignition device, the second ignition device and the third ignition device are respectively connected to the control
  • the other end of the module is connected to the gas path of the gas turbine through a pipeline, and the control module is connected to the detection device.
  • the control module performs a test on the first ignition device and the engine according to the data detected by the detection device.
  • the second ignition device and the third ignition device are switched.
  • the detection device includes a temperature detection device provided in the combustion chamber and/or a rotation speed detection device provided in the rotating shaft connected to the control module; the control module receives the temperature of the temperature detection device The signal or the rotation speed signal of the rotation speed detection device respectively controls the first ignition device, the second ignition device, and the third ignition device to turn on or off.
  • the first ignition device is an electric heating device, which includes a first oil supply device, a first heating device, and a first heating pipeline, and the first heating device is disposed in the first heating pipeline ,
  • the first heating device is electrically connected to the control module, one end of the first oil supply device is connected to the gas turbine oil circuit through a first oil delivery line, and the other end is connected to the first heating line, the One end of the first heating pipe extends into the cavity of the combustion chamber;
  • the second ignition device is an evaporation tube heating device, which includes a second oil supply device and a second heating pipe, the second One end of the oil supply device is connected to the gas turbine oil passage through a second oil pipeline, the other end is provided in the second heating pipeline, one end of the second heating pipeline extends into the combustion chamber, and the other end is connected to the A compressed gas outlet connection of the compressor;
  • the third ignition device is a pneumatic atomizing nozzle, which includes at least one third oil supply device, and one end of the third oil supply device is connected to the first
  • the first ignition device further includes: a first valve provided on the first oil pipeline, the first valve is electrically connected to the control module, and the control module controls the first valve by Opening degree to control the liquid fuel delivery amount of the first ignition device; and/or the second ignition device further includes: a second valve provided on the second oil pipeline, the second valve and the A control module is electrically connected, and the control module controls the liquid opening of the second ignition device by controlling the opening of the second valve; and/or the third ignition device further includes: provided on the third A third valve on the oil pipeline, which is electrically connected to the control module, and the control module controls the opening of the third valve to control the liquid fuel delivery amount of the third ignition device.
  • the electric heating device is an electronically controlled ceramic heater.
  • first ignition device, the second ignition device, and the third ignition device may all be provided in one or more.
  • the three-step start of the gas turbine through the ignition method overcomes the shortcoming that the gas atomization of the gas turbine must be equipped with an air pump, which greatly reduces the overall volume and weight of the gas turbine, and also avoids the need for a high-power power supply when the air pump works , Improve the miniaturization level of the gas turbine, and broaden the application range of the gas turbine.
  • FIG. 1 is a flowchart of a gas turbine ignition method provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a gas turbine equipped with an ignition device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a first ignition device of an ignition device of a gas turbine provided by an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a second ignition device of an ignition device of a gas turbine provided by an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a third ignition device of an ignition device of a gas turbine provided by an embodiment of the present invention.
  • Rotating shaft 2. Combustion chamber, 3. First ignition device, 31. First oil supply device, 32. First heating device, 33. First heating pipeline, 4. Second ignition device, 41, first Two oil supply devices, 42, a second heating line, 43, a second oil delivery line, 5, a third ignition device, 51, a third oil supply device.
  • FIG. 1 is a flowchart of a gas turbine ignition method provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a gas turbine equipped with an ignition device according to an embodiment of the present invention.
  • a first aspect of an embodiment of the present invention provides a method of igniting a gas turbine.
  • the gas turbine includes a compressor connected through a rotating shaft 1, a turbine, and a combustion chamber 2 disposed between the compressor and the turbine.
  • the gas turbine also includes a first ignition device 3, a second ignition device 4 and a third ignition device 5 provided in the combustion chamber 2.
  • the ignition method includes the following steps: starting the first ignition device 3, the first ignition device 3 will The liquid fuel entering the combustion chamber 2 is heated and gasified and ignited.
  • the combustion gas drives the turbine to rotate.
  • the turbine drives the compressor to work through the rotating shaft 1.
  • the temperature in the combustion chamber 2 rises to the first preset temperature or the rotating shaft 1 reaches The first predetermined speed; the second ignition device 4 is started, and the gas in the combustion chamber 2 vaporizes the liquid fuel entering the second ignition device 4.
  • the gasified fuel is mixed with the compressed air output from the compressor to combust in the combustion chamber 2.
  • the gas turbine further includes a temperature detection device provided in the combustion chamber 2 for detecting the temperature in the combustion chamber 2, the temperature detection device is simultaneously connected to the first ignition device 3, the second ignition device 4 and the third ignition device 5; The temperature is set at 100°C-300°C; the second preset temperature is 500°C-1200°C.
  • the gas turbine further includes a rotation speed detection device for detecting the rotation shaft 1 provided on the rotation shaft 1, the rotation speed detection device is connected to the first ignition device 3, the second ignition device 4 and the third ignition device 5 at the same time; the first predetermined rotation speed is the rating of the gas turbine 0-10% of the speed; the second predetermined speed is 30-80% of the rated speed of the gas turbine.
  • the gas turbine also includes a control module, one end of the control module is connected to the temperature detection device or the rotation speed detection device, and the other end is connected to the first ignition device 3, the second ignition device 4 and the third ignition device 5 at the same time;
  • the temperature switches the first ignition device 3, the second ignition device 4 and the third ignition device 5; or the control module controls the first ignition device 3 and the second ignition device 4 according to the rotation speed of the rotating shaft 1 detected by the rotation speed detection device Switch with the third ignition device 5.
  • the first ignition device 3 is an electric heating device, which heats and vaporizes the liquid fuel through the electric heating device, and ignites; or the second ignition device 4 is an evaporation tube heating device, which uses the high-temperature gas in the combustion chamber 2 to evaporate the tube The liquid fuel in the heating device is heated and gasified and burned; or the third ignition device 5 is a pneumatic atomizing nozzle, which uses the pressure and flow rate of compressed air generated by a compressor to gasify and burn the liquid fuel.
  • FIG 3 is a schematic structural diagram of a first ignition device of an ignition device of a gas turbine provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a second ignition device of an ignition device of a gas turbine provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a third ignition device of an ignition device of a gas turbine provided by an embodiment of the present invention.
  • the second aspect of the embodiment of the present invention provides an ignition device for a gas turbine, including: a first ignition device 3, a second ignition device 4, and a third ignition device 5 , Control module and detection device; the first ignition device 3, the second ignition device 4 and the third ignition device 5 are respectively provided on the side wall of the combustion chamber 2, the first ignition device 3, the second ignition device 4 and the third One end of the ignition device 5 is connected to the control module, and the other end is connected to the oil path of the gas turbine through a pipeline.
  • the control module is connected to the detection device.
  • the control module connects the first ignition device 3 and the second ignition device 4 according to the data detected by the detection device. Switch with the third ignition device 5.
  • the first ignition device 3, the second ignition device 4, and the third ignition device 5 may all be provided in one or more.
  • the detection device includes a temperature detection device provided in the combustion chamber 2 and/or a speed detection device provided in the rotating shaft 1 connected to the control module; the control module receives the temperature signal of the temperature detection device or the speed signal of the speed detection device, and controls the first An ignition device 3, a second ignition device 4, and a third ignition device 5 are turned on or off.
  • the first ignition device 3 is an electric heating device, which includes a first oil supply device 31, a first heating device 32, and a first heating line 33, the first heating device 32 is disposed in the first heating line 33, the first The heating device 32 is electrically connected to the control module.
  • One end of the first oil supply device 31 is connected to the gas turbine oil passage through the first oil delivery line, and the other end is connected to the first heating line 33.
  • One end of the first heating line 33 extends to the combustion chamber 2 Inside the cavity.
  • the electric heating device is an electronically controlled ceramic heater.
  • the ceramic heater is a high-efficiency heater with uniform heat distribution, excellent thermal conductivity, and can ensure that the heating surface of the heater is uniform in temperature.
  • the PTC ceramic heating element is a thermistor. It is composed of PTC ceramic heating elements and aluminum tubes. It has the advantages of small thermal resistance and high heat exchange efficiency. It is an automatic constant temperature and power saving electric heater.
  • the MCH ceramic heating element uses alumina ceramics, which is a new type of high-efficiency, environmentally-friendly and energy-saving ceramic heating element with built-in heating wire. Compared with the PTC ceramic heating element, it has the advantage of saving 20%-30% of electric energy under the same heating effect.
  • a suitable heater can be selected according to the use occasion and working conditions of the gas turbine, and the present invention does not limit this.
  • the first heating device 32 may be cylindrical.
  • the cylindrical first heating device 32 is disposed in the first heating pipe 33, and its axial surface has the same temperature after being heated by electricity, and has good heating and atomizing effects on the fuel.
  • the second ignition device 4 is an evaporator heating device, which includes a second oil supply device 41 and a second heating pipe 42.
  • One end of the second oil supply device 41 is connected to the gas turbine oil passage through the second oil delivery pipe 43, and the other end is provided at In the second heating pipe 42, one end of the second heating pipe 42 extends into the combustion chamber 2 and the other end is connected to the compressed gas outlet of the compressor.
  • the third ignition device 5 is a pneumatic atomizing nozzle, which includes at least one third oil supply device 51, one end of the third oil supply device 51 is connected to the gas turbine oil path through the third oil delivery line, and is also connected to the compressed gas outlet of the compressor, The other end of the third oil supply device 51 extends into the combustion chamber 2.
  • the pneumatic atomizing nozzle is a device that can atomize the liquid and evenly suspend it in the air.
  • the principle is to squeeze the internal liquid into the nozzle by internal pressure.
  • An iron piece is placed inside the nozzle to flow at high speed.
  • the liquid impinges on the iron sheet, rebounds to form atomized particles with a diameter of about 15-60 microns, and is ejected through the nozzle outlet.
  • the nozzle's pneumatic atomization process is mainly controlled by four forces, namely aerodynamic resistance, viscous force, liquid surface tension and inertial force. These four forces interact to cause the continuous liquid to split and break. It is generally considered that the nozzle atomizes
  • the process is divided into jet atomization process and liquid film atomization process.
  • the pneumatic atomizing nozzle can be selected from the commercially available products in the industry, and can also be customized according to the specific structure and working condition parameters of the combustion chamber, which is not limited herein.
  • the first ignition device 3 further includes: a first valve provided on the first oil pipeline, the first valve is electrically connected to the control module, and the control module controls the liquid fuel delivery of the first ignition device 3 by controlling the opening degree of the first valve the amount.
  • the second ignition device 4 may include a second valve provided on the second oil pipeline 43, the second valve is electrically connected to the control module, and the control module controls the liquid fuel delivery of the second ignition device 4 by controlling the opening degree of the second valve the amount.
  • the third ignition device 5 may include: a third valve disposed on the third oil pipeline, the third valve is electrically connected to the control module, and the control module controls the liquid fuel delivery amount of the third ignition device 5 by controlling the opening degree of the third valve.
  • the embodiment of the present invention aims to protect an ignition method of a gas turbine.
  • the gas turbine includes a compressor connected through a rotating shaft, a turbine, and a combustion chamber provided between the compressor and the turbine.
  • the method includes the following steps: the first The ignition device, the second ignition device and the third ignition device.
  • the ignition method includes the following steps: starting the first ignition device, the first ignition device heats and vaporizes and ignites the liquid fuel entering the combustion chamber, and the gas generated by the combustion propels
  • the turbine rotates, the turbine drives the compressor to work through the rotating shaft, the temperature in the combustion chamber rises to the first preset temperature or the rotating shaft reaches the first predetermined speed;
  • the second ignition device is activated, and the gas in the combustion chamber enters the second ignition device Liquid fuel gasification, the gasified fuel is mixed with the compressed air output from the compressor, and the temperature in the combustion chamber rises to the second preset temperature or the rotating shaft reaches the second predetermined speed;
  • the third ignition device is activated, and the liquid fuel is in the compressor
  • the output compressed gas is atomized under the pressure and flow rate, the atomized mixed gas is burned in the combustion chamber, and the gas turbine reaches the rated speed.
  • An ignition device for a gas turbine including: a first ignition device, a second ignition device, a third ignition device, a control module, and a detection device; the first ignition device, the second ignition device, and the third ignition device are provided respectively On the side wall of the combustion chamber, one end of the first ignition device, the second ignition device, and the third ignition device are respectively connected to the control module, and the other end is respectively connected to the oil path of the gas turbine through a pipeline, the control module is connected to the detection device, and the control module The first ignition device, the second ignition device, and the third ignition device are switched based on the data detected by the detection device.
  • the three-step start of the gas turbine through the ignition method overcomes the shortcomings of the fuel pump when the gas turbine is started and must be equipped with an air pump, which greatly reduces the overall volume and weight of the gas turbine, and also avoids the need for a high-power power supply when the air pump is working. , Improve the miniaturization level of the gas turbine, and broaden the application range of the gas turbine.
  • control module actively switches the first ignition device, the second ignition device, and the third ignition device according to the temperature or speed value detected by the detection device.
  • the entire ignition process is consistent, reliable, and stable, without human control, and the degree of automation High and simple structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

一种燃气轮机的点火方法及点火装置,该点火方法包括:启动第一点火装置(3),将进入燃烧室(2)的液态燃料加热气化并点燃,燃气推动透平带动转轴(1)旋转,燃烧室(2)内的温度升高到第一预设温度或者转轴(1)达到第一预定转速;启动第二点火装置(4),燃气使进入第二点火装置(4)的液态燃料气化,与压气机输出的压缩空气混合燃烧,燃烧室(2)内温度升高到第二预设温度或者转轴(1)达到第二预定转速;启动第三点火装置(5),液态燃料在压气机输出的压缩气体的压力和流速下雾化,雾化后的混合气体在燃烧室(2)内燃烧,燃气轮机到达额定转速。所述点火方法克服了燃气轮机启动时燃油雾化须配套气泵的缺点,减少了燃气轮机体积和重量,避免了对大功率电源的需求,提高了燃气轮机小型化水平。

Description

一种燃气轮机的点火方法及点火装置 技术领域
本发明涉及燃气轮机技术领域,特别涉及一种燃气轮机的点火方法及点火装置。
背景技术
燃气轮机是一种先进而复杂的成套动力机械装备,是典型的高技术密集型产品。作为高科技的载体,燃气轮机代表了多理论学科和多工程领域发展的综合水平,是21世纪的先导技术。发展集新技术、新材料、新工艺于一身的燃气轮机产业,是国家高技术水平和科技实力的重要标志之一,具有十分突出的战略地位。
燃气轮机是以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。燃气轮机整个启动过程是指转子由静止状态逐步加速至额定转速、负荷由零逐渐增至额定值或某一预定值的过程。在燃气轮机正常运转时,燃油雾化由高温高压气体来实现,但在燃气轮机启动时,燃气轮机自身无法提供高温高压气体,就需要提供一个外置的气泵来实现燃油雾化这一功能。外置气泵的体积较大,同时对电源的要求较高,这就限制了配套气泵的燃气轮机的应用场合,无法实现燃气轮机的小型化,尤其是限制了燃气轮机在车用方面的发展。
发明内容
本发明实施例的目的是提供一种燃气轮机的点火方法及点火装置,通过点火方法对燃气轮机进行三步式启动,克服了燃气轮机启动时燃油雾化必须配套有气泵的缺点,极大地减少了燃气轮机的整体体积和重量,同时也避免了气泵工作时对大功率电源的需求,提高了燃气轮机的小型化水 平,拓宽了燃气轮机的应用范围。
为解决上述技术问题,本发明实施例的第一方面提供了一种燃气轮机的点火方法,所述燃气轮机包括通过转轴连接的压气机、透平、设置于所述压气机和所述透平之间的燃烧室,还包括:设置于所述燃烧室的第一点火装置、第二点火装置和第三点火装置,所述点火方法包括以下步骤:启动所述第一点火装置,所述第一点火装置将进入所述燃烧室的液态燃料加热气化并点燃,燃烧产生的燃气推动所述透平旋转,所述透平通过所述转轴带动所述压气机工作,所述燃烧室内的温度升高到第一预设温度或者所述转轴达到第一预定转速;启动所述第二点火装置,所述燃烧室内的燃气使进入所述第二点火装置的液态燃料气化,气化后的燃料与所述压气机输出的压缩空气混合燃烧,所述燃烧室内温度升高到第二预设温度或者所述转轴达到第二预定转速;启动所述第三点火装置,所述液态燃料在所述压气机输出的压缩气体的压力和流速下雾化,雾化后的混合气体在所述燃烧室内燃烧,所述燃气轮机到达额定转速。
进一步地,所述燃气轮机还包括设置于所述燃烧室内的用于检测所述燃烧室内温度的温度检测装置,所述温度检测装置同时连接所述第一点火装置、所述第二点火装置和所述第三点火装置;所述第一预设温度为100℃-300℃;所述第二预设温度为500℃-1200℃。
进一步地,所述燃气轮机还包括设置于所述转轴的用于检测所述转轴的转速检测装置,所述转速检测装置同时连接所述第一点火装置、所述第二点火装置和所述第三点火装置;所述第一预定转速为所述燃气轮机的额定转速的0-10%;所述第二预定转速为所述燃气轮机的额定转速的30-80%。
进一步地,所述燃气轮机还包括控制模块,所述控制模块一端连接所述温度检测装置或者所述转速检测装置,另一端同时连接所述第一点火装置、所述第二点火装置和所述第三点火装置;所述控制模块根据所述温度检测装置检测到的温度对所述第一点火装置、所述第二点火装置和所述第三点火装置进行切换;或所述控制模块根据所述转速检测装置检测到的转 速对所述第一点火装置、所述第二点火装置和所述第三点火装置进行切换。
进一步地,所述第一点火装置为电加热装置,通过所述电加热装置对所述液态燃料进行加热气化,并点燃;或所述第二点火装置为蒸发管加热装置,通过利用所述燃烧室内的高温燃气对所述蒸发管加热装置内的所述液态燃料进行加热气化后燃烧;或所述第三点火装置为气动雾化喷嘴,其利用所述压气机产生的压缩空气的压力和流速将所述液态燃料气化后燃烧。
本发明实施例的第二方面提供了一种燃气轮机的点火装置,包括:第一点火装置、第二点火装置、第三点火装置、控制模块以及检测装置;所述第一点火装置、所述第二点火装置和所述第三点火装置分别设置于所述燃烧室的侧壁,所述第一点火装置、所述第二点火装置和所述第三点火装置一端分别连接所述控制模块,另一端分别通过管路与所述燃气轮机的油路连接,所述控制模块与所述检测装置连接,所述控制模块根据所述检测装置检测的数据对所述第一点火装置、所述第二点火装置和所述第三点火装置进行切换。
进一步地,所述检测装置包括与所述控制模块连接的设置于所述燃烧室内的温度检测装置和/或设置于所述转轴的转速检测装置;所述控制模块接收所述温度检测装置的温度信号或所述转速检测装置的转速信号,分别控制所述第一点火装置、所述第二点火装置和所述第三点火装置开启或关闭。
进一步地,所述第一点火装置为电加热装置,其包括第一供油器件、第一加热器件和第一加热管路,所述第一加热器件设置于所述第一加热管路中,所述第一加热器件与所述控制模块电连接,所述第一供油器件一端通过第一输油管路与所述燃气轮机油路连接,另一端与所述第一加热管路相连,所述第一加热管路一端延伸至所述燃烧室的腔体内部;和/或所述第二点火装置为蒸发管加热装置,其包括第二供油器件和第二加热管路, 所述第二供油器件一端通过第二输油管路与所述燃气轮机油路连接,另一端设置于所述第二加热管路内,所述第二加热管路一端延伸至所述燃烧室内,另一端与所述压气机的压缩气体出口连接;和/或所述第三点火装置为气动雾化喷嘴,其包括至少一个第三供油器件,所述第三供油器件的一端通过第三输油管路连接所述燃气轮机油路,并同时连接所述压气机的压缩气体出口,所述第三供油器件的另一端延伸至所述燃烧室内。
进一步地,所述第一点火装置还包括:设置于所述第一输油管路上的第一阀门,所述第一阀门与所述控制模块电连接,所述控制模块通过控制所述第一阀门开度以控制所述第一点火装置的液态燃料输送量;和/或所述第二点火装置还包括:设置于所述第二输油管路上的第二阀门,所述第二阀门与所述控制模块电连接,所述控制模块通过控制所述第二阀门开度以控制所述第二点火装置的液态燃料输送量;和/或所述第三点火装置还包括:设置于所述第三输油管路上的第三阀门,所述第三阀门与所述控制模块电连接,所述控制模块通过控制所述第三阀门开度以控制所述第三点火装置的液态燃料输送量。
进一步地,所述电加热装置为电控陶瓷加热器。
进一步地,所述第一点火装置、所述第二点火装置和所述第三点火装置均可以设置为一个或者多个。
本发明实施例的上述技术方案具有如下有益的技术效果:
通过点火方法对燃气轮机进行三步式启动,克服了燃气轮机启动时燃油雾化必须配套有气泵的缺点,极大地减少了燃气轮机的整体体积和重量,同时也避免了气泵工作时对大功率电源的需求,提高了燃气轮机的小型化水平,拓宽了燃气轮机的应用范围。
附图说明
图1是本发明实施例提供的燃气轮机的点火方法的流程图;
图2是本发明实施例提供的安装有点火装置的燃气轮机的结构示意 图;
图3是本发明实施例提供的燃气轮机的点火装置的第一点火装置的结构示意图;
图4是本发明实施例提供的燃气轮机的点火装置的第二点火装置的结构示意图;
图5是本发明实施例提供的燃气轮机的点火装置的第三点火装置的结构示意图。
附图标记:
1、转轴,2、燃烧室,3、第一点火装置,31、第一供油器件,32、第一加热器件,33、第一加热管路,4、第二点火装置,41、第二供油器件,42、第二加热管路,43、第二输油管路,5、第三点火装置,51、第三供油器件。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
图1是本发明实施例提供的燃气轮机的点火方法的流程图。
图2是本发明实施例提供的安装有点火装置的燃气轮机的结构示意图。
请参照图1和图2,本发明实施例的第一方面提供一种燃气轮机的点火方法,燃气轮机包括通过转轴1连接的压气机、透平、设置于压气机和透平之间的燃烧室2,燃气轮机还包括设置于燃烧室2的第一点火装置3、第二点火装置4和第三点火装置5,点火方法包括以下步骤:启动第一点火装置3,第一点火装置3将进入燃烧室2的液态燃料加热气化并点燃,燃烧产生的燃气推动透平旋转,透平通过转轴1带动压气机工作,燃烧室 2内的温度升高到第一预设温度或者转轴1达到第一预定转速;启动第二点火装置4,燃烧室2内的燃气使进入第二点火装置4的液态燃料气化,气化后的燃料与压气机输出的压缩空气混合燃烧,燃烧室2内温度升高到第二预设温度或者转轴1达到第二预定转速;启动第三点火装置5,液态燃料在压气机输出的压缩气体的压力和流速下雾化,雾化后的混合气体在燃烧室2内燃烧,燃气轮机到达额定转速。
燃气轮机还包括设置于燃烧室2内的用于检测燃烧室2内温度的温度检测装置,温度检测装置同时连接第一点火装置3、第二点火装置4和第三点火装置5;第一预设温度为100℃-300℃;第二预设温度为500℃-1200℃。
燃气轮机还包括设置于转轴1的用于检测转轴1的转速检测装置,转速检测装置同时连接第一点火装置3、第二点火装置4和第三点火装置5;第一预定转速为燃气轮机的额定转速的0-10%;第二预定转速为燃气轮机的额定转速的30-80%。
燃气轮机还包括控制模块,控制模块一端连接温度检测装置或者转速检测装置,另一端同时连接第一点火装置3、第二点火装置4和第三点火装置5;控制模块根据温度检测装置检测到的温度对第一点火装置3、第二点火装置4和第三点火装置5进行切换;或控制模块根据转速检测装置检测到的转轴1的转速对第一点火装置3、第二点火装置4和第三点火装置5进行切换。
第一点火装置3为电加热装置,通过电加热装置对液态燃料进行加热气化,并点燃;或第二点火装置4为蒸发管加热装置,通过利用燃烧室2内的高温燃气对蒸发管加热装置内的液态燃料进行加热气化后燃烧;或第三点火装置5为气动雾化喷嘴,该气动雾化喷嘴利用压气机产生的压缩空气的压力和流速将液态燃料气化后燃烧。
图3是本发明实施例提供的燃气轮机的点火装置的第一点火装置的结构示意图。
图4是本发明实施例提供的燃气轮机的点火装置的第二点火装置的结构示意图。
图5是本发明实施例提供的燃气轮机的点火装置的第三点火装置的结构示意图。
请参照图2、图3、图4和图5,本发明实施例的第二方面提供一种燃气轮机的点火装置,包括:第一点火装置3、第二点火装置4、第三点火装置5、控制模块以及检测装置;第一点火装置3、第二点火装置4和第三点火装置5分别设置于燃烧室2的侧壁,第一点火装置3、第二点火装置4和第三点火装置5一端分别连接控制模块,另一端分别通过管路与燃气轮机的油路连接,控制模块与检测装置连接,控制模块根据检测装置检测的数据对第一点火装置3、第二点火装置4和第三点火装置5进行切换。
在本发明实施例的一个实施方式中,第一点火装置3、第二点火装置4和第三点火装置5均可以设置为一个或者多个。
检测装置包括与控制模块连接的设置于燃烧室2内的温度检测装置和/或设置于转轴1的转速检测装置;控制模块接收温度检测装置的温度信号或转速检测装置的转速信号,分别控制第一点火装置3、第二点火装置4和第三点火装置5开启或关闭。
第一点火装置3为电加热装置,其包括第一供油器件31、第一加热器件32和第一加热管路33,第一加热器件32设置于第一加热管路33中,第一加热器件32与控制模块电连接,第一供油器件31一端通过第一输油管路与燃气轮机油路连接,另一端与第一加热管路33相连,第一加热管路33一端延伸至燃烧室2的腔体内部。
可选的,电加热装置为电控陶瓷加热器。陶瓷加热器是一种高效率且热量分布均匀的加热器,热导性极佳,可确保加热器的加热面温度均匀。常用的陶瓷加热器分两种:PTC陶瓷发热体和MCH陶瓷发热体,统称为“陶瓷发热元件”。PTC陶瓷发热体是热敏电阻,采用PTC陶瓷发热元件与铝管组成,具有热阻小、换热效率高的优点,是一种自动恒温、省电的电加热 器。MCH陶瓷发热体使用氧化铝陶瓷,是一种新型高效环保节能陶瓷发热元件,内置电热丝,相比于PTC陶瓷发热体,具有相同加热效果情况下节约20%-30%电能的优点。具体可根据燃气轮机的使用场合和工况选择合适的加热器,本发明对此不作出限定。
具体地,第一加热器件32可以为圆柱形。圆柱形第一加热器件32设置于第一加热管路33内,通电加热后其轴向的表面具有相同的温度,对燃油具有良好的加热及雾化作用。
第二点火装置4为蒸发管加热装置,其包括第二供油器件41和第二加热管路42,第二供油器件41一端通过第二输油管路43与燃气轮机油路连接,另一端设置于第二加热管路42内,第二加热管路42一端延伸至燃烧室2内,另一端与压气机的压缩气体出口连接。
第三点火装置5为气动雾化喷嘴,其包括至少一个第三供油器件51,第三供油器件51的一端通过第三输油管路连接燃气轮机油路,并同时连接压气机的压缩气体出口,第三供油器件51的另一端延伸至燃烧室2内。
气动雾化喷嘴是一种能够将液体雾化喷出而均匀悬浮于空气中的一种装置,原理为通过内部压力将内部的液体挤压进喷嘴中,喷嘴内部放置一块铁片,高速流动的液体撞击在铁片上,反弹后形成直径15-60微米左右的雾化颗粒,并通过喷嘴出口喷出。喷嘴气动雾化过程主要受四种力的控制,即气动阻力、黏性力、液体的表面张力和惯性力,这四种力互相作用,使连续的液体发生分裂、破碎,一般认为喷嘴雾化过程分为射流雾化过程和液膜雾化过程。该气动雾化喷嘴可选用行业内现有的市售产品,也可根据燃烧室的具体结构和工况参数进行定制,在此不做限定。
第一点火装置3还包括:设置于第一输油管路上的第一阀门,第一阀门与控制模块电连接,控制模块通过控制第一阀门开度以控制第一点火装置3的液态燃料输送量。
第二点火装置4可包括:设置于第二输油管路43上的第二阀门,第二阀门与控制模块电连接,控制模块通过控制第二阀门开度以控制第二点 火装置4的液态燃料输送量。
第三点火装置5可包括:设置于第三输油管路上的第三阀门,第三阀门与控制模块电连接,控制模块通过控制第三阀门开度以控制第三点火装置5的液态燃料输送量。
本发明实施例旨在保护一种燃气轮机的点火方法,燃气轮机包括通过转轴连接的压气机、透平、设置于压气机和透平之间的燃烧室,包括如下步骤:设置于燃烧室的第一点火装置、第二点火装置和第三点火装置,点火方法包括以下步骤:启动第一点火装置,第一点火装置将进入燃烧室的液态燃料加热气化并点燃,燃烧产生的燃气推动透平旋转,透平通过转轴带动压气机工作,燃烧室内的温度升高到第一预设温度或者转轴达到第一预定转速;启动第二点火装置,燃烧室内的燃气使进入第二点火装置的液态燃料气化,气化后的燃料与压气机输出的压缩空气混合燃烧,燃烧室内温度升高到第二预设温度或者转轴达到第二预定转速;启动第三点火装置,液态燃料在压气机输出的压缩气体的压力和流速下雾化,雾化后的混合气体在燃烧室内燃烧,燃气轮机到达额定转速。还保护一种燃气轮机的点火装置,包括:第一点火装置、第二点火装置、第三点火装置、控制模块以及检测装置;第一点火装置、第二点火装置和第三点火装置分别设置于燃烧室的侧壁,第一点火装置、第二点火装置和第三点火装置一端分别连接控制模块,另一端分别通过管路与燃气轮机的油路连接,控制模块与检测装置连接,控制模块根据检测装置检测的数据对第一点火装置、第二点火装置和第三点火装置进行切换。
上述技术方案具备如下效果:
通过点火方法对燃气轮机进行三步式启动,克服了燃气轮机启动时燃油雾化必须配套有气泵的缺点,极大地减少了燃气轮机的整体体积和重量,同时也避免了气泵工作时对大功率电源的需求,提高了燃气轮机的小型化水平,拓宽了燃气轮机的应用范围。
同时,控制模块根据检测装置检测到的温度或者转速数值主动的对第 一点火装置、第二点火装置和第三点火装置进行切换,整个点火过程连贯、可靠稳定,不需要人为控制,自动化程度高,且结构简单。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (11)

  1. 一种燃气轮机的点火方法,所述燃气轮机包括通过转轴(1)连接的压气机、透平、设置于所述压气机和所述透平之间的燃烧室(2),其特征在于,所述燃气轮机还包括设置于所述燃烧室(2)的第一点火装置(3)、第二点火装置(4)和第三点火装置(5),所述点火方法包括以下步骤:
    启动所述第一点火装置(3),所述第一点火装置(3)将进入所述燃烧室(2)的液态燃料加热气化并点燃,燃烧产生的燃气推动所述透平旋转,所述透平通过所述转轴(1)带动所述压气机工作,所述燃烧室(2)内的温度升高到第一预设温度或者所述转轴(1)达到第一预定转速;
    启动所述第二点火装置(4),所述燃烧室(2)内的燃气使进入所述第二点火装置(4)的液态燃料气化,气化后的燃料与所述压气机输出的压缩空气混合燃烧,所述燃烧室(2)内温度升高到第二预设温度或者所述转轴(1)达到第二预定转速;
    启动所述第三点火装置(5),所述液态燃料在所述压气机输出的压缩气体的压力和流速下雾化,雾化后的混合气体在所述燃烧室(2)内燃烧,所述燃气轮机到达额定转速。
  2. 根据权利要求1所述的点火方法,其特征在于,所述燃气轮机还包括设置于所述燃烧室(2)内的用于检测所述燃烧室(2)内温度的温度检测装置,所述温度检测装置同时连接所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5);
    所述第一预设温度为100℃-300℃;
    所述第二预设温度为500℃-1200℃。
  3. 根据权利要求1所述的点火方法,其特征在于,所述燃气轮机还包括设置于所述转轴(1)的用于检测所述转轴(1)的转速检测装置,所述转速检测装置同时连接所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5);
    所述第一预定转速为所述燃气轮机的额定转速的0-10%;
    所述第二预定转速为所述燃气轮机的额定转速的30-80%。
  4. 根据权利要求2或3所述的点火方法,其特征在于,所述燃气轮机还包括控制模块,所述控制模块一端连接所述温度检测装置或者所述转速检测装置,另一端同时连接所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5);
    所述控制模块根据所述温度检测装置检测到的温度对所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5)进行切换;或
    所述控制模块根据所述转速检测装置检测到的转速对所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5)进行切换。
  5. 根据权利要求1所述的点火方法,其特征在于,
    所述第一点火装置(3)为电加热装置,通过所述电加热装置对所述液态燃料进行加热气化,并点燃;或
    所述第二点火装置(4)为蒸发管加热装置,通过利用所述燃烧室(2)内的高温燃气对所述蒸发管加热装置内的所述液态燃料进行加热气化后燃烧;或
    所述第三点火装置(5)为气动雾化喷嘴,其利用所述压气机产生的压缩空气的压力和流速将所述液态燃料气化后燃烧。
  6. 一种使用权利要求1-5任一项所述的点火方法点火的燃气轮机的点火装置,其特征在于,所述燃气轮机的点火装置包括:第一点火装置(3)、第二点火装置(4)、第三点火装置(5)、控制模块以及检测装置;
    所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5)分别设置于所述燃烧室(2)的侧壁,所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5)一端分别连接所述控制模块,另一端分别通过管路与所述燃气轮机的油路连接,所述控制模块与所述检测装置连接,所述控制模块根据所述检测装置检测的数据对所述第一 点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5)进行切换。
  7. 根据权利要求6所述的燃气轮机的点火装置,其特征在于,所述检测装置包括与所述控制模块连接的设置于所述燃烧室(2)内的温度检测装置和/或设置于所述转轴(1)的转速检测装置;
    所述控制模块接收所述温度检测装置的温度信号或所述转速检测装置的转速信号,分别控制所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5)开启或关闭。
  8. 根据权利要求6所述的燃气轮机的点火装置,其特征在于,
    所述第一点火装置(3)为电加热装置,其包括第一供油器件(31)、第一加热器件(32)和第一加热管路(33),
    所述第一加热器件(32)设置于所述第一加热管路(33)中,所述第一加热器件(32)与所述控制模块电连接,
    所述第一供油器件(31)一端通过第一输油管路与所述燃气轮机油路连接,另一端与所述第一加热管路(33)相连,
    所述第一加热管路(33)一端延伸至所述燃烧室(2)的腔体内部;
    和/或
    所述第二点火装置(4)为蒸发管加热装置,其包括第二供油器件(41)和第二加热管路(42),
    所述第二供油器件(41)一端通过第二输油管路(43)与所述燃气轮机油路连接,另一端设置于所述第二加热管路(42)内,
    所述第二加热管路(42)一端延伸至所述燃烧室(2)内,另一端与所述压气机的压缩气体出口连接;
    和/或
    所述第三点火装置(5)为气动雾化喷嘴,其包括至少一个第三供油器件(51),所述第三供油器件(51)的一端通过第三输油管路连接所述燃气轮机油路,并同时连接所述压气机的压缩气体出口,所述第三供油器 件(51)的另一端延伸至所述燃烧室(2)内。
  9. 根据权利要求8所述的燃气轮机的点火装置,其特征在于,
    所述第一点火装置(3)还包括:设置于所述第一输油管路上的第一阀门,所述第一阀门与所述控制模块电连接,所述控制模块通过控制所述第一阀门开度以控制所述第一点火装置(3)的液态燃料输送量;
    和/或
    所述第二点火装置(4)还包括:设置于所述第二输油管路(43)上的第二阀门,所述第二阀门与所述控制模块电连接,所述控制模块通过控制所述第二阀门开度以控制所述第二点火装置(4)的液态燃料输送量;
    和/或
    所述第三点火装置(5)还包括:设置于所述第三输油管路上的第三阀门,所述第三阀门与所述控制模块电连接,所述控制模块通过控制所述第三阀门开度以控制所述第三点火装置(5)的液态燃料输送量。
  10. 根据权利要求8所述的燃气轮机的点火装置,其特征在于,
    所述电加热装置为电控陶瓷加热器。
  11. 根据权利要求6所述的燃气轮机的点火装置,其特征在于,
    所述第一点火装置(3)、所述第二点火装置(4)和所述第三点火装置(5)均可以设置为一个或者多个。
PCT/CN2019/107619 2018-12-03 2019-09-25 一种燃气轮机的点火方法及点火装置 WO2020114045A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811466771.4A CN109268147B (zh) 2018-12-03 2018-12-03 一种燃气轮机的点火方法及点火装置
CN201811466771.4 2018-12-03

Publications (1)

Publication Number Publication Date
WO2020114045A1 true WO2020114045A1 (zh) 2020-06-11

Family

ID=65187353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107619 WO2020114045A1 (zh) 2018-12-03 2019-09-25 一种燃气轮机的点火方法及点火装置

Country Status (2)

Country Link
CN (1) CN109268147B (zh)
WO (1) WO2020114045A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109268147B (zh) * 2018-12-03 2023-05-09 刘慕华 一种燃气轮机的点火方法及点火装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167691B1 (en) * 1997-02-25 2001-01-02 Kabushiki Kaisha Toshiba Gasification power generation system using preheated gasifying-agent to gasify fuel
CN1680706A (zh) * 2004-04-08 2005-10-12 中国科学院工程热物理研究所 用于柴油机冷启动的辅助预混燃烧装置
CN1899661A (zh) * 2005-06-22 2007-01-24 联合工艺公司 用来改进燃烧性能的燃料脱氧
CN104747341A (zh) * 2015-03-16 2015-07-01 陈光宁 一种新型燃油加热器
CN107304714A (zh) * 2016-04-22 2017-10-31 北京澳尔金石油技术开发有限公司 一种新型的燃气轮机燃料提供系统及其方法
CN109268147A (zh) * 2018-12-03 2019-01-25 至玥腾风科技投资集团有限公司 一种燃气轮机的点火方法及点火装置
CN209324528U (zh) * 2018-12-03 2019-08-30 至玥腾风科技投资集团有限公司 一种燃气轮机的点火装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713243B (zh) * 2009-08-27 2015-09-16 麦卡利斯特技术有限责任公司 集成燃料喷射器和点火器以及相关的使用和制造方法
EP2484880A1 (en) * 2011-02-04 2012-08-08 Siemens Aktiengesellschaft Liquid fuel assist ignition system of a gas turbine and method to provide a fuel/air mixture to a gas turbine
CN202132113U (zh) * 2011-06-02 2012-02-01 中国航空动力机械研究所 蒸发管燃油雾化装置和包括其的燃气涡轮发动机
JP2015034649A (ja) * 2013-08-07 2015-02-19 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
CN106930838B (zh) * 2017-03-16 2018-04-17 北京驰宇空天技术发展有限公司 一种使用航空煤油的航空发动机点火装置及点火方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167691B1 (en) * 1997-02-25 2001-01-02 Kabushiki Kaisha Toshiba Gasification power generation system using preheated gasifying-agent to gasify fuel
CN1680706A (zh) * 2004-04-08 2005-10-12 中国科学院工程热物理研究所 用于柴油机冷启动的辅助预混燃烧装置
CN1899661A (zh) * 2005-06-22 2007-01-24 联合工艺公司 用来改进燃烧性能的燃料脱氧
CN104747341A (zh) * 2015-03-16 2015-07-01 陈光宁 一种新型燃油加热器
CN107304714A (zh) * 2016-04-22 2017-10-31 北京澳尔金石油技术开发有限公司 一种新型的燃气轮机燃料提供系统及其方法
CN109268147A (zh) * 2018-12-03 2019-01-25 至玥腾风科技投资集团有限公司 一种燃气轮机的点火方法及点火装置
CN209324528U (zh) * 2018-12-03 2019-08-30 至玥腾风科技投资集团有限公司 一种燃气轮机的点火装置

Also Published As

Publication number Publication date
CN109268147B (zh) 2023-05-09
CN109268147A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
JPS63186923A (ja) 動力発生装置
CN206092185U (zh) 微型涡喷发动机的起动和供油系统
JP2010510433A (ja) 単一循環ヒートポンプの発電装置
WO2020114045A1 (zh) 一种燃气轮机的点火方法及点火装置
WO2022105213A1 (zh) 多转子微型燃气轮机及其启动方法
CN209324528U (zh) 一种燃气轮机的点火装置
CN207673468U (zh) 醇基液化气在燃气轮机及内燃机上的供气装置
CN102635932A (zh) 燃气热水器
WO2012162923A1 (zh) 燃气和蒸汽轮机系统
CN105509045A (zh) 一种醇基液体燃料双相自雾化工业型燃烧器
US10648355B2 (en) Turbine
US3922849A (en) Injector for gas turbine combustor
NL2000188C2 (nl) Reactieturbine met compressor.
CN101319644A (zh) 乳化柴油微波加热装置
CN114110660A (zh) 供油雾化装置、燃烧室装置及微型喷气式发动机
CN102900538B (zh) 双工质联合循环透平机环形燃烧相变室
CN206637603U (zh) 一种新型燃烧装置
ITRM980804A1 (it) Motore endotermico a combustione interna con propulsione reattiva e moto "circolare".
WO2012162922A1 (zh) 燃气和蒸汽轮机系统
CN205807406U (zh) Ptc陶瓷隔离加热体汽化醇基燃烧机
CN109323235A (zh) 模块化直喷式蒸汽发生器
CN219550513U (zh) 一种甲醇液体燃料气化器
CN216619895U (zh) 供油雾化装置、燃烧室装置及微型喷气式发动机
CN203586179U (zh) 一种蒸汽发生装置
JPH03175202A (ja) パルス燃焼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19893066

Country of ref document: EP

Kind code of ref document: A1