WO2020107824A1 - 运行控制方法及系统、压缩机和空调器 - Google Patents

运行控制方法及系统、压缩机和空调器 Download PDF

Info

Publication number
WO2020107824A1
WO2020107824A1 PCT/CN2019/088255 CN2019088255W WO2020107824A1 WO 2020107824 A1 WO2020107824 A1 WO 2020107824A1 CN 2019088255 W CN2019088255 W CN 2019088255W WO 2020107824 A1 WO2020107824 A1 WO 2020107824A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
switching frequency
operating
compressor
operating frequency
Prior art date
Application number
PCT/CN2019/088255
Other languages
English (en)
French (fr)
Inventor
曾贤杰
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Priority to JP2021529412A priority Critical patent/JP7126618B2/ja
Publication of WO2020107824A1 publication Critical patent/WO2020107824A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output

Definitions

  • the present application relates to the technical field of compressor control, and in particular, to an operation control method, an operation control system, a compressor, an air conditioner, and a computer-readable storage medium.
  • the compressor control of inverter air conditioners is controlled by PWM (Pulse Width Modulation) modulation.
  • the output voltage is a series of pulses.
  • the width of the pulse depends on the intersection of the modulated wave and the carrier wave ,
  • the carrier frequency is also the switching frequency.
  • the higher the switching frequency the more the number of pulses in a sine wave cycle, the better the sine of the current waveform, the better the smoothness, the smaller the harmonics, but the greater the power loss of the power module, the power module heats up Increased, excessively high temperature will reduce the life of electronic devices, and even damage the devices.
  • the lower the switching frequency the fewer the number of pulses in a sine wave cycle, the worse the sine of the current waveform, the worse the smoothness, and the greater the harmonics, which makes the compressor control effect worse, resulting in increased power consumption .
  • the switching frequency controlled by the compressor of the inverter air conditioner is usually fixed at a switching frequency, but is not adjusted according to the actual operating conditions of the compressor and the air conditioner. In most operating situations, this fixed switching frequency cannot play the maximum effect. At the same time, the switching device will generate switching loss during the switching process. This switching loss is the main loss of the inverter air conditioner controller. This loss will reduce the efficiency of the inverter controller and increase the heating of the controller, resulting in a decrease in the reliability of the controller.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the first aspect of the present application proposes an operation control method.
  • the second aspect of the present application proposes an operation control system.
  • the third aspect of the present application proposes a compressor.
  • the fourth aspect of the present application proposes an air conditioner.
  • a fifth aspect of the present application proposes a computer-readable storage medium.
  • the first aspect of the present application provides an operation control method, which is suitable for an inverter bridge control circuit of a compressor, and a power device is provided in the inverter bridge control circuit.
  • the operation control method includes: collecting the operation of the compressor Frequency; adjust the switching frequency of the power device to the target switching frequency according to the operating frequency.
  • the control circuit collects the operating frequency of the compressor in real time, and dynamically adjusts the switching frequency of the power device in the inverter bridge control circuit according to the collected operating frequency of the compressor, so that the adjusted switching frequency and the current The operating frequency of the compressor is matched, so it can always play its maximum effect.
  • the switching circuit is dynamically adjusted correspondingly with the increase or decrease of the compressor frequency through the control circuit.
  • the compressor control circuit includes a commercial power supply, a rectifier module, and a PFC (Power Factor Correction) module, as well as an inverter bridge module and a main control chip.
  • the main control chip collects the operating frequency of the compressor in real time, and dynamically adjusts the switching frequency of the power device in the inverter bridge module according to the operating frequency of the compressor.
  • the frequency in the production process of the compressor, by testing the switching frequency corresponding to the minimum power consumption of the inverter controller at different operating frequencies of the compressor, and setting the switching frequency to the optimal switch of the current operating frequency The frequency finally forms a switching frequency table composed of the compressor frequency and the corresponding optimal switching frequency.
  • the main control chip monitors the operating frequency of the compressor in real time, and finds the optimal switching frequency corresponding to the current compressor operating frequency in the switching frequency table through the difference table lookup method, and controls the inverter bridge module to The optimal switching frequency runs.
  • further adjusting the switching frequency of the power device to the target switching frequency according to the operating frequency specifically includes: adjusting the switching frequency to the corresponding first target switch based on the collected operating frequency being at least a first operating frequency threshold Frequency; based on the collected operating frequency is less than the second operating frequency threshold, adjust the switching frequency to the corresponding second target switching frequency; based on the collected operating frequency is at least the second operating frequency threshold, and is less than the first operating frequency threshold, keep The switching frequency of the power device is unchanged, wherein the first operating frequency threshold is greater than the second operating frequency threshold, and the first target switching frequency is greater than the second target switching frequency.
  • the main control module collects the operating frequency of the compressor in real time, and compares the collected operating frequency with a preset frequency threshold.
  • the collected operating frequency is at least the first operating frequency threshold, it indicates that the current operating frequency of the compressor is higher.
  • the switching frequency is adjusted to the corresponding first target switching frequency with a higher switching frequency ;
  • the switching frequency is adjusted to the corresponding second target switching frequency with a lower switching frequency to reduce the switching device Loss, and reduce the operating temperature of power devices.
  • the operating frequency of the compressor is at least the second operating frequency threshold and is less than the first operating frequency threshold, it means that the current compressor is running smoothly and there is no need to adjust the switching frequency.
  • the first operating frequency is greater than the second operating frequency, and the corresponding first target switching frequency is greater than the second target switching frequency.
  • adjusting the switching frequency of the power device to the target switching frequency according to the operating frequency specifically includes: reducing the switching frequency of the power device to the corresponding target switching frequency based on the collected operating frequency decreasing with time; Based on the collected operating frequency increasing with time, the switching frequency of the power device is increased to the corresponding target switching frequency.
  • the main control module collects the operating frequency of the compressor in real time and stores it in the storage medium, and establishes a corresponding operating frequency change curve through the stored operating frequency and the time point at which the operating frequency is acquired.
  • the application determines the compressor frequency change trend according to the change curve of probability.
  • the switching frequency of the control power device is correspondingly reduced, specifically to the corresponding target switching frequency.
  • the switching frequency of the power device is increased correspondingly, and the corresponding increase to the corresponding Target switching frequency to get better control effect.
  • the operation control method further includes: collecting the operating temperature of the power device; comparing the magnitude relationship between the operating temperature and the preset temperature threshold, and according to the magnitude relationship, the target switching frequency and/or Or adjust the operating frequency of the compressor.
  • a corresponding temperature collection unit is set in the inverter bridge module to collect the working temperature of the power device in real time and send it to the main control module; the main control module compares the working temperature sampling value of the power module with the preset Temperature threshold, and dynamically adjust the target switching frequency of the power device and/or the operating frequency of the compressor according to the specific comparison result, to achieve the overheat protection of the power device on the basis of ensuring the control effect on the compressor, to prevent the power device Overheating causes damage to the system.
  • the target switching frequency and/or the compressor operating frequency when comparing the magnitude relationship between the operating temperature and the preset temperature threshold, and adjusting the target switching frequency and/or the compressor operating frequency according to the magnitude relationship, specifically includes: The collected operating temperature is at least the first temperature threshold, and the target switching frequency is correspondingly reduced according to the operating temperature; based on the collected operating temperature is at least the second temperature threshold, the target switching frequency is correspondingly reduced according to the operating temperature, and according to the operating temperature Correspondingly reduce the operating frequency; based on the collected operating temperature is at least a third temperature threshold, control the inverter bridge control circuit to stop working.
  • a corresponding temperature threshold is set to determine in real time whether the collected operating temperature exceeds the corresponding temperature threshold. Specifically, when the collected operating temperature is at least the first temperature threshold, it indicates that the power device has an overheating trend, and the target switching frequency is correspondingly reduced to reduce the operating temperature of the power device; when the collected operating temperature is at least the second temperature threshold , It means that the power device has overheated, and only reducing the switching frequency can not suppress the overheating trend. Therefore, the operating frequency of the compressor is reduced while reducing the switching frequency to further reduce the operating temperature of the power device; when the operating temperature is collected at least The third temperature threshold indicates that the power device has been severely overheated and there is a risk of damage. At this time, the inverter bridge control circuit is immediately stopped to prevent the power device from being burned.
  • the first temperature threshold is less than the second temperature threshold
  • the second temperature threshold is less than the third temperature threshold
  • the first temperature threshold is smaller than the second temperature threshold
  • the second temperature threshold is smaller than the third temperature threshold. According to the size relationship between the power device and the corresponding temperature threshold, appropriate response operations can be selected to prevent the power device from overheating and burning.
  • the second aspect of the present application provides an operation control system for an inverter bridge control circuit of a compressor.
  • the inverter bridge control circuit is provided with power devices.
  • the control system includes: a sensor module for collecting the operation of the compressor Frequency; the main control module is used to adjust the switching frequency of the power device according to the operating frequency.
  • the control circuit collects the operating frequency of the compressor in real time, and dynamically adjusts the switching frequency of the power device in the inverter bridge control circuit according to the collected operating frequency of the compressor, so that the adjusted switching frequency and the current The operating frequency of the compressor is matched, so it can always play its maximum effect.
  • the switching circuit is dynamically adjusted correspondingly with the increase or decrease of the compressor frequency through the control circuit.
  • the main control module is further configured to: when the collected operating frequency is at least the first operating frequency threshold, adjust the switching frequency to the first preset switching frequency; based on the collected operating frequency less than the second Operating frequency threshold, adjust the switching frequency to the second preset switching frequency; based on the collected operating frequency is at least the second operating frequency, and is less than the first operating frequency, maintain the current switching frequency unchanged; wherein, the first operating frequency threshold is greater than The second operating frequency threshold, the first preset switching frequency is greater than the second preset switching frequency.
  • the main control module collects the operating frequency of the compressor in real time, and compares the collected operating frequency with a preset frequency threshold.
  • the collected operating frequency is at least the first operating frequency threshold, it indicates that the current operating frequency of the compressor is higher.
  • the switching frequency is adjusted to the corresponding first target switching frequency with a higher switching frequency ;
  • the switching frequency is adjusted to the corresponding second target switching frequency with a lower switching frequency to reduce the switching device Loss, and reduce the operating temperature of power devices.
  • the operating frequency of the compressor is at least the second operating frequency threshold and is less than the first operating frequency threshold, it means that the current compressor is running smoothly and there is no need to adjust the switching frequency.
  • the first operating frequency is greater than the second operating frequency, and the corresponding first target switching frequency is greater than the second target switching frequency.
  • the main control module is further used to: reduce the switching frequency of the power device to the corresponding target switching frequency based on the collected operating frequency decreasing with time; based on the collected operating frequency increasing with time, Increase the switching frequency of the power device to the corresponding target switching frequency.
  • the main control module collects the operating frequency of the compressor in real time and stores it in the storage medium, and establishes a corresponding operating frequency change curve through the stored operating frequency and the time point at which the operating frequency is acquired.
  • the application determines the compressor frequency change trend according to the change curve of probability.
  • the switching frequency of the control power device is correspondingly reduced, specifically to the corresponding target switching frequency.
  • the switching frequency of the power device is increased correspondingly, and the corresponding increase to the corresponding Target switching frequency to get better control effect.
  • the sensor module is also used to collect the operating temperature of the power device; the main control module is also used to compare the size relationship between the operating temperature and the preset temperature threshold, and according to the size relationship The target switching frequency and/or the operating frequency of the compressor are adjusted.
  • a corresponding temperature collection unit is set in the inverter bridge module to collect the working temperature of the power device in real time and send it to the main control module; the main control module compares the working temperature sampling value of the power module with the preset Temperature threshold, and dynamically adjust the target switching frequency of the power device and/or the operating frequency of the compressor according to the specific comparison result, to achieve the overheat protection of the power device on the basis of ensuring the control effect on the compressor, to prevent the power device Overheating causes damage to the system.
  • the main control module is further configured to: based on the collected operating temperature is at least a first temperature threshold, correspondingly reduce the target switching frequency according to the operating temperature; based on the collected operating temperature at least Two temperature thresholds, correspondingly lower the target switching frequency according to the operating temperature, and correspondingly reduce the operating frequency according to the operating temperature; when the collected operating temperature is at least the third temperature threshold, control the inverter bridge control circuit to stop working.
  • a corresponding temperature threshold is set to determine in real time whether the collected operating temperature exceeds the corresponding temperature threshold. Specifically, when the collected operating temperature is at least the first temperature threshold, it indicates that the power device has an overheating trend, and the target switching frequency is correspondingly reduced to reduce the operating temperature of the power device; when the collected operating temperature is at least the second temperature threshold , It means that the power device has overheated, and only reducing the switching frequency can not suppress the overheating trend. Therefore, the operating frequency of the compressor is reduced while reducing the switching frequency to further reduce the operating temperature of the power device; when the operating temperature is collected at least The third temperature threshold indicates that the power device has been severely overheated and there is a risk of damage. At this time, the inverter bridge control circuit is immediately stopped to prevent the power device from being burned.
  • the first temperature threshold is less than the second temperature threshold
  • the second temperature threshold is less than the third temperature threshold
  • the first temperature threshold is less than the second temperature threshold
  • the second temperature threshold is less than the third temperature threshold. According to the size relationship between the power device and the corresponding temperature threshold, appropriate response operations can be selected to prevent the power device from overheating and burning.
  • a third aspect of the present application provides a compressor including the operation control system as described in any one of the above technical solutions, therefore, the compressor includes the operation control system as described in any of the above technical solutions All beneficial effects.
  • a fourth aspect of the present application provides an air conditioner including the operation control system described in any one of the above technical solutions and/or the compressor described in any one of the above technical solutions. Therefore, the air conditioner The compressor includes all the beneficial effects of the operation control system described in any of the above technical solutions and/or the compressor as described in any of the above technical solutions.
  • a fifth aspect of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the operation control method described in any of the above technical solutions is implemented. Therefore, the computer can
  • the read storage medium includes all the beneficial effects of the operation control method as described in any of the above technical solutions.
  • FIG. 1 shows a flowchart of an operation control method according to an embodiment of the present application
  • FIG. 2 shows a schematic diagram of a compressor inverter bridge control circuit according to an embodiment of the present application
  • FIG. 3 shows a comparison diagram of the switching frequency and the compressor operating frequency according to an embodiment of the present application
  • FIG. 4 shows a comparison diagram of the switching frequency and the compressor operating frequency according to another embodiment of the present application
  • FIG. 5 shows a comparison diagram of the switching frequency and the compressor operating frequency according to yet another embodiment of the present application
  • FIG. 6 shows a flowchart of an operation control method according to another embodiment of the present application.
  • FIG. 7 shows a flowchart of an operation control method according to yet another embodiment of the present application.
  • FIG. 8 shows a block diagram of an operation control system according to an embodiment of the present application.
  • an operation control method is provided, which is suitable for an inverter bridge control circuit of a compressor, and a power device is provided in the inverter bridge control circuit, and the operation control method include:
  • S104 Adjust the switching frequency of the power device to the target switching frequency according to the operating frequency.
  • control circuit collects the operating frequency of the compressor in real time, and dynamically adjusts the switching frequency of the power device in the inverter bridge control circuit according to the collected operating frequency of the compressor, so that the adjusted switching frequency and the current
  • the operating frequency of the compressor is matched, so it can always play its maximum effect.
  • the switching circuit is dynamically adjusted correspondingly with the increase or decrease of the compressor frequency through the control circuit.
  • the compressor control circuit includes a commercial power supply, a rectifier module, and a PFC (Power Factor Correction) module, as well as an inverter bridge module and a main control chip.
  • the main control chip collects the operating frequency of the compressor in real time, and dynamically adjusts the switching frequency of the power device in the inverter bridge module according to the operating frequency of the compressor.
  • the main control chip monitors the operating frequency of the compressor in real time, and finds the optimal switching frequency corresponding to the current compressor operating frequency in the switching frequency table through the difference table lookup method, and controls the inverter bridge module to The optimal switching frequency runs.
  • the switching frequency corresponding to the minimum power consumption of the inverter controller in different operating frequency ranges of the compressor is tested, and the switching frequency is set to the optimum of the current operating frequency
  • the switching frequency finally forms a comparison chart of the switching frequency fs shown in FIG. 3 and the compressor operating frequency fc.
  • the corresponding switching frequency is fs1
  • the switching frequency is fs2
  • the switching frequency corresponds to fsn.
  • the minimum value fsmin and the maximum value fsmax of the switching frequency are determined first, and the carrier ratio K is determined according to fsmin and fsmax and the corresponding operating frequency range of the compressor.
  • the corresponding switching frequency can be calculated by the following formula:
  • fs is the switching frequency
  • K is the carrier ratio
  • fc is the operating frequency. If the calculated switching frequency is less than the minimum value fsmin, then set the switching frequency to fsmin; if the calculated switching frequency is greater than the maximum value fsmax, then set the switching frequency to fsmax.
  • the compressor first determine the minimum value fsmin and the maximum value fsmax of the switching frequency, and divide the operating frequency of the compressor into multiple intervals according to the level of the operating frequency, and determine the carrier of different intervals respectively Ratio K.
  • the carrier ratio is K1
  • the carrier ratio is K2
  • the carrier ratio is K3
  • the carrier ratio is K3.
  • the switching frequency is set to fsmin; if the calculated switching frequency is greater than the maximum value fsmax, the switching frequency is set to fsmax.
  • adjusting the switching frequency of the power device to the target switching frequency according to the operating frequency specifically includes: when the collected operating frequency is at least the first operating frequency threshold, adjusting the switching frequency to the corresponding The first target switching frequency; when the collected operating frequency is less than the second operating frequency threshold, adjust the switching frequency to the corresponding second target switching frequency; when the collected operating frequency is at least the second operating frequency threshold, and is less than the first
  • the switching frequency of the power device is kept unchanged, wherein the first operating frequency threshold is greater than the second operating frequency threshold, and the first target switching frequency is greater than the second target switching frequency.
  • the main control module collects the operating frequency of the compressor in real time, and compares the collected operating frequency with a preset frequency threshold.
  • the collected operating frequency is at least the first operating frequency threshold, it indicates that the current operating frequency of the compressor is higher.
  • the switching frequency is adjusted to the corresponding first target switching frequency with a higher switching frequency ;
  • the switching frequency is adjusted to the corresponding second target switching frequency with a lower switching frequency to reduce the switching device Loss, and reduce the operating temperature of power devices.
  • the operating frequency of the compressor is at least the second operating frequency threshold and is less than the first operating frequency threshold, it means that the current compressor is running smoothly and there is no need to adjust the switching frequency.
  • the first operating frequency is greater than the second operating frequency, and the corresponding first target switching frequency is greater than the second target switching frequency.
  • adjusting the switching frequency of the power device to the target switching frequency according to the operating frequency specifically includes: when the operating frequency is collected to decrease with time, reducing the switching frequency of the power device to the corresponding target switch Frequency; when the operating frequency increases with time, the switching frequency of the power device is increased to the corresponding target switching frequency.
  • the main control module collects the operating frequency of the compressor in real time and stores it in the storage medium, and establishes a corresponding operating frequency change curve through the stored operating frequency and the time point at which the operating frequency is acquired.
  • the application determines the compressor frequency change trend according to the change curve of probability.
  • the switching frequency of the control power device is correspondingly reduced, specifically to the corresponding target switching frequency.
  • the switching frequency of the power device is increased correspondingly, and the corresponding increase to the corresponding Target switching frequency to get better control effect.
  • the operation control method includes:
  • S604 Adjust the switching frequency of the power device to the target switching frequency according to the operating frequency
  • S608 Compare the magnitude relationship between the operating temperature and the preset temperature threshold, and adjust the target switching frequency and/or the compressor operating frequency according to the magnitude relationship.
  • a corresponding temperature collection unit is set in the inverter bridge module to collect the working temperature of the power device in real time and send it to the main control module; the main control module compares the working temperature sampling value of the power module with the preset Temperature threshold, and dynamically adjust the target switching frequency of the power device and/or the operating frequency of the compressor according to the specific comparison result, to achieve the overheat protection of the power device on the basis of ensuring the control effect on the compressor, to prevent the power device Overheating causes damage to the system.
  • comparing the magnitude relationship between the operating temperature and the preset temperature threshold, and adjusting the target switching frequency and/or the compressor operating frequency according to the magnitude relationship specifically includes: When the collected operating temperature is at least the first temperature threshold, the target switching frequency is correspondingly reduced according to the operating temperature; when the collected operating temperature is at least the second temperature threshold, the target switching frequency is correspondingly reduced according to the operating temperature, and according to The operating temperature correspondingly reduces the operating frequency; when the collected operating temperature is at least the third temperature threshold, the inverter bridge control circuit is controlled to stop working.
  • a corresponding temperature threshold is set to determine in real time whether the collected operating temperature exceeds the corresponding temperature threshold. Specifically, when the collected operating temperature is at least the first temperature threshold, it indicates that the power device has an overheating trend, and the target switching frequency is correspondingly reduced to reduce the operating temperature of the power device; when the collected operating temperature is at least the second temperature threshold , It means that the power device has overheated, and only reducing the switching frequency can not suppress the overheating trend. Therefore, the operating frequency of the compressor is reduced while reducing the switching frequency to further reduce the operating temperature of the power device; when the operating temperature is collected at least The third temperature threshold indicates that the power device has been severely overheated and there is a risk of damage. At this time, the inverter bridge control circuit is immediately stopped to prevent the power device from being burned.
  • the first temperature threshold is less than the second temperature threshold
  • the second temperature threshold is less than the third temperature threshold
  • the first temperature threshold is smaller than the second temperature threshold
  • the second temperature threshold is smaller than the third temperature threshold. According to the size relationship between the power device and the corresponding temperature threshold, appropriate response operations can be selected to prevent the power device from overheating and burning.
  • the overall flow of operation control is shown in FIG. 7 after the compressor starts to operate:
  • S712. Determine whether the operating temperature is greater than the second temperature threshold. When the judgment result is no, return to S702; when the judgment result is yes, go to S714;
  • S716 Determine whether the operating temperature is greater than the third temperature threshold. If the judgment result is no, return to S702; when the judgment result is yes, go to S718;
  • an operation control system 800 is provided for an inverter bridge control circuit of a compressor, and a power device is provided in the inverter bridge control circuit to control the system It includes: a sensor module 802 for collecting the operating frequency of the compressor; a main control module 804 for adjusting the switching frequency of the power device according to the operating frequency.
  • control circuit collects the operating frequency of the compressor in real time, and dynamically adjusts the switching frequency of the power device in the inverter bridge control circuit according to the collected operating frequency of the compressor, so that the adjusted switching frequency and the current
  • the operating frequency of the compressor is matched, so it can always play its maximum effect.
  • the switching circuit is dynamically adjusted correspondingly with the increase or decrease of the compressor frequency through the control circuit.
  • the main control module is further configured to: when the collected operating frequency is at least the first operating frequency threshold, adjust the switching frequency to the first preset switching frequency; When it is less than the second operating frequency threshold, the switching frequency is adjusted to the second preset switching frequency; when the collected operating frequency is at least the second operating frequency and is less than the first operating frequency, the current switching frequency is maintained unchanged; An operating frequency threshold is greater than a second operating frequency threshold, and the first preset switching frequency is greater than the second preset switching frequency.
  • the main control module collects the operating frequency of the compressor in real time, and compares the collected operating frequency with a preset frequency threshold.
  • the collected operating frequency is at least the first operating frequency threshold, it indicates that the current operating frequency of the compressor is higher.
  • the switching frequency is adjusted to the corresponding first target switching frequency with a higher switching frequency ;
  • the switching frequency is adjusted to the corresponding second target switching frequency with a lower switching frequency to reduce the switching device Loss, and reduce the operating temperature of power devices.
  • the operating frequency of the compressor is at least the second operating frequency threshold and is less than the first operating frequency threshold, it means that the current compressor is running smoothly and there is no need to adjust the switching frequency.
  • the first operating frequency is greater than the second operating frequency, and the corresponding first target switching frequency is greater than the second target switching frequency.
  • the main control module is further used to: when the collected operating frequency decreases with time, reduce the switching frequency of the power device to the corresponding target switching frequency; the collected operating frequency increases with time When, increase the switching frequency of the power device to the corresponding target switching frequency.
  • the main control module collects the operating frequency of the compressor in real time and stores it in the storage medium, and establishes a corresponding operating frequency change curve through the stored operating frequency and the time point at which the operating frequency is acquired.
  • the application determines the compressor frequency change trend according to the change curve of probability.
  • the switching frequency of the control power device is correspondingly reduced, specifically to the corresponding target switching frequency.
  • the switching frequency of the power device is increased correspondingly, and the corresponding increase to the corresponding Target switching frequency to get better control effect.
  • the sensor module is further used to collect the operating temperature of the power device; the main control module is also used to compare the size relationship between the operating temperature and the preset temperature threshold, and according to the size relationship Adjust the target switching frequency and/or compressor operating frequency.
  • a corresponding temperature collection unit is provided in the inverter bridge module to collect the working temperature of the power device in real time and send it to the main control module; Temperature threshold, and dynamically adjust the target switching frequency of the power device and/or the operating frequency of the compressor according to the specific comparison result, on the basis of ensuring the control effect on the compressor, realize the overheat protection of the power device, prevent Overheating causes damage to the system.
  • the main control module is further configured to: when the collected operating temperature is at least the first temperature threshold, correspondingly reduce the target switching frequency according to the operating temperature; when the collected operating temperature is at least When it is the second temperature threshold, the target switching frequency is correspondingly reduced according to the operating temperature, and the operating frequency is correspondingly reduced according to the operating temperature; when the collected operating temperature is at least the third temperature threshold, the inverter bridge control circuit is controlled to stop working.
  • a corresponding temperature threshold is set to determine in real time whether the collected operating temperature exceeds the corresponding temperature threshold. Specifically, when the collected operating temperature is at least the first temperature threshold, it indicates that the power device has an overheating trend, and the target switching frequency is correspondingly reduced to reduce the operating temperature of the power device; when the collected operating temperature is at least the second temperature threshold , It means that the power device has overheated, and only reducing the switching frequency can not suppress the overheating trend. Therefore, the operating frequency of the compressor is reduced while reducing the switching frequency to further reduce the operating temperature of the power device; when the operating temperature is collected at least The third temperature threshold indicates that the power device has been severely overheated and there is a risk of damage. At this time, the inverter bridge control circuit is immediately stopped to prevent the power device from being burned.
  • the first temperature threshold is less than the second temperature threshold
  • the second temperature threshold is less than the third temperature threshold
  • the first temperature threshold is less than the second temperature threshold
  • the second temperature threshold is less than the third temperature threshold. According to the size relationship between the power device and the corresponding temperature threshold, appropriate response operations can be selected to prevent the power device from overheating and burning.
  • a compressor in an embodiment of the third aspect of the present application, includes the operation control system as described in any one of the above embodiments. Therefore, the compressor includes as described in any of the above embodiments All the beneficial effects of the described operation control system.
  • an air conditioner including an operation control system as described in any of the above embodiments and/or a compressor as described in any of the above embodiments Therefore, the air conditioner includes all the beneficial effects of the operation control system described in any of the foregoing embodiments and/or the compressor as described in any of the foregoing embodiments.
  • a computer-readable storage medium is provided on which a computer program is stored, and when the computer program is executed by a processor, the operation control method as described in any of the above embodiments is implemented, Therefore, the computer-readable storage medium includes all the beneficial effects of the operation control method as described in any of the above embodiments.
  • connection can be a fixed connection, can also be detachable connection, or integrally connected; can be directly connected, can also be The intermediary is indirectly connected.

Abstract

本申请提供了一种运行控制方法及系统、压缩机和空调器,其中,运行控制方法包括:收集压缩机的运行频率;根据运行频率调整功率器件的开关频率至目标开关频率。应用了本申请提供的技术方案,通过控制电路随着压缩机频率的升高或降低对应地动态调整开关频率,在压缩机频率较高时,对应增加开关频率可以获得更好的控制效果;而在压缩机频率较低时,对应降低开关器件的开关频率可以降低开关器件的硬件损耗,同时降低控制器发热;进而可以实现随着压缩机工况动态调整开关频率的同时,获得更好的压缩机控制效果,同时抑制功率器件的发热,减少开关器件的损耗,进而提高压缩机控制的可靠性和控制器件的耐久性。

Description

运行控制方法及系统、压缩机和空调器
本申请要求于2018年11月30日提交中国专利局、申请号为201811458785.1、发明名称为“运行控制方法及系统、压缩机和空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机控制技术领域,具体而言,涉及一种运行控制方法、一种运行控制系统、一种压缩机、一种空调器和一种计算机可读存储介质。
背景技术
一般来说,变频空调的压缩机控制采用PWM(Pulse Width Modulation,脉冲宽度调制)调制的形式进行控制的,它输出的电压是一系列的脉冲,脉冲的宽度大小取决于调制波和载波的交点,载波频率也就是开关频率。开关频率越高,一个正弦波周期内脉冲的个数就越多,电流波形的正弦性越好,平滑性也越好,谐波越小,但是功率模块的功率损耗也越大,功率模块发热增加,过高的温度会降低电子器件的寿命,甚至会损坏器件。开关频率越低,一个正弦波周期内脉冲的个数就越少,电流波形的正弦性越差,平滑性也越差,谐波越大,使得压缩机控制效果变差,会导致功耗增加。
一般地,变频空调的压缩机控制的开关频率,通常固定一个开关频率,而没有根据压缩机和空调器的实际运行情况进行调整。在大多数运行情况下,该固定的开关频率不能发挥最大的效用。同时开关器件在开关过程中会产生开关损耗,该开关损耗是变频空调控制器的主要损耗,该损耗会降低变频控制器的效率,并增加控制器的发热,导致控制器可靠性下降。
因此,目前亟需一种技术方案可以根据运行工况调整开关频率,使控制器始终运行在最优开关频率,保证运行的可靠性。
申请内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出一种运行控制方法。
本申请的第二方面提出一种运行控制系统。
本申请的第三方面提出一种压缩机。
本申请的第四方面提出一种空调器。
本申请的第五方面提出一种计算机可读存储介质。
有鉴于此,本申请的第一方面提供了一种运行控制方法,适用于压缩机的逆变桥控制电路,逆变桥控制电路中设置有功率器件,运行控制方法包括:收集压缩机的运行频率;根据运行频率调整功率器件的开关频率至目标开关频率。
在该技术方案中,控制电路实时收集压缩机的运行频率,并根据所收集到的压缩机的运行频率动态调整逆变桥控制电路中功率器件的开关频率,以使调整后的开关频率与当前压缩机的运行频率相匹配,因此总是可以发挥最大的效用。应用了本申请提供的技术方案,通过控制电路随着压缩机频率的升高或降低对应地动态调整开关频率,在压缩机频率较高时,对应增加开关频率可以获得更好的控制效果;而在压缩机频率较低时,对应降低开关器件的开关频率可以降低开关器件的硬件损耗,同时降低控制器发热;进而可以实现随着压缩机工况动态调整开关频率的同时,获得更好的压缩机控制效果,同时抑制功率器件的发热,减少开关器件的损耗,进而提高压缩机控制的可靠性和控制器件的耐久性。
具体地,压缩机控制电路包括市电电源、整流模块及PFC(Power Factor Correction,功率因数矫正)模块、以及逆变桥模块和主控芯片。主控芯片实时采集压缩机的运行频率,并根据压缩机的运行频率动态调整逆变桥模块中功率器件的开关频率。可选地,在压缩机生产过程中,通过测试该压缩机在不同的运行频率下,变频控制器的功耗最小值对应的开关频率,并将该开关频率设置为当前运行频率的最优开关频率,最终形成由压缩机频率和对应的最优开关频率所组成的开关频率表。在压缩机投入运行后,主控芯片实时监控压缩机的运行频率,并透过差值查表法在开关频率表中查 找当前压缩机运行频率对应的最优开关频率,控制逆变桥模块以该最优开关频率运行。
另外,本申请提供的上述技术方案中运行控制方法还可以具有如下附加技术特征:
在上述技术方案中,进一步地,根据运行频率调整功率器件的开关频率至目标开关频率,具体包括:基于收集到运行频率至少是第一运行频率阈值,将开关频率调整为对应的第一目标开关频率;基于收集到运行频率小于第二运行频率阈值,将开关频率调整为对应的第二目标开关频率;基于收集到运行频率至少是第二运行频率阈值,且小于第一运行频率阈值时,保持功率器件的开关频率不变,其中,第一运行频率阈值大于第二运行频率阈值,第一目标开关频率大于第二目标开关频率。
在该技术方案中,主控模块实时收集压缩机的运行频率,并将收集到的运行频率与预设的频率阈值进行对比。当收集到运行频率至少是第一运行频率阈值时,说明当前压缩机的运行频率较高,为了得到更好的控制效果,将开关频率调整为对应的、开关频率较高的第一目标开关频率;当收集到运行频率小于第二运行频率阈值时,说明当前压缩机的运行频率较低,此时将开关频率调整为对应的、开关频率较低的第二目标开关频率,以降低开关器件的损耗,并降低功率器件的工况温度。而当压缩机的运行频率至少是第二运行频率阈值,且小于第一运行频率阈值时,说明当前压缩机平缓运行,无需调整开关频率。其中,第一运行频率大于第二运行频率,相应的第一目标开关频率大于第二目标开关频率。
在上述任一技术方案中,进一步地,根据运行频率调整功率器件的开关频率至目标开关频率,具体包括:基于收集到运行频率随时间降低,降低功率器件的开关频率至对应的目标开关频率;基于收集到运行频率随时间升高,提高功率器件的开关频率至对应的目标开关频率。
在该技术方案中,主控模块实时采集压缩机的运行频率,并存储于存储介质中,通过存储的运行频率与获取到该运行频率的时间点建立对应的运行频率变化曲线。应用程序根据几率的变化曲线判断压缩机的频率变化趋势,当收集到压缩机的运行频率呈随时间降低的趋势时,控制功率器件 的开关频率对应降低,具体对应降低至对应的目标开关频率,以降低开关器件的损耗,并降低功率器件的工况温度;当收集到压缩机的运行频率呈随时间升高的趋势时,控制功率器件的开关频率对应升高,具体对应升高至对应的目标开关频率,以获得更好的控制效果。
在上述任一技术方案中,进一步地,运行控制方法还包括:收集功率器件的工况温度;比较工况温度与预设温度阈值之间的大小关系,并根据大小关系对目标开关频率和/或压缩机的运行频率进行调整。
在该技术方案中,在逆变桥模块中设置对应的温度收集单元,实时收集功率器件的工况温度并发送给主控模块;主控模块比较功率模块的工况温度采样值和预设的温度阈值,并根据具体的比较结果动态调整功率器件的目标开关频率和/或压缩机的运行频率,以在保证对压缩机的控制效果的基础上,实现功率器件的过热保护,防止因功率器件过热导致系统损坏。
在上述任一技术方案中,进一步地,比较工况温度与预设温度阈值之间的大小关系,并根据大小关系对目标开关频率和/或压缩机的运行频率进行调整时,具体包括:基于收集到工况温度至少是第一温度阈值,根据工况温度对应降低目标开关频率;基于收集到工况温度至少是第二温度阈值,根据工况温度对应降低目标开关频率,并根据工况温度对应降低运行频率;基于收集到工况温度至少是第三温度阈值,控制逆变桥控制电路停止工作。
在该技术方案中,设置对应的温度阈值,实时判断收集到的工况温度是否超过对应的温度阈值。具体地,当收集到工况温度至少是第一温度阈值时,说明功率器件有过热趋势,对应降低目标开关频率以降低功率器件的工况温度;当收集到工况温度至少是第二温度阈值时,说明功率器件已经过热,仅降低开关频率已无法抑制过热趋势,因此在降低开关频率的同时降低压缩机的运行频率,以进一步降低功率器件的工况温度;当收集到工况温度至少是第三温度阈值时,说明功率器件已严重过热,有损坏风险,此时立即控制逆变桥控制电路停止工作,防止功率器件烧毁。
在上述任一技术方案中,进一步地,第一温度阈值小于第二温度阈值,第二温度阈值小于第三温度阈值。
在该技术方案中,第一温度阈值小于第二温度阈值,第二温度阈值小 于第三温度阈值。根据功率器件与对应温度阈值的大小关系,可选择适当的应对操作以防止功率器件过热烧毁。
本申请的第二方面提供了一种运行控制系统,用于压缩机的逆变桥控制电路,逆变桥控制电路中设置有功率器件,制系统包括:传感器模块,用于收集压缩机的运行频率;主控模块,用于根据运行频率调整功率器件的开关频率。
在该技术方案中,控制电路实时收集压缩机的运行频率,并根据所收集到的压缩机的运行频率动态调整逆变桥控制电路中功率器件的开关频率,以使调整后的开关频率与当前压缩机的运行频率相匹配,因此总是可以发挥最大的效用。应用了本申请提供的技术方案,通过控制电路随着压缩机频率的升高或降低对应地动态调整开关频率,在压缩机频率较高时,对应增加开关频率可以获得更好的控制效果;而在压缩机频率较低时,对应降低开关器件的开关频率可以降低开关器件的硬件损耗,同时降低控制器发热;进而可以实现随着压缩机工况动态调整开关频率的同时,获得更好的压缩机控制效果,同时抑制功率器件的发热,减少开关器件的损耗,进而提高压缩机控制的可靠性和控制器件的耐久性。
在上述技术方案中,进一步地,主控模块还用于:在收集到运行频率至少是第一运行频率阈值时,将开关频率调整为第一预设开关频率;基于收集到运行频率小于第二运行频率阈值,将开关频率调整为第二预设开关频率;基于收集到运行频率至少是第二运行频率,且小于第一运行频率,维持当前开关频率不变;其中,第一运行频率阈值大于第二运行频率阈值,第一预设开关频率大于第二预设开关频率。
在该技术方案中,主控模块实时收集压缩机的运行频率,并将收集到的运行频率与预设的频率阈值进行对比。当收集到运行频率至少是第一运行频率阈值时,说明当前压缩机的运行频率较高,为了得到更好的控制效果,将开关频率调整为对应的、开关频率较高的第一目标开关频率;当收集到运行频率小于第二运行频率阈值时,说明当前压缩机的运行频率较低,此时将开关频率调整为对应的、开关频率较低的第二目标开关频率,以降低开关器件的损耗,并降低功率器件的工况温度。而当压缩机的运行频率 至少是第二运行频率阈值,且小于第一运行频率阈值时,说明当前压缩机平缓运行,无需调整开关频率。其中,第一运行频率大于第二运行频率,相应的第一目标开关频率大于第二目标开关频率。
在上述任一技术方案中,进一步地,主控模块还用于:基于收集到运行频率随时间降低,降低功率器件的开关频率至对应的目标开关频率;基于收集到运行频率随时间升高,提高功率器件的开关频率至对应的目标开关频率。
在该技术方案中,主控模块实时采集压缩机的运行频率,并存储于存储介质中,通过存储的运行频率与获取到该运行频率的时间点建立对应的运行频率变化曲线。应用程序根据几率的变化曲线判断压缩机的频率变化趋势,当收集到压缩机的运行频率呈随时间降低的趋势时,控制功率器件的开关频率对应降低,具体对应降低至对应的目标开关频率,以降低开关器件的损耗,并降低功率器件的工况温度;当收集到压缩机的运行频率呈随时间升高的趋势时,控制功率器件的开关频率对应升高,具体对应升高至对应的目标开关频率,以获得更好的控制效果。
在上述任一技术方案中,进一步地,传感器模块还用于收集功率器件的工况温度;主控模块还用于比较工况温度与预设温度阈值之间的大小关系,并根据大小关系对目标开关频率和/或压缩机的运行频率进行调整。
在该技术方案中,在逆变桥模块中设置对应的温度收集单元,实时收集功率器件的工况温度并发送给主控模块;主控模块比较功率模块的工况温度采样值和预设的温度阈值,并根据具体的比较结果动态调整功率器件的目标开关频率和/或压缩机的运行频率,以在保证对压缩机的控制效果的基础上,实现功率器件的过热保护,防止因功率器件过热导致系统损坏。
在上述任一技术方案中,进一步地,主控模块还用于:基于收集到工况温度至少是第一温度阈值,根据工况温度对应降低目标开关频率;基于收集到工况温度至少是第二温度阈值,根据工况温度对应降低目标开关频率,并根据工况温度对应降低运行频率;在收集到工况温度至少是第三温度阈值时,控制逆变桥控制电路停止工作。
在该技术方案中,设置对应的温度阈值,实时判断收集到的工况温度 是否超过对应的温度阈值。具体地,当收集到工况温度至少是第一温度阈值时,说明功率器件有过热趋势,对应降低目标开关频率以降低功率器件的工况温度;当收集到工况温度至少是第二温度阈值时,说明功率器件已经过热,仅降低开关频率已无法抑制过热趋势,因此在降低开关频率的同时降低压缩机的运行频率,以进一步降低功率器件的工况温度;当收集到工况温度至少是第三温度阈值时,说明功率器件已严重过热,有损坏风险,此时立即控制逆变桥控制电路停止工作,防止功率器件烧毁。
在上述任一技术方案中,进一步地,第一温度阈值小于第二温度阈值,第二温度阈值小于第三温度阈值。
在该技术方案中,第一温度阈值小于第二温度阈值,第二温度阈值小于第三温度阈值。根据功率器件与对应温度阈值的大小关系,可选择适当的应对操作以防止功率器件过热烧毁。
本申请的第三方面提供了一种压缩机,该压缩机包括如上述任一技术方案中所述的运行控制系统,因此,该压缩机包括如上述任一技术方案中所述的运行控制系统的全部有益效果。
本申请的第四方面提供了一种空调器,该空调器包括如上述任一技术方案中所述的运行控制系统和/或如上述任一技术方案中所述的压缩机,因此,该空调器包括上述任一技术方案中所述的运行控制系统和/或如上述任一技术方案中所述的压缩机的全部有益效果。
本申请的第五方面提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一技术方案中所述的运行控制方法,因此,该计算机可读存储介质包括如上述任一技术方案中所述的运行控制方法的全部有益效果。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的运行控制方法的流程图;
图2示出了根据本申请的一个实施例的压缩机逆变桥控制电路的示意 图;
图3示出了根据本申请的一个实施例的开关频率和压缩机运行频率的对照示意图;
图4示出了根据本申请的另一个实施例的开关频率和压缩机运行频率的对照示意图;
图5示出了根据本申请的再一个实施例的开关频率和压缩机运行频率的对照示意图;
图6示出了根据本申请的另一个实施例的运行控制方法的流程图;
图7示出了根据本申请的再一个实施例的运行控制方法的流程图;
图8示出了根据本申请的一个实施例的运行控制系统的框图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突时下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图8描述根据本申请一些实施例所述运行控制方法、运行控制系统、压缩机、空调器和计算机可读存储介质。
如图1所示,在本申请第一方面的实施例中,提供了一种运行控制方法,适用于压缩机的逆变桥控制电路,逆变桥控制电路中设置有功率器件,运行控制方法包括:
S102,收集压缩机的运行频率;
S104,根据运行频率调整功率器件的开关频率至目标开关频率。
在该实施例中,控制电路实时收集压缩机的运行频率,并根据所收集到的压缩机的运行频率动态调整逆变桥控制电路中功率器件的开关频率,以使调整后的开关频率与当前压缩机的运行频率相匹配,因此总是可以发挥最大的效用。应用了本申请提供的技术方案,通过控制电路随着压缩机 频率的升高或降低对应地动态调整开关频率,在压缩机频率较高时,对应增加开关频率可以获得更好的控制效果;而在压缩机频率较低时,对应降低开关器件的开关频率可以降低开关器件的硬件损耗,同时降低控制器发热;进而可以实现随着压缩机工况动态调整开关频率的同时,获得更好的压缩机控制效果,同时抑制功率器件的发热,减少开关器件的损耗,进而提高压缩机控制的可靠性和控制器件的耐久性。
具体地,如图2所示,压缩机控制电路包括市电电源、整流模块及PFC(Power Factor Correction,功率因数矫正)模块、以及逆变桥模块和主控芯片。主控芯片实时采集压缩机的运行频率,并根据压缩机的运行频率动态调整逆变桥模块中功率器件的开关频率。
可选地,在压缩机生产过程中,通过测试该压缩机在不同的运行频率下,变频控制器的功耗最小值对应的开关频率,并将该开关频率设置为当前运行频率的最优开关频率,最终形成如表1所示的由压缩机频率和对应的最优开关频率所组成的开关频率表,其中,fn代表压缩机的运行频率,fsn代表与fn对应的最优开关频率。在压缩机投入运行后,主控芯片实时监控压缩机的运行频率,并透过差值查表法在开关频率表中查找当前压缩机运行频率对应的最优开关频率,控制逆变桥模块以该最优开关频率运行。
表1
压缩机运行频率 开关频率
f1 fs1
f2 fs2
f3 fs3
f4 fs4
f5 fs5
f6 fs6
…… ……
fn fsn
可选地,在压缩机生产过程中,过测试该压缩机在不同的运行频率范围内,变频控制器的功耗最小值对应的开关频率,并将该开关频率设置为当前运行频率的最优开关频率,最终形成如图3所示的开关频率fs和压缩 机运行频率fc的对照图。其中,当压缩机运行频率在0到f2的区间内时,对应的开关频率为fs1,当压缩机的运行频率在f2到f3的区间内时,开关频率为fs2,当压缩机的运行频率在fn到fn+1的区间内时,开关频率对应为fsn。通过设置不同压缩机运行频率区间对应不同的开关频率,可以减少对压缩机运行频率的采样频次,降低系统压力。
可选地,在压缩机生产过程中,如图4所示,先确定开关频率的最小值fsmin和最大值fsmax,根据fsmin和fsmax,以及对应压缩机的运行频率范围确定载波比值K,当压缩机的运行频率为fc时,则对应的开关频率可通过以下公式计算:
fs=K×fc;
其中,fs为开关频率,K为载波比值,fc为运行频率。如果计算得到的开关频率小于最小值fsmin,则将开关频率设置为fsmin;如果计算得到的开关频率大于最大值fsmax,则将开关频率设置为fsmax。
可选地,在压缩机生产过程中,先确定开关频率的最小值fsmin和最大值fsmax,并将压缩机的运行频率按照运行频率的高低分为多个区间段,分别确定不同区间段的载波比值K。如图5所示,在压缩机运行频率处于[0,f1]的区间内时,载波比值为K1,在压缩机运行频率处于[f1,f2]的区间内时,载波比为K2,在压缩机运行频率[f2,fmax]区间内时,载波比为K3。在采集到压缩机的运行频率后,判断运行频率fc所处的区间。
如果压缩机运行频率fc1在[0,f1]的区间内时,则对应的开关频率为fs1=K1×fc1;
如果压缩机运行频率fc2在[f1,f2]的区间内时,则对应的开关频率为fs2=K2×fc2;
如果压缩机运行频率fc3在[f2,fmax]的区间内时,则对应的开关频率为fs2=K2×fc3;
其中,如果计算得到的开关频率小于最小值fsmin,则将开关频率设置为fsmin;如果计算得到的开关频率大于最大值fsmax,则将开关频率设置为fsmax。
在本申请的一个实施例中,进一步地,根据运行频率调整功率器件的 开关频率至目标开关频率,具体包括:在收集到运行频率至少是第一运行频率阈值时,将开关频率调整为对应的第一目标开关频率;在收集到运行频率小于第二运行频率阈值时,将开关频率调整为对应的第二目标开关频率;在收集到运行频率至少是第二运行频率阈值时,且小于第一运行频率阈值时,保持功率器件的开关频率不变,其中,第一运行频率阈值大于第二运行频率阈值,第一目标开关频率大于第二目标开关频率。
在该实施例中,主控模块实时收集压缩机的运行频率,并将收集到的运行频率与预设的频率阈值进行对比。当收集到运行频率至少是第一运行频率阈值时,说明当前压缩机的运行频率较高,为了得到更好的控制效果,将开关频率调整为对应的、开关频率较高的第一目标开关频率;当收集到运行频率小于第二运行频率阈值时,说明当前压缩机的运行频率较低,此时将开关频率调整为对应的、开关频率较低的第二目标开关频率,以降低开关器件的损耗,并降低功率器件的工况温度。而当压缩机的运行频率至少是第二运行频率阈值,且小于第一运行频率阈值时,说明当前压缩机平缓运行,无需调整开关频率。其中,第一运行频率大于第二运行频率,相应的第一目标开关频率大于第二目标开关频率。
在本申请的一个实施例中,进一步地,根据运行频率调整功率器件的开关频率至目标开关频率,具体包括:在收集到运行频率随时间降低时,降低功率器件的开关频率至对应的目标开关频率;收集到运行频率随时间升高时,提高功率器件的开关频率至对应的目标开关频率。
在该实施例中,主控模块实时采集压缩机的运行频率,并存储于存储介质中,通过存储的运行频率与获取到该运行频率的时间点建立对应的运行频率变化曲线。应用程序根据几率的变化曲线判断压缩机的频率变化趋势,当收集到压缩机的运行频率呈随时间降低的趋势时,控制功率器件的开关频率对应降低,具体对应降低至对应的目标开关频率,以降低开关器件的损耗,并降低功率器件的工况温度;当收集到压缩机的运行频率呈随时间升高的趋势时,控制功率器件的开关频率对应升高,具体对应升高至对应的目标开关频率,以获得更好的控制效果。
在本申请的一个实施例中,进一步地,如图6所示,运行控制方法包 括:
S602,收集压缩机的运行频率;
S604,根据运行频率调整功率器件的开关频率至目标开关频率;
S606,收集功率器件的工况温度;
S608,比较工况温度与预设温度阈值之间的大小关系,并根据大小关系对目标开关频率和/或压缩机的运行频率进行调整。
在该实施例中,在逆变桥模块中设置对应的温度收集单元,实时收集功率器件的工况温度并发送给主控模块;主控模块比较功率模块的工况温度采样值和预设的温度阈值,并根据具体的比较结果动态调整功率器件的目标开关频率和/或压缩机的运行频率,以在保证对压缩机的控制效果的基础上,实现功率器件的过热保护,防止因功率器件过热导致系统损坏。
在本申请的一个实施例中,进一步地,比较工况温度与预设温度阈值之间的大小关系,并根据大小关系对目标开关频率和/或压缩机的运行频率进行调整时,具体包括:在收集到工况温度至少是第一温度阈值时,根据工况温度对应降低目标开关频率;在收集到工况温度至少是第二温度阈值时,根据工况温度对应降低目标开关频率,同时根据工况温度对应降低运行频率;在收集到工况温度至少是第三温度阈值时,控制逆变桥控制电路停止工作。
在该实施例中,设置对应的温度阈值,实时判断收集到的工况温度是否超过对应的温度阈值。具体地,当收集到工况温度至少是第一温度阈值时,说明功率器件有过热趋势,对应降低目标开关频率以降低功率器件的工况温度;当收集到工况温度至少是第二温度阈值时,说明功率器件已经过热,仅降低开关频率已无法抑制过热趋势,因此在降低开关频率的同时降低压缩机的运行频率,以进一步降低功率器件的工况温度;当收集到工况温度至少是第三温度阈值时,说明功率器件已严重过热,有损坏风险,此时立即控制逆变桥控制电路停止工作,防止功率器件烧毁。
在本申请的一个实施例中,进一步地,第一温度阈值小于第二温度阈值,第二温度阈值小于第三温度阈值。
在该技术方案中,第一温度阈值小于第二温度阈值,第二温度阈值小 于第三温度阈值。根据功率器件与对应温度阈值的大小关系,可选择适当的应对操作以防止功率器件过热烧毁。
在本申请的一个实施例中,运行控制的整体流程如图7所示,在压缩机开始运行后:
S702,收集压缩机的运行频率;
S704,根据压缩机运行频率查表选取对应的最优开关频率;
S706,收集功率模块的工况温度;
S708,判断工况温度是否大于第一温度阈值,当判断结果为否,返回S702;当判断结果为是,进入S710;
S710,降低目标开关频率;
S712,判断工况温度是否大于第二温度阈值,当判断结果为否,返回S702;当判断结果为是,进入S714;
S714,降低压缩机的运行频率;
S716,判断工况温度是否大于第三温度阈值,判断结果为否,返回S702;当判断结果为是,进入S718;
S718,控制逆变桥控制电路停止工作。
如图8所示,在本申请第二方面的实施例中,提供了一种运行控制系统800,用于压缩机的逆变桥控制电路,逆变桥控制电路中设置有功率器件,制系统包括:传感器模块802,用于收集压缩机的运行频率;主控模块804,用于根据运行频率调整功率器件的开关频率。
在该实施例中,控制电路实时收集压缩机的运行频率,并根据所收集到的压缩机的运行频率动态调整逆变桥控制电路中功率器件的开关频率,以使调整后的开关频率与当前压缩机的运行频率相匹配,因此总是可以发挥最大的效用。应用了本申请提供的技术方案,通过控制电路随着压缩机频率的升高或降低对应地动态调整开关频率,在压缩机频率较高时,对应增加开关频率可以获得更好的控制效果;而在压缩机频率较低时,对应降低开关器件的开关频率可以降低开关器件的硬件损耗,同时降低控制器发热;进而可以实现随着压缩机工况动态调整开关频率的同时,获得更好的压缩机控制效果,同时抑制功率器件的发热,减少开关器件的损耗,进而 提高压缩机控制的可靠性和控制器件的耐久性。
在本申请的一个实施例中,进一步地,主控模块还用于:在收集到运行频率至少是第一运行频率阈值时,将开关频率调整为第一预设开关频率;在收集到运行频率小于第二运行频率阈值时,将开关频率调整为第二预设开关频率;在收集到运行频率至少是第二运行频率,且小于第一运行频率时,维持当前开关频率不变;其中,第一运行频率阈值大于第二运行频率阈值,第一预设开关频率大于第二预设开关频率。
在该实施例中,主控模块实时收集压缩机的运行频率,并将收集到的运行频率与预设的频率阈值进行对比。当收集到运行频率至少是第一运行频率阈值时,说明当前压缩机的运行频率较高,为了得到更好的控制效果,将开关频率调整为对应的、开关频率较高的第一目标开关频率;当收集到运行频率小于第二运行频率阈值时,说明当前压缩机的运行频率较低,此时将开关频率调整为对应的、开关频率较低的第二目标开关频率,以降低开关器件的损耗,并降低功率器件的工况温度。而当压缩机的运行频率至少是第二运行频率阈值,且小于第一运行频率阈值时,说明当前压缩机平缓运行,无需调整开关频率。其中,第一运行频率大于第二运行频率,相应的第一目标开关频率大于第二目标开关频率。
在本申请的一个实施例中,进一步地,主控模块还用于:在收集到运行频率随时间降低时,降低功率器件的开关频率至对应的目标开关频率;收集到运行频率随时间升高时,提高功率器件的开关频率至对应的目标开关频率。
在该实施例中,主控模块实时采集压缩机的运行频率,并存储于存储介质中,通过存储的运行频率与获取到该运行频率的时间点建立对应的运行频率变化曲线。应用程序根据几率的变化曲线判断压缩机的频率变化趋势,当收集到压缩机的运行频率呈随时间降低的趋势时,控制功率器件的开关频率对应降低,具体对应降低至对应的目标开关频率,以降低开关器件的损耗,并降低功率器件的工况温度;当收集到压缩机的运行频率呈随时间升高的趋势时,控制功率器件的开关频率对应升高,具体对应升高至对应的目标开关频率,以获得更好的控制效果。
在本申请的一个实施例中,进一步地,传感器模块还用于收集功率器件的工况温度;主控模块还用于比较工况温度与预设温度阈值之间的大小关系,并根据大小关系对目标开关频率和/或压缩机的运行频率进行调整。
在该实施例中,在逆变桥模块中设置对应的温度收集单元,实时收集功率器件的工况温度并发送给主控模块;主控模块比较功率模块的工况温度采样值和预设的温度阈值,并根据具体的比较结果动态调整功率器件的目标开关频率和/或压缩机的运行频率,以在保证对压缩机的控制效果的基础上,实现功率器件的过热保护,防止因功率器件过热导致系统损坏。
在本申请的一个实施例中,进一步地,主控模块还用于:在收集到工况温度至少是第一温度阈值时,根据工况温度对应降低目标开关频率;在收集到工况温度至少是第二温度阈值时,根据工况温度对应降低目标开关频率,同时根据工况温度对应降低运行频率;在收集到工况温度至少是第三温度阈值时,控制逆变桥控制电路停止工作。
在该实施例中,设置对应的温度阈值,实时判断收集到的工况温度是否超过对应的温度阈值。具体地,当收集到工况温度至少是第一温度阈值时,说明功率器件有过热趋势,对应降低目标开关频率以降低功率器件的工况温度;当收集到工况温度至少是第二温度阈值时,说明功率器件已经过热,仅降低开关频率已无法抑制过热趋势,因此在降低开关频率的同时降低压缩机的运行频率,以进一步降低功率器件的工况温度;当收集到工况温度至少是第三温度阈值时,说明功率器件已严重过热,有损坏风险,此时立即控制逆变桥控制电路停止工作,防止功率器件烧毁。
在本申请的一个实施例中,进一步地,第一温度阈值小于第二温度阈值,第二温度阈值小于第三温度阈值。
在该实施例中,第一温度阈值小于第二温度阈值,第二温度阈值小于第三温度阈值。根据功率器件与对应温度阈值的大小关系,可选择适当的应对操作以防止功率器件过热烧毁。
在本申请第三方面的实施例中,提供了一种压缩机,该压缩机包括如上述任一实施例中所述的运行控制系统,因此,该压缩机包括如上述任一实施例中所述的运行控制系统的全部有益效果。
在本申请第四方面的实施例中,提供了一种空调器,该空调器包括如上述任一实施例中所述的运行控制系统和/或如上述任一实施例中所述的压缩机,因此,该空调器包括上述任一实施例中所述的运行控制系统和/或如上述任一实施例中所述的压缩机的全部有益效果。
在本申请第五方面的实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一实施例中所述的运行控制方法,因此,该计算机可读存储介质包括如上述任一实施例中所述的运行控制方法的全部有益效果。
本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为在收集到附图所述的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种运行控制方法,适用于压缩机的逆变桥控制电路,所述逆变桥控制电路中设置有功率器件,其中,所述运行控制方法包括:
    收集所述压缩机的运行频率;
    根据所述运行频率调整所述功率器件的开关频率至目标开关频率。
  2. 根据权利要求1所述的运行控制方法,其中,所述根据所述运行频率调整所述功率器件的开关频率至目标开关频率,具体包括:
    基于收集到所述运行频率至少是第一运行频率阈值,将所述开关频率调整为对应的第一目标开关频率;
    基于收集到所述运行频率小于第二运行频率阈值,将所述开关频率调整为对应的第二目标开关频率;
    基于收集到所述运行频率至少是所述第二运行频率阈值,且小于第一运行频率阈值时,保持所述功率器件的开关频率不变,
    其中,所述第一运行频率阈值大于所述第二运行频率阈值,所述第一目标开关频率大于所述第二目标开关频率。
  3. 根据权利要求1所述的运行控制方法,其中,所述根据所述运行频率调整所述功率器件的开关频率至目标开关频率,具体包括:
    基于收集到所述运行频率随时间降低,降低所述功率器件的开关频率至对应的目标开关频率;
    基于收集到所述运行频率随时间升高,提高所述功率器件的开关频率至对应的目标开关频率。
  4. 根据权利要求1至3中任一项所述的运行控制方法,其中,还包括:
    收集所述功率器件的工况温度;
    比较所述工况温度与预设温度阈值之间的大小关系,并根据所述大小关系对所述目标开关频率和/或所述压缩机的运行频率进行调整。
  5. 根据权利要求4所述的运行控制方法,其中,所述比较所述工况温度与所述预设温度阈值之间的大小关系,并根据所述大小关系对所述目标开关频率和/或所述压缩机的运行频率进行调整的步骤,具体包括:
    基于收集到所述工况温度至少是第一温度阈值,根据所述工况温度对应降低所述目标开关频率;
    基于收集到所述工况温度至少是第二温度阈值,根据所述工况温度对应降低所述目标开关频率,并根据所述工况温度对应降低所述运行频率;
    基于收集到所述工况温度至少是第三温度阈值,控制所述逆变桥控制电路停止工作。
  6. 根据权利要求5所述的运行控制方法,其中,
    所述第一温度阈值小于所述第二温度阈值,所述第二温度阈值小于所述第三温度阈值。
  7. 一种运行控制系统,适用于压缩机的逆变桥控制电路,所述逆变桥控制电路中设置有功率器件,其中,所述控制系统包括:
    传感器模块,用于收集所述压缩机的运行频率;
    主控模块,用于根据所述运行频率调整所述功率器件的开关频率至目标开关频率。
  8. 根据权利要求7所述的运行控制系统,其中,所述主控模块还用于:
    基于收集到所述运行频率至少是第一运行频率阈值,将所述开关频率调整为对应的第一目标开关频率;
    基于收集到所述运行频率小于第二运行频率阈值,将所述开关频率调整为对应的第二目标开关频率;
    基于收集到所述运行频率至少是所述第二运行频率阈值,且小于第一运行频率阈值时,保持所述功率器件的开关频率不变,
    其中,所述第一运行频率阈值大于所述第二运行频率阈值,所述第一目标开关频率大于所述第二目标开关频率。
  9. 根据权利要求8所述的运行控制系统,其中,所述主控模块还用于:
    基于收集到所述运行频率随时间降低,降低所述功率器件的开关频率至对应的目标开关频率;
    基于收集到所述运行频率随时间升高,提高所述功率器件的开关频率至对应的目标开关频率。
  10. 根据权利要求7至9中任一项所述的运行控制系统,其中,所述 传感器模块还用于收集所述功率器件的工况温度;
    所述主控模块还用于比较所述工况温度与预设温度阈值之间的大小关系,并根据所述大小关系对所述目标开关频率和/或所述压缩机的运行频率进行调整。
  11. 根据权利要求10所述的运行控制系统,其中,所述主控模块还用于:
    基于收集到所述工况温度至少是第一温度阈值,根据所述工况温度对应降低所述目标开关频率;
    基于收集到所述工况温度至少是第二温度阈值,根据所述工况温度对应降低所述目标开关频率,并根据所述工况温度对应降低所述运行频率;
    基于收集到所述工况温度至少是第三温度阈值,控制所述逆变桥控制电路停止工作。
  12. 根据权利要求11所述的运行控制系统,其中,
    所述第一温度阈值小于所述第二温度阈值,所述第二温度阈值小于所述第三温度阈值。
  13. 一种压缩机,其中,所述压缩机包括如权利要求7至12中任一项所述的运行控制系统。
  14. 一种空调器,其中,所述空调器包括如权利要求7至12中任一项所述的运行控制系统;和/或
    如权利要求13所述的压缩机。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其中:所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的运行控制方法。
PCT/CN2019/088255 2018-11-30 2019-05-24 运行控制方法及系统、压缩机和空调器 WO2020107824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021529412A JP7126618B2 (ja) 2018-11-30 2019-05-24 稼働制御方法及び稼働制御システム、圧縮機、エアコン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811458785.1 2018-11-30
CN201811458785.1A CN111256276A (zh) 2018-11-30 2018-11-30 运行控制方法及系统、压缩机和空调器

Publications (1)

Publication Number Publication Date
WO2020107824A1 true WO2020107824A1 (zh) 2020-06-04

Family

ID=70852708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088255 WO2020107824A1 (zh) 2018-11-30 2019-05-24 运行控制方法及系统、压缩机和空调器

Country Status (3)

Country Link
JP (1) JP7126618B2 (zh)
CN (1) CN111256276A (zh)
WO (1) WO2020107824A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865664A (zh) * 2021-01-05 2021-05-28 奇瑞新能源汽车股份有限公司 电动汽车的逆变器svpwm控制方法、装置及电动汽车
CN113915735A (zh) * 2021-11-15 2022-01-11 宁波奥克斯电气股份有限公司 一种空调器测试方法和空调器测试装置
CN116085956A (zh) * 2023-03-22 2023-05-09 华南理工大学 基于负荷调频技术的智慧节能调配控制系统
WO2024078072A1 (zh) * 2022-10-11 2024-04-18 青岛海尔空调器有限总公司 用于控制空调的方法及装置、电子设备、存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001448B (zh) * 2021-10-18 2023-03-14 广东美芝制冷设备有限公司 空调器的控制方法及装置
CN114383272A (zh) * 2022-01-27 2022-04-22 佛山市顺德区美的电子科技有限公司 压缩机的预热控制方法、装置及其控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140155A (ja) * 1995-11-16 1997-05-27 Sanyo Electric Co Ltd インバータ駆動装置の保護方法
CN104359184A (zh) * 2014-09-30 2015-02-18 海信科龙电器股份有限公司 一种变载频变频控制方法及控制器
CN106225186A (zh) * 2016-09-28 2016-12-14 广东美的制冷设备有限公司 变频空调系统及其的功率模块的发热控制方法、装置
CN106403486A (zh) * 2016-09-02 2017-02-15 合肥美的电冰箱有限公司 变频制冷装置的控制方法、控制装置及冰箱
CN106998133A (zh) * 2017-03-27 2017-08-01 广东美的制冷设备有限公司 开关管的控制方法、装置及空调器
CN108469139A (zh) * 2018-03-28 2018-08-31 广东美的暖通设备有限公司 空调器载波频率的控制方法、控制系统和空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253690A (ja) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd 圧縮機用電動機の制御方法とその装置
JP2006025565A (ja) 2004-07-09 2006-01-26 Matsushita Electric Ind Co Ltd インバータ回路および圧縮機
US8288886B2 (en) * 2009-11-09 2012-10-16 GM Global Technology Operations LLC Method and apparatus for avoiding electrical resonance in a vehicle having a shared high-voltage bus
JP6591075B2 (ja) 2016-08-22 2019-10-16 三菱電機株式会社 モータ駆動装置、ヒートポンプ装置および冷凍空調装置
CN108489037A (zh) * 2018-03-28 2018-09-04 广东美的暖通设备有限公司 变频压缩机的控制方法、系统及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140155A (ja) * 1995-11-16 1997-05-27 Sanyo Electric Co Ltd インバータ駆動装置の保護方法
CN104359184A (zh) * 2014-09-30 2015-02-18 海信科龙电器股份有限公司 一种变载频变频控制方法及控制器
CN106403486A (zh) * 2016-09-02 2017-02-15 合肥美的电冰箱有限公司 变频制冷装置的控制方法、控制装置及冰箱
CN106225186A (zh) * 2016-09-28 2016-12-14 广东美的制冷设备有限公司 变频空调系统及其的功率模块的发热控制方法、装置
CN106998133A (zh) * 2017-03-27 2017-08-01 广东美的制冷设备有限公司 开关管的控制方法、装置及空调器
CN108469139A (zh) * 2018-03-28 2018-08-31 广东美的暖通设备有限公司 空调器载波频率的控制方法、控制系统和空调器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112865664A (zh) * 2021-01-05 2021-05-28 奇瑞新能源汽车股份有限公司 电动汽车的逆变器svpwm控制方法、装置及电动汽车
CN112865664B (zh) * 2021-01-05 2022-08-30 奇瑞新能源汽车股份有限公司 电动汽车的逆变器svpwm控制方法、装置及电动汽车
CN113915735A (zh) * 2021-11-15 2022-01-11 宁波奥克斯电气股份有限公司 一种空调器测试方法和空调器测试装置
CN113915735B (zh) * 2021-11-15 2022-11-04 宁波奥克斯电气股份有限公司 一种空调器测试方法和空调器测试装置
WO2024078072A1 (zh) * 2022-10-11 2024-04-18 青岛海尔空调器有限总公司 用于控制空调的方法及装置、电子设备、存储介质
CN116085956A (zh) * 2023-03-22 2023-05-09 华南理工大学 基于负荷调频技术的智慧节能调配控制系统

Also Published As

Publication number Publication date
JP2022510623A (ja) 2022-01-27
JP7126618B2 (ja) 2022-08-26
CN111256276A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2020107824A1 (zh) 运行控制方法及系统、压缩机和空调器
CN106225186B (zh) 变频空调系统及其的功率模块的发热控制方法、装置
CN102889668B (zh) 变频空调在低电压下的控制方法
CN109539496B (zh) 一种空调器自适应控制方法和空调器
EP3139104A1 (en) Solar air conditioner and control method and control device thereof
US11852132B2 (en) Compressor cylinder switching control method and device, unit and air conditioning system
CN111578458B (zh) 空调器的控制方法、空调器及计算机存储介质
WO2020052281A1 (zh) 变频压缩机的控制方法、控制系统以及空调器
CN105783184A (zh) 一种变频空调功率模块温升控制方法
CN109812932B (zh) 一种变频空调功率模块温升控制方法及装置
CN109708277B (zh) 运行控制方法、系统、空调器和计算机可读存储介质
CN104101044A (zh) 一种变频空调器的运行控制方法及装置
EP3845818B1 (en) Water temperature control method for heat pump system, and heat pump system
CN104764140A (zh) 制冷空调机组冷凝压力控制方法
CN103836762A (zh) 变频空调及其系统控制方法和装置
CN111256280B (zh) 运行控制方法及系统、压缩机和空调器
CN205299854U (zh) 功率连续可调电加热系统
WO2018120142A1 (zh) 变频空调系统及其的功率模块的发热控制方法、装置
CN112503745B (zh) 空调器容错控制方法及空调器
WO2019137526A1 (zh) 空调供电的控制方法
WO2021175202A1 (zh) 变频空调的制热控制方法和变频空调
JPH0970178A (ja) 空気調和機
WO2022134856A1 (zh) 空调器控制方法、空调器及存储介质
WO2023071157A1 (zh) 空调器的机能力补偿控制方法、装置及空调系统
CN113266925B (zh) 一种两联供热泵系统的控制方法及水温控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19889214

Country of ref document: EP

Kind code of ref document: A1