WO2020113634A1 - 显示面板、显示面板的制造方法和显示装置 - Google Patents

显示面板、显示面板的制造方法和显示装置 Download PDF

Info

Publication number
WO2020113634A1
WO2020113634A1 PCT/CN2018/120487 CN2018120487W WO2020113634A1 WO 2020113634 A1 WO2020113634 A1 WO 2020113634A1 CN 2018120487 W CN2018120487 W CN 2018120487W WO 2020113634 A1 WO2020113634 A1 WO 2020113634A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
organic
display panel
small molecule
layer
Prior art date
Application number
PCT/CN2018/120487
Other languages
English (en)
French (fr)
Inventor
刘振
卓恩宗
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to US17/041,428 priority Critical patent/US11489132B2/en
Publication of WO2020113634A1 publication Critical patent/WO2020113634A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel, a method of manufacturing the display panel, and a display device.
  • Organic light-emitting diodes or organic light-emitting displays are a new type of display technology developed since the mid-20th century. Compared with liquid crystal displays, organic electroluminescent diodes have all solid state, active light emission, high brightness, high contrast, ultra-thin, low cost, low power consumption, fast response, wide viewing angle, wide operating temperature range, easy flexible display, etc. Advantages, from the point of molecular size, organic light-emitting materials can be divided into small molecule materials and polymer materials.
  • organic light-emitting molecules have a severe quenching phenomenon of aggregated fluorescence.
  • the present application provides a display panel, a method of manufacturing the display panel, and a display device, to improve the phenomenon of aggregation of organic light-emitting molecules.
  • the present application discloses a display panel including an organic electroluminescent device.
  • the organic electroluminescent device includes a light-emitting layer including a body composed of mesoporous silica and small organic molecules A dopant composed of a luminescent material, the dopant being provided in the host.
  • the organic electroluminescent device includes: a substrate; an anode layer provided on the surface of the substrate; a hole injection layer provided on the surface of the anode layer; and a hole injection layer provided on the surface of the hole injection layer Hole transport layer; light emitting layer provided on the surface of the hole transport layer; electron output layer provided on the surface of the light emitting layer; electron injection layer provided on the surface of the electron output layer; provided on the electron injection layer Surface, and a cathode layer electrically connected to the anode layer.
  • the molecular weight in the small organic light-emitting material is less than or equal to 2000.
  • the body includes a plurality of cylindrical holes, the holes penetrate the body, and the small organic light-emitting material is filled in the holes.
  • the outer wall of the main body is a regular hexagon.
  • the organic small molecule light-emitting material includes red organic small molecule material, green organic small molecule material and blue organic small molecule material
  • the light-emitting layer includes a plurality of light-emitting elements, each of which is composed of Red light organic small molecule material, green light organic small molecule material and blue light organic small molecule material are mixed and composed.
  • the red light organic small molecule material, the green light organic small molecule material and the blue light organic small molecule material are mixed in the same layer in the light emitting member.
  • the organic small molecule light-emitting material includes red light organic small molecule material, green light organic small molecule material and blue light organic small molecule material
  • the light-emitting layer includes a plurality of light-emitting members, and each of the light-emitting members includes red A light-emitting layer, a green light-emitting layer, and a blue light-emitting layer
  • the red light-emitting layer is composed of a red light organic small molecule material
  • the green light-emitting layer is composed of a green light organic small molecule material
  • the blue light-emitting layer is composed of a blue light organic small molecule Molecular materials.
  • the positions of the red light-emitting layer, the green light-emitting layer, and the blue light-emitting layer in the same light-emitting member can be interchanged.
  • the display panel is an organic light-emitting display panel.
  • the body does not react with the dopant.
  • the present application also discloses a method for manufacturing a display panel.
  • the display panel includes an organic electroluminescent device, and the organic electroluminescent device includes a light emitting layer.
  • the manufacturing method includes a light emitting layer forming step: emitting small organic molecules
  • the material is provided in a host material composed of mesoporous silica to form the light-emitting layer.
  • the step of forming the light-emitting layer includes:
  • Mixing step mixing the small organic light-emitting material and the mesoporous silica with a solvent to form a mixed liquid;
  • Molding step coating the mixture on the hole transport layer of the organic electroluminescent device, and forming the light-emitting layer by baking.
  • the mixing step includes:
  • the first mixed liquid and the second mixed liquid are mixed to form the mixed liquid.
  • the first solvent and the second solvent do not chemically react.
  • the temperature at which the mixture of the organic small molecule light-emitting material and the mesoporous silica is baked is 250-350 degrees, and the time is 0.5-5 hours.
  • the present application also discloses a display device, including the above-mentioned display panel, and a driving device for driving the display panel.
  • this application places the organic small-molecule light-emitting materials in the body composed of mesoporous silica, which can achieve the effective dispersion of the organic small-molecule light-emitting materials and reduce aggregation. At the same time, the combination of small organic molecules and inorganic silica increases the overall life of the device.
  • FIG. 1 is a schematic diagram of an organic electroluminescent device according to one embodiment of the present application.
  • FIG. 2 is a schematic diagram of a light-emitting layer according to one embodiment of the present application.
  • FIG. 3 is a schematic diagram of a light-emitting member according to one embodiment of the present application.
  • FIG. 4 is a schematic diagram of another light-emitting member according to one embodiment of the present application.
  • FIG. 5 is a schematic diagram of a red light organic small molecule material according to one embodiment of the present application.
  • FIG. 6 is a schematic diagram of another red light organic small molecule material according to one embodiment of the present application.
  • FIG. 7 is a schematic diagram of a green light organic small molecule material according to one embodiment of the present application.
  • FIG. 8 is a schematic diagram of another green light organic small molecule material according to one embodiment of the present application.
  • FIG. 9 is a schematic diagram of a blue organic small molecule material according to one embodiment of the present application.
  • FIG. 10 is a schematic diagram of another blue organic small molecule material according to one embodiment of the present application.
  • FIG. 11 is a flowchart of a method of manufacturing a display panel according to one embodiment of the present application.
  • FIG. 12 is a flowchart of mixing steps in a method of manufacturing a display panel according to one embodiment of the present application.
  • FIG. 13 is a schematic diagram of mixing steps in a method of manufacturing a display panel according to one embodiment of the present application.
  • FIG. 14 is a schematic diagram of mixing steps in a method of manufacturing a display panel according to one embodiment of the present application.
  • 15 is a flowchart of a method of manufacturing a display panel according to one embodiment of the present application.
  • 16 is a schematic diagram of another display panel manufacturing method according to one embodiment of the present application.
  • 17 is a flowchart of another display panel manufacturing method according to one embodiment of the present application.
  • FIG. 18 is a schematic diagram of a display device according to one embodiment of the present application.
  • first and second only describe the purpose, and cannot be understood as indicating relative importance, or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may expressly or implicitly include one or more of the features; “multiple” means two or more.
  • the term “comprising” and any variations thereof are meant to be non-exclusive and one or more other features, integers, steps, operations, units, components, and/or combinations thereof may be present or added.
  • connection should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection It can also be an electrical connection; it can be directly connected, indirectly connected through an intermediary, or connected within two components.
  • an embodiment of the present application discloses a display panel 200.
  • the display panel 200 includes an organic electroluminescent device 400.
  • the organic electroluminescent device 400 includes a light emitting layer 410, and the light emitting layer 410 includes a mesoporous two.
  • a body 411 composed of silicon oxide 413 and a dopant 412 composed of an organic small molecule light-emitting material 414 are provided in the body 411.
  • the main body 411 and the dopant 412 do not react.
  • the organic small molecule luminescent material 414 is arranged in the main body 411 composed of mesoporous silica 413, which can realize the effective dispersion of the organic small molecule luminescent material 414 and reduce the probability of aggregation into clusters.
  • the combination of silicon dioxide increases the overall lifetime of the device.
  • the display panel 200 is an organic light-emitting diode (OLED display panel for short).
  • the organic electroluminescent device 400 includes:
  • the molecular weight in the small organic light-emitting material 414 is less than or equal to 2000.
  • the pore diameter of the mesoporous is between 2-50nm, if the molecular weight is too large, the organic light-emitting material is difficult to fill the mesoporous material
  • the value of 2,000 in molecular weight just meets the requirements of filling.
  • the body 411 includes a plurality of cylindrical holes 4111, the holes 4111 penetrate the body 411, and the organic small molecule light emitting material 414 is filled in the holes 4111.
  • the hole 4111 structure is convenient for implementation using a self-assembled molecular template solution.
  • the hole 4111 can be cylindrical or polygonal. Different manufacturing processes and product requirements can produce different shapes of hole 4111 structures. Therefore, various The shape of the hole 4111 structure is within the scope of this embodiment.
  • the 411 outer wall of the main body has a regular hexagon shape.
  • the organic small molecule light emitting material 414 includes a red organic small molecule material 4141, a green organic small molecule material 4142, and a blue organic small molecule material 4143
  • the light emitting layer 410 includes a plurality of light emitting members 415, each light-emitting element 415 is composed of a mixture of red light organic small molecule material 4141, green light organic small molecule material 4142 and blue light organic small molecule material 4143.
  • red light organic small molecule material 4141, green light organic small molecule material 4142 and blue light organic small molecule material 4143 are mixed to form each light emitting element 415, so that each light emitting element 415 can emit three colors of red, green and blue
  • the mixed light makes the processing process simple, without the need to separate the three-color organic small molecule materials separately, saving the processing time of the light-emitting layer 410.
  • the red light organic small molecule material 4141, the green light organic small molecule material 4142 and the blue light organic small molecule material 4143 are mixed in the same layer in the light emitting member 415.
  • the organic small molecule light emitting material 414 includes red light organic small molecule material 4141, green light organic small molecule material 4142 and blue light organic small molecule material 4143, and the light emitting layer 410 includes multiple light emitting members 415, each light-emitting element 415 includes a red light-emitting layer 4151, a green light-emitting layer 4152, and a blue light-emitting layer 4153, the red light-emitting layer 4151 is composed of a red light organic small molecule material 4141, and the green light-emitting layer 4152 is composed of a green light organic small molecule material 4142 The blue light-emitting layer 4153 is composed of a blue organic small molecule material 4143.
  • each light-emitting element 415 is divided into three types: a red light-emitting layer 4151, a green light-emitting layer 4152, and a blue light-emitting layer 4153, and the light-emitting elements 415 are subdivided into smaller units, which facilitates the control of each light-emitting element 415.
  • the uniform distribution of the three different color light-emitting layers 410 in each light-emitting element 415 will have a better display effect, and when the light-emitting element 415 has a problem, it can be modified in a targeted manner.
  • the positions of the red light-emitting layer 4151, the green light-emitting layer 4152, and the blue light-emitting layer 4153 in the same light-emitting member 415 can be interchanged.
  • the red organic small molecule material 4141 includes two red phosphorescent materials, which are: 2- ⁇ 2-tert-butyl-6-[2-(1,1,7,7-tetramethyl- 2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)-vinyl]-pyran-4-ylidene ⁇ -propane Dinitrile, whose English name is (btp)2lr(acac); 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljuronidine -4-vinyl)-4H-pyran, whose English name is DCJTB; the chemical structures of the two materials are shown in Figures 5 and 6, respectively.
  • the two materials provided can meet the requirements of this application in terms of color and molecular size.
  • the green light organic small molecule material 4142 includes two green phosphorescent materials, namely: 2,4,5,6-tetrakis(9-carbazolyl)-isophthalonitrile, whose English name is 4CzlPN ; Tris (2-phenylpyridine) iridium, the English name is lr (ppy) 3; The chemical structures of the two materials are shown in Figure 7 and Figure 8, respectively.
  • the two materials provided can meet the requirements of this application in terms of color and molecular size.
  • the blue organic small molecule material 4143 includes two blue phosphorescent materials, namely: 4,4'-bis(2,2-distyryl)-1,1'-biphenyl, which is in English The name is DPVBl; bis(4,6-difluorophenylpyridine-N,C2')pyridylformyl iridium, whose English name is Flrpic; the chemical structures of the two materials are shown in Figure 9 and Figure 10, respectively.
  • the two materials provided can meet the requirements of this application in terms of color and molecular size.
  • a manufacturing method of a display panel 200 is disclosed.
  • the display panel 200 includes an organic electroluminescent device 400, and the organic electroluminescent device 400 includes a light emitting layer 410
  • the manufacturing method includes the step of forming the light-emitting layer 410: disposing the organic small molecule light-emitting material in a host material composed of mesoporous silica to form the light-emitting layer.
  • the forming step of the light-emitting layer 410 includes:
  • S111 mixing step: mixing the organic small molecule luminescent material and mesoporous silica through a solvent to form a mixed liquid;
  • S112 molding step: coating the mixture on the hole transport layer of the organic electroluminescent device, and forming a light-emitting layer by baking.
  • the solution method can reduce costs, be suitable for large-size panel manufacturing, and can simplify the manufacturing process, and use the baking method to evaporate the water in the mixed liquid 500 to obtain the final light-emitting layer 410.
  • the baking method does not The state in which the combination of mesoporous silica 413 and small organic light-emitting material 414 is affected will not cause the mixed solution 500 to react.
  • the mixing step includes:
  • the first two steps have no sequential order; the first solvent 511 and the second solvent 521 do not undergo a chemical reaction.
  • the organic small molecule luminescent material 414 is mixed with the first solvent 511 first, so that the organic small molecule luminescent material 414 can be evenly distributed in the first solvent 511, and the mesopores can be added to the uniformly mixed organic small molecule luminescent solution
  • the silica 413 and the second solvent 521 can make the mesoporous silica 413 and the organic small molecule luminescent material 414 evenly contact, and the mesoporous silica 413 which does not appear can contact more organic small molecule luminescent material 414
  • some mesoporous silica 413 can only contact less luminescent materials; addition of the second solvent 521 can dilute the organic small molecule luminescent material 414 and the mesoporous silica 413 to keep the distribution of the two uniform.
  • the mixed liquid 500 of the organic small molecule light emitting material 414 and the mesoporous silica 413 is baked at a temperature of 250-350 degrees and a time of 0.5-5 hours.
  • the baking temperature is set at 250-350 degrees, and the time is set in the range of 0.5-5 hours, because this condition is relatively mild and will not damage the structure of the organic small molecule light-emitting material 414 and mesoporous silica 413 .
  • the manufacturing method includes:
  • a manufacturing method of the display panel 200 is also disclosed.
  • the manufacturing method includes:
  • S154 The hexagonal matrix root is formed into a mesophase through a self-assembly mechanism of silicon gel;
  • a display device 100 is also disclosed, including the above-mentioned display panel 200 and a driving device 300 that drives the display panel 200.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(200)、显示面板(200)的制造方法和显示装置(100)。显示面板(200)包括有机电致发光器件(400),有机电致发光器件(400)包括发光层(410),发光层(410)包括由介孔二氧化硅(413)构成的主体(411),和由有机小分子发光材料(414)构成的掺杂物(412),掺杂物(412)设置在主体(411)中。

Description

显示面板、显示面板的制造方法和显示装置
本申请要求于2018年12月4日提交中国专利局,申请号为CN201811473419.3,申请名称为“一种显示面板、显示面板的制造方法和显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板、显示面板的制造方法和显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
有机发光二极管或有机发光显示器(Organic Light Emitting Diode Display,OLED)又称为有机电致发光二极管,是自20世纪中期发展起来的一种新型显示技术。与液晶显示器相比,有机电致发光二极管具有全固态、主动发光、高亮度、高对比度、超薄、低成本、低功耗、快速响应、宽视角、工作温度范围宽、易于柔性显示等诸多优点,从分子大小上来分,有机发光材料可以分为小分子材料和高分子聚合物材料。
一般地,有机发光分子有严重的聚集荧光淬灭现象。
申请内容
为实现上述目的,本申请提供了一种显示面板、显示面板的制造方法和显示装置,以改善有机发光分子聚集的现象。
本申请公开了一种显示面板,所述显示面板包括有机电致发光器件,所述有机电致发光器件包括发光层,所述发光层包括由介孔二氧化硅构成的主体,和由有机小分子发光材料构成的掺杂物,所述掺杂物设置在所述主体中。
可选的,所述有机电致发光器件包括:衬底;设置在所述衬底表面的阳极层;设置在所述阳极层表面的空穴注入层;设置在所述空穴注入层表面的空穴传输层;设置在所述空穴传输层表面的发光层;设置在所述发光层表面的电子输出层;设置在所述电子输出层表面的电子注入层;设置在所述电子注入层表面,并且与所述阳极层电连接的阴极层。
可选的,所述有机小分子发光材料中的分子量小于或等于2000。
可选的,所述主体包括多个圆柱形孔洞,所述孔洞贯穿主体,所述有机小分子发光材料填充于所述孔洞内。
可选的,所述主体的外壁成正六边形。
可选的,所述有机小分子发光材料包括红光有机小分子材料、绿光有机小分子材料和蓝光有机小分子材料,所述发光层包括多个发光件,每个所述发光件都由红光有机小分子材料、绿光有机小分子材料和蓝光有机小分子材料混合构成。
可选的,所述红光有机小分子材料、绿光有机小分子材料和蓝光有机小分子材料在发光件中同层混合。
可选的,所述有机小分子发光材料包括红光有机小分子材料、绿光有机小分子材料和蓝光有机小分子材料,所述发光层包括多个发光件,每个所述发光件包括红色发光层、绿色发光层和蓝色发光层,所述红色发光层由红光有机小分子材料构成,所述绿色发光层由绿光有机小分子材料构成,所述蓝色发光层由蓝光有机小分子材料构成。
可选的,同一发光件中红色发光层、绿色发光层和蓝色发光层的位置可以互换。
可选的,所述显示面板为有机发光显示面板。
可选的,所述主体与所述掺杂物不发生反应。
本申请还公开了一种显示面板的制造方法,所述显示面板包括有机电致发光器件,所述有机电致发光器件包括发光层,所述制造方法包括发光层成型步骤:将有机小分子发光材料设置在由介孔二氧化硅构成的主体材料内,形成所述发光层。
可选的,所述发光层成型步骤包括:
混合步骤:将所述有机小分子发光材料和所述介孔二氧化硅通过溶剂混合,形成混合液;
成型步骤:将混合液涂布在所述有机电致发光器件的空穴传输层上,通过烘焙形成所述发光层。
可选的,所述混合步骤包括:
将所述有机小分子发光材料与第一溶剂混合形成第一混合液;
将所述介孔二氧化硅与第二溶剂混合形成第二混合液;
将所述第一混合液和所述第二混合液混合形成所述混合液。
可选的,所述第一溶剂与所述第二溶剂不发生化学反应。
可选的,所述有机小分子发光材料和所述介孔二氧化硅的混合液经过烘焙的温度为250-350度,时间为0.5-5小时。
本申请还公开了一种显示装置,包括上述的显示面板,以及驱动所述显示面板的驱动装置。
相对于发光层含有其它类型有机发光材料的方案来说,本申请将有机小分子发光材料设置在由介孔二氧化硅构成的主体内,可以实现有机小分子发光材料的有效分散,降低聚集成簇的几率,同时有机小分子与无机二氧化硅的结合使器件整体的寿命提高。
附图说明
所包括的附图用来提供对本申请实施例的理解,其构成了说明书的一部分,例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请的其中一实施例的一种有机电致发光器件的示意图;
图2是本申请的其中一实施例的一种发光层的示意图;
图3是本申请的其中一实施例的一种发光件的示意图;
图4是本申请的其中一实施例的另一种发光件的示意图;
图5是本申请的其中一实施例的一种红光有机小分子材料的示意图;
图6是本申请的其中一实施例的另一种红光有机小分子材料的示意图;
图7是本申请的其中一实施例的一种绿光有机小分子材料的示意图;
图8是本申请的其中一实施例的另一种绿光有机小分子材料的示意图;
图9是本申请的其中一实施例的一种蓝光有机小分子材料的示意图;
图10是本申请的其中一实施例的另一种蓝光有机小分子材料的示意图;
图11是本申请的其中一实施例的一种显示面板制造方法的流程图;
图12是本申请的其中一实施例的一种显示面板制造方法中混合步骤的流程图;
图13是本申请的其中一实施例的一种显示面板制造方法中混合步骤的示意图;
图14是本申请的其中一实施例的一种显示面板制造方法中混合步骤的示意图;
图15是本申请的其中一实施例的一种显示面板制造方法的流程图;
图16是本申请的其中一实施例的另一种显示面板制造方法的示意图;
图17是本申请的其中一实施例的另一种显示面板制造方法的流程图;
图18是本申请的其中一实施例的一种显示装置的示意图。
具体实施方式
需要理解的是,这里所使用的术语、公开的具体结构和功能细节,仅仅是为了描述具体实施例,是代表性的,但是本申请可以通过许多替换形式来具体实现,不应被解释成仅受限于这里所阐述的实施例。
在本申请的描述中,术语“第一”、“第二”仅描述目的,而不能理解为指示相对重要性,或者隐含指明所指示的技术特征的数量。由此,除非另有说明,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;“多个”的含义是两个或两个以上。术语“包括”及其任何变形,意为不排他的包含,可能存在或添加一个或更多其他特 征、整数、步骤、操作、单元、组件和/或其组合。
另外,“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系的术语,是基于附图所示的方位或相对位置关系描述的,仅是为了便于描述本申请的简化描述,而不是指示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,或是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下面参考附图和可选的实施例对本申请作具体说明。
如图1至图10所示,本申请实施例公布了一种显示面板200,显示面板200包括有机电致发光器件400,有机电致发光器件400包括发光层410,发光层410包括由介孔二氧化硅413构成的主体411,和由有机小分子发光材料414构成的掺杂物412,掺杂物412设置在主体411中。
其中,主体411与掺杂物412不发生反应。
本方案中,将有机小分子发光材料414设置在由介孔二氧化硅413构成的主体411内,可以实现有机小分子发光材料414的有效分散,降低聚集成簇的几率,同时有机小分子与无机二氧化硅的结合使器件整体的寿命提高。
其中,显示面板200为有机发光显示面板(organic light-emitting diode,简称OLED显示面板)。
在一实施例中,如图1所示,有机电致发光器件400包括:
衬底480,设置在衬底480表面的阳极层470,设置在阳极层470表面的空穴注入层460,设置在空穴注入层460表面的空穴传输层450,设置在空穴传输层450表面的发光层410,设置在发光层410表面的电子输出层440,设置在电子输出层440表面的电子注入层430,设置在电子注入层430表面并且与阳极层470电连接的阴极层420。
在一实施例中,有机小分子发光材料414中的分子量小于或等于2000。
本方案中,因为要求将有机发光材料设置在由介孔二氧化硅413构成的主体411中,介孔的孔径在2-50nm之间,如果分子量过大会使得有机发光材料很难填充到介孔材料中,而分子量在2000这个数值刚好满足填充的要求。
在一实施例中,如图2所示,主体411包括多个圆柱形孔洞4111,孔洞4111贯穿主体411,有机小分子发光材料414填充于孔洞4111内。
本方案中,采用孔洞4111结构方便采用自组装分子模板溶液实施,孔洞4111可以是圆 柱形,也可以是多边形,不同的制作工艺和产品要求可以制作出不同形状的孔洞4111结构,因此,各种形状的孔洞4111结构都在本实施方式构思范围内。
其中,主体的411外壁成正六边形。
在一实施例中,如图3所示,有机小分子发光材料414包括红光有机小分子材料4141、绿光有机小分子材料4142和蓝光有机小分子材料4143,发光层410包括多个发光件415,每个发光件415都由红光有机小分子材料4141、绿光有机小分子材料4142和蓝光有机小分子材料4143混合构成。
本方案中,将红光有机小分子材料4141、绿光有机小分子材料4142和蓝光有机小分子材料4143混合构成每个发光件415,使每个发光件415都能发出红绿蓝三种颜色的光,通过混合的形式使加工过程简单,不需要将三种颜色的有机小分子材料单独分层,节省发光层410的加工时间。
在一实施例中,红光有机小分子材料4141、绿光有机小分子材料4142和蓝光有机小分子材料4143在发光件415中同层混合。
在一实施例中,如图4所示,有机小分子发光材料414包括红光有机小分子材料4141、绿光有机小分子材料4142和蓝光有机小分子材料4143,发光层410包括多个发光件415,每个发光件415包括红色发光层4151、绿色发光层4152和蓝色发光层4153,红色发光层4151由红光有机小分子材料4141构成,绿色发光层4152由绿光有机小分子材料4142构成,蓝色发光层4153由蓝光有机小分子材料4143构成。
本方案中,将每个发光件415都分成红色发光层4151、绿色发光层4152和蓝色发光层4153三种,将发光件415细分到更小单位,这样方便调控每个发光件415,使每个发光件415中的三种不同颜色的发光层410分布均匀,在显示效果上会更好,而且当发光件415出问题后还可以进行针对性的修改。
在一实施例中,同一发光件415中红色发光层4151、绿色发光层4152和蓝色发光层4153的位置可以互换。
在一实施例中,红光有机小分子材料4141包括两种红色磷光材料,分别为:2-{2-叔丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-吡啶并[3,2,1-ij]喹啉-9-基)-乙烯基]-吡喃-4-内鎓盐烯}-丙二腈,其英文名称为(btp)2lr(acac);4-(二氰基亚甲基)-2-叔丁基-6-(1,1,7,7-四甲基久罗尼定基-4-乙烯基)-4H-吡喃,其英文名称为DCJTB;两种材料的化学结构分别如图5和图6所示。
本方案中,所提供的两种材料在颜色上和分子大小上都能满足本申请的要求。
在一实施例中,绿光有机小分子材料4142包括两种绿色磷光材料,分别为:2,4,5,6-四(9-咔唑基)-间苯二腈,其英文名称为4CzlPN;三(2-苯基吡啶)合铱,其英文名称为lr(ppy) 3;两种材料的化学结构分别如图7和图8所示。
本方案中,所提供的两种材料在颜色上和分子大小上都能满足本申请的要求。
在一实施例中,蓝光有机小分子材料4143包括两种蓝色磷光材料,分别为:4,4'-二(2,2-二苯乙烯基)-1,1'-联苯,其英文名称为DPVBl;双(4,6-二氟苯基吡啶-N,C2')吡啶甲酰合铱,其英文名称为Flrpic;两种材料的化学结构分别如图9和图10所示。
本方案中,所提供的两种材料在颜色上和分子大小上都能满足本申请的要求。
如图11至图12所示,作为本申请的另一实施例,公开了一种显示面板200的制造方法,显示面板200包括有机电致发光器件400,有机电致发光器件400包括发光层410,制造方法包括发光层410成型步骤:将有机小分子发光材料设置在由介孔二氧化硅构成的主体材料内,形成发光层。
在一实施例中,如图11所示,发光层410成型步骤包括:
S111:混合步骤:将有机小分子发光材料和介孔二氧化硅通过溶剂混合,形成混合液;
S112:成型步骤:将混合液涂布在有机电致发光器件的空穴传输层上,通过烘焙形成发光层。
本方案中,现产业化的有机小分子多采用热蒸镀的方法,热蒸镀设备成本高昂,而且在大面积面板制备上有巨大局限。为此,选择溶液法在可以减少成本、适合大尺寸面板制造、还能简化制造工艺,而且用烘焙的方式使上述的混合液500中的水分蒸发,得到最终的发光层410,烘焙方式并不影响介孔二氧化硅413和有机小分子发光材料414组合的状态,也不会使混合液500发生反应。
在一实施例中,如图12所示,混合步骤包括:
S121:将有机小分子发光材料与第一溶剂混合形成第一混合液;
S122:将介孔二氧化硅与第二溶剂混合形成第二混合液;
S123:将第一混合液和第二混合液混合形成混合液。
如图13和图14所示,前两个步骤没有先后顺序;第一溶剂511与第二溶剂521不发生化学反应。
本方案中,先将有机小分子发光材料414与第一溶剂511混合,这样能使有机小分子发光材料414在第一溶剂511中分布均匀,将混合均匀的有机小分子发光溶液中添加介孔二氧化硅413以及第二溶剂521,能使介孔二氧化硅413与有机小分子发光材料414接触均匀,不会出现有的介孔二氧化硅413能接触较多的有机小分子发光材料414,而有的介孔二氧化硅413只能接触较少的发光材料;另外添加第二溶剂521可以稀释有机小分子发光材料414和介孔二氧化硅413,使两者的分布保持均匀。
在一实施例中,有机小分子发光材料414和介孔二氧化硅413的混合液500经过烘焙的 温度为250-350度,时间为0.5-5小时。
本方案中,将烘焙的温度设置在250-350度,时间设置在0.5-5小时范围内,是由于这个条件比较温和,不会破坏有机小分子发光材料414和介孔二氧化硅413的结构。
如图15所示,作为本申请的另一实施例,还公开了一种显示面板200的制造方法,制造方法包括:
S131:将有机小分子发光材料与第一溶剂混合形成第一混合液;
S132:将介孔二氧化硅的合成原料和第二溶剂还有上述第一混合液混合形成混合液;
S133:将混合液在空穴传输层上涂布成膜;
S134:将混合液涂布在有机电致发光器件的空穴传输层上,通过烘焙形成发光层。
如图16和图17所示,在本申请的另一实施例中,还公开了一种显示面板200的制造方法,制造方法包括:
S151:将有机小分子发光材料加工成表面活性剂束胶;
S152:将束胶形成束胶棒;
S153:将胶束棒按六角形排列形成六角矩阵;
S154:将六角矩阵根通过硅凝胶自组装机制形成中间相;
S155:将中间相烘熔形成填充有机小分子发光材料的介孔二氧化硅形成发光层。
如图18所示,在本申请的另一实施例中,还公开了一种显示装置100,包括上述显示面板200以及驱动显示面板200的驱动装置300。
需要说明的是,本方案中涉及到的各步骤的限定,在不影响具体方案实施的前提下,并不认定为对步骤先后顺序做出限定,写在前面的步骤可以是在先执行的,也可以是在后执行的,甚至也可以是同时执行的,只要能实施本方案,都应当视为属于本申请的保护范围。
以上内容是结合具体的可选实施方式对本申请所作的详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (20)

  1. 一种显示面板,所述显示面板包括有机电致发光器件,所述有机电致发光器件包括发光层,所述发光层包括:
    主体,由介孔二氧化硅构成;以及
    掺杂物,由有机小分子发光材料构成,设置在所述主体中。
  2. 如权利要求1所述的一种显示面板,其中,所述有机小分子发光材料中的分子量小于或等于2000。
  3. 如权利要求1所述的一种显示面板,其中,所述主体包括多个圆柱形孔洞,所述孔洞贯穿主体,所述有机小分子发光材料填充于所述孔洞内。
  4. 如权利要求3所述的一种显示面板,其中,所述主体的外壁成正六边形。
  5. 如权利要求1所述的一种显示面板,其中,所述有机小分子发光材料包括红光有机小分子材料、绿光有机小分子材料和蓝光有机小分子材料,所述发光层包括多个发光件,每个所述发光件都由红光有机小分子材料、绿光有机小分子材料和蓝光有机小分子材料混合构成。
  6. 如权利要求5所述的一种显示面板,其中,所述红光有机小分子材料、绿光有机小分子材料和蓝光有机小分子材料在发光件中同层混合。
  7. 如权利要求1所述的一种显示面板,其中,所述有机小分子发光材料包括红光有机小分子材料、绿光有机小分子材料和蓝光有机小分子材料,所述发光层包括多个发光件,每个所述发光件包括红色发光层、绿色发光层和蓝色发光层,所述红色发光层由红光有机小分子材料构成,所述绿色发光层由绿光有机小分子材料构成,所述蓝色发光层由蓝光有机小分子材料构成。
  8. 如权利要求7所述的一种显示面板,其中,同一发光件中红色发光层、绿色发光层和蓝色发光层的位置可以互换。
  9. 如权利要求1所述的一种显示面板,其中,所述有机电致发光器件包括:
    衬底;
    阳极层,设置在所述衬底的表面;
    空穴注入层,设置在所述阳极层的表面;
    空穴传输层,设置在所述空穴注入层的表面;
    发光层,设置在所述空穴传输层的表面;
    电子输出层,设置在所述发光层的表面;
    电子注入层,设置在所述电子输出层的表面;以及
    阴极层,设置在所述电子注入层的表面,并且与所述阳极层电连接。
  10. 如权利要求1所述的一种显示面板,其中,所述显示面板为有机发光显示面板。
  11. 如权利要求1所述的一种显示面板,其中,所述主体与所述掺杂物不发生反应。
  12. 一种显示面板的制造方法,所述显示面板包括有机电致发光器件,所述有机电致发光器件包括发光层,所述制造方法包括发光层成型步骤:将有机小分子发光材料设置在由介孔二氧化硅构成的主体材料内,形成所述发光层。
  13. 如权利要求12所述的一种显示面板的制造方法,其中,所述发光层成型步骤包括:
    混合步骤:将所述有机小分子发光材料和所述介孔二氧化硅通过溶剂混合,形成混合液;
    成型步骤:将混合液涂布在所述有机电致发光器件的空穴传输层上,通过烘焙形成所述发光层。
  14. 如权利要求13所述的一种显示面板的制造方法,其中,所述混合步骤包括:
    将所述有机小分子发光材料与第一溶剂混合形成第一混合液;
    将所述介孔二氧化硅与第二溶剂混合形成第二混合液;以及
    将所述第一混合液和所述第二混合液混合形成所述混合液。
  15. 如权利要求14所述的一种显示面板的制造方法,其中,所述第一溶剂与所述第二溶剂不发生化学反应。
  16. 如权利要求13所述的一种显示面板的制造方法,其中,所述混合液经过烘焙的温度为250-350度。
  17. 如权利要求13所述的一种显示面板的制造方法,其中,所述混合液经过烘焙的时间为0.5-5小时。
  18. 一种显示装置,包括显示面板,所述显示面板包括有机电致发光器件,所述有机电致发光器件包括发光层,所述发光层包括由介孔二氧化硅构成的主体;和由有机小分子发光材料构成,且设置在所述主体中的掺杂物。
  19. 如权利要求18所述的一种显示装置,其中,所述有机小分子发光材料中的分子量小于或等于2000。
  20. 如权利要求18所述的一种显示装置,其中,所述主体包括多个圆柱形孔洞,所述孔洞贯穿主体,所述有机小分子发光材料填充于所述孔洞内。
PCT/CN2018/120487 2018-12-04 2018-12-12 显示面板、显示面板的制造方法和显示装置 WO2020113634A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/041,428 US11489132B2 (en) 2018-12-04 2018-12-12 Display panel including an organic electroluminescent device where an organic small molecule luminescent material is disposed in a main body made of mesoporous silica, method for manufacturing the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811473419.3 2018-12-04
CN201811473419.3A CN109585666A (zh) 2018-12-04 2018-12-04 一种显示面板、显示面板的制造方法和显示装置

Publications (1)

Publication Number Publication Date
WO2020113634A1 true WO2020113634A1 (zh) 2020-06-11

Family

ID=65926776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120487 WO2020113634A1 (zh) 2018-12-04 2018-12-12 显示面板、显示面板的制造方法和显示装置

Country Status (3)

Country Link
US (1) US11489132B2 (zh)
CN (1) CN109585666A (zh)
WO (1) WO2020113634A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110095271A1 (en) * 2009-10-27 2011-04-28 Donal Donat Conor Bradley Hybrid organic light emitting device
CN102460764A (zh) * 2009-06-02 2012-05-16 松下电器产业株式会社 有机电致发光元件
CN103824877A (zh) * 2014-02-28 2014-05-28 上海和辉光电有限公司 Qd-led像素显示器件、制作方法及显示面板
CN105720176A (zh) * 2016-02-19 2016-06-29 京东方科技集团股份有限公司 一种胶囊量子点和发光二极管、制备方法及显示装置
CN106449720A (zh) * 2016-11-21 2017-02-22 上海天马有机发光显示技术有限公司 一种有机发光显示面板和有机发光显示装置
CN107689388A (zh) * 2017-08-08 2018-02-13 惠科股份有限公司 一种显示面板及其制造方法
CN108565349A (zh) * 2018-01-31 2018-09-21 京东方科技集团股份有限公司 一种发光二极管、其制作方法及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1883124A1 (en) * 2006-07-27 2008-01-30 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. Organic light emitting material formulation
WO2014024379A1 (ja) * 2012-08-10 2014-02-13 パナソニック株式会社 メソポーラスシリカ微粒子、メソポーラスシリカ微粒子の製造方法、メソポーラスシリカ微粒子含有組成物、メソポーラスシリカ微粒子含有成形物及び有機エレクトロルミネッセンス素子
CO6870008A1 (es) * 2014-02-07 2014-02-20 Pontificia Universidad Javeriana Método para la fabricación de una película delgada formada por un cristal coloidal infiltrado con el polímero luminiscente mdmo-ppv formado a partir de esferas de sílice (sio2) con estructura cubica centrada en las caras (fcc)
DE102014105142B4 (de) * 2014-04-10 2021-09-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Licht emittierende Vorrichtung und Verfahren zur Herstellung einer Licht emittierenden Vorrichtung
CN107003304A (zh) * 2014-12-17 2017-08-01 西门子医疗保健诊断公司 用于羟考酮和羟吗啡酮的测定法的缀合物
JP2018009078A (ja) * 2016-07-12 2018-01-18 三星電子株式会社Samsung Electronics Co.,Ltd. 有機発光素子用インキ組成物、並びにこれを用いた有機発光素子およびその製造方法
US10569100B2 (en) * 2016-10-09 2020-02-25 Azadeh Sepahvandi Retinal tissue regeneration
CN107037630A (zh) * 2017-06-23 2017-08-11 京东方科技集团股份有限公司 彩膜基板及其制备方法和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102460764A (zh) * 2009-06-02 2012-05-16 松下电器产业株式会社 有机电致发光元件
US20110095271A1 (en) * 2009-10-27 2011-04-28 Donal Donat Conor Bradley Hybrid organic light emitting device
CN103824877A (zh) * 2014-02-28 2014-05-28 上海和辉光电有限公司 Qd-led像素显示器件、制作方法及显示面板
CN105720176A (zh) * 2016-02-19 2016-06-29 京东方科技集团股份有限公司 一种胶囊量子点和发光二极管、制备方法及显示装置
CN106449720A (zh) * 2016-11-21 2017-02-22 上海天马有机发光显示技术有限公司 一种有机发光显示面板和有机发光显示装置
CN107689388A (zh) * 2017-08-08 2018-02-13 惠科股份有限公司 一种显示面板及其制造方法
CN108565349A (zh) * 2018-01-31 2018-09-21 京东方科技集团股份有限公司 一种发光二极管、其制作方法及显示装置

Also Published As

Publication number Publication date
US11489132B2 (en) 2022-11-01
US20210020860A1 (en) 2021-01-21
CN109585666A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN105097878B (zh) 有机电致发光显示面板及制备方法、显示装置
US10535719B2 (en) Color film substrate for WOLED display and WOLED display
CN103545344B (zh) 像素结构及其制造方法、发光器件、阵列基板和显示装置
CN107293572A (zh) Oled显示面板及其制备方法
WO2014172951A1 (zh) 有机电致发光二极管显示装置
CN104465706A (zh) 一种有机发光显示装置及其制作方法
CN105070744A (zh) 像素结构及其制造方法
WO2016004662A1 (zh) Oled像素结构
WO2016045271A1 (zh) 显示基板及其制备方法、显示装置
WO2016050010A1 (zh) Oled显示基板、oled显示装置和掩膜板
JP2020535637A (ja) 有機エレクトロルミネッセンスデバイスと有機エレクトロルミネッセンス装置
WO2021088141A1 (zh) 有机发光二极体面板及其制作方法
CN105244364A (zh) 一种有机发光器件及像素阵列
CN104659037A (zh) 一种oled阵列基板及其制作方法、显示装置
CN107958962A (zh) Oled器件及其驱动方法、oled基板及其制作方法、显示装置
CN110890473B (zh) 具有可调变发光颜色的有机发光器件和显示设备
CN103700683A (zh) 一种oled阵列基板的对置基板及其制备方法、显示装置
CN104681736A (zh) 一种oled单元及其制造方法、显示面板
CN106374056A (zh) Qled显示面板制造方法及qled显示器
CN110429096A (zh) 显示器件
CN207134357U (zh) 显示面板及显示装置
WO2020094068A1 (zh) 彩膜基板及其制备方法、显示器件
WO2020113634A1 (zh) 显示面板、显示面板的制造方法和显示装置
CN108448001A (zh) 一种发光器件、电致发光显示面板及显示装置
CN108022963B (zh) 用于显示器的混合led发光体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942046

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED D28-09-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18942046

Country of ref document: EP

Kind code of ref document: A1