WO2020111174A1 - 積層体、その製造方法及びそれを具備した電子デバイス - Google Patents

積層体、その製造方法及びそれを具備した電子デバイス Download PDF

Info

Publication number
WO2020111174A1
WO2020111174A1 PCT/JP2019/046540 JP2019046540W WO2020111174A1 WO 2020111174 A1 WO2020111174 A1 WO 2020111174A1 JP 2019046540 W JP2019046540 W JP 2019046540W WO 2020111174 A1 WO2020111174 A1 WO 2020111174A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
gas barrier
solvent permeation
permeation preventive
Prior art date
Application number
PCT/JP2019/046540
Other languages
English (en)
French (fr)
Inventor
幸宏 牧島
翔太 畠沢
井 宏元
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020217011522A priority Critical patent/KR20210060578A/ko
Priority to JP2020557817A priority patent/JPWO2020111174A1/ja
Priority to CN201980077881.8A priority patent/CN113165335A/zh
Publication of WO2020111174A1 publication Critical patent/WO2020111174A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D185/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/28Metal sheet
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Definitions

  • the present invention relates to a laminated body, a method for manufacturing the same, and an electronic device including the laminated body. More specifically, the present invention relates to a thinned film, prevents film cracking, and facilitates flexible and foldable electronic devices. The present invention relates to a layered product having a gas barrier property for improving optical characteristics.
  • the transparent conductive film made of indium tin oxide (ITO), silver (Ag), or copper (Cu) used for touch panel sensors, etc. easily reacts with moisture and oxygen in the atmosphere and is oxidized and corroded, resulting in device characteristics. It is known to cause serious damage.
  • ITO indium tin oxide
  • Ag silver
  • Cu copper
  • the layer thickness also referred to as the film thickness in the present invention
  • the thick film causes a film crack, which is a major obstacle to the flexibility and the foldability, which have been talked about recently.
  • the present invention has been made in view of the above problems and circumstances, and a problem to be solved is to reduce the thickness of a film, prevent film cracking, and facilitate flexible and foldable electronic devices. It is an object of the present invention to provide a laminate having a gas barrier property that improves characteristics.
  • the present inventors in order to solve the above problems, in the process of examining the cause of the above problems, by laminating a solvent permeation preventive layer and a gas barrier layer containing a specific material on the adhesive layer, it has been found that a laminated body having a gas barrier property which can be made thinner and prevent film cracking, facilitates flexibility and folderability of electronic devices, and further improves optical characteristics can be obtained.
  • a laminate comprising at least an adhesive layer and a gas barrier layer, Laminate characterized in that the gas barrier layer contains an inorganic material, and a solvent permeation preventive layer containing a light or thermosetting resin is arranged between the adhesive layer and the gas barrier layer. body.
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group.
  • M may represent a metal atom, M represents a metal atom, OR 1 represents a fluorinated alkoxy group, x represents a valence of the metal atom, y represents an arbitrary integer between 1 and x, and n represents a weight. Represents the degree of condensation.
  • the metal atom represented by M is selected from Si, Ti, Zr, Mg, Ca, Sr, Bi, Hf, Nb, Zn, Al, Pt, Ag, and Au.
  • Item 11 The laminate according to Item 9 or 10, wherein the organic metal oxide layer comprises at least a sol-gel transition coating film.
  • a peelable film is arranged on the side opposite to the solvent permeation preventive layer of the adhesive layer, and an adhesive layer is further arranged on the side opposite to the solvent permeation preventive layer of the gas barrier layer.
  • a method for producing a laminate comprising at least an adhesive layer and a gas barrier layer, Applying a light or thermosetting resin to the surface of the adhesive layer to form a solvent permeation preventive layer containing the resin, A step of applying an inorganic material to the surface of the solvent permeation preventive layer to form a gas barrier layer containing the inorganic material, the method for producing a laminate.
  • the solvent permeation preventive layer there is a step of subjecting the solvent permeation preventive layer to at least ultraviolet irradiation treatment, flash firing treatment, atmospheric pressure plasma treatment, plasma ion implantation treatment, or heat treatment. 15. The method for manufacturing a laminate according to Item 14.
  • the method for producing a laminate according to Item 14 further comprising a step of subjecting the solvent permeation preventive layer to ultraviolet irradiation treatment, following the step of forming the solvent permeation preventive layer.
  • An electronic device comprising the laminate according to any one of items 1 to 13.
  • a method and an electronic device including the method can be provided.
  • the present invention provides a gas barrier by laminating a solvent permeation preventive layer containing a light- or thermosetting resin on an adhesive layer and a gas barrier layer containing an inorganic material such as polysilazane and a modified product thereof. The effect of preventing solvent penetration from the layer can be exhibited.
  • the solvent permeation preventive layer contains a siloxane resin
  • the surface of the solvent permeation preventive layer is modified by ultraviolet irradiation treatment, flash firing treatment, atmospheric pressure plasma treatment, plasma ion implantation treatment, heat treatment, or the like.
  • the solvent permeation preventive layer, the upper polysilazane and the gas barrier layer containing the modified product have the same modified product. This greatly improves the adhesiveness.
  • the solvent permeation prevention layer has a dense modified layer, an excellent effect of further preventing solvent permeation from the gas barrier layer can be exhibited. It is presumed that, due to these effects, it is possible to provide a laminate in which damage to the adhesive layer due to solvent penetration at the time of coating and forming the gas barrier layer is completely prevented.
  • organic EL organic electroluminescence element
  • the organic EL is dissolved or reacted with the solvent and the organic solvent. It can be seen that some kind of intermolecular interaction force between ELs influences and causes damage. That is, it is considered that the siloxane-based resin does not damage the electronic device because no intermolecular interaction is exerted on the electronic device.
  • Siloxane resin consists of Si-O bond, but the covalent bond radius of Si is 1.17 ⁇ , which is about 1.5 times longer than 0.77 ⁇ of C, and it is known that the rotational energy of the bond is almost zero. Has been. From this, the rotation of the bond is easy and the siloxane chain is very flexible.
  • two of the four Si bonds are bonded to a methyl group, they are bulky and have a characteristic of forming a helical structure. Since this helical structure has a repeating structure of 6 units of siloxane bond, the dipole of polarization of the siloxane bond (electronegativity is Si(1.8), C(2.5), O(3.5).
  • the Si-O bond has a higher ionic bond than the C-O bond and the C-C bond and has an ionic property of about 50%), and this cancels out the polydimethylsiloxane. .. That is, it is considered that the siloxane-based resin does not cause an intermolecular interaction with the electronic device due to the non-polarity derived from the helical structure, and is damage-free.
  • the siloxane-based resin itself has the property of not invading the lower layer and preventing the solvent permeation of the upper gas barrier layer.
  • an electronic device such as an organic EL, a touch panel sensor or an organic thin film transistor as described in Japanese Patent Application No. 2018-104204.
  • the effect of the invention is high in that it can be used also as an electronic device damage-free UV-curable adhesive for adhering an electronic device and a gas barrier layer.
  • the surface treatment with vacuum ultraviolet light makes it possible to impart a function as a flattening layer described later.
  • Sectional drawing which shows an example of the laminated body of this invention Sectional drawing which shows an example of the laminated body of this invention. Sectional drawing which shows an example of the laminated body of this invention. Sectional drawing which shows an example of the laminated body of this invention. Sectional drawing which shows an example of the laminated body of this invention. Sectional drawing which shows an example of the laminated body of this invention.
  • the figure which shows the structural example of a structure of an organic thin-film transistor The figure which shows the structural example of a structure of an organic thin-film transistor.
  • the figure which shows the structural example of a structure of an organic thin-film transistor The figure which shows the structural example of a structure of an organic thin-film transistor.
  • the laminate of the present invention is a laminate comprising at least an adhesive layer and a gas barrier layer, wherein the gas barrier layer contains an inorganic material, and a light layer is provided between the adhesive layer and the gas barrier layer.
  • a solvent permeation preventive layer containing a thermosetting resin is arranged. This feature is a technical feature common to or corresponding to the following embodiments.
  • the feature of the laminate of the present invention is a laminate of a solvent permeation preventive layer capable of preventing permeation of a solvent from an inorganic material by a coating step and a gas barrier layer containing the inorganic material on the adhesive layer.
  • a solvent permeation preventive layer capable of preventing permeation of a solvent from an inorganic material by a coating step
  • a gas barrier layer containing the inorganic material on the adhesive layer in order to form the gas barrier layer on the adhesive layer, operations such as film formation by a conventional CVD (chemical vapor deposition method) and laminating a gas barrier film are required.
  • CVD chemical vapor deposition method
  • laminating a gas barrier film are required.
  • the cost of equipment and materials is reduced and the productivity is significantly improved.
  • by consistently manufacturing by a wet coating method it becomes possible to manufacture a laminated body having a thin film as compared with the conventional one in a short delivery time.
  • the layer thickness of the solvent permeation preventive layer is in the range of 1 to 10,000 nm, the permeation prevention of the solvent from the gas barrier layer by the coating step can be prevented. It is preferable from the viewpoint that it can be formed and does not hinder thinning and flexibility.
  • the solvent permeation preventive layer contains a siloxane-based resin, an acrylic resin or an epoxy-based resin, and in particular, contains a siloxane-based resin in order to adhere to the gas barrier layer containing the inorganic material according to the present invention.
  • a gas containing perhydropolysilazane hereinafter referred to as PHPS
  • TEOS tetraethoxylane
  • perhydrosilsesquioxane which is preferable as a material for the gas barrier layer according to the present invention. It is preferable from the viewpoint of improving the adhesiveness with the barrier layer.
  • the contact angle with water at 0° C. is in the range of 20 to 100° because the effect is exhibited more.
  • the layer thickness of the modified layer is in the range of 1 to 70 nm from the viewpoint of preventing the penetration of the solvent and improving the adhesion between the solvent permeation prevention layer and the gas barrier layer.
  • an organic metal oxide layer having an equivalent function may be arranged as an alternative to or as an upper layer of the modified layer according to the present invention.
  • it is preferably an organic metal oxide layer containing an organic metal oxide having a structure represented by the general formula (A), and an organic metal oxide film formed by a sol-gel method.
  • the organic metal oxide is preferably a metal alkoxide coordinate-substituted with a hydrofluoric alcohol.
  • the metal is preferably selected from Si, Ti, Zr, Mg, Ca, Sr, Bi, Hf, Nb, Zn, Al, Pt, Ag, and Au.
  • the metal alkoxide not only promotes reforming and improves adhesion at the time of lamination due to the catalytic effect on the solvent permeation prevention layer and gas barrier layer, but it is also atmospherically stable due to coordination substitution with fluorinated alcohol. It is preferable because it has excellent productivity.
  • a peelable film is provided on the side of the adhesive layer opposite to the solvent permeation preventive layer.
  • an adhesive layer on the gas barrier layer, and with such a layer constitution, it becomes possible to further bond a gas barrier film through the adhesive layer, and a gas barrier It is also preferable from the viewpoint of enhancing the property.
  • the method for producing a laminate of the present invention comprises a step of applying a light or thermosetting resin to the surface of the adhesive layer to form a solvent permeation preventive layer, and applying an inorganic material to the surface of the solvent permeation preventive layer. And a step of forming a gas barrier layer containing the inorganic material.
  • the step of forming the solvent permeation preventive layer there may be a step of subjecting the surface of the solvent permeation preventive layer to ultraviolet irradiation treatment, flash firing treatment, atmospheric pressure plasma treatment, plasma ion implantation treatment, or heat treatment.
  • ultraviolet irradiation treatment forms a modified layer on the surface of the solvent permeation preventive layer, suppresses permeation of the solvent into the adhesive layer at the time of forming the gas barrier layer, and suppresses the adhesion between the adhesive layer and the gas barrier layer. This is a preferable manufacturing method from the viewpoint of enhancing the adhesiveness.
  • the laminated body of the present invention can be provided in an electronic device so as to prevent film cracking, respond to flexibility and foldability of the electronic device, improve optical characteristics of the electronic device, and reduce process cost. Is preferable from the viewpoint of enabling
  • the laminate of the present invention is a laminate comprising at least an adhesive layer and a gas barrier layer, wherein the gas barrier layer contains an inorganic material, and a light layer is provided between the adhesive layer and the gas barrier layer.
  • a solvent permeation preventive layer containing a thermosetting resin is arranged.
  • the “gas barrier layer” in the present invention means that the water vapor permeability (25 ⁇ 0.5° C., relative humidity (90 ⁇ 2)%) of 0.01 g measured by the method according to JIS K 7129-1992. A gas barrier property of /m 2 ⁇ 24 h or less is preferable. Furthermore, the oxygen permeability measured by the method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 mL/m 2 ⁇ 24 h ⁇ atm or less, and the water vapor permeability is 1 ⁇ 10 ⁇ 5 g/m 2. -High gas barrier property of 24 hours or less is preferable.
  • the “light or thermosetting resin” in the present invention means a resin (polymer) having a property of being polymerized or crosslinked and cured by light such as ultraviolet rays or heating. It should be noted that polymerizable monomers (monomers) and oligomers having similar properties are also included.
  • the laminate of the present invention is preferably transparent from the viewpoint of attachment to an electronic device, and for example, the light transmittance measured using a spectrophotometer U-4100 manufactured by Hitachi High-Technologies Corporation at a light wavelength of 450 nm. Is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more.
  • FIG. 1 is a schematic diagram showing the structure of the laminate of the present invention. However, this is an example, and the present invention is not limited to this.
  • FIG. 1A shows the basic structure of the laminate of the present invention.
  • the laminate (1) of the present invention has a structure in which a solvent permeation preventive layer (3) containing a light- or thermosetting resin and a gas barrier layer (4) are arranged on the adhesive layer (2).
  • FIG. 1B is a cross-sectional view in which a modified layer (5) is formed on the gas barrier layer (4) side of the solvent permeation preventive layer (3) according to the present invention, and after the solvent permeation preventive layer (3) is formed,
  • the modified layer (5) is preferably formed by adding a step of performing ultraviolet irradiation treatment, flash firing treatment, atmospheric pressure plasma treatment, plasma ion implantation treatment, or heat treatment to the surface of the solvent permeation prevention layer. ..
  • FIG. 1C shows a structure in which an organic metal oxide layer (6) having a function equivalent to that of a modified layer is arranged on the gas barrier layer (4) side of the solvent permeation preventive layer (3) according to the present invention.
  • the metal oxide layer (6) is preferably formed into a coating film by a sol-gel method.
  • FIG. 1D shows a structure in which the laminate (1) of the present invention further has an adhesive layer (2) on the gas barrier layer (4), and the gas barrier is further interposed via the adhesive layer. It is also possible to bond a film, which is a preferred embodiment.
  • FIG. 1E shows a structure in which a peelable film (7) is provided on the surface of the adhesive layer opposite to the solvent permeation preventive layer, and the peelable film (7) allows the adhesive layer ( Since 2) is protected, the handleability of the laminate (1) of the present invention is improved.
  • Adhesive Layer The adhesive used for the adhesive layer is not particularly limited, and a general adhesive can be used, but among them, a synthetic resin adhesive is preferable.
  • Examples of the adhesive applicable to the present invention include polyester adhesives, urethane adhesives, polyvinyl acetate adhesives, acrylic adhesives, epoxy adhesives, nitrile rubbers, etc.
  • An adhesive containing a thermosetting resin as a main component can be used.
  • the acrylic adhesive used may be either solvent-based or emulsion-based, but solvent-based adhesives are preferred because they easily enhance the adhesive strength, and among these, those obtained by solution polymerization are preferred.
  • a raw material for producing such a solvent-based acrylic adhesive by solution polymerization for example, an acrylic ester such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, or ocryyl acrylate as a main monomer serving as a skeleton
  • As a comonomer to improve cohesive strength vinyl acetate, acrylonitrile, styrene, methyl methacrylate, etc., to further promote cross-linking and impart stable adhesive strength, and to maintain a certain degree of adhesive strength even in the presence of water
  • the functional group-containing monomer include methacrylic acid, acrylic acid, itaconic acid, hydroxyethyl methacrylate, and glycidyl methacrylate. Since the adhesive
  • acrylic adhesive Commercially available products of the above-mentioned acrylic adhesive include, for example, COPONYL series (manufactured by Nippon Synthetic Chemical Co., Ltd.) and the like.
  • a radical curable adhesive is preferably used as the adhesive composition.
  • the radical curable adhesive include active energy ray curable adhesives such as electron beam curable adhesives and ultraviolet curable adhesives.
  • an active energy ray curable type that can be cured in a short time is preferable, and a UV curable adhesive that can be cured with low energy is more preferable.
  • the UV curable adhesives can be broadly classified into radical polymerization curable adhesives and cationic polymerization curable adhesives.
  • the radical polymerization curable adhesive can be used as a thermosetting adhesive.
  • a gallium-encapsulated metal halide lamp or an LED light source that emits light in the wavelength range of 380 to 440 nm is preferable.
  • low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, ultra-high pressure mercury lamp, incandescent lamp, xenon lamp, halogen lamp, carbon arc lamp, metal halide lamp, fluorescent lamp, tungsten lamp, gallium lamp, excimer laser or sunlight as the light source
  • the curable component of the radical polymerization curable adhesive includes a compound having a (meth)acryloyl group and a compound having a vinyl group. These curable components may be monofunctional or bifunctional or higher. Moreover, these curable components can be used individually by 1 type or in combination of 2 or more types. As these curable components, for example, compounds having a (meth)acryloyl group are suitable.
  • a compound having an epoxy group or an oxetanyl group can be mentioned.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various commonly known curable epoxy compounds can be used.
  • the preferred epoxy compound is a compound having at least two epoxy groups and at least one aromatic ring in the molecule, or at least two epoxy groups in the molecule, at least one of which has an alicyclic ring. Examples thereof include compounds that are formed between two adjacent carbon atoms that form the structure.
  • a water-based adhesive can also be used.
  • an adhesive containing a vinyl polymer or the like is preferably used, and as the vinyl polymer, a polyvinyl alcohol-based resin is preferable.
  • an adhesive containing a polyvinyl alcohol-based resin having an acetoacetyl group is more preferable from the viewpoint of improving durability.
  • the cross-linking agent that can be added to the polyvinyl alcohol resin a compound having at least two functional groups reactive with the polyvinyl alcohol resin can be preferably used.
  • boric acid for example, boric acid, borax, carboxylic acid compounds, alkyldiamines; isocyanates; epoxies; monoaldehydes; dialdehydes; amino-formaldehyde resins; further salts of divalent or trivalent metals and oxides thereof. Is mentioned.
  • an adhesive commercially available as a sheet-shaped adhesive laminate can be preferably used.
  • a sheet-like adhesive laminate can be obtained from Mitsui DuPont Polychemical Co., 3M Co., Ajinomoto Co., Tesa Co., etc.
  • "Nucrel (registered trademark)” manufactured by Mitsui DuPont Polychemical Co., Ltd. , N1214, AN4221C, N1560, N0200H, AN4213C, N035C) and "3MTM Optically Clear Adhesive" (product numbers 8171, 8172, 8172P, 8171CL, 8172CL, etc.) of 3M company can be preferably used.
  • the adhesive forming the adhesive layer may optionally contain additives if necessary.
  • additives include silane coupling agents, coupling agents such as titanium coupling agents, adhesion promoters represented by ethylene oxide, additives that improve wettability with a transparent film, acryloxy group compounds and hydrocarbon-based compounds. (Natural and synthetic resins) and the like, additives for improving mechanical strength and processability, ultraviolet absorbers, antioxidants, dyes, processing aids, ion trap agents, antioxidants, tackifiers, Examples include fillers (metal oxide particles), fillers containing a water-absorbing polymer, plasticizers, leveling agents, foaming inhibitors, antistatic cracks, heat stabilizers, hydrolysis stabilizers, and other stabilizers.
  • the layer thickness of the adhesive layer is not particularly limited as long as the desired adhesiveness is obtained, but it is within the range of 0.5 to 30 ⁇ m in consideration of the thickness and flexibility of the entire laminate. Is preferable, and more preferably within the range of 5 to 25 ⁇ m.
  • a pressure sensitive adhesive As the adhesive, the electronic device can be attached only by applying pressure without requiring heat, an organic solvent or the like when forming the adhesive layer.
  • Pressure-sensitive adhesives are roughly classified according to the type of material, and examples thereof include adhesives containing epoxy resin, acrylic resin, rubber resin, urethane resin, vinyl ether resin, and silicone resin. it can.
  • a solvent type, an emulsion type, a hot melt type and the like can be used. It is preferable to contain either the epoxy resin or the acrylic resin because it has more excellent cohesive force and elasticity, can maintain stable adhesiveness for a long time, and is superior in transparency.
  • acrylic resin examples include, for example, SK Dyne 2147 manufactured by Soken Chemical Co., Ltd., PD-S1 manufactured by Panac, and ZB7011W manufactured by DIC.
  • a specific example of the epoxy resin is ThreeBond 1655 manufactured by ThreeBond Co., Ltd.
  • the adhesive layer according to the present invention is preferable because a peelable film (also referred to as “separator”) is attached to improve the handling property.
  • the separator according to the present invention is adjacent to the adhesive layer by being releasably attached to the adhesive layer.
  • a separator is not particularly limited as long as it can be releasably attached to the adhesive layer.
  • separators include, for example, polyester, polyethylene, polypropylene, paper, and other base materials coated with silicon, polyalkylene, or fluororesin. Dimensional stability, smoothness, and peeling stability. From the above point, a polyester film coated with silicon is particularly preferable.
  • the thickness of the separator is preferably in the range of 10 to 100 ⁇ m, more preferably 20 to 60 ⁇ m.
  • the thickness is 10 ⁇ m or more, the film is free from wrinkles due to heat during coating and drying, and when it is 100 ⁇ m or less, it is preferable from the viewpoint of economy.
  • the solvent permeation prevention layer according to the present invention is arranged as a solvent permeation prevention layer containing a light- or thermosetting resin between the adhesive layer and the gas barrier layer. Characterize.
  • the layer thickness of the solvent permeation preventive layer is preferably in the range of 1 to 10000 nm, and when it is in the range, it is possible to prevent permeation of the solvent from the gas barrier layer in the coating step, and to make the film thin and flexible. It is preferable from the viewpoint of not inhibiting. In particular, the range of 1 to 500 nm is more preferable from the viewpoint of flexibility, and it is preferable that the light or thermosetting resin is a solventless resin.
  • the “solvent-free resin” referred to here is a resin that does not contain a solvent, and is preferably in a liquid state from the viewpoint of processability. Since it is a solvent-free type, it is possible to suppress the deterioration of the adhesive layer located below when the solvent permeation preventive layer is formed due to the permeation of the solvent from the solvent permeation preventive layer.
  • the solvent permeation preventive layer preferably contains a siloxane resin, an acrylic resin, or an epoxy resin, and particularly preferably a siloxane resin.
  • the solvent permeation preventive layer may be formed by an evaporation method of an organic material insoluble in a solvent, but it is preferably formed by coating.
  • a material formed by coating it is preferable to use a photocurable or thermosetting solventless monomer, and particularly a solventless photocurable silicone monomer is preferable. After the solventless monomer is applied, a solid thin film is formed by photo-curing and/or heat-curing to form a solvent permeation preventive layer.
  • a getter agent that absorbs water and oxygen may be mixed with the solvent permeation preventive layer.
  • the solvent permeation preventive layer according to the present invention is a solvent-free type monomer liquid or a coating liquid to which a partially diluted solvent is added for viscosity adjustment is formed between the electrode and the gas barrier layer according to the present invention.
  • the forming method is not particularly limited, and spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, die coating method, coating method such as dispenser, inkjet printing It is preferable to apply by a wet forming method such as a patterning method such as a printing method including a method. Among these, the inkjet printing method described later is preferable.
  • the layer thickness of the solvent permeation preventive layer according to the present invention is preferably in the range of 10 nm to 100 ⁇ m, more preferably 0.1 to 1 ⁇ m in terms of a dry film, the stress relaxation property, the solvent permeation prevention property from the gas barrier layer, It is preferable for exhibiting the effect of flattening.
  • the acrylic resin contained in the solvent permeation preventive layer is preferably a polymer of a (meth)acrylic acid ester monomer
  • an example of the (meth)acrylic acid ester monomer is Acrylic acid ester monomers such as methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, isobutyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, stearyl acrylate, lauryl acrylate and phenyl acrylate; Methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate;
  • bisphenol type epoxy resin such as bisphenol A type epoxy resin and bisphenol F type epoxy resin; alicyclic epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin Novolak type epoxy resin such as; triphenol methane type epoxy resin, triphenol alkane type epoxy resin such as triphenol propane type epoxy resin; phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, stilbene type epoxy resin, naphthalene type epoxy resin , Biphenyl type epoxy resin, cyclopentadiene type epoxy resin and the like.
  • a bisphenol type epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin from the viewpoint of exhibiting the effect of the present invention.
  • the solvent permeation preventive layer according to the present invention preferably contains a siloxane-based resin from the viewpoint of adhesion with a gas barrier layer containing an inorganic material in addition to the expression of the solvent permeation preventive function
  • a siloxane-based resin polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, or the like can be used.
  • a siloxane containing a fluorine atom can also be preferably used.
  • the gas barrier layer contains polysilazane and a modified product thereof, it is preferable to contain a siloxane-based resin, which is the same kind of material, from the viewpoint of improving adhesion.
  • the siloxane resin used in the solvent permeation preventive layer according to the present invention may be a low molecular weight substance or a high molecular weight substance.
  • Particularly preferred are oligomers and polymers, and specific examples thereof include polysiloxane derivatives such as polysiloxane compounds, polydimethylsiloxane compounds and polydimethylsiloxane copolymers. Also, a combination of these compounds may be used.
  • the compound having a polysiloxane skeleton has a structure represented by the following general formula (I), and changes the number of repetitions n (a number of 1 or more) in the general formula (I) and the type of the organically modified portion.
  • n a number of 1 or more
  • the effect of preventing solvent permeation can be arbitrarily controlled.
  • n in the general formula (I) or the type of the organic modified portion for example, a structure represented by the following general formula (II) (x and y are numbers of 1 or more representing a repeating number, m is 1 or more), and the silicone skeleton can be modified by adding a side chain.
  • R 1 in the general formula (II) include a methyl group, an ethyl group and a decyl group.
  • R 2 include a polyether group, a polyester group, an aralkyl group, and the like.
  • a compound having a structure represented by the following general formula (III) (m is an integer of 1 or more) can also be used, and the silicone chain is composed of several Si—O bonds and corresponds to R 3 . It has one polyether chain on average.
  • polysiloxane compound examples include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltoxethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycid Xypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -methacryloxypropyl Partial hydrolysates of silane compounds having hydrolyzable silyl groups such as methyldimethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, ⁇
  • polydimethylsiloxane compound examples include polydimethylsiloxane, alkyl-modified polydimethylsiloxane, carboxy-modified polydimethylsiloxane, amino-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, fluorine-modified polydimethylsiloxane, (meth)acrylate-modified polydimethylsiloxane.
  • GUV-235 manufactured by Toagosei Co., Ltd.
  • the polydimethylsiloxane-based copolymer may be a block copolymer, a graft copolymer or a random copolymer, but a block copolymer or a graft copolymer is preferable.
  • the commercially available material is not particularly limited as long as it has a silicon atom, but the following materials can be used, for example.
  • CORNING TORAY FZ-2222 Kao Corporation Emulgen 102KG, Emulgen 104P, Emulgen 105, Emulgen 106, Emulgen 108, Emulgen 109P, Emulgen 120, Emulgen 123P, Emulgen 147, Emulgen 210P, Emulgen 220, Emulgen 306P, Emulgen 320P, Emulgen 404, Emulgen 408,.
  • the compound is preferably contained in the range of 0.005 to 5 mass% with respect to all components excluding the solvent in the material forming the solvent permeation preventive layer.
  • the solvent permeation preventive layer according to the present invention after wet coating, the solvent permeation by the step of performing ultraviolet irradiation treatment, flash firing treatment, atmospheric pressure plasma treatment, plasma ion implantation treatment, or heat treatment on the gas barrier layer side surface.
  • ultraviolet irradiation treatment flash firing treatment
  • atmospheric pressure plasma treatment plasma ion implantation treatment
  • heat treatment on the gas barrier layer side surface.
  • the contact angle between the standard liquid (pure water is preferred) and the surface of the modified layer was measured according to the method specified in JIS R3257.
  • the measurement conditions are a temperature of 25 ⁇ 5° C., a humidity of 50 ⁇ 10%, a standard liquid drop volume of 1 to 4 ⁇ L, and a time from the standard liquid drop to the contact angle measurement within 1 minute.
  • a specific operation procedure at a temperature of 23° C., about 1.5 ⁇ L of pure water, which is the standard liquid, is dropped onto the sample, and the sample is sampled by a solid-liquid interface analyzer (DropMaster 500, manufactured by Kyowa Interface Science Co., Ltd.). The above 5 points are measured, and the average contact angle is obtained from the average of the measured values. The time until the contact angle is measured is measured within 1 minute after dropping the standard liquid.
  • the layer thickness of the modified layer is preferably in the range of 1 to 70 nm in order to exert the effects as the stress relaxation property, the solvent permeation prevention property from the gas barrier layer, and the planarization property.
  • a more preferable layer thickness is in the range of 10 to 50 nm.
  • the modification treatment of the solvent permeation preventive layer in the present invention means a reaction of converting at least a part of the siloxane-based resin into silicon oxide, and the “modified layer” means the carbon component ratio of the unmodified layer.
  • the average value of the carbon component ratio is 80 at% or less with respect to the average value of.
  • the layer thickness of the modified layer can be obtained by elemental analysis in the layer thickness direction by the following XPS analysis method.
  • the XPS analysis method is a method of irradiating a sample with X-rays and measuring the energy of photoelectrons generated to analyze the constituent elements of the sample and their electronic states.
  • the element concentration distribution curve (hereinafter referred to as “depth profile”) in the thickness direction of the solvent permeation preventive layer according to the present invention shows the element concentrations of silicon, oxygen and carbon measured by X-ray photoelectron spectroscopy and argon (Ar). It is possible to measure by sequentially performing surface composition analysis while exposing the inside from the surface of the solvent permeation preventive layer by using in combination with a rare gas ion sputter such as ).
  • the distribution curve obtained by such XPS depth profile measurement can be created, for example, with the atomic concentration ratio of elements (unit: at %) on the vertical axis and the etching time (sputtering time) on the horizontal axis.
  • the etching time should be roughly correlated with the distance from the surface of the solvent permeation preventive layer in the thickness direction of the solvent permeation preventive layer in the layer thickness direction.
  • the solvent permeation preventive layer calculated from the relationship between the etching rate and the etching time adopted in the XPS depth profile measurement was calculated.
  • the distance from the surface can be employed.
  • a sputtering method adopted in such XPS depth profile measurement a rare gas ion sputtering method using argon (Ar) as an etching ion species is adopted, and its etching rate (etching rate) is 0.05 nm/sec. (SiO 2 thermal oxide film conversion value) is preferable.
  • ⁇ Analyzer QUANTERA SXM made by ULVAC-PHI
  • ⁇ X-ray source Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (3 keV)
  • Depth profile The depth profile in the depth direction is obtained by repeating the measurement with a predetermined thickness interval in terms of SiO 2 converted sputter thickness. The thickness interval was set to 1 nm (data for each 1 nm is obtained in the depth direction).
  • -Quantification The background was obtained by the Shirley method, and the peak area was quantified using the relative sensitivity coefficient method.
  • MultiPak manufactured by ULVAC-PHI, Inc. is used for data processing.
  • a preferred method for modifying the surface of the solvent permeation preventive layer according to the present invention is ultraviolet irradiation treatment.
  • a metal halide lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc lamp, a carbon arc lamp, an excimer lamp, a UV light laser, or the like can be used as the means for generating the ultraviolet rays.
  • vacuum ultraviolet irradiation treatment can be mentioned.
  • the illumination intensity of the vacuum ultraviolet rays in the coated surface of a siloxane-based resin film is subjected in the range of 30 ⁇ 200mW / cm 2, in the range of 50 ⁇ 160mW / cm 2 More preferable. If it is 30 mW/cm 2 or more, there is no concern that the reforming efficiency will decrease, and if it is 200 mW/cm 2 or less, abrasion is not caused in the coating film and the base material is not damaged, which is preferable.
  • Irradiation energy amount of the VUV in siloxane-based resin layer coated surface is preferably in the range of 200 ⁇ 10000mJ / cm 2, and more preferably in the range of 500 ⁇ 5000mJ / cm 2. Within this range, neither cracking nor thermal deformation of the base material occurs.
  • the oxygen concentration during vacuum ultraviolet irradiation is preferably in the range of 0.001 to 2.0% by volume, more preferably 0.005 to 0.5% by volume, and further preferably 0.1 to 0%. It is in the range of 0.5% by volume.
  • a dry inert gas is preferably used as the gas used for the irradiation of the vacuum ultraviolet ray to fill the irradiation atmosphere, and dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rates of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the solvent permeation preventive layer containing a siloxane resin or the like may be a single layer, but may have a laminated structure of two or more layers from the viewpoint of further enhancing the effect.
  • a laminated structure for example, a laminated structure having different kinds of silicon-containing polymers such as polysiloxane/polysilazane may be used. By changing the type, it becomes possible to control the adhesion in addition to the solvent penetration prevention function.
  • the solvent permeation preventive layer may be modified by a xenon flash process (flash firing process) using a xenon lamp.
  • a xenon flash process flash firing process
  • a discharge tube of the flash lamp used in the flash firing treatment a discharge tube of xenon, helium, neon, argon or the like can be used, but it is preferable to use the xenon lamp.
  • the preferable spectral band of the flash lamp is in the range of 240 to 2000 nm. Within this range, there is little damage such as thermal deformation of the substrate due to flash firing.
  • the light irradiation conditions of the flash lamp are arbitrary, but the total light irradiation energy is preferably in the range of 0.1 to 50 J/cm 2 , and more preferably in the range of 0.5 to 10 J/cm 2. More preferable.
  • the light irradiation time is preferably in the range of 10 ⁇ sec to 100 msec, more preferably in the range of 100 ⁇ sec to 10 msec. Further, the light irradiation may be performed once or plural times, and is preferably performed within the range of 1 to 50 times.
  • the light irradiation device of the flash lamp may be one that satisfies the above irradiation energy and irradiation time.
  • the flash firing can also be performed in an atmosphere of an inert gas such as nitrogen, argon or helium, provided that the atmosphere is within the concentration range of the oxygen-containing substance.
  • an inert gas such as nitrogen, argon or helium
  • examples of the xenon flash device include "Instantaneous heating/high temperature firing flash lamp annealing" manufactured by Ushio Inc.
  • a method by plasma CVD treatment at or near atmospheric pressure can be mentioned as a preferable example.
  • the atmospheric pressure plasma discharge treatment apparatus having the configuration described in JP-A-2004-68143 can be used to perform the modification treatment of the solvent permeation preventive layer.
  • modification treatment of the solvent permeation preventive layer can be performed by plasma ion implantation treatment.
  • the plasma ion implantation device basically includes a vacuum chamber, a microwave power supply, a magnet coil, and a direct current application device (pulse power supply).
  • the vacuum chamber is a container for arranging an object to be treated on which a solvent permeation preventive layer coating film is formed at a predetermined position inside the chamber and for performing ion implantation into the coating film.
  • the direct-current applying device is a direct-current power supply and is a pulse power supply for applying a high-voltage pulse to the object to be processed.
  • the microwave power supply electrode for plasma discharge
  • the magnet coil by driving the microwave power supply (electrode for plasma discharge) and the magnet coil, plasma of gas introduced from the gas introduction port around the conductor and the object to be processed is generated. Occur.
  • the direct-current applying device is driven, and a high voltage pulse (negative voltage) is applied to the object to be processed through the high voltage introducing terminal and the conductor. Will be applied to.
  • the ionic species is not particularly limited.
  • ions of rare gases such as argon, helium, neon, krypton, and xenon
  • Alkane-based gas ions such as ethylene, propylene, butene, pentene, and other alkene-based gas ions; pentadiene, butadiene, and other alkadiene-based gas ions; acetylene, methylacetylene, and other alkyne-based gas ions; benzene , Ions of aromatic hydrocarbon gases such as toluene, xylene, indene, naphthalene, phenanthrene; ions of cycloalkane gases such as cyclopropane and cyclohexane; ions of cycloalkene gases such as cyclopentene and cyclohexene; gold , Ions of conductive metals such as silver, copper, platinum, nickel, palladium, chromium, titanium, molybdenum, niobium, tantalum, tungsten, and aluminum; ions of silane (SiH 4 ) or organic silicon compounds; and
  • At least one selected from the group consisting of hydrogen, nitrogen, oxygen, argon, helium, neon, xenon, and krypton can be injected more easily and an excellent reforming treatment can be obtained. Ions are preferred.
  • the pressure of the vacuum chamber at the time of ion implantation that is, the plasma ion implantation pressure to a value within the range of 0.01 to 1 Pa.
  • the applied voltage high voltage pulse/negative voltage
  • the applied voltage high voltage pulse/negative voltage
  • a value within the range of -1 to -15 kV is more preferable, and a value within the range of -5 to -8 kV is further preferable.
  • a plasma ion implantation device (RF power supply: manufactured by JEOL Ltd., RF56000, high voltage pulse power supply: Kurita Manufacturing Co., Ltd., PV-3-HSHV-0835) was used to form a solvent permeation preventive layer.
  • RF power supply manufactured by JEOL Ltd., RF56000
  • high voltage pulse power supply Kurita Manufacturing Co., Ltd., PV-3-HSHV-0835
  • a modification treatment can be performed.
  • the modification treatment of the solvent permeation preventive layer can also be performed by heat treatment, and it is preferable to perform the modification treatment in combination with the above various treatments at an appropriate temperature.
  • a method such as a heating oven or an infrared heater can be used.
  • the solvent permeation preventive layer according to the present invention may contain the same additives as necessary, as with the adhesive forming the adhesive layer.
  • an organic metal oxide layer having an equivalent function may be arranged as an alternative to the modified layer.
  • it is preferably an organic metal oxide layer containing an organic metal oxide having a structure represented by the general formula (A), and an organic metal oxide film formed by a sol-gel method.
  • the organic metal oxide is preferably a metal alkoxide coordinate-substituted with hydrofluoric alcohol.
  • the metal alkoxide not only promotes reforming and improves adhesion at the time of lamination due to the catalytic effect on the solvent permeation prevention layer and gas barrier layer, but it is also atmospherically stable due to coordination substitution with fluorinated alcohol. It is preferable because it has excellent productivity.
  • the organic metal oxide used is a monomer or polycondensate of an organic metal oxide obtained by alcohol-decomposing a metal alkoxide by alcoholysis in the presence of excess alcohol. At that time, by using a long-chain alcohol in which a fluorine atom is substituted at the ⁇ -position of the hydroxy group, an organic metal oxide containing a fluorinated alkoxide is obtained.
  • the organometallic oxide can accelerate the sol-gel reaction and form a polycondensate by sintering or irradiating with ultraviolet rays.
  • the frequency factor of water existing around the metal in the metal alkoxide is reduced by the water repellent effect of fluorine, and thus the hydrolysis rate is increased. Is reduced, and by utilizing this phenomenon, a three-dimensional polymerization reaction can be suppressed and a uniform and dense organometallic oxide layer containing a desired organometallic oxide can be formed.
  • the organometallic oxide contained in the organometallic oxide layer according to the present invention is a compound shown in Reaction Scheme I below.
  • “M” in the “OM” part has a further substituent, but it is omitted.
  • the organometallic oxide layer formed by polycondensation of the above organometallic oxide by sintering or ultraviolet irradiation is hydrolyzed by water vapor (H 2 O) which is a gas component from the outside according to the following reaction scheme II. Decomposes and releases fluorinated alcohol (R'-OH), contributing to atmospheric stabilization.
  • H 2 O water vapor
  • R'-OH fluorinated alcohol
  • the organic metal oxide layer according to the present invention preferably contains an organic metal oxide having a structure represented by the following general formula (A) as a main component.
  • the “main component” is preferably the organic metal oxide that releases at least 70% by mass of the total weight of the organic metal oxide layer, and more preferably the organic metal oxide. It means 80% by mass or more, particularly preferably 90% by mass or more.
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group.
  • M may represent a metal atom, M represents a metal atom, OR 1 represents a fluorinated alkoxy group, x represents a valence of the metal atom, y represents an arbitrary integer between 1 and x, and n represents a weight. Represents the degree of condensation.) Further, it is preferable that the fluorine ratio of the organic metal oxide layer according to the present invention satisfies the following formula (a).
  • the significance of the measurement of the formula (a) is to quantify that the organometallic oxide layer produced by the sol-gel method requires a certain amount of fluorine atoms or more.
  • F and C in the above formula (a) represent the concentrations of fluorine atom and carbon atom, respectively.
  • the preferable range of the formula (a) is 0.2 ⁇ F/(C+F) ⁇ 0.6.
  • the above-mentioned fluorine ratio is obtained by applying a sol/gel solution used for forming an organic metal oxide layer on a silicon wafer to form a thin film, and then forming the thin film on SEM/EDS (Energy Dispersive X-ray Spectroscopy: energy dispersive X-ray). Elemental analysis by an analyzer can determine the concentrations of fluorine atom and carbon atom, respectively.
  • SEM/EDS device is JSM-IT100 (made by JEOL Ltd.).
  • ⁇ SEM/EDS analysis is characterized by high speed, high sensitivity, and accurate element detection.
  • the organometallic oxide according to the present invention is not particularly limited as long as it can be produced by using the sol-gel method, and examples thereof include the metals and silicons introduced in “Science of sol-gel method” P13 and P20. , Lithium, sodium, copper, magnesium, calcium, bismuth, hafnium, niobium, strontium, barium, zinc, boron, aluminum, gallium, yttrium, silicon, germanium, lead, phosphorus, antimony, vanadium, tantalum, tungsten, lanthanum, neodymium Examples thereof include metal oxides containing at least one metal selected from titanium, zirconium, platinum, silver, and gold.
  • the metal atom represented by M is silicon (Si), titanium (Ti), zirconium (Zr), magnesium (Mg), calcium (Ca), strontium (Sr), bismuth (Bi), hafnium ( Hf), niobium (Nb), zinc (Zn), aluminum (Al), platinum (Pt), silver (Ag), and gold (Au) are preferably selected from the viewpoint of obtaining the effect of the present invention.
  • OR 1 represents a fluorinated alkoxy group.
  • R 1 represents an alkyl group substituted with at least one fluorine atom, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group or a heterocyclic group. Specific examples of each substituent will be described later.
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. Alternatively, at least a part of hydrogen of each group may be replaced with halogen. It may also be a polymer.
  • the alkyl group is substituted or unsubstituted, and specific examples thereof include methyl group, ethyl group, propyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group.
  • the number is preferably 8 or more.
  • these oligomers and polymers may be used.
  • the alkenyl group is a substituted or unsubstituted group, and specific examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group, and those having 8 or more carbon atoms are preferable. Moreover, these oligomers and polymers may be used.
  • the aryl group is a substituted or unsubstituted group, and specific examples thereof include a phenyl group, a tolyl group, a 4-cyanophenyl group, a biphenyl group, an o,m,p-terphenyl group, a naphthyl group, an anthranyl group, a phenanthrenyl group, Examples thereof include a fluorenyl group, a 9-phenylanthranyl group, a 9,10-diphenylanthranyl group, and a pyrenyl group, and those having 8 or more carbon atoms are preferable. Moreover, these oligomers and polymers may be used.
  • substituted or unsubstituted alkoxy group examples include a methoxy group, an n-butoxy group, a tert-butoxy group, a trichloromethoxy group, a trifluoromethoxy group, and the like, and those having 8 or more carbon atoms are preferable.
  • these oligomers and polymers may be used.
  • substituted or unsubstituted cycloalkyl group examples include cyclopentyl group, cyclohexyl group, norbonane group, adamantane group, 4-methylcyclohexyl group, 4-cyanocyclohexyl group and the like, preferably those having 8 or more carbon atoms. Good. Moreover, these oligomers and polymers may be used.
  • substituted or unsubstituted heterocyclic group pyrrole group, pyrroline group, pyrazole group, pyrazoline group, imidazole group, triazole group, pyridine group, pyridazine group, pyrimidine group, pyrazine group, triazine group, indole group, Benzimidazole group, purine group, quinoline group, isoquinoline group, shinoline group, quinoxaline group, benzoquinoline group, fluorenone group, dicyanofluorenone group, carbazole group, oxazole group, oxadiazole group, thiazole group, thiadiazole group, benzoxazole group , Benzothiazole group, benzotriazole group, bisbenzoxazole group, bisbenzothiazole group, bisbenzimidazole group and the like.
  • these oligomers and polymers may be used.
  • substituted or unsubstituted acyl group examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oxalyl group.
  • the above metal alkoxide, metal carboxylate and fluoroalcohol (R′-OH) become the organic metal oxide according to the present invention by the following reaction scheme III.
  • Examples of (R'-OH) include the structures of F-1 to F-16 below.
  • Examples of the metal alkoxide or metal carboxylate according to the present invention include compounds represented by the following M(OR) n or M(OCOR) n, and the organometallic oxide according to the present invention is the above-mentioned (R'-OH:F -1 to F-16), compounds having the structures of the following exemplified compound numbers 1 to 135 (see the exemplified compounds I, II and III below) are obtained.
  • the organometallic oxide according to the present invention is not limited to this.
  • the method for producing an organic metal oxide according to the present invention is characterized in that it is produced using a mixed solution of metal alkoxide and fluorinated alcohol.
  • Reaction Scheme IV of Exemplified Compound No. 1 As an example of the reaction, Reaction Scheme IV of Exemplified Compound No. 1 and the structure of the organic metal oxide when applied to the organic metal oxide layer are shown below.
  • the method for producing an organic metal oxide according to the present invention is a method in which a fluorinated alcohol is added to a metal alkoxide or a metal carboxylate, and the mixture is stirred and mixed, and then water and a catalyst are added as necessary to react at a predetermined temperature.
  • a method can be mentioned.
  • a substance that can be a catalyst for the hydrolysis/polymerization reaction as shown below may be added for the purpose of promoting the hydrolysis/polycondensation reaction.
  • What is used as a catalyst for the hydrolysis/polymerization reaction of the sol-gel reaction is "Technology for producing functional thin film by the latest sol-gel method” (Shiro Hirashima, General Technology Center Co., Ltd., P29) and "sol-gel”. It is a catalyst used in a general sol-gel reaction described in "Science of Law” (Sakuo Sakuo, Agne Jofusha, P154).
  • acid catalysts include inorganic and organic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, tartaric acid, and toluenesulfonic acid
  • alkali catalysts include alkali metal such as ammonium hydroxide, potassium hydroxide, and sodium hydroxide.
  • Quaternary ammonium hydroxides such as hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, ammonia, triethylamine, tributylamine, morpholine, pyridine, piperidine, ethylenediamine, diethylenetriamine, ethanolamine, diethanolamine Amines such as triethanolamine, aminosilanes such as 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and the like.
  • the preferred amount of the catalyst used is 2 molar equivalents or less, and more preferably 1 molar equivalent or less, relative to 1 mole of the metal alkoxide or metal carboxylate that is a raw material for the organic metal oxide.
  • the preferred amount of water added is 40 molar equivalents or less, and more preferably 10 molar equivalents or less, relative to 1 mole of the metal alkoxide or metal carboxylate that is a raw material for the organic metal oxide. And more preferably 5 molar equivalents or less.
  • the preferable reaction concentration, temperature, and time for the sol-gel reaction cannot be unequivocally stated because the type and molecular weight of the metal alkoxide or metal carboxylate used and the respective conditions are interrelated. That is, when the molecular weight of the alkoxide or the metal carboxylate is high, or when the reaction concentration is high, if the reaction temperature is set high or the reaction time is too long, the reaction product is accompanied by hydrolysis and polycondensation reaction. Has a higher molecular weight, which may result in higher viscosity or gelation. Therefore, a generally preferable reaction concentration is approximately 1 to 50% by mass concentration of solid content in the solution, and more preferably 5 to 30%.
  • the reaction temperature is usually 0 to 150° C., preferably 1 to 100° C., more preferably 20 to 60° C., although the reaction time depends on the reaction time, and the reaction time is preferably about 1 to 50 hours.
  • the polycondensation product of the organic metal oxide forms an organic metal oxide layer, and absorbs moisture to form the following oligomer according to the following reaction scheme V, which contributes to improvement of atmospheric stability. Further, in the layer, there is a portion that remains as OR', but not so much that it affects the adhesion.
  • the organic metal oxide layer according to the present invention is a coating solution prepared by preparing a coating solution containing the organic metal oxide of the present invention and coating it on the solvent permeation preventive layer and sintering or irradiating it with ultraviolet rays to form polycondensation. By doing so, it can be formed.
  • organic solvent examples include, for example, aliphatic hydrocarbons, alicyclic hydrocarbons, hydrocarbon solvents such as aromatic hydrocarbons, halogenated hydrocarbon solvents, or Ethers such as aliphatic ethers and alicyclic ethers can be appropriately used.
  • the concentration of the organic metal oxide according to the present invention in the coating liquid varies depending on the target thickness and the pot life of the coating liquid, but is preferably about 0.2 to 35% by mass. It is also preferable to add a catalyst that accelerates polymerization to the coating liquid.
  • the prepared coating liquid includes a coating method such as a spray coating method, a spin coating method, a blade coating method, a dip coating method, a casting method, a roll coating method, a bar coating method, a die coating method, an inkjet printing method, and a dispenser method.
  • a wet forming method such as a patterning method such as a printing method can be used, and it can be used depending on the material.
  • the inkjet printing method is preferable.
  • the inkjet printing method is not particularly limited, and a known method can be adopted.
  • the method of discharging the coating liquid from the inkjet head by the inkjet printing method may be either an on-demand method or a continuous method.
  • the on-demand inkjet head is an electro-mechanical conversion method such as a single cavity type, a double cavity type, a bender type, a piston type, a shared mode type and a shared wall type, or a thermal inkjet type and a bubble jet (registered trademark). ) Type or other electric-heat conversion method.
  • ultraviolet light that can undergo a polymerization reaction at a low temperature.
  • ultraviolet light is preferable for improving the smoothness of the thin film surface. preferable.
  • examples of the means for generating ultraviolet rays in the ultraviolet treatment include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV light lasers.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the base material used.
  • the base material forming the organic metal oxide layer is in the form of a long film, it should be carried out by continuously irradiating it with ultraviolet rays in a drying zone equipped with the above-mentioned ultraviolet ray source while transporting it.
  • the time required for UV irradiation depends on the composition and concentration of the base material used and the desiccant-containing coating liquid, but is generally 0.1 second to 10 minutes, and preferably 0.5 second to 3 minutes.
  • the energy coated surface receives is preferably 1.0 J / cm 2 or more, and more preferably 1.5 J / cm 2 or more.
  • it is preferably 14.0J / cm 2 or less, more preferably 12.0J / cm 2 or less, is 10.0J / cm 2 or less Is particularly preferable.
  • the oxygen concentration at the time of irradiation with ultraviolet rays is preferably 300 to 10000 volume ppm (1 volume %), more preferably 500 to 5000 volume ppm. By adjusting the oxygen concentration within such a range, it is possible to prevent the organic metal oxide layer from becoming excessive in oxygen and prevent deterioration of water absorption.
  • a dry inert gas as a gas other than oxygen during the irradiation of ultraviolet rays, and it is particularly preferable to use dry nitrogen gas from the viewpoint of cost.
  • gas barrier layer is preferably a layer obtained by applying a coating solution containing at least polysilazane and performing a modification treatment on the dried layer (hereinafter, referred to as gas barrier layer). Sometimes called polysilazane layer.)
  • the layer thickness after drying of the gas barrier layer is preferably in the range of 5 to 1000 nm, more preferably in the range of 10 to 800 nm, and particularly preferably in the range of 50 to 500 nm as well. It is preferable from the viewpoint of compatibility of both properties.
  • Polysilazane is a polymer having a silicon-nitrogen bond, SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, N—H, and a ceramic such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • polysilazane preferably has a partial structure represented by the following general formula (1).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl)alkyl group. .. In this case, R 1 , R 2 and R 3 may be the same or different.
  • examples of the alkyl group include linear, branched, or cyclic alkyl groups having 1 to 8 carbon atoms.
  • examples include -hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group and cyclohexyl group.
  • the aryl group include aryl groups having 6 to 30 carbon atoms.
  • non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptanenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenyl group.
  • Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrylenyl group, aceanthrylenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
  • Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrylenyl group, aceanthrylenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
  • Examples of the (trialkoxysilyl)alkyl group include an alkyl group having 1 to 8 carbon atoms having a silyl
  • R 1 to R 3 More specific examples include a 3-(triethoxysilyl)propyl group and a 3-(trimethoxysilyl)propyl group.
  • the substituents optionally present in R 1 to R 3 are not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxy group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (-SO 3 H), a carboxy group (-COOH), a nitro group (-NO 2 ), and the like. Note that the substituents that may be present in some cases are not the same as the substituents R 1 to R 3 .
  • R 1 to R 3 are alkyl groups, they are not further substituted with alkyl groups.
  • R 1 , R 2 and R 3 are preferably hydrogen atom, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, phenyl group, vinyl group, 3 It is a -(triethoxysilyl)propyl group or a 3-(trimethoxysilylpropyl) group.
  • n is an integer, and it is preferable that the polysilazane having the structure represented by the general formula (1) has a number average molecular weight of 150 to 150,000 g/mol.
  • one of the preferable embodiments is perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms.
  • Polysilazane is marketed as a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a coating liquid for forming a gas barrier layer.
  • examples of commercially available polysilazane solutions include Aquamica (registered trademark) NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, and NP110 manufactured by AZ Electronic Materials Co., Ltd. , NP140, SP140, and polysilazane manufactured by DNF Co., Ltd., and the like.
  • the content of polysilazane in the gas barrier layer before the modification treatment may be 100 mass% when the total mass of the gas barrier layer is 100 mass %.
  • the polysilazane content in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass or less. Is more preferable, and particularly preferably 70% by mass or more and 95% by mass or less.
  • the coating liquid for forming the gas barrier layer preferably contains an aluminum compound from the viewpoint of improving the heat resistance of the gas barrier layer, and examples of the aluminum compound include aluminum trimethoxide and aluminum triethoxide.
  • the aluminum compound include aluminum trimethoxide and aluminum triethoxide.
  • AMD aluminum diisopropylate mono-sec-butyrate
  • ASBD aluminum secondary butyrate
  • ALCH aluminum ethylacetoacetate diisopropylate
  • the content in the coating liquid for forming the gas barrier layer is preferably 0.1 to 10% by mass, and more preferably 1 to 5% by mass.
  • polysilazane which is ceramicized at a low temperature a polysilazane having a main skeleton composed of a unit represented by the general formula (1), and a silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide (for example, JP-A-5-238827), glycidol-added polysilazanes obtained by reacting glycidol (see, for example, JP-A-6-122852), alcohol-added polysilazanes obtained by reacting alcohol (see, for example, JP-A-5-238852).
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate see, for example, JP-A-6-299118
  • a metal-containing acetylacetonate complex for example, JP-A-6-306329
  • polysilazane containing metal fine particles obtained by adding metal fine particles see, for example, JP-A-7-196986
  • the gas barrier layer in the same manner as the solvent permeation preventive layer described above by a wet forming method or an inkjet printing method.
  • the wet forming method applicable to the formation of the gas barrier layer the above-mentioned spin coating method, casting method, screen printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, LB method (Langmuir- (Blodgett method), a dispenser, and the like, and a die coating method, a roll coating method, a spray coating method and the like are preferable from the viewpoint of easily obtaining a uniform thin film and high productivity.
  • the gas barrier layer according to the present invention preferably contains polysilazane and a modified product thereof, and can be obtained, for example, by modifying the polysilazane in the polysilazane-containing gas barrier layer formed by the wet forming method.
  • the modification treatment means a reaction of converting a part or all of polysilazane into silicon oxide or silicon oxynitride.
  • the modification treatment it is preferable to perform the vacuum ultraviolet ray irradiation treatment described in the modification treatment method of the solvent permeation preventive layer.
  • composition of silicon oxynitride in a layer obtained by subjecting a layer containing polysilazane to vacuum ultraviolet irradiation can be adjusted by appropriately combining the above-mentioned oxidation mechanisms (1) to (4) to control the oxidation state. ..
  • the modification of polysilazane has restrictions on the UV intensity of the lamp, irradiation time, temperature conditions during irradiation, etc. in ordinary production, and even if the reactions of (1) to (4) above occur, the polysilazane in the layer may be modified. It is difficult to convert all of the polysilazane, so that the polysilazane modification treatment on a production basis often leaves unmodified polysilazane in the range of several percent.
  • the conditions such as the illuminance, the irradiation energy amount, the selection of the light source, the oxygen concentration at the time of irradiation, and the heat treatment are the same as those described above for the solvent permeation preventive layer. Irradiation conditions can be appropriately used.
  • paragraphs “0055” to “0091” of JP2012-086394A, paragraphs “0049” to “0085” of JP2012-0061154A, and JP2011-251460A can be used.
  • the contents described in paragraphs “0046” to “0074” of the publication can be referred to.
  • FIGS. 2A to 2D show schematic diagrams of the manufacturing flow of the touch panel sensor.
  • Examples of the substrate used for the touch panel sensor (10) include colorless and transparent glass and a resin film or sheet.
  • the resin used for such a substrate include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP) and cyclopolyolefin; polyamides.
  • resins a resin selected from polyester resins, polyimide resins, cyclopolyolefin resins, and polycarbonate resins is particularly preferable. Moreover, these resins can be used individually by 1 type or in combination of 2 or more types.
  • the thickness of the base material is preferably in the range of 5 to 500 ⁇ m in consideration of stability during manufacturing.
  • the electrode (12) is, for example, a metal pattern electrode formed by patterning a transparent conductive film made of indium tin oxide (ITO), silver (Ag) or copper (Cu) into a predetermined shape. Is preferably formed.
  • ITO indium tin oxide
  • Ag silver
  • Cu copper
  • it is preferably formed by an etching solution by a photolithography method.
  • it is also preferable to form by an inkjet printing method.
  • the line width of the electrode to be formed is preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the photolithography method applied to the present invention includes the steps of coating a resist such as curable resin, preheating, exposing, developing (removing uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • a resist such as curable resin
  • preheating exposing
  • developing removing uncured resin
  • rinsing etching treatment with an etching solution
  • resist stripping resist stripping.
  • the metal thin film layer can be processed into a predetermined pattern, and the shape of the pattern can be changed appropriately.
  • a conventionally known general photolithography method can be appropriately used.
  • the resist either a positive type resist or a negative type resist can be used.
  • a pattern mask having a predetermined pattern is arranged, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated from above.
  • development is performed with a developing solution suitable for the resist used.
  • the resist pattern is formed by stopping the development and washing with a rinse liquid such as water.
  • the formed resist pattern is pre-treated or post-baked if necessary, and then is etched with an etching solution containing an organic solvent to dissolve the solvent permeation preventive layer and silver in the region not protected by the resist.
  • the thin film electrode is removed. After etching, the remaining resist is peeled off to obtain a transparent electrode having a predetermined pattern.
  • the smoothing layer (13) is formed so as to cover the electrode pattern and smoothes it.
  • the smoothing layer can be formed, for example, by applying a coating liquid containing a photosensitive resin and curing the coating liquid.
  • a photosensitive resin for example, a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, poly The resin composition etc. which melt
  • the laminate of the present invention is laminated on a flexible substrate to form a gas barrier substrate, which is used for preparation of an organic electroluminescence element (hereinafter referred to as an organic EL element).
  • an organic EL element an organic electroluminescence element
  • the laminate of the present invention can be formed into a thin film, a long-life organic EL element can be obtained without causing film cracking due to a thick film.
  • 3A to 3D show schematic diagrams of a manufacturing flow of an organic EL element using paper or cloth as a flexible substrate.
  • the paper or cloth (21) a commercially available product can be used, and the material is not particularly limited.
  • the thickness is appropriately selected, it is preferably in the range of 100 to 1000 ⁇ m, and more preferably in the range of 100 to 500 ⁇ m from the viewpoint of weight reduction.
  • the organic EL element unit (22) is formed on the gas barrier layer (4) of the laminate (1) of the present invention by a vapor deposition method or a wet formation method.
  • JP-A-2013-157634 JP-A-2013-168552, JP-A-2013-177361, JP-A-2013-187211, and JP-A-2013-187211.
  • the configurations described in Japanese Patent Laid-Open No. 2014-017494 and the like can be mentioned.
  • the laminate of the present invention is preferably applied as a gas barrier layer of the organic photoelectric conversion element.
  • the photoelectric conversion element and solar cell will be described below. Although the laminated body of the present invention is omitted in the drawing, the entire element is covered with the laminated body of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a solar cell having a single configuration (a bulk heterojunction layer having one layer) including a bulk heterojunction type organic photoelectric conversion element.
  • a bulk heterojunction type organic photoelectric conversion device 200 has a transparent electrode (anode 202 ), a hole transport layer (207 ), a bulk heterojunction layer photoelectric conversion part () on one surface of a substrate (201 ). 204), an electron transport layer (also referred to as a buffer layer, 208), and a counter electrode (cathode 203) are sequentially stacked.
  • the substrate (201) is a member that holds the transparent electrode (202), the photoelectric conversion unit (204), and the counter electrode (203) that are sequentially stacked. In this embodiment, since the photoelectrically converted light is incident from the substrate (201) side, the substrate (201) can transmit the photoelectrically converted light, that is, the light to be photoelectrically converted. It is preferable that the member is transparent to the wavelength.
  • the substrate (201) for example, a glass substrate or a resin substrate is used.
  • This substrate (201) is not essential, and for example, a bulk heterojunction type organic photoelectric conversion element (200) is formed by forming a transparent electrode (202) and a counter electrode (203) on both sides of a photoelectric conversion part (204). May be done.
  • the photoelectric conversion unit (204) is a layer that converts light energy into electric energy, and is configured to have a bulk heterojunction layer in which a p-type semiconductor material and an n-type semiconductor material are uniformly mixed.
  • the p-type semiconductor material relatively functions as an electron donor (donor)
  • the n-type semiconductor material relatively functions as an electron acceptor (acceptor).
  • an electron donor and an electron acceptor are "an electron donor that, when absorbing light, moves from the electron donor to the electron acceptor to form a pair of holes and electrons (charge separation state).
  • electron acceptor which donates or accepts an electron by a photoreaction, rather than simply donating or accepting an electron like an electrode.
  • FIG. 4 light incident from the transparent electrode (202) through the substrate (201) is absorbed by an electron acceptor or an electron donor in the bulk heterojunction layer of the photoelectric conversion unit (204), and an electron is emitted from the electron donor. Electrons move to the acceptor, and a pair of holes and electrons (charge separation state) is formed. The generated electric charge causes electrons to pass between the electron acceptors due to an internal electric field, for example, the potential difference between the transparent electrode (202) and the counter electrode (203) when the work functions of the transparent electrode (202) and the counter electrode (203) are different. Further, the holes pass between the electron donors and are carried to different electrodes, and the photocurrent is detected.
  • it may have other layers such as a hole blocking layer, an electron blocking layer, an electron injection layer, a hole injection layer, or a smoothing layer.
  • tandem type structure a structure having a plurality of bulk heterojunction layers in which such photoelectric conversion elements are stacked may be used.
  • Examples of the material that can be used for the layer as described above include the n-type semiconductor material and the p-type semiconductor material described in paragraphs 0045 to 0113 of JP-A-2015-149483.
  • the electrodes constituting the organic photoelectric conversion element it is preferable to use the same anode and cathode as those used in the organic EL element.
  • the positive charge and the negative charge generated in the bulk heterojunction layer are extracted from the transparent electrode and the counter electrode via the p-type organic semiconductor material and the n-type organic semiconductor material, respectively. It functions as a battery.
  • Each electrode is required to have characteristics suitable for a carrier passing through the electrode.
  • the organic photoelectric conversion element has a hole transport layer/electron block layer between the bulk heterojunction layer and the transparent electrode because it is possible to more efficiently take out the charges generated in the bulk heterojunction layer.
  • a hole transport layer/electron block layer between the bulk heterojunction layer and the transparent electrode because it is possible to more efficiently take out the charges generated in the bulk heterojunction layer.
  • PEDOT such as Clevios manufactured by Heraeus, polyaniline and a doped material thereof, and a cyan compound described in WO2006/019270 can be used.
  • the organic photoelectric conversion element by forming an electron transport layer, a hole blocking layer, and a buffer layer between the bulk heterojunction layer and the counter electrode, it is possible to more efficiently extract the charges generated in the bulk heterojunction layer. Therefore, it is preferable to have these layers.
  • the organic photoelectric conversion element may have various optical functional layers for the purpose of more efficient reception of sunlight.
  • the optical functional layer for example, an antireflection film, a light collecting layer such as a microlens array, or a light diffusing layer that scatters the light reflected by the counter electrode and makes it incident on the bulk heterojunction layer again may be provided. Good.
  • FIG. 5 is a schematic sectional view showing the structure of the organic thin-film transistor.
  • the laminate of the present invention is preferably applied as a gas barrier layer of an organic thin film transistor.
  • the laminated body of the present invention is omitted in the drawing, the entire transistor is covered with the laminated body as in the above-described organic photoelectric conversion element.
  • FIG. 5A shows that a source electrode (302) and a drain electrode (303) are formed on a support (306) with a metal foil or the like, and an organic semiconductor material described in Table 2009/101862 is provided between both electrodes.
  • a charge transfer thin film (organic semiconductor layer 301) made of 6,13-bistriisopropylsilylethynylpentacene is formed, an insulating layer (305) is formed thereon, and a gate electrode (304) is further formed thereon.
  • a field effect transistor is formed.
  • FIG. 5B shows an organic semiconductor layer (301) formed between the electrodes in FIG. 5A, and formed so as to cover the entire surface of the electrode and the support by using a coating method or the like.
  • FIG. 5C shows that an organic semiconductor layer (301) is first formed on a support (306) by a coating method or the like, and then a source electrode (302), a drain electrode (303), an insulating layer (305), and a gate.
  • the electrode (304) is formed.
  • FIG. 5D shows that after the gate electrode (304) is formed on the support (306) with a metal foil or the like, an insulating layer (305) is formed, and the source electrode (302) and the drain electrode are formed on the insulating layer (305). (303) is formed, and an organic semiconductor layer (301) formed of the luminescent composition of the present invention is formed between the electrodes.
  • FIGS. 5E and 5F it is also possible to take a configuration as shown in FIGS. 5E and 5F.
  • Example 1 Each of the following liquid agents was applied to a sheet-like adhesive (made by 3M) with a release film by spin coating, surface modification, lamination of a gas barrier layer, etc. The observation results, the light transmittance, the adhesive strength of the adhesive on the release film surface, and the bending test were evaluated.
  • the laminate 101 was produced by the following operation.
  • ⁇ Adhesive layer> A sheet-shaped adhesive with a release film (manufactured by 3M) having an adhesive layer thickness of 25 ⁇ m was used.
  • UV-PDMS KER-4690 UV-curable polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd.
  • the above-mentioned UV-curable resin was spin-coated on the adhesive layer in a layer thickness of 250 nm and irradiated with UV: 365 nm.
  • a laminate 103 was produced in the same manner as in the production of the laminate 101, except that the layer thickness of the solvent permeation preventive layer was changed to 5000 nm.
  • a laminate 104 was prepared in the same manner as in the production of the laminate 1, except that DIALAL BR85 (manufactured by Mitsubishi Rayon Co., Ltd., acrylic resin Mw: 280000) was used as the acrylic resin instead of the UV-PDMS KER-4690. It was made.
  • DIALAL BR85 manufactured by Mitsubishi Rayon Co., Ltd., acrylic resin Mw: 280000
  • a laminate was prepared in the same manner except that a liquid bisphenol A type epoxy resin (“828EL” manufactured by Japan Epoxy Resin Co., Ltd.) was used as the epoxy resin instead of the UV-PDMS KER-4690.
  • the body 105 was produced.
  • UV-PDMS KER-4690 UV-curable polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd. is spin-coated on the adhesive layer in a layer thickness of 250 nm, and UV: 365 nm is 3 J/cm 2. After irradiating for 1 minute under the irradiation conditions of No. 1, the surface modification treatment shown in Table I below was performed, and laminates 106 to 108 were produced.
  • Plasma ion implantation process Using a plasma ion implantation device (RF power supply: JEOL Ltd., RF56000, high-voltage pulse power supply: Kurita Manufacturing Co., Ltd., PV-3-HSHV-0835) on the surface of the solvent permeation preventive layer obtained. Plasma ion implantation was performed under the condition of 2 J/cm 2 .
  • the carbon component ratio of the solvent permeation prevention layer surface depth 0 to 70 nm is 12 at% on average, and the carbon component ratio of the surface depth 70 to 250 nm is 30 at% on average. It was found that it was modified by the thickness of.
  • a modified layer has a carbon component ratio lower than that of a normal layer. High energy irradiation decomposes and volatilizes the carbon component, so it is generally said that the lower the carbon component, the more dense the film.
  • the flash firing treatment and the plasma ion implantation treatment were modified, but the degree of modification was weak.
  • the coating liquid containing PHPS was a dibutyl ether solution containing 20% by mass of PHPS (NN120-20, manufactured by AZ Electronic Materials Co., Ltd.) and an amine catalyst (N,N,N',N'-tetramethyl-1, 20% by mass of PHPS containing 6-diaminohexane (TMDAH) in a dibutyl ether solution (AZ Electronic Materials Co., Ltd., NAX120-20) was mixed at a ratio of 4:1 (mass ratio), and further dried layer thickness.
  • a coating solution was prepared by appropriately diluting with dibutyl ether for adjustment.
  • a laminate 110 was produced in the same manner as in the production of the laminate 109, except that a sheet-like adhesive with release film (manufactured by 3M Co.) having an adhesive layer thickness of 5 ⁇ m was used.
  • the above UV-PDMS KER-4690 diluted with a cyclic siloxane solvent (DMCPS: decamethylcyclopentasiloxane) at a mixing mass ratio of PDMS/DMCPS: 1/12 is used.
  • a laminated body 111 was produced in the same manner except that it was used.
  • a layered product 112 was produced in the same manner except that the following sol-gel solution was used instead of PHPS used for the gas barrier layer and the formed gas barrier layer was heated at 100° C. for 30 minutes. ..
  • the laminated body 113 was produced in the same manner except that the following TEOS liquid was used instead of PHPS used for the gas barrier layer.
  • ⁇ TEOS liquid> In a glove box under a dry nitrogen atmosphere with a water concentration of 1 ppm or less, a 0.1M concentration of tetraethoxysilane (Si(OET) 4 ) dehydrated tetrafluoropropanol solution was prepared, and the humidity was 50% enclosed in a glass syringe. 40 mL of air was bubbled and the solution immediately returned to the glove box was used as a TEOS solution.
  • Si(OET) 4 tetraethoxysilane
  • the light transmittance was calculated from the absorptance (%) of light having a wavelength of 450 nm of each sample.
  • the light absorptance was measured using a spectrophotometer U-4100 manufactured by Hitachi High-Technologies Corporation.
  • the light transmittance was ranked according to the following evaluation criteria. The higher the light transmittance, the higher the transparency as a laminate.
  • Light transmittance is greater than 95% 4: Light transmittance is greater than 90% and 95% or less 3: Light transmittance is greater than 85% and 90% or less 2: Light transmittance is 70% Larger and 85% or less 1: Light transmittance is 70% or less (3) Evaluation of Adhesive Strength Each sample prepared was bonded to a 125 ⁇ m thick polyethylene terephthalate film (PET film).
  • PET film polyethylene terephthalate film
  • the sample was placed in a glove box, and the sheet-shaped adhesive surface from which the release film had been removed was bonded to the PET film using a vacuum laminating device. At this time, heating at 110° C. was performed. Further, the adhered sample was placed on a hot plate set at 110° C. and cured for 30 minutes.
  • the adhesive strength of the laminated sample was evaluated by the following cross-cut method.
  • the number of cracks in the light emitting area of 100 cm 2 is less than 5 ⁇ : The number of cracks in the light emitting area of 100 cm 2 is 5 or more and less than 50 ⁇ : The structure of the laminate having the number of cracks in the light emitting area of 100 cm 2 is 50 or more The evaluation results are shown in Table I.
  • the solvent penetration preventing layer on the adhesive layer particularly contained a siloxane resin.
  • VUV Volts: 172 nm
  • the layered product of the present invention composed of the adhesive/solvent permeation preventive layer/gas barrier layer can significantly reduce the film thickness as compared with the conventional adhesive-only structure, thereby increasing the flexibility. It was found that the layered product of the present invention composed of the adhesive/solvent permeation preventive layer/gas barrier layer can significantly reduce the film thickness as compared with the conventional adhesive-only structure, thereby increasing the flexibility. It was found that the layered product of the present invention composed of the adhesive/solvent permeation preventive layer/gas barrier layer can significantly reduce the film thickness as compared with the conventional adhesive-only structure, thereby increasing the flexibility. It was
  • Example 2 Each solvent permeation preventive layer coating solution used in Example 1 was spin-coated on a silicon wafer to form a film, and UV: 365 nm was irradiated for 1 minute under an irradiation condition of 3 J/cm 2 . Then, a sample subjected to each surface treatment described in Table II was used as a measurement sample.
  • VUV vacuum ultraviolet ray treatment
  • Example 3 The solvent permeation preventive layer coating liquid used in Example 1 was spin-coated to form a solvent permeation preventive layer on a silicon wafer, and UV: 365 nm was irradiated for 1 minute under the irradiation condition of 3 J/cm 2 . Then, each surface treatment shown in Table III is applied, then a coating solution containing PHPS is spin-coated on the solvent permeation preventive layer, dried at 80° C. for 1 minute, and vacuum ultraviolet ray treatment (VUV: 172 nm) under the irradiation condition of 6 J/cm 2 was used as a measurement sample.
  • VUV vacuum ultraviolet ray treatment
  • VUV vacuum ultraviolet ray treatment
  • Example 4 ⁇ Production of evaluation organic EL device> (Preparation of base material) First, an inorganic substance composed of SiOx was formed on the entire surface of the polyethylene naphthalate film (manufactured by Teijin Film Solutions Co., Ltd.) on the side where the anode is formed, by using the atmospheric pressure plasma discharge treatment device having the configuration described in JP 2004-68143 A. The gas barrier layer of was formed so as to have a layer thickness of 500 nm.
  • ITO indium tin oxide
  • the substrate on which the anode was formed was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes. Then, a dispersion liquid of poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate (PEDOT/PSS) prepared in the same manner as in Example 16 of Japanese Patent No. 4509787 was placed on the base material on which the anode was formed. The 2% by mass solution diluted with was applied by an inkjet printing method and dried at 80° C. for 5 minutes to form a hole injection layer having a layer thickness of 40 nm.
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate
  • the substrate on which the hole injection layer is formed is transferred to a nitrogen atmosphere using nitrogen gas (grade G1), and is applied by an inkjet printing method using a hole transport layer forming coating solution having the following composition. After drying at 150° C. for 30 minutes, a hole transport layer having a layer thickness of 30 nm was formed.
  • nitrogen gas grade G1
  • the substrate on which the hole transport layer was formed was applied by an inkjet method using a coating solution for forming a light emitting layer having the following composition and dried at 130° C. for 30 minutes to form a light emitting layer having a layer thickness of 50 nm. ..
  • IPA Isopropyl alcohol
  • the substrate having the block layer formed thereon is coated by an inkjet printing method using a coating liquid for forming an electron transport layer having the following composition, and dried at 80° C. for 30 minutes to form an electron transport layer having a layer thickness of 30 nm. did.
  • the substrate was attached to a vacuum vapor deposition device without exposing it to the atmosphere.
  • a molybdenum resistance heating boat containing sodium fluoride and potassium fluoride was attached to a vacuum vapor deposition apparatus, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 5 Pa. Then, the boat was energized and heated, and sodium fluoride was vapor-deposited on the electron transport layer at 0.02 nm/sec to form a thin film having a thickness of 1 nm.
  • potassium fluoride was vapor-deposited at 0.02 nm/sec on the sodium fluoride thin film to form an electron injection layer having a layer thickness of 1.5 nm.
  • the release film of the laminated body produced by the same method as the laminated body described in Example 1 was peeled off and bonded to the organic EL element to produce organic EL elements 401 to 406. Only the adhesive layer was attached to the organic EL element 407.
  • the sample was placed in a glove box, and the sheet-shaped adhesive surface from which the release film had been removed was bonded to the cathode using a vacuum laminating device. At this time, heating at 110° C. was performed. Further, the adhered sample was placed on a hot plate set at 110° C. and cured for 30 minutes.
  • composition of the adhesive layer/solvent permeation prevention layer/gas barrier layer can be used as a sealing film for an organic EL element. It was also found that the sealing property of the organic EL element is improved by increasing the number of laminated gas barrier layers.
  • Example 5 A 1 mm-thick polyester felt cloth is laminated with a laminate produced in the same structure as the laminate 401 of Example 4, and the fabric is used for an organic EL device according to the flow shown in FIGS. 3A to 3D. It was used as a base material.
  • the organic EL device unit of Example 4 (configuration from the anode to the cathode) was formed on the gas barrier layer of the above laminate.
  • UV-PDMS KER-4690 is applied and deposited on the cathode of the organic EL element unit by an inkjet printing method, and UV: 365 nm is irradiated for 1 minute under an irradiation condition of 3 J/cm 2 , and a vacuum ultraviolet ray treatment (VUV: 172 nm) was irradiated under the irradiation condition of 1.8 J/cm 2 .
  • the coating solution containing PHPS was applied on the solvent permeation preventive layer by an inkjet printing method to form a film, and after heating for 1 minute at 80° C., vacuum ultraviolet ray treatment (VUV: 172 nm) was applied under an irradiation condition of 6 JJ/cm 2. Irradiated. Then, the following gas barrier film was stuck.
  • An inorganic gas barrier layer made of SiOx having a layer thickness of 500 nm was formed on the entire surface of the polyethylene naphthalate film (manufactured by Teijin Film Solutions Co., Ltd.) by using the atmospheric pressure plasma discharge treatment device having the configuration described in JP 2004-68143 A. It was formed so that Thereby, a flexible gas barrier film having a gas barrier property of oxygen permeability of 0.001 mL/(m 2 ⁇ 24 h ⁇ atm) or less and water vapor permeability of 0.001 g/(m 2 ⁇ 24 h) or less was produced. ..
  • thermosetting liquid adhesive epoxy resin
  • a thermosetting liquid adhesive epoxy resin having a thickness of 25 ⁇ m was formed as a sealing resin layer on one surface of the gas barrier film. Then, the gas barrier film provided with this sealing resin layer was overlaid on the organic EL element unit and sealed. At this time, the sealing resin layer formation surface of the gas barrier film was continuously overlapped with the sealing surface side of the organic EL element so that the ends of the extraction portions of the anode and the cathode were exposed to the outside.
  • the organic EL device manufactured by the above method emitted light in the same manner as the organic EL device manufactured on a normal glass substrate.
  • the liquid permeates the cloth, so that the layers cannot be laminated.
  • a gas barrier substrate is produced by using the fabric of the present invention with cloth or paper. It has been proved to be possible.
  • Example 6 ⁇ Production of touch panel module> As a flexible substrate having a gas barrier layer, using a film was formed to a thickness of 300nm of SiO 2 by plasma CVD to a polyethylene naphthalate film having a thickness of 100 [mu] m (Teijin Film Solutions Ltd.), sputtering thereon Then, an ITO film was formed to a thickness of 20 nm, and a first electrode pattern in the X direction was formed by etching.
  • SiO 2 is deposited as an insulating layer arranged between the electrode patterns to a thickness of 200 nm by a sputtering method, and an ITO film is deposited thereon to a thickness of 20 nm by sputtering. A film was formed and a second electrode pattern was formed in the Y direction by etching. Further, SiO 2 was deposited thereon as an insulating layer by a sputtering method so as to have a thickness of 200 nm.
  • the Ag paste was applied to the electrode patterns in the X direction and the Y direction of the formed ITO, respectively, and the electrodes were connected to a control circuit via lead wires produced by sintering.
  • the laminated body produced under the conditions of the laminated body 401 of Example 4 was bonded onto the second electrode pattern via the adhesive layer to produce a touch panel module.
  • a liquid crystal display device equipped with the manufactured touch panel module was subjected to a temperature change from -20°C to 80°C for 200 cycles at intervals of 30 minutes in an environment of relative humidity of 50% RH.
  • the operation of the touch panel module of the liquid crystal display device taken out was confirmed, and it was found that the touch panel module worked without any particular problems and was excellent in durability.
  • the sample was held at 25° C. and 50% RH for 1000 hours. Thereafter, with respect to this sample, the appearance of the device after being held for 1000 hours was visually observed and the presence or absence of cracks and the operation check were evaluated, but no cracks were found and the operation was normal.
  • the touch panel module provided with was excellent in flexibility.
  • the layered product of the present invention is a layered product having a gas barrier property that makes the film thinner, prevents film cracking, facilitates flexible and foldable electronic devices, and further improves optical characteristics. Therefore, as an example of application of the laminate to an electronic device, it is suitable for a touch panel sensor, organic electroluminescence, a solar cell having an organic photoelectric conversion element, and an organic thin film transistor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の課題は、薄膜化し、膜割れを防止して、電子デバイスのフレキシブル化やフォルダブル化への対応を容易にし、さらに光学特性を改善するガスバリアー性を具備した積層体、その製造方法及びそれを具備した電子デバイスを提供することである。 本発明の積層体は、少なくとも接着剤層とガスバリアー層を具備する積層体であって、前記ガスバリアー層が無機材料を含有し、かつ、前記接着剤層と前記ガスバリアー層の間に光又は熱硬化型の樹脂を含有する溶媒浸透防止層が配置されていることを特徴とする。

Description

積層体、その製造方法及びそれを具備した電子デバイス
 本発明は、積層体、その製造方法及びそれを具備した電子デバイスに関し、より詳しくは、薄膜化し、膜割れを防止して、電子デバイスのフレキシブル化やフォルダブル化への対応を容易にし、さらに光学特性を改善するガスバリアー性を具備した積層体等に関する。
 タッチパネルセンサー等に使用されるインジウム・スズ酸化物(ITO)、銀(Ag)又は銅(Cu)からなる透明導電膜は大気中の水分や酸素と容易に反応し酸化・腐食され、デバイス特性に重篤なダメージを与えることが知られている。これらを水分や酸素の影響から遮断する方法としては、例えば、アクリル樹脂からなる透明な接着剤(光学粘着剤、OCA:Optical Clear Adhesiveともいう。)により保護することが一般的である。しかし、この方法では、大気中の水分や酸素から電極部を十分保護するためには、接着剤層の層厚(本発明では、膜厚ともいう。)を厚くする必要があり、結果的に光学特性(例えば、光透過率など)の低下や材料コストの上昇等の問題を引き起こす。さらに、昨今話題となっているフレキシブル化やフォルダブル化にとっても厚膜というのは膜割れを引き起こしてしまうため大きな障害となる。
 一方、接着剤層にガスバリアー性を付与する技術として、当該接着剤層にガスバリアーフィルムを直接貼合する方法が報告されているが(例えば、特許文献1~3参照。)、当該ガスバリアーフィルム自体による厚膜化が問題となる。さらに、この方式では、ガスバリアーフィルムを接着剤層へ貼合するプロセスが必要となり、プロセス負荷も高くなってしまうという問題があった。
特開2006-160307号公報 特開2016-526077号公報 特許第5239240号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、薄膜化し、膜割れを防止して、電子デバイスのフレキシブル化やフォルダブル化への対応を容易にし、さらに光学特性を改善するガスバリアー性を具備した積層体を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、前記接着剤層上に、特定の材料を含有する溶媒浸透防止層及びガスバリアー層を積層することで、薄膜化し、膜割れを防止して、電子デバイスのフレキシブル化やフォルダブル化への対応を容易にし、さらに光学特性を改善するガスバリアー性を具備した積層体が得られることを見出した。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.少なくとも接着剤層とガスバリアー層を具備する積層体であって、
 前記ガスバリアー層が無機材料を含有し、かつ、前記接着剤層と前記ガスバリアー層の間に光又は熱硬化型の樹脂を含有する溶媒浸透防止層が配置されていることを特徴とする積層体。
 2.前記溶媒浸透防止層の層厚が、1~10000nmの範囲内であることを特徴とする第1項に記載の積層体。
 3.前記溶媒浸透防止層が、少なくともシロキサン系樹脂、アクリル系樹脂又はエポキシ系樹脂を含有することを特徴とする第1項又は第2項に記載の積層体。
 4.前記溶媒浸透防止層が、シロキサン系樹脂を含有することを特徴とする第1項から第3項までのいずれか一項に記載の積層体。
 5.前記溶媒浸透防止層の前記ガスバリアー層側の表面に、改質層を有することを特徴とする第1項から第4項までのいずれか一項に記載の積層体。
 6.前記改質層の前記ガスバリアー層側の表面が、温度23℃における水に対する接触角が、20~100°の範囲内であることを特徴とする第5項に記載の積層体。
 7.前記改質層の層厚が、1~70nmの範囲内であることを特徴とする第5項又は第6項に記載の積層体。
 8.前記ガスバリアー層が、ポリシラザンとその改質体を含有することを特徴とする第1項から第7項までのいずれか一項に記載の積層体。
 9.前記溶媒浸透防止層とガスバリアー層の間に、下記一般式(A)で表される構造を有する有機金属酸化物を含有する有機金属酸化物層を有することを特徴とする第1項からから第8項までのいずれか一項に記載の積層体。
 一般式(A) R-[M(OR1y(O-)x-yn-R
(式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコ
キシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度をそれぞれ表す。)
 10.前記Mで表される金属原子が、Si、Ti、Zr、Mg、Ca、Sr、Bi、Hf、Nb、Zn、Al、Pt、Ag、及びAuから選択されることを特徴とする第9項に記載の積層体。
 11.前記有機金属酸化物層が、少なくともゾル・ゲル転移された塗布膜からなることを特徴とする第9項又は第10項に記載の積層体。
 12.前記接着剤層の溶媒浸透防止層とは反対側に、剥離可能なフィルムを具備することを特徴とする第1項から第11項までのいずれか一項に記載の積層体。
 13.前記接着剤層の溶媒浸透防止層とは反対側に剥離可能なフィルムが配置され、かつ前記ガスバリアー層の溶媒浸透防止層とは反対側にさらに接着剤層が配置されていることを特徴とする第1項から第11項までのいずれか一項に記載の積層体。
 14.少なくとも接着剤層とガスバリアー層を具備する積層体の製造方法であって、
 前記接着剤層の表面に光又は熱硬化型の樹脂を塗布して、当該樹脂を含有する溶媒浸透防止層を形成する工程と、
 前記溶媒浸透防止層の表面に無機材料を塗布して当該無機材料を含有するガスバリアー層を形成する工程と、を有することを特徴とする積層体の製造方法。
 15.前記溶媒浸透防止層を形成する工程に続いて、当該溶媒浸透防止層に少なくとも紫外線照射処理、フラッシュ焼成処理、大気圧プラズマ処理、プラズマイオン注入処理、又は加熱処理を行う工程、を有することを特徴とする第14項に記載の積層体の製造方法。
 16.前記溶媒浸透防止層を形成する工程に続いて、当該溶媒浸透防止層に紫外線照射処理を行う工程、を有することを特徴とする第14項に記載の積層体の製造方法。
 17.第1項から第13項までのいずれか一項に記載の積層体を具備することを特徴とする電子デバイス。
 本発明の上記手段により、薄膜化し、膜割れを防止して、電子デバイスのフレキシブル化やフォルダブル化への対応を容易にし、さらに光学特性を改善するガスバリアー性を具備した積層体、その製造方法及びそれを具備した電子デバイスを提供することができる。
 本発明の効果の発現機構ないし作用機構は、明確にはなっていないが、以下のように推察している。
 本発明は、接着剤層上に光又は熱硬化性の樹脂を含有する溶媒浸透防止層とポリシラザンとその改質体等の無機材料を含有するガスバリアー層とを積層することで、当該ガスバリアー層からの溶剤浸透を防ぐ効果を発現できるものである。
 さらには、当該溶媒浸透防止層がシロキサン系樹脂を含有し、紫外線照射処理、フラッシュ焼成処理、大気圧プラズマ処理、プラズマイオン注入処理、又は加熱処理等により、当該溶媒浸透防止層の表面を改質してシロキサン系樹脂の改質体を含有する改質層を有することによって、当該溶媒浸透防止層と上層のポリシラザンとその改質体を含有するガスバリアー層とが同種の改質体とを有することで密着性が大きく向上する。加えて、当該溶媒浸透防止層が緻密な改質層を有することで、当該ガスバリアー層からの溶剤浸透をより防ぐ優れた効果を発現できるものである。これらの効果により、ガスバリアー層を塗布形成するときの溶剤浸透による接着剤層へのダメージを完全に防いだ積層体を提供することができるものと推察される。
 ここで、さらに塗布材料が電子デバイスにダメージを与えるメカニズムを考える。例えば、有機エレクトロルミネッセンス素子(以下、有機ELという。)に一般的な有機溶媒を塗布した際の有機ELの状態を観察すると、有機ELが溶けていたり、反応しているといったような溶媒と有機EL間の何かしらの分子間相互作用力が影響してダメージを与えていることが分かる。つまり、前記シロキサン系樹脂が電子デバイスにダメージを与えないのは、電子デバイスに分子間相互作用を及ぼしていないからと考えられる。
 シロキサン系樹脂はSi-O結合からなるが、Siの共有結合半径は1.17Åと、Cの0.77Åに比べ約1.5倍と長く、結合の回転エネルギーがほぼ0であることが知られている。このことから、結合の回転が容易であり、シロキサン鎖は柔軟性が非常に高い。これに加え、Siの結合手4つのうち2つはメチル基と結合していることから嵩高くなり、らせん構造をとる特徴を持っている。このらせん構造はシロキサン結合6ユニットの繰り返し構造とっているため、シロキサン結合の分極のダイポール(電気陰性度は,Si(1.8)、C(2.5)、O(3.5)であるからSi-O結合は,C-O結合やC-C結合に比べ,イオン結合性が高く,約50%のイオン性を有する)は相殺され、これによりポリジメチルシロキサンは非極性となると考えられる。つまり、前記らせん構造に由来する非極性によりシロキサン系樹脂は電子デバイスと分子間相互作用を起こさず、ダメージフリーとなると考えられる。
 シロキサン系樹脂は前述の通り、その材料自体は下層を侵さず、かつ上層のガスバリアー層の溶媒浸透を防止する性質を有する。この性質を利用すれば、例えば特願2018-104204号にも記述されているような、有機ELやタッチパネルセンサー、有機薄膜トランジスターといった電子デバイスに直接塗布することも可能で、これを利用して、電子デバイスとガスバリアー層を接着させる電子デバイスダメージフリーなUV硬化型接着剤としても利用できる点で発明の効果が高い。また、真空紫外光による表面処理により、後述する平坦化層としての機能を付与することも可能となる。
 本発明に係る構成によって、接着剤層上にガスバリアー層を直接薄膜で形成することが可能となり、薄膜化し、膜割れを防止して、電子デバイスのフレキシブル化やフォルダブル化への対応、及び光学特性を改善できる。
本発明の積層体の一例を示す断面図 本発明の積層体の一例を示す断面図 本発明の積層体の一例を示す断面図 本発明の積層体の一例を示す断面図 本発明の積層体の一例を示す断面図 タッチパネルセンサーの製造フローを示す模式図 タッチパネルセンサーの製造フローを示す模式図 タッチパネルセンサーの製造フローを示す模式図 タッチパネルセンサーの製造フローを示す模式図 紙・布を用いた有機エレクトロルミネッセンス素子の製造フローを示す模式図 紙・布を用いた有機エレクトロルミネッセンス素子の製造フローを示す模式図 紙・布を用いた有機エレクトロルミネッセンス素子の製造フローを示す模式図 紙・布を用いた有機エレクトロルミネッセンス素子の製造フローを示す模式図 バルクヘテロジャンクション型の有機光電変換素子からなる太陽電池を示す断面図 有機薄膜トランジスターの構成の構成例を示す図 有機薄膜トランジスターの構成の構成例を示す図 有機薄膜トランジスターの構成の構成例を示す図 有機薄膜トランジスターの構成の構成例を示す図 有機薄膜トランジスターの構成の構成例を示す図 有機薄膜トランジスターの構成の構成例を示す図 クロスカット法試験における碁盤目の状態の標準図
 本発明の積層体は、少なくとも接着剤層とガスバリアー層を具備する積層体であって、前記ガスバリアー層が無機材料を含有し、かつ、前記接着剤層と前記ガスバリアー層の間に光又は熱硬化型の樹脂を含有する溶媒浸透防止層が配置されていることを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。
 本発明の積層体の特徴は、前記接着剤層上に、塗布工程による無機材料からの溶媒の浸透防止ができる溶媒浸透防止層と当該無機材料を含有するガスバリアー層との積層体である。本発明の積層体の場合、接着剤層上にガスバリアー層を形成するのに、従来のCVD(化学気相成膜法)による成膜やガスバリアーフィルムを貼合する等の操作を必要としないため、装置・材料コストの削減や生産性が格段に向上する。例えば、一貫して湿式塗布方式によって作製することで、従来よりも薄膜な積層体を短納期で作製することが可能となる。
 本発明の実施態様としては、本発明の効果発現の観点から、前記溶媒浸透防止層の層厚が、1~10000nmの範囲内であれば、塗布工程によるガスバリアー層からの溶剤の浸透防止ができ、かつ薄膜化やフレキシブル化を阻害しない観点から、好ましい。
 また、前記溶媒浸透防止層が、シロキサン系樹脂、アクリル系樹脂又はエポキシ系樹脂を含有すること、中でもシロキサン系樹脂を含有することが、本発明に係る無機材料を含有するガスバリアー層との密着性を向上する観点から、好ましい。特に、本発明に係るガスバリアー層の材料として好ましいパーヒドロポリシラザン(以下、PHPSという。)及びその改質体、テトラエトキシラン(以下、TEOSという。)又はパーヒドロシルセスキオキサンを含有するガスバリアー層との密着性を向上する観点から、好ましい。
 本発明に係る溶媒浸透防止層の前記ガスバリアー層側表面に、改質層を有することはPHPSの溶剤の浸透を防止する観点から好ましく、前記改質層の前記ガスバリアー層側表面において温度23℃における水に対する接触角が、20~100°の範囲内であることが、当該効果をより発現することから、好ましい実施態様である。さらに、前記改質層の層厚が、1~70nmの範囲内であることが、溶剤の浸透を防止すること、及び溶媒浸透防止層とガスバリアー層との密着性向上の観点から、好ましい。
 また、本発明に係る前記改質層の代替又はその上層として、同等の機能を有する有機金属酸化物層を配置してもよい。具体的には、前記一般式(A)で表される構造を有する有機金属酸化物を含有する有機金属酸化物層であることが好ましく、ゾル・ゲル法により塗膜形成される有機金属酸化物層であって、当該有機金属酸化物が、フッアルコールに配位置換された金属アルコキシドであることが好ましい。金属としては、Si、Ti、Zr、Mg、Ca、Sr、Bi、Hf、Nb、Zn、Al、Pt、Ag、及びAuから選択されることが好ましい。金属アルコキシドは、溶媒浸透防止層やガスバリアー層への触媒効果により、積層時において改質を促進し密着性を向上させるだけでなく、フッ化アルコールで配位置換されることで大気安定の特性を有することから、生産適性に優れるため好ましい。
 また、前記接着剤層の溶媒浸透防止層とは反対側に剥離可能なフィルムを具備することが、本発明の積層体のハンドリング性の観点から、好ましい。
 さらに、前記ガスバリアー層の上に接着剤層を形成することも好ましく、このような層構成であれば、当該接着剤層を介してさらにガスバリアーフィルムを貼合することも可能となり、ガスバリアー性をより高める観点からも、好ましい。
 本発明の積層体の製造方法は、前記接着剤層の表面に光又は熱硬化型の樹脂を塗布して溶媒浸透防止層を形成する工程、前記溶媒浸透防止層の表面に無機材料を塗布して当該無機材料を含有するガスバリアー層を形成する工程と、を有することを特徴とする。
 前記溶媒浸透防止層を形成する工程に続いて、当該溶媒浸透防止層の表面に紫外線照射処理、フラッシュ焼成処理、大気圧プラズマ処理、プラズマイオン注入処理、又は加熱処理を行う工程、を有することが好ましい。中でも、紫外線照射処理を行うことが、溶媒浸透防止層表面に改質層を形成し、ガスバリアー層形成時の接着剤層への溶剤の浸透を抑制し、かつ接着剤層及びガスバリアー層間の密着性を高める観点から好ましい製造方法である。
 本発明の積層体は、電子デバイスに具備されることが、膜割れを防止して、電子デバイスのフレキシブル化やフォルダブル化への対応、及び当該電子デバイスの光学特性の改善やプロセスコストの低減を可能にする観点から、好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 ≪本発明の積層体の概要≫
 本発明の積層体は、少なくとも接着剤層とガスバリアー層を具備する積層体であって、前記ガスバリアー層が無機材料を含有し、かつ、前記接着剤層と前記ガスバリアー層の間に光又は熱硬化型の樹脂を含有する溶媒浸透防止層が配置されていることを特徴とする。
 本発明でいう「ガスバリアー層」とは、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が0.01g/m2・24h以下のガスバリアー性であることが好ましい。更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m2・24h・atm以下、水蒸気透過度が、1×10-5g/m2・24h以下の高ガスバリアー性であることが好ましい。
 本発明でいう「光又は熱硬化型の樹脂」とは、紫外線等の光又は加熱等によって、重合又は架橋して硬化する性質を有する樹脂(ポリマー)をいう。なお、同様の性質を有する重合性単量体(モノマー)及びオリゴマーも含めることにする。
 また、本発明の積層体は透明であることが電子デバイスへの貼合の観点から好ましく、例えば、450nmの光波長で日立ハイテクノロジーズ社製分光光度計U-4100を用いて測定した光透過率が、70%以上であることが好ましく、80%以上でることがより好ましく、90%以上であることが特に好ましい。
 まず、本発明の実施の形態を図面に基づいて説明する。
 図1は、本発明の積層体の構成を示す模式図である。ただし、これは一例であり、本発明はこれに限定されるものではない。
 図1Aは本発明の積層体の基本構成である。本発明の積層体(1)は、接着剤層(2)上に、光又は熱硬化型の樹脂を含有する溶媒浸透防止層(3)及びガスバリアー層(4)を配置する構成である。
 図1Bは、本発明に係る溶媒浸透防止層(3)のガスバリアー層(4)側に改質層(5)を形成した断面図であり、溶媒浸透防止層(3)を形成した後に、当該溶媒浸透防止層の表面に紫外線照射処理、フラッシュ焼成処理、大気圧プラズマ処理、プラズマイオン注入処理、又は加熱処理を行う工程を加えることで、当該改質層(5)を形成することが好ましい。
 図1Cは、本発明に係る溶媒浸透防止層(3)のガスバリアー層(4)側に改質層と同等の機能を有する有機金属酸化物層(6)を配置した構成を示し、当該有機金属酸化物層(6)はゾル・ゲル法により塗膜形成されることが好ましい。
 図1Dは、本発明の積層体(1)が、ガスバリアー層(4)上に、さらに接着剤層(2)を有する構成を示したものであり、当該接着剤層を介してさらにガスバリアーフィルムを貼合することも可能となり、好ましい態様である。
 さらに、図1Eは、接着剤層の溶媒浸透防止層とは反対側の面に、剥離可能なフィルム(7)を具備する構成を示し、当該剥離可能なフィルム(7)によって、接着剤層(2)が保護されるため、本発明の積層体(1)のハンドリング性を向上する。
 以下、本発明の構成要素について詳細に説明する。
 〔1〕接着剤層
 接着剤層に用いる接着剤は、特に限定されず、一般的な接着剤を使用することができるが、中でも、合成樹脂系接着剤が好ましい。
 本発明に適用可能な接着剤としては、ポリエステル系接着剤、ウレタン系接着剤、ポリ酢酸ビニル系接着剤、アクリル系接着剤、エポキシ系接着剤、ニトリルゴム等が用いられ、また光硬化型又は熱硬化型の樹脂を主成分とする接着剤を用いることができる。
 使用されるアクリル系接着剤は、溶剤系及びエマルジョン系どちらでもよいが、接着力等を高めやすいことから、溶剤系接着剤が好ましく、その中でも溶液重合で得られたものが好ましい。このような溶剤系アクリル系接着剤を溶液重合で製造する場合の原料としては、例えば、骨格となる主モノマーとして、エチルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、オクリルアクリレート等のアクリル酸エステル、凝集力を向上させるためのコモノマーとして、酢酸ビニル、アクリルニトリル、スチレン、メチルメタクリレート等、さらに架橋を促進し、安定した接着力を付与させ、また水の存在下でもある程度の接着力を保持するために官能基含有モノマーとして、メタクリル酸、アクリル酸、イタコン酸、ヒドロキシエチルメタクリレート、グリシジルメタクリレート等が挙げられる。接着剤層には、主モノマーとして、特に高タック性を要するため、ブチルアクリレート等のような低いガラス転移温度(Tg)を有するものが特に有用である。
 上記アクリル系接着剤の市販品としては、例えば、コーポニールシリーズ(日本合成化学社製)等が挙げられる。
 また、硬化型接着剤層の形成には、接着剤組成物として、例えば、ラジカル硬化型接着剤が好適に用いられる。ラジカル硬化型接着剤としては、電子線硬化型、紫外線硬化型などの活性エネルギー線硬化型の接着剤を例示できる。特に、短時間で硬化可能な、活性エネルギー線硬化型が好ましく、さらには低エネルギーで硬化可能な紫外線硬化型接着剤が好ましい。
 紫外線硬化型接着剤としては、大きくは、ラジカル重合硬化型接着剤とカチオン重合型接着剤に区分できる。その他、ラジカル重合硬化型接着剤は、熱硬化型接着剤として用いることができる。
 上記硬化に用いる紫外線としては、ガリウム封入メタルハライドランプ、波長範囲380~440nmを発光するLED光源が好ましい。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、白熱電球、キセノンランプ、ハロゲンランプ、カーボンアーク灯、メタルハライドランプ、蛍光灯、タングステンランプ、ガリウムランプ、エキシマレーザー又は太陽光を光源とし、バンドパスフィルターを用いて380nmより短波長の光を遮断して用いることもできる。
 ラジカル重合硬化型接着剤の硬化性成分としては、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物が挙げられる。これら硬化性成分は、単官能又は二官能以上のいずれも用いることができる。また、これら硬化性成分は、1種を単独で、又は2種以上を組み合わせて用いることができる。これら硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物が好適である。
 カチオン重合硬化型接着剤の硬化性成分としては、エポキシ基やオキセタニル基を有する化合物が挙げられる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。好ましいエポキシ化合物として、分子内に少なくとも2個のエポキシ基と少なくとも1個の芳香環を有する化合物や、分子内に少なくとも2個のエポキシ基を有し、そのうちの少なくとも1個は脂環式環を構成する隣り合う2個の炭素原子との間で形成されている化合物等が例として挙げられる。
 本発明では水系接着剤を用いることもでき、水系接着剤としては、ビニルポリマーを含有する接着剤などを用いることが好ましく、ビニルポリマーとしては、ポリビニルアルコール系樹脂が好ましい。またポリビニルアルコール系樹脂としては、アセトアセチル基を有するポリビニルアルコール系樹脂を含む接着剤が耐久性を向上させる点からより好ましい。また、ポリビニルアルコール系樹脂に配合できる架橋剤としては、ポリビニルアルコール系樹脂と反応性を有する官能基を少なくとも二つ有する化合物が好ましく使用できる。例えば、ホウ酸やホウ砂、カルボン酸化合物、アルキルジアミン類;イソシアネート類;エポキシ類;モノアルデヒド類;ジアルデヒド類;アミノ-ホルムアルデヒド樹脂;さらに二価金属、又は三価金属の塩及びその酸化物が挙げられる。
 また、シート状接着剤積層体として市販されている接着剤も好ましく用いることができる。このようなシート状接着剤積層体は、三井・デュポンポリケミカル社や、3M社、味の素社、テサ社等から入手が可能である。特に、三井・デュポンポリケミカル株式会社製の「ニュクレル(登録商標)」(品番としては、AN4228C、N0903HC、N1525、AN4214C、AN4225C、AN42115C、N0908C、AN42012C、N410、N1035、N1050H、N1108C、H1110H、N1207C、N1214、AN4221C、N1560、N0200H、AN4213C、N035C)や、3M社の「3MTM Optically Clear Adhesive」(品番としては、8171、8172、8172P、8171CL、8172CL等)を好ましく用いることができる。
 前記接着剤層を形成する接着剤は、必要であれば適宜添加剤を含むものであっても良い。添加剤の例としては、シランカップリング剤、チタンカップリング剤等のカップリング剤、エチレンオキシドで代表される接着促進剤、透明フィルムとの濡れ性を向上させる添加剤、アクリロキシ基化合物や炭化水素系(天然、合成樹脂)などに代表され、機械的強度や加工性などを向上させる添加剤、紫外線吸収剤、老化防止剤、染料、加工助剤、イオントラップ剤、酸化防止剤、粘着付与剤、充填剤(金属酸化物粒子)、吸水性ポリマーを含有するフィラー剤、可塑剤、レベリング剤、発泡抑制剤、帯電防止割、耐熱安定剤、耐加水分解安定剤等の安定剤等が挙げられる。
 接着剤層の層厚としては、所望の接着性が得られる範囲内であれば特に制限はないが、積層体全体の厚さや柔軟性を考慮すると、0.5~30μmの範囲内であることが好ましく、更に好ましくは5~25μmの範囲内である。
 また、本発明に係る接着剤層には、粘着剤を適用することも好ましい。
 粘着剤としては、感圧粘着剤を用いることが好ましい。感圧粘着剤であれば、粘着層を形成する際、熱や有機溶媒等の要件を必要とせず、圧力を加えるだけで電子デバイスを貼り合せることができる。感圧粘着剤は、材料の種類で大別され、例えば、エポキシ系樹脂、アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、ビニルエーテル系樹脂、及び、シリコーン系樹脂等を含む粘着剤を挙げることができる。粘着剤の形態としては、例えば、溶剤型、エマルション型、及び、ホットメルト型等を用いることができる。より優れた凝集力と弾性を有し、長時間にわたり安定した粘着性を維持でき、かつ透明性により優れることから、エポキシ系樹脂、又は、アクリル系樹脂のいずれかの樹脂を含むことが好ましい。
 アクリル系樹脂の具体例としては、例えば、綜研化学社製のSKダイン2147、パナック社製のPD-S1、DIC社製のZB7011W等が挙げられる。
 エポキシ系樹脂の具体例としては、例えば、スリーボンド社製のThreeBond1655が挙げられる。
 図1(e)で示したように、本発明に係る接着剤層は、剥離可能なフィルム(「セパレーター」ともいう。)を貼合することで、ハンドリング性が向上し、好ましい。
 本発明に係るセパレーターは、接着剤層に剥離可能に貼り合わせられることで、接着剤層に隣接している。このようなセパレーターは、接着剤層に剥離可能に貼り合わせることができるものであれば特に限定されない。
 具体的なセパレーターの種類については、例えば、ポリエステル、ポリエチレン、ポリプロピレン、紙等の基材にシリコンコート、ポリアルキレンコート、フッ素樹脂コートしたものが挙げられるが、寸法安定性、平滑性、剥離安定性の点からポリエステルフィルムにシリコンコートしたものが特に好ましい。
 また、セパレーターの厚さは10~100μmの範囲内が好ましく、さらに好ましくは20~60μm内である。10μm以上あれば塗布、乾燥時の熱によりフィルムに搬送ジワが生じることがないため好ましい、また、100μm以下であれば経済性の観点から好ましい。
 〔2〕溶媒浸透防止層
 本発明に係る溶媒浸透防止層は、前記接着剤層と前記ガスバリアー層の間に光又は熱硬化型の樹脂を含有する溶媒浸透防止層として配置されていることを特徴とする。
 前記溶媒浸透防止層の層厚は、1~10000nmの範囲内であることが好ましく、その範囲であれば、塗布工程によるガスバリアー層からの溶剤の浸透防止ができ、かつ薄膜化やフレキシブル化を阻害しない観点から、好ましい。特に、1~500nmの範囲がフレキシブル化の観点でより好ましい
 前記光又は熱硬化型の樹脂は、無溶剤型の樹脂であることが、好ましい。ここでいう「無溶剤型の樹脂」とは、溶剤を含有しない樹脂をいい、液状であることが加工適性の観点から好ましい。無溶剤型であることから、溶媒浸透防止層形成時に下層に位置する接着剤層に対して溶媒浸透防止層からの溶剤の浸透による劣化を抑制することができる。
 また、前記溶媒浸透防止層がシロキサン系樹脂、アクリル系樹脂又はエポキシ系樹脂を含有することが好ましく、特にシロキサン系樹脂を含有することが好ましい。
 前記溶媒浸透防止層は、溶媒等に不溶な有機材料を蒸着法にて形成してもよいが、塗布にて形成することが好ましい。塗布により形成する材料としては、光硬化型又は熱硬化型の無溶剤モノマーを用いることが好ましく、特に、無溶剤型の光硬化型シリコーンモノマーが好ましい。無溶剤型モノマーを塗布後、光硬化及び/又は熱硬化により固体薄膜化させ、溶媒浸透防止層を形成する。
 前記溶媒浸透防止層には、水分・酸素を吸収するゲッター剤を混合してもよい。
 本発明に係る溶媒浸透防止層は、前記無溶剤型のモノマー液や、粘度調整のために一部希釈溶剤を添加した塗布液を本発明に係る電極とガスバリアー層の間に形成するが、形成方法は特に限定されるものではなく、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法、ディスペンサーなどの塗布による方法、インクジェットプリント法を含む印刷法などのパターニングによる方法などの湿式形成法で塗布することが好ましい。これらのうち好ましいのは、後述するインクジェットプリント法である。
 本発明に係る溶媒浸透防止層の層厚は、ドライ膜で10nm~100μm、より好ましくは、0.1~1μmの範囲であることが、応力緩和性、ガスバリアー層からの溶剤浸透防止性、平坦化性としての効果を発現する上で好ましい。
 光又は熱硬化性樹脂として、溶媒浸透防止層に含有されるアクリル樹脂としては、(メタ)アクリル酸エステルモノマーの重合体であることが好ましく、(メタ)アクリル酸エステル単量体の例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-オクチルアクリレート、2-エチルヘキシルアクリレート、ステアリルアクリレート、ラウリルアクリレート、フェニルアクリレート等のアクリル酸エステル単量体;メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソプロピルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、n-オクチルメタクリレート、2-エチルヘキシルメタクリレート、ステアリルメタクリレート、ラウリルメタクリレート、フェニルメタクリレート、ジエチルアミノエチルメタクリレート、ジメチルアミノエチルメタクリレート等のメタクリル酸エステル等を用いることが好ましい。
 同様に溶媒浸透防止層に含有されるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;脂環式エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂等のトリフェノールアルカン型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、スチルベン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂等が挙げられる。中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂を用いることが、本発明の効果を発現する観点から、好ましい。
 さらに、本発明に係る溶媒浸透防止層は、前記溶剤浸透防止機能の発現に加えて、無機材料を含有するガスバリアー層との密着性の観点から、シロキサン系樹脂を含有することが好ましく、当該シロキサン系樹脂としては、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン等を使用することができる。さらに、フッ素原子を含有するシロキサンも好適に使用することができる。
 特に、前記ガスバリアー層がポリシラザンとその改質体とを含む場合に、密着性を向上する観点から、同種の材料であるシロキサン系樹脂を含有することが、好ましい。
 本発明に係る溶媒浸透防止層に用いられるシロキサン系樹脂としては低分子体であってもよいし、高分子体でもよい。特に好ましくはオリゴマーやポリマーであり、具体的には、ポリシロキサン系化合物、ポリジメチルシロキサン系化合物、ポリジメチルシロキサン系共重合体等のポリシロキサン誘導体が挙げられる。また、これら化合物を組み合わせたものであってもよい。
 ポリシロキサン骨格を有する化合物は、下記一般式(I)で表される構造を有しており、一般式(I)中の繰り返し数n(1以上の数)や有機変性部の種類を変化させることで、溶剤浸透防止の効果を任意にコントロールすることができる。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(I)中のnや有機変性部の種類を変化させる一例として、例えば、下記一般式(II)で表される構造(x及びyは繰り返し数を表す1以上の数、mは1以上の整数)が挙げられ、側鎖を付与することによりシリコーン骨格を変性させることができる。なお、一般式(II)におけるR1としては、例えば、メチル基、エチル基、デシル基等が挙げられる。R2としては、例えば、ポリエーテル基、ポリエステル基、アラルキル基等が挙げられる。
 さらに、下記一般式(III)で表される構造(mは1以上の整数)を有する化合物も用いることが可能であり、シリコーン鎖は数個のSi-O結合からなり、R3に相当する平均1個のポリエーテル鎖等を有する。
 このように、一般式(II)で表される構造を有する化合物及び一般式(III)で表される構造を有する化合物いずれにおいても、改質層形成時の水に対する接触角のコントロールや相溶性の調整を任意に行うことができる。
Figure JPOXMLDOC01-appb-C000002
 (ポリシロキサン系化合物)
 ポリシロキサン系化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトキエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルメチルジメトキシシラン等の加水分解性シリル基を有するシラン化合物の部分加水分解物や、有機溶剤中に無水ケイ酸の微粒子を安定に分散させたオルガノシリカゾル、又は該オルガノシリカゾルにラジカル重合性を有する上記シラン化合物を付加させたもの等が挙げられる。
 (ポリジメチルシロキサン系化合物)
 ポリジメチルシロキサン系化合物としては、ポリジメチルシロキサン、アルキル変性ポリジメチルシロキサン、カルボキシ変性ポリジメチルシロキサン、アミノ変性ポリジメチルシロキサン、エポキシ変性ポリジメチルシロキサン、フッ素変性ポリジメチルシロキサン、(メタ)アクリレート変性ポリジメチルシロキサン(例えば、東亞合成(株)製GUV-235)などが挙げられる。
 (ポリジメチルシロキサン系共重合体)
 ポリジメチルシロキサン系共重合体は、ブロック共重合体、グラフト共重合体、ランダム共重合体のいずれであってもよいが、ブロック共重合体、グラフト共重合体が好ましい。
 (市販材料)
 また、市販されている材料としてはケイ素原子を有していれば特に限定されないが、例えば以下に記したものを用いることができる。
 共栄社化学株式会社製:GL-01、GL-02R、GL-03、GL-04R
 日信化学工業株式会社製:シルフェイスSAG002、シルフェイスSAG005、シルフェイスSAG008、シルフェイスSAG503A、サーフィノール104E、サーフィノール104H、サーフィノール104A、サーフィノール104BC、サーフィノール104DPM、サーフィノール104PA、サーフィノール104PG-50、サーフィノール104S、サーフィノール420、サーフィノール440、サーフィノール465、サーフィノール485、サーフィノールSE
 信越化学工業株式会社製:FA-600、KC-89S、KR-500、KR-516、X-40-9296、KR-513、KER-4690-A/B、X-22-161A、X-22-162C、X-22-163、X-22-163A、X-22-164、X-22-164A、X-22-173BX、X-22-174ASX、X-22-176DX、X-22-343、X-22-2046、X-22-2445、X-22-3939A、X-22-4039、X-22-4015、X-22-4272、X-22-4741、X-22-4952、X-22-6266、KF-50-100cs、KF-96L-1cs、KF-101、KF-102、KF-105、KF-351、KF-352、KF-353、KF-354L、KF-355A、KF-393、KF-615A、KF-618、KF-857、KF-859、KF-860、KF-862、KF-877、KF-889、KF-945、KF-1001、KF-1002、KF-1005、KF-2012、KF-2201、X-22-2404、X-22-2426、X-22-3710、KF-6004、KF-6011、KF-6015、KF-6123、KF-8001、KF-8010、KF-8012、X-22-9002
 東レ・ダウコーニング株式会社製:DOW CORNING 100F ADDITIVE、DOW CORNING 11 ADDITIVE、DOW CORNING 3037 INTERMEDIATE、DOW CORNING 56 ADDITIVE、DOW CORNING TORAY Z-6094、DOW CORNING TORAY FZ-2104、DOW CORNING TORAY AY42-119、DOW CORNING TORAY FZ-2222
 花王株式会社製:エマルゲン102KG、エマルゲン104P、エマルゲン105、エマルゲン106、エマルゲン108、エマルゲン109P、エマルゲン120、エマルゲン123P、エマルゲン147、エマルゲン210P、エマルゲン220、エマルゲン306P、エマルゲン320P、エマルゲン404、エマルゲン408、エマルゲン409PV、エマルゲン420、エマルゲン430、エマルゲン705、エマルゲン707、エマルゲン709、エマルゲン1108、エマルゲン1118S-70、エマルゲン1135S-70、エマルゲン2020G-HA、エマルゲン2025G、エマルゲンLS-106、エマルゲンLS-110、エマルゲンLS114
 前記化合物は、溶媒浸透防止層を構成する材料中の溶剤を除く全成分に対し、0.005~5質量%の範囲内で含有されていることが好ましい。
 本発明に係る溶媒浸透防止層は、湿式塗布した後に、ガスバリアー層側表面に紫外線照射処理、フラッシュ焼成処理、大気圧プラズマ処理、プラズマイオン注入処理、又は加熱処理を行う工程により、前記溶媒浸透防止層表面に改質層を形成し、かつ、当該改質層表面において温度23℃における純水に対する接触角を、20~100°の範囲内にすることが、特に密着性を向上する観点から好ましい。より好ましくは、20~50°の範囲内である。
 接触角の測定方法は、公知の方法を用いることができる。例えば、標準液体(純水が好ましい。)と、改質層表面との接触角を、JIS R3257で規定される方法に準拠して測定した。測定条件は、温度25±5℃、湿度50±10%、標準液体の滴下液滴量1~4μL、標準液体の滴下から接触角測定までの時間は1分以内とする。具体的な操作の手順としては、温度23℃において、前記標準液体である純水をサンプル上に約1.5μL滴下して、固液界面解析装置(DropMaster500、協和界面科学株式会社製)によりサンプル上の5か所を測定し、測定値の平均から平均接触角を得る。接触角測定までの時間は標準液体を滴下してから1分以内に測定する。
 改質層の層厚は、1~70nmの範囲内であることが、前記応力緩和性、ガスバリアー層からの溶剤浸透防止性、平坦化性としての効果を発現する上で好ましい。より好ましい層厚は、10~50nmの範囲内である。
 本発明における溶媒浸透防止層の改質処理とは、少なくともシロキサン系樹脂の一部を、酸化ケイ素へ転化させる反応をいい、「改質層」とは、改質していない層の炭素成分比率の平均値に対して、当該炭素成分比率の平均値が80at%以下となっている層をいう。
 したがって、改質層の層厚は、下記XPS分析法によって、層厚方向の元素分析によって求めることができる。
 (XPS分析法)
 ここでいうXPS分析法とは、サンプルにX線を照射し、生じる光電子のエネルギーを測定することで、サンプルの構成元素とその電子状態を分析する方法である。
 本発明に係る溶媒浸透防止層の厚さ方向における元素濃度分布曲線(以下、「デプスプロファイル」という。)は、ケイ素、酸素及び炭素の元素濃度を、X線光電子分光法の測定とアルゴン(Ar)等の希ガスイオンスパッタとを併用することにより、溶媒浸透防止層の表面より内部を露出させつつ順次表面組成分析を行うことにより測定することができる。
 このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を元素の原子濃度比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向において前記溶媒浸透防止層の厚さ方向における溶媒浸透防止層の表面からの距離におおむね相関することから、「溶媒浸透防止層の厚さ方向における溶媒浸透防止層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される溶媒浸透防止層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO2熱酸化膜換算値)とすることが好ましい。
 以下に、本発明に係る溶媒浸透防止層の組成分析に適用可能なXPS分析の具体的な条件の一例を示す。
・分析装置:アルバック・ファイ社製QUANTERA SXM
・X線源:単色化Al-Kα
・スパッタイオン:Ar(3keV)
・デプスプロファイル:SiO2換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを求める。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)。
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いる。
 (紫外線照射処理)
 本発明に係る溶媒浸透防止層表面を改質する好ましい方法として、紫外線照射処理が挙げられる。紫外線の発生手段としては、前述のように、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等を用いることができる。
 さらに、当該紫外線照射処理の一つの方法として、真空紫外線照射処理が挙げられる。真空紫外線照射処理では、シロキサン系樹脂塗膜が受ける塗膜面での該真空紫外線の照度は30~200mW/cm2の範囲であることが好ましく、50~160mW/cm2の範囲であることがより好ましい。30mW/cm2以上では、改質効率が低下する懸念がなく、200mW/cm2以下では、塗膜にアブレーションを生じず、基材にダメージを与えないため好ましい。
 シロキサン系樹脂層塗膜面における真空紫外線の照射エネルギー量は、200~10000mJ/cm2の範囲であることが好ましく、500~5000mJ/cm2の範囲であることがより好ましい。この範囲であればクラック発生や、基材の熱変形がない。
 紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、0.001~2.0体積%の範囲とすることが好ましく、より好ましくは0.005~0.5体積%の範囲、更に好ましく0.1~0.5体積%の範囲である。
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 シロキサン樹脂等を含有する溶媒浸透防止層は単層でも良いが、効果をより高める観点から2層以上の積層構造であってもよい。積層構造をとる場合には、例えば、ポリシロキサン/ポリシラザンのように、ケイ素含有ポリマーの種類が異なる構成の積層でもよい。種類を変えることにより、溶剤浸透防止機能に加えて密着性の制御も可能となる。
 また、溶媒浸透防止層の改質処理は、キセノンランプを用いたキセノンフラッシュ処理(フラッシュ焼成処理)によっても行うこともできる。フラッシュ焼成処理で用いられるフラッシュランプの放電管としては、キセノン、ヘリウム、ネオン、アルゴン等の放電管を用いることができるが、キセノンランプを用いることが好ましい。
 フラッシュランプの好ましいスペクトル帯域としては、240~2000nmの範囲内であることが好ましい。この範囲内であれば、フラッシュ焼成による基板の熱変形等のダメージが少ない。
 フラッシュランプの光照射条件は任意であるが、光照射エネルギーの総計が0.1~50J/cm2の範囲内であることが好ましく、0.5~10J/cm2の範囲内であることがより好ましい。光照射時間は、10μ秒~100m秒の範囲内が好ましく、100μ秒~10m秒の範囲内がより好ましい。また、光照射回数は1回でも複数回でもよく、1~50回の範囲内で行うのが好ましい。フラッシュランプの光照射装置は上記の照射エネルギー、照射時間を満足するものであればよい。また、フラッシュ焼成は、上記の酸素含有物質の濃度の範囲内にある雰囲気下であれば、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気中で行うこともできる。キセノンフラッシュ装置としては、例えば、ウシオ電機製「瞬間加熱・高温焼成 フラッシュランプアニール」等が挙げられる。
 また、緻密な膜を形成できる点から、大気圧又は大気圧近傍でのプラズマCVD処理による方法を好ましい例として挙げることができる。例えば、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、溶媒浸透防止層の改質処理を行うことができる。
 さらに、溶媒浸透防止層の改質処理は、プラズマイオン注入処理によって行うこともできる。
 プラズマイオン注入装置は、基本的に、真空チャンバーと、マイクロ波電源と、マグネットコイルと、直流印加装置(パルス電源)とを備えている。
 真空チャンバーは、その内部の所定位置に、溶媒浸透防止層塗膜が形成された被処理物を配置するとともに、その塗膜に対して、イオン注入を行うための容器である。
 また、直流印加装置は、直流電源であって、被処理物に、高電圧パルスを印加するためのパルス電源である。
 このように構成されたプラズマイオン注入装置によれば、マイクロ波電源(プラズマ放電用電極)及びマグネットコイルを駆動することによって、導体及び被処理物の周囲でガス導入口から導入したガスのプラズマが発生する。
 次いで、所定時間経過後、マイクロ波電源及びマグネットコイルの駆動が停止されるとともに、直流印加装置が駆動され、高電圧パルス(負電圧)が、高電圧導入端子及び導体を介して、被処理物に印加されることになる。
 したがって、かかる高電圧パルス(負電圧)の印加によって、プラズマ中のイオン種が誘引され、塗膜にイオンが注入される。
 イオン種については特に制限されるものではない。例えば、アルゴン、ヘリウム、ネオン、クリプトン、キセノン等の希ガスのイオン;フルオロカーボン、水素、窒素、酸素、二酸化炭素、塩素、フッ素、硫黄等のイオン;メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等のアルカン系ガス類のイオン;エチレン、プロピレン、ブテン、ペンテン等のアルケン系ガス類のイオン;ペンタジエン、ブタジエン等のアルカジエン系ガス類のイオン;アセチレン、メチルアセチレン等のアルキン系ガス類のイオン;ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレン等の芳香族炭化水素系ガス類のイオン;シクロプロパン、シクロヘキサン等のシクロアルカン系ガス類のイオン;シクロペンテン、シクロヘキセン等のシクロアルケン系ガス類のイオン;金、銀、銅、白金、ニッケル、パラジウム、クロム、チタン、モリブデン、ニオブ、タンタル、タングステン、アルミニウム等の導電性の金属のイオン;シラン(SiH4)又は有機ケイ素化合物のイオン;等が挙げられる。
 これらの中でも、より簡便に注入することができ、優れた改質処理が得られることから、水素、窒素、酸素、アルゴン、ヘリウム、ネオン、キセノン、及びクリプトンからなる群から選ばれる少なくとも1種のイオンが好ましい。
 また、イオン注入する際の真空チャンバーの圧力、すなわち、プラズマイオン注入圧力を0.01~1Paの範囲内の値とすることが好ましい。
 プラズマイオンを注入する際の印加電圧(高電圧パルス/負電圧)を-1~-50kVの範囲内の値とすることが好ましい。-1~-15kVの範囲内の値とすることがより好ましく、-5~-8kVの範囲内の値とすることがさらに好ましい。
 具体的には、プラズマイオン注入装置(RF電源:日本電子(株)製、RF56000、高電圧パルス電源:栗田製作所(株)、PV-3-HSHV-0835)を用いて、溶媒浸透防止層に対して、改質処理を行うことができる。
 さらに、溶媒浸透防止層の改質処理は、加熱処理によっても行うことができ、上記各種処理に組み合わせて適宜温度を設定して行うことが好ましい。加熱処理は、加熱オーブンや赤外線ヒーターなどの方法を用いることができる。
 本発明に係る溶媒浸透防止層は、前記接着剤層を形成する接着剤と同様に、必要であれば適宜同様な添加剤を含むものであっても良い。
 〔3〕有機金属酸化物層
 本発明の積層体は、前記溶媒浸透防止層以外に、改質層の代替として同等の機能を有する有機金属酸化物層を配置してもよい。具体的には、前記一般式(A)で表される構造を有する有機金属酸化物を含有する有機金属酸化物層であることが好ましく、ゾル・ゲル法により塗膜形成される有機金属酸化物層であって、当該有機金属酸化物がフッアルコールに配位置換された金属アルコキシドであることが好ましい。金属アルコキシドは、溶媒浸透防止層やガスバリアー層への触媒効果により、積層時において改質を促進し密着性を向上させるだけでなく、フッ化アルコールで配位置換されることで大気安定の特性を有することから、生産適性に優れるため好ましい。
 用いられる有機金属酸化物は、金属アルコキシドを過剰のアルコール存在下で加アルコール分解して、アルコール置換した有機金属酸化物の単量体又は重縮合体である。その際に、ヒドロキシ基のβ位にフッ素原子が置換した長鎖アルコールを用いることで、フッ化アルコキシドを含有する有機金属酸化物となる。
 一方、前記有機金属酸化物は、焼結や紫外線を照射することで、ゾル・ゲル反応を促進し重縮合体を形成することができる。その際、前記ヒドロキシ基のβ位にフッ素原子が置換した長鎖アルコールを用いると、フッ素の撥水効果により金属アルコキシド中の金属周りに存在する水分の頻度因子を減少させることで、加水分解速度が減少し、当該現象を利用することで3次元の重合反応を抑え、所望の有機金属酸化物を含有する均一で稠密な有機金属酸化物層を形成しうるという特徴がある。
 本発明に係る有機金属酸化物層に含有される有機金属酸化物は、以下の反応スキームIに示す化合物である。なお、焼結後の有機金属酸化物の重縮合体の構造式において、「O-M」部の「M」は、さらに置換基を有しているが、省略してある。
Figure JPOXMLDOC01-appb-C000003
 上記有機金属酸化物が、焼結又は紫外線照射により重縮合して形成された有機金属酸化物層は、以下の反応スキームIIによって、系外からのガス成分である水蒸気(H2O)によって加水分解し、フッ化アルコール(R′-OH)を放出し、大気安定化に寄与する。
 なお、下記構造式において、「O-M」部の「M」は、さらに置換基を有しているが、省略してある。
Figure JPOXMLDOC01-appb-C000004
 本発明に係る有機金属酸化物層は、下記一般式(A)で表される構造を有する有機金属酸化物を主成分として含有することが好ましい。「主成分」とは、前記有機金属酸化物層の全体の質量のうち、70質量%以上が少なくとも撥水性物質又は疎水性物質を放出する前記有機金属酸化物であることが好ましく、より好ましくは80質量%以上、特に好ましくは90質量%以上であることをいう。
 一般式(A) R-[M(OR1y(O-)x-yn-R
(式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度をそれぞれ表す。)
 また、本発明に係る有機金属酸化物層のフッ素比率が、下記式(a)を満たすことが好ましい。
 式(a) 0.05≦F/(C+F)≦1.0
 式(a)の測定意義は、ゾル・ゲル法により作製した有機金属酸化物層がある量以上のフッ素原子を必要とすることを数値化するものである。上記式(a)のF及びCは、それぞれフッ素原子及び炭素原子の濃度を表す。
 式(a)の好ましい範囲としては、0.2≦F/(C+F)≦0.6の範囲である。
 上記フッ素比率は、有機金属酸化物層形成に使用するゾル・ゲル液をシリコンウェハ上に塗布して薄膜を作製後、当該薄膜をSEM・EDS(Energy Dispersive X-ray Spectoroscopy:エネルギー分散型X線分析装置)による元素分析により、それぞれフッ素原子及び炭素原子の濃度を求めることができる。SEM・EDS装置の一例として、JSM-IT100(日本電子社製)を挙げることができる。
 SEM・EDS分析は、高速、高感度で精度よく元素を検出できる特徴を有する。
 本発明に係る有機金属酸化物は、ゾル・ゲル法を用いて作製できるものであれば特に制限はされず、例えば、「ゾル-ゲル法の科学」P13、P20に紹介されている金属、ケイ素、リチウム、ナトリウム、銅、マグネシウム、カルシウム、ビスマス、ハフニウム、ニオブ、ストロンチウム、バリウム、亜鉛、ホウ素、アルミニウム、ガリウム、イットリウム、ケイ素、ゲルマニウム、鉛、リン、アンチモン、バナジウム、タンタル、タングステン、ランタン、ネオジウム、チタン、ジルコニウム、白金、銀、及び金から選ばれる1種以上の金属を含有してなる金属酸化物を例として挙げることができる。好ましくは、前記Mで表される金属原子は、ケイ素(Si)、チタン(Ti)、ジルコニウム(Zr)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、ビスマス(Bi)、ハフニウム(Hf)、ニオブ(Nb)、亜鉛(Zn)、アルミニウム(Al)、白金(Pt)、銀(Ag)、及び金(Au)から選択されることが、本発明の効果を得る観点から好ましい。
 上記一般式(A)において、OR1はフッ化アルコキシ基を表す。
 R1は少なくとも一つのフッ素原子に置換したアルキル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、複素環基を表す。各置換基の具体例は後述する。
 Rは水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。又はそれぞれの基の水素の少なくとも一部をハロゲンで置換したものでもよい。また、ポリマーでもよい。
 アルキル基は置換又は未置換のものであるが、具体例としては、メチル基、エチル基、プロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル等であるが、好ましくは炭素数が8以上のものがよい。またこれらのオリゴマー、ポリマーでもよい。
 アルケニル基は、置換又は未置換のもので、具体例としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキシセニル基等があり、好ましくは炭素数が8以上のものがよい。またこれらのオリゴマー、ポリマーでもよい。
 アリール基は置換又は未置換のもので、具体例としては、フェニル基、トリル基、4-シアノフェニル基、ビフェニル基、o,m,p-テルフェニル基、ナフチル基、アントラニル基、フェナントレニル基、フルオレニル基、9-フェニルアントラニル基、9,10-ジフェニルアントラニル基、ピレニル基等があり、好ましくは炭素数が8以上のものがよい。またこれらのオリゴマー、ポリマーでもよい。
 置換又は未置換のアルコキシ基の具体例としては、メトキシ基、n-ブトキシ基、tert-ブトキシ基、トリクロロメトキシ基、トリフルオロメトキシ基等でありが好ましくは炭素数が8以上のものがよい。またこれらのオリゴマー、ポリマーでもよい。
 置換又は未置換のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、ノルボナン基、アダマンタン基、4-メチルシクロヘキシル基、4-シアノシクロヘキシル基等であり好ましくは炭素数が8以上のものがよい。またこれらのオリゴマー、ポリマーでもよい。
 置換又は未置換の複素環基の具体例としては、ピロール基、ピロリン基、ピラゾール基、ピラゾリン基、イミダゾール基、トリアゾール基、ピリジン基、ピリダジン基、ピリミジン基、ピラジン基、トリアジン基、インドール基、ベンズイミダゾール基、プリン基、キノリン基、イソキノリン基、シノリン基、キノキサリン基、ベンゾキノリン基、フルオレノン基、ジシアノフルオレノン基、カルバゾール基、オキサゾール基、オキサジアゾール基、チアゾール基、チアジアゾール基、ベンゾオキサゾール基、ベンゾチアゾール基、ベンゾトリアゾール基、ビスベンゾオキサゾール基、ビスベンゾチアゾール基、ビスベンゾイミダゾール基等がある。またこれらのオリゴマー、ポリマーでもよい。
 置換又は未置換のアシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピメロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基、エライドイル基、マレオイル基、フマロイル基、シトラコノイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、グリコロイル基、ラクトイル基、グリセロイル基、タルトロノイル基、マロイル基、タルタロイル基、トロポイル基、ベンジロイル基、サリチロイル基、アニソイル基、バニロイル基、ベラトロイル基、ピペロニロイル基、プロトカテクオイル基、ガロイル基、グリオキシロイル基、ピルボイル基、アセトアセチル基、メソオキサリル基、メソオキサロ基、オキサルアセチル基、オキサルアセト基、レブリノイル基これらのアシル基にフッソ、塩素、臭素、ヨウ素などが置換してもよい。好ましくはアシル基の炭素は8以上良い。またこれらのオリゴマー、ポリマーでもよい。
 本発明に係る一般式(A)で表される構造を有する有機金属酸化物を形成するための、金属アルコキシド、金属カルボキシレート及びフッ化アルコールの具体的な組み合わせについて、以下に例示する。ただし、本発明はこれに限定されるものではない。
 前記金属アルコキシド、金属カルボキシレートとフッ化アルコール(R′-OH)は以下の反応スキームIIIによって、本発明に係る有機金属酸化物となる。ここで、(R′-OH)としては、以下のF-1~F-16の構造が例示される。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 本発明に係る金属アルコキシド又は金属カルボキシレートは、以下のM(OR)n又はM(OCOR)nに示す化合物が例示され、本発明に係る有機金属酸化物は、前記(R′-OH:F-1~F-16)との組み合わせにより、下記例示化合物番号1~135の構造を有する化合物(下記例示化合物I、II及びIII参照。)となる。本発明に係る有機金属酸化物は、ただしこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 本発明に係る有機金属酸化物を製造する有機金属酸化物の製造方法は、金属アルコキシドとフッ化アルコールの混合液を用いて製造することが特徴である。
 反応の一例として例示化合物番号1の反応スキームIV及び有機金属酸化物層に適用するときの有機金属酸化物の構造を以下に示す。
 なお、下記構造式において、「O-Ti」部の「Ti」は、さらに置換基を有しているが、省略してある。
Figure JPOXMLDOC01-appb-C000010
 本発明に係る有機金属酸化物の製造方法は、金属アルコキシド又は金属カルボキシレートにフッ化アルコールを加え混合液として撹拌混合させた後に、必要に応じて水と触媒を添加して所定温度で反応させる方法を挙げることができる。
 ゾル・ゲル反応をさせる際には、加水分解・重縮合反応を促進させる目的で下記に示すような加水分解・重合反応の触媒となりうるものを加えてもよい。ゾル-ゲル反応の加水分解・重合反応の触媒として使用されるものは、「最新ゾル-ゲル法による機能性薄膜作製技術」(平島碩著、株式会社総合技術センター、P29)や「ゾル-ゲル法の科学」(作花済夫著、アグネ承風社、P154)等に記載されている一般的なゾル・ゲル反応で用いられる触媒である。例えば、酸触媒では塩酸、硝酸、硫酸、リン酸、酢酸、シュウ酸、酒石酸、トルエンスルホン酸等の無機及び有機酸類、アルカリ触媒では、水酸化アンモニウム、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどの4級アンモニウム水酸化物、アンモニア、トリエチルアミン、トリブチルアミン、モルホリン、ピリジン、ピペリジン、エチレンジアミン、ジエチレントリアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシランなどのアミノシラン類などが挙げられる。
 好ましい触媒の使用量は、有機金属酸化物の原料となる金属アルコキシド又は金属カルボキシレート1モルに対して2モル当量以下、さらに好ましくは1モル当量以下ある。
 ゾル・ゲル反応をさせる際、好ましい水の添加量は、有機金属酸化物の原料となる金属アルコキシド又は金属カルボキシレート1モルに対して、40モル当量以下であり、より好ましくは、10モル当量以下であり、さらに好ましくは、5モル当量以下である。
 本発明において、好ましいゾル・ゲル反応の反応濃度、温度、時間は、使用する金属アルコキシド又は金属カルボキシレートの種類や分子量、それぞれの条件が相互に関わるため一概には言えない。すなわち、アルコキシド又は金属カルボキシレートの分子量が高い場合や、反応濃度の高い場合に、反応温度を高く設定したり、反応時間を長くし過ぎたりすると、加水分解、重縮合反応に伴って反応生成物の分子量が上がり、高粘度化やゲル化する可能性がある。したがって、通常の好ましい反応濃度は、おおむね溶液中の固形分の質量%濃度で1~50%であり、5~30%がより好ましい。また、反応温度は反応時間にもよるが通常0~150℃であり、好ましくは1~100℃、より好ましくは20~60℃であり、反応時間は1~50時間程度が好ましい。
 前記有機金属酸化物の重縮合体が有機金属酸化物層を形成し、以下の反応スキームVにより、水分を吸収して下記オリゴマーを生成し、大気安定性向上に寄与する。また、層中には、OR′として残る部分もあるが、密着性に影響するほど多くは残らない。
 なお、下記構造式において、「O-Ti」部の「Ti」は、さらに置換基を有しているが、省略してある。
Figure JPOXMLDOC01-appb-C000011
 本発明に係る有機金属酸化物層は、前記本発明の有機金属酸化物を含む塗布液を調製し、溶媒浸透防止層上に塗布して焼結又は紫外線を照射して重縮合させながら皮膜化することで、形成することができる。
 塗布液を調製する際に必要であれば用いることのできる有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、又は、脂肪族エーテル又は脂環式エーテル等のエーテル類等が適宜使用できる。
 塗布液における本発明に係る有機金属酸化物の濃度は、目的とする厚さや塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。塗布液には重合を促進する触媒を添加することも好ましい。
 調製した塗布液は、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法などの塗布による方法、インクジェットプリント法、及びディスペンサー法を含む印刷法などのパターニングによる方法などの湿式形成法が挙げられ、材料に応じて使用できる。これらのうち好ましいのは、インクジェットプリント法である。インクジェットプリント法については、特に限定されるものではなく、公知の方法を採用することができる。
 インクジェットプリント法によるインクジェットヘッドからの塗布液の吐出方式は、オンデマンド方式及びコンティニュアス方式のいずれでもよい。オンデマンド方式のインクジェットヘッドは、シングルキャビティー型、ダブルキャビティー型、ベンダー型、ピストン型、シェアーモード型及びシェアードウォール型等の電気-機械変換方式、又は、サーマルインクジェット型及びバブルジェット(登録商標)型等の電気-熱変換方式等のいずれでもよい。
 例えば、特開2012-140017号公報、特開2013-010227号公報、特開2014-058171号公報、特開2014-097644号公報、特開2015-142979号公報、特開2015-142980号公報、特開2016-002675号公報、特開2016-002682号公報、特開2016-107401号公報、特開2017-109476号公報、特開2017-177626号公報等に記載されている構成からなるインクジェットヘッドを適宜選択して適用することができる。
 塗布後の有機金属酸化物層を固定化するには、低温で重合反応が可能なプラズマやオゾンや紫外光を使うことが好ましく、中でも紫外光であることが薄膜表面の平滑性向上のために好ましい。
 紫外線処理における紫外線の発生手段としては、前述のとおり、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられる。
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。有機金属酸化物層を形成する基材が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することにより行うことができる。紫外線照射に要する時間は、使用する基材や乾燥剤含有塗布液の組成、濃度にもよるが、一般に0.1秒~10分間であり、好ましくは0.5秒~3分間である。
 塗膜面が受けるエネルギーとしては、均一で堅牢な薄膜を形成する観点から、1.0J/cm2以上であることが好ましく、1.5J/cm2以上であることがより好ましい。また、同様に、過度な紫外線照射を避ける観点から、14.0J/cm2以下であることが好ましく、12.0J/cm2以下であることがより好ましく、10.0J/cm2以下であることが特に好ましい。
 また、紫外線を照射する際の、酸素濃度は300~10000体積ppm(1体積%)とすることが好ましく、更に好ましくは、500~5000体積ppmである。このような酸素濃度の範囲に調整することにより、有機金属酸化物層が酸素過多になるのを防止して、水分吸収の劣化を防止することができる。
 紫外線照射時にこれら酸素以外のガスとしては乾燥不活性ガスを用いることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。
 これらの紫外線処理の詳細については、例えば、特開2012-086394号公報の段落0055~0091、特開2012-006154号公報の段落0049~0085、特開2011-251460号公報の段落0046~0074等に記載の内容を参照することができる。
 〔4〕ガスバリアー層
 本発明に係るガスバリアー層は、少なくともポリシラザンを含有する塗布液を塗布して乾燥した層に改質処理を施してなる層であることが好ましい(以下、ガスバリアー層をポリシラザン層という場合がある。)。
 ガスバリアー層の乾燥後の層厚としては、好ましくは5~1000nmの範囲内、より好ましくは10~800nmの範囲内、特に好ましくは50~500nmも範囲内であることが、封止効果とフレキシブル性を両立する観点から、好ましい。
 (ポリシラザン)
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO2、Si34、及び両方の中間固溶体SiOxy等のセラミック前駆体無機ポリマーである。
 具体的には、ポリシラザンは、好ましくは下記一般式(1)の部分構造を有する。
Figure JPOXMLDOC01-appb-C000012
 上記一般式(1)において、R1、R2及びR3は、それぞれ独立して、水素原子、置換又は非置換の、アルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基である。この際、R1、R2及びR3は、それぞれ、同じであっても又は異なるもので
あってもよい。ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖又は環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R1~R3に場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシ基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SO3H)、カルボキシ基(-COOH)、ニトロ基(-NO2)などがある。なお、場合によって存在する置換基は、置換するR1~R3と同じとなることはない。例えば、R1~R3がアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R1、R2及びR3は、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基又は3-(トリメトキシシリルプロピル)基である。
 また、上記一般式(1)において、nは、整数であり、一般式(1)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。
 上記一般式(1)で表される構造を有する化合物において、好ましい態様の一つは、R1、R2及びR3の全てが水素原子であるパーヒドロポリシラザンである。
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままガスバリアー層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標)NN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140、及び(株)DNF社製のポリシラザン等が挙げられる。
 ポリシラザンを用いる場合、改質処理前のガスバリアー層中におけるポリシラザンの含有率としては、ガスバリアー層の全質量を100質量%としたとき、100質量%でありうる。また、ガスバリアー層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。
 また、ガスバリアー層形成用塗布液には、ガスバリアー層の耐熱性を向上する観点から、アルミニウム化合物を含有することが好ましく、アルミニウム化合物としては、アルミニウムトリメトキシド、アルミニウムトリエトキシド等が挙げられ、市販品の具体的な例としては、例えば、AMD(アルミニウムジイソプロピレートモノsec-ブチレート)、ASBD(アルミニウムセカンダリーブチレート)、ALCH(アルミニウムエチルアセトアセテート・ジイソプロピレート)等が挙げられる。ガスバリアー層形成用塗布液中の含有量としては0.1~10質量%であることが好ましく、1~5質量%であることがより好ましい。
 また、低温でセラミック化するポリシラザンの他の例としては、上記一般式(1)で表される単位からなる主骨格を有するポリシラザンに、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照。)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照。)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照。)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照。)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照。)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照。)等が挙げられる。
 本発明においては、湿式形成法又はインクジェットプリント法により前述の溶媒浸透防止層と同様にガスバリアー層を製造することが好ましい。
 ガスバリアー層形成に適用できる湿式形成法としては、前述したスピンコート法、キャスト法、スクリーン印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)、及びディスペンサー等が挙げられ、均質な薄膜が得られやすく、かつ高生産性の点から、ダイコート法、ロールコート法、スプレーコート法などが好ましい。
 〈ガスバリアー層の改質処理〉
 本発明に係るガスバリアー層はポリシラザンとその改質体を含むことが好ましく、例えば、前記湿式形成法によって形成されたポリシラザン含有ガスバリアー層中のポリシラザンを改質処理することで得られる。改質処理とは、ポリシラザンの一部又は全部を、酸化ケイ素又は酸窒化ケイ素へ転化させる反応をいう。
 改質処理は、前述の溶媒浸透防止層の改質処理方法で挙げた真空紫外線照射処理を行うことが好ましい。
 真空紫外線照射工程でパーヒドロポリシラザンから酸窒化ケイ素、さらには酸化ケイ素が生じると推定される反応機構について、以下に説明する。
 (1)脱水素、それに伴うSi-N結合の形成
 パーヒドロポリシラザン中のSi-H結合やN-H結合は真空紫外線照射による励起等で比較的容易に切断され、不活性雰囲気下ではSi-Nとして再結合すると考えられる(Siの未結合手が形成される場合もある。)。すなわち、酸化することなくSiNy組成として硬化する。この場合はポリマー主鎖の切断は生じない。Si-H結合やN-H結合の切断は触媒の存在や、加熱によって促進される。切断されたHはH2として膜外に放出される。
 (2)加水分解・脱水縮合によるSi-O-Si結合の形成
 パーヒドロポリシラザン中のSi-N結合は水により加水分解され、ポリマー主鎖が切断されてSi-OHを形成する。二つのSi-OHが脱水縮合してSi-O-Si結合を形成して硬化する。これは大気中でも生じる反応であるが、不活性雰囲気下での真空紫外線照射中では、照射の熱によって基材から生じる水蒸気が主な水分源となると考えられる。水分が過剰となると脱水縮合しきれないSi-OHが残存し、SiO2.12.3の組成で示されるガスバリアー性の低い硬化膜となる。
 (3)一重項酸素による直接酸化、Si-O-Si結合の形成
 真空紫外線照射中、雰囲気下に適当量の酸素が存在すると、酸化力の非常に強い一重項酸素が形成される。パーヒドロポリシラザン中のHやNはOと置き換わってSi-O-Si結合を形成して硬化する。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
 (4)真空紫外線照射・励起によるSi-N結合切断を伴う酸化
 真空紫外線のエネルギーはパーヒドロポリシラザン中のSi-Nの結合エネルギーよりも高いため、Si-N結合は切断され、周囲に酸素、オゾン、水等の酸素源が存在すると酸化されてSi-O-Si結合やSi-O-N結合が生じると考えられる。ポリマー主鎖の切断により結合の組み換えを生じる場合もあると考えられる。
 ポリシラザンを含有する層に真空紫外線照射を施した層の酸窒化ケイ素の組成の調整は、上述の(1)~(4)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。
 ポリシラザンの改質は、通常の製造においてはランプの紫外線強度や照射時間、また照射時の温度条件等の制約があり、上記(1)~(4)の反応が起こっても、層内のポリシラザンの全部を転化することは困難であり、したがって、生産ベースでのポリシラザンの改質処理では、多くの場合、未改質のポリシラザンが数%の範囲内で残存することになる。
 本発明におけるガスバリアー層への真空紫外線照射処理による改質において、照度、照射エネルギー量、光源の選定、照射時の酸素濃度、及び加熱処理等の条件は、前述の溶媒浸透防止層へ真空紫外線照射の条件を適宜用いることができる。
 これらの改質処理においては、例えば、特開2012-086394号公報の段落「0055」~「0091」、特開2012-006154号公報の段落「0049」~「0085」、特開2011-251460号公報の段落「0046」~「0074」等に記載の内容を参照することができる。
 〔5〕電子デバイス
 本発明の積層体の電子デバイスへの適用例として、タッチパネルセンサー、有機エレクトルミネッセンス、有機光電変換素子を有する太陽電池及び有機薄膜トランジスターについて説明する。
 〔5.1〕タッチパネルセンサーの作製
 図2A~Dにタッチパネルセンサーの製造フローの模式図を示す。
 (a)基材(11)の準備
 タッチパネルセンサー(10)に用いる基材としては、無色透明なガラス、樹脂からなるフィルム又はシートが挙げられる。このような基材に用いる樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、シクロポリオレフィン等のポリオレフィン系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリビニルアルコール系樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル系樹脂;アセタール系樹脂;ポリイミド系樹脂;セルロースエステル系樹脂が挙げられる。
 これらの樹脂の中でも、ポリエステル系樹脂、ポリイミド系樹脂、シクロポリオレフィン系樹脂、及びポリカーボネート系樹脂から選ばれる樹脂が特に好ましい。また、これらの樹脂は、1種を単独で又は2種以上を組み合わせて使用することができる。
 前記基材の厚さは、製造する際の安定性を考慮して、5~500μmの範囲であることが好ましい。
 (b)電極パターンの形成
 電極(12)は、例えば、インジウム・スズ酸化物(ITO)、銀(Ag)又は銅(Cu)からなる透明導電膜を所定の形状にパターニングして、金属パターン電極を形成することが好ましい。
 具体的には、フォトリソグラフィー法により、エッチング液を用いて形成することが好ましい。また、インクジェットプリント法によって形成することも好ましい。
 形成する電極の線幅としては、50μm以下であることが好ましく、特に好ましくは、20μm以下である。
 本発明に適用するフォトリソグラフィー法とは、硬化性樹脂等のレジスト塗布、予備加熱、露光、現像(未硬化樹脂の除去)、リンス、エッチング液によるエッチング処理、レジスト剥離の各工程を経ることにより、金属薄膜層を、所定のパターンに加工することができ、パターンの形状は適宜変更することができる。
 本発明では、従来公知の一般的なフォトリソグラフィー法を適宜利用することができる。例えば、レジストとしてはポジ型又はネガ型のいずれのレジストでも使用可能である。露光に際しては、所定のパターンを有するパターンマスクを配置し、その上から、用いたレジストに適合する波長の光、一般には紫外線や電子線等を照射すればよい。露光後、用いたレジストに適合する現像液で現像を行う。現像後、水等のリンス液で現像を止めるとともに洗浄を行うことで、レジストパターンが形成される。次いで、形成されたレジストパターンを、必要に応じて前処理又はポストベークを実施してから、有機溶媒を含むエッチング液によるエッチングで、レジストで保護されていない領域の溶媒浸透防止層の溶解及び銀薄膜電極の除去を行う。エッチング後、残留するレジストを剥離することによって、所定のパターンを有する透明電極が得られる。
 (c)平滑化層の形成
 平滑化層(13)は、前記電極パターン上を覆うように形成され、平滑化するものである。平滑化層は、例えば、感光性樹脂を含有する塗布液を塗布し、硬化処理することにより形成することができる。感光性樹脂としては、例えばラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。
 (d)積層体の貼合
 前記平滑化層(13)を形成した後、別途形成された本発明の積層体(1)の接着剤層(2)側を平滑化層上に、加圧又は加熱して貼合する。
 以上の操作により、ガスバリアー層付きタッチパネルセンサーが製造される。
 〔5.2〕有機エレクトロルミネッセンス素子の作製
 フレキシブル基板上に本発明の積層体を貼合しガスバリアー性基材を形成して、有機エレクトロルミネッセンス素子(以下、有機EL素子という。)作製に用いることで、フレキシブル化やフォルダブル化を達成した有機EL素子を得ることができる。
 特に、本発明の積層体は薄膜形成が可能であるため、厚膜に起因する膜割れを引き起こすことなく、長寿命な有機EL素子を得ることができる。
 図3A~Dに、フレキシブル基板として紙又は布を用いた、有機EL素子の製造フローの模式図を示す。
 (a)紙又は布の準備
 基板として、ガラス、樹脂フィルム、の他に紙又は布等を適用することにより、様々なシチュエーションに適用でき、また、樹脂フィルム、紙、布等のフレキシブル性を備えた基材を適用することにより、屋内や屋外のいろいろな曲面形状を有する基体にも安定して設置することができる点で好ましい。
 紙又は布(21)は市販品を用いることが可能であり、特に材質は限定されない。厚さは適宜選択されるが、100~1000μmの範囲であることが好ましく、100~500μmの範囲であることが軽量化の観点から、好ましい。
 (b)積層体の貼合
 前記紙又は布(21)上に、別途形成された本発明の積層体(1)の接着剤層(2)側を紙又は布上に、加圧又は加熱して貼合する。
 (c)有機EL素子の形成
 本発明の積層体(1)のガスバリアー層(4)上に、有機EL素子ユニット(22)を蒸着法又は湿式形成法によって形成する。
 本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
 (d)有機EL素子ユニットの封止
 形成された有機EL素子ユニット(22)を覆うようにして、接着剤(23)及びガスバリアーフィルム(24)により封止を行う。
 以上の操作により、紙又は布を基板として用いた有機EL素子が製造される。
 〔5.3〕有機光電変換素子を有する太陽電池
 本発明の電子デバイスにおいて、本発明の積層体は有機光電変換素子のガスバリアー層として適用することが好ましい。
 以下、光電変換素子及び太陽電池を説明する。図では、本発明の積層体は省略して図示しているが、素子全体が本発明の積層体によって覆われている。
 図4は、バルクヘテロジャンクション型の有機光電変換素子からなるシングル構成(バルクヘテロジャンクション層が1層の構成)の太陽電池の一例を示す断面図である。
 図4において、バルクヘテロジャンクション型の有機光電変換素子(200)は、基板(201)の一方面上に、透明電極(陽極202)、正孔輸送層(207)、バルクヘテロジャンクション層の光電変換部(204)、電子輸送層(又はバッファー層ともいう。208)及び対極(陰極203)が順次積層されている。
 基板(201)は、順次積層された透明電極(202)、光電変換部(204)及び対極(203)を保持する部材である。本実施形態では、基板(201)側から光電変換される光が入射するので、基板(201)は、この光電変換される光を透過させることが可能な、すなわち、この光電変換すべき光の波長に対して透明な部材であることが好ましい。基板(201)は、例えば、ガラス基板や樹脂基板等が用いられる。この基板(201)は、必須ではなく、例えば、光電変換部(204)の両面に透明電極(202)及び対極(203)を形成することでバルクヘテロジャンクション型の有機光電変換素子(200)が構成されてもよい。
 光電変換部(204)は、光エネルギーを電気エネルギーに変換する層であって、p型半導体材料とn型半導体材料とを一様に混合したバルクヘテロジャンクション層を有して構成される。p型半導体材料は、相対的に電子供与体(ドナー)として機能し、n型半導体材料は、相対的に電子受容体(アクセプター)として機能する。ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与又は受容するものではなく、光反応によって、電子を供与又は受容するものである。
 図4において、基板(201)を介して透明電極(202)から入射された光は、光電変換部(204)のバルクヘテロジャンクション層における電子受容体又は電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。発生した電荷は、内部電界、例えば、透明電極(202)と対極(203)の仕事関数が異なる場合では透明電極(202)と対極(203)との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ光電流が検出される。例えば、透明電極(202)の仕事関数が対極(203)の仕事関数よりも大きい場合では、電子は透明電極(202)へ、正孔は対極(203)へ輸送される。なお、仕事関数の大小が逆転すれば、電子と正孔はこれとは逆方向に輸送される。また、透明電極(202)と対極(203)との間に電位をかけることにより、電子と正孔の輸送方向を制御することもできる。
 なお、図4には記載していないが、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、又は平滑化層等の他の層を有していてもよい。
 また、さらなる太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成(バルクヘテロジャンクション層を複数有する構成)であってもよい。
 上記のような層に用いることができる材料については、例えば、特開2015-149483号公報の段落0045~0113に記載のn型半導体材料、及びp型半導体材料が挙げられる。
 有機光電変換素子を構成する電極については、有機EL素子で用いられる陽極と陰極を同様に用いることが好ましい。その場合、有機光電変換素子は、バルクヘテロジャンクション層で生成した正電荷と負電荷とが、それぞれp型有機半導体材料、及びn型有機半導体材料を経由して、それぞれ透明電極及び対極から取り出され、電池として機能するものである。それぞれの電極には、電極を通過するキャリアに適した特性が求められる。
 有機光電変換素子は、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、バルクヘテロジャンクション層と透明電極との中間には正孔輸送層・電子ブロック層を有していることが好ましい。
 これらの層を構成する材料としては、例えば、正孔輸送層としては、ヘレウス社製Clevios等のPEDOT、ポリアニリン及びそのドープ材料、WO2006/019270号等に記載のシアン化合物等を用いることができる。
 有機光電変換素子は、バルクヘテロジャンクション層と対極との中間には電子輸送層・正孔ブロック層・バッファー層を形成することで、バルクヘテロジャンクション層で発生した電荷をより効率的に取り出すことが可能となるため、これらの層を有していることが好ましい。
 有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、対極で反射した光を散乱させて再度バルクヘテロジャンクション層に入射させることができるような光拡散層等を設けてもよい。
 〔5.4〕有機薄膜トランジスター
 図5は、有機薄膜トランジスターの構成を示した概略断面図である。図では、本発明の電子デバイスにおいて、本発明の積層体は有機薄膜トランジスターのガスバリアー層として適用することが好ましい。
 本発明の積層体は省略して図示しているが、前述の有機光電変換素子と同様にトランジスター全体が積層体によって覆われている。
 図5Aは、支持体(306)上に金属箔等によりソース電極(302)、ドレイン電極(303)を形成し、両電極間に、再表2009/101862号公報に記載の有機半導体材料として、6,13-ビストリイソプロピルシリルエチニルペンタセンからなる電荷移動性薄膜(有機半導体層301)を形成し、その上に絶縁層(305)を形成し、さらにその上にゲート電極(304)を形成して電界効果トランジスターを形成したものである。
 図5Bは、有機半導体層(301)を、図5Aでは電極間に形成したものを、コート法等を用いて電極及び支持体表面全体を覆うように形成したものを表す。
 図5Cは、支持体(306)上にまずコート法等を用いて、有機半導体層(301)を形成し、その後ソース電極(302)、ドレイン電極(303)、絶縁層(305)、及びゲート電極(304)を形成したものを表す。
 図5Dは、支持体(306)上にゲート電極(304)を金属箔等で形成した後、絶縁層(305)を形成し、その上に金属箔等で、ソース電極(302)及びドレイン電極(303)を形成し、該電極間に本発明の発光性組成物により形成された有機半導体層(301)を形成する。
 その他、図5E及び図5Fに示すような構成を取ることもできる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 実施例1
 下記各液剤を剥離フィルムの付いたシート状接着剤(3M社製)にスピンコート法により成膜、表面改質、及びガスバリアー層の積層等の操作を行い積層体にした際の塗布表面の観察結果、光透過率、剥離フィルム面の接着剤の接着力評価、及び屈曲試験の評価を行った。
 [積層体101の作製]
 以下の操作により積層体101を作製した。
 <接着剤層>
 接着剤層の厚さが25μmである剥離フィルム付きシート状接着剤(3M社製)を用いた。
 <溶媒浸透防止層の作製>
 溶媒浸透防止層の材料として以下のポリジメチルシロキサンを使用した、
 UV-PDMS KER-4690:信越化学社製UV硬化型ポリジメチルシロキサン 上記UV硬化型樹脂を、接着剤層上に250nmの層厚でスピン塗布成膜させ、UV:365nmを照射した。
 (溶媒浸透防止層硬化条件)
 UV:365nm、3J/cm2の照射条件で1分照射した。
 [積層体102の作製]
 積層体101の作製において、上記UV-PDMS KER-4690を、環状シロキサン系溶媒(DMCPS:デカメチルシクロペンタシロキサン)により、PDMS/DMCPS:1/12の混合質量比で希釈したものを用いた以外は同様にして、積層体102を作製した。
 [積層体103の作製]
 積層体101の作製において、溶媒浸透防止層の層厚を5000nmに変更した以外は同様にして、積層体103を作製した。
 [積層体104及び105の作製]
 積層体1の作製において、上記UV-PDMS KER-4690の代わりに、アクリル樹脂として、ダイヤナールBR85(三菱レイヨン社製、アクリル樹脂 Mw:280000)を用いた以外は同様にして、積層体104を作製した。
 また、積層体1の作製において、上記UV-PDMS KER-4690の代わりに、エポキシ樹脂として、液状ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「828EL」)を用いた以外は同様にして、積層体105を作製した。
 [積層体106~108の作製]
 積層体1の作製において、UV-PDMS KER-4690:信越化学社製UV硬化型ポリジメチルシロキサンを、接着剤層上に250nmの層厚でスピン塗布成膜させ、UV:365nmを3J/cm2の照射条件で1分照射した後に、下記の表I記載の表面改質処理を行い、積層体106~108を作製した。
 (VUV:真空紫外線照射処理)
 (株)エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長:172nm
 ランプ封入ガス:Xe
 エキシマ光強度:6J/cm2
 試料と光源の距離  :2mm
 ステージ加熱温度  :80℃
 照射装置内の酸素濃度:0.1体積%
 (フラッシュ焼成処理)
 250nm以下の短波長カットフィルターを装着したキセノンフラッシュランプ2400WS(COMET社製)を用いて、酸素濃度0.002体積%、水蒸気濃度0.002体積%(酸素含有物質濃度0.004体積%)の雰囲気下で、光照射エネルギーの総計が2J/cm2のフラッシュ光を、照射時間2m秒で照射して、焼成処理を行った。
 (プラズマイオン注入処理)
 プラズマイオン注入装置(RF電源:日本電子(株)製、RF56000、高電圧パルス電源:栗田製作所(株)、PV-3-HSHV-0835)を用いて、得られた溶媒浸透防止層表面に対し、2J/cm2の条件にてプラズマイオン注入を行った。
 <改質層厚の測定>
 改質処理した溶媒浸透防止層のデプスプロファイル測定を行い、改質層厚を求めた。
 装置:アルバック・ファイ製QuanteraSXM
 X線:単色化Al-Kα
 スパッタイオン:Ar+(3kV)
 その結果、溶媒浸透防止層表面深さ0~70nmの炭素成分比率は、平均12at%であり、表面深さ70~250nmの炭素成分比率は、平均30at%であり、溶媒浸透防止層表面から70nmの厚さで改質されていることが分かった。本発明では、炭素成分比率が通常の層よりも低いことを改質層と定義する。高エネルギー照射により、炭素成分が分解・揮発するため、一般的に炭素成分が低い方が膜はより緻密化するといわれる。
 また、真空紫外線処理に比較して、フラッシュ焼成処理及びプラズマイオン注入処理は、改質されてはいるが、改質具合は弱かった。
 [積層体109の作製]
 積層体106の作製において、溶媒浸透防止層上に下記PHPSを用いたガスバリアー層を乾燥層厚が250nmになるように塗布し、次いで、上記VUV:真空紫外線照射処理を行い積層体109を作製した。
 <ガスバリアー層の作製>
 PHPSを含有する塗布液は、PHPSを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))を含むPHPS20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120-20)とを、4:1(質量比)の割合で混合し、さらに乾燥層厚調整のためジブチルエーテルで適宜希釈し、塗布液を調製した。
 [積層体110及び111の作製]
 積層体109の作製において、接着剤層の厚さ5μmである剥離フィルム付きシート状接着剤(3M社製)を用いた以外は同様にして、積層体110を作製した。
 また、積層体108の作製において、上記UV-PDMS KER-4690を、環状シロキサン系溶媒(DMCPS:デカメチルシクロペンタシロキサン)により、PDMS/DMCPS:1/12の混合質量比で希釈したものを用いた以外は同様にして、積層体111を作製した。
 [積層体112及び113の作製]
 積層体109の作製において、ガスバリアー層に用いたPHPSの代わりに、下記ゾル・ゲル液を用い、形成したガスバリアー層を100℃30分加熱した以外は同様にして、積層体112を作製した。
 <有機金属アルコキシドを含有するゾル・ゲル液>
 水分濃度1ppm以下の乾燥窒素雰囲気下のグローブボックス内で、チタニウムテトライソプロポキシド(Ti(OiPr)4)の0.1M濃度脱水テトラフルオロプロパノール(例示化合物F-1)溶液を調液し、ガラス製シリンジに封入した湿度50%のairを40mLバブリングし、すぐにグローブボックス内に戻した溶液をゾル・ゲル液とした。
 積層体109の作製において、ガスバリアー層に用いたPHPSの代わりに、下記TEOS液を用いた以外は同様にして、積層体113を作製した。
 <TEOS液>
 水分濃度1ppm以下の乾燥窒素雰囲気下のグローブボックス内で、テトラエトキシシラン(Si(OET)4)の0.1M濃度脱水テトラフルオロプロパノール溶液を調液し、ガラス製シリンジに封入した湿度50%のairを40mLバブリングし、すぐにグローブボックス内に戻した溶液をTEOS液とした。
 [積層体114~117(比較例)の作製]
 積層体109の作製において、表Iに記載のように、接着剤層のみ(溶媒浸透防止層、ガスバリアー層無し)、ガスバリアー層を直接接着剤層に塗布したものを作製し、比較例の積層体114~117とした。
 ≪評価≫
 (1)塗布表面の観察、
 各サンプルの塗布表面を観察し、無色透明か又は白濁しているかを評価した。白濁している場合は、上層の溶媒が下層を溶解していることの指標になる。
 (2)光透過率の評価
 各サンプルの波長450nmの光の吸収率(%)から光透過率を算出した。光の吸収率は、日立ハイテクノロジーズ社製分光光度計U-4100を用いて測定した。
 この光透過率から、下記評価基準にしたがって光透過性をランク評価した。光透過率が高い方が積層体として透明性が高い。
 5:光透過率が95%より大きい
 4:光透過率が90%より大きく、95%以下である
 3:光透過率が85%より大きく、90%以下である
 2:光透過率が70%より大きく、85%以下である
 1:光透過率が70%以下である
 (3)接着力の評価
 作製した各サンプルを125μm厚のポリエチレンテレフタレートフィルム(PETフィルム)に貼合した。
 貼合は、サンプルをグローブボックス内に入れ、真空ラミネート装置を用いて、剥離フィルムを除去したシート状接着剤面をPETフィルムに貼り合せた。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上に置き、30分間硬化させた。
 この貼合したサンプルに対して、下記のクロスカット法により、接着力を評価した。
 <クロスカット法>
 碁盤目テープ試験(旧 JIS K 5400)を行った。
 試験面にカッターナイフを用いて、素地に達する縦横11本の切り傷をつけ100個の碁盤目を作る。
  次いで、碁盤目部分にセロハンテープを強く圧着させ、テープの端を45°の角度で一気に引き剥がし、溶媒浸透防止層とPHPS層の間の碁盤目の状態を標準図(図6)と比較して評価した。
 (4)屈曲後の外観評価
 作製したサンプルを直径20mmφの円柱に巻きつけた状態で保持しながら、25℃・50%RHの条件下で1000時間保持した。その後、このサンプルについて、1000時間保持後の素子の外観を目視観察し、下記の基準によりクラックの評価を実施した。なお、0.5μm以上の太さを有する線状の欠陥で、長さが1000μm以上のものをクラックとして評価した。
 ○:発光面積100cm2におけるクラック数が5本未満
 △:発光面積100cm2におけるクラック数が5本以上、50本未満
 ×:発光面積100cm2におけるクラック数が50本以上
 以上の積層体の構成及び評価結果を表Iに示す。
Figure JPOXMLDOC01-appb-T000013
 表Iより、接着剤層上にまず溶媒浸透防止層を塗布成膜することで、接着剤自体にダメージが無く、かつ上層からガスバリアー材料を塗布によって成膜できることが分かった。 
 また、接着剤層上の溶媒浸透防止層としては、特にシロキサン樹脂を含有することが優れていることが分かった。
 溶媒浸透防止層の改質方法としては、真空紫外線処理(VUV:172nm)が最適であることが分かった。
 従来の接着剤のみの構成に比べて、接着剤/溶媒浸透防止層/ガスバリアー層からなる本発明の積層体は大幅に膜厚を減らすことが可能となり、それにより屈曲性が高まることが分かった。
 実施例2
 実施例1で用いた各溶媒浸透防止層塗布液を、シリコンウェハ上にスピン塗布成膜させ、UV:365nmを3J/cm2の照射条件で1分照射した。次いで、表IIに記載の各表面処理を施したものを測定サンプルとした。
 ≪評価≫
 (4)接触角の測定
 溶媒浸透防止層表面の純水の接触角の測定は、JIS-R3257に基づいて、23℃、55%RHの雰囲気下で、接触角計(協和界面科学株式会社製、商品名DropMaster DM100)を用いて、純水1μLを滴下し1分後における接触角を測定した。なお、測定は有機薄膜幅手方向に対して等間隔で10点測定して、最大値及び最小値を除いてその平均値を接触角とした。
 結果を表IIに示す。
Figure JPOXMLDOC01-appb-T000014
 表IIより、真空紫外線処理(VUV:172nm)による処理が膜表面の濡れ性を向上させるのに最も効果的であり、すなわち上層との接着性を高めるのに効果的であることが分かった。
 実施例3
 実施例1で用いた各溶媒浸透防止層塗布液を、シリコンウェハ上に溶媒浸透防止層をスピン塗布成膜させ、UV:365nmを3J/cm2の照射条件で1分照射した。次いで、表IIIに記載の各表面処理を施し、次いでPHPSを含有する塗布液を溶媒浸透防止層上にスピン塗布成膜し、ホットプレートで80℃、1分乾燥し、真空紫外線処理(VUV:172nm)を6J/cm2の照射条件で施したものを測定サンプルとした。
 ≪評価≫
 (5)密着性の評価
 実施例1で実施したクロスカット法碁盤目テープ試験を採用し、溶媒浸透防止層とPHPS層の間の碁盤目の状態を標準図(図6)と比較して密着性の評価をした。
 結果を表IIIに示す。
Figure JPOXMLDOC01-appb-T000015
 上記結果から、溶媒浸透防止層への真空紫外線処理(VUV:172nm)による表面改質処理が、溶媒浸透防止層とPHPS層との密着性を向上させるのに最も効果的であることが分かった。
 実施例4
  <評価用有機EL素子の作製>
 (基材の準備)
 まず、ポリエチレンナフタレートフィルム(帝人フィルムソリューション株式会社製)の陽極を形成する側の全面に、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOxからなる無機物のガスバリアー層を層厚500nmとなるように形成した。これにより、酸素透過度0.001mL/(m2・24h・atom)以下、水蒸気透過度0.001g/(m2・24h)以下のガスバリアー性を有する可撓性の基材を作製した。
 (陽極の形成)
 上記基材上に厚さ120nmのITO(インジウム・スズ酸化物)をスパッタ法により製膜し、フォトリソグラフィー法によりパターニングを行い、陽極を形成した。なお、パターンは発光領域の面積が5cm×5cmになるようなパターンとした。
 (正孔注入層の形成)
 陽極を形成した基材をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。そして、陽極を形成した基材上に、特許第4509787号公報の実施例16と同様に調製したポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)の分散液をイソプロピルアルコールで希釈した2質量%溶液をインクジェットプリント法にて塗布、80℃で5分乾燥し、層厚40nmの正孔注入層を形成した。
 (正孔輸送層の形成)
 次に、正孔注入層を形成した基材を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、下記組成の正孔輸送層形成用塗布液を用いて、インクジェットプリント法にて塗布、150℃で30分乾燥し、層厚30nmの正孔輸送層を形成した。
 〈正孔輸送層形成用塗布液〉
 正孔輸送材料 HT-3(重量平均分子量Mw=80000)
                           10質量部
 パラ(p)-キシレン              3000質量部
 (発光層の形成)
 次に、正孔輸送層を形成した基材を、下記組成の発光層形成用塗布液を用い、インクジェット法にて塗布し、130℃で30分間乾燥し、層厚50nmの発光層を形成した。
 〈発光層形成用塗布液〉
 ホスト化合物 H-4                 9質量部
 金属錯体CD-2                   1質量部
 蛍光材料F-1                  0.1質量部
 酢酸ノルマルブチル               2000質量部
 (ブロック層の形成)
 次に、発光層を形成した基材を、下記組成のブロック層形成用塗布液を用い、インクジェット法にて塗布し、80℃で30分間乾燥し、層厚10nmのブロック層を形成した。
 〈ブロック層形成用塗布液〉
 HB-4                       2質量部
 イソプロピルアルコール(IPA)        1500質量部
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール
                          500質量部
 (電子輸送層の形成)
 次に、ブロック層を形成した基材を、下記組成の電子輸送層形成用塗布液を用い、インクジェットプリント法にて塗布し、80℃で30分間乾燥し、層厚30nmの電子輸送層を形成した。
 〈電子輸送層形成用塗布液〉
 ET-1                       6質量部
 2,2,3,3-テトラフルオロ-1-プロパノール
                         2000質量部
 (電子注入層、陰極の形成)
 続いて、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した。その後、ボートに通電して加熱し、フッ化ナトリウムを0.02nm/秒で前記電子輸送層上に蒸着し、膜厚1nmの薄膜を形成した。同様に、フッ化カリウムを0.02nm/秒でフッ化ナトリウム薄膜上に蒸着し、層厚1.5nmの電子注入層を形成した。
 引き続き、アルミニウムを蒸着して厚さ100nmの陰極を形成した。
 その後、実施例1に記載の積層体と同様な方法で作製した積層体の剥離フィルムを剥離し、有機EL素子に貼合させ、有機EL素子401~406を作製した。有機EL素子407は接着剤層のみ貼合した。
 貼合は、サンプルをグローブボックス内に入れ、真空ラミネート装置を用いて、剥離フィルムを除去したシート状接着剤面を上記陰極上に貼り合せた。この際、110℃の加熱を行った。さらに、接着した試料を110℃に設定したホットプレート上に置き、30分間硬化させた。
 なお、用いた化合物を下記に示す。
Figure JPOXMLDOC01-appb-C000016
 ≪評価≫
 (6)ダークスポット耐性
 60℃、90%RHで1週間放置した後の発光状態を観察し、ガスバリアー性能の評価を行った。具体的には、100倍の光学顕微鏡(株式会社モリテックス製 MS-804、レンズMP-ZE25-200)で、有機EL素子の発光部の一部分を拡大して撮影した。次に、撮影画像を2mm四方に切り抜き、それぞれの画像について、ダークスポット発生の有無を観察した。観察結果より、発光面積に対するダークスポットの発生面積比率を求め、下記の基準に従って、ダークスポット耐性を評価した。
 5:ダークスポットの発生は全く認められない
 4:ダークスポットの発生面積が、0.1%以上、1.0%未満である
 3:ダークスポットの発生面積が、1.0%以上、3.0%未満である
 2:ダークスポットの発生面積が、3.0%以上、6.0%未満である
 1:ダークスポットの発生面積が、6.0%以上である
 結果を表IVに示す。
Figure JPOXMLDOC01-appb-T000017
 接着剤層/溶媒浸透防止層/ガスバリアー層の構成で有機EL素子用の封止膜として使用可能であることが分かった。また、ガスバリアー層の積層数を増やすことで、有機EL素子の封止性が高まることが分かった。
 実施例5
 厚さ1mmのポリエステル製フェルト生地布に、実施例4の積層体401と同様の構成で作製した積層体を貼り合わせて、図3A~Dに示すフローにしたがい、当該布を有機EL素子用の基材とした。
 次いで、実施例4の有機EL素子ユニット(陽極から陰極までの構成)を、上記積層体のガスバリアー層上に形成した。
 有機EL素子ユニットの前記陰極上に、UV-PDMS KER-4690をインクジェットプリント法にて塗布成膜させ、UV:365nmを3J/cm2の照射条件で1分照射し、真空紫外線処理(VUV:172nm)を1.8J/cm2の照射条件で照射した。次いで、PHPSを含有する前記塗布液を溶媒浸透防止層上にインクジェットプリント法にて塗布成膜し、80℃加熱1分後、真空紫外線処理(VUV:172nm)を6JJ/cm2の照射条件で照射した。その後、下記ガスバリアーフィルムを貼り合わせた。
 (ガスバリアーフィルムの作製)
 ポリエチレンナフタレートフィルム(帝人フィルムソリューション株式会社製)の全面に、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOxからなる無機物のガスバリアー層を層厚500nmとなるように形成した。これにより、酸素透過度0.001mL/(m2・24h・atm)以下、水蒸気透過度0.001g/(m2・24h)以下のガスバリアー性を有する可撓性のガスバリアーフィルムを作製した。ガスバリアーフィルムの片面に、封止樹脂層として熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ25μmで形成した。そして、この封止樹脂層を設けたガスバリアーフィルムを、前記有機EL素子ユニットに重ね合わせて封止した。このとき、陽極及び陰極の取出し部の端部が外に出るように、ガスバリアーフィルムの封止樹脂層形成面を、有機EL素子の封止面側に連続的に重ね合わせた。
 上記の方法で作製した有機EL素子は、通常のガラス基材上に作製した有機EL素子と同様に発光した。通常、フェルト生地布等に直接有機EL素子層や樹脂層を印刷した場合、液が布を浸透してしまうため積層ができない。しかしながら、本発明の積層体を貼合した布地では、通常に発光する有機EL素子を作製できたことから、本発明の積層体によって、布や紙等を用いて、ガスバリアー性下地を作製することができることが証明された。
 実施例6
 <タッチパネルモジュールの作製>
 ガスバリアー層付きフレキシブル基板として、厚さ100μmのポリエチレンナフタレートフィルム(帝人フィルムソリューション株式会社製)にSiO2をプラズマCVD法によって300nmの厚さで成膜したフィルムを用いて、その上にスパッタリング法によりITO膜を厚さが20nmになるように成膜し、エッチングでX方向の第1電極パターンを形成した。
 次に電極パターンの間に配置される絶縁層としてSiO2をスパッタリング法を用いて厚さが200nmになるように成膜し、その上にITO膜を厚さが20nmになるようにスパッタリングで成膜し、エッチングでY方向に第2電極パターンを形成した。更にその上に絶縁層としてSiO2をスパッタリング法を用いて厚さ200nmになるように成膜した。
 形成したITOのX方向、及びY方向の電極パターンにそれぞれAgペーストを塗布、及び焼結することで作製したリード線を介して制御回路に接続させた。
 次いで、実施例4の積層体401の条件で作製した積層体を第2電極パターン上に接着剤層を介して貼合し、タッチパネルモジュールを作製した。
 作製したタッチパネルモジュールを具備した液晶表示装置を相対湿度50%RHの環境下、-20℃から80℃までの温度変化を30分間隔で200サイクル実施した。取り出した液晶表示装置のタッチパネルモジュールの動作を確認したが、特に問題なく作動し、耐久性に優れることが分かった。
 また、上記作製したサンプルを直径20mmφの円柱に巻きつけた状態で保持しながら、25℃・50%RHの条件下で1000時間保持した。その後、このサンプルについて、1000時間保持後のデバイスの外観を目視観察しクラックの発生有無及び動作確認を評価したが、クラックの発生は見られず、かつ動作も正常であり、本発明の積層体を具備したタッチパネルモジュールは、フレキシブル性に優れていた。
 本発明の積層体は、薄膜化し、膜割れを防止して、電子デバイスのフレキシブル化やフォルダブル化への対応を容易にし、さらに光学特性を改善するガスバリアー性を具備した積層体であることから、当該積層体の電子デバイスへの適用例として、タッチパネルセンサー、有機エレクトルミネッセンス、有機光電変換素子を有する太陽電池及び有機薄膜トランジスターに好適である。
 1 積層体
 2 接着剤層
 3 溶媒浸透防止層
 4 ガスバリアー層
 5 改質層
 6 有機金属酸化物層
 7 セパレーター
 10 タッチパネルセンサー
 11 基板
 12 電極
 13 平滑化層
 20 有機EL素子
 21 紙又は布
 22 有機EL素子ユニット
 23 接着剤
 24 ガスバリアーフィルム
 200 バルクヘテロジャンクション型の有機光電変換素子
 201 基板
 202 透明電極(陽極)
 203 対極(陰極)
 204 光電変換部(バルクヘテロジャンクション層)
 205 電荷再結合層
 206 第2の光電変換部
 207 正孔輸送層
 208 電子輸送層
 209 第1の光電変換部
 301 有機半導体層
 302 ソース電極
 303 ドレイン電極
 304 ゲート電極
 305 絶縁層
 306 支持体

Claims (17)

  1.  少なくとも接着剤層とガスバリアー層を具備する積層体であって、
     前記ガスバリアー層が無機材料を含有し、かつ、前記接着剤層と前記ガスバリアー層の間に光又は熱硬化型の樹脂を含有する溶媒浸透防止層が配置されていることを特徴とする積層体。
  2.  前記溶媒浸透防止層の層厚が、1~10000nmの範囲内であることを特徴とする請求項1に記載の積層体。
  3.  前記溶媒浸透防止層が、少なくともシロキサン系樹脂、アクリル系樹脂又はエポキシ系樹脂を含有することを特徴とする請求項1又は請求項2に記載の積層体。
  4.  前記溶媒浸透防止層が、シロキサン系樹脂を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載の積層体。
  5.  前記溶媒浸透防止層の前記ガスバリアー層側の表面に、改質層を有することを特徴とする請求項1から請求項4までのいずれか一項に記載の積層体。
  6.  前記改質層の前記ガスバリアー層側の表面が、温度23℃における水に対する接触角が、20~100°の範囲内であることを特徴とする請求項5に記載の積層体。
  7.  前記改質層の層厚が、1~70nmの範囲内であることを特徴とする請求項5又は請求項6に記載の積層体。
  8.  前記ガスバリアー層が、ポリシラザンとその改質体を含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の積層体。
  9.  前記溶媒浸透防止層とガスバリアー層の間に、下記一般式(A)で表される構造を有する有機金属酸化物を含有する有機金属酸化物層を有することを特徴とする請求項1からから請求項8までのいずれか一項に記載の積層体。
     一般式(A) R-[M(OR1y(O-)x-yn-R
    (式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコ
    キシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度をそれぞれ表す。)
  10.  前記Mで表される金属原子が、Si、Ti、Zr、Mg、Ca、Sr、Bi、Hf、Nb、Zn、Al、Pt、Ag、及びAuから選択されることを特徴とする請求項9に記載の積層体。
  11.  前記有機金属酸化物層が、少なくともゾル・ゲル転移された塗布膜からなることを特徴とする請求項9又は請求項10に記載の積層体。
  12.  前記接着剤層の溶媒浸透防止層とは反対側に、剥離可能なフィルムを具備することを特徴とする請求項1から請求項11までのいずれか一項に記載の積層体。
  13.  前記接着剤層の溶媒浸透防止層とは反対側に剥離可能なフィルムが配置され、かつ前記ガスバリアー層の溶媒浸透防止層とは反対側にさらに接着剤層が配置されていることを特

    徴とする請求項1から請求項11までのいずれか一項に記載の積層体。
  14.  少なくとも接着剤層とガスバリアー層を具備する積層体の製造方法であって、
     前記接着剤層の表面に光又は熱硬化型の樹脂を塗布して、当該樹脂を含有する溶媒浸透防止層を形成する工程と、
     前記溶媒浸透防止層の表面に無機材料を塗布して当該無機材料を含有するガスバリアー層を形成する工程と、を有することを特徴とする積層体の製造方法。
  15.  前記溶媒浸透防止層を形成する工程に続いて、当該溶媒浸透防止層に少なくとも紫外線照射処理、フラッシュ焼成処理、大気圧プラズマ処理、プラズマイオン注入処理、又は加熱処理を行う工程、を有することを特徴とする請求項14に記載の積層体の製造方法。
  16.  前記溶媒浸透防止層を形成する工程に続いて、当該溶媒浸透防止層に紫外線照射処理を行う工程、を有することを特徴とする請求項14に記載の積層体の製造方法。
  17.  請求項1から請求項13までのいずれか一項に記載の積層体を具備することを特徴とする電子デバイス。
PCT/JP2019/046540 2018-11-30 2019-11-28 積層体、その製造方法及びそれを具備した電子デバイス WO2020111174A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217011522A KR20210060578A (ko) 2018-11-30 2019-11-28 적층체, 그의 제조 방법 및 그것을 구비한 전자 디바이스
JP2020557817A JPWO2020111174A1 (ja) 2018-11-30 2019-11-28 積層体、その製造方法及びそれを具備した電子デバイス
CN201980077881.8A CN113165335A (zh) 2018-11-30 2019-11-28 叠层体、其制造方法和具备该叠层体的电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-224740 2018-11-30
JP2018224740 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111174A1 true WO2020111174A1 (ja) 2020-06-04

Family

ID=70853840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046540 WO2020111174A1 (ja) 2018-11-30 2019-11-28 積層体、その製造方法及びそれを具備した電子デバイス

Country Status (4)

Country Link
JP (1) JPWO2020111174A1 (ja)
KR (1) KR20210060578A (ja)
CN (1) CN113165335A (ja)
WO (1) WO2020111174A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203940A (zh) * 2020-09-17 2022-03-18 Tcl科技集团股份有限公司 薄膜的制备方法和发光二极管
WO2023112843A1 (ja) * 2021-12-15 2023-06-22 株式会社東海理化電機製作所 有機el素子の封止方法、有機el素子、有機el装置、及び車両用装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263158A (ja) * 1988-04-14 1989-10-19 Showa Denko Kk 含フッ素コーティング剤およびその製造方法
JP2013226757A (ja) * 2012-04-26 2013-11-07 Konica Minolta Inc ガスバリア性フィルム
JP2015221757A (ja) * 2014-05-22 2015-12-10 双葉電子工業株式会社 化合物、乾燥剤、封止構造及び有機el素子
WO2016010117A1 (ja) * 2014-07-16 2016-01-21 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを用いてなる電子デバイス
JP2018092127A (ja) * 2017-07-25 2018-06-14 東洋インキScホールディングス株式会社 ディスプレイ用部材
WO2018180962A1 (ja) * 2017-03-30 2018-10-04 リンテック株式会社 ガスバリア性フィルム、及び封止体
JP2019150973A (ja) * 2018-02-28 2019-09-12 リンテック株式会社 ガスバリア性フィルム、及び封止体
WO2019182119A1 (ja) * 2018-03-23 2019-09-26 リンテック株式会社 ガスバリア性積層体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239240B2 (ja) 1972-03-31 1977-10-04
JP4040850B2 (ja) * 2000-07-24 2008-01-30 Tdk株式会社 発光素子
JP4857553B2 (ja) 2004-12-07 2012-01-18 凸版印刷株式会社 粘着性を有するテープと該テープを取り付けた包装材料
JP5825016B2 (ja) * 2011-09-29 2015-12-02 コニカミノルタ株式会社 バリアーフィルムの製造方法
WO2014190151A1 (en) 2013-05-23 2014-11-27 Henkel IP & Holding GmbH Multi-layer barrier adhesive film
JP6348745B2 (ja) * 2014-03-26 2018-06-27 リンテック株式会社 ハードコートフィルム、透明導電性フィルム、および静電容量タッチパネル
CN108394788A (zh) * 2018-04-27 2018-08-14 吴江市通宇电梯轨道有限公司 一种具有全氢聚硅氮烷涂层的t型电梯导轨

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263158A (ja) * 1988-04-14 1989-10-19 Showa Denko Kk 含フッ素コーティング剤およびその製造方法
JP2013226757A (ja) * 2012-04-26 2013-11-07 Konica Minolta Inc ガスバリア性フィルム
JP2015221757A (ja) * 2014-05-22 2015-12-10 双葉電子工業株式会社 化合物、乾燥剤、封止構造及び有機el素子
WO2016010117A1 (ja) * 2014-07-16 2016-01-21 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法ならびに当該ガスバリア性フィルムを用いてなる電子デバイス
WO2018180962A1 (ja) * 2017-03-30 2018-10-04 リンテック株式会社 ガスバリア性フィルム、及び封止体
JP2018092127A (ja) * 2017-07-25 2018-06-14 東洋インキScホールディングス株式会社 ディスプレイ用部材
JP2019150973A (ja) * 2018-02-28 2019-09-12 リンテック株式会社 ガスバリア性フィルム、及び封止体
WO2019182119A1 (ja) * 2018-03-23 2019-09-26 リンテック株式会社 ガスバリア性積層体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203940A (zh) * 2020-09-17 2022-03-18 Tcl科技集团股份有限公司 薄膜的制备方法和发光二极管
CN114203940B (zh) * 2020-09-17 2024-04-16 Tcl科技集团股份有限公司 薄膜的制备方法和发光二极管
WO2023112843A1 (ja) * 2021-12-15 2023-06-22 株式会社東海理化電機製作所 有機el素子の封止方法、有機el素子、有機el装置、及び車両用装置

Also Published As

Publication number Publication date
JPWO2020111174A1 (ja) 2021-10-14
KR20210060578A (ko) 2021-05-26
CN113165335A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP5716752B2 (ja) ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
JP5888329B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス
US8754407B2 (en) Gas barrier film, method of manufacturing gas barrier film, and organic photoelectric conversion element
JP6252493B2 (ja) ガスバリア性フィルム
JP5223540B2 (ja) ガスバリア性シート、ガスバリア性シートの製造方法
JP6614136B2 (ja) ガスバリア性フィルムおよびその製造方法、並びにこれを用いた電子デバイスおよびその製造方法
JP7158377B2 (ja) ガスバリア性フィルム、及び封止体
WO2007123006A1 (ja) ガスバリアフィルム、有機エレクトロルミネッセンス用樹脂基材、それを用いた有機エレクトロルミネッセンス素子及びガスバリアフィルムの製造方法
WO2020111174A1 (ja) 積層体、その製造方法及びそれを具備した電子デバイス
WO2019230682A1 (ja) 電子デバイス及びその製造方法
JP6485455B2 (ja) ガスバリアーフィルム及びガスバリアーフィルムの製造方法
WO2019093459A1 (ja) 電子デバイスの製造方法
JPWO2015141242A1 (ja) 機能性積層フィルム、機能性積層フィルムの製造方法、および機能性積層フィルムを含む有機電界発光装置
JP5884531B2 (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器
JP5636646B2 (ja) バリアフィルムの製造方法、バリアフィルム及び有機光電変換素子の製造方法
JP5640976B2 (ja) ガスバリアフィルムとその製造方法、これを用いた光電変換素子
JP2019147274A (ja) 離型フィルム
WO2015029732A1 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
WO2019230283A1 (ja) ガスバリアー性基材、その製造方法、それを具備した電子デバイス
TW201902715A (zh) 阻氣性積層體、密封體、導電性積層體及導電性積層體之製造方法
JP2013039706A (ja) 水蒸気バリアーフィルムの製造方法、水蒸気バリアーフィルム及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217011522

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020557817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890050

Country of ref document: EP

Kind code of ref document: A1