WO2012070529A1 - 半導体封止用エポキシ樹脂組成物及び半導体装置 - Google Patents

半導体封止用エポキシ樹脂組成物及び半導体装置 Download PDF

Info

Publication number
WO2012070529A1
WO2012070529A1 PCT/JP2011/076799 JP2011076799W WO2012070529A1 WO 2012070529 A1 WO2012070529 A1 WO 2012070529A1 JP 2011076799 W JP2011076799 W JP 2011076799W WO 2012070529 A1 WO2012070529 A1 WO 2012070529A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
semiconductor
resin composition
mass
group
Prior art date
Application number
PCT/JP2011/076799
Other languages
English (en)
French (fr)
Inventor
慎吾 伊藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to SG2013039623A priority Critical patent/SG190864A1/en
Priority to US13/988,534 priority patent/US20130256863A1/en
Priority to CN2011800561231A priority patent/CN103221480A/zh
Priority to KR1020137013621A priority patent/KR20130141557A/ko
Priority to JP2012545740A priority patent/JPWO2012070529A1/ja
Publication of WO2012070529A1 publication Critical patent/WO2012070529A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8105Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • A61K8/8111Homopolymers or copolymers of aliphatic olefines, e.g. polyethylene, polyisobutene; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8158Homopolymers or copolymers of amides or imides, e.g. (meth) acrylamide; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/48Thickener, Thickening system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • H01L2224/488Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48817Principal constituent of the connecting portion of the wire connector being Copper (Cu) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48824Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device sealed with the same.
  • This application claims priority based on Japanese Patent Application No. 2010-260913 for which it applied to Japan on November 24, 2010, and uses the content here.
  • an epoxy resin composition excellent in heat resistance and moisture resistance which contains an epoxy resin, a phenol resin-based curing agent, and an inorganic filler such as fused silica or crystalline silica.
  • an epoxy resin composition excellent in heat resistance and moisture resistance which contains an epoxy resin, a phenol resin-based curing agent, and an inorganic filler such as fused silica or crystalline silica.
  • Patent Document 1 discloses a bonding wire having a core material mainly composed of copper, and an outer skin layer containing conductive metal and copper different in one or both of components and compositions from the core material on the core material. Is described.
  • this bonding wire when the thickness of the outer skin layer is 0.001 to 0.02 ⁇ m, the material cost is low, the ball bonding property, the wire bonding property, etc. are excellent, the loop forming property is also good, and the narrow pitch It is described that it becomes possible to provide a copper-based bonding wire that can be adapted for thinning a wire and increasing the diameter of a power IC.
  • the moisture resistance reliability (HAST) of the semiconductor device may be lowered.
  • HAST moisture resistance reliability
  • the epoxy resin composition for semiconductor encapsulation according to any one of [1] to [4], wherein the epoxy resin (A) includes an epoxy resin represented by the following general formula (1): Is provided.
  • a plurality of R each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, n represents a degree of polymerization, and an average value thereof is a positive number of 0 to 4. is there.
  • the epoxy resin composition for semiconductor encapsulation of the present invention is A semiconductor element mounted on a lead frame or circuit board having a die pad portion; A metal wire for electrically joining an electrical joint provided on the lead frame or the circuit board and an electrode pad provided on the semiconductor element; A semiconductor sealing epoxy resin composition used for manufacturing a semiconductor device by sealing an epoxy resin (A), a curing agent (B), an inorganic resin. Containing a filler (C),
  • the epoxy resin (A) is characterized in that the area of the main peak in the measurement by an area method of gel permeation chromatography is 90% or more with respect to the total area of all peaks.
  • the epoxy resin composition for semiconductor encapsulation of the present invention contains an epoxy resin (A).
  • the epoxy resin (A) is a monomer, oligomer, or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • epoxy resin (A) examples include biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol type epoxy resin such as tetramethylbisphenol F type epoxy resin, stilbene type epoxy resin; phenol novolac type epoxy Resin, novolak type epoxy resin such as cresol novolac type epoxy resin; polyfunctional epoxy resin such as triphenolmethane type epoxy resin and alkyl-modified triphenolmethane type epoxy resin; phenol aralkyl type epoxy resin having phenylene skeleton, phenylene skeleton Aralkyl-type epoxy resins such as naphthol aralkyl-type epoxy resins and phenol-aralkyl-type epoxy resins having a biphenylene skeleton; dihydroanthracenediol Type epoxy resin; naphthol type epoxy resin such as epoxy resin obtained by glycidyl etherification of dihydroxynaphthalene dimer; triazine nucleus-containing epoxy resin such as triglycidyl
  • biphenyl type epoxy resin bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin, stilbene type epoxy resin, etc. have the property of expressing high crystallinity by selection and purification of synthesis methods.
  • the epoxy resin (A) used in the present invention is characterized in that the area of the main peak in the measurement by the area method of gel permeation chromatography is 90% or more with respect to the total area of all peaks. More preferably, the area of the main peak is 92% or more with respect to the total area of all peaks. Particularly preferably, the area of the main peak is 95% or more with respect to the total area of all the peaks.
  • the main peak in the measurement by the area method of the gel permeation chromatograph of the epoxy resin (A) is a peak having the maximum area in each peak of the gel permeation chromatograph, and the purity of the epoxy resin It can be used as an index. And since the epoxy resin (A) whose area of the said main peak is in the said range with respect to the total area of all the peaks has few by-products containing chlorine, the epoxy resin composition with few corrosive impurities is obtained. be able to.
  • an epoxy metal precursor such as a phenol resin is dissolved in an excess of epihalohydrin such as epichlorohydrin, and then an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. And a method of reacting at 50 to 150 ° C., preferably 60 to 120 ° C. for 1 to 10 hours. After completion of the reaction, excess epichlorohydrin is distilled off, and the residue is dissolved in a solvent such as toluene, methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to obtain an epoxy resin. Can be obtained.
  • epihalohydrin such as epichlorohydrin
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide.
  • a method of reacting at 50 to 150 ° C., preferably 60 to 120 ° C. for 1 to 10 hours. After completion of the reaction, excess epichlorohydrin is distilled off, and
  • the amount of epihalohydrin is reduced within a range not to increase the molecular weight by self-polymerization at the time of synthesis, or the halogen adduct in the epoxy resin or the like.
  • a technique such as reducing the blending amount and blending concentration of the alkali metal hydroxide within a range in which the ring-closing epoxy group does not become excessive can be applied.
  • specific epoxy resins specified in the present invention can be prepared by appropriately combining known purification methods such as column chromatography fractionation, molecular distillation, recrystallization, etc. with epoxy resins that are synthesized by known methods or are commercially available. Also good.
  • a commercially available epoxy resin prepared in this way can also be used. Examples of commercially available products include “YX4000UH” manufactured by Mitsubishi Chemical Corporation and “YL7684” manufactured by Mitsubishi Chemical Corporation.
  • GPC gel permeation chromatography
  • the GPC apparatus is composed of a pump, an injector, a guard column, a column, and a detector, and tetrahydrofuran (THF) is used as a solvent.
  • the measurement is performed at a pump flow rate of 0.5 ml / min. A flow rate higher than this is not preferable because the detection accuracy of the target molecular weight is lowered.
  • the flow rate accuracy is preferably 0.10% or less.
  • a commercially available guard column for example, TSK GUARDCOLUMN HHR-L: diameter 6.0 mm, tube length 40 mm
  • TSK-GEL GMHHR- manufactured by Tosoh Corporation a commercially available polystyrene gel column
  • L diameter 7.8 mm, tube length 30 mm
  • RI detector for example, a differential refractive index (RI) detector W2414 manufactured by WATERS
  • WATERS differential refractive index
  • the epoxy resin (A) used in the present invention preferably has a total chlorine content of 300 ppm or less and a hydrolyzable chlorine content of 150 ppm or less. More preferably, the total chlorine content is 200 ppm or less, and the hydrolyzable chlorine content is 100 ppm or less. Particularly preferably, the total chlorine content is 50 ppm or less, and the hydrolyzable chlorine content is 30 ppm or less.
  • a semiconductor device with high moisture resistance reliability can be obtained. Chlorine ions are corrosive to metals and corrode aluminum wiring parts such as electrode pads of semiconductor elements.
  • Chlorine in the epoxy resin composition for semiconductor encapsulation is derived from the epoxy resin. Since an epoxy resin is synthesized using epichlorohydrin containing chlorine, even if it is a high-purity epoxy resin for use in electronic materials, the total chlorine content is usually 600 ppm or more. At least 50% of the chlorine contained in the epoxy exhibits hydrolyzability and is easily desorbed as chlorine ions. If the total chlorine amount and hydrolyzable chlorine amount in the epoxy resin are within the above ranges, the moisture resistance reliability of the semiconductor device is greatly improved.
  • Chlorine is contained in a large amount in the high molecular weight component of the epoxy resin, and is small in the main peak portion which is the lowest molecule (when n is 0 in the following general formula (1)). That is, the main peak portion is on the low molecular side, and the amount of chlorine contained in the epoxy resin on the low molecular side decreases. If it is an epoxy resin whose area of the main peak is within the above range with respect to the total area of all peaks as measured by the area method of gel permeation chromatography, the total chlorine amount and hydrolyzable chlorine amount are within the above range. By using such an epoxy resin, it is possible to obtain a resin composition for encapsulating a semiconductor having a remarkably low chlorine content.
  • the total chlorine content of the epoxy resin can be measured by JIS K7229 (quantitative determination method of chlorine in the chlorine-containing resin), and the hydrolyzable chlorine can be measured by JIS K6755 (easily saponifiable chlorine content test method in the epoxy resin).
  • an epoxy resin (A) what contains the epoxy resin represented by following General formula (1) can be used as an epoxy resin (A). Since the epoxy resin represented by the general formula (1) is a crystalline epoxy resin, by performing purification by recrystallization, the area of the main peak is the sum of all peaks as measured by the gel permeation chromatograph area method. An epoxy resin that is 90% or more based on the area can be obtained relatively easily.
  • a plurality of R each independently represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, n represents a degree of polymerization, and an average value thereof is a positive number of 0 to 4. is there.
  • n is preferably 0 to 3, more preferably 0 to 2, and most preferably 0.
  • the compounding ratio of an epoxy resin (A) is not specifically limited, It is preferable that it is 3 to 20 mass% with respect to the whole epoxy resin composition for semiconductor sealing, and is 5 to 18 mass%. More preferably. Although it does not specifically limit as a lower limit of the compounding ratio of an epoxy resin (A), It is preferable that it is 3 mass% or more with respect to the whole epoxy resin composition for semiconductor sealing, and it is more preferable that it is 5 mass% or more. preferable. The reason is that when the lower limit value of the blending ratio of the epoxy resin (A) is within the above range, there is little possibility of causing wire breakage due to an increase in viscosity.
  • the upper limit of the blending ratio of the epoxy resin (A) is not particularly limited, but is preferably 20% by mass or less, and 18% by mass or less with respect to the entire epoxy resin composition for semiconductor encapsulation. Is more preferable. The reason is that when the upper limit value of the blending ratio of the epoxy resin (A) is within the above range, there is little possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption.
  • curing agent (B) used for the epoxy resin composition for semiconductor sealing of this invention it divides roughly into three types, for example, a polyaddition type hardening
  • polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylenediamine (MPDA).
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylylene diamine
  • DDM diaminodiphenylmethane
  • MPDA m-phenylenediamine
  • aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY), organic acid dihydrazide, and the like; alicyclics such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides, including acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), aromatic anhydrides such as benzophenone tetracarboxylic acid (BTDA); Polyphenol compounds such as phenol resins typified by condensation of phenols such as alcohol and naphthol with ketones and aldehydes, and phenol polymers typified by polyvinylphenol; Polymercaptan compounds such as polysulfide, thioester and thioether; Examples thereof include isocyanate compounds such as polymers and blocked isocyanates; and organic acids such as carboxylic acid-containing polyester
  • catalyst-type curing agent examples include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF3 complexes.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24)
  • Lewis acids such as BF3 complexes.
  • condensation type curing agent examples include phenol resin-based curing agents such as resol type phenol resins; urea resins such as methylol group-containing urea resins; melamine resins such as methylol group-containing melamine resins.
  • a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like.
  • the phenol resin-based curing agent is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure are not particularly limited.
  • novolak type resins such as phenol novolak resin, cresol novolak resin, bisphenol novolak; polyfunctional phenol resins such as triphenolmethane type phenol resin; modified phenol resins such as terpene modified phenol resin and dicyclopentadiene modified phenol resin; phenylene Aralkyl type resins such as a phenol aralkyl resin having a skeleton and / or a biphenylene skeleton, a naphthol aralkyl resin having a phenylene and / or a biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F, and the like. Two or more types may be used in combination. Two or more types may be used in combination.
  • curing agent (B) is not specifically limited, It is preferable that it is 0.8 mass% or more and 16 mass% or less with respect to the whole epoxy resin composition for semiconductor sealing, and 1.5 mass% or more and 14 It is more preferable that the amount is not more than mass%. Although it does not specifically limit about the lower limit of the mixture ratio of a hardening
  • the upper limit of the blending ratio of the curing agent (B) is not particularly limited, but is preferably 16% by mass or less, and 14% by mass or less with respect to the entire epoxy resin composition for semiconductor encapsulation. It is more preferable. The reason is that when the upper limit value of the blending ratio is within the above range, there is little possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption.
  • the number of epoxy groups (EP) of all epoxy resins and the phenol of all phenol resin-based curing agents is 0.8 or more and 1.3 or less.
  • the equivalent ratio (EP) / (OH) to the number of functional hydroxyl groups (OH) is 0.8 or more and 1.3 or less.
  • the inorganic filler (C) used in the epoxy resin composition for semiconductor encapsulation of the present invention those used in general epoxy resin compositions for semiconductor encapsulation can be used.
  • fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, silicon nitride and the like can be mentioned, among which fused spherical silica is particularly preferable.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the shape of the inorganic filler (C) is as spherical as possible in order to suppress an increase in melt viscosity of the epoxy resin composition for semiconductor encapsulation and further increase the content of the inorganic filler, and the particle size The distribution is preferably broad.
  • the inorganic filler (C) may be surface-treated with a coupling agent. Further, if necessary, the inorganic filler (C) may be pretreated with an epoxy resin or a phenol resin. Examples of the treatment method include a method of removing the solvent after mixing using a solvent, a method of directly adding to the inorganic filler (C), and a mixing treatment using a mixer.
  • the content rate of an inorganic filler (C) is not specifically limited, It is preferable that it is 60 to 92 mass% with respect to the whole epoxy resin composition for semiconductor sealing, and 65 to 89 mass% is preferable. It is more preferable that The lower limit of the content ratio of the inorganic filler (C) is not particularly limited, but considering the filling property of the epoxy resin composition for semiconductor encapsulation and the reliability of the semiconductor device, the entire epoxy resin composition for semiconductor encapsulation is considered as a whole. Thus, it is preferably 60% by mass or more, and more preferably 65% by mass or more.
  • the upper limit of the content ratio of the inorganic filler is preferably 92% by mass or less, and preferably 89% by mass or less, with respect to the entire epoxy resin composition for semiconductor encapsulation, in view of moldability. More preferred. The reason for this is that, if the upper limit is not exceeded, fluidity is reduced and there is little risk of inadequate filling during molding, or inconvenience such as wire flow in the semiconductor device due to increased viscosity. It is.
  • a curing accelerator can further be used in the epoxy resin composition for semiconductor encapsulation of the present invention.
  • the curing accelerator include phosphorus atom-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; -Amidines and tertiary amines exemplified by diazabicyclo (5,4,0) undecene-7, benzyldimethylamine, 2-methylimidazole and the like, and further nitrogen-containing compounds such as the quaternary salts of amidines and amines mentioned above Of these, one or two or more of these can be used in combination.
  • a phosphorus atom-containing compound is preferable from the viewpoint of curability, and an adduct of a phosphobetaine compound and a phosphine compound and a quinone compound is particularly preferable from the viewpoint of solder resistance and fluidity.
  • phosphorus-containing compounds such as tetra-substituted phosphonium compounds and adducts of phosphonium compounds and silane compounds are particularly preferred.
  • Examples of the organic phosphine that can be used in the resin composition include a first phosphine such as ethylphosphine and phenylphosphine; a second phosphine such as dimethylphosphine and diphenylphosphine; a trimethylphosphine, triethylphosphine, tributylphosphine, and triphenylphosphine. Tertiary phosphine.
  • Examples of the tetra-substituted phosphonium compound that can be used in the resin composition include compounds represented by the following general formula (2).
  • P represents a phosphorus atom.
  • R8, R9, R10, and R11 represent an aromatic group or an alkyl group.
  • A is a functional group chosen from a hydroxyl group, a carboxyl group, and a thiol group.
  • X and y are integers of 1 to 3
  • z is an integer of 0 to 3
  • x y.
  • the compound represented by the general formula (2) is obtained, for example, as follows, but is not limited thereto. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Subsequently, when water is added, the compound represented by the general formula (2) can be precipitated.
  • R7, R8, R9 and R10 bonded to the phosphorus atom are preferably phenyl groups
  • AH is a compound having a hydroxyl group in an aromatic ring, that is, phenols.
  • A is an anion of the phenol.
  • phenols in the present invention include monocyclic phenols such as phenol, cresol, resorcin, and catechol, condensed polycyclic phenols such as naphthol, dihydroxynaphthalene, and anthraquinol, bisphenol A, bisphenol F, and bisphenol S.
  • monocyclic phenols such as phenol, cresol, resorcin, and catechol
  • condensed polycyclic phenols such as naphthol, dihydroxynaphthalene, and anthraquinol
  • bisphenol A bisphenol F
  • bisphenol S bisphenol S
  • polycyclic phenols such as bisphenols, phenylphenol, and biphenol.
  • Examples of the phosphobetaine compound include compounds represented by the following general formula (3).
  • X1 represents an alkyl group having 1 to 3 carbon atoms
  • Y1 represents a hydroxyl group
  • e is an integer of 0 to 5
  • f is an integer of 0 to 3.
  • the compound represented by the general formula (3) is obtained, for example, as follows. First, it is obtained through a step of bringing a triaromatic substituted phosphine, which is a third phosphine, into contact with a diazonium salt and replacing the triaromatic substituted phosphine with a diazonium group of the diazonium salt.
  • a triaromatic substituted phosphine which is a third phosphine
  • the present invention is not limited to this.
  • Examples of the adduct of a phosphine compound and a quinone compound include compounds represented by the following general formula (4).
  • R12, R13 and R14 each represents an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms, and may be the same as each other
  • R15, R16 and R17 each represent a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms and may be the same or different from each other, and R15 and R16 are bonded to form a cyclic structure. May be.
  • Examples of the phosphine compound used as an adduct of a phosphine compound and a quinone compound include an aromatic ring such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine.
  • aromatic ring such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine.
  • Those having a substituent or a substituent such as an alkyl group or an alkoxyl group are preferred.
  • Examples of the substituent such as an alkyl group and an alkoxyl group include those having 1 to 6 carbon atoms. From the viewpoint of availability, tripheny
  • examples of the quinone compound used for the adduct of the phosphine compound and the quinone compound include o-benzoquinone, p-benzoquinone and anthraquinones, and among them, p-benzoquinone is preferable from the viewpoint of storage stability.
  • the adduct can be obtained by contacting and mixing in a solvent capable of dissolving both organic tertiary phosphine and benzoquinone.
  • the solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct.
  • the present invention is not limited to this.
  • R11, R12 and R13 bonded to the phosphorus atom are phenyl groups, and R14, R15 and R16 are hydrogen atoms, that is, 1,4-benzoquinone and triphenyl
  • R11, R12 and R13 bonded to the phosphorus atom are phenyl groups
  • R14, R15 and R16 are hydrogen atoms, that is, 1,4-benzoquinone and triphenyl
  • a compound to which phosphine is added is preferable in that it reduces the thermal elastic modulus of the cured product of the resin composition.
  • Examples of the adduct of the phosphonium compound and the silane compound include compounds represented by the following general formula (5).
  • P represents a phosphorus atom and Si represents a silicon atom.
  • R18, R19, R20 and R21 are each an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group.
  • X2 is an organic group bonded to the groups Y2 and Y3, where X3 is an organic group bonded to the groups Y4 and Y5.
  • Y3 represent a group formed by releasing a proton from a proton donating group, and groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate structure.
  • Y4 and Y5 are proton donating groups.
  • the group represents a group formed by releasing a proton, and the groups Y4 and Y5 in the same molecule are bonded to a silicon atom to form a chelate structure.
  • X2 and X3 may be the same or different from each other. Even if well, Y2, Y3, Y4, and Y5 is .Z1 may be the same or different from each other is an organic group or an aliphatic group, an aromatic ring or a heterocyclic ring.
  • R18, R19, R20 and R21 for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group, ethyl group, n-butyl group, n-octyl group, cyclohexyl group, and the like.
  • an aromatic group having a substituent such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, hydroxynaphthyl group, or the like
  • a substituted aromatic group is more preferred.
  • X2 is an organic group bonded to Y2 and Y3.
  • X3 is an organic group that binds to groups Y4 and Y5.
  • Y2 and Y3 are groups formed by proton-donating groups releasing protons, and groups Y2 and Y3 in the same molecule are combined with a silicon atom to form a chelate structure.
  • Y4 and Y5 are groups formed by proton-donating groups releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure.
  • the groups X2 and X3 may be the same or different from each other, and the groups Y2, Y3, Y4, and Y5 may be the same or different from each other.
  • the groups represented by -Y2-X2-Y3- and -Y4-X3-Y5- in general formula (5) are constituted by groups in which the proton donor releases two protons. Is.
  • the proton donor is preferably an organic acid having at least two carboxyl groups or hydroxyl groups in the molecule. Further, an aromatic compound having at least two total carboxyl groups or hydroxyl groups on adjacent carbons constituting the aromatic ring is preferable, and among them, an aromatic compound having at least two total hydroxyl groups on the carbon constituting the aromatic ring is more preferable. .
  • catechol pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,2′-biphenol, 1,1′-bi-2-naphthol, salicylic acid, 1-hydroxy-2-naphthoic acid, 3 -Hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, glycerin and the like.
  • catechol 1,2 -Dihydroxynaphthalene and 2,3-dihydroxynaphthalene are more preferred.
  • Z1 represents an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group.
  • aliphatic hydrocarbon groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group and octyl group
  • aromatic groups such as phenyl group, benzyl group, naphthyl group and biphenyl group.
  • Reactive substituents such as hydrocarbon group, glycidyloxypropyl group, mercaptopropyl group, aminopropyl group and vinyl group can be mentioned.
  • methyl group, ethyl group, phenyl group, naphthyl group and biphenyl group are included. From the viewpoint of thermal stability, it is more preferable.
  • a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol, and then dissolved.
  • Sodium methoxide-methanol solution is added dropwise with stirring.
  • crystals are deposited. The precipitated crystals are filtered, washed with water, and vacuum dried to obtain an adduct of a phosphonium compound and a silane compound.
  • the manufacturing method is not limited to this.
  • the blending ratio of the curing accelerator is not particularly limited, but is preferably 0.05% by mass or more and 1% by mass or less, and more preferably 0.1% by mass or more and 0.5% by mass with respect to the entire epoxy resin composition for semiconductor encapsulation. It is more preferable that the amount is not more than mass%. Although it does not specifically limit as a lower limit of the mixture ratio of a hardening accelerator, It is preferable that it is 0.05 mass% or more with respect to the whole epoxy resin composition for semiconductor sealing, and it is 0.1 mass% or more. Is more preferable. The reason is that when the lower limit of the blending ratio of the curing accelerator is within the above range, there is little possibility of causing a decrease in curability.
  • the upper limit of the blending ratio of the curing accelerator is not particularly limited, but it is preferably 1% by mass or less, and 0.5% by mass or less with respect to the entire epoxy resin composition for semiconductor encapsulation. Is more preferable. The reason is that when the upper limit of the blending ratio of the curing accelerator is within the above range, there is little possibility of causing a decrease in fluidity.
  • the epoxy resin composition for semiconductor encapsulation of the present invention further includes a corrosion inhibitor such as hydrotalcite and zirconium hydroxide; an inorganic ion exchanger such as bismuth oxide hydrate; and ⁇ -glycidoxy Coupling agents such as propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane; colorants such as carbon black and bengara; low stress components such as silicone rubber; natural waxes such as carnauba wax; Synthetic waxes, higher fatty acids such as zinc stearate and metal salts thereof or mold release agents such as paraffin; various additives such as antioxidants may be appropriately blended.
  • a corrosion inhibitor such as hydrotalcite and zirconium hydroxide
  • an inorganic ion exchanger such as bismuth oxide hydrate
  • ⁇ -glycidoxy Coupling agents such as propyltrimethoxysilane, 3-mercaptopropyl
  • the epoxy resin composition for semiconductor encapsulation used in the semiconductor device of the present invention can be prepared by mixing the above-described components at 15 ° C. to 28 ° C. using a mixer or the like, and then using a roll.
  • a kneaded or kneaded machine such as a kneader, melt kneaded, cooled and pulverized may be used.
  • the cured product of the epoxy resin composition for semiconductor encapsulation of the present invention can be obtained by molding and curing the above epoxy resin composition by a conventional molding method such as transfer molding, compression molding, injection molding or the like.
  • the cured product of the epoxy resin composition molded and cured by a molding method such as transfer mold is completely cured at a temperature of about 80 ° C. to 200 ° C. for 10 minutes to 10 hours as necessary. It can also be obtained.
  • the epoxy resin composition for semiconductor encapsulation of the present invention has a small amount of total chlorine and hydrolyzable chlorine contained in the epoxy resin (A), even when a copper wire is used as the metal wire, Corrosion hardly occurs at the joint with the electrode pad, and a highly reliable semiconductor device can be manufactured at low cost.
  • the semiconductor device of the present invention is A semiconductor element mounted on a lead frame or circuit board having a die pad portion; Curing of the epoxy resin composition for sealing a semiconductor according to the present invention, wherein the metal wire for electrically bonding the electrical joint provided on the lead frame or the circuit board and the electrode pad provided on the semiconductor element It is characterized by being sealed with an object.
  • Examples of the metal wire that is used in the semiconductor device of the present invention to electrically join an electrical joint provided on a lead frame or a circuit board and an electrode pad provided on a semiconductor element include, for example, a gold wire and a copper wire And aluminum wire.
  • the semiconductor device of the present invention to which the epoxy resin composition for semiconductor encapsulation of the present invention is applied even when a low-cost copper wire is applied, corrosion at the junction with the electrode pad on the semiconductor element In addition to being able to provide a highly reliable semiconductor device, electrical characteristics of the semiconductor device such as reduction in electrical resistance can be improved.
  • the semiconductor device of the present invention shown in FIG. 1 includes a lead frame 3 having a die pad portion 3a, a semiconductor element 1 mounted on the die pad portion 3a, and the lead frame 3 and the semiconductor element 1 electrically connected. And a sealing resin 5 that is made of a cured product of the above-described epoxy resin composition for semiconductor sealing and seals the semiconductor element 1 and the metal wire 4.
  • the semiconductor element 1 is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, a solid-state imaging element, a semiconductor element using SiC, a power semiconductor such as a power transistor, an in-vehicle electronic component, and the like. It is done.
  • the lead frame 3 used in the present invention is not particularly limited, and a circuit board may be used instead of the lead frame 3.
  • a circuit board may be used instead of the lead frame 3.
  • DIP Dual Inline Package
  • PLCC Plastic Leaded Chip Carrier
  • QFP Quad Flat Package
  • LQFP Low Profile Quad Flat Package
  • SOJ Small Outline ⁇ J lead package
  • TSOP thin small outline package
  • TQFP tape carrier package
  • BGA ball grid array
  • CSP Chip size ⁇ Package
  • QFN Quad Flat Non-Leaded Package
  • SON Small Outline Non-Leaded Package
  • Leadframe BGA LF-BGA
  • Mold Array Package It can be used a lead frame or a circuit board used in the conventional semiconductor device, such as a BGA (MAP-BGA) of Jitaipu.
  • the semiconductor element 1 may be a stack of a plurality of semiconductor elements.
  • the first-stage semiconductor element is bonded to the die pad portion 3a via a die bond material cured body 2 such as a film adhesive or a thermosetting adhesive.
  • the semiconductor elements in the second and subsequent stages can be sequentially laminated with an insulating film adhesive.
  • electrode pads 6 are formed on appropriate layers such as the uppermost layer.
  • the electrode pad 6 is mainly composed of aluminum. Although it does not specifically limit as the purity of the aluminum used for the electrode pad 6, 99.5 mass% or more is preferable.
  • the electrode pad 6 is formed by forming a general titanium barrier layer on the surface of the lower copper circuit terminal, and applying a general method for forming an electrode pad of a semiconductor element such as vapor deposition, sputtering, and electroless plating of aluminum. Can be produced.
  • the metal wire 4 is used to electrically connect an electrical joint provided on the lead frame 3 and an electrode pad provided on the semiconductor element 1 mounted on the die pad portion 3 a of the lead frame 3. .
  • An oxide film is naturally or unavoidably formed on the surface of the metal wire 4 depending on the type of the metal wire.
  • the metal wire 4 includes those having an oxide film formed on the surface of the wire in this way.
  • the wire diameter of the metal wire is 30 ⁇ m or less, more preferably 25 ⁇ m or less, and preferably 15 ⁇ m or more. If it is this range, the ball
  • a copper wire As a metal wire, it is preferable that it is 99.9 mass% or more of copper purity, and it is more preferable that it is 99.99 mass% or more.
  • various elements dopants
  • the ball side shape at the tip of the copper wire at the time of bonding can be stabilized.
  • the wire When the ball portion is hardened at the time of bonding, damage may be caused to the electrode pad 6 side of the semiconductor element 1, which may cause problems such as a decrease in moisture resistance reliability due to insufficient bonding, a decrease in high-temperature storage characteristics, and an increase in electric resistance value. .
  • the copper wire has a copper purity of 99.9% by mass or more, the ball portion has sufficient flexibility, and there is no fear of damaging the electrode pad side during bonding.
  • the copper wire that can be used in the semiconductor device of the present invention is further obtained by doping 0.001% by mass to 0.003% by mass of Ba, Ca, Sr, Be, Al, or rare earth metal into copper as the core wire. Ball shape and joint strength are improved.
  • the coating layer comprised with the metal material containing palladium on the surface.
  • tip is stabilized, and the connection reliability of a junction part can be improved.
  • the effect which prevents the oxidation deterioration of copper which is a core wire is also acquired, and the high temperature storage characteristic of a junction part can be improved.
  • the thickness of the coating layer made of a metal material containing palladium in the copper wire is preferably 0.001 ⁇ m to 0.02 ⁇ m, and more preferably 0.005 ⁇ m to 0.015 ⁇ m.
  • Copper wire is obtained by casting a copper alloy in a melting furnace, rolling and rolling the ingot, further drawing with a die, heating while continuously sweeping the wire, and then performing heat treatment Can do.
  • the coating layer comprised from the metal material containing palladium in the copper wire which can be used with the semiconductor device of this invention prepares the wire of the target wire diameter previously, and this is made into the electrolytic solution or electroless containing palladium
  • the coating layer can be formed by dipping in a solution and continuously sweeping and plating. In this case, the thickness of the coating can be adjusted by the sweep rate.
  • prepare a wire thicker than the target wire diameter immerse it in an electrolytic solution or electroless solution, continuously sweep it to form a coating layer, and then draw the wire until it reaches a predetermined diameter Can also be adopted.
  • the electrical joint (lead part) 3b of the lead frame 3 and the electrode pad 6 provided on the semiconductor element 1 may be joined by a reverse bond of a wire.
  • a ball formed at the tip of the metal wire 4 is first bonded to the electrode pad 6 of the semiconductor element 1, and the metal wire 4 is cut to form a bump for stitch bonding.
  • a ball formed at the tip of the wire is bonded to the metal-plated lead portion 3 b of the lead frame 3, and stitch-bonded to the bump of the semiconductor element 1.
  • the height of the wire on the semiconductor element 1 can be made lower than that in the positive bonding, so that the bonding height of the semiconductor element 1 can be reduced.
  • the semiconductor device of the present invention seals an electronic component such as a semiconductor element using an epoxy resin composition for semiconductor encapsulation, and is cured and molded by a conventional molding method such as a transfer mold, a compression mold, or an injection mold. can get.
  • a semiconductor device sealed by a molding method such as a transfer mold is completely cured at a temperature of about 80 ° C. to 200 ° C. for 10 minutes to 10 hours and then mounted on an electronic device or the like. Is done.
  • Sealing resin 5 is a cured product of the epoxy resin composition for semiconductor sealing of the present invention described above.
  • the semiconductor device according to the present invention is provided in the semiconductor element mounted on the lead frame or the circuit board having the die pad part, the electrical junction provided in the lead frame or the circuit board, and the semiconductor element.
  • a metal wire for electrically joining the electrode pad is sealed with a cured product of the epoxy resin composition for semiconductor sealing of the present invention, and an epoxy for semiconductor sealing Since the epoxy resin (A) used in the resin composition has a main peak area of 90% or more with respect to the total area of all peaks in the measurement by the gel permeation chromatographic area method, the copper wire is low in cost. Even when applied, corrosion at the junction with the electrode pad on the semiconductor element can be reduced, resulting in an increase in electrical resistance at the junction or disconnection at the junction. It can be achieved Rinikui highly reliable semiconductor device.
  • the copper wire When a copper wire is used as the metal wire, the copper wire is useful for reducing the cost of the semiconductor device because it is inexpensive. However, when the semiconductor element 1 connected to the copper wire is encapsulated with a conventional epoxy resin composition for encapsulating a semiconductor, the moisture resistance reliability may be lowered.
  • the mechanism of corrosion at the joint between the copper wire and the aluminum electrode pad 6 of the semiconductor element 1 is considered as follows.
  • a copper aluminum alloy is formed at the bonding interface between the copper wire and the aluminum electrode pad 6 of the semiconductor element 1. Since copper aluminum alloy forms a galvanic pair, it has high electrochemical activity and low corrosion resistance. Under high temperature and high humidity, chlorine ions are generated by hydrolysis from a cured product of the epoxy resin composition for semiconductor encapsulation constituting the sealing resin 5. This chlorine ion corrodes the copper aluminum alloy layer having low corrosion resistance, resulting in an increase in electrical resistance and disconnection at the joint.
  • the epoxy resin (A) having a low chlorine content the amount of corrosive chlorine ions generated from the sealing resin 5 is reduced when the semiconductor device is treated at high temperature and high humidity. By doing so, corrosion of the joint between the copper wire and the aluminum electrode pad 6 of the semiconductor element 1 can be prevented. Thereby, even when a copper wire is applied as the metal wire, the semiconductor device of the present invention can be excellent in moisture resistance reliability.
  • a semiconductor device according to the present invention is HAST-processed (130 ° C. and 85% RH 20 V)
  • a semiconductor device in which the value of the electrical resistance value between wirings is increased by 20% relative to the initial value is determined to be defective. It is desirable that no defects occur even after time processing.
  • a semiconductor device is required to have a resistance of 96 hours by HAST processing (130 ° C., 85% RH 20 V). Therefore, sufficient reliability can be ensured if no defect occurs over 192 hours in the HAST process (130 ° C., 85% RH 20 V).
  • the epoxy resin (A), the curing agent (B), and the inorganic filler (C) are contained, and the epoxy resin (A) has a total area of the main peak in the measurement by the gel permeation chromatograph area method.
  • the epoxy resin composition for encapsulating a semiconductor of the present invention that is 90% or more with respect to the total area of the peak, it is possible to realize the semiconductor device of the present invention that is resistant to disconnection and has high moisture resistance reliability.
  • Curing agent A Phenol aralkyl resin, manufactured by Mitsui Chemicals, Inc., XLC-2L, hydroxyl equivalent 175, melt viscosity of 360 mPa ⁇ s at 150 ° C.
  • Curing agent B phenol novolak resin, manufactured by Sumitomo Bakelite Co., Ltd., PR-HF-3 softening point 80 ° C., hydroxyl group equivalent 104.
  • ⁇ Filler> Fused spherical silica (average particle size 26.5 ⁇ m, particles of 105 ⁇ m or more, 1% by weight or less, “FB-820” manufactured by Denki Kagaku Kogyo Co., Ltd.)
  • Curing accelerator 1,4-benzoquinone adduct of triphenylphosphine (TPP, “PP360” manufactured by Kay Kasei Co., Ltd.)
  • Coupling agent ⁇ -glycidoxypropyltrimethoxysilane
  • carbon black was used as a colorant and carnauba wax was used as a mold release agent.
  • Example 1 Epoxy resin B (6.55 parts by mass), curing agent A (6.20 parts by mass), fused spherical silica (86.00 parts by mass) as a filler, and a curing accelerator (0.20 parts by mass) , Coupling agent (0.25 parts by mass), carbon black (0.30 parts by mass) as a colorant, and carnauba wax (0.50 parts by mass) as a release agent, using a mixer. The mixture was mixed at a temperature of 70 ° C. and then roll kneaded at 70 ° C. to 100 ° C. After cooling, it was pulverized to obtain an epoxy resin composition.
  • Examples 2 to 4 Comparative Examples 1 and 2 According to the composition of the epoxy resin composition for semiconductor encapsulation described in Table 1, an epoxy resin composition for semiconductor encapsulation was obtained in the same manner as in Example 1. All the formulations shown in Table 1 are parts by mass.
  • TEG TEST ELEMENT GROUP
  • chip 3.5 mm x 3.5 mm
  • aluminum electrode pads is a 352-pin BGA (substrate thickness is 0.56 mm, bismaleimide / triazine resin / glass cloth substrate, package size is 30 mm x 30mm, 1.17mm thick) using a copper wire 4N (copper purity 99.99 mass%) so that the aluminum electrode pad of the TEG chip and the electrode pad of the substrate are connected in a daisy chain. Then, wire bonding was performed at a wire pitch of 80 ⁇ m.
  • Examples 1 to 4 or Comparative Examples 1 to 2 were set under the conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 2 minutes.
  • a 352-pin BGA package was produced by sealing with any one of the epoxy resin compositions for semiconductor encapsulation. This package was post-cured at 175 ° C. for 4 hours to obtain a semiconductor device.
  • HAST Highly Accelerated Temperature and Humidity Stress Test
  • the epoxy resin composition for semiconductor encapsulation of the present invention is provided in a semiconductor element mounted on a lead frame or a circuit board having a die pad portion, and an electrical junction provided in the lead frame or circuit board and the semiconductor element.
  • copper wire is used as the metal wire to electrically bond to the electrode pad, it is possible to suppress the corrosion under high temperature and high humidity in the bonded structure of the electrode pad and copper wire on the semiconductor element. It can be suitably used to manufacture a low-cost semiconductor device with improved resistance.
  • SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Lead frame 3a Die pad part 3b Electrical junction (lead part) of lead frame 4 Metal wire (copper wire) 5 Sealing resin 6 Electrode pad

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cosmetics (AREA)

Abstract

本発明により、耐湿信頼性を向上させた信頼性の高い半導体装置が提供される。本発明の半導体封止用エポキシ樹脂組成物は、ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、前記リードフレーム又は回路基板に設けられた電気的接合部と前記半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤと、を封止して半導体装置を製造するのに用いられる。前記半導体封止用エポキシ樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)、無機充填材(C)を含有し、前記エポキシ樹脂(A)は、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して90%以上である。

Description

半導体封止用エポキシ樹脂組成物及び半導体装置
 本発明は、半導体封止用エポキシ樹脂組成物及びこれで封止された半導体装置に関する。
 本願は、2010年11月24日に日本に出願された特願2010-260913号に基づき優先権を主張し、その内容をここに援用する。
 従来からダイオード、トランジスタ、集積回路等の電子部品は、主にエポキシ樹脂組成物の硬化物により封止されている。特に集積回路では、エポキシ樹脂、フェノール樹脂系硬化剤、及び溶融シリカ、結晶シリカ等の無機充填材を配合した、耐熱性、耐湿性に優れたエポキシ樹脂組成物が用いられている。ところが近年、電子機器の小型化、軽量化、高性能化の市場動向において、半導体素子の高集積化が年々進み、また半導体装置の表面実装化が促進されるなかで、半導体素子の封止で用いられているエポキシ樹脂組成物への要求は益々厳しいものとなってきている。
 一方、半導体装置に対するコストダウンの要求も激しく、従来の金線接合ではコストが高いため、近年、金線に代わる安価なボンディングワイヤとして、銅ワイヤが提案されている。
 特許文献1には、銅を主成分とする芯材と、該芯材とは成分又は組成の一方又は両方の異なる導電性金属及び銅を芯材の上に含有する外皮層とを有するボンディングワイヤが記載されている。このボンディングワイヤにおいて、外皮層の厚さを0.001~0.02μmとすることで、材料費が安価で、ボール接合性、ワイヤ接合性等に優れ、ループ形成性も良好であり、狭ピッチ用細線化、パワー系IC用途の太径化にも適応する銅系ボンディングワイヤを提供することが可能となると記載されている。
 しかしながら、上記銅ワイヤが接続された半導体素子を通常のエポキシ樹脂組成物で封止すると、半導体装置の耐湿信頼性(HAST;Highly Accelerated Temperature & Humidity Test)が低下することがあった。
 本発明者の知見によれば、耐湿信頼性が低い半導体装置では、半導体素子上の電極パッドと銅ワイヤとの接合部における腐食によって、接合部の電気抵抗の上昇又は接合部の断線が発生していた。したがって、このような接合部の電気抵抗の上昇又は接合部の断線を防止できれば、半導体装置の耐湿信頼性を向上できることが期待された。
特開2007-12776号公報
 本発明は上記事情に鑑みてなされたものであり、その目的とするところは、高温高湿下における半導体素子上の電極パッドと金属ワイヤとの接合部の腐食を低減して、半導体装置の信頼性の向上を可能とする半導体封止用エポキシ樹脂組成物と、この半導体封止用エポキシ樹脂組成物の硬化物により半導体素子が封止されている半導体装置を提供することにある。
[1]本発明によれば、
 ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、
 前記リードフレーム又は回路基板に設けられた電気的接合部と前記半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤと、
を封止して半導体装置を製造するのに用いられる半導体封止用エポキシ樹脂組成物であって、前記半導体封止用エポキシ樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)、無機充填材(C)を含有し、
 前記エポキシ樹脂(A)が、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して90%以上であることを特徴とする半導体封止用エポキシ樹脂組成物、
が提供される。
[2]本発明によれば、
 前記エポキシ樹脂(A)が、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して92%以上である前記[1]項に記載の半導体封止用エポキシ樹脂組成物、
が提供される。
[3]本発明によれば、
 前記エポキシ樹脂(A)が、含有される全塩素量が300ppm以下であり、加水分解性塩素量が150ppm以下である前記[1]項または[2]項に記載の半導体封止用エポキシ樹脂組成物、
が提供される。
[4]本発明によれば、
 前記エポキシ樹脂(A)が、含有される全塩素量が200ppm以下であり、加水分解性塩素量が100ppm以下である前記[1]項または[2]項のいずれか1項に記載の半導体封止用エポキシ樹脂組成物、
が提供される。
[5]本発明によれば、
 前記エポキシ樹脂(A)が下記一般式(1)で表されるエポキシ樹脂を含むものである、前記[1]項ないし[4]項のいずれか1項に記載の半導体封止用エポキシ樹脂組成物、
が提供される。
Figure JPOXMLDOC01-appb-C000002
(上記一般式(1)において、複数存在するRはそれぞれ独立に水素原子又は炭素数1~4の炭化水素基を表し、nは重合度を表し、その平均値は0~4の正数である。)
[6]本発明によれば、
 前記エポキシ樹脂(A)の配合割合が、前記半導体封止用エポキシ樹脂組成物全体に対して3質量%以上20質量%以下である、前記[1]項ないし[5]項のいずれか1項に記載の半導体封止用エポキシ樹脂組成物、
が提供される。
[7]本発明によれば、
 前記金属ワイヤが、銅ワイヤである、前記[1]項ないし[6]項のいずれか1項に記載の半導体封止用エポキシ樹脂組成物、
が提供される。
[8]本発明によれば、
 前記銅ワイヤの銅に対して0.1質量%以下のドーパントが添加されており、前記銅ワイヤの銅純度が99.9質量%以上である前記[7]項に記載の半導体封止用エポキシ樹脂組成物、
が提供される。
[9]本発明によれば、
 ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、
 前記リードフレーム又は回路基板に設けられた電気的接合部と前記半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤと、
が、前記[1]項ないし[8]項のいずれか1項に記載の半導体封止用エポキシ樹脂組成物の硬化物により封止されていることを特徴とする半導体装置、
が提供される。
[10]本発明によれば、
 前記金属ワイヤが、銅ワイヤである、前記[9]項に記載の半導体装置、
が提供される。
 本発明の半導体封止用エポキシ樹脂組成物によれば、耐湿信頼性を向上させた信頼性の高い半導体装置が提供される。
本発明に係る半導体装置の一例を模式的に示した断面図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 本発明の半導体封止用エポキシ樹脂組成物は、
 ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、
 前記リードフレーム又は回路基板に設けられた電気的接合部と前記半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤと、
を封止して半導体装置を製造するのに用いられる半導体封止用エポキシ樹脂組成物であって、前記半導体封止用エポキシ樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)、無機充填材(C)を含有し、
 前記エポキシ樹脂(A)が、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して90%以上であることを特徴とする。
本発明の半導体封止用エポキシ樹脂組成物は、エポキシ樹脂(A)を含有する。
 エポキシ樹脂(A)は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定されない。エポキシ樹脂(A)としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロアントラセンジオール型エポキシ樹脂;ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
 これらの中でも、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂など、合成法の選択や精製によって高い結晶性を発現する性質を有するエポキシ樹脂がより好ましい。
 本発明において用いられるエポキシ樹脂(A)は、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して90%以上であることを特徴とする。さらに好ましくは、主ピークの面積が全ピークの合計面積に対して92%以上である。特に好ましくは、主ピークの面積が全ピークの合計面積に対して95%%以上である。
 ここで、エポキシ樹脂(A)のゲルパーミエーションクロマトグラフの面積法による測定における主ピークとは、ゲルパーミエーションクロマトグラフの各ピーク中で、最大面積を有するピークのことであり、エポキシ樹脂の純度の指標とすることができるものである。
 そして、上記主ピークの面積が全ピークの合計面積に対して上記範囲内であるエポキシ樹脂(A)は塩素を含有する副生成物が少ないことから、腐食性不純物の少ないエポキシ樹脂組成物を得ることができる。
 エポキシ樹脂の一般的な合成方法としては、例えば、エポキシ樹脂の前駆体であるフェノール樹脂類を過剰のエピクロルヒドリンなどのエピハロヒドリンに溶解させた後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下で50~150℃、好ましくは60~120℃で1~10時間反応させる方法等が挙げられる。
反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより、エポキシ樹脂を得ることができる。
 特に、本発明で用いられるエポキシ樹脂(A)を調製する方法としては、例えば、合成時に自己重合により高分子量化しない範囲でエピハロヒドリンの配合量を低減する、又はエポキシ樹脂中のハロゲン付加物や未閉環エポキシ基が過剰にならない範囲でアルカリ金属水酸化物の配合量・配合濃度を低減する、などの手法を適用することができる。
また、公知の方法で合成、または市販されるエポキシ樹脂にカラムクロマトグラフィー分別、分子蒸留、再結晶などの公知の精製手法を適宜組み合わせることによって、本発明で規定する特定のエポキシ樹脂を調製してもよい。
 あるいは、このように調製された市販品のエポキシ樹脂を用いることもできる。市販品としては例えば、三菱化学(株)製「YX4000UH」、三菱化学(株)製「YL7684」などを挙げることができる。
 本発明において、上記エポキシ樹脂(A)のゲルパーミエーションクロマトグラフィー(GPC)測定は次のように行われる。
GPC装置は、ポンプ、インジェクター、ガードカラム、カラムおよび検出器から構成され、溶媒にはテトラヒドロフラン(THF)を用いる。ポンプの流速は0.5ml/分として測定を行う。これよりも高い流速では目的の分子量の検出精度が低くなるため好ましくない。前記の流速で精度よく測定を行うためには流量精度の良いポンプを使用することが必要であり、流量精度は0.10%以下が好ましい。ガードカラムには市販のガードカラム(例えば、東ソー(株)製TSK GUARDCOLUMN HHR-L:径6.0mm、管長40mm)、カラムには市販のポリスチレンジェルカラム(東ソー(株)製TSK-GEL GMHHR-L:径7.8mm、管長30mm)を複数本直列接続させる。検出器には示差屈折率計(RI検出器。例えば、WATERS社製示差屈折率(RI)検出器W2414)を用いる。測定に先立ち、ガードカラム、カラムおよび検出器内部は40℃に安定させておく。試料には、濃度3~4mg/mlに調整したエポキシ樹脂(A)のTHF溶液を用意し、これを約50~150μlインジェクターにより注入して測定を行う。
 また、本発明において用いられるエポキシ樹脂(A)は、含有される全塩素量が300ppm以下であり、加水分解性塩素量が150ppm以下であることが好ましい。
 さらに好ましくは、全塩素量が200ppm以下であり、加水分解性塩素量が100ppm以下である。
特に好ましくは、全塩素量が50ppm以下であり、加水分解性塩素量が30ppm以下である。
 このようなエポキシ樹脂(A)を用いることにより、耐湿信頼性の高い半導体装置を得ることができる。
 塩素イオンは金属の腐食性を有し、半導体素子の電極パッドなどアルミ配線部分を腐食する。半導体素子の電気接合に金属ワイヤとして銅ワイヤを使用した場合、接合部分にアルミニウムと銅の合金が生成する。この合金はガルバニック対となるため、塩素による腐食を特に受けやすく、さらには耐湿信頼性が低下する。半導体装置の耐湿信頼性向上には半導体封止用エポキシ樹脂組成物中の塩素量低減が必要である。
 半導体封止用エポキシ樹脂組成物中の塩素はエポキシ樹脂に由来する。エポキシ樹脂は塩素を含むエピクロルヒドリンを使用して合成されるため、電子材料用途の高純度エポキシ樹脂であっても通常で全塩素量が600ppm以上である。エポキシ中に含まれる塩素の少なくとも50%程度は加水分解性を示し、塩素イオンとして脱離しやすい。エポキシ樹脂中の全塩素量と加水分解性塩素量とが上記範囲内であれば半導体装置の耐湿信頼性が大幅に向上する。
 塩素はエポキシ樹脂の高分子量成分に多く含まれ、最も低分子(下記一般式(1)においてnが0の場合)である主ピーク部には少ない。すなわち、主ピーク部は低分子側にあり、低分子側のエポキシ樹脂ほど含まれる塩素の量が少なくなる。ゲルパーミエーションクロマトグラフの面積法による測定で主ピークの面積が全ピークの合計面積に対して上記範囲内であるエポキシ樹脂であれば、全塩素量や加水分解性塩素量を上記範囲内とすることができ、このようなエポキシ樹脂を用いることにより、著しく塩素含有量の少ない半導体封止用樹脂組成物を得ることができる。
エポキシ樹脂の全塩素量はJIS K7229(塩素含有樹脂中の塩素の定量方法)、加水分解性塩素はJIS K6755(エポキシ樹脂中の易可けん化塩素量試験方法)で測定できる。
 本発明においては、エポキシ樹脂(A)として、下記一般式(1)で表されるエポキシ樹脂を含むものを用いることができる。
 一般式(1)で表されるエポキシ樹脂は結晶性エポキシ樹脂であることから、再結晶による精製を行うことにより、ゲルパーミエーションクロマトグラフの面積法による測定で主ピークの面積が全ピークの合計面積に対して90%以上であるエポキシ樹脂を比較的容易に得ることができる。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)において、複数存在するRはそれぞれ独立に水素原子又は炭素数1~4の炭化水素基を表し、nは重合度を表し、その平均値は0~4の正数である。)
 特に、一般式(1)で表されるエポキシ樹脂を半導体封止用として用いるために、nは0~3が望ましく、0~2がより望ましく、0が最も望ましい。
 エポキシ樹脂(A)の配合割合は、特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して3質量%以上20質量%以下であることが好ましく、5質量%以上18質量%以下であることがより好ましい。エポキシ樹脂(A)の配合割合の下限値としては特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して、3質量%以上であることが好ましく、5質量%以上であることがより好ましい。その理由としては、エポキシ樹脂(A)の配合割合の下限値が上記範囲内であると、粘度上昇によるワイヤ切れを引き起こす恐れが少ないからである。また、エポキシ樹脂(A)の配合割合の上限値としては特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して、20質量%以下であることが好ましく、18質量%以下であることがより好ましい。その理由としては、エポキシ樹脂(A)の配合割合の上限値が上記範囲内であると、吸水率増加による耐湿信頼性の低下等を引き起こす恐れが少ないからである。
 本発明の半導体封止用エポキシ樹脂組成物に用いられる硬化剤(B)としては、例えば、重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤の3タイプに大別することができる。
 重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂などのフェノール、ナフトールなどのフェノール類とケトン、アルデヒド類とを縮合させて合成されるフェノール樹脂、ポリビニルフェノールに代表されるフェノールポリマーなどのポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。
 触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF3錯体などのルイス酸などが挙げられる。
 縮合型の硬化剤としては、例えば、レゾール型フェノール樹脂等のフェノール樹脂系硬化剤;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点からフェノール樹脂系硬化剤が好ましい。
フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造は特に限定されない。例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
 硬化剤(B)の配合割合は、特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して0.8質量%以上16質量%以下であることが好ましく、1.5質量%以上14質量%以下であることがより好ましい。硬化剤(B)の配合割合の下限値については、特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して、0.8質量%以上であることが好ましく、1.5質量%以上であることがより好ましい。その理由は、配合割合の下限値が上記範囲内であると、充分な流動性を得ることができるからである。また、硬化剤(B)の配合割合の上限値についても、特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して、16質量%以下であることが好ましく、14質量%以下であることがより好ましい。その理由は、配合割合の上限値が上記範囲内であると、吸水率増加による耐湿信頼性の低下等を引き起こす恐れが少ないからである。
 また、硬化剤(B)としてフェノール樹脂系硬化剤を用いる場合におけるエポキシ樹脂とフェノール樹脂系硬化剤との配合比率としては、全エポキシ樹脂のエポキシ基数(EP)と全フェノール樹脂系硬化剤のフェノール性水酸基数(OH)との当量比(EP)/(OH)が0.8以上、1.3以下であることが好ましい。当量比がこの範囲であると、半導体封止用エポキシ樹脂組成物の硬化性の低下、又は樹脂硬化物の物性の低下等を引き起こす恐れが少ない。
 本発明の半導体封止用エポキシ樹脂組成物に用いられる無機充填材(C)としては、一般の半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等が挙げられ、中でも、溶融球状シリカが特に好ましい。これらの無機充填材は、1種を単独で用いても2種以上を併用しても差し支えない。また、無機充填材(C)の形状としては、半導体封止用エポキシ樹脂組成物の溶融粘度の上昇を抑え、更に無機充填材の含有量を高めるためには、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。また、無機充填材(C)がカップリング剤により表面処理されていてもかまわない。さらに、必要に応じて無機充填材(C)をエポキシ樹脂又はフェノール樹脂で予め処理して用いてもよい。処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、無機充填材(C)に直接添加し、混合機を用いて混合処理する方法等がある。
 無機充填材(C)の含有割合は、特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して60質量%以上92質量%以下であることが好ましく、65質量%以上89質量%以下であることがより好ましい。無機充填材(C)の含有割合の下限値は特に限定されないが、半導体封止用エポキシ樹脂組成物の充填性、半導体装置の信頼性を考えると、半導体封止用エポキシ樹脂組成物全体に対して、60質量%以上であることが好ましく、65質量%以上であることがよりに好ましい。その理由は、上記下限値を下回わらない範囲であれば、低吸湿性、低熱膨張性が得られるため耐湿信頼性が不十分となる恐れが少ないからである。また、無機充填材の含有割合の上限値は、成形性を考慮すると、半導体封止用エポキシ樹脂組成物全体に対して、92質量%以下であることが好ましく、89質量%以下であることがより好ましい。その理由は、上記上限値を超えない範囲であれば、流動性が低下し成形時に充填不良等が生じたり、高粘度化による半導体装置内のワイヤ流れ等の不都合が生じたりする恐れが少ないからである。
 本発明の半導体封止用エポキシ樹脂組成物には、硬化促進剤をさらに用いることができる。
 硬化促進剤の具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8-ジアザビシクロ(5,4,0)ウンデセン-7、ベンジルジメチルアミン、2-メチルイミダゾール等が例示されるアミジンや3級アミン、さらには前記アミジン、アミンの4級塩等の窒素原子含有化合物が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらのうち、硬化性の観点からはリン原子含有化合物が好ましく、また耐半田性と流動性の観点では、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が特に好ましく、連続成形における金型の汚染が軽度である点では、テトラ置換ホスホニウム化合物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物が特に好ましい。
 樹脂組成物で用いることができる有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
 樹脂組成物で用いることができるテトラ置換ホスホニウム化合物としては、例えば下記一般式(2)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(ただし、上記一般式(2)において、Pはリン原子を表す。R8、R9、R10およびR11は芳香族基またはアルキル基を表す。Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表す。AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表す。x、yは1~3の整数、zは0~3の整数であり、かつx=yである。)
 一般式(2)で表される化合物は、例えば以下のようにして得られるがこれに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、一般式(2)で表される化合物を沈殿させることができる。一般式(2)で表される化合物において、好ましくは、リン原子に結合するR7、R8、R9およびR10がフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール類であり、かつAは前記フェノール類のアニオンである。本発明における前記フェノール類とは、フェノール、クレゾール、レゾルシン、カテコールなどの単環式フェノール類、ナフトール、ジヒドロキシナフタレン、アントラキノールなどの縮合多環式フェノール類、ビスフェノールA、ビスフェノールF、ビスフェノールSなどのビスフェノール類、フェニルフェノール、ビフェノールなどの多環式フェノール類などが例示される。
 ホスホベタイン化合物としては、例えば、下記一般式(3)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(ただし、上記一般式(3)において、X1は炭素数1~3のアルキル基、Y1はヒドロキシル基を表す。eは0~5の整数であり、fは0~3の整数である。)
 一般式(3)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。
 ホスフィン化合物とキノン化合物との付加物としては、例えば、下記一般式(4)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(ただし、上記一般式(4)において、Pはリン原子を表す。R12、R13およびR14は炭素数1~12のアルキル基または炭素数6~12のアリール基を表し、互いに同一であっても異なっていてもよい。R15、R16およびR17は水素原子または炭素数1~12の炭化水素基を表し、互いに同一であっても異なっていてもよく、R15とR16が結合して環状構造となっていてもよい。)
 ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換またはアルキル基、アルコキシル基等の置換基が存在するものが好ましい。アルキル基、アルコキシル基等の置換基としては1~6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
 またホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、o-ベンゾキノン、p-ベンゾキノン、アントラキノン類が挙げられ、中でもp-ベンゾキノンが保存安定性の点から好ましい。
 ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
 一般式(4)で表される化合物において、リン原子に結合するR11、R12およびR13がフェニル基であり、かつR14、R15およびR16が水素原子である化合物、すなわち1,4-ベンゾキノンとトリフェニルホスフィンを付加させた化合物が、樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。
 ホスホニウム化合物とシラン化合物との付加物としては、例えば下記一般式(5)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(ただし、上記一般式(5)において、Pはリン原子を表し、Siは珪素原子を表す。R18、R19、R20およびR21は、それぞれ、芳香環または複素環を有する有機基、あるいは脂肪族基を表し、互いに同一であっても異なっていてもよい。式中X2は、基Y2およびY3と結合する有機基である。式中X3は、基Y4およびY5と結合する有機基である。Y2およびY3は、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y2およびY3が珪素原子と結合してキレート構造を形成するものである。Y4およびY5はプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y4およびY5が珪素原子と結合してキレート構造を形成するものである。X2およびX3は互いに同一であっても異なっていてもよく、Y2、Y3、Y4、およびY5は互いに同一であっても異なっていてもよい。Z1は芳香環または複素環を有する有機基、あるいは脂肪族基である。)
 一般式(5)において、R18、R19、R20およびR21としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n-ブチル基、n-オクチル基およびシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等の置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。
 また、一般式(5)において、X2は、Y2およびY3と結合する有機基である。同様に、X3は、基Y4およびY5と結合する有機基である。Y2およびY3はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y2およびY3が珪素原子と結合してキレート構造を形成するものである。同様にY4およびY5はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y4およびY5が珪素原子と結合してキレート構造を形成するものである。基X2およびX3は互いに同一であっても異なっていてもよく、基Y2、Y3、Y4、およびY5は互いに同一であっても異なっていてもよい。このような一般式(5)中の-Y2-X2-Y3-、および-Y4-X3-Y5-で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものである。プロトン供与体としては、分子内にカルボキシル基または水酸基を少なくとも2個有する有機酸が好ましい。さらには芳香環を構成する隣接炭素にカルボキシル基または水酸基を少なくとも合計で2個有する芳香族化合物が好ましく、その中でも芳香環を構成する炭素に水酸基を少なくとも合計で2個有する芳香族化合物がより好ましい。例えば、カテコール、ピロガロール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,2’-ビフェノール、1,1’-ビ-2-ナフトール、サリチル酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、クロラニル酸、タンニン酸、2-ヒドロキシベンジルアルコール、1,2-シクロヘキサンジオール、1,2-プロパンジオールおよびグリセリン等が挙げられるが、これらの中でも、カテコール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンがより好ましい。
 また、一般式(5)中のZ1は、芳香環または複素環を有する有機基、あるいは脂肪族基を表す。これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基およびオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基およびビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基およびビニル基等の反応性置換基等が挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基およびビフェニル基が熱安定性の面から、より好ましい。
 ホスホニウム化合物とシラン化合物との付加物の製造方法としては、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3-ジヒドロキシナフタレン等のプロトン供与体を加えて溶かし、次に室温攪拌下でナトリウムメトキシド-メタノール溶液を滴下する。さらに、予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を上記フラスコに室温攪拌下で滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、製造方法は、これに限定されるものではない。
 前記一般式(2)~(5)で表される化合物を硬化促進剤として用いることにより、無機充填材の充填量を上げつつ、樹脂組成物の溶融時における増粘を抑制または防止することが可能となるため好ましい。
 硬化促進剤の配合割合は、特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して0.05質量%以上1質量%以下であることが好ましく、0.1質量%以上0.5質量%以下であることがより好ましい。硬化促進剤の配合割合の下限値としては特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。その理由は、硬化促進剤の配合割合の下限値が上記範囲内であると、硬化性の低下を引き起こす恐れが少ないからである。また、硬化促進剤の配合割合の上限値としては特に限定されないが、半導体封止用エポキシ樹脂組成物全体に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。その理由は、硬化促進剤の配合割合の上限値が上記範囲内であると、流動性の低下を引き起こす恐れが少ないからである。
 本発明の半導体封止用エポキシ樹脂組成物には、さらに必要に応じて、ハイドロタルサイト、水酸化ジルコニウム等の腐食防止剤;酸化ビスマス水和物等の無機イオン交換体;γ-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン等のカップリング剤;カーボンブラック、ベンガラ等の着色剤;シリコーンゴム等の低応力成分;カルナバワックス等の天然ワックス、合成ワックス、ステアリン酸亜鉛等の高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤;酸化防止剤等の各種添加剤を適宜配合してもよい。
 本発明の半導体装置で用いられる半導体封止用エポキシ樹脂組成物は、前述の各成分を、例えば、ミキサー等を用いて15℃~28℃で混合したものを用いることができ、さらにその後、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕したものを用いてもよい。その他にも、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。
 本発明の半導体封止用エポキシ樹脂組成物の硬化物は、上記のエポキシ樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で成形硬化して得ることができる。トランスファーモールドなどの成形方法で成形硬化されたエポキシ樹脂組成物の硬化物は、必要に応じて80℃~200℃程度の温度で、10分間~10時間程度の時間をかけて完全硬化させることで得ることもできる。
本発明の半導体封止用エポキシ樹脂組成物は、エポキシ樹脂(A)に含有される全塩素量、加水分解性塩素量が少ないため、金属ワイヤとして銅ワイヤを用いた場合でも、半導体素子上の電極パッドとの接合部における腐食が発生しにくく、高い信頼性を有する半導体装置を低コストで製造することができる。
 次に、本発明の半導体装置について説明する。
 本発明の半導体装置は、
 ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、
 前記リードフレーム又は回路基板に設けられた電気的接合部と前記半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤとが、上記本発明の半導体封止用エポキシ樹脂組成物の硬化物により封止されていることを特徴とするものである。
 本発明の半導体装置において用いられる、リードフレーム又は回路基板に設けられた電気的接合部と半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤとしては、例えば、金ワイヤ、銅ワイヤ、アルミニウムワイヤなどを挙げることができる。
 これらの中でも、本発明の半導体封止用エポキシ樹脂組成物を適用する本発明の半導体装置においては、低コストである銅ワイヤを適用した場合でも、半導体素子上の電極パッドとの接合部における腐食が発生しにくく、高い信頼性を有する半導体装置とすることができるとともに、電気抵抗の低減など半導体装置の電気特性を向上させることができる。
 本発明の半導体装置の一例について図1を用いつつ説明する。
図1に示された本発明の半導体装置は、ダイパッド部3aを有するリードフレーム3と、ダイパッド部3aに搭載された半導体素子1と、リードフレーム3と半導体素子1とを電気的に接続している金属ワイヤ4と、上記の半導体封止用エポキシ樹脂組成物の硬化物からなり、半導体素子1と金属ワイヤ4とを封止している、封止樹脂5と、を有する。
 半導体素子1としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、固体撮像素子、SiCを使用した半導体素子、パワートランジスタなどのパワー系半導体、車載用電子部品等が挙げられる。
 本発明に用いられるリードフレーム3としては特に制限はなく、リードフレーム3に代えて回路基板を用いてもよい。具体的には、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリア(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)、クワッド・フラット・ノンリーデッド・パッケージ(QFN)、スモールアウトライン・ノンリーデッド・パッケージ(SON)、リードフレーム・BGA(LF-BGA)、モールド・アレイ・パッケージタイプのBGA(MAP-BGA)などの従来公知の半導体装置に用いられるリードフレーム又は回路基板を用いることができる。
 半導体素子1は、複数の半導体素子が積層されたものであってもよい。この場合、1段目の半導体素子はフィルム接着剤、熱硬化性接着剤等のダイボンド材硬化体2を介してダイパッド部3aに接着される。2段目以降の半導体素子は絶縁性のフィルム接着剤により順次積層させることができる。そして、最上層等の適切な各層に、電極パッド6が形成される。
 電極パッド6は、アルミニウムを主成分とする。電極パッド6に用いるアルミニウムの純度としては特に限定されないが、99.5質量%以上が好ましい。電極パッド6は、下層の銅回路端子の表面に一般的なチタン製バリア層を形成し、さらにアルミニウムを蒸着、スパッタリング、無電解メッキなど、一般的な半導体素子の電極パッドの形成方法を適用することにより作製することができる。
 金属ワイヤ4は、リードフレーム3に設けられた電気的接合部と、リードフレーム3のダイパッド部3aに搭載された半導体素子1に設けられた電極パッドとを電気的に接続するために使用される。金属ワイヤ4の表面には、金属ワイヤの種類によっては自然に又はプロセス上不可避的に酸化膜が形成されている。本発明において、金属ワイヤ4とは、このようにワイヤ表面に形成された酸化膜を具備するものも含まれる。
 金属ワイヤのワイヤ径は、30μm以下、さらに好ましくは25μm以下でありかつ15μm以上であることが好ましい。この範囲であれば金属ワイヤ先端のボール形状が安定し、接合部分の接続信頼性を向上させることができる。また、金属ワイヤ自身の硬さによりワイヤ流れを低減することが可能となる。
 金属ワイヤとして銅ワイヤを適用する場合、銅純度99.9質量%以上であることが好ましく、99.99質量%以上であることがより好ましい。一般に銅に対して各種元素(ドーパント)を添加することで接合時における銅ワイヤ先端のボール側形状の安定化を図ることができるが、0.1質量%より多い大量のドーパントを添加すると、ワイヤ接合時にボール部分が硬くなることで半導体素子1の電極パッド6側にダメージを与え、接合不足起因の耐湿信頼性の低下、高温保管特性の低下、電気抵抗値の増大といった不具合を生じる場合がある。
これに対し、銅純度99.9質量%以上の銅ワイヤであれば、ボール部分は充分な柔軟性を有しているため、接合時に電極パッド側にダメージを与える恐れがない。
尚、本発明の半導体装置で用いることができる銅ワイヤは、芯線である銅にBa、Ca、Sr、Be、Al又は希土類金属を0.001質量%~0.003質量%ドープすることでさらにボール形状と接合強度が改善される。
 また、金属ワイヤとして銅ワイヤを適用する場合、その表面にパラジウムを含む金属材料で構成された被覆層を有していることが好ましい。これにより、銅ワイヤ先端のボール形状が安定し、接合部分の接続信頼性を向上させることができる。また、芯線である銅の酸化劣化を防止する効果も得られ、接合部分の高温保管特性を向上させることができる。
 銅ワイヤにおけるパラジウムを含む金属材料から構成された被覆層の厚みとしては、0.001μm~0.02μmであることが好ましく、0.005μm~0.015μmであることがより好ましい。上記上限値を超えると、ワイヤボンド時に芯線である銅と被覆材のパラジウムを含む金属材料とが十分に溶けずボール形状が不安定になり、接合部分の耐湿性、高温保管特性が低下する恐れがある。また、上記下限値を下回ると、芯線の銅の酸化劣化を十分に防止できず、同様に接合部分の耐湿性、高温保管特性が低下する恐れがある。
 銅ワイヤは、銅合金を溶解炉で鋳造し、その鋳塊をロール圧延し、さらにダイスを用いて伸線加工を行い、連続的にワイヤを掃引しながら加熱した後、熱処理を施して得ることができる。また、本発明の半導体装置で用いることができる銅ワイヤにおけるパラジウムを含む金属材料から構成された被覆層は、予め目標とするワイヤ径の線を準備し、これをパラジウムを含む電解溶液又は無電解溶液に浸漬し、連続的に掃引してメッキすることで被覆層を形成することができる。この場合、被覆の厚さは掃引速度で調整することができる。また、目標とするワイヤ径よりも太い線を準備して、これを電解溶液又は無電解溶液に浸漬し連続的に掃引して被覆層を形成し、さらに所定の径になるまで伸線する手法も採用できる。
 リードフレーム3の電気的接合部(リード部)3bと半導体素子1に設けられた電極パッド6とは、ワイヤのリバースボンドで接合されていてもよい。リバースボンドでは、まず半導体素子1の電極パッド6に金属ワイヤ4の先端に形成されたボールを接合し、金属ワイヤ4を切断してステッチ接合用のバンプを形成する。次にリードフレーム3の金属メッキされたリード部3bに対してワイヤの先端に形成されたボールを接合し、半導体素子1のバンプにステッチ接合する。リバースボンドでは正ボンディングより半導体素子1上のワイヤ高さを低くすることができるため、半導体素子1の接合高さを低くすることができる。
 本発明の半導体装置は、半導体封止用エポキシ樹脂組成物を用いて、半導体素子等の電子部品を封止し、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形して得られる。トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま、或いは80℃~200℃程度の温度で、10分間~10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。
 封止樹脂5は、上記で説明した本発明の半導体封止用エポキシ樹脂組成物の硬化物である。
 このように、本発明の半導体装置は、ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、上記リードフレーム又は回路基板に設けられた電気的接合部と上記半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤとが、上記本発明の半導体封止用エポキシ樹脂組成物の硬化物により封止されていることを特徴とするものであり、半導体封止用エポキシ樹脂組成物に用いられるエポキシ樹脂(A)が、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して90%以上であるので、低コストである銅ワイヤを適用した場合でも、半導体素子上の電極パッドとの接合部における腐食を低減でき、接合部の電気抵抗の上昇又は接合部の断線が起こりにくい信頼性の高い半導体装置を実現することができる。
 金属ワイヤとして銅ワイヤを適用した場合、銅ワイヤは、安価であるため、半導体装置のコストダウンに有用である。しかしながら、銅ワイヤに接続された半導体素子1を従来の半導体封止用エポキシ樹脂組成物により封止すると、耐湿信頼性が低下することがあった。
 銅ワイヤと半導体素子1のアルミニウム製電極パッド6との接合部の腐食のメカニズムは次のように考えられる。
銅ワイヤと半導体素子1のアルミニウム製電極パッド6の接合界面には銅アルミニウム合金が形成される。銅アルミニウム合金はガルバニック対を形成するため、電気化学的活性が高く腐食耐性が低い。高温高湿下では、封止樹脂5を構成する半導体封止用エポキシ樹脂組成物の硬化物から加水分解により塩素イオンが発生する。この塩素イオンにより腐食耐性が低い銅アルミニウム合金層が腐食し、接合部の電気抵抗の上昇や断線が生じる。
 そこで、塩素含有量が少ないエポキシ樹脂(A)を用いることにより、半導体装置を高温高湿処理したとき、封止樹脂5から発生する腐食性の塩素イオンの発生量を低減させる。こうすることで、銅ワイヤと半導体素子1のアルミニウム製電極パッド6との接合部の腐食を防ぐことができる。これにより、金属ワイヤとして銅ワイヤを適用した場合でも、本発明の半導体装置を耐湿信頼性に優れたものとすることができる。
 例えば、本発明の半導体装置をHAST処理(130℃85%RH20V)したときに、配線間の電気抵抗値の値が初期値に対して20%増加した半導体装置を不良と判定する場合において、192時間処理しても不良が発生しないことが望ましい。
 通常、半導体装置は、HAST処理(130℃85%RH20V)で96時間の耐性が必要とされる。このため、HAST処理(130℃85%RH20V)で192時間にわたって不良が発生しなければ、十分な信頼性を確保することができる。
 このように、エポキシ樹脂(A)、硬化剤(B)、無機充填材(C)を含有し、エポキシ樹脂(A)が、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して90%以上である本発明の半導体封止用エポキシ樹脂組成物を用いることによって、断線が起こりにくく耐湿信頼性の高い本発明の半導体装置が実現可能となる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。実施例及び比較例において使用したエポキシ樹脂組成物の各成分を以下に示す。
 <エポキシ樹脂>
エポキシ樹脂A:ビフェニル型エポキシ樹脂(上記一般式(1)において、3位,3’位及び5位,5’位のRがメチル基、2位,2’位及び6位,6’位のRが水素原子であるエポキシ樹脂、三菱化学(株)製「YX4000H」、エポキシ当量193、全塩素量400ppm、加水分解塩素量150ppm、ゲルパーミエーションクロマトグラフの面積法:主ピークの面積/全ピークの合計面積=83.7%)。
エポキシ樹脂B:ビフェニル型エポキシ樹脂(上記一般式(1)において、3位,3’位及び5位,5’位のRがメチル基、2位,2’位及び6位,6’位のRが水素原子であるエポキシ樹脂、三菱化学(株)製「YL7684」、エポキシ当量184、全塩素量158ppm、加水分解塩素量80ppm、ゲルパーミエーションクロマトグラフの面積法:主ピークの面積/全ピークの合計面積=92.4%)。
エポキシ樹脂C:ビフェニル型エポキシ樹脂(上記一般式(1)において、3位,3’位及び5位,5’位のRがメチル基、2位,2’位及び6位,6’位のRが水素原子であるエポキシ樹脂、三菱化学(株)製「YX4000UH」、エポキシ当量177、全塩素量15ppm、加水分解塩素量<10ppm、ゲルパーミエーションクロマトグラフの面積法:主ピークの面積/全ピークの合計面積=99.7%)。
 <硬化剤>
硬化剤A:フェノールアラルキル樹脂、三井化学(株)製、XLC-2L、水酸基当量175、150℃の溶融粘度360mPa・s。
硬化剤B:フェノールノボラック樹脂、住友ベークライト(株)製、PR-HF-3軟化点80℃、水酸基当量104。
 <充填材>
溶融球状シリカ(平均粒径26.5μm、105μm以上の粒子が1重量%以下、電気化学工業(株)製「FB-820」)
 <硬化促進剤>
硬化促進剤:トリフェニルホスフィン(TPP、ケイ・アイ化成(株)製「PP360」)の1,4-ベンゾキノン付加物
 <カップリング剤>
カップリング剤:γ-グリシドキプロピルトリメトキシシラン
 上記各成分の他、着色剤としてカーボンブラック、離型剤としてカルナバワックスを使用した。
エポキシ樹脂組成物の製造:
 (実施例1)
 エポキシ樹脂B(6.55質量部)と、硬化剤A(6.20質量部)と、充填材として溶融球状シリカ(86.00質量部)と、硬化促進剤(0.20質量部)と、カップリング剤(0.25質量部)と、着色剤としてカーボンブラック(0.30質量部)と、離型剤としてカルナバワックス(0.50質量部)とを、ミキサーを用いて15~28℃で混合し、次いで70℃~100℃でロール混練した。冷却後、粉砕してエポキシ樹脂組成物を得た。
 (実施例2~4、比較例1、2)
 表1に記載の半導体封止用エポキシ樹脂組成物配合に従い、実施例1と同様にして半導体封止用エポキシ樹脂組成物を得た。表1に示された配合は全て質量部である。
半導体装置の製造:
 アルミニウム製電極パッドを備えるTEG(TEST ELEMENT GROUP)チップ(3.5mm×3.5mm)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30mm×30mm、厚さ1.17mm)のダイパッド部に接着し、TEGチップのアルミニウム製電極パッドと基板の電極パッドとをデイジーチェーン接続となるように銅ワイヤ4N(銅純度99.99質量%)を用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製「Yシリーズ」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分間の条件で実施例1~4又は比較例1~2のいずれかの半導体封止用エポキシ樹脂組成物により封止成形して、352ピンBGAパッケージを作製した。このパッケージを175℃、4時間の条件で後硬化して半導体装置を得た。
評価方法:
(1)エポキシ樹脂組成物の物性評価
 得られたエポキシ樹脂組成物の物性を以下の方法により測定した。その結果を表1に示す。
 <スパイラルフロー(SF)>
 低圧トランスファー成形機(コータキ精機(株)製「KTS-15」)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒間の条件で、実施例1~4、比較例1~2の半導体封止用エポキシ樹脂組成物をそれぞれ注入し、流動長(単位:cm)を測定した。60cm以下であるとパッケージ未充填などの成形不良が生じる場合がある。
 <ゲルタイム(GT)>
175℃に加熱した熱板上で実施例1~4、比較例1~2の半導体封止用エポキシ樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間を測定した。
結果を表1に示す。
(2)半導体装置の特性評価
 作製した352ピンBGA半導体装置の耐湿信頼性(HAST)を以下の方法により測定した。その結果を表1に示す。
 <HAST>
352ピンBGAパッケージを使用し、IEC68-2-66に準拠しHAST(Highly Accelerated temperature and humidity Stress Test)試験を行った。試験条件は130℃85%RH20V印加、96時間、192時間及び1008時間処理をして回路のオープン不良有無を測定した。1パッケージあたり4端子を持ち5パッケージで計20回路を評価に用いた。単位は不良回路の個数。
 <判定>
 HASTにおいて、1008時間処理をしても不良が発生しない場合を◎、192時間処理しても不良が発生しない場合を○と判定し、それ以外を×と判定した。
Figure JPOXMLDOC01-appb-T000008
 表1で示すように、実施例1~4の半導体封止用エポキシ樹脂組成物を硬化させてなる封止樹脂を備える半導体装置では、192時間処理を行ったHAST評価において、不良が発生しなかった。
 本発明の半導体封止用エポキシ樹脂組成物は、ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、このリードフレーム又は回路基板に設けられた電気的接合部と半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤとして特に銅ワイヤを用いた場合に、半導体素子上の電極パッドと銅ワイヤとの接合物における高温高湿下での腐食を抑制し、信頼性を向上させた低コストな半導体装置を製造するのに好適に用いることができるものである。
1     半導体素子
2     ダイボンド材硬化体
3     リードフレーム
3a   ダイパッド部
3b   リードフレームの電気的接合部(リード部)
4     金属ワイヤ(銅ワイヤ)
5     封止樹脂
6     電極パッド

Claims (10)

  1.  ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、
     前記リードフレーム又は回路基板に設けられた電気的接合部と前記半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤと、
    を封止して半導体装置を製造するのに用いられる半導体封止用エポキシ樹脂組成物であって、前記半導体封止用エポキシ樹脂組成物は、エポキシ樹脂(A)、硬化剤(B)、無機充填材(C)を含有し、
     前記エポキシ樹脂(A)が、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して90%以上であることを特徴とする半導体封止用エポキシ樹脂組成物。
  2.  前記エポキシ樹脂(A)が、ゲルパーミエーションクロマトグラフの面積法による測定における主ピークの面積が全ピークの合計面積に対して92%以上である請求項1に記載の半導体封止用エポキシ樹脂組成物。
  3.  前記エポキシ樹脂(A)が、含有される全塩素量が300ppm以下であり、加水分解性塩素量が150ppm以下である請求項1または2に記載の半導体封止用エポキシ樹脂組成物。
  4.  前記エポキシ樹脂(A)が、含有される全塩素量が200ppm以下であり、加水分解性塩素量が100ppm以下である請求項1または2のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。
  5.  前記エポキシ樹脂(A)が下記一般式(1)で表されるエポキシ樹脂を含むものである、請求項1ないし4のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)において、複数存在するRはそれぞれ独立に水素原子又は炭素数1~4の炭化水素基を表し、nは重合度を表し、その平均値は0~4の正数である。)
  6.  前記エポキシ樹脂(A)の配合割合が、前記半導体封止用エポキシ樹脂組成物全体に対して3質量%以上20質量%以下である、請求項1ないし5のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。
  7.  前記金属ワイヤが、銅ワイヤである、請求項1ないし6のいずれか1項に記載の半導体封止用エポキシ樹脂組成物。
  8.  前記銅ワイヤの銅に対して0.1質量%以下のドーパントが添加されており、前記銅ワイヤの銅純度が99.9質量%以上である請求項7に記載の半導体封止用エポキシ樹脂組成物。
  9.  ダイパッド部を有するリードフレーム又は回路基板上に搭載された半導体素子と、
     前記リードフレーム又は回路基板に設けられた電気的接合部と前記半導体素子に設けられた電極パッドとを電気的に接合する金属ワイヤと、
    が、請求項1ないし8のいずれか1項に記載の半導体封止用エポキシ樹脂組成物の硬化物により封止されていることを特徴とする半導体装置。
  10.  前記金属ワイヤが、銅ワイヤである、請求項9に記載の半導体装置。
PCT/JP2011/076799 2010-11-24 2011-11-21 半導体封止用エポキシ樹脂組成物及び半導体装置 WO2012070529A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG2013039623A SG190864A1 (en) 2010-11-24 2011-11-21 Epoxy resin composition for semiconductor encapsulation and semiconductor device
US13/988,534 US20130256863A1 (en) 2010-11-24 2011-11-21 Epoxy resin composition for semiconductor encapsulation and semiconductor device
CN2011800561231A CN103221480A (zh) 2010-11-24 2011-11-21 半导体密封用环氧树脂组合物和半导体装置
KR1020137013621A KR20130141557A (ko) 2010-11-24 2011-11-21 반도체 밀봉용 에폭시 수지 조성물 및 반도체 장치
JP2012545740A JPWO2012070529A1 (ja) 2010-11-24 2011-11-21 半導体封止用エポキシ樹脂組成物及び半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010260913 2010-11-24
JP2010-260913 2010-11-24

Publications (1)

Publication Number Publication Date
WO2012070529A1 true WO2012070529A1 (ja) 2012-05-31

Family

ID=46145871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076799 WO2012070529A1 (ja) 2010-11-24 2011-11-21 半導体封止用エポキシ樹脂組成物及び半導体装置

Country Status (7)

Country Link
US (2) US20130243715A1 (ja)
JP (1) JPWO2012070529A1 (ja)
KR (1) KR20130141557A (ja)
CN (1) CN103221480A (ja)
SG (1) SG190864A1 (ja)
TW (1) TW201221536A (ja)
WO (1) WO2012070529A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005275A1 (ja) * 2013-07-11 2015-01-15 住友ベークライト株式会社 半導体装置の製造方法および半導体装置
JP2015098521A (ja) * 2013-11-19 2015-05-28 住友ベークライト株式会社 封止用樹脂組成物及び電子部品装置
JP2018115339A (ja) * 2018-04-12 2018-07-26 住友ベークライト株式会社 封止用樹脂組成物及び電子部品装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494838B (zh) 2012-11-07 2015-08-01 Elan Microelectronics Corp 電容式觸控板及其製法
US9224659B2 (en) * 2013-03-14 2015-12-29 Microchip Technology Incorporated Method and apparatus for semiconductor testing at low temperature
US9464224B2 (en) 2013-12-18 2016-10-11 Rohm And Haas Electronic Materials Llc Transformative wavelength conversion medium
US9382472B2 (en) 2013-12-18 2016-07-05 Rohm And Haas Electronic Materials Llc Transformative wavelength conversion medium
CN107429042B (zh) * 2015-03-31 2020-01-07 松下知识产权经营株式会社 密封用树脂组合物、使用了该密封用树脂组合物的半导体装置、使用该密封用树脂组合物的半导体装置的制造方法
TWI709583B (zh) * 2015-12-08 2020-11-11 日商迪愛生股份有限公司 環氧樹脂、環氧樹脂之製造方法、硬化性樹脂組成物及其硬化物
CN112552727B (zh) * 2020-11-12 2021-09-17 厦门大学 一种氮化硼基复合材料防腐蚀助剂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352452A (ja) * 1986-08-22 1988-03-05 Hitachi Ltd 電子装置
JPH0931158A (ja) * 1996-07-22 1997-02-04 Nitto Denko Corp 半導体装置
JP2004165525A (ja) * 2002-11-15 2004-06-10 Sony Corp 半導体装置及びその製造方法
JP2009177104A (ja) * 2007-02-20 2009-08-06 Nec Electronics Corp 半導体装置
JP2010114408A (ja) * 2008-10-10 2010-05-20 Sumitomo Bakelite Co Ltd 半導体装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021523A (ja) * 1983-07-15 1985-02-02 Toshiba Corp マスク欠陥検査方法
JPH08157560A (ja) * 1994-12-12 1996-06-18 Sumitomo Bakelite Co Ltd 半導体封止用エポキシ樹脂組成物
FR2753626B1 (fr) * 1996-09-20 1998-11-06 Centre International De Rech Dermatologiques Galderma Cird Galderma Nouvelles compositions topiques sous forme d'emulsion fluide h/e a forte teneur en glycol pro-penetrant
JP3986445B2 (ja) * 2003-02-17 2007-10-03 東都化成株式会社 高純度エポキシ樹脂の製造方法およびエポキシ樹脂組成物
KR20140127362A (ko) * 2008-10-10 2014-11-03 스미토모 베이클리트 컴퍼니 리미티드 반도체 장치
JP5160380B2 (ja) * 2008-11-12 2013-03-13 新日鉄住金化学株式会社 フィルム状接着剤、それを用いた半導体パッケージ及びその製造方法
JP5126045B2 (ja) * 2008-12-22 2013-01-23 住友ベークライト株式会社 半導体封止用樹脂組成物及び半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352452A (ja) * 1986-08-22 1988-03-05 Hitachi Ltd 電子装置
JPH0931158A (ja) * 1996-07-22 1997-02-04 Nitto Denko Corp 半導体装置
JP2004165525A (ja) * 2002-11-15 2004-06-10 Sony Corp 半導体装置及びその製造方法
JP2009177104A (ja) * 2007-02-20 2009-08-06 Nec Electronics Corp 半導体装置
JP2010114408A (ja) * 2008-10-10 2010-05-20 Sumitomo Bakelite Co Ltd 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005275A1 (ja) * 2013-07-11 2015-01-15 住友ベークライト株式会社 半導体装置の製造方法および半導体装置
JPWO2015005275A1 (ja) * 2013-07-11 2017-03-02 住友ベークライト株式会社 半導体装置の製造方法および半導体装置
JP2015098521A (ja) * 2013-11-19 2015-05-28 住友ベークライト株式会社 封止用樹脂組成物及び電子部品装置
JP2018115339A (ja) * 2018-04-12 2018-07-26 住友ベークライト株式会社 封止用樹脂組成物及び電子部品装置

Also Published As

Publication number Publication date
KR20130141557A (ko) 2013-12-26
CN103221480A (zh) 2013-07-24
JPWO2012070529A1 (ja) 2014-05-19
US20130256863A1 (en) 2013-10-03
TW201221536A (en) 2012-06-01
SG190864A1 (en) 2013-07-31
US20130243715A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
WO2012070529A1 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JP6202114B2 (ja) 封止用樹脂組成物及び電子部品装置
JP5532258B2 (ja) 半導体装置
JP2015137344A (ja) 封止用エポキシ樹脂組成物、及び半導体装置
WO2011070739A1 (ja) 半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置
JP5393207B2 (ja) 半導体装置
WO2011093038A1 (ja) 半導体装置
JP6507506B2 (ja) 封止用樹脂組成物及び半導体装置
US9230892B2 (en) Semiconductor device and method of manufacturing the same
JP2013209450A (ja) 半導体封止用エポキシ樹脂組成物
JP6094573B2 (ja) 半導体装置
JP2015017165A (ja) 封止用エポキシ樹脂組成物、及び半導体装置
JP6322966B2 (ja) 封止用樹脂組成物及び電子部品装置
WO2011030516A1 (ja) 半導体装置
JP5573344B2 (ja) 封止用樹脂組成物及び電子部品装置
JP2011225642A (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5211737B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
WO2013145609A1 (ja) 半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置
JP2012062483A (ja) エポキシ樹脂組成物及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012545740

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13988534

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137013621

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11843946

Country of ref document: EP

Kind code of ref document: A1