WO2022105213A1 - 多转子微型燃气轮机及其启动方法 - Google Patents

多转子微型燃气轮机及其启动方法 Download PDF

Info

Publication number
WO2022105213A1
WO2022105213A1 PCT/CN2021/099967 CN2021099967W WO2022105213A1 WO 2022105213 A1 WO2022105213 A1 WO 2022105213A1 CN 2021099967 W CN2021099967 W CN 2021099967W WO 2022105213 A1 WO2022105213 A1 WO 2022105213A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
free
compressor
gas
rotor
Prior art date
Application number
PCT/CN2021/099967
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
至玥腾风科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 至玥腾风科技集团有限公司 filed Critical 至玥腾风科技集团有限公司
Publication of WO2022105213A1 publication Critical patent/WO2022105213A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • F02C7/275Mechanical drives
    • F02C7/277Mechanical drives the starter being a separate turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers

Definitions

  • the present solution relates to the field of gas turbine startup methods, in particular to a multi-rotor micro gas turbine and a startup method thereof.
  • Industrial gas turbines mainly include three components: compressor, combustion chamber and turbine. After the air enters the compressor, it is compressed into high temperature and high pressure air, and then supplied to the combustion chamber for fuel combustion.
  • the single-rotor gas turbine has only one shaft as a whole, and the compressor and turbine are all on this shaft.
  • the structure is simple and the economy is good.
  • the compressor of the single-rotor structure micro gas turbine can be made into any number of stages to achieve a certain supercharging ratio.
  • all parts are installed on the same main shaft.
  • the speed of the single rotor suddenly drops, the high-pressure part of the compressor will not have enough speed and the efficiency will be seriously reduced.
  • the compressor The load on the low-pressure part will rise sharply. Surge occurs when the low-pressure compressor is partially overloaded, and in normal operation, surge is not allowed.
  • guide vanes are usually installed before the compressor or deflation is performed on the intermediate stage of the compressor, that is, a part of the pressurized air is emptied to reduce the load of the low-pressure part of the compressor.
  • the low-pressure compressor and high-pressure compressor of a micro gas turbine work at different speeds.
  • the low-pressure compressor and the low-pressure turbine are linked to form a low-pressure rotor
  • the high-pressure compressor and the high-pressure turbine are linked to form a high-pressure rotor.
  • the rotational speed of the low pressure rotor is relatively low. Because of the compression, the air temperature in the compressor increases, and because the speed of sound also increases with the increase of the air temperature, the upper limit of the rotational speed of the high-pressure rotor can be increased and the diameter of the high-pressure rotor can be reduced.
  • the high-pressure rotor of the dual-rotor micro-turbine is relatively light in weight and has a small starting inertia, it can be driven by a starter motor. Compared with the single-rotor structure, the double-rotor structure is easier to start, and the starting energy is also smaller, and the weight of the starting equipment is also corresponding. reduce.
  • the centrifugal force and blade tip speed of the fan with a relatively large diameter will also be large, and the huge centrifugal force requires that the weight of the fan should not be too large.
  • the blade length can not be too long, so the bypass ratio is limited, and practice has proved that the higher the bypass ratio, the greater the thrust, and it is also relatively fuel-efficient.
  • the low-pressure compressor has to reduce the number of revolutions in order to be linked with the fan, and the single-stage supercharging ratio is reduced. In order to achieve the total supercharging ratio, the number of stages of the compressor fan has to be increased. This makes it difficult to reduce the weight of the compressor.
  • the traditional mechanical single rotor has many limitations in function, while the traditional multi-rotor system has huge engineering complexity and uncertainty.
  • the current traditional multi-rotor gas turbine core machine uses a motor to start, and the installation of the motor greatly increases the length of the rotor shaft, which brings a series of problems, such as high processing difficulty, difficult to ensure coaxiality, serious vibration, quality big.
  • the purpose of the present invention is to provide a multi-rotor micro gas turbine and a starting method thereof in view of the deficiencies existing in the prior art.
  • the present invention adopts the following scheme:
  • a multi-rotor micro gas turbine includes a core engine and a free engine, wherein the core engine includes a compressor 1, a turbine 2, a rotating shaft 3, an intake passage 4, and a combustion chamber 5; the compressor 1 and the turbine 2 are respectively It is sleeved on the front end and the end of the rotating shaft 3.
  • the front end of the compressor 1 is surrounded by a casing to enclose the intake passage 4.
  • the outlet of the compressor 1 is connected to the combustion chamber 5 through the air outlet 6.
  • the rim of the turbine 2 is arranged in the combustion chamber.
  • the high temperature and high pressure gas ejected from the exhaust port 7 of the combustion chamber 5 is sprayed on the end face of the turbine 2 to push the turbine 2 to rotate to do work; the rotating shaft 3 is supported in the stator through the radial bearing 8;
  • a bearing cavity 9 is formed between the air outlet and the stator, and a gas seal 10 is provided on the back gas side of the compressor 1 to prevent the gas on the back gas side of the compressor 1 from leaking into the bearing cavity 9.
  • a gas seal 10 is provided on the front side of the turbine 2 to prevent gas from leaking into the bearing cavity 9 from the gap between the turbine 2 and the combustion chamber 5;
  • the free machine includes a free casing 17, a free turbine 18, a motor 19, a free rotor system 20 and a flue gas chamber 21.
  • the free turbine 18, the motor 19, and the free rotor system 20 are arranged in the free casing 17.
  • the free turbine 18 and the motor 19 are coaxially installed on the free rotor system 20 in turn;
  • the rim of the free turbine 18 is arranged in the exhaust port 7 of the combustion chamber 5, and the high temperature and high pressure gas in the front section of the exhaust port 7 of the combustion chamber 5 is sprayed on the end face of the turbine 2 to push the turbine 2 to rotate to do work, and the rear section of the exhaust port 7 of the combustion chamber 5
  • the high temperature and high pressure gas is sprayed on the end face of the free turbine 18 to push the free turbine 18 to rotate to do work; the outlet of the flue gas chamber 21 is communicated with the outside world.
  • the gas first enters the compressor 1, and after being pressurized by the compressor 1, it enters the combustion chamber 5 for combustion, and the hot combustion products are ejected from the outlet of the combustion chamber 5 through the exhaust port 7; the edge of the core turbine 2 extends into the front section of the exhaust port 7. , the edge of the free turbine 18 extends into the rear section of the exhaust duct 7 and is coaxial with the core turbine 2.
  • the high temperature gas can both push the core turbine 2 to rotate, and drive the compressor 1 coaxially connected to it through the rotating shaft 3 to rotate, It can also push the free turbine 18 to rotate, thereby driving the motor 19 to generate electricity, and the excess high-temperature gas is discharged from the exhaust duct 7 .
  • the outlet of the flue gas chamber is communicated with a waste heat recovery device arranged outside.
  • the waste heat recovery device includes a boiler, a radiator, and a heat exchanger.
  • a method for starting a multi-rotor micro gas turbine comprising the following steps:
  • step 2) it is determined that the micro gas turbine meets the ignition conditions, and turning on the igniter to perform the ignition operation includes:
  • the rotor is maintained at the ignition speed, and the fuel pump is turned on to supply fuel;
  • the core machine does not use a motor to start, but uses a free machine turbine self-priming method to start, which greatly shortens the length of the rotor shaft of the core machine, and brings a series of advantages, such as low processing difficulty, easy to ensure coaxiality, vibration Small and lightweight.
  • FIG. 1 is a structural diagram of a multi-rotor micro-turbine in an embodiment
  • compressor 1 compressor 1, turbine 2, rotating shaft 3, intake passage 4, combustion chamber 5, air outlet 6, exhaust passage 7, radial bearing 8, bearing cavity 9, air seal 10, thrust disc 11, thrust Bearing 12 , thrust bearing 12 , air pipe 14 , electric ducted fan 15 , branch circuit 16 , free casing 17 , free turbine 18 , motor 19 , free rotor system 20 , flue gas chamber 21 .
  • a multi-rotor micro gas turbine includes a core engine and a free engine, wherein the core engine includes a compressor 1, a turbine 2, a rotating shaft 3, an intake passage 4, and a combustion chamber 5; the compressor The compressor 1 and the turbine 2 are respectively sleeved at the front end and the end of the rotating shaft 3.
  • the front end of the compressor 1 is surrounded by a casing that surrounds the cover to form the intake passage 4.
  • the outlet of the compressor 1 is connected to the combustion chamber 5 through the outlet passage 6.
  • the turbine 2 The rim is arranged in the exhaust port 7 of the combustion chamber 5, and the high temperature and high pressure gas ejected in the exhaust port 7 of the combustion chamber 5 is sprayed on the end face of the turbine 2 to push the turbine 2 to rotate to do work; the rotating shaft 3 is supported on the stator through the radial bearing 8.
  • Each bearing is arranged on the shaft section of the rotating shaft between the compressor 1 and the turbine 2, a bearing cavity 9 is formed between the air outlet 6 and the stator, and a gas seal 10 is provided on the back gas side of the compressor 1 to prevent the gas on the back gas side of the compressor 1 Leak into the bearing cavity 9, a gas seal 10 is provided on the front side of the turbine 2 to prevent the gas from leaking into the bearing cavity 9 from the gap between the turbine 2 and the combustion chamber 5;
  • the free machine includes a free casing 17, a free turbine 18, a motor 19, a free rotor system 20, and a flue gas chamber 21.
  • the free turbine 18, the motor 19, and the free rotor system 20 are arranged in the free casing 17.
  • the free turbine 18 and the motor 19 are coaxially installed on the free rotor system 20 in turn;
  • the rim of the free turbine 18 is arranged in the exhaust port 7 of the combustion chamber 5, and the high temperature and high pressure gas in the front section of the exhaust port 7 of the combustion chamber 5 is sprayed on the end face of the turbine 2 to push the turbine 2 to rotate to do work, and the rear section of the exhaust port 7 of the combustion chamber 5
  • the high temperature and high pressure gas is sprayed on the end face of the free turbine 18 to push the free turbine 18 to rotate to do work; the outlet of the flue gas chamber 21 is communicated with the outside world.
  • the gas first enters the compressor 1, is pressurized by the compressor 1 and then enters the combustion chamber 5 for combustion, and the hot combustion products are ejected from the outlet of the combustion chamber 5 through the exhaust port 7; the edge of the core turbine 2 extends into the front section of the exhaust port 7 , the edge of the free turbine 18 extends into the rear section of the exhaust duct 7 and is coaxial with the core turbine 2.
  • the high temperature gas can both push the core turbine 2 to rotate, and drive the compressor 1 coaxially connected to it through the rotating shaft 3 to rotate, It can also push the free turbine 18 to rotate, thereby driving the motor 19 to generate electricity, and the excess high-temperature gas is discharged from the exhaust duct 7 .
  • the outlet of the flue gas chamber is communicated with a waste heat recovery device arranged outside.
  • the waste heat recovery device includes a boiler, a radiator, and a heat exchanger, which is used to further recycle the superheated flue gas discharged from the outlet of the flue gas chamber, such as heating the boiler by using the superheated flue gas, or heating the radiator, or providing heat exchangers. heat source.
  • a method for starting a multi-rotor micro gas turbine includes the following steps:
  • step 2) it is determined that the micro gas turbine meets the ignition conditions, and turning on the igniter to perform the ignition operation includes:
  • the rotor is maintained at the ignition speed, and the fuel pump is turned on to supply fuel;

Abstract

一种多转子微型燃气轮机,包括进气通道(4),压气机(1),燃烧室(5),涡轮(2),转轴(3),自由涡轮(18),电机(19),排气道(7),自由机匣(17),自由转子系统(20)以及烟气室(21);压气机(1)和涡轮(2)分别套设于转轴(3)的前端和末端;自由涡轮(18)与电机(19)依次同轴安装于自由转子系统(20)上;气体经进气通道(4)进入压气机(1)增压后进入燃烧室(5)发生燃烧,燃烧室(5)排气道(7)前段喷出的气体推动涡轮(2)旋转做功,带动压气机(1)旋转;燃烧室(5)排气道(7)后段喷出的气体推动自由涡轮(18)旋转做功,带动电机(19)发电;压气机(1)背面和涡轮(2)前侧分别设置气封(10)用于防止高温气体泄漏至轴承腔(9);烟气室(21)出口与余热回收装置连通,由此,缩短了核心机转子转轴的长度,降低设备加工难度并减小设备振动。还包括一种多转子微型燃气轮机启动方法,通过启动电机(19)带动自由转子系统(20)转动,自由涡轮(18)旋转时产生气流旋涡带动涡轮(2)和压气机(1)旋转,当压气机(1)叶轮旋转速度达到点火速度时,开启燃料泵供燃料,开启点火器执行点火操作完成启动。

Description

多转子微型燃气轮机及其启动方法 技术领域
本方案涉及燃气轮机启动方式领域,尤其涉及多转子微型燃气轮机及其启动方法。
背景技术
工业燃气轮机主要包括压气机、燃烧室及透平三大部件。空气进入压气机后被压缩成高温高压的空气,然后供给燃烧室燃料燃烧,其产生的高温高压燃气在透平中膨胀做功。
单转子燃气轮机结构整体只有一根轴,压气机、涡轮全都在这根轴上,结构简单,经济性好。理论上说,单转子结构微型燃气轮机的压气机可以做成任意多的级数以达到一定的增压比。但单转子的结构限制使所有零件都安装在同一根主轴之上,当单转子的转速突然下降时,压气机的高压部分就会因为得不到足够的转速而效率严重下降,同时,压气机低压部分的载荷就会急剧上升。低压压气机部分超载运行时就会引起喘振,在正常运行中,喘振是不被允许的。为解决此问题,通常会在压气机前加装导流叶片或者在压气机的中间级上进行放气,即空放掉一部分被增压的空气来减少压气机低压部分的载荷。此种方式缺点明显,不仅会大大降低效率,而且在高增压比的压气机上的作用也不是十分的明显。
为了提高压气机的工作效率和减少喘振,人们想到了用多转子来解决问题。例如让微型燃气轮机的低压压气机和高压压气机工作在不同的转速之下。低压压气机与低压涡轮联动形成低压转子,高压压气机与高压涡轮联动形成高压转子。低压转子的转速相对较低。因为压缩作用,压气机内的空气温度升高,因为音速也随着空气温度的升高而升高,所以可以提高高压转子的转速上限、降低高压转子直径。由于双转子微型燃气轮机的高压转子的重量比较轻,起动惯 性小,因此可以用启动电机驱动,与单转子结构相比,双转子的启动比较容易,启动能量也较小,启动设备的重量也相应降低。
然而,在双转子结构的微型燃气轮机上,由于风扇要和低压压气机联动,因此直径相对比较大的风扇所承受的离心力和叶尖速度也就要大,巨大的离心力就要求风扇的重量不能太大,叶片长度不能太长,因此涵道比提高有限,而实践证明函道比越高的推力也就越大,而且也相对省油。而低压压气机为了与风扇联动也不得不降低转数,单级增压比降低,为了达到总的增压比,就不得不增加压气机风扇的级数。这样压气机的重量就很难得以下降。
综上所述,传统机械式的单转子在功能上有诸多局限性,而传统的多转子体系有巨大的工程复杂性和不确定性。例如,目前的传统多转子燃气轮机核心机采用电机启动,而设置电机大大增加了转子转轴的长度,并由此带来一系列的问题,如加工难度高、同轴度不易保证、振动严重、质量大。
发明内容
本发明的目的在于针对现有技术存在的不足,提供一种多转子微型燃气轮机及其启动方法。
为实现上述目的,本发明采取下述方案:
一种多转子微型燃气轮机,包括核心机和自由机,其中,所述核心机,包括压气机1、涡轮2、转轴3、进气通道4、燃烧室5;所述压气机1和涡轮2分别套设于转轴3的前端和末端,压气机1前端环绕罩设的壳体围成所述进气通道4,压气机1出口经出气道6连通燃烧室5,涡轮2轮缘设置在燃烧室5的排气道7内,燃烧室5排气道7内喷出的高温高压气体喷在涡轮2端面上推动涡轮2旋转做功;转轴3通过径向轴承8支撑在定子内;各轴承设置在压气机1和涡轮2之间的转轴轴段上,出气道与定子之间形成轴承腔9,压气机1背气面设置气封10防止压气机1背气面气体泄漏至轴承腔9内,涡轮2前侧设置气封10防止气体从涡轮2和燃烧室5之间的缝隙泄漏至轴承腔9内;
所述自由机包括自由机匣17、自由涡轮18、电机19、自由转子系统20以 及烟气室21,所述自由涡轮18、电机19、自由转子系统20设置于自由机匣17内,自由涡轮18与电机19依次同轴安装于自由转子系统20上;
自由涡轮18轮缘设置在燃烧室5的排气道7内,燃烧室5排气道7前段的高温高压气体喷在涡轮2端面上推动涡轮2旋转做功,燃烧室5排气道7后段的高温高压气体喷在自由涡轮18端面上推动自由涡轮18旋转做功;烟气室21出口与外界连通。
气体首先进入压气机1,经压气机1增压后进入燃烧室5内燃烧,热的燃烧产物从燃烧室5出口经排气道7喷出;核心机涡轮2边缘伸入排气道7前段,自由涡轮18边缘伸入排气道7后段且与核心机涡轮2同轴,此时,高温气既能推动核心机涡轮2旋转,带动与其通过转轴3同轴连接的压气机1旋转,又能推动自由涡轮18旋转,从而作功带动电机19发电,多余的高温气从排气道7排出。
所述烟气室出口与外界设置的余热回收装置相连通。
所述余热回收装置包括锅炉、暖气片、换热器。
一种多转子微型燃气轮机启动方法,包括以下步骤:
1)启动电机19,带动自由转子系统20转动进而带动自由涡轮18旋转,自由涡轮18转动时产生气流旋涡,带动其前方的核心机涡轮2转动;核心机涡轮2带动同轴的压气机1叶轮旋转;
2)确定微型燃气轮机满足点火条件,开启点火器执行点火操作;
3)点火操作成功后,燃料燃烧,使微型燃气轮机核心机转子速度持续上升直至稳定旋转,电机19脱开;燃烧后高温高压气体喷出,推动核心机涡轮2及自由涡轮18转动,涡轮2带动同轴的压气机1叶轮高速旋转,整机持续运转;自由涡轮18带动电机19发电。
进一步地,步骤2)中,所述确定微型燃气轮机满足点火条件,开启点火器执行点火操作包括:
确定压气机1叶轮旋转带动转子转动速度达到点火速度;
转子维持在点火速度,开启燃料泵供燃料;
开启点火器执行点火操作。
有益效果
核心机不采用电机启动,而是用自由机涡轮自吸方式启动,大大缩短了核心机转子转轴的长度,并由此带来一系列的优势,如加工难度低、同轴度易保证、振动小、质量轻。
附图说明
图1为实施例中多转子微型燃气轮机的结构图
附图标记:压气机1、涡轮2、转轴3、进气通道4、燃烧室5、出气道6、排气道7、径向轴承8、轴承腔9、气封10、推力盘11、推力轴承12、推力轴承12、气管14、电涵道风扇15、支路16、自由机匣17、自由涡轮18、电机19、自由转子系统20、烟气室21。
具体实施方式
实施例
如图1所示,一种多转子微型燃气轮机,包括核心机和自由机,其中,所述核心机,包括压气机1、涡轮2、转轴3、进气通道4、燃烧室5;所述压气机1和涡轮2分别套设于转轴3的前端和末端,压气机1前端环绕罩设的壳体围成所述进气通道4,压气机1出口经出气道6连通燃烧室5,涡轮2轮缘设置在燃烧室5的排气道7内,燃烧室5排气道7内喷出的高温高压气体喷在涡轮2端面上推动涡轮2旋转做功;转轴3通过径向轴承8支撑在定子内;各轴承设置在压气机1和涡轮2之间的转轴轴段上,出气道6与定子之间形成轴承腔9,压气机1背气面设置气封10防止压气机1背气面气体泄漏至轴承腔9内,涡轮2前侧设置气封10防止气体从涡轮2和燃烧室5之间的缝隙泄漏至轴承腔9内;
所述自由机包括自由机匣17、自由涡轮18、电机19、自由转子系统20以及烟气室21,所述自由涡轮18、电机19、自由转子系统20设置于自由机匣17 内,自由涡轮18与电机19依次同轴安装于自由转子系统20上;
自由涡轮18轮缘设置在燃烧室5的排气道7内,燃烧室5排气道7前段的高温高压气体喷在涡轮2端面上推动涡轮2旋转做功,燃烧室5排气道7后段的高温高压气体喷在自由涡轮18端面上推动自由涡轮18旋转做功;烟气室21出口与外界连通。
气体首先进入压气机1,经压气机1增压后进入燃烧室5内燃烧,热的燃烧产物从燃烧室5出口经排气道7喷出;核心机涡轮2边缘伸入排气道7前段,自由涡轮18边缘伸入排气道7后段且与核心机涡轮2同轴,此时,高温气既能推动核心机涡轮2旋转,带动与其通过转轴3同轴连接的压气机1旋转,又能推动自由涡轮18旋转,从而作功带动电机19发电,多余的高温气从排气道7排出。
所述烟气室出口与外界设置的余热回收装置相连通。
所述余热回收装置包括锅炉、暖气片、换热器,用于将烟气室出口排出的过热烟气进一步回收利用,如利用过热烟气加热锅炉,或加热暖气片,或为换热器提供热源。
多转子微型燃气轮机启动方法,包括以下步骤:
1)启动电机19,带动自由转子系统20转动进而带动自由涡轮18旋转,自由涡轮18转动时产生气流旋涡,带动其前方的核心机涡轮2转动;核心机涡轮2带动同轴的压气机1叶轮旋转;
2)确定微型燃气轮机满足点火条件,开启点火器执行点火操作;
3)点火操作成功后,燃料燃烧,使微型燃气轮机核心机转子速度持续上升直至稳定旋转,电机19脱开;燃烧后高温高压气体喷出,推动核心机涡轮2及自由涡轮18转动,涡轮2带动同轴的压气机1叶轮高速旋转,整机持续运转;自由涡轮18带动电机19发电。
进一步地,步骤2)中,所述确定微型燃气轮机满足点火条件,开启点火器执行点火操作包括:
确定压气机1叶轮旋转带动转子转动速度达到点火速度;
转子维持在点火速度,开启燃料泵供燃料;
开启点火器执行点火操作。
以上为本发明较佳的实施方式,本发明所属领域的技术人员还能够对上述实施方式进行变更和修改,因此,本发明并不局限于上述的具体实施方式,凡是本领域技术人员在本发明的基础上所作的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (6)

  1. 一种多转子微型燃气轮机,包括核心机和自由机,其中,所述核心机,包括压气机、涡轮、转轴、进气通道、燃烧室;所述压气机和涡轮分别套设于转轴的前端和末端,压气机前端环绕罩设的壳体围成所述进气通道,压气机出口经出气道连通燃烧室,涡轮轮缘设置在燃烧室的排气道内,燃烧室排气道内喷出的高温高压气体喷在涡轮端面上推动涡轮旋转做功;转轴通过径向轴承支撑在定子内;各轴承设置在压气机和涡轮之间的转轴轴段上,出气道与定子之间形成轴承腔,压气机背气面设置气封防止压气机背气面气体泄漏至轴承腔内,涡轮前侧设置气封防止气体从涡轮和燃烧室之间的缝隙泄漏至轴承腔内;
    所述自由机包括自由机匣、自由涡轮、电机、自由转子系统以及烟气室,所述自由涡轮、电机、自由转子系统设置于自由机匣内,自由涡轮与电机依次同轴安装于自由转子系统上;
    自由涡轮轮缘设置在燃烧室的排气道内,燃烧室排气道前段的高温高压气体喷在涡轮端面上推动涡轮旋转做功,燃烧室排气道后段的高温高压气体喷在自由涡轮端面上推动自由涡轮旋转做功;烟气室出口与外界连通。
  2. 根据权利要求1中所述的多转子微型燃气轮机,其特征在于:气体首先进入压气机,经压气机增压后进入燃烧室内燃烧,热的燃烧产物从燃烧室出口经排气道喷出;核心机涡轮边缘伸入排气道前段,自由涡轮边缘伸入排气道后段且与核心机涡轮同轴,此时,高温气既能推动核心机涡轮旋转,带动与其通过转轴同轴连接的压气机旋转,又能推动自由涡轮旋转,从而作功带动电机发电,多余的高温气从排气道排出。
  3. 根据权利要求1中所述的多转子微型燃气轮机,其特征在于:所述烟气室出口与外界设置的余热回收装置相连通。
  4. 根据权利要求3中所述的多转子微型燃气轮机,其特征在于:所述余热回收装置包括锅炉、暖气片、换热器。
  5. 根据权利要求1-4中任一所述的多转子微型燃气轮机启动方法,其特征 在于,包括以下步骤:
    1)启动电机,带动自由转子系统转动进而带动自由涡轮旋转,自由涡轮转动时产生气流旋涡,带动其前方的核心机涡轮转动;核心机涡轮带动同轴的压气机叶轮旋转;
    2)确定微型燃气轮机满足点火条件,开启点火器执行点火操作;
    3)点火操作成功后,燃料燃烧,使微型燃气轮机核心机转子速度持续上升直至稳定旋转,电机脱开;燃烧后高温高压气体喷出,推动核心机涡轮及自由涡轮转动,涡轮带动同轴的压气机叶轮高速旋转,整机持续运转;自由涡轮带动电机发电。
  6. 根据权利要求5所述的启动方法,其特征在于,步骤2)中,所述确定微型燃气轮机满足点火条件,开启点火器执行点火操作包括:
    确定压气机叶轮旋转带动转子转动速度达到点火速度;
    转子维持在点火速度,开启燃料泵供燃料;
    开启点火器执行点火操作。
PCT/CN2021/099967 2020-11-18 2021-06-15 多转子微型燃气轮机及其启动方法 WO2022105213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011288828.3 2020-11-18
CN202011288828.3A CN112696269A (zh) 2020-11-18 2020-11-18 多转子微型燃气轮机及其启动方法

Publications (1)

Publication Number Publication Date
WO2022105213A1 true WO2022105213A1 (zh) 2022-05-27

Family

ID=75506463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099967 WO2022105213A1 (zh) 2020-11-18 2021-06-15 多转子微型燃气轮机及其启动方法

Country Status (2)

Country Link
CN (1) CN112696269A (zh)
WO (1) WO2022105213A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576024A (zh) * 2023-05-31 2023-08-11 威海广泰空港设备股份有限公司 一种微燃发电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112696269A (zh) * 2020-11-18 2021-04-23 靳普 多转子微型燃气轮机及其启动方法
CN113006940B (zh) * 2021-05-06 2022-03-29 中国航发湖南动力机械研究所 一种无需外部减速器的微小型涡桨发动机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164532A (ja) * 1989-11-22 1991-07-16 Yanmar Diesel Engine Co Ltd 2軸式非常用ガスタービン
WO1999020880A1 (en) * 1997-10-23 1999-04-29 Carl Fredriksson Device, method and application in connection with a turbomachine and pumping and lubricating arrangement in connection with such a machine
JP2003269188A (ja) * 2002-03-19 2003-09-25 Ishikawajima Harima Heavy Ind Co Ltd 蒸気噴射再熱ガスタービン発電装置
EP2119891A2 (en) * 2008-05-15 2009-11-18 Hitachi Ltd. Control of working fluid flow of a two-shaft gas turbine
CN101915128A (zh) * 2009-04-15 2010-12-15 通用电气公司 包括多转子发电机的系统
CN104420991A (zh) * 2013-09-06 2015-03-18 三菱日立电力系统株式会社 双轴燃气轮机
CN205578118U (zh) * 2016-04-26 2016-09-14 中科合肥微小型燃气轮机研究院有限责任公司 一种高速直驱式微小型燃气轮机发电系统
CN112696269A (zh) * 2020-11-18 2021-04-23 靳普 多转子微型燃气轮机及其启动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2264972B1 (zh) * 1974-03-20 1977-06-17 Turbine Ind
CN211343126U (zh) * 2019-12-27 2020-08-25 迅玲腾风汽车动力科技(北京)有限公司 一种微型燃气轮机
CN211314387U (zh) * 2019-12-27 2020-08-21 至玥腾风科技集团有限公司 一种用于供暖的微型燃气轮机
CN111441869A (zh) * 2020-03-29 2020-07-24 至玥腾风科技集团有限公司 一种微型燃气轮机启动方法及系统
CN215057760U (zh) * 2020-11-18 2021-12-07 靳普 多转子微型燃气轮机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164532A (ja) * 1989-11-22 1991-07-16 Yanmar Diesel Engine Co Ltd 2軸式非常用ガスタービン
WO1999020880A1 (en) * 1997-10-23 1999-04-29 Carl Fredriksson Device, method and application in connection with a turbomachine and pumping and lubricating arrangement in connection with such a machine
JP2003269188A (ja) * 2002-03-19 2003-09-25 Ishikawajima Harima Heavy Ind Co Ltd 蒸気噴射再熱ガスタービン発電装置
EP2119891A2 (en) * 2008-05-15 2009-11-18 Hitachi Ltd. Control of working fluid flow of a two-shaft gas turbine
CN101915128A (zh) * 2009-04-15 2010-12-15 通用电气公司 包括多转子发电机的系统
CN104420991A (zh) * 2013-09-06 2015-03-18 三菱日立电力系统株式会社 双轴燃气轮机
CN205578118U (zh) * 2016-04-26 2016-09-14 中科合肥微小型燃气轮机研究院有限责任公司 一种高速直驱式微小型燃气轮机发电系统
CN112696269A (zh) * 2020-11-18 2021-04-23 靳普 多转子微型燃气轮机及其启动方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576024A (zh) * 2023-05-31 2023-08-11 威海广泰空港设备股份有限公司 一种微燃发电装置
CN116576024B (zh) * 2023-05-31 2024-04-02 威海广泰空港设备股份有限公司 一种微燃发电装置

Also Published As

Publication number Publication date
CN112696269A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2022105213A1 (zh) 多转子微型燃气轮机及其启动方法
US11008938B2 (en) Gas turbine blower/pump
CA2356529C (en) Apparatus and method to increase turbine power
KR101991134B1 (ko) 가스 터빈 장치용 터닝 기어
CN105257428B (zh) 一种分布式压缩、旋流冲压发动机
US3394265A (en) Spinning reserve with inlet throttling and compressor recirculation
CN107567533A (zh) 改装联合循环发电装备的设备和方法
US10907640B2 (en) Gas turbine blower/pump
CN111042921A (zh) 一种多级涡轮式微型燃气轮机
CN107476996B (zh) 发电机组
CN215057760U (zh) 多转子微型燃气轮机
CN215979532U (zh) 内外混燃机
CN211343135U (zh) 一种多级涡轮式微型燃气轮机
CN113756901A (zh) 内外混燃机
CN113756900A (zh) 内外混燃机
RU2142565C1 (ru) Парогазовая установка
KR102566355B1 (ko) 가스 터빈 송풍기/펌프
CN109611207A (zh) 一种燃气轮涡轴发动机
RU2358120C1 (ru) Турбовинтовой газотурбинный двигатель
CA2921053C (en) Gas turbine blower/pump
RU2816769C1 (ru) Винтовентиляторный авиационный газотурбинный двигатель
RU2379523C2 (ru) Винтовентиляторный авиационный двигатель
CN219654791U (zh) 一种向心涡轮驱动的单轴混排微型涡轮风扇发动机
RU2359144C1 (ru) Винтовентиляторный авиационный газотурбинный двигатель
RU2359131C1 (ru) Турбовинтовой газотурбинный двигатель

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.09.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21893367

Country of ref document: EP

Kind code of ref document: A1