WO2015198667A1 - 光送受信器 - Google Patents

光送受信器 Download PDF

Info

Publication number
WO2015198667A1
WO2015198667A1 PCT/JP2015/058744 JP2015058744W WO2015198667A1 WO 2015198667 A1 WO2015198667 A1 WO 2015198667A1 JP 2015058744 W JP2015058744 W JP 2015058744W WO 2015198667 A1 WO2015198667 A1 WO 2015198667A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
housing
conductor
optical component
ground
Prior art date
Application number
PCT/JP2015/058744
Other languages
English (en)
French (fr)
Inventor
尾崎 弘幸
樋村 直人
慎矢 西
政利 片山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/302,231 priority Critical patent/US10534147B2/en
Priority to CN201580033405.8A priority patent/CN106461888B/zh
Priority to JP2016529115A priority patent/JP6524079B2/ja
Priority to KR1020167036261A priority patent/KR102059339B1/ko
Publication of WO2015198667A1 publication Critical patent/WO2015198667A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4277Protection against electromagnetic interference [EMI], e.g. shielding means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4283Electrical aspects with electrical insulation means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the present invention relates to an optical transceiver having an EMI (Electro-Magnetic-Interference) countermeasure in an optical transceiver having an optical component whose own ground is integrated with a signal ground.
  • EMI Electro-Magnetic-Interference
  • An optical transceiver is an interface that is used for optical communication and converts electricity into light.
  • an optical transceiver is provided with an optical component having a box-type EML (Electro-absorption Modulated Laser diode) element.
  • substrate of an optical transmitter / receiver is connected to the EML element of an optical component via FPC (flexible printed circuit board).
  • noise generated from the substrate is radiated into the housing with the FPC as a base point. Therefore, it is necessary to suppress radiation of this noise to the outside.
  • noise of 10 GHz or more is generated in the housing.
  • noise of 10 GHz or more passes through the optical transmitter / receiver casing (waveguide) without being attenuated, and is thus easily radiated to the outside.
  • an optical fiber is connected to the optical connector of the optical component, and the optical connector and the connection port of the optical fiber are each made of metal.
  • the metal of the optical connector and the metal of the connection port of the optical fiber function like an antenna and radiate noise to the outside.
  • the box-type EML element used in the conventional optical transceiver has a configuration in which its own ground and signal ground are separated by providing a ceramic substrate at the connection portion with the FPC. Thereby, the signal ground and the frame ground can be separated.
  • an optical transceiver using a box-type EML element as an EMI countermeasure, an optical component and a housing are in direct physical (electrical) contact with a conductive housing (see, for example, Patent Document 1). In this way, by electrically grounding the optical component and the housing, noise from the FPC can be released to the housing side and noise can be prevented from being radiated to the outside.
  • the present invention has been made to solve the above-described problems.
  • An object of the present invention is to provide an optical transceiver capable of obtaining EMI characteristics.
  • An optical transceiver is an optical transceiver including an optical component housed in a housing and having its own ground integrated with a signal ground, and a conductor electrically connected to the optical component;
  • the main surface is disposed along the inner wall of the casing, and a sheet-like insulator that separates the signal ground and the frame ground on the casing side is provided.
  • the optical transceiver according to the present invention is an optical transceiver including an optical component housed in a housing and having its own ground integrated with a signal ground, and a conductor electrically connected to the optical component; A main surface is disposed between the conductor and the casing so as to be along the inner wall of the casing, and a sheet-shaped radio wave absorber that separates the signal ground and the frame ground on the casing is provided.
  • optical transmitter-receiver which concerns on Embodiment 1 of this invention, it is a figure explaining the difference in the effect at the time of changing the thickness of an insulator. It is a disassembled perspective view which shows the structure of the optical transmitter-receiver which concerns on Embodiment 3 of this invention, and is a figure which shows the assembly process of an optical component. It is a figure which shows the relationship between the frequency of the noise which passes the inside of the housing
  • FIG. 1 is an exploded perspective view showing a configuration of an optical transceiver according to Embodiment 1 of the present invention
  • FIG. 2 is a side sectional view
  • FIG. 3 is an enlarged view showing a portion A of FIG.
  • An optical transceiver is an interface that is used for optical communication and converts electricity into light.
  • the optical transceiver includes a substrate 2 and an optical component 3 housed in a housing 1 including a case 11 and a cover 12.
  • the optical component 3 has an EML element 31 containing a semiconductor element (for example, a semiconductor laser element such as a laser diode).
  • the substrate 2 is connected to the EML element 31 of the optical component 3 via the FPC 4.
  • the optical transceiver is provided with an EMI countermeasure structure 5.
  • the EMI countermeasure structure 5 is for suppressing the emission of noise generated from the substrate 2 and emitted from the FPC 4 as a base point to the outside.
  • the EMI countermeasure structure 5 includes a conductor 51 and a sheet-like insulator 52. In the example shown in the figure, it is assumed that noise passes along the upper surface side in the housing 1, and the EMI countermeasure structure 5 is provided on the surface (upper surface side in the housing 1) closest to the passing noise in the housing 1. The case where is provided is shown.
  • the conductor 51 is electrically connected to the optical component 3.
  • a gasket 6 is used as the conductor 51 for regulating the position (vibration suppression) of the optical component 3 in the housing 1.
  • the surface of the gasket 6 is plated with nickel or the like.
  • the insulator 52 is disposed between the conductor 51 and the housing 1 so that the main surface is along the inner wall of the housing 1 and separates the signal ground and the frame ground on the housing 1 side. Shaped member.
  • the insulator 52 is made of, for example, polyester or polyimide. The thickness of the insulator 52 is desirably equal to or less than a quarter wavelength of the noise frequency generated in the housing 1.
  • FIG. 4 is a diagram illustrating the effect of the present invention, and is a diagram illustrating the relationship between the frequency of noise generated in the housing 1 and the pass characteristics.
  • a broken line indicates a case where the EMI countermeasure structure 5 of the present invention is not provided between the optical component 3 and the housing 1
  • a solid line indicates a case where the EMI countermeasure structure 5 of the present invention is provided.
  • FIG. 5 is a diagram showing a difference in noise transmission mode in each region (region of the substrate 2, region of the insulator 52, region of the optical component 3 ahead of the insulator 52) in the optical transceiver.
  • FIG. 6 is a diagram for explaining the difference in effect when the thickness of the insulator 52 is changed, and is a diagram showing the relationship between the frequency of noise generated in the housing 1 and the pass characteristics.
  • a broken line is a figure which shows the case where the thickness of the insulator 52 is 1 mm
  • a solid line is a figure which shows the case where the thickness of the insulator 52 is 0.1 mm.
  • the noise transmission mode is different in each region, and mismatch occurs at the boundary. Then, the thinner the insulator 52 is (the smaller the wavelength is a quarter wavelength or less of the noise frequency generated in the housing 1), the higher the mismatch rate, and the better the filter effect as shown in FIG. Obtainable.
  • the surface of the housing 1 is plated so that a greater filter effect can be obtained.
  • the depth of the surface conductor in which the current is 1 / e (about 0.37) times the surface current is called the skin depth, and the skin depth is ⁇ (1 / ( ⁇ f)) [m]. expressed.
  • is the conductivity of the surface conductor
  • is the magnetic permeability of the surface conductor
  • f is the noise frequency.
  • nickel has a higher magnetic permeability than gold, silver, copper, etc., the skin depth is shallow, and the cross-sectional area of the surface conductor through which noise flows is narrowed. An effect can be obtained.
  • the surface of the housing 1 of the optical transceiver is plated with nickel, so that new manufacturing steps and costs do not increase.
  • the conductor 51 and the sheet-like insulator 52 are arranged between the optical component 3 and the housing 1, the own ground and the signal ground are provided.
  • the signal ground and the frame ground can be separated and the EMI characteristics can be obtained.
  • the thickness of the insulator 52 is set to a quarter wavelength or less of the noise frequency generated in the housing 1, a greater filter effect can be obtained. Further, by applying a plating treatment to the surface of the housing 1 (particularly with a material having a large surface resistance value such as nickel), a greater filter effect can be obtained.
  • the optical transceiver can be configured at a lower cost than when the box-type EML element 31 is used.
  • the present invention is not limited to this, and the EMI countermeasure structure 5 of the present invention can be applied to other optical transceivers using the optical component 3 in which its own ground and signal ground are integrated.
  • the effect of can be obtained.
  • the conventional EMI countermeasure cannot be applied because the signal ground and the frame ground are integrated, but the EMI countermeasure structure 5 of the present invention is applicable and can obtain the same effects as described above. .
  • the triplexer type optical component 3 having three CAN type elements is used.
  • the number of elements is not limited to this, and any type of optical component 3 may be used, and the EMI countermeasure structure 5 of the present invention is applicable.
  • the conductor 51 gasket 6
  • the conductor 51 gasket 6
  • the present invention is not limited to this, and the conductor 51 divided into a plurality according to the difference in height at each part of the optical component 3 may be used.
  • the EMI countermeasure structure 5 is provided only on the surface (upper surface side in the housing 1) closest to the noise passing through the housing 1 in the housing 1 is shown.
  • the EMI countermeasure structure 5 including the conductor 51 and the sheet-like insulator 52 may be provided on the other surface of the housing 1.
  • Embodiment 2 the case where the conductor 51 and the sheet-like insulator 52 are disposed between the optical component 3 and the housing 1 has been described.
  • the sheet-like insulator 52 may be replaced with a sheet-like wave absorber 53.
  • the thickness of the radio wave absorber 53 is desirably equal to or less than a quarter wavelength of the noise frequency generated in the housing 1, similarly to the insulator 52 of the first embodiment.
  • the radio wave absorber 53 instead of the insulator 52, the noise absorption effect by the radio wave absorber 53 can be obtained in addition to the effect in the first embodiment, and the EMI characteristics are further improved.
  • Embodiment 3 FIG.
  • the signal ground and the frame ground are separated by disposing the conductor 51 and the sheet-like insulator 52 (or the radio wave absorber 53) between the optical component 3 and the housing 1.
  • a configuration for obtaining EMI characteristics is shown.
  • Embodiment 3 shows a configuration for preventing noise generated in the housing 1 from being emitted from the optical connector 32 of the optical component 3.
  • FIG. 7 is an exploded perspective view showing the configuration of the optical transceiver according to Embodiment 3 of the present invention, and shows the assembly process of the optical component 3.
  • the substrate 2, the FPC 4, and the EMI countermeasure structure 5 are the same as those in the first and second embodiments, and illustration and description thereof are omitted.
  • the optical component 3 has an optical connector 32 to which an optical fiber (not shown) is connected.
  • a second insulator 33 that insulates the main body portion of the optical component 3 and the optical connector 32 is provided between the main body portion of the optical component 3 and the optical connector 32.
  • the case 11 of the housing 1 is provided with ribs 13 for holding the receptacle 34 of the optical component 3 and for regulating the position of the optical component 3.
  • a conductive first elastic member 35 for electrically connecting the receptacle 34 to the rib 13 of the case 11 is wound around the receptacle 34 of the optical connector 32. Further, on the upper side of the receptacle 34 held by the rib 13, there is a metal member 7 electrically connected to the receptacle 34 via the first elastic member 35 by being inserted across both side surfaces of the rib 13. Is provided.
  • a conductive second elastic member 8 that electrically connects the metal member 7 and the cover 12 of the housing 1 is provided on the upper side of the metal member 7.
  • the rib 13, the first and second elastic members 35, 8 and the metal member 7 constitute a second conductor that electrically connects the receptacle 34 of the optical connector 32 and the housing 1.
  • FIG. 7 shows a case where the receptacle 34 and the housing 1 are configured to be electrically connected without a gap, but it is sufficient that at least four or more points are connected.
  • the optical component 3 When the optical component 3 is assembled to the housing 1, first, as shown in FIGS. 7A and 7B, the optical component 3 is accommodated in the case 11 and the first elastic member 35 is interposed therebetween.
  • the receptacle 34 is electrically connected to the rib 13.
  • the metal member 7 is inserted with the both side surfaces of the rib 13 being sandwiched, so that the receptacle 34 is electrically connected to the metal member 7 via the first elastic member 35.
  • the second elastic member 8 is disposed on the metal member 7 and the cover 12 is attached, so that the metal member 7 is electrically connected to the cover 12.
  • the main body portion of the optical component 3 and the optical connector 32 are insulated by the second insulator 33, and the receptacle 34 and the housing of the optical connector 32 are insulated by the second conductor. Since at least four or more points are electrically connected to the body 1, in addition to the effects in the first and second embodiments, the noise generated in the housing 1 is prevented from being radiated from the optical connector 32. Can do.
  • the configuration of the third embodiment is effective when the main body of the optical component 3 needs to be electrically separated from the housing 1.
  • the present invention is not limited to this configuration, and the second conductor may be configured to electrically connect the receptacle 34 of the optical connector 32 and the housing 1 without a gap.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • An optical transceiver includes an optical component housed in a housing and having its own ground integrated with a signal ground, a conductor electrically connected to the optical component, and the conductor and the housing.
  • the main surface is arranged along the inner wall of the casing, and the sheet-like insulator that separates the signal ground and the frame ground on the casing side is configured, so that EMI characteristics can be obtained, Suitable for optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Optical Communication System (AREA)

Abstract

 自身のグランドがシグナルグランドと一体である光部品(3)を備えた光送受信器において、光部品(3)に電気的に接続された導電体(51)と、導電体(51)と筐体(1)との間に主面が当該筐体(1)の内壁に沿うように配置され、シグナルグランドと当該筐体(1)側のフレームグランドとを分離するシート状の絶縁体(52)とを備えた。

Description

光送受信器
 この発明は、自身のグランドがシグナルグランドと一体である光部品を備えた光送受信器において、EMI(Electro-Magnetic-Interference)対策を行った光送受信器に関するものである。
 光送受信器(光トランシーバ)は、光通信に用いられ、電気を光に変換するインタフェースである。従来、光送受信器には、ボックスタイプのEML(Electro-absorption Modulated Laser diode)素子を有する光部品が設けられている。そして、光部品のEML素子には、光送受信器の基板がFPC(フレキシブルプリント基板)を介して接続されている。
 このような光送受信器では、基板から発生したノイズがFPCを基点にして筐体内に放射されるため、このノイズの外部への放射を抑制する必要がある。
 特に、伝送速度が10Gbpsの10GEPONに対応した光送受信器では、筐体内に10GHz以上のノイズが発生する。そして、10GHz以上のノイズは、図8に示すように、光送受信器の筐体(導波管)内で減衰されずに通過するため、外部に放射されやすい。なお図8では、図示する導波管(管内幅a=6mm、管内高さb=15mm、全長L=100mm)内をノイズが伝送する場合の通過特性を示している。
 さらに、光送受信器では、光部品の光コネクタに光ファイバが接続されるが、この光コネクタと光ファイバの接続口とがそれぞれ金属で構成されている。この場合、光コネクタに光ファイバを接続すると、光コネクタの金属と光ファイバの接続口の金属とがアンテナのような働きをし、ノイズを外部に放射してしまうという特性がある。
 一方、光送受信器では、装置の仕様上、基板側のグランド(シグナルグランド)と、筐体側のグランド(フレームグランド)とを分離する必要がある。それに対し、従来の光送受信器で用いていたボックスタイプのEML素子では、FPCとの接続部分にセラミック基板を設けることで、自身のグランドとシグナルグランドを分離する構成となっている。これにより、シグナルグランドとフレームグランドとを分離することができる。
 そして、ボックスタイプのEML素子を用いた光送受信器では、EMI対策として、光部品及び筐体を導電性ハウジングに物理的(電気的)に直接接触させている(例えば特許文献1参照)。このように、光部品と筐体とを電気的に接地させることで、FPCからのノイズを筐体側に逃がし、ノイズが外部に放射されることを抑制できる。
米国特許US8267599B2
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
 一方、上記のような光送受信器では、伝送速度の高速化に伴い、コストの低減が求められている。そこで、ボックスタイプのEML素子に代えて、より安価なCANタイプのEML素子を用いることが検討されている。しかしながら、現状のCANタイプのEML素子では、表面が金属で覆われ、また、ボックスタイプのようなセラミック基板は設けられていない。そのため、EMI対策として、従来のように光部品と光送受信器の筐体とを電気的に接地してしまうと、光部品を介してシグナルグランドとフレームグランドとが一体となってしまい、装置の仕様違反となってしまう。よって、従来のようなEMI対策を行うことができないという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、自身のグランドがシグナルグランドと一体である光部品を用いた光送受信器において、シグナルグランドとフレームグランドとを分離し、かつEMI特性を得ることができる光送受信器を提供することを目的としている。
 この発明に係る光送受信器は、筐体に収納され、自身のグランドがシグナルグランドと一体である光部品を備えた光送受信器において、光部品に電気的に接続された導電体と、導電体と筐体との間に主面が当該筐体内壁に沿うように配置され、シグナルグランドと当該筐体側のフレームグランドとを分離するシート状の絶縁体とを備えたものである。
 また、この発明に係る光送受信器は、筐体に収納され、自身のグランドがシグナルグランドと一体である光部品を備えた光送受信器において、光部品に電気的に接続された導電体と、導電体と筐体との間に主面が当該筐体内壁に沿うように配置され、シグナルグランドと当該筐体側のフレームグランドとを分離するシート状の電波吸収体とを備えたものである。
 この発明によれば、上記のように構成したので、自身のグランドがシグナルグランドと一体である光部品を用いた光送受信器において、シグナルグランドとフレームグランドとを分離し、かつEMI特性を得ることができる。
この発明の実施の形態1に係る光送受信器の構成を示す分解斜視図である。 この発明の実施の形態1に係る光送受信器の構成を示す側断面図である。 図2のA部を示す拡大図である。 この発明の実施の形態1に係る光送受信器の効果を説明する図である。 この発明の実施の形態1に係る光送受信器内の各領域におけるノイズの伝送モードの違いを示す図である。 この発明の実施の形態1に係る光送受信器において、絶縁体の厚みを変えた場合の効果の違いを説明する図である。 この発明の実施の形態3に係る光送受信器の構成を示す分解斜視図であり、光部品の組み立て工程を示す図である。 光送受信器の筐体(導波管)内を通過するノイズの周波数と通過特性との関係を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る光送受信器の構成を示す分解斜視図であり、図2は側断面図であり、図3は図2のA部を示す拡大図である。
 光送受信器は、光通信に用いられ、電気を光に変換するインタフェースである。図1~3に示すように、光送受信器には、ケース11及びカバー12から成る筐体1内に、基板2及び光部品3が収納されている。光部品3は、半導体素子(例えばレーザダイオード等の半導体レーザ素子)を内蔵するEML素子31を有している。そして、光部品3のEML素子31には、基板2がFPC4を介して接続されている。
 なお図の例では、光部品3として、EML素子31の他に側面に2つのCANタイプの素子を有するトリプレクサ型のものを用いた場合を示している。また、EML素子31として、CANタイプのものを用いた場合を示している。すなわち、図に示す光部品3では、構造上、自身のグランドと基板2側のシグナルグランドとを分離することができず、一体となっている。
 また、光送受信器には、EMI対策構造5が設けられている。このEMI対策構造5は、基板2から発生しFPC4を基点に放射されるノイズの、外部への放射を抑制するためのものである。このEMI対策構造5は、導電体51と、シート状の絶縁体52とから構成されている。なお図の例では、ノイズが筐体1内の上面側に沿って通過するものとし、筐体1内のうち通過するノイズに最も近い面(筐体1内の上面側)にEMI対策構造5を設けた場合を示している。
 導電体51は、光部品3に電気的に接続されるものである。図の例では、導電体51として、筐体1内において光部品3の位置規制(振動抑制)を行うためのガスケット6を利用している。このガスケット6の表面は、ニッケル等によってメッキ処理が施されている。
 また、絶縁体52は、導電体51と筐体1との間に主面が当該筐体1の内壁に沿うように配置され、シグナルグランドと当該筐体1側のフレームグランドとを分離するシート状の部材である。この絶縁体52は、例えばポリエステル、ポリイミド等から構成される。また、絶縁体52の厚みは、筐体1内で発生するノイズ周波数の4分の1波長以下であることが望ましい。
 このように、光部品3と筐体1との間に導電体51とシート状の絶縁体52を配置することで、絶縁体52の層が薄いことによって導電体51の表面抵抗が増加し、筐体1内を通過するノイズに対してフィルタ効果を得ることができる。
 図4は本発明の効果を説明する図であり、筐体1内で発生したノイズの周波数と通過特性との関係を示す図である。図4において、破線は光部品3と筐体1との間に本発明のEMI対策構造5を設けなかった場合を示し、実線は本発明のEMI対策構造5を設けた場合を示す図である。この図4から、本発明のEMI対策構造5を設けることで、筐体1内を通過するノイズを抑制できることがわかる。なお、この抑制量は、光送受信器に求められるEMI特性として十分な量である。その結果、ノイズが外部に放射されることを抑制できる。
 また、図5は光送受信器内の各領域(基板2の領域、絶縁体52の領域、絶縁体52より先の光部品3の領域)におけるノイズの伝送モードの違いを示す図である。また、図6は絶縁体52の厚みを変えた場合の効果の違いを説明する図であり、筐体1内で発生したノイズの周波数と通過特性との関係を示す図である。図6において、破線は絶縁体52の厚みを1mmとした場合を示す図であり、実線は絶縁体52の厚みを0.1mmとした場合を示す図である。
 図5に矢印で示すように、光送受信器内では、各領域でノイズの伝送モードが異なり、その境界で不整合を起こす。そして、絶縁体52の厚みが薄いほど(筐体1内で発生するノイズ周波数の4分の1波長以下であるほど)不整合の割合が高くなり、図6に示すように良好なフィルタ効果を得ることができる。
 また、筐体1の表面にはメッキ処理が施されており、より大きなフィルタ効果を得ることができる。この際、例えばニッケルのような表面抵抗値の大きい材質によりメッキ処理を行うとなおよい。
 すなわち、ノイズは、筐体1の表面に形成された表面導体を伝送する。そして、その際のノイズの電流密度は、表面導体の表面では大きく、表面から離れると小さくなる(表皮効果)。また、電流が表面の電流の1/e(約0.37)倍となる表面導体の断面方向の深さを表皮深さと呼び、表皮深さは√(1/(πσμf))[m]で表される。なお、σは表面導体の導電率、μは表面導体の透磁率、fはノイズの周波数である。そして、ニッケルは、金、銀、銅等に比べて透磁率が高いため、表皮深さが浅く、ノイズが流れる表面導体の断面積が狭くなるので、ノイズの通過損失が大きくなり、より大きなフィルタ効果を得ることができる。
 なお、通常、光送受信器の筐体1の表面にはニッケルによるメッキ処理が施されているため、新たな製造工程及びコストが増えることはない。
 以上のように、この実施の形態1によれば、光部品3と筐体1との間に導電体51とシート状の絶縁体52を配置するように構成したので、自身のグランドとシグナルグランドが一体である光部品3を有する光送受信器において、シグナルグランドとフレームグランドとを分離し、かつEMI特性を得ることができる。
 また、絶縁体52の厚みを、筐体1内で発生するノイズ周波数の4分の1波長以下とすることで、より大きなフィルタ効果を得ることができる。
 また、筐体1の表面に(特にニッケルのような表面抵抗値の大きい材質により)メッキ処理を施すことで、より大きなフィルタ効果を得ることができる。
 また上記の例では、EML素子31としてCANタイプのものを用いている。そのため、ボックスタイプのEML素子31を用いた場合に対して、光送受信器をより安価に構成することができる。
 なお上記の例では、CANタイプのEML素子31を用いた場合に対して、本発明のEMI対策構造5を適用し、EMI特性を得る場合について示した。しかしながら、これに限るものではなく、自身のグランドとシグナルグランドが一体である光部品3を用いたその他の光送受信器に対しても本発明のEMI対策構造5を適用可能であり、上記と同様の効果を得ることができる。
 例えば、トリプレクサ型の光部品3において、EML素子31がボックスタイプであり当該EML素子31側で自身のグランドとシグナルグランドとを分離できる場合であっても、他の素子でグランド分離を行えない場合がある。このような場合、従来のEMI対策ではシグナルグランドとフレームグランドとが一体になってしまうため適用できないが、本発明のEMI対策構造5は適用可能であり、上記と同様の効果を得ることができる。
 また図の例では、3つのCANタイプの素子を有するトリプレクサ型の光部品3を用いた場合について示した。しかしながら、素子数はこれに限るものではなく、どのようなタイプの光部品3であってもよく、本発明のEMI対策構造5を適用可能である。
 また図の例では、導電体51(ガスケット6)を1枚の板部材で構成した場合を示した。しかしながら、これに限るものではなく、光部品3の各部での高さの違いに応じて複数に分割した導電体51を用いるようにしてもよい。
 また図の例では、筐体1内のうち、筐体1内を通過するノイズに最も近い面(筐体1内の上面側)にのみEMI対策構造5を設けた場合について示した。これに対し、筐体1内の他の面に対しても導電体51及びシート状の絶縁体52からなるEMI対策構造5を設けてもよい。
実施の形態2.
 実施の形態1では、光部品3と筐体1との間に導電体51とシート状の絶縁体52を配置した場合について示した。それに対し、シート状の絶縁体52をシート状の電波吸収体53に置き換えてもよい。なお、電波吸収体53の厚みは、実施の形態1の絶縁体52と同様に、筐体1内で発生するノイズ周波数の4分の1波長以下であることが望ましい。このように、絶縁体52に代えて電波吸収体53を用いることで、実施の形態1における効果に加え、電波吸収体53によるノイズ吸収効果も得られるため、さらにEMI特性が向上する。
実施の形態3.
 実施の形態1,2では、光部品3と筐体1との間に導電体51とシート状の絶縁体52(又は電波吸収体53)を配置することで、シグナルグランドとフレームグランドとを分離し、かつEMI特性を得る構成について示した。それに対し、実施の形態3では、筐体1内で発生したノイズが光部品3の光コネクタ32から放射されることを防ぐための構成について示す。
 図7はこの発明の実施の形態3に係る光送受信器の構成を示す分解斜視図であり、光部品3の組み立て工程を示す図である。なお図7に示す光送受信器において、基板2、FPC4及びEMI対策構造5は実施の形態1,2の構成と同一であり、その図示及び説明は省略する。
 図7に示すように、光部品3は、光ファイバ(不図示)が接続される光コネクタ32を有している。そして、光部品3の本体部と光コネクタ32との間には、光部品3の本体部と光コネクタ32とを絶縁する第2の絶縁体33が設けられている。また、筐体1のケース11には、光部品3のレセプタクル34を保持し、光部品3の位置規制を行うためのリブ13が設けられている。
 また、光コネクタ32のレセプタクル34には、レセプタクル34をケース11のリブ13に電気的に接続するための導電性の第1の弾性部材35が巻きつけられている。また、リブ13に保持されたレセプタクル34の上側には、リブ13の両側面を挟んで挿入されることで第1の弾性部材35を介してレセプタクル34と電気的に接続される金属部材7が設けられている。また、この金属部材7の上側には、金属部材7と筐体1のカバー12とを電気的に接続する導電性の第2の弾性部材8が設けられている。
 このリブ13、第1,2の弾性部材35,8及び金属部材7は、光コネクタ32のレセプタクル34と筐体1とを電気的に接続する第2の導電体を構成する。なお図7では、レセプタクル34と筐体1とを電気的に隙間なく接続するように構成した場合を示しているが、少なくとも4点以上接続されていればよい。
 そして、光部品3を筐体1に組み付ける場合には、まず、図7(a),(b)に示すように、光部品3をケース11に収納し、第1の弾性部材35を介してレセプタクル34をリブ13に電気的に接続させる。そして、図7(c)に示すように、金属部材7をリブ13の両側面を挟んで挿入することで、第1の弾性部材35を介してレセプタクル34を金属部材7に電気的に接続させる。そして、図7(d),(e)に示すように、第2の弾性部材8を金属部材7の上に配置してカバー12を取り付けることで、金属部材7をカバー12に電気的に接続させる。このようにして、光コネクタ32のレセプタクル34と筐体1とを電気的に少なくとも4点以上接続することで、光部品3の光コネクタ32側に流れたノイズを筐体1側に逃がすことができ、ノイズが外部に放射されることを抑制できる。
 以上のように、この実施の形態3によれば、第2の絶縁体33により光部品3の本体部と光コネクタ32とを絶縁し、第2の導電体により光コネクタ32のレセプタクル34と筐体1とを電気的に少なくとも4点以上接続するように構成したので、実施の形態1,2における効果に加え、筐体1内に発生したノイズが光コネクタ32から放射されることを防ぐことができる。この実施の形態3の構成は、光部品3の本体部を電気的に筐体1と分離する必要がある場合に有効である。
 なお図7の例では、第2の導電体を、リブ13、第1,2の弾性部材35,8及び金属部材7から構成する場合について示した。しかしながら、この構成に限るものではなく、第2の導電体は、光コネクタ32のレセプタクル34と筐体1とを電気的に隙間なく接続する構成であればよい。
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る光送受信器は、筐体に収納され、自身のグランドがシグナルグランドと一体である光部品を備えており、光部品に電気的に接続された導電体と、導電体と筐体との間に主面が当該筐体内壁に沿うように配置され、シグナルグランドと当該筐体側のフレームグランドとを分離するシート状の絶縁体とを構成したので、EMI特性を得ることができ、光通信に好適である。
 1 筐体、2 基板、3 光部品、4 FPC、5 EMI対策構造、6 ガスケット、7 金属部材、8 第2の弾性部材、11 ケース、12 カバー、13 リブ、31 EML素子、32 光コネクタ、33 第2の絶縁体、34 レセプタクル、35 第1の弾性部材、51 導電体、52 絶縁体、53 電波吸収体。

Claims (10)

  1.  筐体に収納され、自身のグランドがシグナルグランドと一体である光部品を備えた光送受信器において、
     前記光部品に電気的に接続された導電体と、
     前記導電体と前記筐体との間に主面が当該筐体内壁に沿うように配置され、前記シグナルグランドと当該筐体側のフレームグランドとを分離するシート状の絶縁体と
     を備えたことを特徴とする光送受信器。
  2.  前記絶縁体の厚みは、前記筐体内で発生するノイズ周波数の4分の1波長以下である
     ことを特徴とする請求項1記載の光送受信器。
  3.  筐体に収納され、自身のグランドがシグナルグランドと一体である光部品を備えた光送受信器において、
     前記光部品に電気的に接続された導電体と、
     前記導電体と前記筐体との間に主面が当該筐体内壁に沿うように配置され、前記シグナルグランドと当該筐体側のフレームグランドとを分離するシート状の電波吸収体と
     を備えたことを特徴とする光送受信器。
  4.  前記電波吸収体の厚みは、前記筐体内で発生するノイズ周波数の4分の1波長以下である
     ことを特徴とする請求項3記載の光送受信器。
  5.  前記筐体はメッキ処理が施された
    ことを特徴とする請求項1記載の光送受信器。
  6.  前記筐体はメッキ処理が施された
    ことを特徴とする請求項3記載の光送受信器。
  7.  前記導電体は、前記筐体内において前記光部品の位置規制を行うガスケットである
     ことを特徴とする請求項1記載の光送受信器。
  8.  前記導電体は、前記筐体内において前記光部品の位置規制を行うガスケットである
     ことを特徴とする請求項3記載の光送受信器。
  9.  前記光部品は、光ファイバが接続される光コネクタを有し、
     前記光部品の本体部と前記光コネクタとを絶縁する第2の絶縁体と、
     前記光コネクタのレセプタクルと前記筐体とを電気的に少なくとも4点以上接続する第2の導電体とを備えた
     ことを特徴とする請求項1記載の光送受信器。
  10.  前記光部品は、光ファイバが接続される光コネクタを有し、
     前記光部品の本体部と前記光コネクタとを絶縁する第2の絶縁体と、
     前記光コネクタのレセプタクルと前記筐体とを電気的に少なくとも4点以上接続する第2の導電体とを備えた
     ことを特徴とする請求項3記載の光送受信器。
PCT/JP2015/058744 2014-06-27 2015-03-23 光送受信器 WO2015198667A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/302,231 US10534147B2 (en) 2014-06-27 2015-03-23 Optical transceiver
CN201580033405.8A CN106461888B (zh) 2014-06-27 2015-03-23 光收发器
JP2016529115A JP6524079B2 (ja) 2014-06-27 2015-03-23 光送受信器
KR1020167036261A KR102059339B1 (ko) 2014-06-27 2015-03-23 광송수신기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014132769 2014-06-27
JP2014-132769 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015198667A1 true WO2015198667A1 (ja) 2015-12-30

Family

ID=54937769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058744 WO2015198667A1 (ja) 2014-06-27 2015-03-23 光送受信器

Country Status (5)

Country Link
US (1) US10534147B2 (ja)
JP (1) JP6524079B2 (ja)
KR (1) KR102059339B1 (ja)
CN (1) CN106461888B (ja)
WO (1) WO2015198667A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059673A (zh) * 2016-05-18 2016-10-26 青岛海信宽带多媒体技术有限公司 一种光模块及光线路终端设备
CN112433310A (zh) * 2020-12-17 2021-03-02 成都优博创通信技术有限公司 一种光模块以及光模块组件
US11505775B2 (en) 2016-10-11 2022-11-22 Thöni Industriebetriebe Gmbh Stirring device with improved stirring element configuration

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488432B (zh) * 2019-08-09 2021-10-01 烽火通信科技股份有限公司 具有抗干扰性能的光收发一体组件及bob光模块
JP7484230B2 (ja) * 2020-03-04 2024-05-16 富士通オプティカルコンポーネンツ株式会社 光モジュール
JP7484464B2 (ja) * 2020-06-12 2024-05-16 富士通オプティカルコンポーネンツ株式会社 光モジュール
CN114639507B (zh) * 2020-12-15 2023-06-16 中国科学院长春光学精密机械与物理研究所 一种光电设备数字地与外界机壳绝缘的结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286195A (ja) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd 光トランシーバ
JP2009105157A (ja) * 2007-10-22 2009-05-14 Sumitomo Electric Ind Ltd 光トランシーバ
JP2010008673A (ja) * 2008-06-26 2010-01-14 Fujitsu Ltd 一芯双方向光送受信器
US20110081120A1 (en) * 2009-10-07 2011-04-07 Finisar Corporation Optical subassembly grounding in an optoelectronic module
JP2012008480A (ja) * 2010-06-28 2012-01-12 Opnext Japan Inc 光トランシーバおよび電子装置
JP2012237841A (ja) * 2011-05-11 2012-12-06 Sumitomo Electric Ind Ltd 光モジュール
JP2013054214A (ja) * 2011-09-05 2013-03-21 Sumitomo Electric Ind Ltd 光トランシーバ
JP2014109604A (ja) * 2012-11-30 2014-06-12 Sumitomo Electric Ind Ltd 光通信装置及びその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708188C2 (de) * 1997-02-28 2001-05-10 Lohmann Gmbh & Co Kg Schallschutzmaterial
US6179627B1 (en) * 1998-04-22 2001-01-30 Stratos Lightwave, Inc. High speed interface converter module
JP3925835B2 (ja) * 2000-04-10 2007-06-06 株式会社日立製作所 電磁波吸収材とその製造法及びそれを用いた各種用途
EP1146591A2 (en) * 2000-04-10 2001-10-17 Hitachi, Ltd. Electromagnetic wave absorber, method of manufacturing the same and appliance using the same
JP3893252B2 (ja) * 2001-03-30 2007-03-14 株式会社日立製作所 光送信・受信モジュール及びその製造法
US6786627B2 (en) * 2001-09-21 2004-09-07 Sumitomo Electric Industries, Ltd. Light generating module
US20030063886A1 (en) * 2001-10-03 2003-04-03 Lowell Seal Methods for thermal control of optical components
US20030063887A1 (en) * 2001-10-03 2003-04-03 Lowell Seal Packaging structure for optical components
US6999323B1 (en) * 2002-10-17 2006-02-14 Finisar Corporation Electromagnetic interference containment transceiver module
US7610064B2 (en) * 2003-09-16 2009-10-27 Farrokh Mohamadi Direct downlink RF module
JP2005316475A (ja) * 2004-04-29 2005-11-10 Sumitomo Electric Ind Ltd 光トランシーバ
JP4424319B2 (ja) * 2005-03-14 2010-03-03 住友電気工業株式会社 光トランシーバ
CN100410709C (zh) * 2005-08-05 2008-08-13 财团法人工业技术研究院 光电转换装置
US7467898B2 (en) * 2006-03-29 2008-12-23 Sumitomo Electric Industries, Ltd. Optical transceiver installing bi-directional optical sub-assembly
WO2008015817A1 (fr) * 2006-07-31 2008-02-07 Mitsumi Electric Co., Ltd. Connecteur pour connecter un composant électronique
TWI355155B (en) * 2007-03-21 2011-12-21 Delta Electronics Inc Optical communicating device
WO2010146652A1 (ja) * 2009-06-15 2010-12-23 富士通オプティカルコンポーネンツ株式会社 光モジュール
US9116318B2 (en) * 2011-05-11 2015-08-25 Sumitomo Electric Industries, Ltd. Optical module with device unit electrically isolated from optical receptacle
JP2013029640A (ja) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd 光トランシーバ
JP5780148B2 (ja) * 2011-12-16 2015-09-16 富士通オプティカルコンポーネンツ株式会社 光送受信器、及び光送受信器の製造方法
US8907749B2 (en) * 2012-03-20 2014-12-09 Cisco Technology, Inc. Gigahertz common-mode filter for multi-layer planar structure
US9647768B2 (en) * 2012-11-30 2017-05-09 Planxwell Ltd. Monolithic optical receiver and a method for manufacturing same
JP2015001563A (ja) * 2013-06-13 2015-01-05 富士通オプティカルコンポーネンツ株式会社 光モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286195A (ja) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd 光トランシーバ
JP2009105157A (ja) * 2007-10-22 2009-05-14 Sumitomo Electric Ind Ltd 光トランシーバ
JP2010008673A (ja) * 2008-06-26 2010-01-14 Fujitsu Ltd 一芯双方向光送受信器
US20110081120A1 (en) * 2009-10-07 2011-04-07 Finisar Corporation Optical subassembly grounding in an optoelectronic module
JP2012008480A (ja) * 2010-06-28 2012-01-12 Opnext Japan Inc 光トランシーバおよび電子装置
JP2012237841A (ja) * 2011-05-11 2012-12-06 Sumitomo Electric Ind Ltd 光モジュール
JP2013054214A (ja) * 2011-09-05 2013-03-21 Sumitomo Electric Ind Ltd 光トランシーバ
JP2014109604A (ja) * 2012-11-30 2014-06-12 Sumitomo Electric Ind Ltd 光通信装置及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059673A (zh) * 2016-05-18 2016-10-26 青岛海信宽带多媒体技术有限公司 一种光模块及光线路终端设备
US10171179B2 (en) 2016-05-18 2019-01-01 Hisense Broadband Multimedia Technologies Co., Ltd. Optical module and optical line terminal device
US11505775B2 (en) 2016-10-11 2022-11-22 Thöni Industriebetriebe Gmbh Stirring device with improved stirring element configuration
CN112433310A (zh) * 2020-12-17 2021-03-02 成都优博创通信技术有限公司 一种光模块以及光模块组件

Also Published As

Publication number Publication date
CN106461888B (zh) 2018-11-30
US20170168254A1 (en) 2017-06-15
KR20170010847A (ko) 2017-02-01
JP6524079B2 (ja) 2019-06-05
CN106461888A (zh) 2017-02-22
KR102059339B1 (ko) 2019-12-26
JPWO2015198667A1 (ja) 2017-04-20
US10534147B2 (en) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2015198667A1 (ja) 光送受信器
US9306345B2 (en) High-density cable end connector
US8077480B2 (en) Faraday cage for camera
TW200952620A (en) Shielding device and printed circuit board with shielding protection
JP6012220B2 (ja) 高周波シールド構造
JP6512547B2 (ja) 電磁共鳴結合器、および、伝送装置
US10474200B2 (en) Optical module having shield structure in feedthrough
US9929469B2 (en) Patch antenna device
WO2020110741A1 (ja) レーダ装置
JPWO2020130004A1 (ja) 回路基板及び電子機器
JP7122613B2 (ja) アンテナ装置及び電気機器
JP5601326B2 (ja) 通信システム
US9369216B2 (en) Communication apparatus
JP5762070B2 (ja) バンドパスフィルタ
US9502826B1 (en) Electrical connector assembly having a plug with a first shielding housing and a socket with a second shielding housing
KR20170067610A (ko) 고주파 전송선로
WO2014049920A1 (ja) 電磁波伝播システム及び電磁波インターフェースコネクタ
JP2004303752A (ja) 半導体装置、および光送受信器
US20130258618A1 (en) High frequency module
JP6861904B1 (ja) 電磁シールドケース
KR20200107786A (ko) 전자 장치
KR20220159897A (ko) 신호 차폐 장치 및 이를 포함하는 안테나 장치
JP2015188143A (ja) 導波管およびその製造方法
JP2006216723A (ja) プリント配線基板
JP2010045154A (ja) 電磁波減衰用シート及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529115

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15302231

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020167036261

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812787

Country of ref document: EP

Kind code of ref document: A1