WO2020110534A1 - 封止方法、封止層、封止層形成用の混合液、封止層の製造方法及び半導体装置 - Google Patents

封止方法、封止層、封止層形成用の混合液、封止層の製造方法及び半導体装置 Download PDF

Info

Publication number
WO2020110534A1
WO2020110534A1 PCT/JP2019/041717 JP2019041717W WO2020110534A1 WO 2020110534 A1 WO2020110534 A1 WO 2020110534A1 JP 2019041717 W JP2019041717 W JP 2019041717W WO 2020110534 A1 WO2020110534 A1 WO 2020110534A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sealing layer
metal oxide
sealing
organic metal
Prior art date
Application number
PCT/JP2019/041717
Other languages
English (en)
French (fr)
Inventor
有章 志田
井 宏元
幸宏 牧島
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020558187A priority Critical patent/JP7342882B2/ja
Publication of WO2020110534A1 publication Critical patent/WO2020110534A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a sealing method, a sealing layer, a mixed liquid for forming a sealing layer, a method for manufacturing a sealing layer, and a semiconductor device, and more specifically, corrosion of a semiconductor element or a part of a semiconductor device by a harmful substance.
  • the present invention relates to a sealing method for preventing the above, a sealing layer used therefor, a mixed liquid used for forming the sealing layer, a method for manufacturing the sealing layer, and a semiconductor device using the same.
  • an epoxy semiconductor encapsulating composition containing an epoxy resin having a reduced chlorine content for preventing corrosion, a phenolic curing agent, and an inorganic filler such as fused silica or crystalline silica is used for an integrated circuit.
  • the epoxy semiconductor encapsulating composition is considered to have an excellent balance with respect to various properties such as workability, moldability, electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesiveness with inserts. ..
  • a sealing resin used as a semiconductor sealing material an epoxy resin or the like is used from the viewpoint of adhesion, etc., and high flame retardancy is demanded from the viewpoint of safety.
  • flame retardancy is usually realized by incorporating a halogen-based compound into the epoxy semiconductor encapsulating composition.
  • Patent Document 1 in recent years, as an inexpensive bonding wire that replaces a gold wire, a core material containing copper as a main component, and a conductive metal having a composition different from that of the core material and copper are contained on the core material. Bonding wires for semiconductor devices having an outer skin layer have been proposed. In the semiconductor device bonding wire, by controlling the thickness of the outer layer, the material cost is low, the ball bondability, the wire bondability, etc. are excellent, and the loop formability is also good. It is also possible to adapt to larger diameters for power IC applications.
  • the present invention has been made in view of the above problems and circumstances, and a problem to be solved is to configure a semiconductor device using water, a halogen component, hydrogen sulfide gas, or the like existing in a sealing structure or entering from the outside.
  • a sealing method for preventing corrosion of semiconductor elements and parts a sealing layer used for the same, a mixed liquid used for forming the sealing layer, a method for manufacturing the sealing layer, and a semiconductor device using the same. is there.
  • the present inventor in the process of studying the cause of the above problems in order to solve the above problems, the presence or invasion of the organic metal oxide having a specific structure into the sealing layer by allowing it to exist in the sealing layer.
  • the inventors have found that a stopping method, a sealing layer used therefor, a mixed solution used for forming the sealing layer, a method for manufacturing the sealing layer, and a semiconductor device using the method can be realized, and the present invention has been completed.
  • a method of sealing a semiconductor element and a part constituting a semiconductor device (1) Method 1 using a composition containing an epoxy resin and an organic metal oxide, (2) Method 2 using a composition containing an epoxy resin and a filler coated with an organic metal oxide, or (3) a method of sealing the component with an organic metal oxide and then coating with an epoxy resin. 3, A sealing method comprising forming a sealing layer by any one of the above methods.
  • R-[M(OR 1 ) y (O-) xy ] n -R R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may contain a fluorine atom as a substituent. M represents a metal atom. OR 1 represents a fluorinated alkoxy group. x represents the valence of the metal atom, and y represents an arbitrary integer between 1 and x. n represents the degree of polycondensation. ]
  • a sealing layer comprising at least an epoxy resin and an organic metal oxide having a structure represented by the following general formula (1).
  • R-[M(OR 1 ) y (O-) xy ] n -R R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may contain a fluorine atom as a substituent. M represents a metal atom. OR 1 represents a fluorinated alkoxy group. x represents the valence of the metal atom, and y represents an arbitrary integer between 1 and x. n represents the degree of polycondensation. ]
  • a sealing layer comprising an organic metal oxide having a structure represented by the following general formula (1).
  • R-[M(OR 1 ) y (O-) xy ] n -R R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may contain a fluorine atom as a substituent. M represents a metal atom. OR 1 represents a fluorinated alkoxy group. x represents the valence of the metal atom, and y represents an arbitrary integer between 1 and x. n represents the degree of polycondensation. ]
  • the metal atom represented by M in the general formula (1) is at least one selected from Ti, Zr, Sn, Ta, Fe, Zn, Bi, Cu, Mg, Mn, Co, Ni, Ag and Al.
  • the sealing layer according to any one of items 4 to 6, characterized in that
  • a mixed liquid for forming a sealing layer which comprises a compound represented by the following general formula (A) or an organic metal oxide having a structure represented by the following general formula (1), and an alcohol. ..
  • R-[M(OR 1 ) y (O-) xy ] n -R R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may contain a fluorine atom as a substituent.
  • M represents a metal atom.
  • OR 1 represents a fluorinated alkoxy group.
  • x represents the valence of the metal atom
  • y represents an arbitrary integer between 1 and x.
  • n represents the degree of polycondensation.
  • a method for producing a sealing layer for producing the sealing layer according to any one of items 4 to 8 A method for producing a sealing layer, which is produced using the mixed solution for forming a sealing layer according to item 9.
  • a semiconductor device including at least a semiconductor element and parts, A semiconductor device, wherein the semiconductor element or component is covered with the sealing layer according to any one of items 4 to 7.
  • a seal for preventing corrosion of parts (for example, metal terminal portions) constituting a semiconductor element due to moisture, halogen components, hydrogen sulfide gas, etc. existing in the sealing structure or entering from the outside It is possible to provide a stopping method, a sealing layer used therefor, a mixed liquid used for forming the sealing layer, a method for manufacturing the sealing layer, and a semiconductor device using the method.
  • the halogen component in the semiconductor encapsulation layer makes up the semiconductor device as the durability of the device is examined under various environments. It has been found that this causes corrosion of the bonding wire terminals.
  • corrosion is prevented by coating the parts of the semiconductor device, for example, wire bonding connected with Cu, Ag, and Au, or the surface of the terminal portion to which the wires are soldered, by the method described above. It has been found that the sealing method can prevent corrosion of the semiconductor device.
  • a sealing layer containing an organic metal oxide having a function of trapping a halogen by forming a sealing layer containing an organic metal oxide having a function of trapping a halogen, it is possible to prevent corrosion of a metal terminal portion constituting a semiconductor element due to moisture, a halogen component, hydrogen sulfide gas, or the like. It was possible to obtain a highly reliable sealing layer that can be manufactured.
  • halogen present in the sealing layer such as chlorine, reacts with moisture and hydrogen inside and outside the resin to become HCl, and moisture reacts with the sulfur compound present in the additive or composition. By doing so, SO 2 and H 2 S are generated. Further, water reacts with halogen to generate HCl, and H 2 S easily reacts with Cu to cause direct corrosion or migration of Cu wiring.
  • Schematic configuration diagram showing an example of the structure of a semiconductor device having a sealing layer formed by the sealing method of Method 1 of the present invention The schematic block diagram which shows another example of the structure of the semiconductor device which has the sealing layer formed by the sealing method of the method 1 of this invention.
  • FIG. 1 is a schematic configuration diagram showing the configuration of a test patterning substrate having a comb field electrode for evaluating corrosiveness in Examples.
  • 1 is a schematic configuration diagram showing a configuration of an evaluation chip (TEG) obtained by encapsulating a test patterning substrate with an encapsulating layer of the present invention in Examples.
  • FIG. 5 is a schematic sectional view showing the structure of an evaluation chip (TEG) represented by AA′ shown in FIG. Schematic cross-sectional view of the semiconductor device (QFN) manufactured in the example. Top view of the semiconductor device (QFN) manufactured in the example
  • the encapsulation method of the present invention is a method for encapsulating a semiconductor element and a part that form a semiconductor device, wherein (1) a method 1 using a composition containing an epoxy resin and an organic metal oxide, (2) an epoxy. Method 2 using a composition containing a resin and a filler coated with an organometallic oxide, or (3) encapsulation by a method 3 of encapsulating the component with an organometallic oxide and then with an epoxy resin. It is characterized by forming a layer.
  • This feature is a technical feature common to or corresponding to each of the following embodiments.
  • the organic metal oxide is an organic metal oxide having a structure represented by the general formula (1), so that the corrosion of each component forming the semiconductor element can be further prevented. It is particularly preferable in that it can
  • the sealing layer by a coating method in terms of high precision sealing with a simple device.
  • the sealing layer of the present invention is characterized by containing at least an epoxy resin and an organic metal oxide having a structure represented by the general formula (1).
  • the sealing layer of the present invention is characterized by being composed of an organic metal oxide having a structure represented by the general formula (1).
  • a value F/(C+F) of a ratio of the number of fluorine atoms to the total number of carbon atoms and fluorine atoms in the organometallic oxide having the structure represented by the general formula (1) Is preferably in the range of 0.05 ⁇ F/(C+F) ⁇ 1.00 from the viewpoint that the desired effect of the present invention can be further exhibited.
  • the metal atom represented by M in the general formula (1) is at least selected from Ti, Zr, Sn, Ta, Fe, Zn, Bi, Cu, Mg, Mn, Co, Ni, Ag and Al.
  • One kind is preferable in that the trapping property of moisture, halogen and the like in the sealing structure can be further enhanced.
  • the mixed liquid for forming a sealing layer of the present invention contains a compound represented by the general formula (A) or an organic metal oxide having a structure represented by the general formula (1), and an alcohol. It is characterized by doing.
  • the method for producing a sealing layer of the present invention is characterized by producing using the mixed liquid for forming a sealing layer of the present invention.
  • the semiconductor device of the present invention is composed of at least a semiconductor element and a part, and the semiconductor element or part is composed of an epoxy resin and an organic metal oxide having a structure represented by the general formula (1). It is characterized by being covered with a sealing layer or a sealing layer composed of an organic metal oxide having a structure represented by the general formula (1).
  • the component covered with the sealing layer of the present invention is a bonding wire or a land.
  • Method 1 using a composition containing an epoxy resin and an organic metal oxide
  • Method 2 using a composition containing an epoxy resin and a filler coated with an organic metal oxide
  • Method 3 in which a component is sealed with an organic metal oxide and then covered with an epoxy resin
  • the method is characterized by forming a sealing layer for sealing a semiconductor element or a component by a method selected from
  • the “component” in the present invention means a metal wire (hereinafter referred to as “bonding wire”) and a metal terminal (hereinafter referred to as “land”) that configure the semiconductor device as shown in FIGS. 2 and 3 described later. (Referred to as), and a component such as a substrate other than a semiconductor element that constitutes a semiconductor device.
  • the “bonding wire” referred to here is indicated by reference numeral 8 in FIGS. 2 and 3, and in order to exchange signals between the semiconductor element 3 and the outside, an electrode and an external electrode forming the semiconductor element are connected to each other. It is a part for connecting.
  • Land is indicated by reference numeral 7 in FIGS. 2 and 3, and is a conductive pattern used for mounting each part and connecting between parts.
  • the land includes a pad for surface mounting, a mounting hole for a component, a conductive pattern including a via, and the like.
  • FIGS. 1A to 1C are schematic cross-sectional views showing an example of a configuration of a sealing layer formed of an epoxy resin and an organic metal oxide or an organic metal oxide alone according to a sealing method of the present invention.
  • the type A shown in FIG. 1A shows the constitution of the sealing layer 4 according to the method 1 defined in the present invention, in which the epoxy resin 6 contains an organic metal oxide 5, preferably a general formula (1).
  • This is a method of forming the sealing layer 4 in which the organic metal oxide having the structure shown is present in a state of being dispersed in the form of particles.
  • Type B shown in FIG. 1B shows the structure of the sealing layer 4 according to the method 2 defined in the present invention, in which the epoxy resin 6 contains a filler F whose surface is coated with an organic metal oxide 5. This is a method of forming the sealing layer 4 that exists in a dispersed state.
  • Type C shown in FIG. 1C shows the structure of the sealing layer 4 according to the method 3 defined in the present invention.
  • the surface of the component P for example, the bonding wire or the land is covered with the organic metal oxide 5.
  • This is a method in which the sealing layer 4 constituted by the organic metal oxide 5 alone is formed by selectively sealing with, and then the whole is covered with the epoxy resin 6.
  • a wet coating method can be applied, for example, a filling method in a transfer method or a compression method, a dispenser method, a spin coating method, a casting method, a screen printing method,
  • the sealing layer may be formed using a wet coating method such as a die coating method, a blade coating method, a roll coating method, a spray coating method, a curtain coating method, an LB method (Langmuir-Blodgett method), and an inkjet printing method. it can.
  • FIG. 2 is a schematic configuration diagram showing an example of the structure of a semiconductor device having a sealing layer formed by Method 1 of the sealing method of the present invention.
  • the semiconductor device 1 shown in FIG. 2 is mainly composed of a circuit board 11, a package board 2, and a semiconductor laminated body 9 composed of a plurality of semiconductor elements 3 electrically bonded to the circuit board 11, and the semiconductor laminated body 9. Is formed of a sealing layer 4 or the like that seals the upper surface region of the.
  • the gap between the circuit board 11 and the package board 2 electrically joined to the semiconductor element 3 is filled with the underfill material 10.
  • a plurality of spherical solder bumps 12 are arranged in the underfill material, and the circuit board 11 and the package board 2 are electrically connected via the solder bumps.
  • the underfill material 10 and the material forming the sealing layer 4 of the present invention may be different materials, but the corrosion component G of the solder bump 12 held by the underfill material 10, for example, halogen ions From the viewpoint of preventing corrosion due to (Cl ⁇ ), moisture, hydrogen sulfide gas, etc., it is preferable to include the organometallic oxide according to the present invention.
  • the semiconductor device 1 is configured by disposing one or more semiconductor elements 3 on a package substrate 2 or in parallel, and in the configuration shown in FIG. 2, a plurality of semiconductor elements 3 such as a memory are arranged. Are stacked and electrically connected to each other or to the package substrate by wire bonding to form a semiconductor element stack 9.
  • the first-stage semiconductor element 3 is bonded to the package substrate 2 via a film adhesive, a thermosetting adhesive, or the like.
  • the semiconductor elements 3 in the second and subsequent stages are also sequentially laminated via an insulating film and a thermosetting adhesive (not shown).
  • Lands 7 are provided on the ends of the package substrate 2 and the semiconductor elements 3, and the lands 7 are electrically connected by bonding wires 8.
  • the land 7 is mainly made of aluminum, and the bonding wire 8 may be made of a constituent material such as gold, silver, copper or aluminum.
  • the bonding wire 8 is a main component. Is preferably made of copper, and a more preferable aspect is a structure having a coating layer made of a metal material containing palladium on the surface of the copper wire.
  • a sealing layer 4 having the configuration defined in the present invention is provided on the upper surfaces of the package substrate 2 and the plurality of semiconductor elements 3.
  • the sealing layer 4 shown in FIG. 2 is a sealing layer formed by the forming method according to Method 1, and has a resin binder 6 made of an epoxy resin and a structure represented by the general formula (1) according to the present invention. It is composed of an organic metal oxide 5 and a filler F (inorganic filler).
  • a corrosive component G for example, halogen ions, water, It is possible to prevent the bonding wire 8 and the land 7 from being corroded by hydrogen sulfide gas or the like) or halogen ions existing in the sealing layer.
  • the semiconductor element 3 is configured in a multi-layer (for example, 64 layers). 1) shows an example of a structure of a semiconductor device including the semiconductor element stack. The other basic configuration is the same as that shown in FIG.
  • the sealing layer of the present invention is represented by at least an epoxy resin and an organic metal oxide having a structure represented by the general formula (1), or represented by the general formula (1).
  • the sealing layer is composed of an organic metal oxide having a structure described below.
  • organometallic oxide having structure represented by general formula (1) The organometallic oxide according to the present invention preferably contains an organometallic oxide having a structure represented by the following general formula (1), which is produced from a compound represented by the following general formula (A).
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may contain a fluorine atom as a substituent.
  • M represents a metal atom.
  • OR 1 represents a fluorinated alkoxy group.
  • x represents the valence of the metal atom, and y represents an arbitrary integer between 1 and x.
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. However, R may contain a fluorine atom as a substituent.
  • M represents a metal atom.
  • OR 1 represents a fluorinated alkoxy group.
  • x represents the valence of the metal atom
  • y represents an arbitrary integer between 1 and x.
  • n represents the degree of polycondensation.
  • OR 1 represents a fluorinated alkoxy group.
  • R 1 represents an alkyl group substituted with at least one fluorine atom, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. Specific examples of each substituent will be described later.
  • R represents a hydrogen atom, an alkyl group having 1 or more carbon atoms, an alkenyl group, an aryl group, a cycloalkyl group, an acyl group, an alkoxy group, or a heterocyclic group. Alternatively, at least a part of hydrogen of each group may be replaced with halogen. It may also be a polymer.
  • the alkyl group is substituted or unsubstituted, and specific examples thereof include methyl group, ethyl group, propyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group.
  • nonyl group decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, icosyl group, henicosyl group, docosyl, etc., but preferably carbon
  • the number is 8 or more.
  • these oligomers and polymers may be used.
  • the alkenyl group is a substituted or unsubstituted group, and specific examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group and the like, preferably having 8 or more carbon atoms. Moreover, these oligomers or polymers may be sufficient.
  • the aryl group is a substituted or unsubstituted group, and specific examples thereof include a phenyl group, a tolyl group, a 4-cyanophenyl group, a biphenyl group, an o,m,p-terphenyl group, a naphthyl group, an anthranyl group, a phenanthrenyl group, There are a fluorenyl group, a 9-phenylanthranyl group, a 9,10-diphenylanthranyl group, a pyrenyl group, and the like, and those having 8 or more carbon atoms are preferable. Moreover, these oligomers or polymers may be sufficient.
  • substituted or unsubstituted alkoxy group examples include a methoxy group, an n-butoxy group, a tert-butoxy group, a trichloromethoxy group, a trifluoromethoxy group, and the like, preferably having 8 or more carbon atoms.
  • these oligomers and polymers may be used.
  • substituted or unsubstituted cycloalkyl group examples include a cyclopentyl group, a cyclohexyl group, a norbonane group, an adamantane group, a 4-methylcyclohexyl group, a 4-cyanocyclohexyl group and the like, preferably having 8 or more carbon atoms. is there. Moreover, these oligomers or polymers may be sufficient.
  • substituted or unsubstituted heterocyclic group pyrrole group, pyrroline group, pyrazole group, pyrazoline group, imidazole group, triazole group, pyridine group, pyridazine group, pyrimidine group, pyrazine group, triazine group, indole group, Benzimidazole group, purine group, quinoline group, isoquinoline group, shinoline group, quinoxaline group, benzoquinoline group, fluorenone group, dicyanofluorenone group, carbazole group, oxazole group, oxadiazole group, thiazole group, thiadiazole group, benzoxazole group , Benzothiazole group, benzotriazole group, bisbenzoxazole group, bisbenzothiazole group, bisbenzimidazole group and the like.
  • these oligomers or polymers may be sufficient.
  • substituted or unsubstituted acyl group examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, lauroyl group, myristoyl group, palmitoyl group, stearoyl group, oxalyl group.
  • Examples of the metal atom represented by M in the general formula (1) include Ti, Zr, Sn, Si, Ta, Yb, Y, Al, Zn, Co, In, Fe, Mo, Ni, Pd, Ag, Sr, Bi, Cu, Mg, Mn, etc. are mentioned, and they may be composed of at least one kind or two or more kinds selected from these. Among them, at least one selected from Ti, Zr, Sn, Ta, Fe, Zn, Bi, Cu, Mg, Mn, Co, Ni, Ag and Al is preferable.
  • organometallic oxide having the structure represented by the general formula (1) according to the present invention Specific combinations of metal alkoxides, metal carboxylates and fluorinated alcohols for forming the organometallic oxide having the structure represented by the general formula (1) according to the present invention will be exemplified below. However, the present invention is not limited to this.
  • Examples of the metal alkoxide or metal carboxylate according to the present invention include compounds represented by the following M(OR) n or M(OCOR) n, and the organometallic oxide according to the present invention is the above-mentioned (R'-OH:F -1 to F-16), compounds having the structures of the following Exemplified Compound Nos. 1 to 145 (see Exemplified Compounds I, II, III, IV and V below) are obtained.
  • the organometallic oxide according to the present invention is not limited to this.
  • the sealing layer of the present invention is characterized by using at least one kind of the organometallic oxide according to the present invention described above, but preferably using two or more kinds of organometallic oxides having different metal species. Is preferred.
  • the organometallic oxide according to the present invention exhibits reactivity as shown in the following reaction schemes II and III.
  • “M” in the “OM” part has a further substituent, but it is omitted.
  • An organic thin film formed by polycondensation of the above organic metal oxide by sintering or ultraviolet irradiation has reactivity as shown in the following reaction scheme IV.
  • reaction scheme IV it is hydrolyzed by water (H 2 O) from the outside of the system to release a fluorinated alcohol (R′-OH) which is a water-repellent or hydrophobic substance.
  • R′-OH fluorinated alcohol
  • the fluorinated alcohol further prevents moisture from permeating into the electronic device.
  • the fluorinated alcohol produced by hydrolysis is water-repellent or hydrophobic, in addition to the original drying property (desiccant property), a water-repellent function is added by the reaction with water. Therefore, it has a characteristic of exerting a synergistic effect (synergy effect) on the sealing property.
  • the organometallic oxide contained in the sealing layer is produced by using a mixed solution of a metal alkoxide or a metal carboxylate and a fluorinated alcohol. ..
  • a substance that can be a catalyst for the hydrolysis/polymerization reaction as shown below may be added for the purpose of promoting the hydrolysis/polycondensation reaction.
  • What is used as a catalyst for the hydrolysis/polymerization reaction of the sol-gel reaction is “Technology for producing functional thin film by the latest sol-gel method” (Shiro Hirashima, General Technology Center Co., Ltd., P29) and “Sol-gel”. It is a catalyst used in a general sol-gel reaction described in “Science of Law” (Sakuo Sakuo, Agne Shoufusha, P154) and the like.
  • acid catalysts include inorganic and organic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, tartaric acid, and toluenesulfonic acid.
  • the preferred amount of the catalyst used is 2 molar equivalents or less, and more preferably 1 molar equivalent or less, relative to 1 mole of the metal alkoxide or metal carboxylate that is a raw material for the organic metal oxide.
  • the preferred amount of water added is 40 molar equivalents or less, and more preferably 10 molar equivalents or less, relative to 1 mole of the metal alkoxide or metal carboxylate that is a raw material for the organic metal oxide. And more preferably 5 molar equivalents or less.
  • the preferable reaction concentration, temperature, and time for the sol-gel reaction cannot be unequivocally stated because the type and molecular weight of the metal alkoxide or metal carboxylate used and the respective conditions are interrelated. That is, when the molecular weight of the alkoxide or the metal carboxylate is high, or when the reaction concentration is high, if the reaction temperature is set high or the reaction time is too long, the reaction product is accompanied by hydrolysis and polycondensation reaction. Has a higher molecular weight, which may result in higher viscosity or gelation. Therefore, a generally preferable reaction concentration is generally within a range of 1 to 50%, more preferably within a range of 5 to 30% by mass% concentration of the solid content in the solution.
  • the reaction temperature is usually in the range of 0 to 150° C., preferably in the range of 1 to 100° C., and more preferably in the range of 20 to 60° C., although the reaction time depends on the reaction time. It is preferably within the range of 1 to 50 hours.
  • the value F/(C+F) of the ratio of the number of carbon atoms and the number of fluorine atoms in the organometallic oxide contained in the sealing layer to the total number of fluorine atoms is in the range of 0.05 to 1.00. It is preferably within the range from the viewpoint of water repellency or hydrophobicity. That is, it is preferable that the fluorine ratio (F/(C+F)) in the organometallic complex oxide according to the present invention satisfies the condition defined by the following formula (a).
  • Formula (a) 0.05 ⁇ F/(C+F) ⁇ 1.00
  • the significance of the measurement of the formula (a) is to quantify that the organic thin film produced by the sol-gel method requires a certain amount of fluorine atoms or more.
  • F and C in the above formula (a) represent the concentrations of fluorine atom and carbon atom, respectively.
  • a more preferable range is 0.20 ⁇ F/(C+F) ⁇ 0.60.
  • the ratio of the above fluorine atoms is obtained by applying a sol-gel solution used for forming an organic thin film layer on a silicon wafer to form a thin film, and then applying the thin film to SEM/EDS (Energy Dispersive X-ray Spectroscopy: Energy dispersive X Elemental analysis using a line analysis device) can determine the concentrations of fluorine atoms and carbon atoms, respectively.
  • SEM/EDS Electromsive X-ray Spectroscopy: Energy dispersive X Elemental analysis using a line analysis device
  • An example of the SEM/EDS device is JSM-IT100 (made by JEOL Ltd.).
  • ⁇ SEM/EDS analysis is characterized by high speed, high sensitivity, and accurate element detection.
  • the organometallic oxide according to the present invention is not particularly limited as long as it can be produced using the sol-gel method, and examples thereof include metals introduced in “Science of sol-gel method” P13 and P20, for example, , Ti, Zr, Sn, Si, Ta, Yb, Y, Al, Zn, Co, In, Fe, Mo, Ni, Pd, Ag, Sr, Bi, Cu, Mg, Mn, and the like. It may be composed of at least one kind or two or more kinds. Among them, at least one selected from Ti, Zr, Sn, Ta, Fe, Zn, Bi, Cu, Mg, Mn, Co, Ni, Ag and Al is preferable from the viewpoint of obtaining the effect of the present invention. .
  • VUV vacuum ultraviolet light
  • Examples of the ultraviolet ray generating means in the vacuum ultraviolet ray treatment include, but are not limited to, a metal halide lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc lamp, a carbon arc lamp, an excimer lamp, and a UV light laser. Is preferably used.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the base material used.
  • the base material forming the sealing layer is in the form of a long film, it can be carried out by continuously irradiating it with ultraviolet rays in a drying zone equipped with an ultraviolet ray generation source as described above while transporting it. ..
  • the time required for UV irradiation depends on the composition and concentration of the coating liquid containing the substrate and the organic metal oxide used, but is generally 0.1 second to 10 minutes, preferably 0.5 second to 3 It's a minute.
  • the energy coated surface receives is preferably 1.0 J / cm 2 or more, and more preferably 1.5 J / cm 2 or more.
  • it is preferably 14.0J / cm 2 or less, more preferably 12.0J / cm 2 or less, is 10.0J / cm 2 or less Is particularly preferable.
  • the oxygen concentration when irradiating with vacuum ultraviolet rays (VUV) is preferably 300 to 10000 volume ppm (1 volume %), and more preferably 500 to 5000 volume ppm. By adjusting the oxygen concentration within such a range, it is possible to prevent the sealing layer from becoming excessive in oxygen and prevent deterioration of water absorption.
  • the reaction is promoted by heat treatment at 110°C for 30 minutes or longer. Therefore, when the organometallic oxide according to the present invention is added to the sealing layer, it is preferable to accelerate the reaction by heat treatment, and a single process treatment by coating with the organometallic oxide according to the present invention is performed.
  • the polymerization reaction can be performed by heat treatment or irradiation with excimer light.
  • the encapsulating layer-forming composition for forming the encapsulating layer of the present invention contains at least an epoxy resin as a binder component in addition to the organic metal oxide described above.
  • Examples of the epoxy resin applicable to the sealing layer of the present invention include biphenyl type epoxy resin; bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethylbisphenol F type epoxy resin, and stilbene.
  • Type epoxy resin novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolac type epoxy resin; polyfunctional epoxy resin such as triphenylmethane type epoxy resin and alkyl-modified triphenylmethane type epoxy resin; phenol aralkyl having phenylene skeleton -Type epoxy resin, biphenylaralkyl-type epoxy resin such as phenolaralkyl-type epoxy resin having a biphenylene skeleton; dihydroxynaphthalene-type epoxy resin, naphthol-type epoxy resin such as epoxy resin obtained by converting dihydroxynaphthalene dimer into glycidyl ether; Examples thereof include triazine nucleus-containing epoxy resins such as glycidyl isocyanur
  • AER-X8501 manufactured by Asahi Kasei Corporation, trade name
  • R-301 manufactured by Mitsubishi Chemical Corporation, trade name
  • YL-980 manufactured by Mitsubishi Chemical Corporation, trade name
  • Bisphenol F type epoxy resin YDF-170 manufactured by Tohto Kasei Co., Ltd., trade name
  • YL-983 Mitsubishi Chemical Co., Ltd., trade name
  • Bisphenol AD epoxy resin R-1710 Mitsubishi Chemicals, Inc.
  • N-730S made by DIC, trade name
  • Quatrex-2010 cresol novolak type epoxy resin YDCN- 702S
  • EOCN-100 manufactured by Nippon Kay
  • epoxy resins bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and amine type epoxy resin are preferable from the viewpoint of less ionic impurities and excellent reactivity. These epoxy resins can be used alone or in combination of two or more.
  • sealing layer of the present invention in addition to the epoxy resin described above, various conventionally known resin components can be used in combination within a range that does not impair the intended effects of the present invention.
  • curing agent As the curing agent applicable to the sealing layer of the present invention, for example, three types of polyaddition type curing agent, catalyst type curing agent and condensation type curing agent can be used.
  • polyaddition type curing agent examples include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA) and metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM) and m-phenylenediamine (MPDA).
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylylenediamine
  • DDM diaminodiphenylmethane
  • MPDA m-phenylenediamine
  • aromatic polyamines such as and diaminodiphenyl sulfone (DDS), polyamine compounds containing dicyandiamide (DICY) and organic acid dihydralazide
  • alicyclic compounds such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA)
  • Acid anhydrides acid anhydrides containing aromatic acid anhydrides such as trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic acid (BTDA), and phenols (phenol, naphthol, etc.)
  • Phenolic resins such as novolac type phenolic resins synthesized by condensation with aldehydes, polyphenol compounds such as phenolic polymers typified by polyvinylphenol, isocyanate compounds such as isocyanate prepolymers and blocked isocyanates, carboxylic acid-containing polyester resins, etc.
  • catalyst type curing agent examples include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30), 2-methylimidazole and 2-ethyl-4.
  • -Imidazole compounds such as methyl imidazole (EMI24), Lewis acids such as BF 3 complexes, and the like. However, it is not limited to these.
  • condensation type curing agent examples include a phenol type curing agent such as a resol type phenol resin, a urea resin such as a methylol group-containing urea resin, and a melamine resin such as a methylol group-containing melamine resin.
  • a phenol type curing agent such as a resol type phenol resin
  • a urea resin such as a methylol group-containing urea resin
  • a melamine resin such as a methylol group-containing melamine resin.
  • the polyaddition type phenolic curing agent is preferable from the viewpoint of the balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability and the like.
  • the polyaddition type phenolic curing agent is a general monomer, oligomer or polymer having two or more phenolic hydroxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • novolac type resin phenol novolac resin, cresol novolac resin, bisphenol novolac, etc.
  • polyfunctional type phenol resin triphenol methane type phenol resin, etc.
  • modified phenol resin terpene modified phenol resin, dicyclopentadiene modified phenol resin, etc.
  • aralkyl type resins phenol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton, naphthol aralkyl resins having a phenylene and/or biphenylene skeleton, etc.
  • bisphenol compounds bisphenol A, bisphenol F, etc.
  • Filler inorganic filler
  • examples of the filler (hereinafter, also referred to as an inorganic filler) applicable to the sealing layer of the present invention include those used in a general composition for forming a sealing layer.
  • examples thereof include large spherical silica, small spherical silica, crystalline silica, talc, alumina, titanium white, silicon nitride and the like, and among them, large spherical silica and small spherical silica are particularly preferable. However, it is not limited to these.
  • large spherical silica and small spherical silica can be used as the filler, but large spherical silica can be used for the purpose of high filling, and small spherical silica can be used for the purpose of interstitial injection.
  • the large spherical silica and the small spherical silica include fused silica manufactured by Denka, spherical silica “HS series” manufactured by Nippon Steel Chemical & Materials, silica fine particles manufactured by Tosoh, and crystalline silica manufactured by Hosokawa Micron. Can be mentioned.
  • fillers may be used alone or in combination of two or more.
  • shape of the filler in order to suppress the increase of the melt viscosity of the composition for forming a sealing layer and further increase the content of the filler, it is preferable that the shape of the filler is as spherical as possible and the particle size distribution is broad. ..
  • the filler may be surface-treated with a coupling agent. Further, if necessary, the filler may be pretreated with an epoxy resin before use. Further, in the present invention, it is possible to apply the method 2 according to the present invention in which the surface of the filler, particularly silica, is coated with the metal oxide according to the present invention and applied.
  • a cured product of a semiconductor layer forming composition in order to suppress corrosion (oxidative deterioration) of a joint between a copper wire (bonding wire) and an electrode pad (land) of a semiconductor element, a cured product of a semiconductor layer forming composition. It may contain a neutralizing agent for neutralizing the acidic corrosive gas generated by heating. Specifically, it is preferable to include at least one neutralizing agent selected from the group consisting of basic metal salts, particularly compounds containing calcium element, compounds containing aluminum element, and compounds containing magnesium element.
  • a curing accelerator can be used in the sealing layer of the present invention.
  • the curing accelerator may be any agent that accelerates the curing reaction between the epoxy group and the curing agent.
  • diazabicycloalkene such as 1,8-diazabicyclo[5.4.0]undecene-7 and its derivatives
  • amine compounds such as tributylamine and benzyldimethylamine
  • 2- Imidazole compounds such as methylimidazole
  • organic phosphines such as triphenylphosphine and methyldiphenylphosphine
  • tetraphenylphosphonium/tetraphenylborate tetraphenylphosphonium/tetrabenzoic acid borate, tetraphenylphosphonium/tetranaphthoic acid borate, tetraphenylphosphonium -Tetranaphthoyloxyborate, tetraphenylphosphonium
  • a coupling agent in addition to the above components, if necessary, a coupling agent, a leveling agent, a colorant, a modifier, a release agent, a low stress agent, a photosensitizer, an antifoaming agent, an ultraviolet absorber.
  • a coupling agent in addition to the above components, if necessary, a coupling agent, a leveling agent, a colorant, a modifier, a release agent, a low stress agent, a photosensitizer, an antifoaming agent, an ultraviolet absorber.
  • One or more additives selected from a foaming agent, an antioxidant, a flame retardant, an ion scavenger and the like may be added.
  • the coupling agent examples include epoxysilane coupling agent, cationic silane coupling agent, aminosilane coupling agent, ⁇ -glycidoxypropyltrimethoxysilane coupling agent, phenylaminopropyltrimethoxysilane coupling agent, and mercapto.
  • examples thereof include a silane coupling agent, a silane coupling agent such as a 3-mercaptopropyltrimethoxysilane coupling agent, a titanate coupling agent and a silicone oil type coupling agent.
  • the leveling agent include acrylic copolymers. Carbon black etc. are mentioned as a coloring agent.
  • Examples of the release agent include natural wax, synthetic wax such as montanic acid ester, higher fatty acid or its metal salt, paraffin, polyethylene oxide and the like.
  • Examples of the low stress agent include silicone oil and silicone rubber.
  • Examples of ion scavengers include hydrotalcite.
  • Examples of the flame retardant include aluminum hydroxide and the like.
  • the method for producing a sealing layer of the present invention is a sealing containing a compound represented by the general formula (A) or an organic metal oxide having a structure represented by the general formula (1), and an alcohol. It is characterized by being manufactured using a mixed solution for forming a layer.
  • the mixed liquid for forming the sealing layer of the present invention is a polycondensation component of a compound represented by the general formula (A) which is a monomer component and a compound represented by the general formula (A) together with alcohols.
  • the organic metal oxide having the structure represented by the general formula (1) coexists with the organic metal oxide having the structure represented by the general formula (1). It is preferable that the component ratio of the compound represented by formula (A) is high.
  • the organometallic oxide contained in the sealing layer is produced using a mixed solution of a metal alkoxide or a metal carboxylate and a fluorinated alcohol. ..
  • the encapsulating layer of the present invention can be prepared and manufactured by any method as long as it can uniformly disperse and mix the various raw materials described above.
  • Examples of the method include pelletizing by thoroughly mixing the raw materials of (1) with a mixer or the like, melt-kneading with a mixing roll, kneader, extruder, etc., and then cooling and pulverizing.
  • the semiconductor device of the present invention is a semiconductor device including at least a semiconductor element and a component, wherein the member or the semiconductor element is a composition for forming a sealing layer formed of an epoxy resin and an organic metal oxide, or an organic material. It is characterized in that it is covered with a sealing layer formed according to the sealing method of the present invention illustrated in FIGS. 1A to 1C described above using only the metal oxide.
  • the semiconductor element specifically, an integrated circuit, a large-scale integrated circuit, an active element, a passive element, a solid-state image pickup element, a discrete element, a semiconductor element using SiC, a power semiconductor such as a power transistor, or an in-vehicle electronic component Etc.
  • the structure of the semiconductor body is omitted.
  • the semiconductor device of the present invention has at least a semiconductor element and a sealing layer made of a cured product of the sealing layer of the present invention for sealing the semiconductor element.
  • a conventionally known semiconductor device can be applied to the semiconductor device of the present invention, and there is no particular limitation, and specific types include a dual in-line package (DIP), a chip carrier with a plastic lead (PLCC). ), quad flat package (QFP), low profile quad flat package (LQFP), small outline J-lead package (SOJ), thin small outline package (TSOP), thin quad flat ⁇ Package (TQFP), Tape Carrier Package (TCP), Ball Grid Array (BGA), Chip Size Package (CSP), Quad Flat Non-Leaded Package (QFN), Small Outline Non-Leaded Package (SON), lead frame BGA (LF-BGA), mold array package type BGA (MAP-BGA), fan-in-wafer level package (FIWLP) using rewiring, fan-out wafer Level package (FOWLP), fan-in panel level package (FIPLP), fan-out panel level package (FOPLP), etc. are mentioned. However, it is not limited to these.
  • the encapsulating layer-forming composition for forming the encapsulating layer of the present invention is prepared by using a molding method such as transfer molding, compression molding, injection molding, or the like. Can be cured and molded to seal electronic components such as semiconductor elements.
  • transfer-type molding is a molding method (sealing method) that has been generally used for resin sealing of electronic components such as semiconductors. It is a method of filling a cavity and curing it to form a sealing layer.
  • the compression molding is a method of directly inserting a liquid semiconductor encapsulating composition into a cavity and melting it, and then a lead frame, a silicon interposer, an organic interposer, or a flip chip to which a semiconductor element is fixed.
  • This is a method of forming a sealing layer by dipping a chip substrate or the like and then curing and molding a resin.
  • the composition for forming the sealing layer of the present invention can be dissolved in various organic solvents to prepare a liquid coating liquid for forming a semiconductor sealing layer, and then applied on a semiconductor element by using a coating method. ..
  • coating methods include, in addition to the transfer method and the compression method described above, a filling method, a dispenser method, a spin coating method, a casting method, a screen printing method, a die coating method, a blade coating method, a roll coating method.
  • the sealing layer can also be formed by a wet coating method such as a spray coating method, a curtain coating method, an LB method (Langmuir-Blodgett method), or an inkjet printing method.
  • a dispenser method, a spin coating method, a die coating method, a transfer method, a compression method filling method or an inkjet printing method is preferable.
  • the sealing layer of the present invention is heat-treated and cured.
  • the curing conditions can be appropriately selected from conventionally known conditions, but from the viewpoint of reaction rate, for example, the temperature (curing temperature) is preferably in the range of 25 to 180°C, more preferably 60 to 150°C. It is within the range, and the time (curing time) is preferably within the range of 5 to 720 minutes.
  • the curing can be performed in one step or in multiple steps.
  • the semiconductor device of the present invention active elements such as semiconductor chips, transistors, diodes, and thyristors, elements such as passive elements such as capacitors, resistors, and coils are mounted on a support member of a copper lead frame.
  • a semiconductor device or the like in which a necessary portion is sealed with the sealing layer of the present invention can be given.
  • a semiconductor device for example, a semiconductor element is fixed on a copper lead frame, the terminal portion of the element such as a bonding pad and the lead portion are connected by wire bonding or bumps, and then the sealing layer of the present invention is used. It is configured by sealing.
  • Example 1 An evaluation chip (TEG) for evaluating corrosion resistance was produced according to the following method.
  • Small spherical silica Spherical silica regular grade “SO-C5” manufactured by Admatechs Co., Ltd. (average particle size 1.3 to 1.7 ⁇ m)
  • Epoxy resin KYOCERA KE-G3000D
  • Hardener Nippon Kayaku Co., Ltd.
  • phenol aralkyl GPH65 Curing catalyst Shikoku Kasei Co. 2P4MHZ
  • Coloring agent carbon black (Mitsubishi Chemical Co., MA-100)
  • Flame retardant Tetrachlorophthalic anhydride Coupling agent: Shin-Etsu Chemical Co., Ltd.
  • KBM-503 (3-methacryloxypropyltrimethoxysilane) ⁇ Organic metal oxide group> Ti metal oxide: Exemplified compound 1 Cu metal oxide: Exemplified compound 141 Bi metal oxide: Exemplified compound 136.
  • test patterning substrate (13) for evaluating corrosion resistance having the configuration shown in FIG. 4 was produced.
  • test element substrate (14) a 5 cm-thick EagleXG non-alkali glass manufactured by Corning was used, and cleaning was performed by wet cleaning. Then, on the test element substrate (14), SiO 2 was formed into a film having a thickness of 10 nm by a sputtering method to form an adhesion layer. Next, Cu was deposited at a predetermined position to a thickness of 1 ⁇ m by the same sputtering method.
  • a photoresist made by Tokyo Ohka Co., Ltd. is applied so as to have a thickness of 1 ⁇ m, and then exposed and developed. Patterning was carried out with an etching solution for use. By performing peeling and pure rinsing, a test patterning substrate (13) having the configuration shown in FIG. 4 was produced.
  • the test patterning substrate (13) has a negative electrode (15), a positive electrode (16), and a comb field electrode (17) connected to them on a test element substrate (14).
  • composition 2 for Forming Sealing Layer A sealing layer forming composition 2 composed of the following additives was prepared.
  • the composition 2 for semiconductor encapsulation is obtained by directly applying the organometallic oxide group A (sol/gel solution) composed of an organometallic compound to a coating solution composed of an epoxy resin, a curing agent, a flame retardant and a coupling agent. This is a method of preparing a coating liquid by adding (coating liquid addition).
  • FIG. 5 shows a sectional view taken along the line AA′ in the top view of the evaluation chip (19) shown in FIG.
  • the composition for forming a sealing layer having the following constitutions in the upper and lower stages so as to have the constitution shown in FIG. Item 3 was applied and applied so as to have a dry film thickness of 20 ⁇ m, and then dried at 150° C. for 60 minutes to form a sealing layer (20), and an evaluation chip 3 was produced.
  • ⁇ Preparation of Composition 3 for Forming Sealing Layer 72 parts by mass of the large spherical silica 15 parts by mass of the small spherical silica 8 parts by mass of the epoxy resin 0.5 parts by mass of the curing agent 0.5 parts by mass of the curing accelerator 2 parts by mass of the flame retardant 1 part by mass of the coupling agent.
  • the evaluation chip 4 was produced in the same manner except that the addition method of the organometallic oxide group A was changed to the following method.
  • HMDS 1, 1, 1 , 3,3,3-hexamethyldisilazane
  • the composition 4 for sealing layer formation prepared above is applied to the upper and lower stages so as to have the constitution shown in FIG. 5, so that the dry film thickness becomes 20 ⁇ m. Then, it was dried at 150° C. for 60 minutes to form a sealing layer (20), and an evaluation chip 4 was produced.
  • Each of the evaluation chips prepared above was placed in a thermostatic chamber in which an open system sample bottle storing sulfur powder was placed in an apparatus under an environmental condition of 85° C. and 85% RH, and a bias of 50 V was applied from a power source (18). It was stored for 1000 hours with a voltage applied, and the state of corrosion of the comb field electrode was visually observed. In this evaluation, moisture and a sulfur component (hydrogen sulfide) penetrate into the sealing layer from the external environment, and halogen (Cl ⁇ ) is generated from the flame retardant component inside the sealing layer.
  • the evaluation chips 2 to 7 of the present invention are different from the evaluation chip 1 of the comparative example in that corrosion caused by sulfur components, moisture, halogen generated from the flame retardant, etc. It can be seen that there is no corrosion and the corrosion resistance to the electrode is excellent.
  • the evaluation chip 1 which is a comparative example, corrosion started to occur from the time when it exceeded 200 hours, specifically, blackened, and corrosion and electrolytic corrosion occurred.
  • the evaluation chip of the present invention formed by encapsulation using the composition for forming an encapsulation layer containing the organometallic oxide group composed of the organometallic oxide according to the present invention could be clearly confirmed to prevent corrosion.
  • Example 2 [Fabrication of Semiconductor Device 1 (Comparative Example): Fabrication of QFN Mode Semiconductor Device] Using the encapsulating layer-forming composition 1 used in the production of the evaluation chip 1 (Comparative Example) described in Example 1 according to the following method, the semiconductor device 1 having the configuration illustrated in FIGS. 7A and 7B is used. (21, QFN package, comparative example) was manufactured.
  • a lead frame (22) is arranged on an element substrate (13), and a die bond (23) made of Ag is provided on the central lead frame (22). Then, the semiconductor element (3) is arranged.
  • the semiconductor land (7) and the Cu lead frame (22) are connected by a Cu bonding wire (8).
  • the encapsulating layer-forming composition 1 used in the production of the evaluation chip 1 described in Example 1 was molded by a transfer method to form an encapsulating layer (4) in a form of covering each of these constituent elements.
  • a silicon wafer thinned by polishing the back surface was attached to a dicing tape, and the silicon wafer was scribed with a dicer to produce an element substrate (13).
  • the semiconductor element (3) was attached onto the lead frame (22) with a die bond (23) made of Ag, and annealed at 150° C. for 30 minutes to cure the semiconductor element (3).
  • a Cu bonding wire (8) was used for bonding to electrically connect the lead frame (22) and the semiconductor element (3).
  • composition 1 for molding was molded by a transfer method to form and cure a sealing layer (4).
  • a semiconductor device 1 (21) as a comparative example was manufactured by performing a Ni plating process of about 2 to 10 ⁇ m as a plating process.
  • the encapsulating layer-forming composition 4 is used to mold the transfer layer used in the production of the semiconductor device 2 to form and cure the encapsulating layer (4).
  • Out of 100 semiconductor devices, the number of individuals in which an abnormality occurred during operation was 3 or less ⁇ : In 100 semiconductor devices, the number of individuals in which an abnormality occurred during operation was 4 or more, 10 No. or less ⁇ : The number of individuals in which abnormality occurred during operation was 11 or more and 20 or less among 100 semiconductor devices ⁇ : Individual in which abnormality occurred during operation was out of 100 semiconductor devices The number is 21 or more. The results obtained above are shown in Table II.
  • the semiconductor device of the present invention even after long-term storage in a high temperature and high humidity environment containing a sulfur component, the sulfur component, moisture, and corrosion due to halogen or the like generated from the flame retardant It can be confirmed that the semiconductor devices 2 to 7 of the present invention operate normally in comparison with the semiconductor device 1 of the comparative example, which does not occur, and it is understood that the corrosion resistance is extremely excellent.
  • the sealing method of the present invention can prevent corrosion of a semiconductor element or a part of a semiconductor device that is present in a sealing structure, or enters from the outside, a halogen component, hydrogen sulfide gas, etc., a diode, a transistor, It can be suitably used for electronic parts such as integrated circuits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

本発明の課題は、半導体装置を構成する半導体素子や部品の有害物質からの腐食を防止する封止方法、それに用いる封止層、当該封止層の形成に用いる混合液、封止層の製造方法と、それを用いた半導体装置を提供することである。 本発明の封止方法は、半導体装置を構成する半導体素子及び部品の封止方法であって、(1)エポキシ樹脂と有機金属酸化物とを含有する組成物を用いる方法1、(2)エポキシ樹脂と、有機金属酸化物で被覆されたフィラーとを含有する組成物を用いる方法2、又は(3)前記部品を有機金属酸化物で封止した後、エポキシ樹脂で被覆する方法3のいずれかにより封止層を形成することを特徴とする。

Description

封止方法、封止層、封止層形成用の混合液、封止層の製造方法及び半導体装置
 本発明は、封止方法、封止層、封止層形成用の混合液、封止層の製造方法及び半導体装置に関し、更に詳しくは、半導体装置を構成する半導体素子や部品の有害物質による腐食を防止する封止方法、それに用いる封止層、当該封止層の形成に用いる混合液、封止層の製造方法と、それを用いた半導体装置に関する。
 従来から、トランジスター、IC(集積回路、Integrated Circuit)、LSI(大規模集積回路、Large Scale Integration)等の電子部品装置の素子を封止する方法としては、生産性やコスト等の観点から、樹脂に代表される封止用材料を用いて封止する方法が主流となっている。
 従来から、ダイオード、トランジスター、集積回路等の電子部品は、主にエポキシ半導体封止用組成物の硬化物により封止されている。特に、集積回路には、腐食防止のために塩素含有量の低減されたエポキシ樹脂、フェノール系硬化剤、及び溶融シリカ、結晶シリカ等の無機充填材を含有したエポキシ半導体封止用組成物が用いられてきた。エポキシ半導体封止用組成物は、作業性、成形性、電気特性、耐湿性、耐熱性、機械特性、インサート品との接着性等の諸特性に対して優れたバランスを備えていると考えられる。
 更に、半導体の封止用材料として用いられる封止樹脂としては、密着性などの観点からエポキシ樹脂などが使用されており、安全性の観点から高い難燃性が要望されており、この要望に対し、通常はエポキシ半導体封止用組成物にハロゲン系化合物を含有させることにより難燃化を実現している。
 ところが近年、電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また半導体装置の表面実装化が促進されるなか、半導体素子の封止で用いられている封止用エポキシ半導体封止用組成物への要求は益々厳しいものとなってきている。
 例えば、特許文献1においては、近年、金線に代わる安価なボンディングワイヤーとして、銅を主成分とする芯材と、当該芯材の上に芯材と異なる組成の導電性金属及び銅を含有する外皮層を有する半導体装置用ボンディングワイヤーが提案されている。当該半導体装置用ボンディングワイヤーでは、外皮層の厚さをコントロールとすることにより、材料費が安価で、ボール接合性、ワイヤー接合性等に優れ、かつループ形成性も良好な、狭ピッチ用細線化やパワー系IC用途の太径化にも適応が可能とされている。
 しかしながら、詳細な検討を進めていくと、電子部品装置を構成する封止部材において、ハロゲン物質が微量でも含有すると、ワイヤー状のボンディング端子部などに、これら銅ワイヤーを用いてアルミニウム含有のランドに接続している構成をとると、銅とアルミニウムの仕事関数の差に起因する電池効果や作動時の電界とイオン化したハロゲン物質により腐食が発生し、接続不良や信頼性の低下を招くという問題があった。
特開2007-12776号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、封止構造中に存在する、あるいは外部より侵入する水分、ハロゲン成分、硫化水素ガス等による半導体装置を構成する半導体素子や部品の腐食を防止する封止方法と、それに用いる封止層、当該封止層の形成に用いる混合液、封止層の製造方法と、それを用いた半導体装置を提供することである。
 本発明者は、上記課題を解決すべく上記問題の原因等について検討する過程において、特定の構造を有する有機金属酸化物を封止層内に存在させることにより、封止層内に存在あるいは侵入してくる半導体素子や部品に対し腐食要因となる物質、例えば、水分、ハロゲン成分、硫化水素ガス等を、当該有機金属酸化物が捕獲(トラップ、吸着等)することにより、腐食を防止する封止方法、それに用いる封止層、当該封止層の形成に用いる混合液、封止層の製造方法と、それを用いた半導体装置を実現することができることを見いだし、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.半導体装置を構成する半導体素子及び部品の封止方法であって、
 (1)エポキシ樹脂と有機金属酸化物とを含有する組成物を用いる方法1、
 (2)エポキシ樹脂と、有機金属酸化物で被覆されたフィラーとを含有する組成物を用いる方法2、又は
 (3)前記部品を有機金属酸化物で封止した後、エポキシ樹脂で被覆する方法3、
 のいずれかの方法により封止層を形成することを特徴とする封止方法。
 2.前記有機金属酸化物が、下記一般式(1)で表される構造を有する有機金属酸化物であることを特徴とする第1項に記載の封止方法。
 一般式(1)  R-[M(OR1y(O-)x-yn-R
〔式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。〕
 3.前記封止層を塗布法で形成する工程を有することを特徴とする第1項又は第2項に記載の封止方法。
 4.少なくとも、エポキシ樹脂及び下記一般式(1)で表される構造を有する有機金属酸化物で構成されていることを特徴とする封止層。
 一般式(1)  R-[M(OR1y(O-)x-yn-R
〔式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。〕
 5.下記一般式(1)で表される構造を有する有機金属酸化物で構成されていることを特徴とする封止層。
 一般式(1)  R-[M(OR1y(O-)x-yn-R
〔式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。〕
 6.前記有機金属酸化物における炭素原子数とフッ素原子数の総数に対するフッ素原子数の比の値F/(C+F)が、下式(a)で規定する条件を満たすことを特徴とする第4項又は第5項に記載の封止層。
 式(a)  0.05≦F/(C+F)≦1.00
 7.前記一般式(1)におけるMで表される金属原子が、Ti、Zr、Sn、Ta、Fe、Zn、Bi、Cu、Mg、Mn、Co、Ni、Ag及びAlからから選択される少なくとも一種であることを特徴とする第4項から第6項までのいずれか一項に記載の封止層。
 8.前記有機金属酸化物で被覆されたフィラーを含有することを特徴とする第4項から第7項までのいずれか一項に記載の封止層。
 9.下記一般式(A)で表される化合物又は下記一般式(1)で表される構造を有する有機金属酸化物と、アルコール類とを含有することを特徴とする封止層形成用の混合液。
 一般式(A) M(OR1y(O-R)x-y
 一般式(1) R-[M(OR1y(O-)x-yn-R
〔式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。〕
 10.第4項から第8項までのいずれか一項に記載の封止層を製造する封止層の製造方法であって、
 第9項に記載の封止層形成用の混合液を用いて製造することを特徴とする封止層の製造方法。
 11.少なくとも半導体素子及び部品で構成される半導体装置であって、
 前記半導体素子又は部品が、第4項から第7項までのいずれか一項に記載の封止層で被覆されていることを特徴とする半導体装置。
 12.前記封止層で被覆された前記部品が、ボンディングワイヤー又はランドであることを特徴とする第11項に記載の半導体装置。
 本発明の上記手段により、封止構造中に存在する、又は外部より侵入する水分、ハロゲン成分、硫化水素ガス等による半導体素子を構成する部品(例えば、金属端子部等)の腐食を防止する封止方法と、それに用いる封止層、当該封止層の形成に用いる混合液、封止層の製造方法と、それを用いた半導体装置を提供することができる。
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 半導体素子や半導体集積回路が封止されている構造を有する半導体装置について、様々な環境下での耐久性の検討を進めていく中で、半導体封止層内のハロゲン成分が、半導体装置を構成するボンディングワイヤー端子の腐食を引き起こしていることが判明した。
 これは、ボンディングワイヤーの端子部は異金属接続されているため、酸化還元電位差による電池効果が発生し、更に、作動時に電界が働く。そこに水分とハロゲン、特にハロゲンが存在することにより、腐食を引き起こすことが判明した。しかしながら、封止部材は、難燃性対策で若干のハロゲンを含有する、更には外部からハロゲンが侵入してしまい、腐食を引き起こしてしまうため、更に腐食が進行する環境にあった。
 本発明者は、上記問題の解決手段の検討を進めていく中で、吸着材料として、水分、硫化水素、ハロゲン分子、ハロゲンイオン等を効率的にトラップする有機金属酸化物、特に好ましくは、前記一般式(1)で表される構造を有する有機金属酸化物をエポキシ樹脂(モールド剤)中に含有して構成した封止層で封止する方法、封止層中にフィラー(無機充填材ともいう。)表面を当該有機金属酸化物でコーティングした粒子を含むエポキシ樹脂で構成される封止層で封止する方法、又は、部品を当該有機金属酸化物で被覆した後、エポキシ樹脂で封止する方法により、前記有機金属酸化物で半導体装置の部品、例えば、CuやAg,Auで接続されるワイヤーボンディングや同ワイヤーが半田接続されている端子部表面を被覆することにより、腐食を防止する封止方法により、半導体装置の腐食を防止することができることを見いだした。
 すなわち、本発明は、ハロゲンをトラップする機能を有する有機金属酸化物を含む封止層を形成することにより、水分、ハロゲン成分、硫化水素ガス等による半導体素子を構成する金属端子部の腐食を防止することができる高信頼性のある封止層を得ることができた。
 具体的には、封止層内に存在するハロゲン、例えば、塩素等が同樹脂内外の水分や水素と反応し、HClとなり、また添加剤や組成物内に存在する硫黄化合物と同じく水分が反応することで、SO2やH2Sを発生する。また水はハロゲンと反応することでHClを発生し、更にH2SはCuと反応しやすくCu配線の直接腐食やマイグレーションを引き起こす。
 本発明では、それら腐食の根源となるハロゲンを吸着し、更にSO2を発生する要因となるH2Oを吸着することで、ハロゲン化水素化(例えば、HCl化)を遮断し、腐食サイクルを止めることが可能となる。またH2SガスによるCuの直接腐食を防止することも可能となるため、高信頼性を有する封止層を提供することができた。
エポキシ樹脂と有機金属酸化物、又は有機金属酸化物により形成される封止層の構成の方法1の一例を示す概略断面図 エポキシ樹脂と有機金属酸化物、又は有機金属酸化物により形成される封止層の構成の方法2の一例を示す概略断面図 エポキシ樹脂と有機金属酸化物、又は有機金属酸化物により形成される封止層の構成の方法3の一例を示す概略断面図 本発明の方法1の封止方法で形成した封止層を有する半導体装置の構造の一例を示す概略構成図 本発明の方法1の封止方法で形成した封止層を有する半導体装置の構造の他の一例を示す概略構成図 実施例において、腐食性を評価するためのくし場電極を有するテストパターニング基板の構成を示す概略構成図 実施例において、テストパターニング基板を本発明の封止層で封止した評価用チップ(TEG)の構成を示す概略構成図 図5に記載のA-A′で表される評価用チップ(TEG)の構成を示す概略断面図 実施例において作製した半導体装置(QFN)の概略断面図 実施例において作製した半導体装置(QFN)の上面図
 本発明の封止方法は、半導体装置を構成する半導体素子及び部品の封止方法であって、(1)エポキシ樹脂と有機金属酸化物とを含有する組成物を用いる方法1、(2)エポキシ樹脂と、有機金属酸化物で被覆されたフィラーとを含有する組成物を用いる方法2、又は(3)前記部品を有機金属酸化物で封止した後、エポキシ樹脂で被覆する方法3により封止層を形成することを特徴とする。この特徴は、下記各実施形態に共通する又は対応する技術的特徴である。
 本発明の実施形態としては、有機金属酸化物が、前記一般式(1)で表される構造を有する有機金属酸化物であることが、半導体素子を構成する各部品の腐食をより防止することができる点で、特に好ましい。
 また、本発明の封止方法においては、封止層を塗布法で形成することが、簡易な装置で、高精度で封止できる点で好ましい。
 本発明の封止層は、少なくとも、エポキシ樹脂と前記一般式(1)で表される構造を有する有機金属酸化物を含有することを特徴とする。
 また、本発明の封止層は、前記一般式(1)で表される構造を有する有機金属酸化物で構成されていることを特徴とする。
 また、本発明の実施形態としては、前記一般式(1)で表される構造を有する有機金属酸化物における炭素原子数とフッ素原子数の総数に対するフッ素原子数の比の値F/(C+F)が、0.05≦F/(C+F)≦1.00の範囲内であることが、本発明の目的効果をより発現させることができる点で好ましい。
 また、一般式(1)におけるMで表される金属原子が、Ti、Zr、Sn、Ta、Fe、Zn、Bi、Cu、Mg、Mn、Co、Ni、Ag及びAlからから選択される少なくとも一種であることが、封止構造内の水分、ハロゲン等のトラップ性をより高めることができる点で好ましい。
 また、有機金属酸化物で被覆されたフィラーを含有することが、より優れた腐食性防止効果を発現させることができる点で好ましい。
 本発明の封止層形成用の混合液が、前記一般式(A)で表される化合物、又は前記一般式(1)で表される構造を有する有機金属酸化物と、アルコール類とを含有することを特徴とする。
 本発明の封止層の製造方法は、本発明の封止層形成用の混合液を用いて製造することを特徴とする。
 また、本発明の半導体装置は、少なくとも半導体素子及び部品で構成され、前記半導体素子又は部品が、エポキシ樹脂及び前記一般式(1)で表される構造を有する有機金属酸化物で構成されている封止層、または、前記一般式(1)で表される構造を有する有機金属酸化物により構成される封止層により被覆されていることを特徴とする。
 また、本発明の半導体装置では、本発明の封止層により被覆されている部品が、ボンディングワイヤー又はランドであることが好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 《半導体素子及び部品の封止方法》
 本発明の封止方法においては、
 (1)エポキシ樹脂と有機金属酸化物とを含有する組成物を用いる方法1、
 (2)エポキシ樹脂と、有機金属酸化物で被覆されたフィラーとを含有する組成物を用いる方法2、
 (3)部品を有機金属酸化物で封止した後、エポキシ樹脂で被覆する方法3、
 から選ばれる方法で、半導体素子や部品の封止する封止層を形成することを特徴とする。
 本発明でいう「部品」とは、半導体装置を構成する後述の図2及び図3で示すような、金属ワイヤー(以下、「ボンディングワイヤー」と称す。)、金属端子(以下、「ランド」と称す)、基板等の半導体装置を構成する半導体素子以外の構成部品をいう。
 ここでいう「ボンディングワイヤー」とは、図2及び図3において符号8で示すものであり、半導体素子3と外部との信号のやりとりをするために、半導体素子を構成する電極と外部電極とを接続するための部品である。
 また、「ランド」とは、図2及び図3において符号7で示すものであり、各部品のとりつけ及び部品間の接続に用いる導電パターンをいう。ランドとしては、表面実装用のパッド、部品の取り付け穴、バイアを含む導電パターンなどがある。
 図1A~図1Cは、本発明の封止方法に係るエポキシ樹脂と有機金属酸化物、又は有機金属酸化物単独で形成される封止層の構成の一例を示す概略断面図である。
 図1Aで示すタイプAは、本発明で規定する方法1に係る封止層4の構成を示すものであり、エポキシ樹脂6中に、有機金属酸化物5、好ましくは、一般式(1)で表される構造を有する有機金属酸化物が粒子状に分散された状態で存在する封止層4を構成する方法である。
 また、図1Bで示すタイプBは、本発明で規定する方法2に係る封止層4の構成を示すものであり、エポキシ樹脂6中に、有機金属酸化物5により表面を被覆したフィラーFを分散した状態で存在する封止層4を構成する方法である。
 また、図1Cで示すタイプCは、本発明で規定する方法3に係る封止層4の構成を示すものであり、はじめに、部品P、例えば、ボンディングワイヤー又はランドの表面を有機金属酸化物5により選択的に封止して、有機金属酸化物5単独で構成される封止層4を形成した後、エポキシ樹脂6により全体を被覆する方法である。
 本発明の封止層を形成する方法としては、湿式塗布法を適用することができ、例えば、トランスファー方式やコンプレッション方式での充填法や、ディスペンサー法、スピンコート法、キャスト法、スクリーン印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)、インクジェット・プリント法等の湿式塗布方式を用いて、封止層を形成することもできる。
 《半導体装置の基本構成》
 次に、上記説明した本発明の封止方法により形成される封止層を有する半導体装置の構成について、図を交えて説明する。
 図2は、本発明の封止方法の方法1により形成した封止層を有する半導体装置の構造の一例を示す概略構成図である。
 図2に示す半導体装置1は、主に、回路基板11、パッケージ基板2と、それに電気的に接合している複数の半導体素子3により構成されている半導体積層体9と、当該半導体積層体9の上面部領域を封止する封止層4等により構成されている。
 半導体装置1の詳細な構成について、更に説明する。
 図2に示す半導体装置1は、回路基板11と、半導体素子3と電気的に接合しているパッケージ基板2との間隙が、アンダーフィル材10により充填されている。このアンダーフィル材内には、複数の球形のハンダバンプ12が配置されており、当該ハンダバンプを介して、回路基板11とパッケージ基板2とが電気的に接続されている。前記アンダーフィル材10と、本発明の封止層4を構成する材料は、それぞれ異なる材料で構成されていてもよいが、アンダーフィル材10が保持するハンダバンプ12の腐食成分G、例えば、ハロゲンイオン(Cl-)、水分、硫化水素ガス等による腐食を防止する観点から、本発明に係る有機金属酸化物を含むことが好ましい。
 半導体装置1は、パッケージ基板2上に、一つ以上の半導体素子3を配置したり、並列に配置したりすることで構成され、図2で示す構成では、メモリーのように複数の半導体素子3を積層し、それらをワイヤーボンディングで電気的に半導体素子間やパッケージ基板との接続を行うことにより、半導体素子積層体9を構成している。
 この場合、1段目の半導体素子3は、フィルム接着剤、熱硬化性接着剤等を介してパッケージ基板2に接着される。2段目以降の半導体素子3も、絶縁性のフィルムや熱硬化接着剤(不図示)を介して順次積層される。
 このパッケージ基板2及び各半導体素子3の端部には、ランド7が設けられ、各ランド7間が、ボンディングワイヤー8により、電気的に接続されている。ランド7は主には、アルミニウムを主成分とし、ボンディングワイヤー8としては、例えば、金、銀、銅、アルミニウム等の構成材料を挙げることができるが、本発明においては、ボンディングワイヤー8は主成分として銅により構成されていることが好ましく、更には、銅ワイヤーの表面にパラジウムを含む金属材料で構成された被覆層を有する構成であることがより好ましい態様である。
 このパッケージ基板2及び複数の半導体素子3の上面部には、本発明で規定する構成からなる封止層4が設けられている。図2に示す封止層4では、方法1に係る形成方法により形成される封止層であり、エポキシ樹脂からなる樹脂バインダー6、本発明に係る一般式(1)で表される構造を有する有機金属酸化物5、フィラーF(無機充填材)より構成されている。
 パッケージ基板2及び複数の半導体素子3を、本発明に係る有機金属酸化物5を含む封止層4で封止することにより、外部から侵入してくる腐食成分G(例えば、ハロゲンイオン、水分、硫化水素ガス等)、あるいは封止層内に存在するハロゲンイオン等によるボンディングワイヤー8やランド7への腐食を防止することができる。
 図2では、半導体素子3として3層を積層してある例を示したが、3層以上の構成をとることも好ましく、図3には、半導体素子3をより多層で構成(例えば、64層)した半導体素子積層体を具備した半導体装置の構造の一例を示してある。基本的なその他の構成は、上記図2と同様である。
 《封止層》
 次いで、本発明の封止層について説明する。
 本発明の封止層は、少なくとも、エポキシ樹脂と、前記一般式(1)で表される構造を有する有機金属酸化物により構成される封止層、又は、前記一般式(1)で表される構造を有する有機金属酸化物を単独で構成される封止層であることを特徴とする。
 〔一般式(1)で表される構造を有する有機金属酸化物〕
 本発明に係る有機金属酸化物は、下記一般式(A)で表される化合物から製造された下記一般式(1)で表される構造を有する有機金属酸化物を含有することが好ましい。
 一般式(A) M(OR1y(O-R)x-y
 一般式(A)において、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。
 一般式(1) R-[M(OR1y(O-)x-yn-R
 上記一般式(1)において、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。
 上記一般式(1)において、OR1はフッ化アルコキシ基を表す。R1は少なくとも一つフッ素原子に置換したアルキル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。各置換基の具体例は後述する。
 Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。又はそれぞれの基の水素の少なくとも一部をハロゲンで置換したものでもよい。また、ポリマーでもよい。
 アルキル基は置換又は未置換のものであるが、具体例としては、メチル基、エチル基、プロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル等であるが、好ましくは炭素数が8以上のものである。また、これらのオリゴマー、ポリマーでもよい。
 アルケニル基は、置換又は未置換のもので、具体例としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキシセニル基等があり、好ましくは炭素数が8以上のものである。またこれらのオリゴマー又はポリマーでもよい。
 アリール基は置換又は未置換のもので、具体例としては、フェニル基、トリル基、4-シアノフェニル基、ビフェニル基、o,m,p-テルフェニル基、ナフチル基、アントラニル基、フェナントレニル基、フルオレニル基、9-フェニルアントラニル基、9,10-ジフェニルアントラニル基、ピレニル基等があり、好ましくは炭素数が8以上のものである。また、これらのオリゴマー又はポリマーでもよい。
 置換又は未置換のアルコキシ基の具体例としては、メトキシ基、n-ブトキシ基、tert-ブトキシ基、トリクロロメトキシ基、トリフルオロメトキシ基等であり、好ましくは炭素数が8以上のものである。また、これらのオリゴマー、ポリマーでもよい。
 置換又は未置換のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、ノルボナン基、アダマンタン基、4-メチルシクロヘキシル基、4-シアノシクロヘキシル基等であり好ましくは炭素数が8以上のものである。また、これらのオリゴマー又はポリマーでもよい。
 置換又は未置換の複素環基の具体例としては、ピロール基、ピロリン基、ピラゾール基、ピラゾリン基、イミダゾール基、トリアゾール基、ピリジン基、ピリダジン基、ピリミジン基、ピラジン基、トリアジン基、インドール基、ベンズイミダゾール基、プリン基、キノリン基、イソキノリン基、シノリン基、キノキサリン基、ベンゾキノリン基、フルオレノン基、ジシアノフルオレノン基、カルバゾール基、オキサゾール基、オキサジアゾール基、チアゾール基、チアジアゾール基、ベンゾオキサゾール基、ベンゾチアゾール基、ベンゾトリアゾール基、ビスベンゾオキサゾール基、ビスベンゾチアゾール基、ビスベンゾイミダゾール基等がある。またこれらのオリゴマー又はポリマーでもよい。
 置換又は未置換のアシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ラウロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピメロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、イソクロトノイル基、オレオイル基、エライドイル基、マレオイル基、フマロイル基、シトラコノイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、グリコロイル基、ラクトイル基、グリセロイル基、タルトロノイル基、マロイル基、タルタロイル基、トロポイル基、ベンジロイル基、サリチロイル基、アニソイル基、バニロイル基、ベラトロイル基、ピペロニロイル基、プロトカテクオイル基、ガロイル基、グリオキシロイル基、ピルボイル基、アセトアセチル基、メソオキサリル基、メソオキサロ基、オキサルアセチル基、オキサルアセト基、レブリノイル基これらのアシル基にフッ素、塩素、臭素、又はヨウ素などが置換してもよい。好ましくは、アシル基の炭素は8以上である。また、これらのオリゴマー又はポリマーでもよい。
 一般式(1)におけるMで表される金属原子としては、例えば、Ti、Zr、Sn、Si、Ta、Yb,Y、Al、Zn、Co、In、Fe、Mo、Ni、Pd、Ag、Sr、Bi、Cu、Mg、Mn、等が挙げられ、これらから選ばれる少なくとも一種、又は二種以上で構成されていてもよい。その中でも、Ti、Zr、Sn、Ta、Fe、Zn、Bi、Cu、Mg、Mn、Co、Ni、Ag及びAlから選択される少なくとも一種であることが好ましい。
 本発明に係る一般式(1)で表される構造を有する有機金属酸化物を形成するための、金属アルコキシド、金属カルボキシレート及びフッ素化アルコールの具体的な組み合わせについて、以下に例示する。ただし、本発明は、これに限定されるものではない。
 前記金属アルコキシド、金属カルボキシレートとフッ化アルコール(R′-OH)は以下の反応スキームIによって、本発明に係る有機金属酸化物となる。ここで、(R′-OH)としては、以下のF-1~F-16の構造が例示される。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 本発明に係る金属アルコキシド又は金属カルボキシレートは、以下のM(OR)n又はM(OCOR)nに示す化合物が例示され、本発明に係る有機金属酸化物は、前記(R′-OH:F-1~F-16)との組み合わせにより、下記例示化合物番号1~145の構造を有する化合物(下記例示化合物I、II、III、IV及びV参照。)となる。本発明に係る有機金属酸化物は、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 本発明の封止層においては、上記で説明した本発明に係る有機金属酸化物を少なくとも1種用いることを特徴とするが、好ましくは金属種の異なる2種以上の有機金属酸化物を用いることが好ましい。
 (有機金属酸化物の反応性)
 本発明に係る有機金属酸化物は、以下の反応スキームII及び反応スキームIIIに示すような反応性を示すものである。なお、焼結後の有機金属酸化物の重縮合体の構造式において、「O-M」部の「M」は、さらに置換基を有しているが、省略してある。
Figure JPOXMLDOC01-appb-C000008
 例えば、金属種の異なる2種の金属オキサイドが共存する場合、下記反応スキームIIIで示されるような反応性を有する。
Figure JPOXMLDOC01-appb-C000009
 上記有機金属酸化物が、焼結又は紫外線照射等により重縮合して形成された有機薄膜は、以下の反応スキームIVに示すような反応性を有する。
 反応スキームIVの場合、系外からの水分(H2O)によって加水分解し、撥水性又は疎水性物質であるフッ素化アルコール(R′-OH)を放出する。このフッ素化アルコールによって、さらに水分の電子デバイス内部への透過を防止するものである。
 すなわち、本発明に係る有機金属酸化物は、加水分解によって生成したフッ素化アルコールが撥水性又は疎水性のため、本来の乾燥性(デシカント性)に加え、水分との反応により撥水機能が付加されて、封止性に相乗効果(シナジー効果)を発揮するという特徴を有する。
 なお、下記構造式において、「O-M」部の「M」は、さらに置換基を有しているが、省略してある。
Figure JPOXMLDOC01-appb-C000010
 (有機金属酸化物の製造方法)
 本発明の封止層の製造方法においては、当該封止層が含有する有機金属酸化物が、金属アルコキシド又は金属カルボキシレートと、フッ化アルコールとの混合液を用いて製造することを特徴とする。
 本発明に係る有機金属酸化物の製造方法としては、金属アルコキシド又は金属カルボキシレートにフッ化アルコールを加え混合液として撹拌混合させた後に、必要に応じて水と触媒を添加して所定温度で反応させる方法を挙げることができる。
 ゾル・ゲル反応をさせる際には、加水分解・重縮合反応を促進させる目的で下記に示すような加水分解・重合反応の触媒となりうるものを加えてもよい。ゾル・ゲル反応の加水分解・重合反応の触媒として使用されるものは、「最新ゾル-ゲル法による機能性薄膜作製技術」(平島碩著、株式会社総合技術センター、P29)や「ゾル-ゲル法の科学」(作花済夫著、アグネ承風社、P154)等に記載されている一般的なゾル・ゲル反応で用いられる触媒である。例えば、酸触媒では塩酸、硝酸、硫酸、リン酸、酢酸、シュウ酸、酒石酸、トルエンスルホン酸等の無機及び有機酸類等が挙げられる。
 好ましい触媒の使用量は、有機金属酸化物の原料となる金属アルコキシド又は金属カルボキシレート1モルに対して2モル当量以下、さらに好ましくは1モル当量以下ある。
 ゾル・ゲル反応をさせる際、好ましい水の添加量は、有機金属酸化物の原料となる金属アルコキシド又は金属カルボキシレート1モルに対して、40モル当量以下であり、より好ましくは、10モル当量以下であり、さらに好ましくは、5モル当量以下である。
 本発明において、好ましいゾル・ゲル反応の反応濃度、温度、時間は、使用する金属アルコキシド又は金属カルボキシレートの種類や分子量、それぞれの条件が相互に関わるため一概には言えない。すなわち、アルコキシド又は金属カルボキシレートの分子量が高い場合や、反応濃度の高い場合に、反応温度を高く設定したり、反応時間を長くし過ぎたりすると、加水分解、重縮合反応に伴って反応生成物の分子量が上がり、高粘度化やゲル化する可能性がある。したがって、通常の好ましい反応濃度は、おおむね溶液中の固形分の質量%濃度で1~50%の範囲内であり、5~30%の範囲内がより好ましい。また、反応温度は反応時間にもよるが通常0~150℃の範囲内であり、好ましくは1~100℃の範囲内であり、より好ましくは20~60℃の範囲内であり、反応時間は1~50時間の範囲内が好ましい。
 本発明においては、封止層が含有する前記有機金属酸化物における炭素原子数とフッ素原子数の総数に対するフッ素原子数の比の値F/(C+F)が、0.05~1.00の範囲内であることが、撥水性又は疎水性の観点から好ましい。すなわち、本発明に係る有機金属錯酸化物中のフッ素比率(F/(C+F))が、下記式(a)で規定する条件を満たすことが好ましい。
 式(a):0.05≦F/(C+F)≦1.00
 式(a)の測定意義は、ゾル・ゲル法により作製した有機薄膜がある量以上のフッ素原子を必要とすることを数値化するものである。上記式(a)中のF及びCは、それぞれフッ素原子及び炭素原子の濃度を表す。
 更に好ましい範囲としては、0.20≦F/(C+F)≦0.60の範囲内である。
 上記フッ素原子の比率は、有機薄膜層形成に使用するゾル・ゲル液をシリコンウェハ上に塗布して薄膜を作製した後、当該薄膜をSEM・EDS(Energy Dispersive X-ray Spectoroscopy:エネルギー分散型X線分析装置)による元素分析により、それぞれフッ素原子及び炭素原子の濃度を求めることができる。SEM・EDS装置の一例として、JSM-IT100(日本電子社製)を挙げることができる。
 SEM・EDS分析は、高速、高感度で精度よく元素を検出できる特徴を有する。
 本発明に係る有機金属酸化物は、ゾル・ゲル法を用いて作製できるものであれば特に制限はされず、例えば、「ゾル-ゲル法の科学」P13、P20に紹介されている金属、例えば、Ti、Zr、Sn、Si、Ta、Yb,Y、Al、Zn、Co、In、Fe、Mo、Ni、Pd、Ag、Sr、Bi、Cu、Mg、Mn等が挙げられ、これらから選ばれる少なくとも一種、又は二種以上で構成されていてもよい。その中でも、Ti、Zr、Sn、Ta、Fe、Zn、Bi、Cu、Mg、Mn、Co、Ni、Ag及びAlから選択される少なくとも一種であることが、本発明の効果を得る観点から好ましい。
 また、これらゾル・ゲル液の重合反応を開始させるには、低温で重合反応が可能なプラズマやオゾンや紫外光を照射することが好ましく、紫外光の中でも真空紫外線(VUVという。)を用いることが、薄膜表面の平滑性向上のために好ましい。
 真空紫外線処理における紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられるが、特に限定されないがエキシマランプを用いることが好ましい。
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。封止層を形成する基材が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することにより行うことができる。紫外線照射に要する時間は、使用する基材や有機金属酸化物等を含有する塗布液の組成、濃度にもよるが、一般に0.1秒~10分間であり、好ましくは0.5秒~3分間である。
 塗膜面が受けるエネルギーとしては、均一で堅牢な薄膜を形成する観点から、1.0J/cm2以上であることが好ましく、1.5J/cm2以上であることがより好ましい。また、同様に、過度な紫外線照射を避ける観点から、14.0J/cm2以下であることが好ましく、12.0J/cm2以下であることがより好ましく、10.0J/cm2以下であることが特に好ましい。
 また、真空紫外線(VUV)を照射する際の、酸素濃度は300~10000体積ppm(1体積%)とすることが好ましく、更に好ましくは、500~5000体積ppmである。このような酸素濃度の範囲に調整することにより、封止層が酸素過多になるのを防止して、水分吸収の劣化を防止することができる。
 (VUV:真空紫外線照射処理)
 (株)エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長:172nm
 ランプ封入ガス:Xe
 エキシマ光強度:6J/cm2(172nm)
 試料と光源の距離  :2mm
 ステージ加熱温度  :80℃
 照射装置内の酸素濃度:0.3体積%
 真空紫外線(VUV)照射時にこれら酸素以外のガスとしては乾燥不活性ガスを用いることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。
 これらの真空紫外線照射処理の詳細については、例えば、特開2012-086394号公報の段落(0055)~(0091)、特開2012-006154号公報の段落(0049)~(0085)、特開2011-251460号公報の段落(0046)~(0074)等に記載の内容を参照することができる。
 また、同じく重合反応を行うには、110℃で30分以上の加熱処理により反応が促進される。そのため、封止層に本発明に係る有機金属酸化物を添加する場合は、加熱処理による反応を促進することが好ましく、また、本発明に係る有機金属酸化物を塗工による単独プロセス処理を行う場合は、加熱処理又はエキシマ光照射で重合反応を行うことが可能となる。
 〔エポキシ樹脂〕
 本発の封止層を形成する封止層形成用組成物においては、上記説明した有機金属酸化物の他に、バインダー成分として、少なくともエポキシ樹脂を含有する。
 本発明の封止層に適用が可能なエポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂、アルキル変性トリフェニルメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のビフェニルアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
 また、エポキシ樹脂としては、市販品を用いることができる。例えば、ビスフェノールA型エポキシ樹脂であるAER-X8501(旭化成株式会社製、商品名)、R-301(三菱化学株式会社製、商品名)、YL-980(三菱化学株式会社製、商品名)、ビスフェノールF型エポキシ樹脂であるYDF-170(東都化成株式会社製、商品名)、YL-983(三菱化学株式会社製、商品名)、ビスフェノールAD型エポキシ樹脂であるR-1710(三井化学株式会社製、商品名)、フェノールノボラック型エポキシ樹脂であるN-730S(DIC株式会社製、商品名)、Quatrex-2010(ダウ・ケミカル株式会社製、商品名)、クレゾールノボラック型エポキシ樹脂であるYDCN-702S(東都化成株式会社製、商品名)、EOCN-100(日本化薬株式会社製、商品名)、多官能エポキシ樹脂であるEPPN-501(日本化薬株式会社製、商品名)、TACTIX-742(ダウ・ケミカル株式会社製、商品名)、VG-3010(三井化学株式会社製、商品名)、1032S(三菱化学株式会社製、商品名)、ナフタレン骨格を有するエポキシ樹脂であるHP-4032(DIC株式会社製、商品名)、脂環式エポキシ樹脂であるEHPE-3150、CEL-3000(以上、株式会社ダイセル製、商品名)、DME-100(新日本理化株式会社製、商品名)、EX-216L(ナガセケムテックス株式会社製、商品名)、脂肪族エポキシ樹脂であるW-100(新日本理化株式会社製、商品名)、アミン型エポキシ樹脂であるELM-100(住友化学株式会社製、商品名)、YH-434L(東都化成株式会社製、商品名)、TETRAD-X、TETRAD-C(以上、三菱瓦斯化学株式会社製、商品名)、630、630LSD(以上、三菱化学株式会社製、商品名)、レゾルシン型エポキシ樹脂であるデナコールEX-201(ナガセケムテックス株式会社製、商品名)、ネオペンチルグリコール型エポキシ樹脂であるデナコールEX-211(ナガセケムテックス株式会社製、商品名)、ヘキサンジオール型エポキシ樹脂であるデナコールEX-212(ナガセケムテックス株式会社製、商品名)、エチレンプロピレングリコール型エポキシ樹脂であるデナコールEXシリーズ(EX-810、811、850、851、821、830、832、841、861(以上、ナガセケムテックス株式会社製、商品名))、エポキシ樹脂E-XL-24、E-XL-3L(以上、三井化学株式会社製、商品名)等が挙げられる。これらのエポキシ樹脂の中でも、イオン性不純物が少なく、かつ、反応性に優れる観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂及びアミン型エポキシ樹脂が好ましい。これらのエポキシ樹脂は1種を単独で又は2種以上を組み合わせて用いることができる。
 また、本発明の封止層においては、上記説明したエポキシ樹脂の他に、本発明の目的効果を損なわない範囲で、従来公知の各種樹脂成分を併用することができる。
 〔添加剤〕
 本発明の封止層においては、上記説明した有機金属酸化物及びエポキシ樹脂の他に、本発明の目的効果を損なわない範囲で、各種添加剤を添加することができる。
 (硬化剤)
 本発明の封止層に適用可能な硬化剤としては、例えば、重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤の3タイプを用いることが可能である。
 重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)やトリエチレンテトラミン(TETA)やメタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)やm-フェニレンジアミン(MPDA)やジアミノジフェニルスルホン(DDS)等の芳香族ポリアミンのほか、ジシアンジアミド(DICY)や有機酸ジヒドララジド等を含むポリアミン化合物、ヘキサヒドロ無水フタル酸(HHPA)やメチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)や無水ピロメリット酸(PMDA)やベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物などを含む酸無水物、フェノール類(フェノール、ナフトールなど)とアルデヒド類とを縮合させて合成されるノボラック型フェノール樹脂などのフェノール樹脂、ポリビニルフェノールに代表されるフェノールポリマーなどのポリフェノール化合物、イソシアネートプレポリマーやブロック化イソシアネート等のイソシアネート化合物、カルボン酸含有ポリエステル樹脂等の有機酸類、等が挙げられる。しかし、これらに限定されるものでは無い。
 触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)等の3級アミン化合物、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)等のイミダゾール化合物、BF3錯体等のルイス酸等が挙げられる。しかし、これらに限定されるものでは無い。
 縮合型の硬化剤としては、例えば、レゾール型フェノール樹脂等のフェノール系硬化剤、メチロール基含有尿素樹脂のような尿素樹脂、メチロール基含有メラミン樹脂のようなメラミン樹脂等が挙げられる。しかし、これらに限定されるものでは無い。
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点から重付加型フェノール系硬化剤が好ましい。
 重付加型フェノール系硬化剤は、一分子内にフェノール性ヒドロキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定されない。例えば、ノボラック型樹脂(フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等)、多官能型フェノール樹脂(トリフェノールメタン型フェノール樹脂等)、変性フェノール樹脂(テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等)、アラルキル型樹脂(フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等)、ビスフェノール化合物(ビスフェノールA、ビスフェノールF等)等が挙げられる。これらの硬化剤は1種類を単独で用いても、2種類以上を併用してもよい。
 (フィラー(無機充填材))
 本発明の封止層に適用が可能なフィラー(以下、無機充填材ともいう。)としては、一般の封止層形成用組成物に使用されているものを挙げることができる。例えば、大球シリカ、小球シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化ケイ素等が挙げられ、中でも、大球シリカ及び小球シリカが特に好ましい。しかし、これらに限定されるものでは無い。
 フィラーとしては、大球シリカ及び小球シリカを使用することが好ましいが、大球シリカは高充填を目的とし、小球シリカは狭間注入性を目的として使用することができる。大球シリカや小球シリカとしては、例えば、デンカ社製の溶融シリカや、日鉄ケミカル&マテリアル社製の球状シリカ「HSシリーズ」、東ソー社製のシリカ微粒子、ホソカワミクロン社製の結晶シリカ等が挙げられる。
 これらのフィラーは、1種を単独で用いても2種以上を併用してもよい。また、フィラーの形状としては、封止層形成用組成物の溶融粘度の上昇を抑え、更にフィラーの含有量を高めるためには、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。また、フィラーがカップリング剤により表面処理されていてもよい。さらに、必要に応じてフィラーをエポキシ樹脂で予め処理して用いてもよい。また、本発明においては、フィラー、特にシリカの表面に、本発明に係る金属酸化物をコーティングして付与する本発明に係る方法2を適用することができる。
 (中和剤)
 本発明の封止層においては、銅ワイヤー(ボンディングワイヤー)と半導体素子の電極パッド(ランド)との接合部の腐食(酸化劣化)を抑制するために、半導層形成用組成物の硬化体の加熱により発生する酸性の腐食性ガスを中和する中和剤を含んでいてもよい。具体的には、塩基性金属塩、特にカルシウム元素を含む化合物、アルミニウム元素を含む化合物及びマグネシウム元素を含む化合物からなる群から選択される少なくとも1種の中和剤を含有させることが好ましい。
 (硬化促進剤)
 本発明の封止層には、硬化促進剤を用いることができる。この硬化促進剤は、エポキシ基と硬化剤との硬化反応を促進させるものであればよい。具体的には、上記硬化促進剤として、1,8-ジアザビシクロ[5.4.0]ウンデセン-7等のジアザビシクロアルケン及びその誘導体;トリブチルアミン、ベンジルジメチルアミン等のアミン系化合物;2-メチルイミダゾール等のイミダゾール化合物;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・テトラ安息香酸ボレート、テトラフェニルホスホニウム・テトラナフトイックアシッドボレート、テトラフェニルホスホニウム・テトラナフトイルオキシボレート、テトラフェニルホスホニウム・テトラナフチルオキシボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ベンゾキノンをアダクトしたトリフェニルホスフィン等が挙げられる。これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
 (その他の添加剤)
 本発明の封止層には、上記各成分以外に、必要に応じてカップリング剤、レベリング剤、着色剤、変性剤、離型剤、低応力剤、感光剤、消泡剤、紫外線吸収剤、発泡剤、酸化防止剤、難燃剤、及びイオン捕捉剤等から選択される一種又は二種以上の添加物を添加してもよい。カップリング剤としては、例えば、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤、γ-グリシドキシプロピルトリメトキシシランカップリング剤、フェニルアミノプロピルトリメトキシシランカップリング剤、メルカプトシランカップリング剤、3-メルカプトプロピルトリメトキシシランカップリング剤などのシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤等が挙げられる。レベリング剤としては、アクリル系共重合物等が挙げられる。着色剤としては、カーボンブラック等が挙げられる。離型剤としては、天然ワックス、モンタン酸エステル等の合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン、酸化ポリエチレン等が挙げられる。低応力剤としては、シリコーンオイル、シリコーンゴム等が挙げられる。イオン捕捉剤としては、ハイドロタルサイト等が挙げられる。難燃剤としては、水酸化アルミニウム等が挙げられる。
 〔封止層の製造方法〕
 本発明の封止層の製造方法は、前記一般式(A)で表される化合物又は前記一般式(1)で表される構造を有する有機金属酸化物と、アルコール類とを含有する封止層形成用の混合液を用いて製造することを特徴とする。
 本発明の封止層形成用の混合液は、アルコール類とともに、モノマー成分である前記一般式(A)で表される化合物と前記一般式(A)で表される化合物の重縮合成分である一般式(1)で表される構造を有する有機金属酸化物とが共存している状態となるが、本発明においては、一般式(1)で表される構造を有する有機金属酸化物に対し、一般式(A)で表される化合物の成分比率が高い構成であることが好ましい。
 さらには、本発明の封止層の製造方法においては、封止層が含有する有機金属酸化物を、金属アルコキシド又は金属カルボキシレートと、フッ化アルコールとの混合液を用いて製造することが好ましい。
 本発明の封止層は、上記で説明した各種原材料を均一に分散混合できるのであれば、いかなる方法を用いても調製・製造することができるが、一般的な調製方法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、ニーダ、押出機等によって溶融混練した後、冷却、粉砕することでペレット化する方法を挙げることができる。
 《半導体装置》
 本発明の半導体装置は、少なくとも半導体素子及び部品で構成される半導体装置であって、前記部材又は半導体素子が、エポキシ樹脂及び有機金属酸化物により構成される封止層形成用組成物、又は有機金属酸化物のみを用いて、前記説明した図1A~図1Cで例示する本発明の封止方法に従って形成された封止層で被覆されていることを特徴とする。
 半導体素子としては、具体的には、集積回路、大規模集積回路、能動素子、受動素子、固体撮像素子、ディスクリート素子、SiCを使用した半導体素子、パワートランジスタなどのパワー系半導体、車載用電子部品等が挙げられる。なお、本発明においては、半導体本体の構造に関する詳細な説明は省略する。
 本発明の半導体装置では、少なくとも、半導体素子と、半導体素子を封止する本発明の封止層の硬化物により構成されている封止層とを有している。
 本発明の半導体装置としては、従来公知の半導体装置を適用することができ、特に制限はなく、具体的なタイプとしては、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリア(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)、クワッド・フラットノンリーデッド・パッケージ(QFN)、スモールアウトライン・ノンリーデッド・パッケージ(SON)、リードフレーム・BGA(LF-BGA)、モールド・アレイ・パッケージタイプのBGA(MAP-BGA)、再配線を使用したファン・イン・ウェハーレベルパッケージ(FIWLP)、ファン・アウト・ウェハーレベルパッケージ(FOWLP)やファン・イン・パネルレベルパッケージ(FIPLP)、ファン・アウト・パネルレベルパッケージ(FOPLP)などが挙げられる。しかし、これらに限定されるものではない。
 本発明の半導体装置では、例えば、本発明の封止層を形成する封止層形成用組成物を、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法を用いて、当該半導体封止用組成物を硬化成形し、半導体素子等の電子部品を封止することができる。例えば、トランスファー方式のモールディングングは、一般的に半導体などの電子部品の樹脂封止の用いられてきた成型方法(封止方法)で、プランジャー内で一旦溶融した封止層形成用組成物をキャビティーに充填して硬化させて、封止層を形成する方法である。また、コンプレッション方式のモールディングングとは、キャビティー内に直接、液状の半導体封止用組成物を入れ、溶融した後に、半導体素子が固定されているリードフレームやシリコンインターポーザー、有機インターポーザー、フリップチップ基板等を浸漬した後、樹脂を硬化成型して封止層を形成する方法である。
 また、本発明の封止層を形成する組成物を各種有機溶剤に溶かして液状の半導体封止層形成用塗布液を調製した後、半導体素子上に、塗布方式を用いて塗布することができる。適用可能な塗布方式としては、例えば、上記説明したトランスファー方式やコンプレッション方式での充填法の他に、ディスペンサー法、スピンコート法、キャスト法、スクリーン印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)、インクジェット・プリント法等の湿式塗布方式を用いて、封止層を形成することもできる。その中でも、ディスペンサー法、スピンコート法、ダイコート法、トランスファー方式、コンプレッション方式の充填法又はインクジェット・プリント法が好ましい。
 上記方法により、本発明の封止層に対し、熱処理を施して硬化する。硬化条件としては、従来公知の条件より適宜選択することができるが、例えば、反応速度の点から、温度(硬化温度)は25~180℃の範囲内が好ましく、より好ましくは60~150℃の範囲内であり、時間(硬化時間)は5~720分の範囲内が好ましい。なお、硬化は一段階で実施することもできるし、多段階で実施することもできる。
 具体的には、本発明の半導体装置としては、銅製リードフレームの支持部材に、半導体チップ、トランジスター、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本発明の封止層で封止した、半導体装置などが挙げられる。このような半導体装置としては、例えば、銅製リードフレーム上に半導体素子を固定し、ボンディングパッド等の素子の端子部とリード部をワイヤーボンディングやバンプで接続した後、本発明の封止層を用いて封止して構成される。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。なお、実施例において、構成要素の末尾に括弧内に記載した数字は、各図に記載した符号を表す。
 実施例1
 下記の方法に従って、腐食耐性を評価する評価用チップ(TEG)を作製した。
 《評価用チップの作製に用いた構成材料》
 下記の各評価用チップの作製に用いた各構成材料の詳細を、以下に示す。
 大球シリカ:デンカ社製 球状シリカ「FB-15D」(d50=13.0μm)
 小球シリカ:(株)アドマテックス製 球状シリカレギュラーグレード「SO-C5」(平粒粒径1.3~1.7μm)
 エポキシ樹脂:京セラ社製 KE-G3000D
 硬化剤:日本化薬社製 フェノールアラルキルGPH65
 硬化触媒:四国化成社製 2P4MHZ
 着色剤:カーボンブラック(三菱化学社製 MA-100)
 難燃剤:テトラクロロ無水フタル酸
 カップリング剤:信越化学社製 KBM-503(3-メタクリロキシプロピルトリメトキシシラン)
 〈有機金属酸化物群〉
 Ti金属酸化物:例示化合物1
 Cu金属酸化物:例示化合物141
 Bi金属酸化物:例示化合物136。
 《評価用チップ(TEG)の作製》
 〔評価用チップ1の作製:比較例〕
 (封止層形成用組成物1の調製)
 下記の各添加剤より構成される封止層形成用組成物1を調製した。
 前記エポキシ樹脂                    92質量部
 前記硬化剤                        5質量部
 前記難燃剤                        2質量部
 前記カップリング剤                    1質量部
 (テストパターニング基板(13)の作製)
 下記の方法に従って、図4に記載の構成からなる腐食耐性評価用のテストパターニング基板(13)を作製した。
 テストエレメント基板(14)として、厚さ5cmのコーニング社製のEagleXGノンアルカリガラスを用い、ウェット洗浄にてクリーニングを行った。次いで、テストエレメント基板(14)上に、SiO2を厚さ10nmとなるようにスパッタリング法で製膜して、密着層を形成した。次いで、所定の位置に、Cuを同じくスパッタリング法により厚さ1μmに成膜した。
 次いで、厚さ20μmのL/Sのくし場電極(17)をフォトプロセスで形成するため、東京応化製のフォトレジストを厚さ1μmで付与した後、露光と現像を行い、関東化学製のCu用エッチング液でパターニングを行った。剥離と純粋リンスを行うことで、図4に示す構成のテストパターニング基板(13)を作製した。
 図4において、テストパターニング基板(13)は、テストエレメント基板(14)上に、マイナス電極(15)とプラス電極(16)と、それらに接続されたくし場電極(17)が形成されている。
 (評価用チップ(TEG)の作製〕
 次いで、図5で示すように、テストパターニング基板(13)の上段及び下段に、上記調製した封止層形成用組成物1(比較例、有機金属酸化物を未含有)により、くし場電極全体を被覆する形態でドライ膜厚が20μmとなる条件で塗工し、150℃で60分乾燥させることにより、半導体封止用組成物1のみで構成される封止層(20)を形成して、評価用チップ1(19)を作製した。
 〔評価用チップ2の作製:本発明〕
 (封止層形成用組成物2の調製)
 下記の各添加剤より構成される封止層形成用組成物2を調製した。半導体封止用組成物2は、有機金属化合物より構成される有機金属酸化物群A(ゾル・ゲル液)を、エポキシ樹脂、硬化剤、難燃剤及びカップリング剤から構成される塗布液に直接添加して、塗布液を調製する方法(塗布液添加)である。
 前記エポキシ樹脂                    87質量部
 前記硬化剤                        5質量部
 前記難燃剤                        2質量部
 前記カップリング剤                    1質量部
 〈有機金属酸化物群A:ゾル・ゲル液〉
 前記Ti金属酸化物                    2質量部
 前記Cu金属酸化物                    1質量部 前記Bi金属酸化物                    2質量部
 (評価用チップ(TEG)の作製〕
 次いで、上記評価用チップ1(比較例)の作製と同様にして、図5で示すように、テストパターニング基板(13)の上段及び下段に、上記調製した有機金属酸化物群Aを含有する封止層形成用組成物2を、くし場電極全体を被覆する形態でドライ膜厚が20μmとなる条件で塗工し、150℃で60分乾燥させることにより、封止層(20)を形成して、評価用チップ2を作製した。図6には、図5で示した評価用チップ(19)の上面図に記載のA-A′切断面における断面図を示す。
 〔評価用チップ3の作製:本発明〕
 (テストパターニング基板(13)への有機金属酸化物群Aの付与)
 上記作製した図4で示す構成のテストパターニング基板(13)上へ、下記の構成からなる有機金属酸化物群A(ゾル・ゲル液)を、ディスペンサーで100μm厚になるように塗布した。次いで、乾燥のため110℃で30分加熱し、重合反応のため、エキシマ光を1.5J/cm2照射して、有機金属酸化物群を含有する皮膜層を形成した。
 前記Ti金属酸化物                    2質量部
 前記Cu金属酸化物                    1質量部
 前記Bi金属酸化物                    2質量部
 (封止層の形成)
 次いで、有機金属酸化物群を含む皮膜層を形成したテストパターニング基板(13)上に、図5で示す構成となるように、上段及び下段に、下記に示す構成からなる封止層形成用組成物3を付与して、ドライ膜厚が20μmとなるように塗布した後、150℃で60分乾燥させて、封止層(20)を形成し、評価用チップ3を作製した。
 〈封止層形成用組成物3の調製〉
 前記大球シリカ                     72質量部
 前記小球シリカ                     15質量部
 前記エポキシ樹脂                     8質量部
 前記硬化剤                      0.5質量部
 前記硬化促進剤                    0.5質量部
 前記難燃剤                        2質量部
 前記カップリング剤                    1質量部
 〔評価用チップ4の作製:本発明〕
 上記評価用チップ3の作製において、有機金属酸化物群Aの添加方法を、下記の方法に変更した以外は同様にして、評価用チップ4を作製した。
 (フィラーへの有機金属酸化物群の付与)
 下記の方法に従って、フィラー表面に予め有機金属酸化物群をディップ塗布によりコーティングした。
 表Iに示すように、フィラーは、あらかじめ天然石英をビーズミルで所望のサイズに粉砕した大球シリカと、金属ケイ素からなる小球シリカを用意し、表面活性のため、HMDS(1,1,1,3,3,3-ヘキサメチルジシラザン)による処理を行った。
 大球シリカに対しては、シリコーン被覆するため、シリコーンによるディップコーティングを行った。一方、小球シリカの15質量部に対しては、下記有機金属酸化物群A(ゾル・ゲル液)の1質量部を、ディップコーティングした。
 〈有機金属酸化物群A〉
 前記Ti金属酸化物                  0.4質量部
 前記Cu金属酸化物                  0.2質量部
 前記Bi金属酸化物                  0.4質量部
 (封止層の調製)
 表Iに示すように、上記調製したシリコーン被覆を被覆した大球シリカを72質量部、有機金属酸化物群A(ゾル・ゲル液)を1質量被覆した小球シリカを15質量部、エポシキ樹脂を8質量部、硬化剤を1質量部、硬化触媒を0.5質量部、着色剤を0.5質量部、難燃剤を2質量部から構成される封止層形成用組成物4を調製した。
 (封止層の形成)
 次いで、テストパターニング基板(13)上に、図5で示す構成となるように、上段及び下段に、上記調製した封止層形成用組成物4を付与して、ドライ膜厚が20μmとなるように塗布した後、150℃で60分乾燥させて、封止層(20)を形成し、評価用チップ4を作製した。
 〔評価用チップ5の作製:本発明〕
 上記評価用チップ4の作製において、小球シリカにディップコーティングする有機金属酸化物群として、有機金属酸化物群Aに代えて、下記の組成からなる有機金属酸化物群Bを用いた以外は同様にして、評価用チップ5を作製した。
 (有機金属酸化物群B)
 前記Ti金属酸化物                  0.5質量部
 前記Bi金属酸化物                  0.5質量部
 〔評価用チップ6の作製:本発明〕
 上記評価用チップ4の作製において、小球シリカにディップコーティングする有機金属酸化物群として、有機金属酸化物群Aに代えて、下記の組成からなる有機金属酸化物群Cを用いた以外は同様にして、評価用チップ6を作製した。
 (有機金属酸化物群C)
 前記Bi金属酸化物                  1.0質量部
 〔評価用チップ7の作製:本発明〕
 上記評価用チップ4の作製において、小球シリカにディップコーティングする有機金属酸化物群として、有機金属酸化物群Aに代えて、下記の組成からなる有機金属酸化物群Dを用いた以外は同様にして、評価用チップ7を作製した。
 (有機金属酸化物群D)
 前記Cu金属酸化物                  0.5質量部
 前記Bi金属酸化物                  0.5質量部
 《評価用チップ(TEG)の評価》
 上記作製した図5に記載の構成からなる各評価用チップをそれぞれ2枚(くし場電極本数:240本)用意し、下記の方法に従って腐食耐性の評価を行った。
 上記準備した各評価用チップを、85℃、85%RHの環境条件で、装置内に硫黄粉末を貯留した開放系のサンプル瓶を配置した恒温槽内に入れ、電源(18)より50Vのバイアス電圧を印加した状態で、1000時間保存し、くし場電極の腐食の状態を目視観察した。この評価では、外部環境から水分と硫黄成分(硫化水素)が封止層内に侵入し、封止層内部では、難燃剤成分よりハロゲン(Cl-)が発生する評価条件である。
 具体的には、1000時間保存した各評価用チップ(19)に対し、図6で示すように、ノンアルカリガラス製であるテストエレメント基板(14)面(図6の下面側)から、240本のくし場電極(17)の形状について目視観察し、くし場電極(17)の面積が、部分的であっても、電極幅で2/3以下になる部位が発生している場合に、「腐食発生」と判断し、腐食が発生したくし場電極(17)の本数をカウントし、得られた結果を表Iに示す。
 腐食率が2.0%未満であれば「◎」、2.0%以上、5.0%未満であれば「○」、5.0%以上であれば「×」と判定した。
Figure JPOXMLDOC01-appb-T000011
 表Iに記載の結果より明らかなように、本発明の評価用チップ2~7は、比較例である評価チップ1に対し、硫黄成分、水分、及び難燃剤から発生するハロゲン等による腐食の発生がなく、電極に対する腐食耐性に優れていることが分かる。
 比較例である評価用チップ1では、200時間を超えたころから腐食が発生しはじめ、具体的には黒色化し、腐食及び電食が発生していた。上記結果より明らかなように、本発明に係る有機金属酸化物より構成される有機金属酸化物群を含有する封止層形成用組成物を用いて封止して形成した本発明の評価用チップは、明らかなに腐食を防止することを確認することができた。
 実施例2
 〔半導体装置1の作製(比較例):QFN形態の半導体装置の作製〕
 下記の方法に従って、実施例1に記載の評価用チップ1(比較例)の作製に使用した封止層形成用組成物1を用いて、図7A及び図7Bに記載の構成からなる半導体装置1(21、QFNパッケージ、比較例)を作製した。
 図7Aに記載の半導体装置(21、QFN)は、エレメント基板(13)上にリードフレーム(22)が配置され、中央のリードフレーム(22)上には、Ag製のダイボンド(23)を介して、半導体素子(3)が配置されている。半導体のランド(7)とCu製のリードフレーム(22)とは、Cu製のボンディングワイヤー(8)により接続されている。それら各構成要素を被覆する形態で、実施例1の記載の評価用チップ1の作製に使用した封止層形成用組成物1をトランスファー方式でモールディングして封止層(4)を形成した。
 具体的には、裏面研磨して薄膜化したシリコンウェハをダイシングテープに貼り付け、ダイサーでシリコンウェハをスクライブして、エレメント基板(13)を作製した。
 次に、リードフレーム(22)上に、半導体素子(3)をAgからなるダイボンド(23)で貼り付け、150℃で30分のアニール処理を施して硬化させた。
 次にCu製のボンディングワイヤー(8)でボンディングし、リードフレーム(22)と半導体素子(3)を電気的に接続した。
 次いで、上記構成からなる半導体素子が固定されているリードフレーム(22)やランド(7)、ボンディングワイヤー(8)を有するエレメント基板をキャビティー内のセットし、プランジャーに充填した封止層形成用組成物1をトランスファー方式でモールディングして封止層(4)を形成及び硬化した。
 最後に、メッキ処理として約2~10μmのNiメッキ処理を施すことで、比較例である半導体装置1(21)を作製した。
 〔半導体装置2の作製:QFN形態(本発明)〕
 上記QFN形態である比較例の半導体装置1の作製において、比較例である封止層形成用組成物1に代えて、実施例1に記載の評価用チップ2(本発明)の作製で用いた有機金属酸化物群Aを含有する封止層形成用組成物2を用いた以外は同様にして、封止方式として、方法1(タイプA)を用いて、図7に記載のパッケージング仕様のQFN形態である本発明の半導体装置2を作製した。
 〔半導体装置3の作製:QFN形態(本発明)〕
 上記比較例である半導体装置1の作製で用いたのと同様の半導体素子が固定されているリードフレームやランド、ボンディングワイヤーを有するエレメント基板上に対し、実施例1に記載の有機金属酸化物群Aにより、ボンディングワイヤーとランドの全表面を、インクジェット・プリント法を用いて、厚さ200nmとなる条件で被覆した。
 次いで、ボンディングワイヤーとランドを有機金属酸化物群Aで被覆したエレメント基板をキャビティー内のセットし、プランジャーに充填した実施例1に記載の封止層形成用組成物3をトランスファー方式でモールディングして、封止方法3(図1Cに記載のタイプC)で封止した封止層(4)を用いて形成した本発明の半導体装置3を作製した。
 〔半導体装置4の作製:QFN形態(本発明)〕
 実施例1で記載の評価用チップ4(本発明3)の作製に用いたシリコーン被覆を被覆した大球シリカを72質量部、有機金属酸化物群A(ゾル・ゲル液)を1質量被覆した小球シリカを15質量部、エポシキ樹脂を8質量部、硬化剤を1質量部、硬化触媒を0.5質量部、着色剤を0.5質量部、難燃剤を2質量部から構成される封止層形成用組成物4を用い、上記半導体装置2の作製に用いたトランスファー方式でモールディングして、封止層(4)を形成及び硬化し、本発明の封止方法であるフィラー(小球シリカ)表面を有機金属酸化物群Aで被覆する方法2(タイプB)で作製した封止層を有する本発明の半導体装置4を作製した。
 〔半導体装置5の作製:QFN形態(本発明)〕
 上記半導体装置4の作製において、封止層形成用組成物4に代えて、実施例1で調製した有機金属酸化物群Bを含む封止層形成用組成物5を用いた以外は同様にして、本発明に係る封止方法である方法2で封止層を形成した本発明の半導体装置5を作製した。
 〔半導体装置6の作製:QFN形態(本発明)〕
 上記半導体装置4の作製において、封止層形成用組成物4に代えて、実施例1で調製した有機金属酸化物群Cを含む封止層形成用組成物6を用いた以外は同様にして、本発明に係る封止方法である方法2で封止層を形成した本発明の半導体装置6を作製した。
 〔半導体装置7の作製:QFN形態(本発明)〕
 上記半導体装置4の作製において、封止層形成用組成物4に代えて、実施例1で調製した有機金属酸化物群Dを含む封止層形成用組成物7を用いた以外は同様にして、本発明に係る封止方法である方法2で封止層を形成した本発明の半導体装置7を作製した。
 《半導体装置の評価》
 上記作製したQFN仕様の半導体装置である半導体装置1~7について、下記の方法に従って腐食耐性の評価を行った。
 各水準の半導体装置を100個準備し、すべてを、装置内に腐食成分(G)として硫黄粉末を有する開放系のサンプル瓶を配置し、85℃、85%RHの環境条件とした恒温槽内に入れ、実稼働状態で、1000時間保存した。この評価では、外部環境から水分と硫黄成分(硫化水素)が封止層内に侵入し、封止層内部では、難燃剤成分よりハロゲン(Cl-)が発生する評価条件である。
 次いで、1000時間連続で稼働した後、それぞれ100個の半導体装置について、稼働動作における異常(駆動不良)の発生の有無を確認し、下記の基準に従って、半導体装置の腐食耐性を判定した。
 ◎:半導体装置100個の内、稼働操作で異常が発生した個体数は、3個以下である
 ○:半導体装置100個の内、稼働操作で異常が発生した個体数は、4個以上、10個以下である
 △:半導体装置100個の内、稼働操作で異常が発生した個体数は、11個以上、20個以下である
 ×:半導体装置100個の内、稼働操作で異常が発生した個体数は、21個以上である
 以上により得られた結果を、表IIに示す。
Figure JPOXMLDOC01-appb-T000012
 表IIの記載より明らかなように、本発明の半導体装置は、硫黄成分を含む高温高湿環境下で長期間保存した後でも、硫黄成分、水分、及び難燃剤から発生するハロゲン等による腐食の発生がなく、比較例である半導体装置1に対し、本発明の半導体装置2~7は、正常に稼働することを確認することができ、腐食耐性に極めて優れていることが分かる。
 本発明の封止方法は、封止構造中に存在する、又は外部より侵入する水分、ハロゲン成分、硫化水素ガス等による半導体装置を構成する半導体素子や部品の腐食を防止でき、ダイオード、トランジスター、集積回路等の電子部品に好適に使用することができる。
 1、21 半導体装置、
 2 パッケージ基板
 3 半導体素子
 4、20 封止層
 5 有機金属酸化物
 6 樹脂バインダー
 7 ランド
 8 ボンディングワイヤー
 9 半導体素子積層体
 10 アンダーフィル材
 11 回路基板
 12 ハンダバンプ
 13 テストパターニング基板
 14 エレメント基板
 15 マイナス電極
 16 プラス電極
 17 くし場電極
 18 電源
 19 評価用チップ
 22 リードフレーム
 23 ダイボンド
 F フィラー
 G 腐食成分
 P 部品

Claims (12)

  1.  半導体装置を構成する半導体素子及び部品の封止方法であって、
     (1)エポキシ樹脂と有機金属酸化物とを含有する組成物を用いる方法1、
     (2)エポキシ樹脂と、有機金属酸化物で被覆されたフィラーとを含有する組成物を用いる方法2、又は
     (3)前記部品を有機金属酸化物で封止した後、エポキシ樹脂で被覆する方法3、
     のいずれかにより封止層を形成することを特徴とする封止方法。
  2.  前記有機金属酸化物が、下記一般式(1)で表される構造を有する有機金属酸化物であることを特徴とする請求項1に記載の封止方法。
     一般式(1)  R-[M(OR1y(O-)x-yn-R
    〔式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。〕
  3.  前記封止層を塗布法で形成する工程を有することを特徴とする請求項1又は請求項2に記載の封止方法。
  4.  少なくとも、エポキシ樹脂及び下記一般式(1)で表される構造を有する有機金属酸化物で構成されていることを特徴とする封止層。
     一般式(1)  R-[M(OR1y(O-)x-yn-R
    〔式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。〕
  5.  下記一般式(1)で表される構造を有する有機金属酸化物で構成されていることを特徴とする封止層。
     一般式(1)  R-[M(OR1y(O-)x-yn-R
    〔式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。〕
  6.  前記有機金属酸化物における炭素原子数とフッ素原子数の総数に対するフッ素原子数の比の値F/(C+F)が、下式(a)で規定する条件を満たすことを特徴とする請求項4又は請求項5に記載の封止層。
     式(a)  0.05≦F/(C+F)≦1.00
  7.  前記一般式(1)におけるMで表される金属原子が、Ti、Zr、Sn、Ta、Fe、Zn、Bi、Cu、Mg、Mn、Co、Ni、Ag及びAlからから選択される少なくとも一種であることを特徴とする請求項4から請求項6までのいずれか一項に記載の封止層。
  8.  前記有機金属酸化物で被覆されたフィラーを含有することを特徴とする請求項4から請求項7までのいずれか一項に記載の封止層。
  9.  下記一般式(A)で表される化合物又は下記一般式(1)で表される構造を有する有機金属酸化物と、アルコール類とを含有することを特徴とする封止層形成用の混合液。
     一般式(A) M(OR1y(O-R)x-y
     一般式(1)  R-[M(OR1y(O-)x-yn-R
    〔式中、Rは、水素原子、炭素数1個以上のアルキル基、アルケニル基、アリール基、シクロアルキル基、アシル基、アルコキシ基、又は複素環基を表す。ただし、Rは置換基としてフッ素原子を含んでもよい。Mは、金属原子を表す。OR1は、フッ化アルコキシ基を表す。xは金属原子の価数、yは1とxの間の任意な整数を表す。nは重縮合度を表す。〕
  10.  請求項4から請求項8までのいずれか一項に記載の封止層を製造する封止層の製造方法であって、
     請求項9に記載の封止層形成用の混合液を用いて製造することを特徴とする封止層の製造方法。
  11.  少なくとも半導体素子及び部品で構成される半導体装置であって、
     前記半導体素子又は部品が、請求項4から請求項7までのいずれか一項に記載の封止層で被覆されていることを特徴とする半導体装置。
  12.  前記封止層で被覆された前記部品が、ボンディングワイヤー又はランドであることを特徴とする請求項11に記載の半導体装置。
PCT/JP2019/041717 2018-11-30 2019-10-24 封止方法、封止層、封止層形成用の混合液、封止層の製造方法及び半導体装置 WO2020110534A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020558187A JP7342882B2 (ja) 2018-11-30 2019-10-24 封止方法、封止層、封止層形成用の混合液、封止層の製造方法及び半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-224697 2018-11-30
JP2018224697 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020110534A1 true WO2020110534A1 (ja) 2020-06-04

Family

ID=70853923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041717 WO2020110534A1 (ja) 2018-11-30 2019-10-24 封止方法、封止層、封止層形成用の混合液、封止層の製造方法及び半導体装置

Country Status (3)

Country Link
JP (1) JP7342882B2 (ja)
TW (1) TWI741405B (ja)
WO (1) WO2020110534A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741544A (ja) * 1993-08-02 1995-02-10 Tokuyama Corp エポキシ樹脂組成物及び光半導体装置
JP2002033187A (ja) * 2000-05-08 2002-01-31 Futaba Corp 有機el素子
JP2006070266A (ja) * 2004-08-06 2006-03-16 Nippon Shokubai Co Ltd 樹脂組成物の製造方法及び樹脂組成物
JP2006219601A (ja) * 2005-02-10 2006-08-24 Hitachi Chem Co Ltd 封止用液状エポキシ樹脂組成物
WO2009139463A1 (ja) * 2008-05-16 2009-11-19 日本電気株式会社 金属酸化物系微粒子およびその製造方法、並びに樹脂組成物
WO2010147095A1 (ja) * 2009-06-17 2010-12-23 昭和電工株式会社 放電ギャップ充填用組成物および静電放電保護体
JP2015221757A (ja) * 2014-05-22 2015-12-10 双葉電子工業株式会社 化合物、乾燥剤、封止構造及び有機el素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959501B (zh) * 2011-11-18 2017-06-20 Lg化学株式会社 用于包封有机电子装置的光可固化压敏粘合膜、有机电子装置以及包封该装置的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741544A (ja) * 1993-08-02 1995-02-10 Tokuyama Corp エポキシ樹脂組成物及び光半導体装置
JP2002033187A (ja) * 2000-05-08 2002-01-31 Futaba Corp 有機el素子
JP2006070266A (ja) * 2004-08-06 2006-03-16 Nippon Shokubai Co Ltd 樹脂組成物の製造方法及び樹脂組成物
JP2006219601A (ja) * 2005-02-10 2006-08-24 Hitachi Chem Co Ltd 封止用液状エポキシ樹脂組成物
WO2009139463A1 (ja) * 2008-05-16 2009-11-19 日本電気株式会社 金属酸化物系微粒子およびその製造方法、並びに樹脂組成物
WO2010147095A1 (ja) * 2009-06-17 2010-12-23 昭和電工株式会社 放電ギャップ充填用組成物および静電放電保護体
JP2015221757A (ja) * 2014-05-22 2015-12-10 双葉電子工業株式会社 化合物、乾燥剤、封止構造及び有機el素子

Also Published As

Publication number Publication date
TW202031859A (zh) 2020-09-01
JPWO2020110534A1 (ja) 2021-10-14
JP7342882B2 (ja) 2023-09-12
TWI741405B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
US8963344B2 (en) Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device
JP2001270976A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
WO2012070529A1 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
TW201105732A (en) Semiconductor-encapsulating resin composition and semiconductor device
WO2010150487A1 (ja) 半導体封止用樹脂組成物、及び半導体装置
JP2015137344A (ja) 封止用エポキシ樹脂組成物、及び半導体装置
JP6330658B2 (ja) 半導体装置
JP2010114408A (ja) 半導体装置
JP2013209450A (ja) 半導体封止用エポキシ樹脂組成物
JP6094573B2 (ja) 半導体装置
JP6341203B2 (ja) 半導体装置
KR102202216B1 (ko) 전자 장치의 제조 방법
JP7342882B2 (ja) 封止方法、封止層、封止層形成用の混合液、封止層の製造方法及び半導体装置
JP6322966B2 (ja) 封止用樹脂組成物及び電子部品装置
JP5776464B2 (ja) 封止用樹脂組成物及び電子部品装置
JP7476589B2 (ja) 半導体装置の製造方法
JP5125673B2 (ja) 半導体封止用エポキシ樹脂組成物および半導体装置
WO2019230329A1 (ja) アンダーフィル材、有機金属酸化物の製造方法、電子部品装置及びその製造方法
JP2021150343A (ja) 半導体装置およびその製造方法
JP2021102728A (ja) Lds用熱硬化性樹脂組成物
JP2015110686A (ja) 半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889782

Country of ref document: EP

Kind code of ref document: A1