WO2020110741A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2020110741A1
WO2020110741A1 PCT/JP2019/044627 JP2019044627W WO2020110741A1 WO 2020110741 A1 WO2020110741 A1 WO 2020110741A1 JP 2019044627 W JP2019044627 W JP 2019044627W WO 2020110741 A1 WO2020110741 A1 WO 2020110741A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
horn
heat
radar device
substrate
Prior art date
Application number
PCT/JP2019/044627
Other languages
English (en)
French (fr)
Inventor
望 八文字
河野 務
都留 康隆
大介 寺田
阿部 博幸
研司 中林
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020558325A priority Critical patent/JP7133646B2/ja
Priority to DE112019005235.7T priority patent/DE112019005235T5/de
Publication of WO2020110741A1 publication Critical patent/WO2020110741A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to a radar device.
  • the ground pattern is formed around the electronic component, but the heat generation of the electronic component is not directly transmitted to the ground pattern. There is a slight gap between the electronic component and the ground pattern, the thermal resistance between the electronic component and the ground pattern is large, and the temperature of the electronic component cannot be lowered sufficiently. Therefore, the temperature of the electronic component may be higher than the allowable temperature.
  • the present invention solves the above problems, and an object of the present invention is to provide a radar device capable of suppressing the temperature rise of electronic components.
  • a radar device includes a substrate having electronic components provided on one main surface, a horn arranged on one main surface of the substrate, and heat dissipation provided on the other main surface of the substrate.
  • a radar device including a plate, wherein a heat radiation pattern is formed on one main surface of the substrate, and the electronic component is connected to the heat radiation pattern via a first heat radiation member and The horn is connected to the heat dissipation pattern via a second heat dissipation member.
  • a heat dissipation path having a small thermal resistance from the electronic component to the horn is formed to effectively increase the temperature of the electronic component. Can be suppressed.
  • FIG. 3 is an exploded perspective view of the radar device according to the first embodiment.
  • 1 is a schematic cross-sectional view of a radar device according to a first embodiment.
  • 3A is an explanatory diagram of a radio wave emission state according to a comparative example
  • FIG. 3B is an explanatory diagram of a radio wave emission state of the first embodiment.
  • FIG. 4A is an explanatory diagram of a radio wave emission state of a plurality of antennas according to a comparative example
  • FIG. 4B is an explanatory diagram of a radio wave emission state of a plurality of antennas of the first embodiment.
  • 5A is an explanatory view of a heat transfer path and a heat dissipation path according to a comparative example
  • the cross-sectional schematic diagram of the radar apparatus of 2nd Embodiment The cross-sectional schematic diagram of the radar apparatus of 3rd Embodiment.
  • the cross-sectional schematic diagram of the radar apparatus of 4th Embodiment The cross-sectional schematic diagram of the radar apparatus of 5th Embodiment.
  • the cross-sectional schematic diagram of the radar apparatus of 6th Embodiment The cross-sectional schematic diagram of the radar apparatus of 7th Embodiment.
  • the cross-sectional schematic diagram of the radar apparatus of 8th Embodiment The cross-sectional schematic diagram of the radar apparatus of 9th Embodiment.
  • FIG. 1 is an exploded perspective view of the radar device according to the first embodiment.
  • a millimeter wave radar will be described as an example of the radar device, but the technique of the present disclosure can be used for another radar device that emits radio waves and detects an obstacle.
  • the radar device 1 is a millimeter-wave radar device, which emits radio waves in the millimeter-wave band and receives reflected waves from obstacles to detect obstacles.
  • a plurality of MMIC (Monolithic Microwave Integrated Circuit) chips 14 are provided on one main surface 11 of a substrate 10 of the radar device 1.
  • a plurality of antennas 13 are connected to each MMIC chip 14 via power supply lines (not shown).
  • a radio wave is radiated from each antenna 13 by power supply from each MMIC chip 14, and the radio wave captured by each antenna 13 is sent to each MMIC chip 14 through a power supply line.
  • the antenna 13 may be a planar antenna such as a patch antenna provided on the substrate 10 or a surface mount type chip antenna provided on the substrate 10.
  • the MMIC chip 14 for transmission and reception is arranged as a semiconductor chip on the substrate 10, the MMIC chip 14 for transmission and the MMIC chip 14 for reception may be separately arranged.
  • Other MIC (Microwave Integrated Circuit) chips may be used as the semiconductor chip.
  • the substrate 10 a glass epoxy substrate, a ceramic substrate or the like may be used, or a high frequency substrate made of fluorocarbon resin having a low dielectric constant may be used.
  • a resin-made horn 20 having a rectangular shape in plan view whose outer surface is metal-plated is arranged on one main surface 11 of the substrate 10 of the radar device 1.
  • Waveguides 23 are formed on the horn 20 at positions corresponding to the plurality of antennas 13 on the substrate 10.
  • Each of the waveguides 23 is divided into a short distance type, a medium distance type, and a long distance type.
  • Each waveguide 23 is formed in a pyramidal shape or a conical shape by the tapered surface of the horn 20 so as to become wider as the distance from the one main surface 11 of the substrate 10 increases.
  • the horn 20 includes PBT (Polybutylene Terephthalate) resin, PPS (Poly Phenylene Sulfide) resin, PP (Poly Propylene) resin, ABS (Acrylonitrile Butadiene Styrene) resin, PS (Poly Styrene) resin, PE (Poly Ethylene) resin.
  • PBT Polybutylene Terephthalate
  • PPS Poly Phenylene Sulfide
  • PP Poly Propylene
  • ABS Acrylonitrile Butadiene Styrene
  • PS Poly Styrene
  • PE Poly Ethylene
  • thermoplastic resin containing a polyester resin as a main component, or a thermosetting resin that is lightweight and has low thermal conductivity may be used.
  • the metal film 28 (see FIG. 2) formed on the outer surface of the horn 20 by metal plating has silver (Ag), copper (Cu), gold (Au), nickel (Ni) having a high thermal conductivity and a shielding property. ), tin (Sn), or the like may be used.
  • the metal film 28 on the outer surface of the horn 20 may be formed by a sputtering method, an inkjet method, a screen printing method, a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, or the like, in addition to plating.
  • the horn 20 is provided with a lens 30 having a rectangular shape in plan view so as to cover the plurality of waveguides 23.
  • a plurality of lens surfaces 31 (see FIG. 2) corresponding to the plurality of waveguides 23 of the horn 20 are formed on the back surface of the lens 30 on the substrate 10 side.
  • a radio wave radially diffused from the antenna 13 in the waveguide 23 is converted into a plane wave by the lens 30 and emitted to the outside.
  • the reflected wave from the outside is converged in the waveguide 23 by the lens 30 and received by the antenna 13.
  • the lens 30 may be made of a dielectric material such as PBT resin or PPS resin.
  • the outer edges of the horn 20 and the lens 30 are held by a rectangular frame-shaped housing 35.
  • the housing 35 has an opening edge portion 36 that prevents the horn 20 and the lens 30 from coming off, and a side wall portion 37 that forms a side surface of the radar device 1.
  • a cover 39 that forms the surface of the radar device 1 is fixed on the opening edge portion 36 of the housing 35.
  • the cover 39 bulges out except the outer peripheral portion fixed to the housing 35, and functions as a radome that protects the inside of the device from a natural environment such as rain and wind.
  • a resin material such as PBT resin or PPS resin may be used for the housing 35 and the cover 39.
  • a heat radiating plate 40 that releases the heat of the substrate 10 is provided on the other main surface 12 of the substrate 10.
  • a plurality of support bases 41 are formed on the surface of the heat sink 40 on the substrate 10 side at positions corresponding to the plurality of MMIC chips 14 on the substrate 10.
  • the back surface of the heat sink 40 is supported by the base 45 that forms the back surface of the radar device 1.
  • the support surface of each support 41 is in contact with the substrate 10 via the heat dissipation sheet S1, and the base 45 is in contact with the heat dissipation plate 40 via the heat dissipation sheet S2.
  • a heat dissipation plate 40 and a base 45 form a heat dissipation path for releasing heat of the MMIC chip 14.
  • a material having high thermal conductivity such as aluminum may be used for the heat dissipation plate 40 and the base 45.
  • FIG. 2 is a schematic cross-sectional view of the radar device according to the first embodiment.
  • an MMIC chip 14 is arranged on one main surface 11 of the substrate 10, and an antenna 13 is provided separately from the MMIC chip 14.
  • a horn 20 having a metal film 28 formed on the outer surface of the resin molded body by metal plating is arranged.
  • a peripheral wall portion 21 that surrounds the outer edge of the substrate 10 is provided on the outer peripheral portion of the horn 20, and the peripheral wall portion 21 is formed in a step shape so as to avoid the opening edge portion 36 of the housing 35.
  • a horn body 22 in which a waveguide 23 is formed is provided inside the horn 20, and a portion corresponding to the MMIC chip 14 and the antenna 13 partially protrudes from the back surface of the horn body 22 on the substrate 10 side.
  • the waveguide 23 is formed by the tapered wall surface 26 of the horn body 22 and the guide portion 25 so that the facing distance becomes wider as the distance from the one main surface 11 of the substrate 10 increases.
  • a lens 30 is arranged on the front surface side of the horn body 22, and a convex lens surface 31 whose optical axis is the center line of the waveguide 23 is formed on the back surface of the lens 30.
  • a heat sink 40 is provided on the other main surface 12 of the substrate 10.
  • a peripheral wall portion 42 surrounding the outer edge of the substrate 10 is provided on the outer peripheral portion of the heat dissipation plate 40, and a support base 41 that abuts the substrate 10 at a location corresponding to the MMIC chip 14 is provided on the inner portion of the heat dissipation plate 40. ..
  • the peripheral wall portion 42 of the heat dissipation plate 40 is in contact with the peripheral wall portion 21 of the horn 20, and the support base 41 of the heat dissipation plate 40 is in contact with the substrate 10 via the heat dissipation sheet S1.
  • the heat dissipation plate 40 is supported by the base 45 via the heat dissipation sheet S2. Since the base 45 is made of a metal having high thermal conductivity like the heat sink 40, the base 45 also functions as a heat sink.
  • a shield layer 29 that shields radio waves is formed by the metal film 28 on the wall surface of the horn 20 forming the waveguide 23. Thereby, the shielding property of the radio wave in the waveguide 23 is secured, and the directivity and the intensity of the radio wave are improved. Further, since the contact portion 24 is in contact with the surface of the MMIC chip 14 via the metal film 28, the heat transfer path R2 from the MMIC chip 14 to the shield layer 29 is formed by the metal film 28 and the MMIC chip is formed. A heat dissipation path R3 from 14 to the heat dissipation plate 40 is formed by the metal film 28. This prevents dew condensation in the waveguide 23 and suppresses the temperature rise of the MMIC chip 14.
  • FIG. 3A is an explanatory diagram of a radio wave emission state according to a comparative example.
  • FIG. 3B is an explanatory diagram of a radio wave radiation state according to the first embodiment.
  • the radar device of the comparative example is different from the radar device of the present embodiment only in that the outer surface of the resin horn is not metal-plated.
  • the antenna 52 when power is supplied from the MMIC chip 53 to the antenna 52, the antenna 52 emits radio waves to the outside.
  • a radio wave traveling from the antenna 52 to the inside of the waveguide 55 is guided to the lens surface 57 through the waveguide 55, converted into a plane wave by the lens surface 57, and used for detecting an obstacle.
  • a radio wave traveling from the antenna 52 to the outside of the waveguide 55 goes straight through the resin horn 54 and is emitted to the outside, and is not used for detecting an obstacle. Therefore, although it is possible to reduce the weight of the horn 54, the radio wave utilization efficiency is lowered, and the directivity and strength of the radio wave are reduced.
  • the shield layer 29 is formed by the metal film 28 on the tapered wall surface 26 of the horn 20 forming the waveguide 23, and the waveguide is formed.
  • the shielding property of 23 is secured. Both the radio wave traveling from the antenna 13 to the inside of the waveguide 23 and the radio wave traveling from the antenna 13 to the outside of the waveguide 23 are guided to the lens surface 31 by the shield layer 29 of the horn 20 and converted into a plane wave at the lens surface 31. Used to detect obstacles. Therefore, the weight of the horn 20 can be reduced, the radio wave utilization efficiency is improved, the directivity and strength of the radio wave are improved, and the detection accuracy is improved.
  • FIG. 4A is an explanatory diagram of a radio wave radiation state by a plurality of antennas according to a comparative example.
  • FIG. 4B is an explanatory diagram of a radio wave radiation state by the multiple antennas according to the first embodiment.
  • a plurality of waveguides 55 are formed in the radar device 50 according to the comparative example so as to correspond to the plurality of antennas 52, and radio waves are simultaneously radiated from each antenna 52.
  • Radio waves traveling from each antenna 52 to the inside of each waveguide 55 are guided to the lens surface 57 through each waveguide 55, converted into a plane wave by the lens surface 57, and used for detecting an obstacle.
  • a radio wave traveling from each antenna 52 to the outside of each waveguide 55 travels straight in a resin horn 54 and enters an adjacent waveguide 55 to cause radio wave interference. This radio wave interference deteriorates the obstacle detection performance.
  • the shield layer 29 of the horn 20 causes the radio waves to travel to the outside of the waveguide 23. Leakage is prevented. Both the radio wave traveling from the antenna 13 to the inside of the waveguide 23 and the radio wave traveling from the antenna 13 to the outside of the waveguide 23 are guided to the lens surface 31 by the shield layer 29 of the horn 20 and converted into a plane wave at the lens surface 31. Used to detect obstacles. Therefore, radio wave interference does not occur between the plurality of waveguides 23, and the obstacle detection performance does not deteriorate due to radio wave interference.
  • FIG. 5A is an explanatory diagram of a heat transfer path and a heat dissipation path according to a comparative example.
  • FIG. 5B is an explanatory diagram of a heat transfer path and a heat dissipation path according to the first embodiment.
  • the temperature difference between the inside and the outside causes dew condensation 59 on the tapered wall surface 58 of the horn 54 to cause radio waves. May be disturbed. Further, the heat generated by the MMIC chip 53 is transmitted to the support 61 of the heat dissipation plate 60 via the substrate 51 and the heat dissipation sheet S1, and is further transmitted from the heat dissipation plate 60 to the base 62 via the heat dissipation sheet S2. The temperature rise of the MMIC chip 53 cannot be effectively suppressed only by the heat radiation path R1 extending from the MMIC chip 53 in the thickness direction of the substrate 51.
  • a heat transfer path R2 extending from the MMIC chip 14 to the shield layer 29 is formed on the outer surface of the horn 20.
  • the heat transfer path R2 is formed by a metal film 28 that covers the outer surface of the horn 20 from the contact portion 24 to the guide portion 25, and the metal film 28 of the heat transfer path R2 and the metal of the shield layer 29 are formed at the tip of the guide portion 25.
  • the membranes 28 are connected.
  • the heat generated by the MMIC chip 14 is transmitted to the shield layer 29 through the heat transfer path R2, the shield layer 29 is warmed, and the generation of dew condensation 59 is suppressed.
  • the heat generated by the MMIC chip 14 is used.
  • the heat generated by the MMIC chip 14 is easily transferred to the metal film 28 on the outer surface of the horn 20, but since the resin molding portion of the horn 20 has a low thermal conductivity, the resin molding portion inside the metal film 28 on the outer surface of the horn 20 is low. It is difficult for heat to be transmitted to. Since heat is intensively transferred from the MMIC chip 14 to the metal film 28 having a high thermal conductivity and a small heat capacity, the shield layer 29 can be heated in a short time by the heat generation of the MMIC chip 14 via the heat transfer path R2. Therefore, the shield layer 29 can be heated immediately after the activation of the radar device 1, and the disturbance of the radio wave due to the dew condensation 59 can be effectively suppressed.
  • the heat dissipation path R3 extending from the MMIC chip 14 to the heat dissipation plate 40 is formed on the outer surface of the horn 20.
  • the heat radiation path R3 is formed by the metal film 28 covering the outer surface of the horn 20 from the contact portion 24 to the peripheral wall portion 21.
  • the metal film 28 is in contact with the heat sink 40.
  • the heat generated by the MMIC chip 14 is transmitted to the peripheral wall portion 42 of the heat radiating plate 40 through the heat radiating route R3, and is transmitted from the heat radiating plate 40 to the base 45 via the heat radiating sheet S2.
  • the temperature rise of the MMIC chip 14 can be suppressed by the heat radiation path R3 passing from the MMIC chip 14 to the outer surface of the horn 20.
  • the shield layer 29, the heat transfer path R2, and the heat dissipation path R3 are formed of the metal film 28 of the same material, but the configuration is not limited to this.
  • the shield layer 29 is formed of a metal film having a higher shield property than the heat transfer path R2 and the heat dissipation path R3, and the heat transfer path R2 and the heat dissipation path R3 are formed of a metal film having a higher thermal conductivity than the shield layer 29.
  • nickel having a high shielding property may be used for the shield layer 29, and copper having a high thermal conductivity may be used for the heat transfer route R2 and the heat dissipation route R3.
  • a thickness of 0.021 ⁇ m or more is required to secure the shielding property with nickel, and a thickness of 10 ⁇ m or more is required to secure the heat transfer property with copper.
  • the metal films of the heat transfer path R2 and the heat dissipation path R3 are larger than the thickness of the metal film 28 of the shield layer 29.
  • the wall thickness of 28 may be formed large.
  • the shield layer 29 is formed of a copper film having a thickness of 0.24 ⁇ m or more, and the heat transfer path R2 and the heat dissipation path R3 are 10 ⁇ m. It may be formed of a copper film having the above thickness.
  • the shield layer 29 may be formed in a multi-layer structure, for example, may be formed in a two-layer structure of nickel having a high shielding property and copper having a high thermal conductivity.
  • the metallic film 28 secures the shielding property in the waveguide 23, and the directivity and the radio wave intensity of the radio wave emitted from the waveguide 23 are improved. .. Further, by adopting the resin horn 20, it is possible to reduce the amount of metal used and realize the weight reduction of the radar device 1. Due to the heat transfer path R2 passing through the outer surface of the horn 20, it is possible to suppress the occurrence of dew condensation on the waveguide 23 by utilizing the heat generation of the MMIC chip 14. Further, the heat dissipation path R3 passing through the outer surface of the horn 20 allows the heat generated by the MMIC chip 14 to escape to the heat dissipation plate 40, thereby suppressing the temperature rise of the MMIC chip 14.
  • the heat dissipation path is increased by the metal film 28 on the outer surface of the horn 20, but the heat dissipation pattern provided on the substrate 10 and the heat dissipation member provided on the MMIC chip 14 are used to increase the heat dissipation path. May be.
  • the heat radiation path of the radar device will be described with reference to the second to ninth embodiments.
  • configurations that are substantially the same as or similar to those in the first embodiment will be assigned the same reference numerals and described.
  • FIG. 6 is a schematic cross-sectional view of the radar device according to the second embodiment.
  • the radar device of the second embodiment differs from that of the first embodiment only in the partial configuration of the substrate, the horn, and the heat dissipation plate. Therefore, mainly the heat radiation path will be described, and the description of the configuration similar to that of the first embodiment will be omitted as much as possible.
  • the heat dissipation path of the MMIC chip will be described, but the heat dissipation path of the following embodiments can also be applied to heat dissipation of other electronic components.
  • the radar device 1 is provided with an MMIC chip 14 as an electronic component on one main surface 11 of the substrate 10.
  • a heat radiation path R4 is formed on one main surface 11 of the substrate 10 by a heat radiation pattern 15 extending from the vicinity of the MMIC chip 14 to the outer edge portion of the substrate 10.
  • the heat dissipation pattern 15 is electrically separated from the circuit pattern.
  • One end of the heat radiation pattern 15 is slightly separated from the MMIC chip 14, and the other end of the heat radiation pattern 15 is in contact with the peripheral wall portion 21 of the horn 20 at the outer edge portion of the substrate 10.
  • the heat dissipation pattern 15 may be made of a material having a high thermal conductivity such as copper or aluminum. The other end of the heat dissipation pattern 15 may extend along the outer edge of the substrate 10.
  • Heat dissipation grease G1 is applied to the MMIC chip 14 as a semi-solid or gel heat dissipation member, and the MMIC chip 14 is connected to one end of the heat dissipation pattern 15 via the heat dissipation grease G1. Further, the heat radiation grease G2 is applied to the other end of the heat radiation pattern 15, and the other end of the heat radiation pattern 15 is connected to the horn 20 via the heat radiation grease G2.
  • the heat dissipation grease G1 and G2 can be reduced by entering the clearance between the MMIC chip 14 and the heat dissipation pattern 15 or the clearance between the horn 20 and the heat dissipation pattern 15.
  • a heat dissipation adhesive in which the heat conductive filler is dispersed in an adhesive may be used.
  • heat dissipation paths R5 are formed by the protruding portions 27 and 43 protruding from the outer edge of the substrate 10.
  • the protruding portion 27 of the horn 20 protrudes from the peripheral wall portion 21 so as to cover the outer edge portion on the one main surface 11 side of the substrate 10, and the protruding portion 43 of the heat radiating plate 40 the other main surface of the substrate 10.
  • the protruding portion 27 of the horn 20 and the protruding portion 43 of the heat dissipation plate 40 are protruding from the peripheral wall portion 42 so as to cover the outer edge portion on the 12th side.
  • the protruding portion 27 of the horn 20 and the protruding portion 43 of the heat dissipation plate 40 are formed along the outer edge of the substrate 10, and the horn 20 and the heat dissipation plate 40 are in contact with each other in a wide range. Note that the horn 20 and the heat dissipation plate 40 may be partially formed with protruding portions 27 and 43 along a part of the outer edge portion of the substrate 10.
  • the thermal resistance may increase due to a slight gap between the contact surfaces of the protruding portions 27 and 43. Therefore, the protruding portion 27 of the horn 20 and the protruding portion 43 of the heat dissipation plate 40 are connected via the heat dissipation grease G3. As a result, the gap between the contact portion between the protruding portion 27 of the horn 20 and the protruding portion 43 of the heat dissipation plate 40 is filled with the heat dissipation grease G3, and the heat dissipation grease G3 reduces the thermal resistance between the horn 20 and the heat dissipation plate 40. Can be reduced. When the protruding portion 27 of the horn 20 and the protruding portion 43 of the heat dissipation plate 40 are in contact with each other without a gap, the heat dissipation grease G3 is unnecessary.
  • the heat dissipation pattern 15 and the heat dissipation grease G1 and G2 form the heat dissipation path R4 from the MMIC chip 14 to the horn 20.
  • a heat radiation path R5 extending from the horn 20 to the heat radiation plate 40 is formed by the protruding portions 27, 43 and the heat radiation grease G3.
  • the heat dissipation paths R4 and R5 form a heat dissipation path having a small thermal resistance. Therefore, the temperature rise of the MMIC chip 14 can be effectively suppressed by the plurality of heat radiation paths R1, R4, R5.
  • FIG. 7 is a schematic cross-sectional view of the radar device according to the third embodiment.
  • the radar device of the third embodiment differs from that of the second embodiment in that a heat dissipation sheet is used instead of the heat dissipation grease as the heat dissipation member. Therefore, the description of the same configuration as the second embodiment will be omitted as much as possible.
  • the heat dissipation path of the MMIC chip will be described, but the heat dissipation path of the following embodiments can also be applied to heat dissipation of other electronic components.
  • the heat dissipation sheet S3 is attached to the MMIC chip 14, and the MMIC chip 14 is attached to one end of the heat dissipation pattern 15 via the heat dissipation sheet S3. It is connected.
  • a heat dissipation sheet S4 is attached to the other end of the heat dissipation pattern 15, and the other end of the heat dissipation pattern 15 is connected to the horn 20 via the heat dissipation sheet S4.
  • the protruding portion 27 of the horn 20 and the protruding portion 43 of the heat dissipation plate 40 are connected via a heat dissipation sheet S5 provided along the outer edge of the substrate 10.
  • a heat dissipation sheet for example, a sheet material mixed with a heat conductive filler is used.
  • the heat radiation pattern R and the heat radiation sheets S3 and S4 form the heat radiation path R4 from the MMIC chip 14 to the horn 20.
  • a heat dissipation path R5 extending from the horn 20 to the heat dissipation plate 40 is formed by the protruding portions 27, 43 and the heat dissipation sheet S5.
  • the temperature rise of the MMIC chip 14 can be effectively suppressed by the plurality of heat radiation paths R1, R4, R5.
  • the thickness of the heat dissipation member can be made constant, and variation in heat dissipation due to the difference in thickness of the heat dissipation member can be reduced. Further, it is possible to suppress variations in device dimensions when the radar device 1 is assembled.
  • FIG. 8 is a schematic cross-sectional view of the radar device according to the fourth embodiment.
  • the radar device of the fourth embodiment differs from that of the second embodiment in that the heat dissipation path is formed by a metal plate. Therefore, the description of the same configuration as the second embodiment will be omitted as much as possible.
  • the heat dissipation path of the MMIC chip will be described, but the heat dissipation path of the following embodiments can also be applied to heat dissipation of other electronic components.
  • the heat dissipation adhesive A1 is applied to the MMIC chip 14, and the MMIC chip 14 has one end of the heat dissipation pattern 15 via the heat dissipation adhesive A1. It is connected to the.
  • Heat radiating grease G2 is applied to the other end of the heat radiating pattern 15, and the other end of the heat radiating pattern 15 is connected to the horn 20 via the heat radiating grease G2.
  • a heat dissipation path R6 is formed on one main surface 11 of the substrate 10 by a metal plate 19 which is separated from the main surface 11 in the height direction. The metal plate 19 extends from the upper surface of the MMIC chip 14 to an intermediate portion in the extending direction of the heat dissipation pattern 15.
  • the metal plate 19 may be made of a material having a high thermal conductivity such as copper or aluminum, similarly to the heat radiation pattern 15.
  • the shape and structure of the metal plate 19 are not particularly limited.
  • the protruding portion 27 of the horn 20 and the protruding portion 43 of the heat dissipation plate 40 are connected via a heat dissipation grease G3 provided along the outer edge of the substrate 10.
  • a heat dissipation sheet may be used instead of the heat dissipation grease G2 and G3.
  • the heat radiation adhesives A1, A2 and the metal plate 19 direct the heat radiation pattern 15 from the MMIC chip 14 to the heat radiation pattern 15.
  • a heat dissipation path R6 is formed. The temperature rise of the MMIC chip 14 can be effectively suppressed by the plurality of heat radiation paths R1, R4-R6.
  • FIG. 9 is a schematic cross-sectional view of the radar device according to the fifth embodiment.
  • the radar device of the fifth embodiment is different from that of the second embodiment in that a heat dissipation path is formed by the wall portion. Therefore, the description of the same configuration as the second embodiment will be omitted as much as possible.
  • the heat dissipation path of the MMIC chip will be described, but the heat dissipation path of the following embodiments can also be applied to heat dissipation of other electronic components.
  • the radar device 1 is formed in an annular shape so that one end side of the heat radiation pattern 15 surrounds the MMIC chip 14.
  • a heat dissipation grease G1 is applied to the MMIC chip 14, and the MMIC chip 14 is connected to the annular part of the heat dissipation pattern 15 via the heat dissipation grease G1.
  • the other end of the heat dissipation pattern 15 is coated with heat dissipation grease G2, and the other end of the heat dissipation pattern 15 is connected to the peripheral wall portion 21 of the horn 20 via the heat dissipation grease G2.
  • a heat dissipation path R7 is formed by the wall portion 33 that surrounds the periphery of the MMIC chip 14.
  • the wall portion 33 projects from the rear surface of the horn 20 on the substrate 10 side and is connected to the annular portion of the heat radiation pattern 15 via the heat radiation grease G4.
  • the cross-sectional shape of the wall portion 33 in plan view is not limited to the annular shape, and may be any shape that can surround the MMIC chip 14.
  • the annular portion of the heat dissipation pattern 15 is not limited to the annular shape and may be any shape that can surround the MMIC chip 14.
  • the protruding portion 27 of the horn 20 and the protruding portion 43 of the heat dissipation plate 40 are connected via a heat dissipation grease G3 provided along the outer edge of the substrate 10.
  • a heat dissipation sheet may be used instead of the heat dissipation grease G1-G4.
  • heat radiation from one end of the heat radiation pattern 15 toward the horn 20 is performed by the heat radiation grease G4 and the wall portion 33.
  • the route R7 is formed.
  • the temperature rise of the MMIC chip 14 can be effectively suppressed by the plurality of heat radiation paths R1, R4, R5, R7.
  • FIG. 10 is a schematic cross-sectional view of the radar device according to the sixth embodiment.
  • the radar device of the sixth embodiment is different from that of the second embodiment in that a heat dissipation path is formed by a heat dissipation via. Therefore, the description of the same configuration as the second embodiment will be omitted as much as possible.
  • the heat dissipation path of the MMIC chip will be described, but the heat dissipation path of the following embodiments can also be applied to heat dissipation of other electronic components.
  • the heat dissipation grease G1 is applied to the MMIC chip 14 on one main surface 11 of the substrate 10, and the MMIC chip 14 removes the heat dissipation grease G1. It is connected to one end of the heat dissipation pattern 15 through.
  • Heat radiating grease G2 is applied to the other end of the heat radiating pattern 15, and the other end of the heat radiating pattern 15 is connected to the horn 20 via the heat radiating grease G2.
  • a heat dissipation pattern 16 is formed on the other main surface 12 of the substrate 10 along the outer edge of the substrate 10, and the heat dissipation pattern 16 is connected to the heat dissipation plate 40 via a heat dissipation grease G5.
  • a heat dissipation path R8 is formed on the outer edge of the substrate 10 by a conductive heat dissipation via 17 that penetrates the substrate 10 in the thickness direction and connects the heat dissipation pattern 15 and the heat dissipation pattern 16.
  • the device can be downsized by forming the heat dissipation path by the heat dissipation via 17 instead of forming the heat dissipation path by the protruding portion of the horn 20 and the heat dissipation plate 40.
  • the heat radiation patterns 15 and 16 are not limited to being provided on the one main surface 11 and the other main surface 12, and the heat radiation pattern 15 may be provided only on one main surface 11.
  • a heat dissipation sheet may be used instead of the heat dissipation grease G1, G2, G5.
  • the heat dissipation vias 17 form the heat dissipation path R8 from the horn 20 toward the heat dissipation plate 40.
  • the plurality of heat dissipation paths R1, R4, R8 can effectively suppress the temperature rise of the MMIC chip 14.
  • the heat radiation via 17 may be formed so that the horn 20 and the heat radiation plate 40 can be connected, and the heat radiation via 17 may not be connected to the heat radiation patterns 15 and 16.
  • FIG. 11 is a schematic cross-sectional view of the radar device according to the seventh embodiment.
  • the radar device of the seventh embodiment differs from that of the second embodiment in that the heat radiation pattern is covered with a resist layer except for a part thereof. Therefore, the description of the same configuration as the second embodiment will be omitted as much as possible.
  • the heat dissipation path of the MMIC chip will be described, but the heat dissipation path of the following embodiments can also be applied to heat dissipation of other electronic components.
  • the heat radiation pattern 15 is covered with the resist layer 18 except for both ends.
  • the MMIC chip 14 is coated with heat dissipation grease G1, and the MMIC chip 14 is connected to one end (exposed portion) of the heat dissipation pattern 15 exposed from the resist layer 18 via the heat dissipation grease G1. Further, the other end (exposed portion) of the heat dissipation pattern 15 exposed from the resist layer 18 is coated with heat dissipation grease G2, and the other end of the heat dissipation pattern 15 is connected to the horn 20 via the heat dissipation grease G2. .
  • the heat dissipation path of the seventh embodiment is the same as that of the second embodiment.
  • the temperature rise of the MMIC chip 14 can be effectively suppressed by the plurality of heat radiation paths. Even if the heat dissipation pattern 15 is covered with the resist layer 18, a heat dissipation path having a small thermal resistance can be formed.
  • FIG. 12 is a schematic sectional view of the radar device according to the eighth embodiment.
  • the radar device of the eighth embodiment differs from that of the second embodiment in that the horn is provided with an abutting portion that abuts the MMIC chip. Therefore, the description of the same configuration as the second embodiment will be omitted as much as possible.
  • the heat dissipation path of the MMIC chip will be described, but the heat dissipation path of the following embodiments can also be applied to heat dissipation of other electronic components.
  • the contact portion 24 of the horn 20 is in contact with the surface of the MMIC chip 14 via the heat dissipation grease G1. Therefore, the horn 20 is formed with a heat transfer path R2 extending from the MMIC chip 14 to the shield layer (see FIG. 1) and a heat dissipation path R3 extending from the MMIC chip 14 to the heat dissipation plate 40. Further, in the radar device 1 according to the eighth embodiment, heat radiation paths R1, R4, R5 are formed as in the second embodiment. Therefore, the occurrence of dew condensation in the waveguide is prevented, and the temperature rise of the MMIC chip 14 is suppressed.
  • the temperature rise of the MMIC chip 14 can be effectively suppressed by the plurality of heat radiation paths. Further, by increasing the heat dissipation path, even if the metal film plated on the outer surface of the resin horn 20 is thinly formed, the temperature rise of the MMIC chip 14 can be suppressed to the specified temperature.
  • FIG. 13 is a schematic sectional view of the radar device according to the ninth embodiment.
  • the radar device of the ninth embodiment is different from that of the second embodiment in that a metal horn is used. Therefore, the description of the same configuration as the second embodiment will be omitted as much as possible.
  • the heat dissipation path of the MMIC chip will be described, but the heat dissipation path of the following embodiments can also be applied to heat dissipation of other electronic components.
  • the horn 20 is made of a material such as aluminum having a high shield property and high thermal conductivity. Further, in the radar device 1 according to the ninth embodiment, heat radiation paths R1, R4, R5 are formed as in the second embodiment. Even with such a configuration, the temperature rise of the MMIC chip 14 can be effectively suppressed by the plurality of heat dissipation paths. Further, the heat dissipation of the MMIC chip 14 can be improved by using the metal horn 20 having a large heat capacity.
  • the plurality of antennas 13 are provided on the substrate 10 and the plurality of waveguides 23 are formed on the horn 20 in each of the above-described embodiments, the single antenna 13 is provided on the substrate 10 and the horns are provided.
  • a single waveguide 23 may be formed in 20.
  • the metal film 28 is formed on the entire outer surface of the horn 20, and the shield layer 29, the heat transfer path R2, and the heat dissipation path R3 are formed.
  • the present invention is not limited to this.
  • the metal film 28 may be partially formed on the outer surface of the horn 20 to form the shield layer 29, the heat transfer path R2, and the heat dissipation path R3.
  • the radar device (1) has the substrate (10) having the electronic component (MMIC chip 14) provided on the one main surface (11) and the one main surface of the substrate (10).
  • a radar device (1) comprising a horn (20) arranged on a surface (11) and a heat dissipation plate (40) provided on the other main surface (12) of the substrate (10), the substrate comprising:
  • a heat radiation pattern (15) is formed on one main surface (11) of (10)
  • the electronic component (MMIC chip 14) is a first heat radiation member (heat radiation grease G1, heat radiation sheet S1, heat radiation adhesive A1). )
  • the horn (20) is connected to the heat dissipation pattern (15) via the second heat dissipation member (heat dissipation grease G2, heat dissipation sheet S2).
  • the electronic component (MMIC chip 14) is connected to the heat dissipation pattern (15) via the heat dissipation member (heat dissipation grease G1, heat dissipation sheet S1, heat dissipation adhesive A1), and the heat dissipation pattern (15) is the heat dissipation member. It is connected to the horn (20) via (heat dissipation grease G2, heat dissipation sheet S2). Therefore, in addition to the heat dissipation path (R1) in the thickness direction of the substrate (10) that goes from the electronic component (MMIC chip 14) to the heat sink (40), the thermal resistance that goes from the electronic component (MMIC chip 14) to the horn (20). A small heat radiation path (R4) is formed. The plurality of heat radiation paths can effectively suppress the temperature rise of the electronic component (MMIC chip 14).
  • the first heat dissipation member and the second heat dissipation member are semi-solid or gel heat dissipation members (heat dissipation grease G1, G2, heat dissipation adhesive A1).
  • the semi-solid or gel heat dissipation member (heat dissipation grease G1, G2, heat dissipation adhesive A1) dissipates heat between the horn (20) and the gap between the electronic component (MMIC chip 14) and the heat dissipation pattern (15).
  • the thermal resistance can be reduced because it enters the gap of the pattern (15).
  • the semi-solid or gel-shaped heat dissipation member is heat dissipation grease (G1-G5) or heat dissipation adhesive (A1, A2).
  • the gap between the members can be filled with the heat dissipation grease (G1-G5) or the heat dissipation adhesive (A1, A2).
  • the first heat radiation member and the second heat radiation member are heat radiation sheets (S3-S5).
  • the thickness of the heat dissipation member can be made constant, and variations in heat dissipation due to differences in the thickness of the heat dissipation member can be reduced. Further, since the heat dissipation sheet (S3-S5) is sandwiched between the horn (20) and the substrate (10), it is possible to suppress variations in device dimensions during assembly.
  • the horn (20) and the heat dissipation plate (40) have protruding portions (27, 43) protruding from the outer edge of the substrate (10), and the horn ( The protruding portion (27) of 20) and the protruding portion (43) of the heat sink (40) are in contact with each other.
  • a heat dissipation path (R5) from the horn (20) to the heat dissipation plate (40) is formed.
  • the protruding portion (27) of the horn (20) and the protruding portion (43) of the heat dissipation plate (40) extend along the outer edge of the substrate (10). Has been formed.
  • the heat dissipation path (R5) can be formed in a wide range around the substrate (10).
  • the protruding portion (27) of the horn (20) and the protruding portion (43) of the heat sink (40) are semi-solid or gel-shaped third. Are connected via the heat dissipation member (heat dissipation gel G3).
  • a metal plate (19) is provided apart from one main surface (11) of the substrate (10) in the height direction, and the metal plate (19) is It is supported by the first heat dissipation member (heat dissipation adhesive A1) on the electronic component (MMIC chip 14) and the fourth heat dissipation member (heat dissipation adhesive A2) on the heat dissipation pattern (15).
  • a heat radiation path (from the electronic component (MMIC chip 14) to the heat radiation pattern (15) via the metal plate (19) at a position separated from the one main surface (11) of the substrate (10) ( R6) is formed.
  • the horn (20) is provided with a wall portion (33) surrounding the electronic component (MMIC chip 14), and the wall portion (33) is a fifth heat dissipation member. It is connected to the heat dissipation pattern (15) via (heat dissipation grease G4).
  • a heat dissipation path (R7) is formed from the heat dissipation pattern (15) to the horn (20) through the wall portion (33).
  • a heat radiation via (17) penetrating the substrate (10) in the thickness direction is provided at the outer edge portion of the substrate (10), and the horn (20) serves as a heat radiation via ( It is connected to the heat sink (40) via 17).
  • a heat dissipation path (R8) from the horn (20) to the heat dissipation plate (40) via the heat dissipation via (17) is formed.
  • the temperature rise of the electronic component (MMIC chip 14) can be suppressed more effectively.
  • the size of the device can be reduced.
  • the heat radiation pattern (15) is covered with a resist layer (18) except for a part thereof, and the electronic component (MMIC chip 14) has a first heat radiation member (heat radiation).
  • the horn (20) is connected to the exposed portion of the heat dissipation pattern (15) exposed from the resist layer (18) via the grease G1, the heat dissipation sheet S1, and the heat dissipation adhesive A1), and the horn (20) is connected to the second heat dissipation member (heat dissipation grease). It is connected to the other exposed portion of the heat dissipation pattern (15) exposed from the resist layer (18) via G2 and the heat dissipation sheet S2.
  • the heat resistance of the electronic component (MMIC chip 14) and the heat dissipation pattern (15) and the heat resistance of the heat dissipation pattern (15) and the horn (20) are reduced to form a heat dissipation path having a small heat resistance.

Abstract

電子部品の温度上昇を抑えることができるレーダ装置を提供すること。 一方の主面(11)にMMICチップ(14)が設けられた基板(10)と、基板(10)の一方の主面(11)に配置されたホーン(20)と、基板(10)の他方の主面(12)に設けられた放熱板(40)と、を備えたレーダ装置(1)であり、基板(10)の一方の主面(11)には放熱パターン(15)が形成されており、MMICチップ(14)が放熱グリス(G1)を介して放熱パターン(15)に接続されると共にホーン(20)が放熱グリス(G2)を介して放熱パターン(15)に接続されている。

Description

レーダ装置
 本発明はレーダ装置に関する。
 近年、自動運転等の基盤技術として、車両周囲の障害物を検知するレーダ装置が開発されている。レーダ装置には基板上に電波を発生する電子部品が実装されており、この電子部品は特に消費電力が大きいため、発熱によって誤動作が生じるおそれがある。このため、レーダ装置として、電子部品の放熱性を確保するものが知られている(例えば、特許文献1参照)。特許文献1に記載のレーダ装置は、基板の上面に電子部品を囲むようにグランドパターンが形成されている。基板上のグランドパターンに接するようにフレームが設置され、電子部品の発熱がグランドパターンを介してフレームに逃がされている。
特開2017-161322号公報
 しかしながら、上記のレーダ装置では、電子部品の周囲にグランドパターンが形成されているが、電子部品の発熱をダイレクトにグランドパターンに伝えるものではない。電子部品とグランドパターンには僅かに隙間が空いており、電子部品とグランドパターンの熱抵抗が大きく、電子部品の温度を十分に下げることができない。このため、電子部品の温度が許容温度よりも上昇するおそれがあった。
 本発明は前記課題を解決するもので、その目的とするところは、電子部品の温度上昇を抑えることができるレーダ装置を提供することである。
 本発明の一態様のレーダ装置は、一方の主面に電子部品が設けられた基板と、前記基板の一方の主面に配置されたホーンと、前記基板の他方の主面に設けられた放熱板と、を備えたレーダ装置であって、前記基板の一方の主面には放熱パターンが形成されており、前記電子部品が第1の放熱部材を介して前記放熱パターンに接続されると共に前記ホーンが第2の放熱部材を介して前記放熱パターンに接続されることを特徴とする。
 本発明によれば、電子部品から放熱板に向かう基板の厚み方向の放熱経路に加えて、電子部品からホーンに向かう熱抵抗が小さな放熱経路が形成されて、電子部品の温度上昇を効果的に抑えることができる。本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第1の実施形態に係るレーダ装置の分解斜視図。 第1の実施形態に係るレーダ装置の断面模式図。 図3Aは比較例に係る電波の放射状態の説明図、図3Bは第1の実施形態の電波の放射状態の説明図。 図4Aは比較例に係る複数アンテナによる電波の放射状態の説明図、図4Bは第1の実施形態の複数アンテナによる電波の放射状態の説明図。 図5Aは比較例に係る伝熱経路及び放熱経路の説明図、図5Bは第1の実施形態に係る伝熱経路及び放熱経路の説明図。 第2の実施形態のレーダ装置の断面模式図。 第3の実施形態のレーダ装置の断面模式図。 第4の実施形態のレーダ装置の断面模式図。 第5の実施形態のレーダ装置の断面模式図。 第6の実施形態のレーダ装置の断面模式図。 第7の実施形態のレーダ装置の断面模式図。 第8の実施形態のレーダ装置の断面模式図。 第9の実施形態のレーダ装置の断面模式図。
[第1の実施形態]
 以下、図1を参照して、第1の実施形態に係るレーダ装置の全体構成について説明する。図1は、第1の実施形態に係るレーダ装置の分解斜視図である。なお、以下の説明では、レーダ装置としてミリ波レーダを例示して説明するが、本開示の技術は電波を放出して障害物を検知する他のレーダ装置に利用することが可能である。
 図1に示すように、レーダ装置1は、ミリ波レーダ装置であり、ミリ波帯の電波を放射して、障害物からの反射波を受信して障害物を検知している。レーダ装置1の基板10の一方の主面11には、複数のMMIC(Monolithic Microwave Integrated Circuit)チップ14が設けられている。各MMICチップ14には給電線(不図示)を介して複数のアンテナ13が接続されている。各MMICチップ14からの電力供給によって各アンテナ13から電波が放射され、各アンテナ13で捕らえた電波は給電線を通じて各MMICチップ14に送られる。
 なお、アンテナ13は、基板10上に設けられたパッチアンテナ等の平面アンテナでもよいし、基板10上に設けられた表面実装型のチップアンテナでもよい。基板10上には、半導体チップとして送受信用のMMICチップ14が配置される構成にしたが、送信用のMMICチップ14と受信用のMMICチップ14が個別に配置されてもよい。半導体チップとして、他のMIC(Microwave Integrated Circuit)チップが使用されてもよい。また、基板10には、ガラスエポキシ基板、セラミック基板等が使用されてもよいし、低誘電率のフッ素樹脂製の高周波用基板が使用されてもよい。
 レーダ装置1の基板10の一方の主面11には、外面を金属メッキした平面視矩形状の樹脂製のホーン20が配置されている。ホーン20には、基板10上の複数のアンテナ13に対応する位置にそれぞれ導波路23が形成されている。各導波路23は、短距離用、中距離用、長距離用に種類が分かれている。複数の導波路23から外部に向けて電波が放出されることで、レーダ装置1からの距離が異なる障害物を検知することが可能になっている。各導波路23は、基板10の一方の主面11から遠ざかるにつれて幅広になるように、ホーン20のテーパ面によって角錐状又は円錐状に形成されている。
 なお、ホーン20には、PBT(Polybutylene Terephthalate)樹脂、PPS(Poly Phenylene Sulfide)樹脂、PP(Poly Propylene)樹脂、ABS(Acrylonitrile Butadiene Styrene)樹脂、PS(Poly Styrene)樹脂、PE(Poly Ethylene)樹脂、PVC(Poly Vinyl Chloride)樹脂、PC(Poly Carbonate)樹脂、PET(Poly Ethylene Terephthalate)樹脂、LCP(Liquid Crystal Polymer)樹脂、PPO(Poly Phenylene Oxide)樹脂、エポキシ(Epoxy)樹脂、Si(Silicone)樹脂、ポリエステル(Polyester)樹脂などを主成分とする熱可塑性樹脂、または熱硬化性樹脂の軽量で熱伝導率が低い樹脂が使用されてもよい。金属メッキによってホーン20の外面に形成された金属膜28(図2参照)には、熱伝導率が高くシールド性を持った銀(Ag)、銅(Cu)、金(Au)、ニッケル(Ni)、錫(Sn)等のいずれかを少なくとも含む金属が使用されてもよい。ホーン20の外面の金属膜28は、メッキの他、スパッタ法、インクジェット法、スクリーン印刷法、CVD(Chemical Vapor Deposition)法、PVD(Physical Vapor Deposition)法等によって形成されてもよい。
 ホーン20には、複数の導波路23を覆うように平面視矩形状のレンズ30が配置されている。レンズ30の基板10側の裏面には、ホーン20の複数の導波路23に対応して複数のレンズ面31(図2参照)が形成されている。アンテナ13から導波路23内で放射状に拡散した電波はレンズ30で平面波に変換されて外部に放出される。外部からの反射波はレンズ30によって導波路23内で収束されてアンテナ13に受信される。なお、レンズ30には、PBT樹脂、PPS樹脂等の誘電体材料が使用されてもよい。
 ホーン20及びレンズ30の外縁部は矩形枠状のハウジング35で押さえられている。
ハウジング35は、ホーン20及びレンズ30を抜け止めする開口縁部36と、レーダ装置1の側面を形成する側壁部37とを有している。ハウジング35の開口縁部36上には、レーダ装置1の表面を形成するカバー39が固定されている。カバー39は、ハウジング35に固定される外周部分を除いて膨出しており、雨や風等の自然環境から装置内部を保護するレドームとして機能している。なお、ハウジング35及びカバー39には、PBT樹脂、PPS樹脂等の樹脂材料が使用されてもよい。
 基板10の他方の主面12には、基板10の熱を逃がす放熱板40が設けられている。
放熱板40の基板10側の表面には、基板10上の複数のMMICチップ14に対応する位置に複数の支持台41が形成されている。放熱板40の裏面は、レーダ装置1の裏面を形成するベース45に支持されている。各支持台41の支持面は放熱シートS1を介して基板10に接触し、ベース45は放熱シートS2を介して放熱板40に接触している。レーダ装置1には、放熱板40及びベース45によってMMICチップ14の熱を逃がす放熱経路が形成される。なお、放熱板40及びベース45にはアルミニウム等の熱伝導率が高い材料が使用されてもよい。
 図2を参照して、第1の実施形態に係るレーダ装置の詳細構成について説明する。図2は、第1の実施形態に係るレーダ装置の断面模式図である。
 図2に示すように、基板10の一方の主面11にはMMICチップ14が配置されると共に、MMICチップ14に離間してアンテナ13が設けられている。また、基板10の一方の主面11には、樹脂成形体の外面に金属メッキによって金属膜28を形成したホーン20が配置されている。ホーン20の外周部分には基板10の外縁を囲む周壁部21が設けられ、周壁部21はハウジング35の開口縁部36を避けるように段状に形成されている。ホーン20の内側部分には導波路23が形成されたホーン本体22が設けられ、ホーン本体22の基板10側の裏面はMMICチップ14やアンテナ13に対応する箇所が部分的に突出している。
 ホーン本体22の裏面には、MMICチップ14に対応する箇所に、MMICチップ14の表面に当接する断面視台形状の当接部24が設けられている。また、ホーン本体22の裏面には、アンテナ13に対応する箇所に、導波路23に沿って突出する薄厚のガイド部25が設けられている。導波路23は、基板10の一方の主面11から遠ざかるにつれて対向間隔が広くなるように、ホーン本体22及びガイド部25のテーパ状の壁面26によって形成されている。また、ホーン本体22の表面側にはレンズ30が配置されており、レンズ30の裏面には導波路23の中心線を光軸とする凸面状のレンズ面31が形成されている。
 基板10の他方の主面12には放熱板40が設けられている。放熱板40の外周部分には基板10の外縁を囲む周壁部42が設けられ、放熱板40の内側部分にはMMICチップ14に対応する箇所で基板10に当接する支持台41が設けられている。放熱板40の周壁部42はホーン20の周壁部21に当接しており、放熱板40の支持台41は放熱シートS1を介して基板10に当接している。放熱板40は、放熱シートS2を介してベース45に支持されている。ベース45は放熱板40と同様に熱伝導率が高い金属で形成されているため、ベース45も放熱板として機能している。
 ホーン20の外面が金属膜28で覆われているため、導波路23を形成するホーン20の壁面には金属膜28によって電波を遮蔽するシールド層29が形成されている。これにより、導波路23内の電波のシールド性が確保されて、電波の指向性及び強度が向上される。また、当接部24が金属膜28を介してMMICチップ14の表面に接触しているため、MMICチップ14からシールド層29に向かう伝熱経路R2が金属膜28で形成されると共に、MMICチップ14から放熱板40に向かう放熱経路R3が金属膜28で形成される。これにより、導波路23内の結露の発生が防止されると共に、MMICチップ14の温度上昇が抑えられている。
 図3A及び図3Bを参照して、レーダ装置の電波の指向性及び強度について説明する。
図3Aは、比較例に係る電波の放射状態の説明図である。図3Bは、第1の実施形態の電波の放射状態の説明図である。なお、比較例のレーダ装置は、本実施形態のレーダ装置と比較して樹脂製のホーンの外面が金属メッキされていない点でのみ相違している。
 図3Aに示すように、比較例に係るレーダ装置50では、MMICチップ53からアンテナ52に電力が供給されると、アンテナ52から外部に向けて電波が放射される。アンテナ52から導波路55の内側に向う電波は、導波路55を通じてレンズ面57に導かれて、レンズ面57で平面波に変換されて障害物の検知に使用される。アンテナ52から導波路55の外側に向かう電波は、樹脂製のホーン54内を直進して外部に放出されて障害物の検知に使用されない。よって、ホーン54の軽量化を図ることができるものの、電波利用効率が低くなって、電波の指向性及び強度が低下している。
 一方で、図3Bに示すように、第1の実施形態に係るレーダ装置1では、導波路23を形成するホーン20のテーパ状の壁面26に金属膜28でシールド層29が形成されて導波路23のシールド性が確保されている。アンテナ13から導波路23の内側に向かう電波も、アンテナ13から導波路23の外側に向かう電波も、ホーン20のシールド層29によってレンズ面31に導かれて、レンズ面31で平面波に変換されて障害物の検知に使用される。よって、ホーン20の軽量化を図ることができると共に、電波利用効率が高くなって、電波の指向性及び強度が向上して検知精度が向上される。
 図4A及び図4Bを参照して、レーダ装置の電波干渉について説明する。図4Aは、比較例に係る複数アンテナによる電波の放射状態の説明図である。図4Bは、第1の実施形態の複数アンテナによる電波の放射状態の説明図である。
 図4Aに示すように、比較例に係るレーダ装置50には複数のアンテナ52に対応して複数の導波路55が形成され、各アンテナ52から同時に電波が放射されている。各アンテナ52から各導波路55の内側に向かう電波は、それぞれ導波路55を通じてレンズ面57に導かれて、レンズ面57で平面波に変換されて障害物の検知に使用される。各アンテナ52から各導波路55の外側に向かう電波は、樹脂製のホーン54内を直進して隣の導波路55に入り込んで電波干渉を起こしている。この電波干渉によって障害物の検知性能が悪化している。
 一方で、図4Bに示すように、第1の実施形態に係るレーダ装置1では、複数のアンテナ13から同時に電波が放射されても、ホーン20のシールド層29によって導波路23外への電波の漏れが防止されている。アンテナ13から導波路23の内側に向かう電波も、アンテナ13から導波路23の外側に向かう電波も、ホーン20のシールド層29によってレンズ面31に導かれて、レンズ面31で平面波に変換されて障害物の検知に使用される。よって、複数の導波路23の間で電波干渉を起こすことがなく、電波干渉によって障害物の検知性能が悪化することがない。
 図5A及び図5Bを参照して、レーダ装置の伝熱経路及び放熱経路について説明する。
図5Aは、比較例に係る伝熱経路及び放熱経路の説明図である。図5Bは、第1の実施形態に係る伝熱経路及び放熱経路の説明図である。
 図5Aに示すように、比較例に係るレーダ装置50では、MMICチップ53の発熱によって装置内の空気が温められると、内外温度差によってホーン54のテーパ状の壁面58に結露59が生じて電波が乱れる場合がある。また、MMICチップ53の発熱が基板51及び放熱シートS1を介して放熱板60の支持台61に伝えられ、さらに放熱板60から放熱シートS2を介してベース62に伝えられる。MMICチップ53から基板51の厚み方向に向かう放熱経路R1だけでは、MMICチップ53の温度上昇を効果的に抑えることができない。
 一方で、図5Bに示すように、第1の実施形態に係るレーダ装置1では、ホーン20の外面にMMICチップ14からシールド層29に向かう伝熱経路R2が形成されている。
伝熱経路R2は、当接部24からガイド部25までのホーン20の外面を覆う金属膜28によって形成され、ガイド部25の先端部分で伝熱経路R2の金属膜28とシールド層29の金属膜28が連なっている。MMICチップ14の発熱が伝熱経路R2を通じてシールド層29に伝わり、シールド層29が温められて結露59の発生が抑えられる。このように、導波路23の結露59の発生を抑えるために、MMICチップ14の発熱を利用している。
 このとき、MMICチップ14の発熱はホーン20の外面の金属膜28に伝わり易いが、ホーン20の樹脂成形部分は熱伝導率が低いため、ホーン20の外面の金属膜28から内側の樹脂成形部分には熱が伝わり難くなっている。MMICチップ14から熱伝導率が高く熱容量が小さな金属膜28に集中的に熱が伝わるため、MMICチップ14の発熱によって伝熱経路R2を介してシールド層29を短時間で温めることができる。よって、レーダ装置1の起動直後からシールド層29を温めることができ、結露59による電波の乱れを効果的に抑えることができる。
 また、第1の実施形態に係るレーダ装置1では、ホーン20の外面にMMICチップ14から放熱板40に向かう放熱経路R3が形成されている。放熱経路R3は、当接部24から周壁部21までのホーン20の外面を覆う金属膜28によって形成され、ホーン20の周壁部21と放熱板40の周壁部42の合わせ面で放熱経路R3の金属膜28が放熱板40に接触している。MMICチップ14の発熱が放熱経路R3を通じて放熱板40の周壁部42に伝えられ、放熱板40から放熱シートS2を介してベース45に伝えられる。
このように、MMICチップ14から基板10の厚み方向に向かう放熱経路R1に加えて、MMICチップ14からホーン20の外面を通る放熱経路R3によってMMICチップ14の温度上昇を抑えることができる。
 ここでは、シールド層29と伝熱経路R2及び放熱経路R3を同一材料の金属膜28で形成したが、この構成に限定されない。シールド層29は伝熱経路R2及び放熱経路R3よりもシールド性が高い金属膜で形成され、伝熱経路R2及び放熱経路R3はシールド層29よりも熱伝導率が高い金属膜で形成されてもよい。例えば、シールド層29にはシールド性が高いニッケルが使用され、伝熱経路R2及び放熱経路R3には熱伝導率が高い銅が使用されてもよい。ニッケルでシールド性を確保するためには0.021μm以上の厚みが必要であり、銅で伝熱性を確保するためには10μm以上の厚みが必要である。
 また、シールド層29と伝熱経路R2及び放熱経路R3とを同一の金属膜28で形成する場合に、シールド層29の金属膜28の肉厚よりも伝熱経路R2及び放熱経路R3の金属膜28の肉厚が大きく形成されてもよい。例えば、シールド層29と伝熱経路R2及び放熱経路R3を銅膜で形成する場合に、シールド層29は0.24μm以上の厚みの銅膜で形成され、伝熱経路R2及び放熱経路R3は10μm以上の厚みの銅膜で形成されてもよい。これにより、MMICチップ14の発熱が、伝熱経路R2及び放熱経路R3の金属膜28が厚くなった分だけ、MMICチップ14から金属膜28に熱を伝え易くなる。また、シールド層29は、複数層構造で形成されてもよく、例えばシールド性が高いニッケルと熱伝導率が高い銅の二層構造で形成されてもよい。
 以上のように、第1の実施形態のレーダ装置1では、金属膜28によって導波路23内のシールド性が確保されて、導波路23から放出される電波の指向性及び電波強度が向上される。また、樹脂製のホーン20を採用することで、金属の使用量を抑えてレーダ装置1の軽量化を実現することができる。ホーン20の外面を通る伝熱経路R2によって、MMICチップ14の発熱を利用して導波路23の結露の発生を抑えることができる。さらに、ホーン20の外面を通る放熱経路R3によって、MMICチップ14の発熱が放熱板40に逃がされて、MMICチップ14の温度上昇を抑えることができる。
 第1の実施形態では、ホーン20の外面の金属膜28によって放熱経路を増やす構成にしたが、基板10上に設けた放熱パターンとMMICチップ14に設けた放熱部材を利用して放熱経路を増やしてもよい。以下、第2-第9の実施形態を参照して、レーダ装置の放熱経路について説明する。また、第2-第9の実施形態では、第1の実施形態と実質的に同一の構成及び類似する構成については同一の符号を付して説明する。
[第2の実施形態]
 図6は、第2の実施形態のレーダ装置の断面模式図である。なお、第2の実施形態のレーダ装置は、基板、ホーン、放熱板の一部構成のみ第1の実施形態と相違している。したがって、主に放熱経路についてのみ説明し、第1の実施形態と同様な構成については説明を極力省略する。ここでは、MMICチップの放熱経路について説明するが、以下の実施形態の放熱経路は他の電子部品の放熱に適用することも可能である。
 図6に示すように、第2の実施形態に係るレーダ装置1は、基板10の一方の主面11に電子部品としてMMICチップ14が設けられている。基板10の一方の主面11には、MMICチップ14付近から基板10の外縁部まで延びた放熱パターン15によって放熱経路R4が形成されている。放熱パターン15は、回路パターンから電気的に離間している。放熱パターン15の一端部はMMICチップ14から僅かに離間しており、放熱パターン15の他端部は基板10の外縁部でホーン20の周壁部21に接触している。なお、放熱パターン15は、銅やアルミニウム等の熱伝導率が高い材料で形成されていればよい。また、放熱パターン15の他端部は基板10の外縁部に沿って延びていてもよい。
 MMICチップ14には半固体状又はゲル状の放熱部材として放熱グリスG1が塗布されており、MMICチップ14が放熱グリスG1を介して放熱パターン15の一端部に接続されている。また、放熱パターン15の他端部には放熱グリスG2が塗布されており、放熱パターン15の他端部が放熱グリスG2を介してホーン20に接続されている。放熱グリスG1、G2がMMICチップ14と放熱パターン15の隙間やホーン20と放熱パターン15の隙間に入り込むことで熱抵抗を減らすことができる。なお、放熱部材としては、熱伝導性フィラーをグリスに分散した放熱グリスの代わりに、熱伝導性フィラーを接着剤に分散した放熱接着剤が使用されてもよい。
 また、ホーン20及び放熱板40には、基板10の外縁から食み出した食み出し部27、43によって放熱経路R5が形成されている。ホーン20の食み出し部27は基板10の一方の主面11側の外縁部を覆うように周壁部21から食み出し、放熱板40の食み出し部43は基板10の他方の主面12側の外縁部を覆うように周壁部42から食み出して、ホーン20の食み出し部27と放熱板40の食み出し部43が接触している。ホーン20の食み出し部27と放熱板40の食み出し部43は基板10の外縁部に沿って形成されており、ホーン20と放熱板40が広い範囲で接触している。なお、ホーン20及び放熱板40には基板10の外縁部の一部に沿って食み出し部27、43が部分的に形成されていてもよい。
 ホーン20の食み出し部27と放熱板40の食み出し部43の接触状態によっては、食み出し部27、43の接触面の僅かな隙間によって熱抵抗が増加する場合がある。このため、ホーン20の食み出し部27と放熱板40の食み出し部43は放熱グリスG3を介して接続されている。これにより、ホーン20の食み出し部27と放熱板40の食み出し部43の接触面の隙間を放熱グリスG3で埋めて、放熱グリスG3によってホーン20と放熱板40の間の熱抵抗を減らすことができる。なお、ホーン20の食み出し部27と放熱板40の食み出し部43が隙間なく接触している場合には放熱グリスG3は不要である。
 以上のように、第2の実施形態のレーダ装置1には、放熱パターン15及び放熱グリスG1、G2によってMMICチップ14からホーン20に向かう放熱経路R4が形成されている。さらに、レーダ装置1には、食み出し部27、43及び放熱グリスG3によってホーン20から放熱板40に向かう放熱経路R5が形成されている。このように、MMICチップ14から基板10の厚み方向に向かう放熱経路R1に加えて、放熱経路R4、R5によって熱抵抗が小さな放熱経路が形成されている。よって、複数の放熱経路R1、R4、R5によってMMICチップ14の温度上昇を効果的に抑えることができる。
[第3の実施形態]
 図7は、第3の実施形態のレーダ装置の断面模式図である。なお、第3の実施形態のレーダ装置は、放熱部材として放熱グリスの代わりに放熱シートを使用した点で第2の実施形態と相違している。したがって、第2の実施形態と同様な構成については説明を極力省略する。ここでは、MMICチップの放熱経路について説明するが、以下の実施形態の放熱経路は他の電子部品の放熱に適用することも可能である。
 図7に示すように、第3の実施形態に係るレーダ装置1は、MMICチップ14に放熱シートS3が貼着されており、MMICチップ14が放熱シートS3を介して放熱パターン15の一端部に接続されている。放熱パターン15の他端部には放熱シートS4が貼着されており、放熱パターン15の他端部が放熱シートS4を介してホーン20に接続されている。ホーン20の食み出し部27及び放熱板40の食み出し部43は、基板10の外縁に沿って設けた放熱シートS5を介して接続されている。放熱シートとしては、例えば熱伝導性フィラーを配合したシート材が使用される。
 以上のように、第3の実施形態のレーダ装置1には、放熱パターン15及び放熱シートS3、S4によってMMICチップ14からホーン20に向かう放熱経路R4が形成されている。さらに、レーダ装置1には、食み出し部27、43及び放熱シートS5によってホーン20から放熱板40に向かう放熱経路R5が形成されている。このように、複数の放熱経路R1、R4、R5によってMMICチップ14の温度上昇を効果的に抑えることができる。また、放熱部材の厚みを一定にすることができ、放熱部材の厚みの違いによる放熱性のバラツキを減らすことができる。また、レーダ装置1の組み立て時の装置寸法のバラツキを抑えることができる。
[第4の実施形態]
 図8は、第4の実施形態のレーダ装置の断面模式図である。なお、第4の実施形態のレーダ装置は、金属板によって放熱経路を形成した点で第2の実施形態と相違している。したがって、第2の実施形態と同様な構成については説明を極力省略する。ここでは、MMICチップの放熱経路について説明するが、以下の実施形態の放熱経路は他の電子部品の放熱に適用することも可能である。
 図8に示すように、第4の実施形態に係るレーダ装置1は、MMICチップ14に放熱接着剤A1が塗布されており、MMICチップ14が放熱接着剤A1を介して放熱パターン15の一端部に接続されている。放熱パターン15の他端部には放熱グリスG2が塗布されており、放熱パターン15の他端部が放熱グリスG2を介してホーン20に接続されている。基板10の一方の主面11には、当該主面11から高さ方向に離間した金属板19によって放熱経路R6が形成されている。金属板19は、MMICチップ14の上面から放熱パターン15の延在方向の途中部分まで伸びている。
 金属板19の一端部はMMICチップ14上の放熱接着剤A1に支持され、金属板19の他端部は放熱パターン15上の放熱接着剤A2に支持されている。なお、金属板19は、放熱パターン15と同様に、銅やアルミニウム等の熱伝導率が高い材料で形成されていればよい。金属板19の形状や構造は特に限定されるものではない。ホーン20の食み出し部27及び放熱板40の食み出し部43は、基板10の外縁に沿って設けた放熱グリスG3を介して接続されている。なお、第4の実施形態では、放熱グリスG2、G3の代わりに放熱シートが使用されてもよい。
 以上のように、第4の実施形態のレーダ装置1には、上記の放熱経路R1、R4、R5に加えて、放熱接着剤A1、A2及び金属板19によってMMICチップ14から放熱パターン15に向かう放熱経路R6が形成されている。複数の放熱経路R1、R4-R6によってMMICチップ14の温度上昇を効果的に抑えることができる。
[第5の実施形態]
 図9は、第5の実施形態のレーダ装置の断面模式図である。なお、第5の実施形態のレーダ装置は、壁部によって放熱経路を形成した点で第2の実施形態と相違している。したがって、第2の実施形態と同様な構成については説明を極力省略する。ここでは、MMICチップの放熱経路について説明するが、以下の実施形態の放熱経路は他の電子部品の放熱に適用することも可能である。
 図9に示すように、第5の実施形態に係るレーダ装置1は、放熱パターン15の一端側がMMICチップ14を囲むように環状に形成されている。MMICチップ14には放熱グリスG1が塗布されており、MMICチップ14が放熱グリスG1を介して放熱パターン15が環状部分に接続されている。放熱パターン15の他端部には放熱グリスG2が塗布されており、放熱パターン15の他端部が放熱グリスG2を介してホーン20の周壁部21に接続されている。ホーン20には、MMICチップ14の周囲を囲む壁部33によって放熱経路R7が形成されている。
 壁部33はホーン20の基板10側の裏面から突出して、放熱グリスG4を介して放熱パターン15の環状部分に接続されている。なお、壁部33の平面視の断面形状は円環形状に限らず、MMICチップ14を囲むことができる形状であればよい。同様に、放熱パターン15の環状部分は円環形状に限らず、MMICチップ14を囲むことができる形状であればよい。また、ホーン20の食み出し部27及び放熱板40の食み出し部43は、基板10の外縁に沿って設けた放熱グリスG3を介して接続されている。なお、第5の実施形態では、放熱グリスG1-G4の代わりに放熱シートが使用されてもよい。
 以上のように、第5の実施形態のレーダ装置1には、上記の放熱経路R1、R4、R5に加えて、放熱グリスG4及び壁部33によって放熱パターン15の一端部からホーン20に向かう放熱経路R7が形成されている。複数の放熱経路R1、R4、R5、R7によってMMICチップ14の温度上昇を効果的に抑えることができる。
[第6の実施形態]
 図10は、第6の実施形態のレーダ装置の断面模式図である。なお、第6の実施形態のレーダ装置は、放熱ビアによって放熱経路を形成した点で第2の実施形態と相違している。したがって、第2の実施形態と同様な構成については説明を極力省略する。ここでは、MMICチップの放熱経路について説明するが、以下の実施形態の放熱経路は他の電子部品の放熱に適用することも可能である。
 図10に示すように、第6の実施形態に係るレーダ装置1は、基板10の一方の主面11上のMMICチップ14に放熱グリスG1が塗布されており、MMICチップ14が放熱グリスG1を介して放熱パターン15の一端部に接続されている。放熱パターン15の他端部には放熱グリスG2が塗布されており、放熱パターン15の他端部が放熱グリスG2を介してホーン20に接続されている。基板10の他方の主面12には、基板10の外縁部に沿って放熱パターン16が形成されており、放熱パターン16が放熱グリスG5を介して放熱板40に接続されている。
 基板10の外縁部には当該基板10を厚み方向に貫通して、放熱パターン15と放熱パターン16を接続する導電性の放熱ビア17によって放熱経路R8が形成されている。このように、ホーン20及び放熱板40の食み出し部によって放熱経路を形成する代わりに、放熱ビア17によって放熱経路を形成することで装置を小型化することが可能になっている。なお、一方の主面11及び他方の主面12に放熱パターン15、16を設ける構成に限らず、一方の主面11のみに放熱パターン15が設けられていてもよい。なお、第6の実施形態では、放熱グリスG1、G2、G5の代わりに放熱シートが使用されてもよい。
 以上のように、第6の実施形態のレーダ装置1には、上記の放熱経路R1、R4に加えて、放熱ビア17によってホーン20から放熱板40に向かう放熱経路R8が形成されている。複数の放熱経路R1、R4、R8によってMMICチップ14の温度上昇を効果的に抑えることができる。なお、放熱ビア17はホーン20と放熱板40を接続可能に形成されていればよく、放熱ビア17は放熱パターン15、16に接続されていなくてもよい。
[第7の実施形態]
 図11は、第7の実施形態のレーダ装置の断面模式図である。なお、第7の実施形態のレーダ装置は、放熱パターンが一部を除いてレジスト層で覆われている点で第2の実施形態と相違している。したがって、第2の実施形態と同様な構成については説明を極力省略する。ここでは、MMICチップの放熱経路について説明するが、以下の実施形態の放熱経路は他の電子部品の放熱に適用することも可能である。
 図11に示すように、第7の実施形態に係るレーダ装置1は、放熱パターン15が両端を除いてレジスト層18で覆われている。MMICチップ14には放熱グリスG1が塗布されており、MMICチップ14が放熱グリスG1を介してレジスト層18から露出した放熱パターン15の一端部(露出部分)に接続されている。また、レジスト層18から露出した放熱パターン15の他端部(露出部分)に放熱グリスG2が塗布されており、放熱パターン15の他端部が放熱グリスG2を介してホーン20に接続されている。なお、第7の実施形態の放熱経路については第2の実施形態と同様である。
 以上のように、第6の実施形態のレーダ装置1では、複数の放熱経路によってMMICチップ14の温度上昇を効果的に抑えることができる。放熱パターン15がレジスト層18で覆われていても、熱抵抗の小さな放熱経路を形成することができる。
[第8の実施形態]
 図12は、第8の実施形態のレーダ装置の断面模式図である。なお、第8の実施形態のレーダ装置は、ホーンにMMICチップに当接する当接部が設けられた点で第2の実施形態と相違している。したがって、第2の実施形態と同様な構成については説明を極力省略する。ここでは、MMICチップの放熱経路について説明するが、以下の実施形態の放熱経路は他の電子部品の放熱に適用することも可能である。
 図12に示すように、第8の実施形態に係るレーダ装置1は、ホーン20の当接部24が放熱グリスG1を介してMMICチップ14の表面に接触している。このため、ホーン20にはMMICチップ14からシールド層(図1参照)に向かう伝熱経路R2とMMICチップ14から放熱板40に向かう放熱経路R3が形成されている。また、第8の実施形態に係るレーダ装置1には、第2の実施形態と同様に、放熱経路R1、R4、R5が形成されている。このため、導波路内の結露の発生が防止されると共に、MMICチップ14の温度上昇が抑えられている。
 以上のように、第7の実施形態のレーダ装置1では、複数の放熱経路によってMMICチップ14の温度上昇を効果的に抑えることができる。また、放熱経路を増やすことで、樹脂製のホーン20の外面にメッキされた金属膜を薄く形成しても、MMICチップ14の温度上昇を規定温度に抑えることができる。
[第9の実施形態]
 図13は、第9の実施形態のレーダ装置の断面模式図である。なお、第9の実施形態のレーダ装置は、金属製のホーンを使用した点で第2の実施形態と相違している。したがって、第2の実施形態と同様な構成については説明を極力省略する。ここでは、MMICチップの放熱経路について説明するが、以下の実施形態の放熱経路は他の電子部品の放熱に適用することも可能である。
 図13に示すように、第9の実施形態に係るレーダ装置1は、ホーン20がアルミニウム等のシールド性及び熱伝導率が高い材料で形成されている。また、第9の実施形態に係るレーダ装置1には、第2の実施形態と同様に、放熱経路R1、R4、R5が形成されている。このような構成でも、複数の放熱経路によってMMICチップ14の温度上昇を効果的に抑えることができる。また、熱容量が大きな金属製のホーン20を使用することで、MMICチップ14の放熱性を高めることができる。
 なお、上記した各実施形態では、基板10に複数のアンテナ13が設けられ、ホーン20に複数の導波路23が形成される構成にしたが、基板10に単一のアンテナ13が設けられ、ホーン20に単一の導波路23が形成されていてもよい。
 また、上記した各実施形態では、ホーン20の外面全体に金属膜28が形成されて、シールド層29、伝熱経路R2、放熱経路R3が形成される構成にしたが、この構成に限定されない。ホーン20の外面に部分的に金属膜28が形成されて、シールド層29、伝熱経路R2、放熱経路R3が形成されてもよい。
 以上の通り、本実施形態に記載のレーダ装置(1)は、一方の主面(11)に電子部品(MMICチップ14)が設けられた基板(10)と、基板(10)の一方の主面(11)に配置されたホーン(20)と、基板(10)の他方の主面(12)に設けられた放熱板(40)と、を備えたレーダ装置(1)であって、基板(10)の一方の主面(11)には放熱パターン(15)が形成されており、電子部品(MMICチップ14)が第1の放熱部材(放熱グリスG1、放熱シートS1、放熱接着剤A1)を介して放熱パターン(15)に接続されると共にホーン(20)が第2の放熱部材(放熱グリスG2、放熱シートS2)を介して放熱パターン(15)に接続されている。
 この構成によれば、電子部品(MMICチップ14)が放熱部材(放熱グリスG1、放熱シートS1、放熱接着剤A1)を介して放熱パターン(15)に接続され、放熱パターン(15)が放熱部材(放熱グリスG2、放熱シートS2)を介してホーン(20)に接続される。よって、電子部品(MMICチップ14)から放熱板(40)に向かう基板(10)の厚み方向の放熱経路(R1)に加えて、電子部品(MMICチップ14)からホーン(20)に向かう熱抵抗が小さな放熱経路(R4)が形成される。複数の放熱経路によって電子部品(MMICチップ14)の温度上昇を効果的に抑えることができる。
 本実施形態に記載のレーダ装置(1)において、第1の放熱部材及び第2の放熱部材が半固体状又はゲル状の放熱部材(放熱グリスG1、G2、放熱接着剤A1)である。
 この構成によれば、半固体状又はゲル状の放熱部材(放熱グリスG1、G2、放熱接着剤A1)が電子部品(MMICチップ14)と放熱パターン(15)の隙間やホーン(20)と放熱パターン(15)の隙間に入り込むため熱抵抗を減らすことができる。
 本実施形態に記載のレーダ装置(1)において、半固体状又はゲル状の放熱部材は放熱グリス(G1-G5)又は放熱接着剤(A1、A2)である。
 この構成によれば、放熱グリス(G1-G5)又は放熱接着剤(A1、A2)によって部材間の隙間を埋めることができる。
 本実施形態に記載のレーダ装置(1)において、第1の放熱部材及び第2の放熱部材は放熱シート(S3-S5)である。
 この構成によれば、放熱部材の厚みを一定にすることができ、放熱部材の厚みの違いによる放熱性のバラツキを減らすことができる。また、ホーン(20)と基板(10)に放熱シート(S3-S5)が挟み込まれるため、組み立て時の装置寸法のバラツキを抑えることができる。
 本実施形態に記載のレーダ装置(1)において、ホーン(20)及び放熱板(40)は基板(10)の外縁から食み出した食み出し部(27、43)を有し、ホーン(20)の食み出し部(27)と放熱板(40)の食み出し部(43)とが接触している。
 この構成によれば、ホーン(20)から放熱板(40)に向かう放熱経路(R5)が形成される。放熱経路を増やすことで電子部品(MMICチップ14)の温度上昇をより効果的に抑えることができる。
 本実施形態に記載のレーダ装置(1)において、ホーン(20)の食み出し部(27)と放熱板(40)の食み出し部(43)とが基板(10)の外縁に沿って形成されている。
 この構成によれば、基板(10)の周囲の広い範囲に放熱経路(R5)を形成することができる。
 本実施形態に記載のレーダ装置(1)において、ホーン(20)の食み出し部(27)と放熱板(40)の食み出し部(43)とが半固体状又はゲル状の第3の放熱部材(放熱ゲルG3)を介して接続される。
 この構成によれば、ホーン(20)の食み出し部(27)と放熱板(40)の食み出し部(43)の接触面の僅かな隙間を放熱部材で埋めて熱抵抗を減らすことができる。
 本実施形態に記載のレーダ装置(1)において、基板(10)の一方の主面(11)から高さ方向に離間して金属板(19)が設けられており、金属板(19)は電子部品(MMICチップ14)上の第1の放熱部材(放熱接着剤A1)及び放熱パターン(15)上の第4の放熱部材(放熱接着剤A2)によって支持されている。
 この構成によれば、基板(10)の一方の主面(11)から離間した位置に、電子部品(MMICチップ14)から金属板(19)を介して放熱パターン(15)に向かう放熱経路(R6)が形成される。放熱経路を増やすことで電子部品(MMICチップ14)の温度上昇をより効果的に抑えることができる。
 本実施形態に記載のレーダ装置(1)において、ホーン(20)には電子部品(MMICチップ14)の周囲を囲む壁部(33)が設けられ、壁部(33)は第5の放熱部材(放熱グリスG4)を介して放熱パターン(15)に接続される。
 この構成によれば、放熱パターン(15)から壁部(33)を介してホーン(20)に向かう放熱経路(R7)が形成される。放熱経路を増やすことで電子部品(MMICチップ14)の温度上昇をより効果的に抑えることができる。
 本実施形態に記載のレーダ装置(1)において、基板(10)の外縁部には当該基板(10)を厚み方向に貫通する放熱ビア(17)が設けられ、ホーン(20)が放熱ビア(17)を介して放熱板(40)に接続される。
 この構成によれば、放熱ビア(17)を介してホーン(20)から放熱板(40)に向かう放熱経路(R8)が形成される。放熱経路を増やすことで電子部品(MMICチップ14)の温度上昇をより効果的に抑えることができる。また、ホーン(20)及び放熱板(40)に食み出し部を形成する必要がないため、装置寸法を小型化することができる。
 本実施形態に記載のレーダ装置(1)において、放熱パターン(15)は一部を除いてレジスト層(18)で覆われており、電子部品(MMICチップ14)が第1の放熱部材(放熱グリスG1、放熱シートS1、放熱接着剤A1)を介してレジスト層(18)から露出した放熱パターン(15)の露出部分に接続されると共に、ホーン(20)が第2の放熱部材(放熱グリスG2、放熱シートS2)を介しレジスト層(18)から露出した放熱パターン(15)の他の露出部分に接続される。
 この構成によれば、電子部品(MMICチップ14)と放熱パターン(15)の熱抵抗及び放熱パターン(15)とホーン(20)の熱抵抗を減らして、熱抵抗が小さな放熱経路を形成することができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1     レーダ装置
10    基板
11    一方の主面
12    他方の主面
14    MMICチップ(電子部品)
15    放熱パターン
17    放熱ビア
18    レジスト層
19    金属板
20    ホーン
27    食み出し部
33    壁部
40    放熱板
43    食み出し部
45    ベース
A1    放熱接着剤
A2    放熱接着剤
G1-G5 放熱グリス
R1-R8 放熱経路
S1-S5 放熱シート

Claims (11)

  1.  一方の主面に電子部品が設けられた基板と、前記基板の一方の主面に配置されたホーンと、前記基板の他方の主面に設けられた放熱板と、を備えたレーダ装置であって、
     前記基板の一方の主面には放熱パターンが形成されており、前記電子部品が第1の放熱部材を介して前記放熱パターンに接続されると共に前記ホーンが第2の放熱部材を介して前記放熱パターンに接続されることを特徴とするレーダ装置。
  2.  前記第1放熱部材及び前記第2の放熱部材が半固体状又はゲル状の放熱部材であることを特徴とする請求項1に記載のレーダ装置。
  3.  前記半固体状又はゲル状の放熱部材は放熱グリス又は放熱接着剤であることを特徴とする請求項2に記載のレーダ装置。
  4.  前記第1放熱部材及び前記第2の放熱部材は放熱シートであることを特徴とする請求項1に記載のレーダ装置。
  5.  前記ホーン及び前記放熱板は前記基板の外縁から食み出した食み出し部を有し、
     前記ホーンの食み出し部と前記放熱板の食み出し部とが接触していることを特徴とする請求項1に記載のレーダ装置。
  6.  前記ホーンの食み出し部と前記放熱板の食み出し部とが前記基板の外縁に沿って形成されていることを特徴とする請求項5に記載のレーダ装置。
  7.  前記ホーンの食み出し部と前記放熱板の食み出し部とが半固体状又はゲル状の第3の放熱部材を介して接続されることを特徴とする請求項5に記載のレーダ装置。
  8.  前記基板の一方の主面から高さ方向に離間して金属板が設けられており、前記金属板は前記電子部品上の前記第1の放熱部材及び前記放熱パターン上の第4の放熱部材によって支持されていることを特徴とする請求項1に記載のレーダ装置。
  9.  前記ホーンには前記電子部品の周囲を囲む壁部が設けられ、前記壁部は第5の放熱部材を介して前記放熱パターンに接続されることを特徴とする請求項1に記載のレーダ装置。
  10.  前記基板の外縁部には当該基板を厚み方向に貫通する放熱ビアが設けられ、
     前記ホーンが前記放熱ビアを介して前記放熱板に接続されることを特徴とする請求項1に記載のレーダ装置。
  11.  前記放熱パターンは一部を除いてレジスト層で覆われており、前記電子部品が前記第1の放熱部材を介して前記レジスト層から露出した前記放熱パターンの露出部分に接続されると共に、前記ホーンが前記第2の放熱部材を介し前記レジスト層から露出した前記放熱パターンの他の露出部分に接続されることを特徴とする請求項1から請求項10のいずれか一項に記載のレーダ装置。
PCT/JP2019/044627 2018-11-28 2019-11-14 レーダ装置 WO2020110741A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020558325A JP7133646B2 (ja) 2018-11-28 2019-11-14 レーダ装置
DE112019005235.7T DE112019005235T5 (de) 2018-11-28 2019-11-14 Radarvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-222488 2018-11-28
JP2018222488 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020110741A1 true WO2020110741A1 (ja) 2020-06-04

Family

ID=70852393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044627 WO2020110741A1 (ja) 2018-11-28 2019-11-14 レーダ装置

Country Status (3)

Country Link
JP (1) JP7133646B2 (ja)
DE (1) DE112019005235T5 (ja)
WO (1) WO2020110741A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006177A1 (ja) * 2019-07-05 2021-01-14 株式会社デンソー レーダ装置
WO2022144983A1 (ja) * 2020-12-28 2022-07-07 三菱電機株式会社 車載用レーダ装置
WO2023032260A1 (ja) * 2021-08-31 2023-03-09 ソニーセミコンダクタソリューションズ株式会社 半導体装置および電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115956A (ja) * 1995-10-20 1997-05-02 Citizen Watch Co Ltd 半導体装置
US7135848B1 (en) * 2005-12-12 2006-11-14 Xytrans, Inc. Highly integrated radiometer sensor cell
JP2014002971A (ja) * 2012-06-20 2014-01-09 Fujitsu Component Ltd コンタクト装置、ソケット装置及び電子装置
JP2017161322A (ja) * 2016-03-09 2017-09-14 大学共同利用機関法人自然科学研究機構 結像光学系のないマイクロ波カメラ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115956A (ja) * 1995-10-20 1997-05-02 Citizen Watch Co Ltd 半導体装置
US7135848B1 (en) * 2005-12-12 2006-11-14 Xytrans, Inc. Highly integrated radiometer sensor cell
JP2014002971A (ja) * 2012-06-20 2014-01-09 Fujitsu Component Ltd コンタクト装置、ソケット装置及び電子装置
JP2017161322A (ja) * 2016-03-09 2017-09-14 大学共同利用機関法人自然科学研究機構 結像光学系のないマイクロ波カメラ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006177A1 (ja) * 2019-07-05 2021-01-14 株式会社デンソー レーダ装置
JP2021012082A (ja) * 2019-07-05 2021-02-04 株式会社デンソー レーダ装置
JP7230713B2 (ja) 2019-07-05 2023-03-01 株式会社デンソー レーダ装置
WO2022144983A1 (ja) * 2020-12-28 2022-07-07 三菱電機株式会社 車載用レーダ装置
JP7351025B2 (ja) 2020-12-28 2023-09-26 三菱電機株式会社 車載用レーダ装置
WO2023032260A1 (ja) * 2021-08-31 2023-03-09 ソニーセミコンダクタソリューションズ株式会社 半導体装置および電子機器

Also Published As

Publication number Publication date
DE112019005235T5 (de) 2021-07-22
JPWO2020110741A1 (ja) 2021-11-04
JP7133646B2 (ja) 2022-09-08

Similar Documents

Publication Publication Date Title
JP7152510B2 (ja) レーダ装置
WO2020110741A1 (ja) レーダ装置
JP6946466B2 (ja) 通信デバイス
JP5431433B2 (ja) 高周波線路−導波管変換器
TWI520304B (zh) 包含天線層的半導體封裝件及其製造方法
US8692725B2 (en) Patch antenna device
US9223352B2 (en) Electronic device with electromagnetic shielding
US20180191052A1 (en) Wafer level package with integrated antennas and means for shielding
JP2007248449A (ja) 自動車レーダセンサアセンブリ
US10236569B2 (en) Antenna device
JP2019097118A (ja) アンテナ装置
JP7129649B2 (ja) 車載ライト装置
US10461412B2 (en) Microwave modulation device
WO2015198667A1 (ja) 光送受信器
US10700406B2 (en) Wireless module and image display device
JP4658535B2 (ja) 高周波モジュール
CN113130423A (zh) 一种屏蔽组件、车载设备及通信设备
JP2018133531A (ja) 電子装置
JP7261666B2 (ja) レーダ装置及びレーダ装置の製造方法
CN114624654B (zh) 雷达结构及车载雷达设备
US20210328335A1 (en) Antenna, array antenna, and wireless communication device
JP6623805B2 (ja) 無線通信装置
JP2017003328A (ja) レーダ装置
JP2008131166A (ja) アンテナモジュール
US20230413419A1 (en) Network communication device having electromagnetic shielding function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558325

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19890679

Country of ref document: EP

Kind code of ref document: A1