WO2020110672A1 - 光学フィルム、位相差フィルム、及びそれらの製造方法 - Google Patents

光学フィルム、位相差フィルム、及びそれらの製造方法 Download PDF

Info

Publication number
WO2020110672A1
WO2020110672A1 PCT/JP2019/043993 JP2019043993W WO2020110672A1 WO 2020110672 A1 WO2020110672 A1 WO 2020110672A1 JP 2019043993 W JP2019043993 W JP 2019043993W WO 2020110672 A1 WO2020110672 A1 WO 2020110672A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
optical film
polymerized
copolymer
film
Prior art date
Application number
PCT/JP2019/043993
Other languages
English (en)
French (fr)
Inventor
一輝 熊澤
浩成 摺出寺
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020217014493A priority Critical patent/KR20210097699A/ko
Priority to US17/294,462 priority patent/US20220011490A1/en
Priority to CN201980076581.8A priority patent/CN113167954B/zh
Priority to JP2020558278A priority patent/JP7338638B2/ja
Publication of WO2020110672A1 publication Critical patent/WO2020110672A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2096/00Use of specified macromolecular materials not provided for in a single one of main groups B29K2001/00 - B29K2095/00, as moulding material
    • B29K2096/04Block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0034Polarising
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the present invention relates to an optical film, a retardation film, and a manufacturing method thereof.
  • an optical film having various characteristics may be provided in order to improve its display quality, and various optical films are being developed.
  • an optical film having optical anisotropy (Patent Documents 1 and 3-5) and an optical film having optical isotropy (Patent Document 2) have been developed.
  • JP, 2006-111650, A JP, 2006-142561, A JP, 2006-143799, A International Publication No. 2008/146924 (Corresponding foreign publication: US Patent Application Publication No. 2010/283949) Japanese Patent Laid-Open No. 05-164920
  • the member that can be used for the display device needs to have heat resistance.
  • the member used in the display device include a retardation film provided for the purpose of improving viewing angle characteristics such as viewing angle compensation and reflection suppression.
  • the retardation film is required to have a NZ coefficient larger than 0 and smaller than 1 in addition to heat resistance.
  • the NZ coefficient is preferably 0.5 or a value close to 0.5.
  • Patent Document 4 As a method of producing a retardation film having such an NZ coefficient, there is a method of combining a number of layers (Patent Document 4).
  • the retardation film obtained by this method has a complicated structure, so that the manufacturing cost of the film is high and the productivity is low.
  • Rth means the retardation (nm) in the thickness direction of the film
  • d (nm) means the thickness of the film
  • the conventional optical film it is difficult for the conventional optical film to satisfy both the high Rth/d value and the heat resistance, and as a result, the conventional optical film satisfies both the effect of improving the viewing angle characteristics and the heat resistance. It was difficult to obtain a retardation film.
  • an optical film capable of sufficiently obtaining a viewing angle characteristic improving effect and capable of producing a heat-resistant retardation film at a low cost; a method for producing such an optical film is required.
  • the present inventor diligently studied to solve the above problems.
  • a polymer composed of a polymerized unit A containing a phase-separated structure that exhibits structural birefringence A
  • the present invention has been completed by finding that the above problems can be solved by the fact that the characteristics of (1) and the characteristics of the polymer (B) composed of the polymerized units B have a predetermined relationship. That is, the present invention provides the following.
  • An optical film comprising a resin C containing a copolymer P containing a polymerized unit A and a polymerized unit B, A phase-separated structure that exhibits structural birefringence is included, and the phase-separated structure includes a phase (A) containing the polymerized unit A as a main component and a phase (B) containing the polymerized unit B as a main component.
  • the copolymer P is a block copolymer having a block (A) containing the polymerized unit A as a main component and a block (B) containing the polymerized unit B as a main component, [1] to The optical film as described in any one of [5].
  • R C is a group selected from the group consisting of a phenyl group, a biphenylyl group, a naphthyl group, an anthracenyl group, a phenanthrenyl group, a naphthacenyl group, a pentacenyl group, and a terphenylyl group
  • R 1 to R 3 is independently one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 12 carbon atoms.
  • each of R 4 to R 9 is independently one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 6 carbon atoms.
  • the polymerized unit A is a vinylnaphthalene unit, a vinylnaphthalene derivative unit, a styrene unit, or a styrene derivative unit
  • the polymerized unit B is a unit obtained by hydrogenating an isoprene unit, a unit obtained by hydrogenating a butadiene unit, a unit obtained by hydrogenating a 1,3-pentadiene unit, 2,3-dimethyl-1,3- A unit obtained by hydrogenating a butadiene unit, a unit obtained by hydrogenating a 1,3-hexadiene unit, a unit obtained by hydrogenating a 2-methyl-1,3-pentadiene unit, 3-methyl-1,3-
  • the optical film according to any one of [1] to [10], which is a unit obtained by hydrogenating a pentadiene unit or a unit obtained by hydrogenating a 2,4-dimethyl-1,3-pentadiene unit.
  • the copolymer P contains a triblock copolymer P′,
  • the triblock copolymer P′ has a block (A) containing the polymerized units A as a main component and a block (B) containing the polymerized units B as a main component, (A)-(B)-( A)
  • an optical film capable of sufficiently obtaining the effect of improving the viewing angle characteristics and capable of producing a heat-resistant retardation film at a low cost; and a method for producing such an optical film.
  • the “long” film refers to a film having a length of 5 times or more with respect to the width, preferably having a length of 10 times or more, specifically, a roll.
  • the upper limit of the length of the film is not particularly limited and may be, for example, 100,000 times or less the width.
  • the “plate” includes not only a rigid member but also a flexible member such as a resin film.
  • the slow axis of the film or layer means the slow axis in the plane of the film or layer unless otherwise specified.
  • the angle formed by the optical axes (slow axis, transmission axis, absorption axis, etc.) of each layer in a member including a plurality of layers is the angle when the layers are viewed from the thickness direction unless otherwise specified. Represents.
  • the front direction of a film means the normal direction of the main surface of the film unless specifically stated otherwise, and specifically, the direction of the polar angle 0° and the azimuth angle 0° of the main surface. Refers to.
  • the tilt direction of a film means a direction which is neither parallel nor perpendicular to the main surface of the film unless specifically stated otherwise, and specifically, the polar angle of the main surface is greater than 0° and 90°. Denotes a direction that is less than °.
  • the NZ coefficient of a layer is a value represented by (nx-nz)/(nx-ny) unless otherwise specified.
  • nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) and giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the layer and in the direction orthogonal to the nx direction.
  • nz represents the refractive index in the thickness direction of the layer.
  • d represents the thickness of the layer. The measurement wavelength is 590 nm unless otherwise specified.
  • the directions of elements are “parallel”, “vertical”, and “orthogonal” unless otherwise specified, within a range that does not impair the effects of the present invention, for example, ⁇ 3°, ⁇ 2°, or ⁇ 1°.
  • the error in the range of may be included.
  • the positive/negative of the intrinsic birefringence value of a polymer is defined by the behavior of the refractive index of the polymer when the polymer is stretched. That is, a polymer having a positive intrinsic birefringence value is a polymer in which the refractive index of the molded product in the stretching direction is larger than that before stretching. The polymer having a negative intrinsic birefringence value is a polymer in which the refractive index of the molded product in the stretching direction is smaller than that before stretching.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution.
  • a certain specific polymerized unit has a positive intrinsic birefringence value means that a polymer composed only of the polymerized unit has a positive intrinsic birefringence value
  • a specific polymerized unit has a negative intrinsic birefringence value means that a polymer composed of only the polymerized units has a negative intrinsic birefringence value. Therefore, the positive and negative of the intrinsic birefringence value of the polymerized unit, the homopolymer consisting only of the polymerized unit is prepared, the polymer into a molded article of any shape, the molded article is stretched, and the optical characteristics are measured. By doing so, it can be easily determined.
  • polymerized units of hydrocarbons such as alkenes and dienes have a positive intrinsic birefringence value
  • polymerized units of hydrocarbons having an aromatic ring in the side chain such as styrene and vinylnaphthalene.
  • Many are known to have negative intrinsic birefringence values.
  • a block in a polymer which is composed of polymerized units generated by polymerizing a certain monomer, may be expressed by using the name of the monomer.
  • a block composed of polymerized units produced by polymerization of 2-vinylnaphthalene may be referred to as “2-vinylnaphthalene block”
  • a block composed of polymerized units produced by polymerization of isoprene may be referred to as “isoprene block”. is there.
  • the retardation film of this embodiment is made of resin C.
  • the resin C contains the specific copolymer P.
  • the copolymer P contains polymerized units A and polymerized units B.
  • the copolymer P is preferably a block copolymer having a block (A) containing a polymer unit A as a main component and a block (B) containing a polymer unit B as a main component.
  • a block copolymer is a polymer having a molecular structure in which a plurality of types of blocks are linked, and each block is a chain formed by linking polymer units.
  • the specific block copolymer in one embodiment of the present invention has specific blocks (A) and blocks (B).
  • block copolymer the specific block copolymer may be simply referred to as “block copolymer”.
  • the polymerized unit which is the main component in a certain block means a polymerized unit which is 50% by weight or more based on the total weight of the polymerized units constituting the block.
  • the polymerized unit A may have a negative intrinsic birefringence value.
  • the polymerized unit B may have a positive intrinsic birefringence value.
  • Examples of the polymerized unit A include units represented by the following general formula (A).
  • R C is a phenyl group, a biphenylyl group (eg, 4-biphenylyl group, 2-biphenylyl group, 3-biphenylyl group), a naphthyl group (eg, 1-naphthyl group, 2-naphthyl group), anthracenyl group (Eg, anthracen-1-yl group, anthracen-2-yl group, anthracen-9-yl group), phenanthrenyl group (eg, phenanthrene-1-yl group, phenanthren-2-yl group, phenanthren-3-yl group , Phenanthrene-4-yl group, phenanthrene-9-yl group), naphthacenyl group (eg, naphthacen-1-yl group, naphthacene-2-yl group, naphthacen-5-yl group), pentacenyl group (eg, pentacene-) 1-y
  • R 1 to R 3 is independently one selected from the group consisting of a hydrogen atom and an alkyl group having 1 to 12 carbon atoms. Examples of such alkyl groups include methyl, ethyl, propyl, and hexyl groups.
  • R 1 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R 2 and R 3 are hydrogen atoms.
  • R C is a naphthyl group or a phenyl group, more preferably a naphthyl group.
  • R 2 and R 3 are hydrogen atoms and R C is a naphthyl group or a phenyl group, or R 2 and R 3 are hydrogen atoms and R 1 is a hydrogen atom. More preferably, R 2 and R 3 are hydrogen atoms, R C is a naphthyl group, and R 1 is a hydrogen atom (vinylnaphthalene unit), or R 1 , R 2 and R 3 are hydrogen atoms. And R C is a phenyl group (styrene unit), most preferably R 2 and R 3 are hydrogen atoms, R C is a naphthyl group, and R 1 is a hydrogen atom.
  • the polymerized unit A can be obtained by polymerizing the monomer (a) that gives the polymerized unit A.
  • the monomer (a) include vinylnaphthalene and its derivatives, and styrene and its derivatives.
  • the monomer (a) which gives the polymerized unit A vinylnaphthalene, vinylnaphthalene derivative, styrene, and styrene derivative are preferable. Therefore, in one embodiment, the polymerized units A are preferably vinylnaphthalene units, vinylnaphthalene derivative units, styrene units, or styrene derivative units.
  • vinylnaphthalene examples include 1-vinylnaphthalene and 2-vinylnaphthalene.
  • examples of derivatives of vinylnaphthalene include ⁇ -alkylvinylnaphthalene (eg, ⁇ -methyl-1-vinylnaphthalene, ⁇ -ethyl-1-vinylnaphthalene, ⁇ -propyl-1-vinylnaphthalene, ⁇ -hexyl-1-).
  • vinyl naphthalene ⁇ -methyl-2-vinylnaphthalene, ⁇ -ethyl-2-vinylnaphthalene, ⁇ -propyl-2-vinylnaphthalene, and ⁇ -hexyl-2-vinylnaphthalene.
  • 2-vinylnaphthalene is preferable from the viewpoint of industrial availability.
  • styrene derivatives include ⁇ -alkylstyrene (eg, ⁇ -methylstyrene, ⁇ -ethylstyrene). As styrene and its derivative, styrene is preferable from the viewpoint of industrial availability.
  • the copolymer P may have only one kind as the polymerized unit A alone, or may have two or more kinds in combination at an arbitrary ratio. Therefore, as the monomer (a) for forming the polymerized units A, only one kind may be used alone, or two or more kinds may be used in combination at an arbitrary ratio.
  • the copolymer P may contain a polymer unit obtained by hydrogenating the polymer unit A.
  • the polymerized unit obtained by hydrogenating the polymerized unit A is a polymerized unit having a structure in which the polymerized unit A is hydrogenated.
  • the polymerized unit obtained by hydrogenating the polymerized unit A is also referred to as polymerized unit HA.
  • the polymerized unit HA may be a unit produced by any method. Examples of the polymerized unit HA include a unit obtained by adding a hydrogen atom to a part or all of the unsaturated bonds of the group represented by R C in the unit represented by the general formula (A). Be done.
  • the molar ratio (HA/A) of polymerized units HA to polymerized units A in the copolymer P is preferably 10/90 or less, more preferably 5/95 or less, further preferably 2/98 or less, and most preferably 1 /99 or less and 0/100 or more, but ideally 0/100.
  • the molar ratio (HA/A) in the copolymer P can be determined by measuring 1 H-NMR of the copolymer P.
  • the molar ratio (HA/A) means the sum of the respective mole ratios of the plurality of types of polymerized units HA.
  • the molar ratio (HA/A) means the molar ratio of the polymerized units HA to the total number of moles of the polymerized units A of a plurality of types.
  • Examples of the polymerized unit B include a unit represented by the following general formula (B-1) and a unit represented by (B-2).
  • Each of R 4 to R 9 is independently one selected from the group consisting of a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Examples of such alkyl groups include methyl, ethyl, propyl, and hexyl groups. It is preferable that each of R 4 to R 9 is independently a hydrogen atom or a methyl group.
  • the polymerized unit B can be obtained by polymerizing a monomer (b) capable of giving the polymerized unit B to form a polymerized unit, and further, if a double bond is present in the polymerized unit, hydrogenating the double bond.
  • a monomer (b) capable of giving the polymerized unit B to form a polymerized unit, and further, if a double bond is present in the polymerized unit, hydrogenating the double bond.
  • Examples of the monomer (b) include compounds represented by the following general formula (bm).
  • R 4 to R 9 are the same as those in the general formulas (B-1) and (B-2).
  • Preferred examples of the monomer (b) include butadiene (all of R 4 to R 9 in the formula (bm) are hydrogen atoms), isoprene (R 6 or R 7 among R 4 to R 9 in the formula (bm)). Is a methyl group and the others are hydrogen atoms), 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 1,3-hexadiene, 2-methyl-1,3-pentadiene, 3-methyl-1, Examples include 3-pentadiene and 2,4-dimethyl-1,3-pentadiene. Among them, butadiene and isoprene are more preferable from the viewpoint of obtaining the resin C excellent in transparency, heat resistance, and processability.
  • polymerized units B is hydrogen isoprene units A unit obtained by hydrogenating a butadiene unit, a unit obtained by hydrogenating a 1,3-pentadiene unit, a unit obtained by hydrogenating a 2,3-dimethyl-1,3-butadiene unit, A unit obtained by hydrogenating a 1,3-hexadiene unit, a unit obtained by hydrogenating a 2-methyl-1,3-pentadiene unit, a unit obtained by hydrogenating a 3-methyl-1,3-pentadiene unit, And units obtained by hydrogenating 2,4-dimethyl-1,3-pentadiene units are more preferable.
  • the unit obtained by hydrogenating a certain unit is a unit having a structure in which the certain unit is hydrogenated.
  • the unit obtained by hydrogenating a unit may be a unit produced by any method.
  • the copolymer P may have only one kind as the polymerized unit B alone, or may have two or more kinds in combination at an arbitrary ratio. Therefore, as the monomer (b) for forming the polymerized unit B, only one type may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the copolymer P may contain a polymerized unit capable of obtaining a polymerized unit B when hydrogenated.
  • the polymerized unit that gives a polymerized unit B when hydrogenated is a polymerized unit having a structure in which the polymerized unit B is dehydrogenated.
  • the polymerized unit which can be polymerized to obtain the polymerized unit B is also referred to as polymerized unit B′.
  • the polymerized unit B′ may be a unit produced by any method. Examples of the polymerized unit B′ include a unit represented by the following general formula (B′-1) and a unit represented by the following general formula (B′-2).
  • the molar ratio of the polymerized units B′ to the polymerized units B is preferably 10/90 or less, more preferably 5/95 or less, further preferably 2/98 or less, most preferably Is 1/99 or less and can be 0/100 or more, but ideally it is 0/100.
  • the molar ratio (B'/B) in the copolymer P can be determined by measuring the NMR of the copolymer P.
  • the molar ratio (B′/B) means the sum of the respective mole ratios of the plurality of types of polymerized units B′.
  • the molar ratio (B′/B) means the mole ratio of the polymerized units B′ to the total number of moles of the plurality of types of polymerized units B. Therefore, the polymerized unit B is a unit represented by the general formula (B-1) or the unit represented by the general formula (B-2), and the polymerized unit B′ is represented by the general formula (B′-1).
  • the molar ratio (B′/B) in the copolymer P is the same as the unit represented by the general formula (B-1).
  • the molar ratio means the sum of the molar ratios of the units represented by the general formula (B'-1) and the units represented by the following general formula (B'-2).
  • the block (A) may have any polymer unit other than the polymer unit A.
  • examples of such arbitrary polymerized units include a unit formed by polymerization of an arbitrary monomer copolymerizable with the monomer (a), and a unit formed by hydrogenation of the unit.
  • the block (B) may have any polymer unit other than the polymer unit B.
  • Examples of such arbitrary polymerized units are polymerized units obtained by polymerizing the monomer (b), in which an unhydrogenated double bond remains, and copolymerizable with the monomer (b).
  • the unit examples include a unit formed by polymerization of any arbitrary monomer and a unit formed by hydrogenation of the unit.
  • the ratio of the polymerized units A in the block (A) and the ratio of the polymerized units B in the block (B) are high from the viewpoint of developing the optical and mechanical properties of the resin C.
  • the proportion of the polymerized units A in the block (A) is preferably 50% by weight or more, more preferably 75% by weight or more, even more preferably 95% by weight or more, and particularly preferably, the block (A) contains only the polymerized units A. Consists of.
  • the proportion of the polymerized units B in the block (B) is preferably 50% by weight or more, more preferably 75% by weight or more, still more preferably 95% by weight or more, and particularly preferably, the block (B) contains only the polymerized units B. Consists of.
  • the block (A) and the block (B) are preferably incompatible. When these are incompatible, a phase separation structure can be more easily obtained in the retardation film. Whether or not the block (A) and the block (B) are incompatible is determined by the homopolymer and the polymerized unit B consisting of the polymerized unit A having a molecular weight similar to the size of these blocks in the block copolymer. It can be determined based on the compatibility of the homopolymer consisting of Whether or not such homopolymers are compatible can be determined by whether or not these homopolymers are phase-separated when they are mixed to form a mixture and the mixture is heated to a melting temperature.
  • the molecular structure of the copolymer P is not particularly limited as long as it has the polymerized units A and the polymerized units B, and may be a molecular structure having an arbitrary configuration.
  • the copolymer P is a block copolymer
  • the block copolymer may be a linear block copolymer or a graft block copolymer.
  • linear block copolymers examples include diblock copolymers having a block structure of (A)-(B) in which block (A) and block (B) are linked; block (A), block (B) And a triblock copolymer having a block constitution of (A)-(B)-(A) in which another block (A) is connected in this order (in the present application, the case of "triblock copolymer P'"Yes); pentablock co-polymer having a block structure in which three blocks (A) and two blocks (B) are connected in the order of (A)-(B)-(A)-(B)-(A). And a linear block copolymer having a block structure in which a large number of blocks are connected.
  • n-(A)-(B) is an integer of 1 or more
  • graft type block copolymer examples include a block copolymer having a block structure of (A)-g-(B) in which the block (B) is linked to the block (A).
  • the copolymer P is preferably a molecule having two or more polymer blocks (A) and one or more polymer blocks (B) per molecule. It may be a block copolymer having a structure. More preferably, the block copolymer may be a triblock copolymer having a block constitution of (A)-(B)-(A).
  • the weight fraction of the polymerized units A can be adjusted so as to express desired optical properties.
  • the weight fraction of the polymer unit A means the weight of the polymer unit A with respect to the total weight of the polymer units constituting the copolymer P.
  • the weight fraction of the polymerized units A referred to here is the weight of the polymerized units A with respect to the total weight of the polymerized units in the entire plurality of types of copolymers P included. Is the weight of.
  • the weight fraction of the polymerized units A in the copolymer P is preferably 50% by weight or more, more preferably 53% by weight or more, further preferably 55% by weight or more, preferably less than 70% by weight, more preferably 69% by weight. It is less than wt%, more preferably 68 wt% or less, particularly preferably less than 68 wt%, preferably 50 wt% or more and less than 70 wt%, more preferably 55 wt% or more and less than 68 wt%.
  • the weight fraction of the polymerized units A in the copolymer P is at least the lower limit value, the retardation film produced from the optical film can have more excellent heat resistance.
  • the retardation film produced from the optical film can have more excellent viewing angle characteristics.
  • the molecular weight of the copolymer P is not particularly limited, and may be appropriately adjusted within a range in which preferable optical characteristics and mechanical characteristics are obtained.
  • the molecular weight of the copolymer P may be in the range of 50,000 to 400,000, for example.
  • the glass transition temperature Tg of the copolymer P may be in the range of 110° C. to 150° C., for example.
  • the glass transition temperature Tg of the copolymer P can be measured by thermomechanical analysis (TMA).
  • the copolymer P preferably has a negative intrinsic birefringence value.
  • a negative intrinsic birefringence value can be imparted by adjusting the ratio of polymerized units in the copolymer P.
  • the polymerized unit A is a unit having a negative intrinsic birefringence value, and the weight fraction of the polymerized unit A is adjusted within the range of the lower limit or more described above to obtain a negative intrinsic birefringence value.
  • the resin C may be composed of only the copolymer P, or may contain an arbitrary component in addition to the copolymer P.
  • optional components include additives such as dyes, pigments and antioxidants.
  • the ratio of such optional components may be within the range that does not impair the effects of the present invention.
  • the proportion of the copolymer P in the resin C is preferably 98% by weight or more, more preferably 99% by weight or more, usually 100% by weight or less, and further preferably, the resin C is a copolymer. Consist of P only.
  • the optical film of this embodiment includes a phase separation structure that exhibits structural birefringence.
  • the phase-separated structure is formed in the layer of the resin C that constitutes the optical film.
  • the phase-separated structure of the resin C means the self of the part (for example, the block (A)) of the copolymer P in the resin C and the part (for example, the block (B)) of the copolymer P. Due to the organization, a phase having polymerized units A as a main component (also referred to as phase (A)) and a phase having polymerized units B as a main component (also referred to as phase (B)) are distinguished in the layer.
  • phase-separated structure can exhibit structural birefringence when the structure is sufficiently smaller than the wavelength of light.
  • Structural birefringence is birefringence that occurs in a structure including a plurality of types of phases having different refractive indexes, such as the phase separation structure. For example, in a certain structure, when a phase having a refractive index n2 different from n1 exists in a phase having a certain refractive index n1, the structure can exhibit structural birefringence. Structural birefringence is clearly different from orientation birefringence caused by molecular orientation by stretching, in that birefringence occurs even if each phase is formed of an isotropic medium.
  • the actual occurrence of structural birefringence can be confirmed by measuring the optical properties of the film.
  • An unstretched film formed by a conventional method such as extrusion molding, press working, or solvent casting usually has a random molecular orientation, and thus Re and Rth are values close to zero.
  • Re and Rth are values close to zero.
  • the expression of structural birefringence can be confirmed by measuring such a value.
  • the Rth/d of the unstretched film is 0.5 ⁇ 10 ⁇ 3 or more, it may be determined that the unstretched film has structural birefringence.
  • more reliable confirmation of the expression of structural birefringence can be confirmed by conducting structural observations with an electron microscope or small-angle X-ray scattering.
  • phase separation structure examples include a lamella structure, a spheroid structure, and a cylinder structure. Which of these phase-separated structures is expressed is influenced by various factors.
  • the main factor affecting the development of the structure is the volume ratio of the phase containing the polymerized units A as the main component and the phase containing the polymerized units B as the main component.
  • the volume ratio of these phases can be adjusted by changing the ratio of the blocks (A) and (B) in the block copolymer.
  • the phase separation structure is preferably a cylinder structure or a lamella structure.
  • the size of the structure can be appropriately adjusted within a range in which the optical film can give desired optical characteristics.
  • the distance between phases is preferably 200 nm or less, more preferably 150 nm or less, further preferably 100 nm or less, and the size of each phase separated is preferably 100 nm or less, more preferably 80 nm or less, further preferably 60 nm. It is below.
  • the distance between the phases means, for example, in the case of lamellar phase separation, the distance between lamellas (that is, the pitch of repeating units of lamella layers), in the case of a cylindrical phase separation structure, the distance between cylinders, In the case of a spheroidal phase-separated structure, it refers to the distance between spheroids.
  • the size of the phase separated refers to the thickness of the lamella in the case of lamellar phase separation, refers to the cylinder radius in the case of cylindrical phase separation, and refers to the spheroid radius in the case of spheroidal phase separation structure. ..
  • As the distance between the phases a value obtained by fitting the scattering pattern obtained by the measurement of small-angle X-ray scattering with a theoretical curve can be adopted.
  • the lower limit of the interphase distance is not particularly limited, but may be 10 nm or more, for example.
  • the lower limit of the size of the separated phases is not particularly limited, but may be 10 nm or more, for example.
  • the interphase distance can be adjusted by adjusting the molecular structure of the copolymer P.
  • a block copolymer may be employed as the copolymer P, and the elements such as the lengths of the blocks (A) and (B) may be appropriately adjusted.
  • is preferably 0.12 or more, more preferably 0.14 or more, still more preferably 0.16 or more, and the larger it is, the more it can be 0.25 or less.
  • the refractive index can be measured by, for example, the prism coupler method.
  • the polymer (A) consisting of the polymer unit A can be obtained by polymerizing the monomer corresponding to the polymer unit A, and further performing a reaction such as hydrogenation if necessary.
  • the polymer (B) composed of the polymerized unit B can be obtained by polymerizing the monomer corresponding to the polymerized unit B and, if necessary, performing a reaction such as hydrogenation.
  • the copolymer P has the block (A) and the block (B)
  • the polymer (A) and the polymer (B) are obtained in the same manner as in the production method of the block (A) and the block (B), respectively. sell.
  • is preferably 180° C. or higher, more preferably 190° C. or higher, even more preferably 200° C. or higher, and the larger the value, the more preferable it is 275° C. or lower.
  • the glass transition temperatures of the polymer (A) and the polymer (B) can be measured, for example, by a differential scanning calorimetry method.
  • the measurement condition may be a temperature rising rate of 10° C./min based on JIS K6911.
  • the content ratio of the polymerized units A in the phase containing the polymerized units A as the main component and the content ratio of the polymerized units B in the phase containing the polymerized units B as the main component are the materials for the production of the copolymer P and the operation of the production. Can be adjusted by adjusting appropriately. It is preferable that the content ratio is a high value in order to exert the effect.
  • the content of the polymerized units A in the phase containing the polymerized units A as a main component is preferably 50% by weight or more, more preferably 75% by weight or more, usually 100% by weight or less, and further preferably 100% by weight. Is.
  • the content ratio of the polymerized units B in the phase containing the polymerized units B as a main component is preferably 50% by weight or more, more preferably 75% by weight or more, usually 100% by weight or less, and further preferably 100% by weight. Is.
  • the glass transition temperature Tg(A) (°C) of the polymer (A) is preferably 120°C or higher, more preferably 130°C or higher, even more preferably 140°C or higher, and may be 180°C or lower.
  • the heat resistance of the retardation film can be effectively improved by selecting the polymerized unit A in which the glass transition temperature Tg(A) (°C) of the polymer (A) is within the above range.
  • the optical film has a Rth/d value calculated from the film thickness direction retardation Rth (nm) and the film thickness (nm) of preferably 0.5 ⁇ 10 ⁇ 3 or more, more preferably 1.0 ⁇ 10 3. -3 or more, more preferably 1.5 ⁇ 10 -3 or more, preferably 8.0 ⁇ 10 -3 or less, more preferably 7.0 ⁇ 10 -3 or less, and further preferably 6. It is 5 ⁇ 10 ⁇ 3 or less, preferably 1.0 ⁇ 10 ⁇ 3 or more and 8.0 ⁇ 10 ⁇ 3 or less.
  • the thickness of the optical film can be appropriately set according to the stretching conditions in the subsequent stretching step, the purpose of use, etc., but it is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, more than 0 ⁇ m and 10 ⁇ m or more.
  • Rth/d of the optical film can be adjusted by adjusting the value of
  • the optical film can be manufactured by a manufacturing method including a step of forming a single-layer film of the resin C and a step of phase-separating the resin C in the film.
  • Examples of specific film forming methods for carrying out the step of forming the resin C film include a solution casting method, a melt extrusion method, a calender method, and a compression molding method (press molding method).
  • the melt extrusion method is particularly preferable for efficiently producing a large amount of optical films.
  • a step of extruding a resin melted by an extruder from a die and then casting the extruded resin on a cooling roll is usually performed.
  • the extrusion rate of the resin from the die can be adjusted by adjusting the screw rotation speed of the extruder.
  • the screw rotation speed of the extruder is preferably 10 rpm or more, more preferably 20 rpm or more, preferably 80 rpm or less, more preferably 60 rpm or less.
  • the temperature of the cooling roll is preferably 120° C. or higher, more preferably 130° C. or higher, preferably 150° C. or lower, more preferably 145° C. or lower.
  • the step of forming the resin C film is usually performed while heating the resin C.
  • the temperature for heating the resin C is usually 100° C. or higher, preferably 150° C. or higher, more preferably 180° C. or higher, even more preferably 200° C. or higher, preferably 320° C. or lower. , More preferably 300° C. or lower, still more preferably 290° C. or lower.
  • the step of phase-separating the resin C in the film may be performed after the step of forming the film, or may be performed simultaneously with the step of forming the film.
  • the phase separation step can be performed, for example, by gradually cooling the molten resin C. Specifically, when a melt extrusion method or another method is adopted as the step of forming a film, an operation of molding a resin in a molten state and then cooling it under slow cooling conditions can be performed. Although the specific mechanism of action is unknown, by performing such slow cooling, a phase-separated structure of the resin C exhibiting structural birefringence can be easily formed, and an optical film having desired optical characteristics can be obtained. Can be easily obtained.
  • phase separation step a step of pressurizing the membrane may be performed in addition to or instead of the above-described slow cooling.
  • a step of pressurizing the membrane may be performed in addition to or instead of the above-described slow cooling.
  • the pressurizing step can be performed by applying pressure to the sheet-shaped resin C in the thickness direction thereof.
  • a pressurizing device such as a mold for applying pressure to the surface of the membrane can be used.
  • the pressurizing step may be performed simultaneously with the molding as a part of the molding step, or may be performed after the molding.
  • the pressurizing step can also be performed by an apparatus that continuously applies pressure to the long resin C.
  • a pressure device such as a pressure roll may be used for such an operation.
  • the pressurizing step can be performed by passing the resin C extruded from the die between two pressure rolls and applying pressure to the resin C by these. ..
  • a film having a uniform thickness and a phase-separated structure can be obtained by appropriately adjusting the conditions at the time of pressurization, such as the linear pressure of pressurization and the temperature of pressurization.
  • optical film [3.1. Characteristics of retardation film that can be produced from optical film]
  • the optical film can be used as it is for various optical applications, but by stretching the optical film, a retardation film having excellent viewing angle characteristics can be produced.
  • a retardation film having excellent heat resistance and improved viewing angle characteristics can be manufactured.
  • the stretching process can be performed on a line continuous with the production line for molding the resin C film.
  • the produced film of the resin C may be once taken up as a film roll, and then the film may be unwound from the film roll and subjected to the stretching step.
  • the stretching step is usually performed by a flat method stretching in which the film is stretched in the in-plane direction. Examples of flat stretching include uniaxial stretching and biaxial stretching.
  • the uniaxial stretching method is stretching in which the film is stretched in one direction in the plane thereof, and examples thereof include a free width uniaxial stretching method and a constant width uniaxial stretching method.
  • the biaxial stretching method is stretching in which the film is stretched in one direction in the plane.
  • Examples of the biaxial stretching method include a sequential biaxial stretching method and a simultaneous biaxial stretching method. Stretching in each direction may be free width stretching or constant width stretching. More specific examples of the sequential biaxial stretching method include an all tenter method and a roll tenter method.
  • the stretching method for the stretching step in the manufacturing method of the present embodiment may be any of these methods, and a method suitable for obtaining a desired retardation film can be selected.
  • the film was cut into a size of 2 mm ⁇ 4 mm to obtain a plurality of film pieces. Thirty sheets were piled up in the thickness direction, fixed in a folder, and subjected to small-angle X-ray scattering measurement at a small-angle X-ray scattering measurement facility (Aichi SR, beam line 8S3) to obtain a scattering pattern.
  • the measurement conditions were a camera length of 4 m, an X-ray energy of 8.2 KeV, a measurement q range of about 0.06 to 3 nm ⁇ 1 , and an exposure time of 60 seconds per sample.
  • the obtained scattering pattern was fitted to a theoretical curve to calculate the phase separation structure and the interphase distance.
  • the X-ray irradiation surface was the cross section of the film, and the integration range was 20° in each of the thickness direction and the direction perpendicular to the thickness direction.
  • the interphase distance was calculated from the data obtained from each integration, and the average value of the interphase distance in the thickness direction and the direction perpendicular to the thickness direction was used as the measured value.
  • Tg glass transition temperature of the sample is measured using a differential scanning calorimeter (manufactured by SII Nanotechnology Inc., product name: DSC6220) at a heating rate of 10° C./min based on JIS K 6911. did.
  • TMA thermomechanical analysis
  • the sign of the intrinsic birefringence value was defined by the behavior of the refractive index when a film was produced from the copolymer and the film was stretched.
  • the intrinsic birefringence of the copolymer was defined as positive when the refractive index of the stretched film in the stretching direction was higher than that before stretching.
  • the refractive index of the stretched film in the stretching direction was smaller than that before stretching, the intrinsic birefringence of the copolymer was determined to be negative.
  • a polarizing plate As the polarizing plate, a long polarizing plate having a transmission axis in the width direction (manufactured by Sanritz Co., Ltd., trade name “HLC2-5618S”, thickness 180 ⁇ m) was prepared. The protective film on one surface side of the polarizing plate was removed, and a retardation film as a ⁇ /4 plate to be evaluated was attached to the surface. The lamination was performed so that the slow axis direction of the retardation film and the transmission axis direction of the polarizing plate formed an angle of 45°. By this operation, a polarizing plate provided with the retardation film to be evaluated as one of the protective films on both sides was obtained.
  • the obtained polarizing plate was replaced with a polarizing plate originally provided on the viewing side of a commercially available organic electroluminescence (EL) display device (produced by LG Electronics, OLED55EG9600), and an organic EL display device provided with a retardation film to be evaluated.
  • EL organic electroluminescence
  • the polarizing plate was arranged such that the side having the retardation film to be evaluated was the organic EL element side. Further, the transmission axis of the polarizer was set in the same direction as the polarizer in the polarizing plate originally provided in the organic EL display device.
  • the display state of the obtained organic EL display device was observed at various azimuth angles from the tilt direction (45° to the normal direction) with respect to the display surface, and the display state was evaluated according to the following criteria. Best: The reflectance was suppressed in all directions compared to before replacement. Good: The reflectance was suppressed in one or more azimuths as compared with before replacement. Poor: The reflectance increased in one or more azimuths as compared with before replacement.
  • Ts The heat resistance of the film to be evaluated was evaluated by the thermal softening temperature Ts.
  • Ts was measured by thermomechanical analysis (TMA) measurement according to the following procedure. A film to be measured was cut out into a shape of 5 mm ⁇ 20 mm to prepare a sample, and a thermomechanical analyzer “TMA/SS7100” (manufactured by SII Nanotechnology Inc.) was used to apply a tension of 50 mN in the longitudinal direction of the sample. In this state, the temperature was changed and the temperature (° C.) when the linear expansion changed by 3% was measured as the thermal softening temperature Ts. From the measured thermal softening temperature Ts, the heat resistance of the film to be evaluated was evaluated according to the following criteria. Good: Ts is 120° C. or higher. Poor: Ts is less than 120°C.
  • the obtained polymer solution was extracted and dried to obtain an isoprene homopolymer (PI).
  • the obtained isoprene homopolymer (PI) had a molecular weight distribution (Mw/Mn) of 1.07 and a weight average molecular weight (Mw) of 76000.
  • Mw/Mn molecular weight distribution
  • Mw weight average molecular weight
  • the refractive index and the glass transition temperature by DSC were measured by the methods described above. The measurement results are shown in Table 1.
  • the obtained polymer (PVN) was analyzed by 1 H-NMR.
  • the polymer (PVN) was composed of only 2-vinylnaphthalene units, and thus the polymer (PVN) was a homopolymer of 2-vinylnaphthalene.
  • the refractive index and the glass transition temperature by DSC were measured by the methods described above. The measurement results are shown in Table 1.
  • the obtained polymer solution was extracted and dried to obtain a styrene homopolymer (PS).
  • PS styrene homopolymer
  • Mw/Mn molecular weight distribution
  • Mw weight average molecular weight
  • the refractive index and the glass transition temperature by DSC were measured by the methods described above. The measurement results are shown in Table 1.
  • PI Isoprene homopolymer
  • HPI Hydrogenated PI: hydride of isoprene homopolymer
  • HPB Hydrogenated PB: hydride of butadiene homopolymer
  • PVN 2-vinylnaphthalene homopolymer
  • PS Styrene homopolymer
  • HPS Hydrogenated PS: hydride of styrene homopolymer
  • Example 1 (1-1. Triblock Copolymer) (First stage) In a pressure-resistant reactor which was dried and replaced with nitrogen gas, 500 parts of toluene as a solvent and 0.03 part of n-butyllithium as a polymerization catalyst were put, and then 2-vinylnaphthalene 12.1 was used as a monomer (a). Part was added, and the reaction was carried out at 25° C. for 1 hour to carry out the first stage polymerization reaction.
  • the obtained triblock copolymer was dissolved in 700 parts of p-xylene to give a solution. To the solution was added 7.6 parts of p-toluenesulfonyl hydrazide, and the mixture was reacted at a temperature of 130° C. for 8 hours. By this reaction, hydrogen was added to the double bond of the butadiene unit. After completion of hydrogenation, the reaction solution was poured into a large amount of 2-propanol, and the triblock copolymer P1 having a block structure of (block (A))-(block (B))-(block (A)) was formed into a lump. As a product of. In the triblock copolymer P1, the block (A) was a 2-vinylnaphthalene block and the block (B) was a hydrogenated butadiene block.
  • the obtained triblock copolymer P1 was analyzed by 1 H-NMR.
  • the weight ratio of the 2-vinylnaphthalene unit as the polymerized unit A to the hydrogenated butadiene unit as the polymerized unit B in the triblock copolymer was 67:33, and therefore the weight fraction of the polymerized unit A was 67:33.
  • %Met The hydrogenation rate based on the 2-vinylnaphthalene unit was 0%, and the hydrogenation rate based on the butadiene unit was 99%.
  • the molar ratio of the polymer unit HA (hydrogenated 2-vinylnaphthalene unit) to the polymer unit A (2-vinylnaphthalene unit) is 0, and the polymer unit B′ (B′-1 and B′-2)( The molar ratio of the butadiene unit) to the polymerized unit B (hydrogenated butadiene unit) was 1/99.
  • the weight average molecular weight of the triblock copolymer P1 measured by gel permeation chromatography (GPC) was 110000.
  • the glass transition temperature of the triblock copolymer P1 measured by TMA was 137°C.
  • the intrinsic birefringence value of the triblock copolymer P1 is negative.
  • the triblock copolymer P1 obtained in (1-1) was used as the resin C.
  • Resin C was crushed by a crusher to obtain a powder.
  • the obtained powder is supplied to an extruder, melted in the extruder at a resin temperature of 270° C., passed through a polymer pipe and a polymer filter, extruded from a T die into a sheet on a casting drum (cooling roll), and cooled.
  • a pre-stretching film 1 having a thickness of 90 ⁇ m was obtained.
  • the cooling roll temperature was set to 138°C.
  • the screw rotation speed of the extruder was set to 20 to 40 rpm.
  • the produced unstretched film 1 was wound into a roll and collected.
  • the obtained pre-stretched film 1 when a phase structure was observed by injecting X-rays from the cross section by the small angle X-ray scattering method under the above conditions, a cylinder structure was observed. Further, when a section having a cross section parallel to the thickness direction was prepared and observed with a TEM, a cylindrical phase separation structure was confirmed. The interphase distance was 40 nm.
  • the unstretched film 1 obtained in (1-2) was cut into a rectangular film having a size of 80 mm ⁇ 80 mm.
  • a rectangular film was subjected to free width uniaxial stretching.
  • the stretching was performed using a batch type stretching device manufactured by Toyo Seiki Co., Ltd.
  • the stretching conditions were a stretching temperature of 147° C., a stretching ratio of 2.0 times, and a stretching speed of 33% per minute.
  • a retardation film 1Q having a thickness of 65 ⁇ m was obtained.
  • the obtained retardation film 1Q functioning as a ⁇ /4 plate, the viewing angle characteristics and heat resistance were evaluated by the methods described above.
  • Triblock copolymer P2 was obtained as a lump product in the same manner as in Example 1 (1-1. Triblock copolymer) except for the following matters.
  • the (first step) reaction 10.3 parts of 2-vinylnaphthalene was added as the monomer (a).
  • n-butyllithium was changed from 0.03 part to 0.04 part.
  • the (second stage) reaction 15.4 parts of butadiene was added as the monomer (b).
  • the (third stage) reaction 10.3 parts of 2-vinylnaphthalene was added as the monomer (a).
  • the triblock copolymer P2 has a block structure of (block (A))-(block (B))-(block (A)).
  • the block (A) was a 2-vinylnaphthalene block and the block (B) was a hydrogenated butadiene block.
  • the obtained triblock copolymer P2 was analyzed by 1 H-NMR.
  • the weight ratio of the 2-vinylnaphthalene unit as the polymerized unit A to the hydrogenated butadiene unit as the polymerized unit B in the triblock copolymer was 57:43, so that the weight fraction of the polymerized unit A was 57:43. %Met.
  • the hydrogenation rate based on the 2-vinylnaphthalene unit was 0%, and the hydrogenation rate based on the butadiene unit was 99%.
  • the molar ratio of the polymer unit HA (hydrogenated 2-vinylnaphthalene unit) to the polymer unit A (2-vinylnaphthalene unit) is 0, and the polymer unit B′ (B′-1 and B′-2)( The molar ratio of the butadiene unit) to the polymerized unit B (hydrogenated butadiene unit) was 1/99.
  • the weight average molecular weight of the triblock copolymer P2 measured by GPC was 85,000.
  • the glass transition temperature of the triblock copolymer P2 measured by TMA was 125°C.
  • the intrinsic birefringence value of the triblock copolymer P2 is negative.
  • a pre-stretched film 2 was obtained in the same manner as in Example 1 (1-2. pre-stretched film) except for the following matters.
  • -Triblock Copolymer P2 was used as Resin C.
  • the obtained pre-stretched film 2 when a X-ray was made incident from a cross section by a small angle X-ray scattering method under the above conditions and a phase structure was observed, a lamella structure was observed. The interphase distance was 50 nm. Further, when a section having a cross section parallel to the thickness direction was prepared and observed with a TEM, a lamellar phase-separated structure was confirmed.
  • a retardation film 2Q having a thickness of 65 ⁇ m was obtained in the same manner as in Example 1 (1-3. Retardation film ( ⁇ /4 plate)) except for the following matters. -The film 2 before stretching was used instead of the film 1 before stretching. -The stretching temperature was changed to 140°C. Using the obtained retardation film 2Q, the viewing angle characteristics and heat resistance were evaluated by the methods described above.
  • Triblock copolymer P3 was obtained as a lump product in the same manner as in Example 1 (1-1. Triblock copolymer) except for the following matters.
  • In the (first step) reaction 12.1 parts of 2-vinylnaphthalene was added as the monomer (a).
  • In the (second stage) reaction 11.9 parts of isoprene was added as the monomer (b) instead of 11.9 parts of butadiene.
  • In the (third step) reaction 12.1 parts of 2-vinylnaphthalene was added as the monomer (a).
  • the triblock copolymer P3 has a block structure of (block (A))-(block (B))-(block (A)).
  • the block (A) was a 2-vinylnaphthalene block
  • the block (B) was a hydrogenated isoprene block.
  • the obtained triblock copolymer P3 was analyzed by 1 H-NMR.
  • the weight ratio of the 2-vinylnaphthalene unit as the polymerized unit A to the hydrogenated isoprene unit as the polymerized unit B in the triblock copolymer was 67:33, and therefore the weight fraction of the polymerized unit A was 67:33. %Met.
  • the hydrogenation rate based on the 2-vinylnaphthalene unit was 0%, and the hydrogenation rate based on the isoprene unit was 99%.
  • the molar ratio of the polymer unit HA (hydrogenated 2-vinylnaphthalene unit) to the polymer unit A (2-vinylnaphthalene unit) is 0, and the polymer unit B′ (B′-1 and B′-2)( The molar ratio of the isoprene unit) to the polymerized unit B (hydrogenated isoprene unit) was 1/99.
  • the weight average molecular weight of the triblock copolymer P3 measured by GPC was 100,000.
  • the glass transition temperature of the triblock copolymer P3 measured by TMA was 138°C.
  • the intrinsic birefringence value of the triblock copolymer P3 is negative.
  • a pre-stretched film 3 was produced in the same manner as in Example 1 (1-2. pre-stretched film) except for the following matters. -The triblock copolymer P3 was used as the resin C instead of the triblock copolymer P1.
  • a retardation film 3Q having a thickness of 60 ⁇ m was obtained in the same manner as in Example 1 (1-3. Retardation film ( ⁇ /4 plate)) except for the following matters. -The film 3 before stretching was used instead of the film 1 before stretching. -The stretching temperature was changed to 148°C. Using the obtained retardation film 3Q, the viewing angle characteristics and heat resistance were evaluated by the methods described above.
  • Example 4 (4-1. Triblock Copolymer)
  • the triblock copolymer P3 produced in Example 3 (3-1. triblock copolymer) was prepared.
  • a pre-stretched film 4 was produced in the same manner as in Example 1 (1-2. pre-stretched film) except for the following matters.
  • -The triblock copolymer P4 was used as the resin C instead of the triblock copolymer P1.
  • the cooling roll temperature was set to 110 degreeC.
  • -The screw rotation speed of the extruder was set to 150 to 200 rpm.
  • a retardation film 4Q having a thickness of 70 ⁇ m was obtained in the same manner as in Example 1 (1-3. Retardation film ( ⁇ /4 plate)) except for the following matters. -Instead of the unstretched film 1, the unstretched film 4 was used. -The stretching temperature was changed to 148°C. Using the obtained retardation film 4Q, the viewing angle characteristics and heat resistance were evaluated by the methods described above.
  • Triblock copolymer CP1 was obtained as a lump product in the same manner as in Example 1 (1-1. Triblock copolymer) except for the following matters.
  • the (first step) reaction 13.0 parts of 2-vinylnaphthalene was added as the monomer (a).
  • the monomer (b) in the (second stage) reaction, as the monomer (b), 10.1 parts of isoprene was added instead of 11.9 parts of butadiene.
  • the (third stage) reaction 13.0 parts of 2-vinylnaphthalene was added as the monomer (a).
  • the triblock copolymer CP1 has a block structure of ((block (A))-(block (B))-(block (A)).
  • the block (A) is 2- It was a vinyl naphthalene block
  • block (B) was a hydrogenated isoprene block.
  • the obtained triblock copolymer CP1 was analyzed by 1 H-NMR.
  • the weight ratio of the 2-vinylnaphthalene unit as the polymerized unit A to the hydrogenated isoprene unit as the polymerized unit B in the triblock copolymer was 72:28, and the weight fraction of the polymerized unit A was 72:28. %Met.
  • the hydrogenation rate based on the 2-vinylnaphthalene unit was 0%, and the hydrogenation rate based on the isoprene unit was 99%.
  • the molar ratio of the polymer unit HA (hydrogenated 2-vinylnaphthalene unit) to the polymer unit A (2-vinylnaphthalene unit) is 0, and the polymer unit B′ (B′-1 and B′-2)( The molar ratio of the isoprene unit) to the polymerized unit B (hydrogenated isoprene unit) was 1/99.
  • the weight average molecular weight of the triblock copolymer CP1 measured by GPC was 120,000.
  • the glass transition temperature of the triblock copolymer CP1 measured by TMA was 140°C.
  • the intrinsic birefringence value of the triblock copolymer CP1 is negative.
  • Example 1 (C1-2. Film before stretching) A pre-stretched film C1 was obtained in the same manner as in Example 1 (1-2. Pre-stretched film) except for the following matters.
  • Triblock copolymer CP1 was used as resin C. -The temperature of the cooling roll was set to 110 degreeC. -The screw rotation speed of the extruder was set to 150 to 200 rpm.
  • the obtained pre-stretched film C1 was subjected to X-ray incidence from the cross section by a small-angle X-ray scattering method under the above conditions and the phase structure was observed.
  • the obtained scattering pattern was unclear and the fitting by the theoretical curve was could not.
  • a section having a cross section parallel to the thickness direction was prepared and observed with a TEM, a cylinder structure having a sparse size or a sparse size was observed.
  • Example 1 (C1-3. Retardation film ( ⁇ /4 plate)) A retardation film C1Q having a thickness of 65 ⁇ m was obtained in the same manner as in Example 1 (1-3. Retardation film ( ⁇ /4 plate)) except for the following matters. -The film C1 before stretching was used instead of the film 1 before stretching. -The stretching temperature was changed to 150°C. Using the obtained retardation film C1Q, the viewing angle characteristics and heat resistance were evaluated by the methods described above.
  • Triblock copolymer CP2 was obtained as an agglomerated product in the same manner as in Example 1 (1-1. Triblock copolymer) except for the following matters.
  • first step 14.4 parts of 2-vinylnaphthalene was added as the monomer (a).
  • second step 7.2 parts of isoprene was added as the monomer (b) instead of 11.9 parts of butadiene.
  • third step 14.4 parts of 2-vinylnaphthalene was added as the monomer (a).
  • the triblock copolymer CP2 has a block structure of (block (A))-(block (B))-(block (A)).
  • the block (A) was a 2-vinylnaphthalene block and the block (B) was a hydrogenated isoprene block.
  • the obtained triblock copolymer CP2 was analyzed by 1 H-NMR.
  • the weight ratio of the 2-vinylnaphthalene unit as the polymerized unit A to the hydrogenated isoprene unit as the polymerized unit B in the triblock copolymer was 80:20, and the weight fraction of the polymerized unit A was 80:20. %Met.
  • the hydrogenation rate based on the 2-vinylnaphthalene unit was 0%, and the hydrogenation rate based on the isoprene unit was 99%.
  • the molar ratio of the polymer unit HA (hydrogenated 2-vinylnaphthalene unit) to the polymer unit A (2-vinylnaphthalene unit) is 0, and the polymer unit B′ (B′-1 and B′-2)( The molar ratio of the isoprene unit) to the polymerized unit B (hydrogenated isoprene unit) was 1/99.
  • the weight average molecular weight of the triblock copolymer CP2 measured by GPC was 70,000.
  • the glass transition temperature of the triblock copolymer CP2 measured by TMA was 143°C.
  • the intrinsic birefringence value of the triblock copolymer CP2 is negative.
  • the obtained triblock copolymer was dissolved in 700 parts of p-xylene to give a solution. To the solution was added 7.6 parts of p-toluenesulfonyl hydrazide, and the mixture was reacted at a temperature of 130° C. for 8 hours. By this reaction, hydrogen was added to the double bond of the isoprene unit. After the completion of hydrogenation, the reaction solution was poured into a large amount of 2-propanol to have a (styrene block)-(hydrogenated isoprene block)-(styrene block) block structure, (A)-(B)-(A) tri The block copolymer CP3 was obtained as a bulk product.
  • the obtained triblock copolymer CP3 was analyzed by 1 H-NMR.
  • the weight ratio of the styrene unit as the polymerized unit A to the hydrogenated isoprene unit as the polymerized unit B in the triblock copolymer was 57:43, and therefore the weight fraction of the polymerized unit A was 57%.
  • the hydrogenation rate to the styrene unit was 0%, and the hydrogenation rate to the isoprene unit was 99% or more.
  • the weight average molecular weight of the triblock copolymer CP3 measured by GPC was 80,000.
  • the glass transition temperature of the triblock copolymer CP3 measured by TMA was 80°C.
  • the intrinsic birefringence value of the triblock copolymer CP3 is positive.
  • Example 2 (C3-2. Film before stretching) A pre-stretched film C3 was produced in the same manner as in Example 1 (1-2. Pre-stretched film) except for the following matters. -The triblock copolymer CP3 was used as the resin C instead of the triblock copolymer P1.
  • the obtained pre-stretched film C3 when the phase structure was observed by making X-rays enter from the cross section by the small angle X-ray scattering method under the above-mentioned conditions, the obtained scattering pattern was unclear and the fitting with the theoretical curve was could not. Further, when a section having a cross section parallel to the thickness direction was prepared and observed with a TEM, a lamella structure was observed.
  • Example 1 (C3-3. Retardation film ( ⁇ /4 plate)) A retardation film C3Q having a thickness of 65 ⁇ m was obtained in the same manner as in Example 1 (1-3. Retardation film ( ⁇ /4 plate)) except for the following matters. -The pre-stretch film C3 was used instead of the pre-stretch film 1. -The stretching temperature was changed to 90°C. Using the obtained retardation film C3Q, the viewing angle characteristics and heat resistance were evaluated by the methods described above.
  • the obtained triblock copolymer CP4 was analyzed by 1 H-NMR. As a result, the weight ratio of the styrene unit as the polymerized unit A to the isoprene unit as the polymerized unit B′ in the triblock copolymer was 67:33, and the weight fraction of the polymerized unit A was 67%. ..
  • the weight average molecular weight of the triblock copolymer CP4 measured by GPC was 90000.
  • the glass transition temperature of the triblock copolymer CP4 measured by TMA was 87°C.
  • the intrinsic birefringence value of the triblock copolymer CP4 is positive.
  • the obtained pre-stretched film C4 when the phase structure was observed by making X-ray incident from the cross section by the small angle X-ray scattering method under the above-mentioned conditions, the obtained scattering pattern was unclear and the fitting by the theoretical curve was could not. Further, when a section having a cross section parallel to the thickness direction was prepared and observed with a TEM, a lamella structure was observed.
  • the retardation films according to Comparative Examples 1 to 4 which have a phase-separated structure but do not exhibit structural birefringence, have poor viewing angle characteristics.
  • (° C.) is less than 180° C. have poor heat resistance.
  • a retardation film according to an example that includes a phase-separated structure exhibits structural birefringence, and has an absolute value of refractive index difference
  • the heat resistance and viewing angle characteristics are good, and both excellent heat resistance and excellent viewing angle characteristics are compatible.
  • (° C.) is 180° C. or more are excellent in heat resistance and viewing angle characteristics and excellent. It has both heat resistance and excellent viewing angle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Polarising Elements (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

重合単位Aと重合単位Bとを含む共重合体Pを含む樹脂Cからなる、光学フィルムであり、構造性複屈折を発現する相分離構造を含み、前記相分離構造は、前記重合単位Aを主成分とする相(A)と、前記重合単位Bを主成分とする相(B)とを含み、|n(A)-n(B)|が、0.12以上である、光学フィルム。

Description

光学フィルム、位相差フィルム、及びそれらの製造方法
 本発明は、光学フィルム、位相差フィルム、及びそれらの製造方法に関する。
 液晶表示装置などの表示装置において、その表示品質の向上のために、様々な特性を有する光学フィルムが設けられることがあり、各種光学フィルムの開発が進められている。例えば、光学的異方性を有する光学フィルム(特許文献1、3-5)、光学的等方性を有する光学フィルム(特許文献2)が、開発されている。
特開2006-111650号公報 特開2006-142561号公報 特開2006-143799号公報 国際公開第2008/146924号(対応外国公報:米国特許出願公開第2010/283949号明細書) 特開平05-164920号公報
 表示装置は車室内などの高温となる場所においても用いられうるので、表示装置に用いられうる部材には、耐熱性が必要である。
 表示装置に用いられる部材としては、視野角補償、反射抑制などの視野角特性の向上目的で設けられる位相差フィルムが挙げられる。位相差フィルムは、耐熱性に加えて、NZ係数が、0より大きくかつ1より小さいことが求められる。更には、NZ係数は0.5又はそれに近い値であることが好ましい。
 このようなNZ係数を有する位相差フィルムを製造する方法として、多数の層を組み合わせる方法(特許文献4)が挙げられる。しかし、この方法により得られる位相差フィルムは、構造が複雑であり、そのためフィルムの製造コストが高く生産性が低くなる。
 また、Rth/dの値が大きい(例えば、0.5×10-3以上)フィルムを延伸することにより、このようなNZ係数を有する位相差フィルムを製造する方法もある。ここで、Rthは、フィルムの厚み方向のレターデーション(nm)を意味し、d(nm)はフィルムの厚みを意味する。
 しかし、従来の光学フィルムでは、大きいRth/dの値と、耐熱性との双方を満たすことが難しく、その結果、従来の光学フィルムから、視野角特性の向上効果と耐熱性との双方を満たす位相差フィルムを得ることが難しかった。
 したがって、視野角特性の向上効果が十分に得られ、耐熱性を有する位相差フィルムを低いコストで製造しうる、光学フィルム;そのような光学フィルムを製造する方法が求められている。
 本発明者は、前記課題を解決するべく、鋭意検討した。その結果、重合単位Aと重合単位Bとを含む共重合体Pを含む樹脂Cからなる、光学フィルムにおいて、構造性複屈折を発現する相分離構造を含み、重合単位Aからなる重合体(A)の特性と、重合単位Bからなる重合体(B)の特性とが、所定の関係にあることで、前記課題が解決されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を提供する。
 [1] 重合単位Aと重合単位Bとを含む共重合体Pを含む樹脂Cからなる、光学フィルムであり、
 構造性複屈折を発現する相分離構造を含み、前記相分離構造は、前記重合単位Aを主成分とする相(A)と、前記重合単位Bを主成分とする相(B)とを含み、
 前記重合単位Aからなる重合体(A)の屈折率n(A)と、前記重合単位Bからなる重合体(B)の屈折率n(B)との差の絶対値|n(A)-n(B)|が、0.12以上である、光学フィルム。
 [2] 前記重合体(A)のガラス転移温度Tg(A)(℃)と、前記重合体(B)のガラス転移温度Tg(B)(℃)との差の絶対値|Tg(A)-Tg(B)|が、180℃以上である、[1]に記載の光学フィルム。
 [3」 前記ガラス転移温度Tg(A)(℃)が、120℃以上である、[1」又は[2」に記載の光学フィルム。
 [4] 前記相分離構造が、ラメラ、シリンダ、及びスフェロイドのいずれかの形態を有する、[1]~[3]のいずれか1項に記載の光学フィルム。
 [5] 前記相分離構造における相間距離が200nm以下である、[1]~[4]のいずれか1項に記載の光学フィルム。
 [6] 前記共重合体Pが、前記重合単位Aを主成分とするブロック(A)及び前記重合単位Bを主成分とするブロック(B)を有するブロック共重合体である、[1]~[5]のいずれか1項に記載の光学フィルム。
 [7] 前記重合単位Aが一般式(A)で表される単位である、[1]~[6]のいずれか1項に記載の光学フィルム:
Figure JPOXMLDOC01-appb-C000004
 式中Rは、フェニル基、ビフェニルイル基、ナフチル基、アントラセニル基、フェナントレニル基、ナフタセニル基、ペンタセニル基、及びターフェニルイル基からなる群より選択される基であり、
 R~Rのそれぞれは独立に、水素原子及び炭素数1~12のアルキル基からなる群より選択される一つである。
 [8] 前記共重合体Pにおける、前記重合単位Aを水素化して得られる重合単位HAの前記重合単位Aに対するモル比率が、0/100以上10/90以下である、[7]に記載の光学フィルム。
 [9] 前記重合単位Bが一般式(B-1)で表される単位又は一般式(B-2)で表される単位である、[1]~[8]のいずれか1項に記載の光学フィルム:
Figure JPOXMLDOC01-appb-C000005
 式中R~Rのそれぞれは独立に、水素原子及び炭素数1~6のアルキル基からなる群より選択される一つである。
 [10] 前記共重合体Pにおける、下記一般式(B’-1)で表される単位及び下記一般式(B’-2)で表される単位の、前記重合単位Bに対する合計モル比率が、0/100以上10/90以下である、[9]に記載の光学フィルム:
Figure JPOXMLDOC01-appb-C000006
 式中R~Rは、前記と同義である。
 [11] 前記重合単位Aが、ビニルナフタレン単位、ビニルナフタレン誘導体単位、スチレン単位、又はスチレン誘導体単位であり、
 前記重合単位Bが、イソプレン単位を水素化して得られる単位、ブタジエン単位を水素化して得られる単位、1,3-ペンタジエン単位を水素化して得られる単位、2,3-ジメチル-1,3-ブタジエン単位を水素化して得られる単位、1,3-ヘキサジエン単位を水素化して得られる単位、2-メチル-1,3-ペンタジエン単位を水素化して得られる単位、3-メチル-1,3-ペンタジエン単位を水素化して得られる単位、又は2,4-ジメチル-1,3-ペンタジエン単位を水素化して得られる単位である、[1]~[10]のいずれか1項に記載の光学フィルム。
 [12] 前記共重合体Pが、トリブロック共重合体P’を含み、
 前記トリブロック共重合体P’は、前記重合単位Aを主成分とするブロック(A)、及び前記重合単位Bを主成分とするブロック(B)を有する、(A)-(B)-(A)トリブロック共重合体である、[1]~[11]のいずれか1項に記載の光学フィルム。
 [13] 前記共重合体Pが、負の固有複屈折値を有する、[1]~[12]のいずれか1項に記載の光学フィルム。
 [14] 前記重合単位Aが負の固有複屈折値を有し、前記重合単位Bが正の固有複屈折値を有する、[1]~[13]のいずれか1項に記載の光学フィルム。
 [15] 前記共重合体Pにおける前記重合単位Aの重量分率が、50重量%以上70重量%未満である、[1]~[14]のいずれか1項に記載の光学フィルム。
 [16] [1]~[15]のいずれか1項に記載の光学フィルムを製造する方法であって、
 前記樹脂Cを150℃以上に加熱して、前記樹脂Cからなる単層の膜を形成する工程、及び
 前記膜において、前記樹脂Cを相分離させる工程
 を含む、光学フィルムの製造方法。
 [17] 前記膜を形成する工程が、前記樹脂Cを単層で溶融押出することを含む、[16]に記載の光学フィルムの製造方法。
 [18] [1]~[15]のいずれか1項に記載の光学フィルムを延伸して位相差フィルムを得る工程を含む、位相差フィルムの製造方法。
 [19] 前記光学フィルムが、[16]又は[17]に記載の製造方法により製造される、[18]に記載の位相差フィルムの製造方法。
 本発明によれば、視野角特性の向上効果が十分に得られ、耐熱性を有する位相差フィルムを低いコストで製造しうる、光学フィルム;そのような光学フィルムを製造する方法を提供できる。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。フィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。
 以下の説明において、「板」とは、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 以下の説明において、フィルム又は層の遅相軸とは、別に断らない限り、当該フィルム又は層の面内における遅相軸を表す。
 以下の説明において、複数の層を備える部材における各層の光学軸(遅相軸、透過軸、吸収軸等)がなす角度は、別に断らない限り、前記の層を厚み方向から見たときの角度を表す。
 以下の説明において、あるフィルムの正面方向とは、別に断らない限り、当該フィルムの主面の法線方向を意味し、具体的には前記主面の極角0°且つ方位角0°の方向を指す。
 以下の説明において、あるフィルムの傾斜方向とは、別に断らない限り、当該フィルムの主面に平行でも垂直でもない方向を意味し、具体的には前記主面の極角が0°より大きく90°より小さい範囲の方向を指す。
 以下の説明において、層の面内方向のレターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、層の厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。更に、層のNZ係数は、別に断らない限り、(nx-nz)/(nx-ny)で表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは層の厚み方向の屈折率を表す。dは、層の厚みを表す。測定波長は、別に断らない限り、590nmである。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。
 重合体の固有複屈折値の正負は、重合体の成形物を延伸した場合における、かかる成形物の屈折率の挙動によって規定される。即ち、正の固有複屈折値を有する重合体とは、延伸方向における当該成形物の屈折率が、延伸前に比べて大きくなる重合体である。また、負の固有複屈折値を有する重合体とは、延伸方向における当該成形物の屈折率が、延伸前に比べて小さくなる重合体である。固有複屈折値は、誘電率分布から計算しうる。
 更に、ある特定の重合単位が正の固有複屈折値を有するとは、当該重合単位のみからなる重合体が、正の固有複屈折値を有することをいい、ある特定の重合単位が負の固有複屈折値を有するとは、当該重合単位のみからなる重合体が、負の固有複屈折値を有することをいう。したがって、重合単位の固有複屈折値の正負は、当該重合単位のみからなる単独重合体を調製し、当該重合体を任意の形状の成形物とし、当該成形物を延伸し、その光学特性を測定することにより容易に判定しうる。一般に、アルケン、ジエン等の炭化水素の重合単位の多くは正の固有複屈折値を有することが知られている一方、スチレン、ビニルナフタレン等の側鎖に芳香環を有する炭化水素の重合体の多くは負の固有複屈折値を有することが知られている。
 以下の説明において、ある単量体の重合により生じた重合単位により構成される、重合体中のブロックを、当該単量体の名称を用いて表現する場合がある。例えば、2-ビニルナフタレンの重合により生じた重合単位により構成されるブロックを「2-ビニルナフタレンブロック」、イソプレンの重合により生じた重合単位により構成されるブロックを「イソプレンブロック」と表現する場合がある。
[1.位相差フィルム]
 本実施形態の位相差フィルムは、樹脂Cからなる。
[1.1.樹脂C]
 樹脂Cは、特定の共重合体Pを含有する。共重合体Pは、重合単位Aと重合単位Bとを含む。共重合体Pは、好ましくは、重合単位Aを主成分とするブロック(A)、及び重合単位Bを主成分とするブロック(B)を有するブロック共重合体である。一般に、ブロック共重合体とは、複数種類のブロックが連結された分子構造を有する重合体であり、それぞれのブロックは、重合単位が連結することにより構成される鎖である。本発明の一実施形態における特定のブロック共重合体は、特定のブロック(A)及びブロック(B)を有する。以下の説明においては、かかる特定のブロック共重合体を、単に「ブロック共重合体」という場合がある。ここで、あるブロックにおいて主成分である重合単位とは、当該ブロックを構成する重合単位の全重量に対して、50重量%以上である重合単位をいう。
 重合単位Aは、負の固有複屈折値を有するものとしうる。一方、重合単位Bは、正の固有複屈折値を有するものとしうる。
 重合単位Aの例としては、下記一般式(A)で表される単位が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 Rは、フェニル基、ビフェニルイル基(例、4-ビフェニルイル基、2-ビフェニルイル基、3-ビフェニルイル基)、ナフチル基(例、1-ナフチル基、2-ナフチル基)、アントラセニル基(例、アントラセン-1-イル基、アントラセン-2-イル基、アントラセン-9-イル基)、フェナントレニル基(例、フェナントレン-1-イル基、フェナントレン-2-イル基、フェナントレン-3-イル基、フェナントレン-4-イル基、フェナントレン-9-イル基)、ナフタセニル基(例、ナフタセン-1-イル基、ナフタセン-2-イル基、ナフタセン-5-イル基)、ペンタセニル基(例、ペンタセン-1-イル基、ペンタセン-2-イル基、ペンタセン-5-イル基、ペンタセン-6-イル基)、及びターフェニルイル基からなる群より選択される基である。
 R~Rのそれぞれは独立に、水素原子及び炭素数1~12のアルキル基からなる群より選択される一つである。かかるアルキル基の例としては、メチル基、エチル基、プロピル基、及びヘキシル基が挙げられる。
 式(A)においては、
 好ましくは、Rが水素原子又はメチル基であり、より好ましくは水素原子である。
 好ましくは、R及びRが水素原子である。
 好ましくは、Rがナフチル基又はフェニル基であり、より好ましくはナフチル基である。
 より好ましくは、R及びRが水素原子であり且つRがナフチル基又はフェニル基であるか、又は、R及びRが水素原子であり且つRが水素原子である。更に好ましくは、R及びRが水素原子であり、Rがナフチル基であり、且つRが水素原子であるか(ビニルナフタレン単位)、R、R及びRが水素原子であり、Rがフェニル基であり(スチレン単位)、最も好ましくは、R及びRが水素原子であり、Rがナフチル基であり、且つRが水素原子である。
 重合単位Aは、重合単位Aを与える単量体(a)を重合させることにより得うる。単量体(a)の例としては、ビニルナフタレン及びその誘導体、並びにスチレン及びその誘導体が挙げられる。重合単位Aを与える単量体(a)としては、ビニルナフタレン、ビニルナフタレン誘導体、スチレン、及びスチレン誘導体が好ましい。したがって、一実施形態では、重合単位Aは、好ましくは、ビニルナフタレン単位、ビニルナフタレン誘導体単位、スチレン単位、又はスチレン誘導体単位である。
 ビニルナフタレンの例としては、1-ビニルナフタレン、及び2-ビニルナフタレンが挙げられる。ビニルナフタレンの誘導体の例としては、α-アルキルビニルナフタレン(例、α-メチル-1-ビニルナフタレン、α-エチル-1-ビニルナフタレン、α-プロピル-1-ビニルナフタレン、α-ヘキシル-1-ビニルナフタレン、α-メチル-2-ビニルナフタレン、α-エチル-2-ビニルナフタレン、α-プロピル-2-ビニルナフタレン、及びα-ヘキシル-2-ビニルナフタレン)が挙げられる。ビニルナフタレン及びその誘導体としては、工業的な入手の容易性の観点から、2-ビニルナフタレンが好ましい。
 スチレンの誘導体としては、α-アルキルスチレン(例、α-メチルスチレン、α-エチルスチレン)が挙げられる。スチレン及びその誘導体としては、工業的な入手の容易性の観点から、スチレンが好ましい。
 共重合体Pは、重合単位Aとして1種のみを単独で有していてもよく、2種以上を任意の割合で組み合わせて有していてもよい。したがって、重合単位Aを形成するための単量体(a)としては、1種のみを単独で用いてもよく、2種以上を任意の割合で組み合わせて用いてもよい。
 共重合体Pは、重合単位Aを水素化して得られる重合単位を含んでいてもよい。重合単位Aを水素化して得られる重合単位は、重合単位Aが水素化された構造を有する重合単位である。以下、重合単位Aを水素化して得られる重合単位を重合単位HAともいう。重合単位HAは、任意の方法により製造された単位であってよい。
 重合単位HAの例としては、一般式(A)で表される単位において、Rで表される基が有する不飽和結合の一部又は全部に、水素原子が付加して得られる単位が挙げられる。
 共重合体Pにおける、重合単位HAの重合単位Aに対するモル比率(HA/A)は、好ましくは10/90以下、より好ましくは5/95以下、更に好ましくは2/98以下、最も好ましくは1/99以下であり、0/100以上としうるが、理想的には0/100である。共重合体Pにおける、モル比率(HA/A)は、共重合体PのH-NMRを測定することにより決定しうる。
 共重合体Pに、重合単位HAが複数種含まれている場合、モル比率(HA/A)は、複数種の重合単位HAのそれぞれのモル比率の合計を意味する。共重合体Pに、重合単位Aが複数種含まれている場合、モル比率(HA/A)は、複数種の重合単位Aの合計モル数に対する重合単位HAのモル比率を意味する。
 重合単位Bの例としては、下記一般式(B-1)で表される単位及び(B-2)で表される単位が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 R~Rのそれぞれは独立に、水素原子又は炭素数1~6のアルキル基からなる群より選択される一つである。かかるアルキル基の例としては、メチル基、エチル基、プロピル基、及びヘキシル基が挙げられる。R~Rのそれぞれは独立に、水素原子又はメチル基であることが好ましい。
 重合単位Bは、重合単位Bを与えうる単量体(b)を重合させて重合単位とし、更に当該重合単位中に二重結合が存在する場合はそれを水素化することにより得うる。単量体(b)の例としては、下記一般式(bm)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 前記一般式(bm)中、R~Rの定義は、一般式(B-1)及び一般式(B-2)における定義と同じである。
 単量体(b)の好ましい例としては、ブタジエン(式(bm)におけるR~Rの全てが水素原子)、イソプレン(式(bm)におけるR~RのうちR又はRがメチル基で他が水素原子)、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ヘキサジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、及び2,4-ジメチル-1,3-ペンタジエンが挙げられる。その中でも、透明性、耐熱性、及び加工性に優れた樹脂Cを得る観点から、ブタジエン及びイソプレンがより好ましい。重合単位Bの好ましい例としては、R~Rとして、単量体(b)の好ましい例におけるR~Rと同じものを有するものが挙げられ、重合単位Bは、イソプレン単位を水素化して得られる単位、ブタジエン単位を水素化して得られる単位、1,3-ペンタジエン単位を水素化して得られる単位、2,3-ジメチル-1,3-ブタジエン単位を水素化して得られる単位、1,3-ヘキサジエン単位を水素化して得られる単位、2-メチル-1,3-ペンタジエン単位を水素化して得られる単位、3-メチル-1,3-ペンタジエン単位を水素化して得られる単位、及び2,4-ジメチル-1,3-ペンタジエン単位を水素化して得られる単位がより好ましい。
 ここで、ある単位を水素化して得られる単位は、当該ある単位が水素化された構造を有する単位である。ある単位を水素化して得られる単位は、任意の方法により製造された単位であってよい。
 共重合体Pは、重合単位Bとして1種のみを単独で有していてもよく、2種以上を任意の割合で組み合わせて有していてもよい。したがって、重合単位Bを形成するための単量体(b)としては、1種のみを単独で用いてもよく、2種以上を任意の割合で組み合わせて用いてもよい。
 共重合体Pは、水素化すると重合単位Bが得られる重合単位を含んでいてもよい。水素化すると重合単位Bが得られる重合単位は、重合単位Bが脱水素化された構造を有する重合単位である。以下、水素化すると重合単位Bが得られる重合単位を重合単位B’ともいう。重合単位B’は、任意の方法により製造された単位であってよい。
 重合単位B’の例としては、下記一般式(B’-1)で表される単位及び下記一般式(B’-2)で表される単位が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 前記一般式(B’-1)及び一般式(B’-2)中、R~Rの定義は、一般式(B-1)及び一般式(B-2)における定義と同じである。
 共重合体Pにおける、重合単位B’の重合単位Bに対するモル比率(B’/B)は、好ましくは10/90以下、より好ましくは5/95以下、更に好ましくは2/98以下、最も好ましくは1/99以下であり、0/100以上としうるが、理想的には0/100である。共重合体Pにおける、モル比率(B’/B)は、共重合体PのNMRを測定することにより決定しうる。
 共重合体Pに、重合単位B’が複数種含まれている場合、モル比率(B’/B)は、複数種の重合単位B’のそれぞれのモル比率の合計を意味する。共重合体Pに、重合単位Bが複数種含まれている場合、モル比率(B’/B)は、複数種の重合単位Bの合計モル数に対する重合単位B’のモル比率を意味する。
 したがって、重合単位Bが、一般式(B-1)で表される単位又は一般式(B-2)で表される単位であり、重合単位B’が、一般式(B’-1)で表される単位又は一般式(B’-2)で表される単位である場合、共重合体Pにおけるモル比率(B’/B)は、一般式(B-1)で表される単位と一般式(B-2)で表される単位との合計モル数に対する、一般式(B’-1)で表される単位と下記一般式(B’-2)で表される単位との合計モル比率であり、すなわち、一般式(B’-1)で表される単位のモル比率及び下記一般式(B’-2)で表される単位のモル比率の合計を意味する。
 共重合体Pがブロック(A)を有する場合、ブロック(A)は、重合単位A以外に任意の重合単位を有しうる。かかる任意の重合単位の例としては、単量体(a)と共重合可能な任意の単量体の重合により形成される単位、及び当該単位の水素化により形成される単位が挙げられる。
 共重合体Pがブロック(B)を有する場合、ブロック(B)は、重合単位B以外に任意の重合単位を有しうる。かかる任意の重合単位の例としては、単量体(b)が重合してなる重合単位であって水素化されていない二重結合が残存するもの、並びに単量体(b)と共重合可能な任意の単量体の重合により形成される単位及び当該単位の水素化により形成される単位が挙げられる。
 ただし、樹脂Cの光学的特性及び機械的特性の発現の観点から、ブロック(A)における重合単位Aの割合及びブロック(B)における重合単位Bの割合はいずれも高いことが好ましい。ブロック(A)における重合単位Aの割合は、好ましくは50重量%以上、より好ましくは75重量%以上、更に好ましくは95重量%以上であり、特に好ましくは、ブロック(A)は重合単位Aのみからなる。ブロック(B)における重合単位Bの割合は、好ましくは50重量%以上、より好ましくは75重量%以上、更に好ましくは95重量%以上であり、特に好ましくは、ブロック(B)は重合単位Bのみからなる。
 ブロック(A)及びブロック(B)は、非相溶性であることが好ましい。これらが非相溶性であることにより、位相差フィルムにおいて相分離構造をより容易に得ることができる。ブロック(A)及びブロック(B)が非相溶性であるか否かは、ブロック共重合体におけるこれらのブロックの大きさと同程度の分子量を有する、重合単位Aからなる単独重合体及び重合単位Bからなる単独重合体の相溶性の有無に基づいて判定しうる。かかる単独重合体の相溶性の有無は、これらの単独重合体を混合して混合物とし、これらが溶融する温度においた場合に、これらが相分離するか否かにより判定しうる。
 共重合体Pの分子構造は、重合単位A及び重合単位Bを有する限りにおいて特に限定されず、任意の構成を有する分子構造としうる。例えば、共重合体Pがブロック共重合体である場合、当該ブロック共重合体は、直線型ブロック共重合体であってもよく、グラフト型ブロック共重合体であってもよい。
 直線型ブロック共重合体の例としては、ブロック(A)及びブロック(B)が連結した(A)-(B)のブロック構成を有するジブロック共重合体;ブロック(A)、ブロック(B)及びもう一つのブロック(A)がこの順に連結した(A)-(B)-(A)のブロック構成を有するトリブロック共重合体(本願において、「トリブロック共重合体P’」という場合がある);3つのブロック(A)及び2つのブロック(B)が、(A)-(B)-(A)-(B)-(A)の順に連結したブロック構成を有する、ペンタブロック共重合体;並びにそれより多数のブロックが連結したブロック構成を有する直線型ブロック共重合体が挙げられる。多数のブロックが連結したブロック構成の例としては、(A)-((B)-(A))n-(B)-(A)、及び(B)-((A)-(B))n-(A)-(B)(nは1以上の整数)のブロック構成が挙げられる。
 グラフト型ブロック共重合体の例としては、ブロック(A)に、側鎖としてブロック(B)が連結した(A)-g-(B)のブロック構成を有するブロック共重合体が挙げられる。
 樹脂Cに所望の光学的特性を発現させる観点から、好ましくは、共重合体Pは、1分子あたり2個以上の重合体ブロック(A)及び1個以上の重合体ブロック(B)を有する分子構造を有するブロック共重合体としうる。より好ましくは、ブロック共重合体は、(A)-(B)-(A)のブロック構成を有するトリブロック共重合体としうる。
 共重合体Pにおいては、重合単位Aの重量分率を、所望の光学的特性を発現させるよう調整しうる。重合単位Aの重量分率とは、共重合体Pを構成する重合単位の合計の重量に対する、重合単位Aの重量をいう。樹脂Cが、複数種類の共重合体Pを含有する場合、ここでいう重合単位Aの重量分率は、含まれる複数種類の共重合体P全体における重合単位の合計の重量に対する、重合単位Aの重量である。共重合体Pにおける重合単位Aの重量分率は、好ましくは50重量%以上、より好ましくは53重量%以上、更に好ましくは55重量%以上であり、好ましくは70重量%未満、より好ましくは69重量%未満、更に好ましくは68重量%以下、特に好ましくは68重量%未満であり、好ましくは50重量%以上70重量%未満、より好ましくは55重量%以上68重量%未満である。共重合体Pにおける重合単位Aの重量分率が前記下限値以上であることにより、光学フィルムから製造される位相差フィルムがより優れた耐熱性を備えうる。共重合体Pにおける重合単位Aの重量分率が前記上限値以下であることにより、光学フィルムから製造される位相差フィルムがより優れた視野角特性を備えうる。
 共重合体Pの分子量は、特に限定されず、好ましい光学的特性及び機械的特性が得られる範囲に適宜調整しうる。共重合体Pの分子量は、例えば50000~400000の範囲としうる。また、共重合体Pのガラス転移温度Tgは、例えば110℃~150℃の範囲としうる。共重合体Pのガラス転移温度Tgは、熱機械的分析(TMA)により測定しうる。
 共重合体Pは、負の固有複屈折値を有することが好ましい。そのような負の固有複屈折値は、共重合体Pにおける重合単位の割合を調整することにより付与しうる。具体的には、重合単位Aを負の固有複屈折値を有する単位とし、重合単位Aの重量分率を、上に述べた下限以上の範囲内において調整することにより、負の固有複屈折値を有する共重合体としうる。共重合体Pが負の固有複屈折値を有することにより、位相差フィルムに所望の光学的特性を付与することができる。
 樹脂Cは、共重合体Pのみからなってもよく、共重合体Pに加えて任意の成分を含んでいてもよい。任意の成分の例としては、染料、顔料、酸化防止剤等の添加剤が挙げられる。かかる任意の成分の割合は、本発明の効果を損ねない範囲の割合としうる。具体的には、樹脂Cにおける共重合体Pの割合は、好ましくは98重量%以上、より好ましくは99重量%以上であり、通常100重量%以下であり、更に好ましくは、樹脂Cは共重合体Pのみからなる。
[1.2.光学フィルムに含まれる構造、光学フィルムの特性等]
 本実施形態の光学フィルムは、構造性複屈折を発現する相分離構造を含む。相分離構造は、光学フィルムを構成する樹脂Cの層内に形成される。樹脂Cの相分離構造とは、樹脂Cにおける共重合体Pの重合単位Aで構成される部分(例えばブロック(A))と重合単位Bで構成される部分(例えばブロック(B))の自己組織化により、層内において、重合単位Aを主成分とする相(相(A)ともいう。)と、重合単位Bを主成分とする相(相(B)ともいう。)とが、区別しうる別々の相に分離することをいう。以下の説明においては、これらの相を単に「重合単位Aの相」及び「重合単位Bの相」ということがある。このような相分離構造を呈した配向層は、構造が光の波長よりも十分に小さい場合に構造性複屈折を発現しうる。
 構造性複屈折とは、かかる相分離構造のように、異なる屈折率を有する複数種類の相を含む構造において生じる複屈折である。例えば、ある構造において、ある屈折率n1を持つ相中に、n1とは異なる屈折率n2を持つ相が存在する場合、当該構造は、構造性複屈折を発現しうる。構造性複屈折は、各相が等方的な媒質で形成されていても複屈折が生じるという点で、延伸による分子配向で生じる配向性複屈折とは明確に異なるものである。
 構造性複屈折が実際に生じていることは、フィルムの光学特性を測定することによって確認されうる。押出成形、プレス加工、溶剤キャスト等の常法で製膜した未延伸フィルムは通常、分子配向がランダムであるためRe及びRthがほぼゼロに近い値をとる。一方、構造性複屈折が発現している未延伸フィルムでは、常法で製膜した通常の未延伸フィルムで観察される値よりも大きな値のRe及びRthが観察される。したがって、かかる値の測定により、構造性複屈折の発現の確認を行いうる。具体的には、未延伸フィルムのRth/dが、0.5×10-3以上であった場合に、該未延伸フィルムに構造性複屈折が発現していると判断してよい。ただし、電子顕微鏡や小角X線散乱による構造観察を併せて行うことにより、より確実な構造性複屈折の発現の確認を行いうる。
 相分離構造の具体的な例としては、ラメラ構造、スフェロイド構造、及びシリンダ構造等が挙げられる。これらの相分離構造のうちどれが発現するかは、様々な要因に影響される。構造の発現に影響する主な要因としては、重合単位Aを主成分とする相及び重合単位Bを主成分とする相の体積比が挙げられる。これらの相の体積比は、ブロック共重合体におけるブロック(A)及び(B)の割合を変化させることによって調整することが出来る。相分離構造は、シリンダ構造又はラメラ構造であることが好ましい。
 相分離構造において、構造の大きさは、光学フィルムが所望の光学的特性を与えうる範囲内において適宜調整しうる。例えば相間の距離は、好ましくは200nm以下、より好ましくは150nm以下、更に好ましくは100nm以下であり、相分離した各相の大きさは、好ましくは100nm以下、より好ましくは80nm以下、更に好ましくは60nm以下である。相間の距離とは、例えばラメラ状相分離の場合にはラメラとラメラとの間隔(即ちラメラの層の繰り返し単位のピッチ)、シリンダ状の相分離構造の場合にはシリンダとシリンダとの間隔、スフェロイド状の相分離構造の場合は、スフェロイドとスフェロイドとの間隔を指す。相分離した相の大きさとは、ラメラ状相分離の場合にはラメラの厚みを指し、シリンダ状相分離の場合にはシリンダ半径を指し、スフェロイド状の相分離構造の場合にはスフェロイド半径を指す。相間の距離としては、小角X線散乱の測定で得られた散乱パターンを理論曲線とフィッティングして求められた値を採用しうる。
 相間の距離、及び相分離した相の大きさがこのように可視光よりも十分に短いことにより、構造性複屈折が発現し、かつフィルムの着色及び光線透過率の低下を抑制することができる。相間距離の下限は特に限定されないが例えば10nm以上としうる。相分離した相の大きさの下限は特に限定されないが例えば10nm以上としうる。相間距離の調整は、共重合体Pの分子構造を調整することにより行いうる。例えば共重合体Pとしてブロック共重合体を採用し、ブロック(A)及び(B)の長さ等の要素を適宜調整することにより行いうる。
 重合単位Aからなる重合体(A)の屈折率n(A)と、重合単位Bからなる重合体(B)の屈折率n(B)との差の絶対値|n(A)-n(B)|は大きければ大きいほど構造性複屈折を効率良く発現することが可能であり、得られる光学フィルムから製造される位相差フィルムの視野角特性が良好となる。
 |n(A)-n(B)|は、好ましくは0.12以上、より好ましくは0.14以上、更に好ましくは0.16以上であり、大きいほど好ましいが、0.25以下としうる。屈折率は、例えばプリズムカプラ法により測定しうる。
 重合単位Aからなる重合体(A)は、重合単位Aに対応する単量体を重合させ、更に必要に応じて水素添加などの反応を行うことにより得られうる。重合単位Bからなる重合体(B)は、重合単位Bに対応する単量体を重合させ、更に必要に応じて水素添加などの反応を行うことにより得られうる。共重合体Pがブロック(A)及びブロック(B)を有する場合、重合体(A)及び重合体(B)はそれぞれ、ブロック(A)及びブロック(B)の製造方法と同様にして得られうる。
 重合体(A)のガラス転移温度Tg(A)(℃)と、重合体(B)のガラス転移温度(Tg(B)(℃)との差の絶対値|Tg(A)-Tg(B)|(℃)は大きければ大きいほど、得られる光学フィルムから製造される位相差フィルムの視野角特性と耐熱性とがバランスする。
 |Tg(A)-Tg(B)|は、好ましくは180℃以上、より好ましくは190℃以上、更に好ましくは200℃以上であり、大きいほど好ましいが、275℃以下としうる。重合体(A)及び重合体(B)のガラス転移温度は、例えば示差走査熱量分析法により測定しうる。測定条件としては、JIS K 6911に基づき、昇温速度10℃/分としうる。
 重合単位Aを主成分とする相における重合単位Aの含有割合、及び重合単位Bを主成分とする相における重合単位Bの含有割合は、共重合体Pの製造のための材料及び製造の操作を適宜調整することにより調整しうる。当該含有割合は、高い値であることが、効果発現の上で好ましい。重合単位Aを主成分とする相における重合単位Aの含有割合は、好ましくは50重量%以上、より好ましくは75重量%以上であり、通常100重量%以下であり、更に好ましくは、100重量%である。重合単位Bを主成分とする相における重合単位Bの含有割合は、好ましくは50重量%以上、より好ましくは75重量%以上であり、通常100重量%以下であり、更に好ましくは、100重量%である。
 重合体(A)のガラス転移温度Tg(A)(℃)は、好ましくは120℃以上、より好ましくは130℃以上、更に好ましくは140℃以上であり、180℃以下としうる。重合体(A)のガラス転移温度Tg(A)(℃)が前記範囲に収まる重合単位Aを選択することにより、効果的に位相差フィルムの耐熱性を向上させうる。
 光学フィルムは、フィルムの厚み方向レターデーションRth(nm)及びフィルム厚み(nm)から算出されるRth/dの値が、好ましくは0.5×10-3以上、より好ましくは1.0×10-3以上、更に好ましくは1.5×10-3以上であり、好ましくは8.0×10-3以下であり、より好ましくは7.0×10-3以下であり、更に好ましくは6.5×10-3以下であり、好ましくは1.0×10-3以上8.0×10-3以下である。Rth/dの値を、前記範囲に収めることにより、視野角特性に優れた位相差フィルムを製造できる光学フィルムとしうる。
 光学フィルムの厚みは、その後の延伸工程における延伸条件、使用目的などに応じて適宜設定できるが、好ましくは150μm以下であり、より好ましくは100μm以下であり、0μmより大きく、10μm以上としうる。
 光学フィルムのRth/dは、前記|n(A)-n(B)|の値を調整することで調整できる。具体的には、|n(A)-n(B)|の値を大きくすることで、Rth/dを大きくしうる。また、光学フィルムのRth/dは、共重合体Pにおける重合単位Aの重量分率を小さくすることにより、大きくしうる。
[2.光学フィルムの製造方法]
 前記の光学フィルムは、樹脂Cの、単層の膜を形成する工程、及びかかる膜において樹脂Cを相分離させる工程を含む製造方法により製造しうる。
 樹脂Cの膜を形成する工程を行うための具体的な製膜法の例としては、溶液流延法、溶融押出法、カレンダー法、及び圧縮成形法(プレス成形法)が挙げられる。大量の光学フィルムを効率的に製造する場合は、溶融押出法が特に好ましい。
 溶融押出法で膜を形成する場合、通常押出機で溶融された樹脂をダイから押し出した後、押し出された樹脂を冷却ロールにキャストする工程を行う。
 ダイからの樹脂の押出速度は、押出機のスクリュー回転数を調節することにより調整しうる。押出機のスクリュー回転数は、好ましくは10rpm以上、より好ましくは20rpm以上であり、好ましくは80rpm以下、より好ましくは60rpm以下である。押出機のスクリュー回転数を、前記範囲に収めることで、樹脂Cの相分離構造を容易に形成しうる。
 冷却ロールの温度は、好ましくは120℃以上、より好ましくは130℃以上であり、好ましくは150℃以下、更に好ましくは145℃以下である。
 いずれの方法においても、樹脂Cの膜を形成する工程は、通常樹脂Cを加熱しながら行う。樹脂Cの膜を形成する工程において、樹脂Cを加熱する温度は、通常100℃以上、好ましくは150℃以上、より好ましくは180℃以上、更に好ましくは200℃以上であり、好ましくは320℃以下、より好ましくは300℃以下、更に好ましくは290℃以下である。
 膜において樹脂Cを相分離させる工程は、膜を形成する工程の後に行ってもよく、膜を形成する工程と同時に行ってもよい。
 相分離の工程は、例えば、溶融した樹脂Cを徐冷することにより行いうる。具体的には、膜を形成する工程として、溶融押出法及びその他の方法を採用した場合においては、溶融した状態の樹脂を成形し、その後緩慢な冷却条件で冷却する操作を行いうる。具体的な作用機序は不明だが、かかる徐冷を行うことにより、構造性複屈折を発現する樹脂Cの相分離構造を容易に形成することができ、所望の光学的特性を有する光学フィルムを容易に得ることができる。
 相分離の工程としては、上に述べた徐冷に加えて又はそれに代えて、膜を加圧する工程を行いうる。樹脂Cの膜に対して圧力を加えることにより構造性複屈折を発現する相分離構造を容易に形成することができ、所望の光学的特性を有する光学フィルムを容易に得ることができる。
 加圧の工程は、具体的には、枚葉状の樹脂Cに、その厚み方向に圧力を加えることにより行いうる。そのような操作には、金型等の、膜の表面に圧力を加える加圧器具を用いうる。樹脂Cの膜をプレス成形法により成形する場合、加圧の工程は、成形の工程の一部として成形と同時に行ってもよく、成形の後に行ってもよい。
 加圧の工程はまた、長尺の樹脂Cに圧力を加える操作を連続的に行う装置によっても行いうる。そのような操作には、加圧ロール等の加圧器具を用いうる。樹脂Cの膜を溶融押出法により成形する場合、加圧の工程は、ダイから押し出された樹脂Cを2本の加圧ロールの間に通し、これらにより樹脂Cに圧力を加えることにより行いうる。加圧に際しての条件、例えば、加圧の線圧や加圧の温度などの条件を、適宜調整することにより、厚み及び相分離構造が均一な膜を得ることができる。
[3.光学フィルムの用途]
[3.1.光学フィルムから製造されうる位相差フィルムの特性]
 前記光学フィルムは、そのままで各種光学的用途に用いることができるが、光学フィルムを延伸することにより、視野角特性に優れた位相差フィルムを製造しうる。
[3.2.位相差フィルムの製造方法]
 前記光学フィルムを延伸することで、耐熱性に優れ視野角特性が向上した位相差フィルムを製造しうる。延伸の工程は、樹脂Cの膜の成形を行う製造ラインと連続したライン上で行いうる。又は、製造した樹脂Cの膜を一旦巻き取りフィルムロールとし、その後当該フィルムロールから膜を巻出し、これを延伸の工程に供してもよい。延伸の工程は、通常は、膜をその面内方向に延伸するフラット法延伸により行う。フラット法延伸の例としては、一軸延伸法及び二軸延伸法が挙げられる。一軸延伸法は、膜をその面内の一方向に延伸する延伸であり、その例としては、自由幅一軸延伸法及び一定幅一軸延伸法が挙げられる。二軸延伸法は、膜をその面内の一方向に延伸する延伸である。二軸延伸法の例としては、逐次二軸延伸法、及び同時二軸延伸法が挙げられる。それぞれの方向への延伸は、自由幅延伸であってもよく、一定幅延伸であってもよい。逐次二軸延伸法のより具体的な例としては、全テンター方式及びロールテンター方式が挙げられる。本実施形態の製造方法における延伸の工程のための延伸方法は、これらの方法のいずれであってもよく、所望の位相差フィルムを得るために適した方法を選択しうる。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
[評価方法]
(フィルムのレターデーション、Rth/d)
 AXOMETRICS社製のAxoScanを用い、波長590nmでの、フィルムの厚み方向のレターデーションRthを求めた。
 得られたRth(nm)及びフィルムの厚みd(nm)から、Rth/dを求めた。
(相分離構造)
 フィルムを2mm×4mmの大きさにカットし、複数のフィルム片を得た。それらを厚み方向に30枚重ねてフォルダに固定し、小角X線散乱測定施設(あいちSR、ビームライン8S3)にて小角X線散乱測定を行い、散乱パターンを得た。測定条件は、カメラ長4m、X線エネルギー8.2KeV、測定qレンジ:約0.06~3nm-1、1試料あたりの露光時間60秒とした。得られた散乱パターンを理論曲線とフィッティングして相分離構造と相間距離を算出した。
 X線の照射面は、フィルムの断面とし、積分範囲は厚み方向及び厚み方向に垂直な方向についてそれぞれ20°とした。それぞれの積分から得られたデータから相間距離を算出し、厚み方向及び厚み方向に垂直な方向の相間距離の平均値を測定値とした。
(構造性複屈折の有無)
 前記の方法にてフィルムにおいて相分離構造が観察され、かつフィルムのRth/dが0.5×10-3以上であった場合に、構造性複屈折が「有」と評価し、相分離が観察されない場合、及び相分離が観察されてもフィルムのRth/dが0.5×10-3未満である場合は、構造性複屈折が「無」と評価した。
(屈折率)
 屈折率膜厚測定装置(Metricon社製「プリズムカプラ」)にて波長407nm、波長532nm、及び波長633nmの3波長で測定した値を元にコーシーフィッティングを行い、試料の波長532nmでの屈折率を求めた。
(示差走査熱量分析(DSC)によるガラス転移温度の測定)
 試料のガラス転移温度(Tg)を、示差走査熱量分析計(エスアイアイ・ナノテクノロジー社製、製品名:DSC6220)を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定した。
(熱機械的分析(TMA)によるガラス転移温度の測定)
 測定対象のフィルムから、5mm×20mmの矩形の試料を切り出した。試料を、熱機械的分析装置(エスアイアイ・ナノテクノロジー株式会社製「TMA/SS7100」)に取り付け、試料の長手方向に50mNの張力を加えた状態で温度を変化させ、線膨張の変曲点の温度をTg(℃)とした。
(共重合体の固有複屈折値の正負)
 共重合体について、固有複屈折値の正負を、共重合体からフィルムを製造し、該フィルムを延伸した場合における屈折率の挙動によって規定した。延伸方向における延伸後フィルムの屈折率が、延伸前に比べて大きくなる場合に、共重合体の固有複屈折率が正であるとした。延伸方向における延伸後フィルムの屈折率が、延伸前に比べて小さくなる場合に、共重合体の固有複屈折率が負であるとした。
(視野角特性の評価)
(表示特性(λ/4板))
 偏光板として、透過軸が幅方向にある長尺の偏光板(サンリッツ社製、商品名「HLC2-5618S」、厚さ180μm)を用意した。偏光板の一方の面側の保護フィルムを除去し、当該面に、評価対象であるλ/4板としての位相差フィルムを貼合した。貼合は、位相差フィルムの遅相軸方向と偏光板の透過軸方向とが45°の角度をなすよう行った。この操作により、両面の保護フィルムのうちの一方として、評価対象の位相差フィルムを備える偏光板を得た。得られた偏光板を、市販の有機エレクトロルミネッセンス(EL)表示装置(LG電子製、OLED55EG9600)の視認側にもともと備えられていた偏光板と置き換え、評価対象の位相差フィルムを備える有機EL表示装置を得た。置き換えに際し、偏光板の配置は、評価対象の位相差フィルムを備える側が有機EL素子側となる配置とした。また、偏光子の透過軸は、有機EL表示装置にもともと備えられていた偏光板における偏光子と同じ方向とした。
 得られた有機EL表示装置の表示の状態を、表示面に対して傾斜方向(法線方向に対して45°)から、様々な方位角において観察し、下記基準により表示状態を評価した。
最良:置き換え前と比較し全方位に渡り反射率が抑制されていた。
良:置き換え前と比較し一以上の方位において反射率が抑制されていた。
不良:置き換え前と比較し一以上の方位において反射率が上昇した。
(耐熱性の評価)
 評価対象のフィルムの耐熱性を熱軟化温度Tsにより評価した。Tsを、下記手順に従った熱機械的分析(TMA)測定により測定した。測定対象のフィルムを5mm×20mmの形状に切り出し試料とし、熱機械的分析装置「TMA/SS7100」(エスアイアイ・ナノテクノロジー株式会社製)を用いて、試料の長手方向に50mNの張力を加えた状態で、温度を変化させ、線膨張が3%変化した時の温度(℃)を、熱軟化温度Tsとして計測した。計測された熱軟化温度Tsから、下記基準により評価対象のフィルムの耐熱性を評価した。
良:Tsが120℃以上である。
不良:Tsが120℃未満である。
[参考例1]
(R1-1.イソプレン単独重合体(PI))
 十分に窒素ガスで置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン395部、脱水イソプレン120部、n-ブチルエーテル0.77部を入れ、50℃で撹拌しながら、n-ブチルリチウム(15%n-ヘキサン溶液)1.25部を加えて重合を開始し、60分間重合反応させた。この時点での重合転化率はほぼ100%であった。ここでメタノール0.2部を添加し反応を停止した。得られた重合体溶液の一部を抜き出して乾燥し、イソプレンの単独重合体(PI)を得た。得られたイソプレンの単独重合体(PI)は、分子量分布(Mw/Mn)が1.07であり、重量平均分子量(Mw)が76000であった。重合体(PI)について、前記の方法により屈折率及びDSCによるガラス転移温度を測定した。測定結果を表1に示す。
(R1-2.イソプレン単独重合体の水素化物(HPI))
 得られた重合体溶液を、攪拌装置を備えた耐圧反応容器に移送し、水素化触媒としてのシリカーアルミナ担持型ニッケル触媒(製品名:T-8400RL、クラリアント触媒(株)社製、ニッケル含有量33%)1.5部、及び、脱水シクロヘキサン100部を添加して混合した。常温状態にて反応内部を水素ガスにて置換しゲージ圧力で2MPa加圧した状態で170℃まで昇温した。耐圧反応容器の内部温度が170℃となったところで、水素圧を4.5MPaまで加圧し12時間水素化反応を行った(水素化率:99.9%)。得られた水素化後の溶液を乾燥し、イソプレンの単独重合体の水素化物(HPI)を得た。重合体(HPI)について、前記の方法により屈折率及びDSCによるガラス転移温度を測定した。測定結果を表1に示す。
[参考例2]
(R2-1.ブタジエン単独重合体(PB))
 十分に窒素ガスで置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン395部、ブタジエン120部、n-ブチルエーテル0.77部を入れ、20℃で撹拌しながら、n-ブチルリチウム(15%n-ヘキサン溶液)1.25部を加えて重合を開始し、60分間重合反応させた。この時点での重合転化率はほぼ100%であった。ここでメタノール0.2部を添加し反応を停止した。得られた重合体溶液の一部を抜き出して乾燥し、ブタジエンの単独重合体(PB)を得た。得られたブタジエンの単独重合体(PB)は、分子量分布(Mw/Mn)が1.27であり、重量平均分子量(Mw)が96000であった。
(R2-2.ブタジエン単独重合体の水素化物(HPB)
 得られた重合体溶液を、攪拌装置を備えた耐圧反応容器に移送し、水素化触媒としてのシリカーアルミナ担持型ニッケル触媒(製品名:T-8400RL、クラリアント触媒(株)社製、ニッケル含有量33%)1.5部、及び、脱水シクロヘキサン100部を添加して混合した。常温状態にて反応内部を水素ガスにて置換しゲージ圧力で2MPa加圧した状態で170℃まで昇温した。耐圧反応容器の内部温度が170℃となったところで、水素圧を4.5MPaまで加圧し12時間水素化反応を行った(水素化率:99.9%)。得られた水素化後の溶液を乾燥し、ブタジエンの単独重合体の水素化物(HPB)を得た。水素化物(HPB)について、前記の方法により屈折率及びDSCによるガラス転移温度を測定した。測定結果を表1に示す。
[参考例3]
(2-ビニルナフタレン単独重合体(PVN))
 乾燥し、窒素ガスで置換された耐圧反応器に、溶媒としてトルエン500部、重合触媒としてn-ブチルリチウム0.03部を入れた後、2-ビニルナフタレン36部を添加して25℃で2時間反応させ、重合反応を行った。その結果、反応混合物中に、重合体(PVN)を得た。反応混合物を大量の2-プロパノールに注いで、重合体(PVN)を沈殿させ分取した。
 得られた重合体(PVN)をH-NMRにて分析した。その結果、重合体(PVN)は2-ビニルナフタレン単位のみからなるものであり、従って重合体(PVN)は、2-ビニルナフタレンの単独重合体であった。重合体(PVN)について、前記の方法により屈折率及びDSCによるガラス転移温度を測定した。測定結果を表1に示す。
[参考例4]
(R4-1.スチレン単独重合体(PS))
 十分に窒素ガスで置換された、攪拌装置を備えた反応器に脱水シクロヘキサン395部、脱水スチレン120部、n-ブチルエーテル0.57部を入れ、60℃で撹拌しながら、n-ブチルリチウム(15%n-ヘキサン溶液)0.75部を加えて重合を開始し、60分間重合反応させた。この時点での重合転化率はほぼ100%であった。ここでメタノール0.2部を添加し反応を停止した。得られた重合体溶液の一部を抜き出して乾燥し、スチレンの単独重合体(PS)を得た。得られたスチレン単独重合体(PS)の分子量分布(Mw/Mn)は1.20であり、重量平均分子量(Mw)は109000であった。重合体(PS)について、前記の方法により屈折率及びDSCによるガラス転移温度を測定した。測定結果を表1に示す。
(R4-2.スチレン単独重合体の水素化物(HPS))
 得られた重合体溶液を、攪拌装置を備えた耐圧反応容器に移送し、水素化触媒としてのシリカーアルミナ担持型ニッケル触媒(製品名:T-8400RL、クラリアント触媒(株)社製、ニッケル含有量33%)1.5部、及び、脱水シクロヘキサン100部を添加して混合した。常温状態にて反応内部を水素ガスにて置換しゲージ圧力で2MPa加圧した状態で170℃まで昇温した。耐圧反応容器の内部温度が170℃となったところで、水素圧を4.5MPaまで加圧し12時間水素化反応を行った(水素化率:99.9%)。得られた水素化後の溶液を乾燥し、スチレン単独重合体の水素化物(HPS)を得た。水素化物(HPS)について、前記の方法により屈折率及びDSCによるガラス転移温度を測定した。測定結果を表1に示す。
 参考例1~4で得られた重合体の屈折率及びガラス転移温度の値を表1に示す。表1における略号の意味は、下記のとおりである。
PI:イソプレン単独重合体(PI)
水素化PI:イソプレン単独重合体の水素化物(HPI)
水素化PB:ブタジエン単独重合体の水素化物(HPB)
PVN:2-ビニルナフタレン単独重合体(PVN)
PS:スチレン単独重合体(PS)
水素化PS:スチレン単独重合体の水素化物(HPS)
Figure JPOXMLDOC01-appb-T000011
[実施例1]
(1-1.トリブロック共重合体)
 (一段階目)
 乾燥し、窒素ガスで置換された耐圧反応器に、溶媒としてトルエン500部、重合触媒としてn-ブチルリチウム0.03部を入れた後、単量体(a)として2-ビニルナフタレン12.1部を添加して25℃で1時間反応させ、一段階目の重合反応を行った。
 (二段階目)
 一段階目の重合反応終了後、単量体(b)としてブタジエン11.9部を添加し更に25℃で1時間反応させ、二段階目の重合反応を行った。その結果、反応混合物中に、(2-ビニルナフタレンブロック)-(ブタジエンブロック)のブロック構成を有するジブロック共重合体を得た。
 (三段階目)
 その後、反応混合物中に更に、単量体(a)として2-ビニルナフタレン12.1部を添加して25℃で1時間反応させ、三段階目の重合反応を行った。その結果、反応混合物中に、(2-ビニルナフタレンブロック)-(ブタジエンブロック)-(2-ビニルナフタレンブロック)のブロック構成を有するトリブロック共重合体を得た。反応混合物を大量の2-プロパノールに注いで、トリブロック共重合体を沈殿させ分取した。
 得られたトリブロック共重合体をp-キシレン700部に溶解して溶液とした。溶液に、p-トルエンスルホニルヒドラジド7.6部を添加し、温度130℃で8時間反応させた。この反応により、ブタジエン単位の二重結合へ水素を添加した。水素添加終了後、大量の2-プロパノールに反応溶液を注ぎ、(ブロック(A))-(ブロック(B))-(ブロック(A))のブロック構成を有するトリブロック共重合体P1を、塊状の生成物として得た。トリブロック共重合体P1において、ブロック(A)は2-ビニルナフタレンブロックであり、ブロック(B)は水添ブタジエンブロックであった。
 得られたトリブロック共重合体P1をH-NMRにて分析した。その結果、トリブロック共重合体における重合単位Aとしての2-ビニルナフタレン単位と重合単位Bとしての水添ブタジエン単位との重量比は67:33であり、従って重合単位Aの重量分率は67%であった。また2-ビニルナフタレン単位に対する水素添加率は0%であり、ブタジエン単位に対する水素添加率は99%であった。すなわち、重合単位HA(水添2-ビニルナフタレン単位)の重合単位A(2-ビニルナフタレン単位)に対するモル比率は、0であり、重合単位B’(B’-1及びB’-2)(ブタジエン単位)の重合単位B(水添ブタジエン単位)に対するモル比率は、1/99であった。ゲル・パーミエーション・クロマトグラフィー(GPC)により測定したトリブロック共重合体P1の重量平均分子量は110000であった。TMAにより測定したトリブロック共重合体P1のガラス転移温度は137℃であった。トリブロック共重合体P1の固有複屈折値は、負である。
(1-2.延伸前フィルム)
 (1-1)で得られたトリブロック共重合体P1を、樹脂Cとして用いた。樹脂Cを、粉砕機により粉砕し粉体とした。得られた粉体を押出機に供給し、樹脂温270℃として押出機内で溶融させ、ポリマーパイプ及びポリマーフィルターを通過させ、Tダイからキャスティングドラム(冷却ロール)上にシート状に押出し、冷却して、厚み90μmの延伸前フィルム1を得た。冷却ロール温度は、138℃に設定した。また、押出機のスクリュー回転数は、20~40rpmに設定した。製造された延伸前フィルム1は、ロール状に巻き取って回収した。
 得られた延伸前フィルム1について、前記の条件の小角X線散乱法により断面からX線を入射させて相構造を観察したところ、シリンダ構造が観察された。また、厚み方向に平行な断面の切片を作成してTEMで観察したところ、シリンダ状の相分離構造が確認された。また、相間距離は、40nmであった。
 得られた延伸前フィルム1のRth/dを測定したところ、Rth/d=5.5×10-3であった。
(1-3.位相差フィルム(λ/4板))
 前記(1-2)で得られた延伸前フィルム1を切断し、80mm×80mmの大きさの矩形のフィルムとした。矩形のフィルムに、自由幅一軸延伸を施した。延伸は、東洋精機(株)製のバッチ式延伸装置を用いて行った。延伸の条件は、延伸温度147℃、延伸倍率2.0倍、延伸速度33%毎分とした。この結果、厚み65μmの位相差フィルム1Qを得た。得られたλ/4板として機能する位相差フィルム1Qを用いて、前記の方法により視野角特性及び耐熱性を評価した。
[実施例2]
(2-1.トリブロック共重合体)
 下記事項以外は、実施例1(1-1.トリブロック共重合体)と同様にして、トリブロック共重合体P2を、塊状の生成物として得た。
・(一段階目)の反応において、単量体(a)として2-ビニルナフタレン10.3部を添加した。
・n-ブチルリチウムの量を、0.03部から0.04部へ変更した。
・(二段階目)の反応において、単量体(b)として、ブタジエン15.4部を添加した。
・(三段階目)の反応において、単量体(a)として2-ビニルナフタレン10.3部を添加した。
 トリブロック共重合体P2は、(ブロック(A))-(ブロック(B))-(ブロック(A))のブロック構成を有する。トリブロック共重合体P2において、ブロック(A)は2-ビニルナフタレンブロックであり、ブロック(B)は水添ブタジエンブロックであった。
 得られたトリブロック共重合体P2をH-NMRにて分析した。その結果、トリブロック共重合体における重合単位Aとしての2-ビニルナフタレン単位と重合単位Bとしての水添ブタジエン単位との重量比は57:43であり、従って重合単位Aの重量分率は57%であった。また2-ビニルナフタレン単位に対する水素添加率は0%であり、ブタジエン単位に対する水素添加率は99%であった。すなわち、重合単位HA(水添2-ビニルナフタレン単位)の重合単位A(2-ビニルナフタレン単位)に対するモル比率は、0であり、重合単位B’(B’-1及びB’-2)(ブタジエン単位)の重合単位B(水添ブタジエン単位)に対するモル比率は、1/99であった。GPCにより測定したトリブロック共重合体P2の重量平均分子量は85000であった。TMAにより測定したトリブロック共重合体P2のガラス転移温度は125℃であった。トリブロック共重合体P2の固有複屈折値は、負である。
(2-2.延伸前フィルム)
 下記の事項以外は、実施例1(1-2.延伸前フィルム)と同様にして、延伸前フィルム2を得た。
・トリブロック共重合体P2を、樹脂Cとして用いた。
 得られた延伸前フィルム2について、前記の条件の小角X線散乱法により断面からX線を入射させて相構造を観察したところ、ラメラ構造が観察された。また、相間距離は、50nmであった。また、厚み方向に平行な断面の切片を作成してTEMで観察したところ、ラメラ状の相分離構造が確認された。
 得られた延伸前フィルム2のRth/dを測定したところ、Rth/d=6.5×10-3であった。
(2-3.位相差フィルム(λ/4板))
 下記の事項以外は、実施例1(1-3.位相差フィルム(λ/4板))と同様にして、厚み65μmの位相差フィルム2Qを得た。
・延伸前フィルム1の代わりに延伸前フィルム2を用いた。
・延伸温度を変更し、140℃とした。
 得られた位相差フィルム2Qを用いて、前記の方法により視野角特性及び耐熱性を評価した。
[実施例3]
(3-1.トリブロック共重合体)
 下記事項以外は、実施例1(1-1.トリブロック共重合体)と同様にして、トリブロック共重合体P3を、塊状の生成物として得た。
・(一段階目)の反応において、単量体(a)として2-ビニルナフタレン12.1部を添加した。
・(二段階目)の反応において、単量体(b)として、ブタジエン11.9部の代わりにイソプレン11.9部を添加した。
・(三段階目)の反応において、単量体(a)として2-ビニルナフタレン12.1部を添加した。
 トリブロック共重合体P3は、(ブロック(A))-(ブロック(B))-(ブロック(A))のブロック構成を有する。トリブロック共重合体P3において、ブロック(A)は2-ビニルナフタレンブロックであり、ブロック(B)は水添イソプレンブロックであった。
 得られたトリブロック共重合体P3をH-NMRにて分析した。その結果、トリブロック共重合体における重合単位Aとしての2-ビニルナフタレン単位と重合単位Bとしての水添イソプレン単位との重量比は67:33であり、従って重合単位Aの重量分率は67%であった。また2-ビニルナフタレン単位に対する水素添加率は0%であり、イソプレン単位に対する水素添加率は99%であった。すなわち、重合単位HA(水添2-ビニルナフタレン単位)の重合単位A(2-ビニルナフタレン単位)に対するモル比率は、0であり、重合単位B’(B’-1及びB’-2)(イソプレン単位)の重合単位B(水添イソプレン単位)に対するモル比率は、1/99であった。GPCにより測定したトリブロック共重合体P3の重量平均分子量は100000であった。TMAにより測定したトリブロック共重合体P3のガラス転移温度は138℃であった。トリブロック共重合体P3の固有複屈折値は、負である。
(3-2.延伸前フィルム)
 下記の事項以外は実施例1(1-2.延伸前フィルム)と同様にして、延伸前フィルム3を作製した。
・トリブロック共重合体P1の代わりにトリブロック共重合体P3を樹脂Cとして用いた。
 得られた延伸前フィルム3について、前記の条件の小角X線散乱法により断面からX線を入射させて相構造を観察したところ、シリンダ構造が観察された。また、相間距離は、40nmであった。また、厚み方向に平行な断面の切片を作成してTEMで観察したところ、シリンダ状の相分離構造が確認された。
 得られた延伸前フィルム3のRth/dを測定したところ、Rth/d=4.0×10-3であった。
(3-3.位相差フィルム(λ/4板))
 下記の事項以外は、実施例1(1-3.位相差フィルム(λ/4板))と同様にして、厚み60μmの位相差フィルム3Qを得た。
・延伸前フィルム1の代わりに延伸前フィルム3を用いた。
・延伸温度を変更し、148℃とした。
 得られた位相差フィルム3Qを用いて、前記の方法により視野角特性及び耐熱性を評価した。
[実施例4]
(4-1.トリブロック共重合体)
 実施例3(3-1.トリブロック共重合体)において製造されたトリブロック共重合体P3を用意した。
(4-2.延伸前フィルム)
 下記の事項以外は実施例1(1-2.延伸前フィルム)と同様にして、延伸前フィルム4を作製した。
・トリブロック共重合体P1の代わりにトリブロック共重合体P4を樹脂Cとして用いた。
・冷却ロール温度を、110℃に設定した。
・押出機のスクリュー回転数を150~200rpmに設定した。
 得られた延伸前フィルム4について、前記の条件の小角X線散乱法により断面からX線を入射させて相構造を観察したところ、シリンダ構造が観察された。また、相間距離は、35nmであった。また、厚み方向に平行な断面の切片を作成してTEMで観察したところ、シリンダ状の相分離構造が確認された。
 得られた延伸前フィルム4のRth/dを測定したところ、Rth/d=3.0×10-3であった。
(4-3.位相差フィルム(λ/4板))
 下記の事項以外は、実施例1(1-3.位相差フィルム(λ/4板))と同様にして、厚み70μmの位相差フィルム4Qを得た。
・延伸前フィルム1の代わりに延伸前フィルム4を用いた。
・延伸温度を変更し、148℃とした。
 得られた位相差フィルム4Qを用いて、前記の方法により視野角特性及び耐熱性を評価した。
[比較例1]
(C1-1.トリブロック共重合体)
 下記事項以外は、実施例1(1-1.トリブロック共重合体)と同様にして、トリブロック共重合体CP1を、塊状の生成物として得た。
・(一段階目)の反応において、単量体(a)として2-ビニルナフタレン13.0部を添加した。
・(二段階目)の反応において、単量体(b)として、ブタジエン11.9部の代わりにイソプレン10.1部を添加した。
・(三段階目)の反応において、単量体(a)として2-ビニルナフタレン13.0部を添加した。
 トリブロック共重合体CP1は、((ブロック(A))-(ブロック(B))-(ブロック(A))のブロック構成を有する。トリブロック共重合体CP1において、ブロック(A)は2-ビニルナフタレンブロックであり、ブロック(B)は水添イソプレンブロックであった。
 得られたトリブロック共重合体CP1をH-NMRにて分析した。その結果、トリブロック共重合体における重合単位Aとしての2-ビニルナフタレン単位と重合単位Bとしての水添イソプレン単位との重量比は72:28であり、従って重合単位Aの重量分率は72%であった。また2-ビニルナフタレン単位に対する水素添加率は0%であり、イソプレン単位に対する水素添加率は99%であった。すなわち、重合単位HA(水添2-ビニルナフタレン単位)の重合単位A(2-ビニルナフタレン単位)に対するモル比率は、0であり、重合単位B’(B’-1及びB’-2)(イソプレン単位)の重合単位B(水添イソプレン単位)に対するモル比率は、1/99であった。GPCにより測定したトリブロック共重合体CP1の重量平均分子量は120000であった。TMAにより測定したトリブロック共重合体CP1のガラス転移温度は140℃であった。トリブロック共重合体CP1の固有複屈折値は、負である。
(C1-2.延伸前フィルム)
 下記の事項以外は、実施例1(1-2.延伸前フィルム)と同様にして、延伸前フィルムC1を得た。
・トリブロック共重合体CP1を、樹脂Cとして用いた。
・冷却ロールの温度を、110℃に設定した。
・押出機のスクリュー回転数を150~200rpmに設定した。
 得られた延伸前フィルムC1について、前記の条件の小角X線散乱法により断面からX線を入射させて相構造を観察したところ、得られた散乱パターンは不明瞭であり理論曲線でのフィッティングはできなかった。また、厚み方向に平行な断面の切片を作成してTEMで観察したところ、サイズや大きさが疎らなシリンダ構造が観察された。
 得られた延伸前フィルムC1のRth/dを測定したところ、Rth/d=0.4×10-3であった。
(C1-3.位相差フィルム(λ/4板))
 下記の事項以外は、実施例1(1-3.位相差フィルム(λ/4板))と同様にして、厚み65μmの位相差フィルムC1Qを得た。
・延伸前フィルム1の代わりに延伸前フィルムC1を用いた。
・延伸温度を変更し、150℃とした。
 得られた位相差フィルムC1Qを用いて、前記の方法により視野角特性及び耐熱性を評価した。
[比較例2]
(C2-1.トリブロック共重合体)
 下記事項以外は、実施例1(1-1.トリブロック共重合体)と同様にして、トリブロック共重合体CP2を、塊状の生成物として得た。
・(一段階目)の反応において、単量体(a)として2-ビニルナフタレン14.4部を添加した。
・n-ブチルリチウムの量を、0.03部から0.05部へ変更した。
・(二段階目)の反応において、単量体(b)として、ブタジエン11.9部の代わりにイソプレン7.2部を添加した。
・(三段階目)の反応において、単量体(a)として2-ビニルナフタレン14.4部を添加した。
 トリブロック共重合体CP2は、(ブロック(A))-(ブロック(B))-(ブロック(A))のブロック構成を有する。トリブロック共重合体CP2において、ブロック(A)は2-ビニルナフタレンブロックであり、ブロック(B)は水添イソプレンブロックであった。
 得られたトリブロック共重合体CP2をH-NMRにて分析した。その結果、トリブロック共重合体における重合単位Aとしての2-ビニルナフタレン単位と重合単位Bとしての水添イソプレン単位との重量比は80:20であり、従って重合単位Aの重量分率は80%であった。また2-ビニルナフタレン単位に対する水素添加率は0%であり、イソプレン単位に対する水素添加率は99%であった。すなわち、重合単位HA(水添2-ビニルナフタレン単位)の重合単位A(2-ビニルナフタレン単位)に対するモル比率は、0であり、重合単位B’(B’-1及びB’-2)(イソプレン単位)の重合単位B(水添イソプレン単位)に対するモル比率は、1/99であった。GPCにより測定したトリブロック共重合体CP2の重量平均分子量は70000であった。TMAにより測定したトリブロック共重合体CP2のガラス転移温度は143℃であった。トリブロック共重合体CP2の固有複屈折値は、負である。
(C2-2.延伸前フィルム)
 下記の事項以外は、実施例1(1-2.延伸前フィルム)と同様にして、延伸前フィルムC2を得た。
・トリブロック共重合体P1の代わりにトリブロック共重合体CP2を樹脂Cとして用いた。
 得られた延伸前フィルムC2について、前記の条件の小角X線散乱法により断面からX線を入射させて相構造を観察したところ、得られた散乱パターンは不明瞭であり理論曲線でのフィッティングはできなかった。また、厚み方向に平行な断面の切片を作成してTEMで観察したところ、サイズや大きさが疎らなシリンダ構造が観察された。
 得られた延伸前フィルムC2のRth/dを測定したところ、Rth/d=0.2×10-3であった。
(C2-3.位相差フィルム(λ/4板))
 下記の事項以外は、実施例1(1-3.位相差フィルム(λ/4板))と同様にして、厚み65μmの位相差フィルムC2Qを得た。
・延伸前フィルム1の代わりに延伸前フィルムC2を用いた。
・延伸温度を変更し、153℃とした。
 得られた位相差フィルムC2Qを用いて、前記の方法により視野角特性及び耐熱性を評価した。
[比較例3]
(C3-1.トリブロック共重合体)
 (一段階目)
 十分に窒素ガスで置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン395部、脱水スチレン37.1部、n-ブチルエーテル0.65部を入れ、60℃で撹拌しながら、n-ブチルリチウム(15%n-ヘキサン溶液)0.87部を加えて重合を開始し、60分間重合反応させた。
 (二段階目)
 次に、脱水イソプレン55.9部を加え、そのまま40分間撹拌を続けた。
 (三段階目)
 その後、60℃で撹拌しながら、脱水スチレン37.1部を加え、60分間反応させた。この時点での重合転化率はほぼ100%であった。ここでメタノール0.2部を添加し反応を停止した。その結果、反応混合物中に、(スチレンブロック)-(イソプレンブロック)-(スチレンブロック)のブロック構成を有するトリブロック共重合体を得た。反応混合物を大量の2-プロパノールに注いで、トリブロック共重合体を沈殿させ分取した。
 得られたトリブロック共重合体をp-キシレン700部に溶解して溶液とした。溶液に、p-トルエンスルホニルヒドラジド7.6部を添加し、温度130℃で8時間反応させた。この反応により、イソプレン単位の二重結合へ水素を添加した。水素添加終了後、大量の2-プロパノールに反応溶液を注ぎ、(スチレンブロック)-(水添イソプレンブロック)-(スチレンブロック)のブロック構成を有する、(A)-(B)-(A)トリブロック共重合体CP3を、塊状の生成物として得た。
 得られたトリブロック共重合体CP3をH-NMRにて分析した。その結果、トリブロック共重合体における重合単位Aとしてのスチレン単位と重合単位Bとしての水添イソプレン単位との重量比は57:43であり、従って重合単位Aの重量分率は57%であった。またスチレン単位に対する水素添加率は0%であり、イソプレン単位に対する水素添加率は99%以上であった。GPCにより測定したトリブロック共重合体CP3の重量平均分子量は80000であった。TMAにより測定したトリブロック共重合体CP3のガラス転移温度は80℃であった。トリブロック共重合体CP3の固有複屈折値は、正である。
(C3-2.延伸前フィルム)
 下記の事項以外は実施例1(1-2.延伸前フィルム)と同様にして、延伸前フィルムC3を作製した。
・トリブロック共重合体P1の代わりにトリブロック共重合体CP3を樹脂Cとして用いた。
 得られた延伸前フィルムC3について、前記の条件の小角X線散乱法により断面からX線を入射させて相構造を観察したところ、得られた散乱パターンは不明瞭であり理論曲線でのフィッティングはできなかった。また、厚み方向に平行な断面の切片を作成してTEMで観察したところ、ラメラ構造が観察された。
 得られた延伸前フィルムC3のRth/dを測定したところ、Rth/d=0.3×10-3であった。
(C3-3.位相差フィルム(λ/4板))
 下記の事項以外は、実施例1(1-3.位相差フィルム(λ/4板))と同様にして、厚み65μmの位相差フィルムC3Qを得た。
・延伸前フィルム1の代わりに延伸前フィルムC3を用いた。
・延伸温度を変更し、90℃とした。
 得られた位相差フィルムC3Qを用いて、前記の方法により視野角特性及び耐熱性を評価した。
[比較例4]
(C4-1.トリブロック共重合体)
 (一段階目)
 十分に窒素ガスで置換された、攪拌装置を備えた反応器に、脱水シクロヘキサン395部、脱水スチレン43.6部、n-ブチルエーテル0.65部を入れ、60℃で撹拌しながら、n-ブチルリチウム(15%n-ヘキサン溶液)0.87部を加えて重合を開始し、60分間重合反応させた。
 (二段階目)
 次に、脱水イソプレン42.9部を加え、そのまま40分間撹拌を続けた。
 (三段階目)
 その後、60℃で撹拌しながら、脱水スチレン43.6部を加え、60分間反応させた。この時点での重合転化率はほぼ100%であった。ここでメタノール0.2部を添加し反応を停止した。その結果、反応混合物中に、(スチレンブロック)-(イソプレンブロック)-(スチレンブロック)のブロック構成を有するトリブロック共重合体CP4を得た。
 得られたトリブロック共重合体CP4をH-NMRにて分析した。その結果、トリブロック共重合体における重合単位Aとしてのスチレン単位と重合単位B’としてのイソプレン単位との重量比は67:33であり、従って重合単位Aの重量分率は67%であった。GPCにより測定したトリブロック共重合体CP4の重量平均分子量は90000であった。TMAにより測定したトリブロック共重合体CP4のガラス転移温度は87℃であった。トリブロック共重合体CP4の固有複屈折値は、正である。
(C4-2.延伸前フィルム)
 下記の事項以外は実施例1(1-2.延伸前フィルム)と同様にして、延伸前フィルムC4を作製した。
・トリブロック共重合体P1の代わりにトリブロック共重合体CP4を樹脂Cとして用いた。
 得られた延伸前フィルムC4について、前記の条件の小角X線散乱法により断面からX線を入射させて相構造を観察したところ、得られた散乱パターンは不明瞭であり理論曲線でのフィッティングはできなかった。また、厚み方向に平行な断面の切片を作成してTEMで観察したところ、ラメラ構造が観察された。
 得られた延伸前フィルムC4のRth/dを測定したところ、Rth/d=0.2×10-3であった。
(C4-3.位相差フィルム(λ/4板))
 下記の事項以外は、実施例1(1-3.位相差フィルム(λ/4板))と同様にして、厚み70μmの位相差フィルムC4Qを得た。
・延伸前フィルム1の代わりに延伸前フィルムC4を用いた。
・延伸温度を変更し、140℃とした。
 得られた位相差フィルムC4Qを用いて、前記の方法により視野角特性及び耐熱性を評価した。
 実施例及び比較例の結果を、下表に示す。
 下表における略号の意味は、下記のとおりである。
VN:2-ビニルナフタレンブロック
HB:水添ブタジエンブロック
HIp:水添イソプレンブロック
St:スチレンブロック
重量分率(A):2-ビニルナフタレン単位、又はスチレン単位の、重量分率(%)
n(A):重合体(A)の屈折率
Tg(A):重合体(A)のガラス転移温度(℃)
n(B):重合体(B)の屈折率
Tg(B):重合体(B)のガラス転移温度(℃)
PI:イソプレン単独重合体(PI)
HPI:イソプレン単独重合体の水素化物(HPI)
HPB:ブタジエン単独重合体の水素化物(HPB)
PVN:2-ビニルナフタレン単独重合体(PVN)
PS:スチレン単独重合体(PS)
 押出速度の項目について、「遅」は押出機のスクリュー速度が20~40rpmであることを意味し、「早」は押出機のスクリュー速度が150~200rpmであることを意味する。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 以上の結果によれば、以下の事項がわかる。
 相分離構造はあるが、構造性複屈折を発現していない比較例1~4に係る位相差フィルムは、視野角特性が不良である。
 ガラス転移温度差の絶対値|Tg(A)-Tg(B)|(℃)が、180℃未満である比較例3及び4に係る位相差フィルムは、耐熱性が不良である。
 相分離構造を含み構造性複屈折を発現しており、かつ屈折率差の絶対値|n(A)-n(B)|が、0.12以上である、実施例に係る位相差フィルムは、耐熱性及び視野角特性が良好であり、優れた耐熱性と優れた視野角特性とが両立している。
 ガラス転移温度差の絶対値|Tg(A)-Tg(B)|(℃)が、180℃以上である実施例に係る位相差フィルムは、耐熱性及び視野角特性が良好であり、優れた耐熱性と優れた視野角特性とが両立している。
 以上の結果は、本発明の光学フィルムから、優れた耐熱性と優れた視野角特性向上効果を同時に備えた位相差フィルムを、低いコストで製造できることを示す結果である。

Claims (19)

  1.  重合単位Aと重合単位Bとを含む共重合体Pを含む樹脂Cからなる、光学フィルムであり、
     構造性複屈折を発現する相分離構造を含み、前記相分離構造は、前記重合単位Aを主成分とする相(A)と、前記重合単位Bを主成分とする相(B)とを含み、
     前記重合単位Aからなる重合体(A)の屈折率n(A)と、前記重合単位Bからなる重合体(B)の屈折率n(B)との差の絶対値|n(A)-n(B)|が、0.12以上である、光学フィルム。
  2.  前記重合体(A)のガラス転移温度Tg(A)(℃)と、前記重合体(B)のガラス転移温度Tg(B)(℃)との差の絶対値|Tg(A)-Tg(B)|が、180℃以上である、請求項1に記載の光学フィルム。
  3.  前記ガラス転移温度Tg(A)(℃)が、120℃以上である、請求項1又は2に記載の光学フィルム。
  4.  前記相分離構造が、ラメラ、シリンダ、及びスフェロイドのいずれかの形態を有する、請求項1~3のいずれか1項に記載の光学フィルム。
  5.  前記相分離構造における相間距離が200nm以下である、請求項1~4のいずれか1項に記載の光学フィルム。
  6.  前記共重合体Pが、前記重合単位Aを主成分とするブロック(A)及び前記重合単位Bを主成分とするブロック(B)を有するブロック共重合体である、請求項1~5のいずれか1項に記載の光学フィルム。
  7.  前記重合単位Aが一般式(A)で表される単位である、請求項1~6のいずれか1項に記載の光学フィルム:
    Figure JPOXMLDOC01-appb-C000001
     式中Rは、フェニル基、ビフェニルイル基、ナフチル基、アントラセニル基、フェナントレニル基、ナフタセニル基、ペンタセニル基、及びターフェニルイル基からなる群より選択される基であり、
     R~Rのそれぞれは独立に、水素原子及び炭素数1~12のアルキル基からなる群より選択される一つである。
  8.  前記共重合体Pにおける、前記重合単位Aを水素化して得られる重合単位HAの前記重合単位Aに対するモル比率が、0/100以上10/90以下である、請求項7に記載の光学フィルム。
  9.  前記重合単位Bが一般式(B-1)で表される単位又は一般式(B-2)で表される単位である、請求項1~8のいずれか1項に記載の光学フィルム:
    Figure JPOXMLDOC01-appb-C000002
     式中R~Rのそれぞれは独立に、水素原子及び炭素数1~6のアルキル基からなる群より選択される一つである。
  10.  前記共重合体Pにおける、下記一般式(B’-1)で表される単位及び下記一般式(B’-2)で表される単位の、前記重合単位Bに対する合計モル比率が、0/100以上10/90以下である、請求項9に記載の光学フィルム:
    Figure JPOXMLDOC01-appb-C000003
     式中R~Rは、前記と同義である。
  11.  前記重合単位Aが、ビニルナフタレン単位、ビニルナフタレン誘導体単位、スチレン単位、又はスチレン誘導体単位であり、
     前記重合単位Bが、イソプレン単位を水素化して得られる単位、ブタジエン単位を水素化して得られる単位、1,3-ペンタジエン単位を水素化して得られる単位、2,3-ジメチル-1,3-ブタジエン単位を水素化して得られる単位、1,3-ヘキサジエン単位を水素化して得られる単位、2-メチル-1,3-ペンタジエン単位を水素化して得られる単位、3-メチル-1,3-ペンタジエン単位を水素化して得られる単位、又は2,4-ジメチル-1,3-ペンタジエン単位を水素化して得られる単位である、請求項1~10のいずれか1項に記載の光学フィルム。
  12.  前記共重合体Pが、トリブロック共重合体P’を含み、
     前記トリブロック共重合体P’は、前記重合単位Aを主成分とするブロック(A)、及び前記重合単位Bを主成分とするブロック(B)を有する、(A)-(B)-(A)トリブロック共重合体である、請求項1~11のいずれか1項に記載の光学フィルム。
  13.  前記共重合体Pが、負の固有複屈折値を有する、請求項1~12のいずれか1項に記載の光学フィルム。
  14.  前記重合単位Aが負の固有複屈折値を有し、前記重合単位Bが正の固有複屈折値を有する、請求項1~13のいずれか1項に記載の光学フィルム。
  15.  前記共重合体Pにおける前記重合単位Aの重量分率が、50重量%以上70重量%未満である、請求項1~14のいずれか1項に記載の光学フィルム。
  16.  請求項1~15のいずれか1項に記載の光学フィルムを製造する方法であって、
     前記樹脂Cを150℃以上に加熱して、前記樹脂Cからなる単層の膜を形成する工程、及び
     前記膜において、前記樹脂Cを相分離させる工程
     を含む、光学フィルムの製造方法。
  17.  前記膜を形成する工程が、前記樹脂Cを単層で溶融押出することを含む、請求項16に記載の光学フィルムの製造方法。
  18.  請求項1~15のいずれか1項に記載の光学フィルムを延伸して位相差フィルムを得る工程を含む、位相差フィルムの製造方法。
  19.  前記光学フィルムが、請求項16又は17に記載の製造方法により製造される、請求項18に記載の位相差フィルムの製造方法。
PCT/JP2019/043993 2018-11-30 2019-11-08 光学フィルム、位相差フィルム、及びそれらの製造方法 WO2020110672A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217014493A KR20210097699A (ko) 2018-11-30 2019-11-08 광학 필름, 위상차 필름, 및 그들의 제조 방법
US17/294,462 US20220011490A1 (en) 2018-11-30 2019-11-08 Optical film, retarder film, and method for manufacturing same
CN201980076581.8A CN113167954B (zh) 2018-11-30 2019-11-08 光学膜、相位差膜、及它们的制造方法
JP2020558278A JP7338638B2 (ja) 2018-11-30 2019-11-08 光学フィルム、位相差フィルム、及びそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-225554 2018-11-30
JP2018225554 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020110672A1 true WO2020110672A1 (ja) 2020-06-04

Family

ID=70853715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043993 WO2020110672A1 (ja) 2018-11-30 2019-11-08 光学フィルム、位相差フィルム、及びそれらの製造方法

Country Status (6)

Country Link
US (1) US20220011490A1 (ja)
JP (1) JP7338638B2 (ja)
KR (1) KR20210097699A (ja)
CN (1) CN113167954B (ja)
TW (1) TWI830819B (ja)
WO (1) WO2020110672A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164920A (ja) * 1991-12-12 1993-06-29 Sumitomo Chem Co Ltd 位相差板および液晶表示装置
JP2001350023A (ja) * 2000-04-05 2001-12-21 Toray Ind Inc 偏光分離フィルム、偏光分離積層フィルムおよび液晶表示装置
JP2006111650A (ja) * 2004-10-12 2006-04-27 Tosoh Corp 水素添加ブロック共重合体及びそれよりなる光学フィルム
JP2007226109A (ja) * 2006-02-27 2007-09-06 Nippon Zeon Co Ltd 光学フィルム、位相差板、偏光板、液晶表示素子用基板及び液晶表示素子
JP2018017967A (ja) * 2016-07-29 2018-02-01 富士フイルム株式会社 偏光板保護フィルム、偏光板及び画像表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663797B1 (ko) * 1998-07-31 2007-01-03 미네소타 마이닝 앤드 매뉴팩춰링 캄파니 2차 성형성 다층 광학 필름 및 이의 제조 방법
US20040077795A1 (en) * 2001-01-25 2004-04-22 Kiyonari Hashizume Hydrogenated styrene-conjugated diene/styrene block copolymer and process for production thereof
JP2006142561A (ja) 2004-11-17 2006-06-08 Tosoh Corp 光学フィルムの製造方法
JP2006143799A (ja) 2004-11-17 2006-06-08 Tosoh Corp 透明性樹脂組成物及びそれよりなる光学フィルム
TWI471652B (zh) 2007-06-01 2015-02-01 Teijin Ltd Phase difference film, laminated polarizing film and liquid crystal display device
KR101811290B1 (ko) * 2010-12-28 2017-12-26 니폰 제온 가부시키가이샤 위상차 필름 적층체 및 위상차 필름 적층체의 제조방법
JP2013139541A (ja) * 2011-03-29 2013-07-18 Fujifilm Corp セルロースアシレートフィルム、その製造方法、偏光板および液晶表示装置
JP5666751B1 (ja) * 2013-04-05 2015-02-12 株式会社カネカ 光学樹脂材料および光学フィルム
US20180327532A1 (en) * 2015-11-18 2018-11-15 Zeon Corporation Optical film and polarizing plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164920A (ja) * 1991-12-12 1993-06-29 Sumitomo Chem Co Ltd 位相差板および液晶表示装置
JP2001350023A (ja) * 2000-04-05 2001-12-21 Toray Ind Inc 偏光分離フィルム、偏光分離積層フィルムおよび液晶表示装置
JP2006111650A (ja) * 2004-10-12 2006-04-27 Tosoh Corp 水素添加ブロック共重合体及びそれよりなる光学フィルム
JP2007226109A (ja) * 2006-02-27 2007-09-06 Nippon Zeon Co Ltd 光学フィルム、位相差板、偏光板、液晶表示素子用基板及び液晶表示素子
JP2018017967A (ja) * 2016-07-29 2018-02-01 富士フイルム株式会社 偏光板保護フィルム、偏光板及び画像表示装置

Also Published As

Publication number Publication date
CN113167954A (zh) 2021-07-23
TW202031748A (zh) 2020-09-01
KR20210097699A (ko) 2021-08-09
JP7338638B2 (ja) 2023-09-05
JPWO2020110672A1 (ja) 2021-10-14
TWI830819B (zh) 2024-02-01
CN113167954B (zh) 2023-03-17
US20220011490A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP7452581B2 (ja) 位相差フィルム及び製造方法
JP7452580B2 (ja) 位相差フィルム及び製造方法
JP7484969B2 (ja) 位相差フィルム及び製造方法
JP7338638B2 (ja) 光学フィルム、位相差フィルム、及びそれらの製造方法
JP7338639B2 (ja) 光学フィルム、位相差フィルム、及びそれらの製造方法
JP7305949B2 (ja) 位相差フィルム
JP7384066B2 (ja) 樹脂フィルムの製造方法及び光学フィルムの製造方法
CN111868583B (zh) 相位差膜及相位差膜的制造方法
TWI787482B (zh) 相位差薄膜及相位差薄膜的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890158

Country of ref document: EP

Kind code of ref document: A1