WO2018120142A1 - 变频空调系统及其的功率模块的发热控制方法、装置 - Google Patents

变频空调系统及其的功率模块的发热控制方法、装置 Download PDF

Info

Publication number
WO2018120142A1
WO2018120142A1 PCT/CN2016/113776 CN2016113776W WO2018120142A1 WO 2018120142 A1 WO2018120142 A1 WO 2018120142A1 CN 2016113776 W CN2016113776 W CN 2016113776W WO 2018120142 A1 WO2018120142 A1 WO 2018120142A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
temperature
carrier frequency
module
threshold
Prior art date
Application number
PCT/CN2016/113776
Other languages
English (en)
French (fr)
Inventor
黄招彬
张国柱
朱良红
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to PCT/CN2016/113776 priority Critical patent/WO2018120142A1/zh
Publication of WO2018120142A1 publication Critical patent/WO2018120142A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements

Definitions

  • the invention relates to the technical field of air conditioners, in particular to a heat control method for a power module in an inverter air conditioner system, a heat control device for a power module in an inverter air conditioner system, and an inverter air conditioner system.
  • the circuit topology of the inverter air conditioner system is mainly composed of a rectifier bridge, a power factor correction circuit, an electrolytic capacitor, a power module and a control module.
  • the power factor correction circuit After the AC power is rectified by the rectifier bridge, the power factor correction circuit outputs a stable DC bus voltage (voltage across the electrolytic capacitor) to supply power to the load (the inverter module driven by the power module).
  • the control module detects the DC bus voltage and the voltage and current signals of the inverter compressor, and obtains the control voltage through a vector control algorithm, and then outputs a PWM (Pulse Width Modulation) signal to the power module through a modulation algorithm, thereby driving the inverter compressor. Stable operation at a preset frequency.
  • the power module is the most important heating device in the system, which directly affects the reliability and safety of the system (especially when the outdoor environment temperature is high and the compressor is running at high frequency), so the temperature of the power module needs to be controlled.
  • the temperature of the power module is mainly reduced by improving the heat dissipation mode of the power module.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • an object of the present invention is to provide a heat generation control method for a power module in an inverter air conditioner system, which can change the switching loss of the power module by changing the modulation algorithm and the carrier frequency of the power module, thereby achieving heat generation control of the power module.
  • the system is guaranteed to operate safely and reliably.
  • Another object of the present invention is to provide a heat generation control device for a power module in an inverter air conditioner system.
  • Still another object of the present invention is to provide an inverter air conditioner system.
  • an embodiment of the present invention provides a method for controlling a heat generation of a power module in an inverter air conditioner system, including the steps of: detecting a temperature of the power module; determining whether a temperature of the power module is greater than or equal to a preset. a temperature protection threshold; if the temperature of the power module is greater than or equal to the preset temperature protection threshold, controlling the power module to stop the compressor; if the temperature of the power module is less than the preset
  • the temperature protection threshold is adjusted by adjusting a modulation algorithm of the power module and/or changing a carrier frequency of the power module.
  • the temperature of the power module is detected in real time, and it is determined whether the temperature of the power module is greater than or equal to a preset temperature protection threshold. If the temperature of the power module is large And equal to the preset temperature protection threshold, by controlling the power module to stop the compressor; if the temperature of the power module is less than the preset temperature protection threshold, by changing the modulation algorithm of the power module and/or changing the carrier of the power module Frequency to adjust the temperature of the power module. Therefore, by changing the modulation algorithm and carrier frequency of the power module to change the switching loss of the power module, the heat control of the power module is realized, thereby ensuring safe and reliable operation of the system.
  • the power module when the temperature of the power module is less than the preset temperature protection threshold, determining whether the temperature of the power module is greater than or equal to a first temperature threshold, wherein if the power module is When the temperature is greater than or equal to the first temperature threshold, the power module is controlled by using a two-phase modulation algorithm, and the carrier frequency of the power module is lowered to a preset lower carrier frequency.
  • the power module when the temperature of the power module is less than the first temperature threshold, determining whether the temperature of the power module is greater than or equal to a second temperature threshold, wherein if the temperature of the power module is greater than Equal to the second temperature threshold, the power module is controlled by the two-phase modulation algorithm, and timing is started; when the timing time reaches the first preset time, if the temperature of the power module is still greater than or equal to The second temperature threshold reduces the carrier frequency of the power module.
  • the carrier frequency of the power module in the process of reducing the carrier frequency of the power module, is decreased by a preset frequency step every the first preset time until the power module The carrier frequency is reduced to the preset carrier frequency lower limit or the power module temperature is less than the second temperature threshold.
  • the two-phase modulation algorithm may include any one of a minimum phase two phase modulation algorithm, a maximum phase two phase modulation algorithm, and a maximum and minimum phase two phase modulation algorithm.
  • the predetermined temperature protection threshold may be 95 ° C
  • the first temperature threshold may be 85 ° C
  • the second temperature threshold may be 75 ° C.
  • a heat control device for a power module in an inverter air conditioner system includes: a temperature detecting module for detecting a temperature of the power module; and a control module for determining a Whether the temperature of the power module is greater than or equal to a preset temperature protection threshold, wherein if the temperature of the power module is greater than or equal to the preset temperature protection threshold, the control module controls the power module to make the compressor Stopping operation; if the temperature of the power module is less than the preset temperature protection threshold, the control module adjusts the modulation algorithm by changing a modulation algorithm of the power module and/or changing a carrier frequency of the power module The temperature of the power module.
  • the temperature of the power module is detected in real time by the temperature detecting module, and the temperature of the power module is determined by the control module to be greater than or equal to a preset temperature protection threshold. If the temperature of the power module is greater than or equal to the preset temperature protection threshold, the control module stops the compressor by controlling the power module; if the temperature of the power module is less than the preset temperature protection threshold, the control module changes the modulation of the power module. The algorithm and/or change the carrier frequency of the power module to adjust the temperature of the power module. Thus through changing the modulation algorithm and carrier frequency of the power module to change the switching loss of the power module, the heat control of the power module is realized, thereby ensuring safe and reliable operation of the system.
  • the control module when the temperature of the power module is less than the preset temperature protection threshold, the control module further determines whether the temperature of the power module is greater than or equal to a first temperature threshold, wherein The control module uses a two-phase modulation algorithm to control the power module while reducing the carrier frequency of the power module to a preset carrier frequency lower limit.
  • the control module when the temperature of the power module is less than the first temperature threshold, the control module further determines whether the temperature of the power module is greater than or equal to a second temperature threshold, wherein if the power The temperature of the module is greater than or equal to the second temperature threshold, and the control module controls the power module by using the two-phase modulation algorithm, and starts timing by a timer; when the timer reaches the first time At a preset time, if the temperature of the power module is still greater than or equal to the second temperature threshold, the control module reduces the carrier frequency of the power module.
  • the control module decreases a carrier frequency of the power module by a preset frequency step every the first preset time, until The carrier frequency of the power module is reduced to the preset carrier frequency lower limit or the temperature of the power module is less than the second temperature threshold.
  • the two-phase modulation algorithm may include any one of a minimum phase two phase modulation algorithm, a maximum phase two phase modulation algorithm, and a maximum and minimum phase two phase modulation algorithm.
  • the predetermined temperature protection threshold may be 95 ° C
  • the first temperature threshold may be 85 ° C
  • the second temperature threshold may be 75 ° C.
  • the temperature detecting module detects the temperature of the power module by a temperature sensor disposed on a surface of the power module or a temperature detecting component integrated inside the power module.
  • an embodiment of the present invention also provides an inverter air conditioner system including the above-described heat generation control device for a power module in an inverter air conditioner system.
  • the inverter air conditioner system of the embodiment of the invention can change the switching loss of the power module by changing the modulation algorithm of the power module and the carrier frequency through the above-mentioned heating control device of the power module in the inverter air conditioner system, thereby realizing the heat generation control of the power module In order to ensure the safe and reliable operation of the system.
  • FIG. 1 is a topological view of a control circuit of a compressor in accordance with one embodiment of the present invention
  • FIG. 2 is a flow chart of a method for controlling heat generation of a power module in an inverter air conditioner system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a three-phase modulation scheme according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a minimum phase two phase modulation method according to an embodiment of the present invention.
  • Figure 5 is a schematic illustration of a maximum phase two phase modulation scheme in accordance with one embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a maximum and minimum phase two-phase modulation mode according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method of controlling heat generation of a power module in an inverter air conditioner system according to an embodiment of the present invention.
  • the drive control circuit of the compressor may include a control module, a power module, and a related detection circuit, wherein the power module may be composed of six power switch tubes, such as an IGBT (Insulated Gate Bipolar Transistor). Bipolar transistor), MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and anti-parallel diodes, or directly using intelligent power modules, or three discrete power switching devices Phase inverter bridge circuit replacement.
  • the control module outputs the PWM signal to the power module through the data detected by the relevant detection circuit and drives the compressor to operate.
  • the heating problem of the power module is the bottleneck of the high frequency operation under high temperature conditions, which directly affects the reliability and safety of the system, and thus the temperature of the power module needs to be controlled within the allowable range.
  • the temperature of the power module is reduced by improving the heat dissipation mode of the power module (such as heat dissipation of the refrigerant), and the present disclosure reduces the heat generation of the power module by a corresponding control method, thereby achieving heat generation control of the power module.
  • FIG. 2 is a flow chart of a method of controlling heat generation of a power module in an inverter air conditioner system according to an embodiment of the present invention. As shown in FIG. 2, the heat control method of the power module in the inverter air conditioner system may include the following steps:
  • the temperature sensor can be disposed on the surface of the power module and fully contacted with the power module (the heat transfer property is good when the contact is sufficient), and the temperature of the power module is detected in real time through the temperature sensor; or, the integrated temperature is directly adopted.
  • the power module of the detecting component detects the temperature of the power module in real time through an integrated temperature detecting component.
  • the temperature detecting component may be an NTC (Negative Temperature Coefficient) thermistor.
  • S2 Determine whether the temperature of the power module is greater than or equal to a preset temperature protection threshold.
  • the temperature protection threshold can be calibrated according to actual conditions.
  • the preset temperature protection threshold can be 95 °C.
  • the power module is controlled to stop the compressor.
  • a variable frequency control algorithm based on space voltage vector modulation is generally used to control the inverter compressor based on the three-phase AC motor to realize the operation of the compressor.
  • Commonly used space voltage vector modulation algorithms include a three-phase modulation algorithm and a two-phase modulation algorithm.
  • the three-phase modulation algorithm divides a voltage cycle into seven segments to equivalently expect a voltage vector, and performs 6 turns of the power switch tube on and off for each voltage cycle; as shown in FIG. 4-6. It is shown that the two-phase modulation algorithm divides a voltage cycle into five segments to equivalently expect a voltage vector, and performs four turns of power switch on and off for each voltage cycle.
  • the number of switching of the power switch tube in the three-phase modulation algorithm is greater than the number of switching of the power switch tube in the two-phase modulation algorithm, so the switching loss is greater than the two-phase modulation algorithm, and the heat generation is higher than the two-phase modulation algorithm, so the power can be changed by
  • the module's modulation algorithm changes the heating of the power module.
  • the switching loss of the power module is also related to the carrier frequency. The higher the carrier frequency, the greater the switching loss. Therefore, the heating of the power module can also be changed by changing the carrier frequency.
  • the control module can detect the temperature of the power module in real time through a temperature sensor and judge it.
  • the temperature of the power module ⁇ temperature protection threshold, it indicates that the current power module temperature has exceeded the maximum allowable temperature of the power module.
  • the switching algorithm of the power module can be controlled within a certain range by changing the modulation algorithm of the power module, changing the carrier frequency of the power module, or changing the modulation algorithm and carrier frequency of the power module at the same time.
  • the heat control of the power module controls the temperature of the power module to a certain range to ensure safe and reliable operation of the system.
  • the two-phase modulation algorithm controls the power module while reducing the carrier frequency of the power module to a preset lower limit of the carrier frequency.
  • the first temperature threshold and the lower carrier frequency may be calibrated according to actual conditions.
  • the first temperature threshold may be 85 ° C
  • the carrier frequency lower limit may be 2 kHz.
  • the two-phase modulation algorithm controls the power module and starts timing; when the timing time reaches the first preset time, if the temperature of the power module is still greater than or equal to the second temperature threshold, the carrier frequency of the power module is lowered.
  • the first preset time and the second temperature threshold may be calibrated according to actual conditions. For example, the first preset time may be 30 s, and the second temperature threshold may be 75 ° C.
  • the carrier frequency of the power module is decreased by the preset frequency step every first preset time until the carrier frequency of the power module is reduced to
  • the preset carrier frequency lower limit or the temperature of the power module is less than the second temperature threshold.
  • the preset frequency step size can be calibrated according to actual conditions. For example, the preset frequency step size can be 500 Hz.
  • the power module when the first temperature threshold ⁇ the temperature of the power module ⁇ the temperature protection threshold, the power module is controlled by using a two-phase modulation algorithm, and the carrier frequency of the power module is reduced to a preset lower limit of the carrier frequency;
  • the temperature threshold ⁇ the temperature of the power module ⁇ the first temperature threshold the power module is first controlled by a two-phase modulation algorithm. After a period of time, if the temperature of the power module is still greater than or equal to the second temperature threshold, the power module is restarted. Carrier frequency.
  • the carrier frequency is gradually reduced according to a certain frequency step (such as 500 Hz) at a certain time (such as 30 s) until the carrier frequency is reduced to a preset lower limit of the carrier frequency (such as 2 kHz). ), or the temperature of the power module is less than the second temperature threshold.
  • a certain frequency step such as 500 Hz
  • a certain time such as 30 s
  • the temperature of the power module is less than the second temperature threshold.
  • the modulation algorithm and carrier frequency of the power module the switching loss of the power module is gradually reduced, the heat control of the power module is realized, and the temperature of the power module is controlled within a certain range to ensure safe and reliable operation of the system. .
  • the two-phase modulation algorithm may include any one of a minimum phase two-phase modulation algorithm, a maximum phase two-phase modulation algorithm, and a maximum and minimum phase two-phase modulation algorithm.
  • the switching times are lower than the three-phase modulation algorithm, so
  • the three-phase modulation algorithm can be switched to any one of the two-phase modulation algorithms to reduce the switching loss, thereby reducing the heat of the power module and achieving the temperature of the power module. control.
  • the power switching tube of the upper arm of the same bridge arm in one-third period of the minimum phase two-phase modulation algorithm in one voltage vector rotation period (abbreviation
  • the upper tube is always in the off state, and the power switch tube (referred to as the lower tube) of the lower arm is always in the on state, and the conduction loss is such that the lower tube of the same bridge arm is more hot than the upper tube.
  • the upper tube of the same bridge arm is always in the on state and the down tube is always in the off state in one-third of the maximum phase two-phase modulation algorithm, and the conduction loss is The upper tube of the same bridge arm is more heated than the lower tube.
  • the upper and lower tubes of the same bridge arm are always in the on state and the down tube is always in the off state in one or six cycles of the maximum and minimum phase two-phase modulation algorithm, and there are In the 1/6 cycle, the upper tube of the same bridge arm is always in the off state, and the lower tube is always in the open state, so that the conduction losses of the upper tube and the lower tube of the same bridge arm are similar, and the heat is similar.
  • a maximum and minimum phase two phase modulation algorithm may be employed to ensure that each power switch tube in the power module heats up the same. Therefore, not only the temperature control of the power module can be realized, but also the heat balance of each power switch tube can be ensured.
  • FIG. 7 is a flowchart of a heat generation control method of a power module in an inverter air conditioner system according to a specific example of the present invention.
  • the heat control method of the power module in the inverter air conditioner system may include the following steps:
  • step S102 Determine whether the temperature of the power module ⁇ the temperature protection threshold (such as 95 ° C) is established. If yes, go to step S103; if no, go to step S104.
  • the temperature protection threshold such as 95 ° C
  • step S104 Determine whether the temperature of the power module ⁇ the first temperature threshold (such as 85 ° C) is established. If yes, go to step S111; if no, go to step S105.
  • the first temperature threshold such as 85 ° C
  • step S105 Determine whether the temperature of the power module ⁇ the second temperature threshold (such as 75 ° C) is established. If yes, go to step S106; if no, return to step S101 in the next control cycle.
  • the second temperature threshold such as 75 ° C
  • step S106 Determine whether the current phase is a two-phase modulation algorithm. If yes, go to step S108; if no, go to step S107.
  • step S108 Whether the timer reaches the first preset time (such as 30s). If yes, go to step S109; if no, return to step S101 in the next control cycle.
  • the carrier frequency is reduced by a preset frequency step (such as 500 Hz), the timer is cleared, and timing is started.
  • a preset frequency step such as 500 Hz
  • step S110 determining whether it is lower than a preset lower limit of the carrier frequency (for example, 2 kHz). If yes, go to step S111; if no, return to step S101 in the next control cycle.
  • a preset lower limit of the carrier frequency for example, 2 kHz
  • the modulation algorithm is a two-phase modulation algorithm, and the carrier frequency is set to a lower limit of the carrier frequency.
  • the temperature of the power module is detected in real time, and it is determined whether the temperature of the power module is greater than or equal to a preset temperature protection threshold. If the temperature of the power module is greater than or equal to a preset temperature protection threshold, the power module is controlled to stop the compressor; if the temperature of the power module is less than a preset temperature protection threshold, by changing the modulation algorithm of the power module and/or The carrier frequency of the power module is changed to adjust the temperature of the power module. Therefore, by changing the modulation algorithm and carrier frequency of the power module to change the switching loss of the power module, the heat control of the power module is realized, thereby ensuring safe and reliable operation of the system.
  • the heat generation control device of the power module in the inverter air conditioner system of the embodiment of the present invention will be described in detail below.
  • the heat control device of the power module in the inverter air conditioner system may include: a temperature detecting module 10 and a control module 20 .
  • the temperature detecting module 10 is configured to detect the temperature of the power module, and the control module 20 is configured to determine whether the temperature of the power module is greater than or equal to a preset temperature protection threshold. If the temperature of the power module is greater than or equal to a preset temperature protection threshold, the control module 20, by controlling the power module to stop the compressor; if the temperature of the power module is less than the preset temperature protection threshold, the control module 20 adjusts the power by changing the modulation algorithm of the power module and/or changing the carrier frequency of the power module. The temperature of the module.
  • the preset temperature protection threshold may be 95 °C.
  • the temperature detecting module 10 detects the temperature of the power module through a temperature sensor 30 disposed on the surface of the power module or a temperature detecting component (not specifically shown) integrated inside the power module.
  • the temperature sensor 30 can be disposed on the surface of the power module and fully contacted with the power module (the heat transfer property is good when the contact is sufficient), and the temperature of the power module can be detected in real time through the temperature sensor; or, the integrated
  • the power module of the temperature detecting component detects the temperature of the power module in real time through an integrated temperature detecting component.
  • the temperature detecting component can be an NTC thermistor.
  • the control module 20 can detect the temperature of the power module in real time through the temperature detecting module 10 and judge it. When the temperature of the power module ⁇ temperature protection threshold, it indicates that the current power module temperature has exceeded the maximum allowable temperature of the power module. At this time, it is necessary to control the compressor to stop running to prevent damage to the system due to excessive temperature; when the temperature of the power module ⁇ When the temperature protection threshold is used, the switching algorithm of the power module can be controlled within a certain range by changing the modulation algorithm of the power module, changing the carrier frequency of the power module, or changing the modulation algorithm and carrier frequency of the power module at the same time. The heat control of the power module controls the temperature of the power module to a certain range to ensure safe and reliable operation of the system.
  • the control module 20 when the temperature of the power module is less than a preset temperature protection threshold, the control module 20 further determines whether the temperature of the power module is greater than or equal to a first temperature threshold, wherein if the temperature of the power module is greater than or equal to the first For the temperature threshold, the control module 20 controls the power module by using a two-phase modulation algorithm, and reduces the carrier frequency of the power module to a preset lower limit of the carrier frequency.
  • the first temperature threshold may be 85 ° C
  • the carrier frequency lower limit may be 2 kHz.
  • the control module 20 when the temperature of the power module is less than the first temperature threshold, the control module 20 further determines whether the temperature of the power module is greater than or equal to a second temperature threshold, wherein if the temperature of the power module is greater than or equal to the second temperature threshold.
  • the control module 20 controls the power module by using a two-phase modulation algorithm, and starts counting by the timer; when the timing of the timer reaches the first preset time, if the temperature of the power module is still greater than or equal to the second temperature threshold, Control module 20 then reduces the carrier frequency of the power module.
  • the first preset time may be 30 s
  • the second temperature threshold may be 75 ° C.
  • the control module 20 reduces the carrier frequency of the power module by a preset frequency step every first preset time until the carrier of the power module The frequency is reduced to a preset lower carrier frequency or the temperature of the power module is less than the second temperature threshold.
  • the preset frequency step size can be 500 Hz.
  • the control module 20 controls the power module by using a two-phase modulation algorithm, and reduces the carrier frequency of the power module to a preset lower limit of the carrier frequency.
  • the control module 20 first controls the power module by using a two-phase modulation algorithm. After a period of time, if the temperature of the power module is still greater than or equal to the second temperature threshold The control module 20 then begins to reduce the carrier frequency of the power module.
  • the carrier frequency is gradually reduced according to a certain frequency step (such as 500 Hz) at a certain time (such as 30 s) until the carrier
  • the frequency is reduced to a preset lower carrier frequency (eg 2 kHz) or the temperature of the power module is less than the second temperature threshold.
  • a preset lower carrier frequency eg 2 kHz
  • the temperature of the power module is less than the second temperature threshold.
  • the two-phase modulation algorithm may include any one of a minimum phase two-phase modulation algorithm, a maximum phase two-phase modulation algorithm, and a maximum and minimum phase two-phase modulation algorithm.
  • the control module 20 can switch the three-phase modulation algorithm to any one of the two-phase modulation algorithms to reduce the switching loss, thereby reducing the heat generation of the power module and realizing the power. Temperature control of the module.
  • the power switching tube of the upper arm of the same bridge arm in one-third period of the minimum phase two-phase modulation algorithm in one voltage vector rotation period (abbreviation
  • the upper tube is always in the off state, and the power switch tube (referred to as the lower tube) of the lower arm is always in the on state, and the conduction loss is such that the lower tube of the same bridge arm is more hot than the upper tube.
  • the upper tube of the same bridge arm is always in the on state and the down tube is always in the off state in one-third of the maximum phase two-phase modulation algorithm, and the conduction loss is The upper tube of the same bridge arm is more heated than the lower tube.
  • the control module 20 may employ a maximum and minimum phase two phase modulation algorithm to ensure that each power switch tube in the power module heats up the same. Therefore, not only the temperature control of the power module can be realized, but also the heat balance of each power switch tube can be ensured.
  • the temperature of the power module is detected in real time by the temperature detecting module, and the temperature of the power module is determined by the control module to be greater than or equal to a preset temperature protection threshold. If the temperature of the power module is greater than or equal to the preset temperature protection threshold, the control module stops the compressor by controlling the power module; if the temperature of the power module is less than the preset temperature protection threshold, the control module changes the modulation of the power module.
  • the algorithm and/or change the carrier frequency of the power module to adjust the temperature of the power module. Therefore, by changing the modulation algorithm and carrier frequency of the power module to change the switching loss of the power module, the heat control of the power module is realized, thereby ensuring safe and reliable operation of the system.
  • an embodiment of the present invention also provides an inverter air conditioner system including the above-mentioned inverter air conditioner system
  • the heat control device of the rate module is not detailed here.
  • the inverter air conditioner system of the embodiment of the invention can change the switching loss of the power module by changing the modulation algorithm of the power module and the carrier frequency through the above-mentioned heating control device of the power module in the inverter air conditioner system, thereby realizing the heat generation control of the power module In order to ensure the safe and reliable operation of the system.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

一种变频空调系统的功率模块的发热控制方法,包括:步骤S1,检测功率模块的温度;步骤S2,判断功率模块的温度是否大于等于预设的温度保护阈值;步骤S3,如果功率模块的温度大于等于预设的温度保护阈值,则通过控制功率模块以使压缩机停止运行;步骤S4,如果功率模块的温度小于预设的温度保护阈值,则通过改变功率模块的调制算法和/或改变功率模块的载波频率,以调节功率模块的温度。该方法通过改变功率模块的调制算法和载波频率来改变功率模块的开关损耗,从而实现对功率模块的发热控制,进而保证系统安全可靠运行。还公开了一种变频空调系统及其的功率模块的发热控制装置。

Description

变频空调系统及其的功率模块的发热控制方法、装置 技术领域
本发明涉及空调技术领域,特别涉及一种变频空调系统中功率模块的发热控制方法、一种变频空调系统中功率模块的发热控制装置、以及一种变频空调系统。
背景技术
变频空调系统的电路拓扑主要由整流桥、功率因数校正电路、电解电容、功率模块和控制模块等组成。交流电源经整流桥整流后,经功率因数校正电路,输出稳定的直流母线电压(电解电容两端的电压),给负载(功率模块驱动的变频压缩机)供电。控制模块通过检测直流母线电压和变频压缩机的电压电流信号,并通过矢量控制算法获得控制电压,然后通过调制算法输出PWM(Pulse Width Modulation,脉冲宽度调制)信号给功率模块,进而驱动变频压缩机在预设频率上稳定运行。
其中,功率模块是系统中最主要的发热器件,直接影响系统的可靠性与安全性(特别是在室外环境温度较高且压缩机高频运行时),因而需要将功率模块的温度控制在允许范围内。相关技术中,主要是通过改善功率模块的散热方式来降低功率模块的温度。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种变频空调系统中功率模块的发热控制方法,通过改变功率模块的调制算法和载波频率来改变功率模块的开关损耗,从而实现对功率模块的发热控制,进而保证系统安全可靠运行。
本发明的另一个目的在于提出一种变频空调系统中功率模块的发热控制装置。
本发明的又一个目的在于提出一种变频空调系统。
为达到上述目的,本发明一方面实施例提出了一种变频空调系统中功率模块的发热控制方法,包括以下步骤:检测所述功率模块的温度;判断所述功率模块的温度是否大于等于预设的温度保护阈值;如果所述功率模块的温度大于等于所述预设的温度保护阈值,则通过控制所述功率模块以使压缩机停止运行;如果所述功率模块的温度小于所述预设的温度保护阈值,则通过改变所述功率模块的调制算法和/或改变所述功率模块的载波频率,以调节所述功率模块的温度。
根据本发明实施例的变频空调系统中功率模块的发热控制方法,实时检测功率模块的温度,并判断功率模块的温度是否大于等于预设的温度保护阈值。如果功率模块的温度大 于等于预设的温度保护阈值,则通过控制功率模块以使压缩机停止运行;如果功率模块的温度小于预设的温度保护阈值,则通过改变功率模块的调制算法和/或改变功率模块的载波频率,以调节功率模块的温度。从而通过改变功率模块的调制算法和载波频率来改变功率模块的开关损耗,实现对功率模块的发热控制,进而保证系统安全可靠运行。
根据本发明的一个实施例,当所述功率模块的温度小于所述预设的温度保护阈值时,还判断所述功率模块的温度是否大于等于第一温度阈值,其中,如果所述功率模块的温度大于等于所述第一温度阈值,则采用两相调制算法对所述功率模块进行控制,同时降低所述功率模块的载波频率至预设的载波频率下限。
根据本发明的一个实施例,当所述功率模块的温度小于所述第一温度阈值时,还判断所述功率模块的温度是否大于等于第二温度阈值,其中,如果所述功率模块的温度大于等于所述第二温度阈值,则采用所述两相调制算法对所述功率模块进行控制,同时开始计时;当计时时间达到第一预设时间时,如果所述功率模块的温度仍然大于等于所述第二温度阈值,则降低所述功率模块的载波频率。
根据本发明的一个实施例,在降低所述功率模块的载波频率的过程中,每隔所述第一预设时间以预设频率步长降低所述功率模块的载波频率,直至所述功率模块的载波频率降低至所述预设的载波频率下限或者所述功率模块的温度小于所述第二温度阈值。
根据本发明的一个实施例,所述两相调制算法可包括最小相两相调制算法、最大相两相调制算法和最大最小相两相调制算法中的任意一种。
根据本发明的一个实施例,所述预设的温度保护阈值可以为95℃,所述第一温度阈值可以为85℃,所述第二温度阈值可以为75℃。
为达到上述目的,本发明另一方面实施例提出的一种变频空调系统中功率模块的发热控制装置,包括:温度检测模块,用于检测所述功率模块的温度;控制模块,用于判断所述功率模块的温度是否大于等于预设的温度保护阈值,其中,如果所述功率模块的温度大于等于所述预设的温度保护阈值,所述控制模块则通过控制所述功率模块以使压缩机停止运行;如果所述功率模块的温度小于所述预设的温度保护阈值,所述控制模块则通过改变所述功率模块的调制算法和/或改变所述功率模块的载波频率,以调节所述功率模块的温度。
根据本发明实施例的变频空调系统中功率模块的发热控制装置,通过温度检测模块实时检测功率模块的温度,并通过控制模块判断功率模块的温度是否大于等于预设的温度保护阈值。如果功率模块的温度大于等于预设的温度保护阈值,控制模块则通过控制功率模块以使压缩机停止运行;如果功率模块的温度小于预设的温度保护阈值,控制模块则通过改变功率模块的调制算法和/或改变功率模块的载波频率,以调节功率模块的温度。从而通 过改变功率模块的调制算法和载波频率来改变功率模块的开关损耗,实现对功率模块的发热控制,进而保证系统安全可靠运行。
根据本发明的一个实施例,当所述功率模块的温度小于所述预设的温度保护阈值时,所述控制模块还判断所述功率模块的温度是否大于等于第一温度阈值,其中,如果所述功率模块的温度大于等于所述第一温度阈值,所述控制模块则采用两相调制算法对所述功率模块进行控制,同时降低所述功率模块的载波频率至预设的载波频率下限。
根据本发明的一个实施例,当所述功率模块的温度小于所述第一温度阈值时,所述控制模块还判断所述功率模块的温度是否大于等于第二温度阈值,其中,如果所述功率模块的温度大于等于所述第二温度阈值,所述控制模块则采用所述两相调制算法对所述功率模块进行控制,同时通过计时器开始计时;当所述计时器的计时时间达到第一预设时间时,如果所述功率模块的温度仍然大于等于所述第二温度阈值,所述控制模块则降低所述功率模块的载波频率。
根据本发明的一个实施例,在降低所述功率模块的载波频率的过程中,所述控制模块每隔所述第一预设时间以预设频率步长降低所述功率模块的载波频率,直至所述功率模块的载波频率降低至所述预设的载波频率下限或者所述功率模块的温度小于所述第二温度阈值。
根据本发明的一个实施例,所述两相调制算法可包括最小相两相调制算法、最大相两相调制算法和最大最小相两相调制算法中的任意一种。
根据本发明的一个实施例,所述预设的温度保护阈值可以为95℃,所述第一温度阈值可以为85℃,所述第二温度阈值可以为75℃。
根据本发明的一个实施例,所述温度检测模块通过设置在所述功率模块表面的温度传感器或者集成在所述功率模块内部的温度检测组件检测所述功率模块的温度。
此外,本发明的实施例还提出了一种变频空调系统,其包括上述的变频空调系统中功率模块的发热控制装置。
本发明实施例的变频空调系统,通过上述的变频空调系统中功率模块的发热控制装置,能够通过改变功率模块的调制算法和载波频率来改变功率模块的开关损耗,从而实现对功率模块的发热控制,进而保证系统安全可靠运行。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的压缩机的控制电路拓扑图;
图2是根据本发明实施例的变频空调系统中功率模块的发热控制方法的流程图;
图3是根据本发明一个实施例的三相调制方式的示意图;
图4是根据本发明一个实施例的最小相两相调制方式的示意图;
图5是根据本发明一个实施例的最大相两相调制方式的示意图;
图6是根据本发明一个实施例的最大最小相两相调制方式的示意图;以及
图7是根据本发明一个实施例的变频空调系统中功率模块的发热控制方法的流程图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的变频空调系统中功率模块的发热控制方法、变频空调系统中功率模块的发热控制装置以及具有该装置的变频空调系统。
如图1所示,在变频空调系统中,压缩机的驱动控制电路可以包括控制模块、功率模块以及相关检测电路,其中,功率模块可由6个功率开关管如IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金氧半场效晶体管)等组成,且具有反并联二极管,或者直接采用智能功率模块,或者由分立功率开关器件组成的三相逆变桥式电路替代。控制模块通过相关检测电路检测的数据,并通过相应算法输出PWM信号至功率模块,以驱动压缩机运行。
在变频空调系统中,功率模块的发热问题是高温工况下高频运行的瓶颈,直接影响系统的可靠性与安全性,因而需要将功率模块的温度控制在允许范围内。相关技术中,主要是通过改善功率模块的散热方式(如冷媒散热等)来降低功率模块的温度,而本公开是通过相应控制方法来降低功率模块的发热,从而实现对功率模块的发热控制。
图2是根据本发明实施例的变频空调系统中功率模块的发热控制方法的流程图。如图2所示,该变频空调系统中功率模块的发热控制方法可包括以下步骤:
S1,检测功率模块的温度。
具体而言,可以将温度传感器设置在功率模块表面,并与功率模块充分接触(充分接触时的传热性较好),通过该温度传感器实时检测功率模块的温度;或者,直接采用集成有温度检测组件的功率模块,通过集成的温度检测组件实时检测功率模块的温度,例如,温度检测组件可以为NTC(Negative Temperature Coefficient,负温度系数)热敏电阻。
S2,判断功率模块的温度是否大于等于预设的温度保护阈值。其中,温度保护阈值可根据实际情况进行标定,例如,预设的温度保护阈值可以为95℃。
S3,如果功率模块的温度大于等于预设的温度保护阈值,则通过控制功率模块以使压缩机停止运行。
S4,如果功率模块的温度小于预设的温度保护阈值,则通过改变功率模块的调制算法和/或改变功率模块的载波频率,以调节功率模块的温度。
具体而言,在变频空调系统中,一般采用基于空间电压矢量调制的变频控制算法对基于三相交流电机的变频压缩机进行控制,以实现压缩机的运行。常用的空间电压矢量调制算法有三相调制算法和两相调制算法。
如图3所示,三相调制算法是将一个电压周期分成七段来等效期望的电压矢量,每个电压周期进行6次功率开关管的导通与关断;如图4-图6所示,两相调制算法是将一个电压周期分成五段来等效期望的电压矢量,每个电压周期进行4次功率开关管的导通与关断。所以,三相调制算法中功率开关管的开关次数大于两相调制算法中功率开关管的开关次数,因而开关损耗大于两相调制算法,进而发热量高于两相调制算法,因此可以通过改变功率模块的调制算法来改变功率模块的发热。另外,功率模块的开关损耗还与载波频率有关,载波频率越高,开关损耗也就越大,因此也可以通过改变载波频率来改变功率模块的发热。
具体而言,在压缩机运行过程中,控制模块可以通过温度传感器实时检测功率模块的温度,并对其进行判断。当功率模块的温度≥温度保护阈值时,说明当前功率模块的温度已经超过功率模块的最大允许温度,此时需要控制压缩机停止运行,防止因温度过高导致系统发生损坏;当功率模块的温度<温度保护阈值时,可以通过改变功率模块的调制算法、或者改变功率模块的载波频率、或者同时改变功率模块的调制算法和载波频率,以将功率模块的开关损耗控制在一定范围内,从而实现对功率模块的发热控制,进而将功率模块的温度控制在一定范围,保证系统安全可靠运行。
根据本发明的一个实施例,当功率模块的温度小于预设的温度保护阈值时,还判断功率模块的温度是否大于等于第一温度阈值,如果功率模块的温度大于等于第一温度阈值,则采用两相调制算法对功率模块进行控制,同时降低功率模块的载波频率至预设的载波频率下限。其中,第一温度阈值、载波频率下限可根据实际情况进行标定,例如,第一温度阈值可以为85℃,载波频率下限可以为2kHz。
根据本发明的一个实施例,当功率模块的温度小于第一温度阈值时,还判断功率模块的温度是否大于等于第二温度阈值,其中,如果功率模块的温度大于等于第二温度阈值,则采用两相调制算法对功率模块进行控制,同时开始计时;当计时时间达到第一预设时间时,如果功率模块的温度仍然大于等于第二温度阈值,则降低功率模块的载波频率。其中,第一预设时间和第二温度阈值可以根据实际情况进行标定,例如,第一预设时间可以为30s,第二温度阈值可以为75℃。
进一步地,根据本发明的一个实施例,在降低功率模块的载波频率的过程中,每隔第一预设时间以预设频率步长降低功率模块的载波频率,直至功率模块的载波频率降低至预设的载波频率下限或者功率模块的温度小于第二温度阈值。其中,预设频率步长可根据实际情况进行标定,例如,预设频率步长可以为500Hz。
具体而言,当第一温度阈值≤功率模块的温度<温度保护阈值时,采用两相调制算法对功率模块进行控制,并将功率模块的载波频率降低至预设的载波频率下限;当第二温度阈值≤功率模块的温度<第一温度阈值时,先采用两相调制算法对功率模块进行控制,一段时间后,如果功率模块的温度仍然大于或等于第二温度阈值,则再开始降低功率模块的载波频率。例如,从当前载波频率(如6kHz)开始,每隔一定的时间(如30s)按照一定的频率步长(如500Hz)逐步降低载波频率,直至载波频率降低至预设的载波频率下限(如2kHz),或者功率模块的温度小于第二温度阈值。从而根据不同的温度等级,通过改变功率模块的调制算法和载波频率来逐步降低功率模块的开关损耗,实现对功率模块的发热控制,进而将功率模块的温度控制在一定范围,保证系统安全可靠运行。
需要说明的是,在本发明的实施例中,两相调制算法可包括最小相两相调制算法、最大相两相调制算法和最大最小相两相调制算法中的任意一种。
具体而言,在两相调制算法中,不管是最小相两相调制算法、最大相两相调制算法,还是最大最小相两相调制算法,其开关次数均低于三相调制算法,因此在对压缩机进行控制时,当功率模块的温度过高时,可以将三相调制算法切换至两相调制算法中的任意一种以降低开关损耗,进而降低功率模块的发热,实现对功率模块的温度控制。
但是,在两相调制算法中,如图4所示,在一个电压矢量旋转周期内,最小相两相调制算法中有1/3个周期内同一桥臂的上桥臂的功率开关管(简称上管)一直处于关断状态、下桥臂的功率开关管(简称下管)一直处于导通状态,导通损耗使得同一桥臂的下管比上管发热严重。如图5所示,在一个电压矢量旋转周期内,最大相两相调制算法中有1/3个周期内同一桥臂的上管一直处于开通状态、下管一直处于关断状态,导通损耗使得同一桥臂的上管比下管发热严重。如图6所示,在一个电压矢量旋转周期内,最大最小相两相调制算法中有1/6个周期内同一桥臂的上管一直处于开通状态、下管一直处于关断状态,同时有1/6个周期内同一桥臂的上管一直处于关断状态、下管一直处于开通状态,使得同一桥臂的上管与下管的导通损耗相近、发热相似。因而,在本发明的实施例中,优选地,可采用最大最小相两相调制算法来保证功率模块中每个功率开关管发热相同。从而不仅可以实现对功率模块的温度控制,而且可以保证每个功率开关管的发热均衡。
为使本领域技术人员更清楚地了解本发明,图7是根据本发明一个具体示例的变频空调系统中功率模块的发热控制方法的流程图。
如图7所示,该变频空调系统中功率模块的发热控制方法可包括以下步骤:
S101,在每个控制周期检测一次功率模块的温度。
S102,判断功率模块的温度≥温度保护阈值(如95℃,)是否成立。如果是,执行步骤S103;如果否,执行步骤S104。
S103,控制变频压缩机停止运行。
S104,判断功率模块的温度≥第一温度阈值(如85℃,)是否成立。如果是,执行步骤S111;如果否,执行步骤S105。
S105,判断功率模块的温度≥第二温度阈值(如75℃,)是否成立。如果是,执行步骤S106;如果否,在下一个控制周期返回步骤S101。
S106,判断当前是否为两相调制算法。如果是,执行步骤S108;如果否,执行步骤S107。
S107,切换到两相调制算法,计时器清零并开始计时。
S108,计时器是否达到第一预设时间(如30s)。如果是,执行步骤S109;如果否,在下一控制周期返回步骤S101。
S109,以预设频率步长(如500Hz)降低载波频率,计时器清零并开始计时。
S110,判断是否低于预设的载波频率下限(如2kHz)。如果是,执行步骤S111;如果否,在下一控制周期返回步骤S101。
S111,调制算法为两相调制算法,同时载波频率设为载波频率下限。
综上所述,根据本发明实施例的变频空调系统中功率模块的发热控制方法,实时检测功率模块的温度,并判断功率模块的温度是否大于等于预设的温度保护阈值。如果功率模块的温度大于等于预设的温度保护阈值,则通过控制功率模块以使压缩机停止运行;如果功率模块的温度小于预设的温度保护阈值,则通过改变功率模块的调制算法和/或改变功率模块的载波频率,以调节功率模块的温度。从而通过改变功率模块的调制算法和载波频率来改变功率模块的开关损耗,实现对功率模块的发热控制,进而保证系统安全可靠运行。
下面详细描述本发明实施例的变频空调系统中功率模块的发热控制装置。如图1所示,变频空调系统中功率模块的发热控制装置可包括:温度检测模块10和控制模块20。
其中,温度检测模块10用于检测功率模块的温度,控制模块20用于判断功率模块的温度是否大于等于预设的温度保护阈值,如果功率模块的温度大于等于预设的温度保护阈值,控制模块20则通过控制功率模块以使压缩机停止运行;如果功率模块的温度小于预设的温度保护阈值,控制模块20则通过改变功率模块的调制算法和/或改变功率模块的载波频率,以调节功率模块的温度。其中,预设的温度保护阈值可为95℃。
根据本发明的一个实施例,温度检测模块10通过设置在功率模块表面的温度传感器30或者集成在功率模块内部的温度检测组件(图中未具体示出)检测功率模块的温度。
具体而言,可以将温度传感器30设置在功率模块表面,并与功率模块充分接触(充分接触时的传热性较好),通过该温度传感器实时检测功率模块的温度;或者,直接采用集成有温度检测组件的功率模块,通过集成的温度检测组件实时检测功率模块的温度,例如,温度检测组件可以为NTC热敏电阻。
在压缩机运行过程中,控制模块20可以通过温度检测模块10实时检测功率模块的温度,并对其进行判断。当功率模块的温度≥温度保护阈值时,说明当前功率模块的温度已经超过功率模块的最大允许温度,此时需要控制压缩机停止运行,防止因温度过高导致系统发生损坏;当功率模块的温度<温度保护阈值时,可以通过改变功率模块的调制算法、或者改变功率模块的载波频率、或者同时改变功率模块的调制算法和载波频率,以将功率模块的开关损耗控制在一定范围内,从而实现对功率模块的发热控制,进而将功率模块的温度控制在一定范围,保证系统安全可靠运行。
根据本发明的一个实施例,当功率模块的温度小于预设的温度保护阈值时,控制模块20还判断功率模块的温度是否大于等于第一温度阈值,其中,如果功率模块的温度大于等于第一温度阈值,控制模块20则采用两相调制算法对功率模块进行控制,同时降低功率模块的载波频率至预设的载波频率下限。其中,第一温度阈值可以为85℃,载波频率下限可以为2kHz。
根据本发明的一个实施例,当功率模块的温度小于第一温度阈值时,控制模块20还判断功率模块的温度是否大于等于第二温度阈值,其中,如果功率模块的温度大于等于第二温度阈值,控制模块20则采用两相调制算法对功率模块进行控制,同时通过计时器开始计时;当计时器的计时时间达到第一预设时间时,如果功率模块的温度仍然大于等于第二温度阈值,控制模块20则降低功率模块的载波频率。其中,第一预设时间可以为30s,第二温度阈值可以为75℃。
进一步地,根据本发明的一个实施例,在降低功率模块的载波频率的过程中,控制模块20每隔第一预设时间以预设频率步长降低功率模块的载波频率,直至功率模块的载波频率降低至预设的载波频率下限或者功率模块的温度小于第二温度阈值。预设频率步长可以为500Hz。
具体而言,当第一温度阈值≤功率模块的温度<温度保护阈值时,控制模块20将采用两相调制算法对功率模块进行控制,并将功率模块的载波频率降低至预设的载波频率下限;当第二温度阈值≤功率模块的温度<第一温度阈值时,控制模块20先采用两相调制算法对功率模块进行控制,一段时间后,如果功率模块的温度仍然大于或等于第二温度阈值,控制模块20则再开始降低功率模块的载波频率。例如,从当前载波频率(如6kHz)开始,每隔一定的时间(如30s)按照一定的频率步长(如500Hz)逐步降低载波频率,直至载波 频率降低至预设的载波频率下限(如2kHz),或者功率模块的温度小于第二温度阈值。从而根据不同的温度等级,通过改变功率模块的调制算法和载波频率来逐步降低功率模块的开关损耗,实现对功率模块的发热控制,进而将功率模块的温度控制在一定范围,保证系统安全可靠运行。
需要说明的是,在本发明的实施例中,两相调制算法可包括最小相两相调制算法、最大相两相调制算法和最大最小相两相调制算法中的任意一种。
具体而言,在两相调制算法中,不管是最小相两相调制算法、最大相两相调制算法,还是最大最小相两相调制算法,其开关次数均低于三相调制算法,因此在对压缩机进行控制时,当功率模块的温度过高时,控制模块20可以将三相调制算法切换至两相调制算法中的任意一种以降低开关损耗,进而降低功率模块的发热,实现对功率模块的温度控制。
但是,在两相调制算法中,如图4所示,在一个电压矢量旋转周期内,最小相两相调制算法中有1/3个周期内同一桥臂的上桥臂的功率开关管(简称上管)一直处于关断状态、下桥臂的功率开关管(简称下管)一直处于导通状态,导通损耗使得同一桥臂的下管比上管发热严重。如图5所示,在一个电压矢量旋转周期内,最大相两相调制算法中有1/3个周期内同一桥臂的上管一直处于开通状态、下管一直处于关断状态,导通损耗使得同一桥臂的上管比下管发热严重。如图6所示,在一个电压矢量旋转周期内,最大最小相两相调制算法中有1/6个周期内同一桥臂的上管一直处于开通状态、下管一直处于关断状态,同时有1/6个周期内同一桥臂的上管一直处于关断状态、下管一直处于开通状态,使得同一桥臂的上管与下管的导通损耗相近、发热相似。因而,在本发明的实施例中,优选地,控制模块20可采用最大最小相两相调制算法来保证功率模块中每个功率开关管发热相同。从而不仅可以实现对功率模块的温度控制,而且可以保证每个功率开关管的发热均衡。
需要说明的是,在本公开的变频空调系统中功率模块的发热控制装置中未披露的细节,可以参考本公开的变频空调系统中功率模块的发热控制方法中所披露的细节,具体这里不再赘述。
根据本发明实施例的变频空调系统中功率模块的发热控制装置,通过温度检测模块实时检测功率模块的温度,并通过控制模块判断功率模块的温度是否大于等于预设的温度保护阈值。如果功率模块的温度大于等于预设的温度保护阈值,控制模块则通过控制功率模块以使压缩机停止运行;如果功率模块的温度小于预设的温度保护阈值,控制模块则通过改变功率模块的调制算法和/或改变功率模块的载波频率,以调节功率模块的温度。从而通过改变功率模块的调制算法和载波频率来改变功率模块的开关损耗,实现对功率模块的发热控制,进而保证系统安全可靠运行。
此外,本发明的实施例还提出了一种变频空调系统,其包括上述的变频空调系统中功 率模块的发热控制装置,具体这里不再详述。
本发明实施例的变频空调系统,通过上述的变频空调系统中功率模块的发热控制装置,能够通过改变功率模块的调制算法和载波频率来改变功率模块的开关损耗,从而实现对功率模块的发热控制,进而保证系统安全可靠运行。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的, 不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种变频空调系统中功率模块的发热控制方法,其特征在于,包括以下步骤:
    检测所述功率模块的温度;
    判断所述功率模块的温度是否大于等于预设的温度保护阈值;
    如果所述功率模块的温度大于等于所述预设的温度保护阈值,则通过控制所述功率模块以使压缩机停止运行;
    如果所述功率模块的温度小于所述预设的温度保护阈值,则通过改变所述功率模块的调制算法和/或改变所述功率模块的载波频率,以调节所述功率模块的温度。
  2. 根据权利要求1所述的变频空调系统中功率模块的发热控制方法,其特征在于,当所述功率模块的温度小于所述预设的温度保护阈值时,还判断所述功率模块的温度是否大于等于第一温度阈值,其中,
    如果所述功率模块的温度大于等于所述第一温度阈值,则采用两相调制算法对所述功率模块进行控制,同时降低所述功率模块的载波频率至预设的载波频率下限。
  3. 根据权利要求2所述的变频空调系统中功率模块的发热控制方法,其特征在于,当所述功率模块的温度小于所述第一温度阈值时,还判断所述功率模块的温度是否大于等于第二温度阈值,其中,
    如果所述功率模块的温度大于等于所述第二温度阈值,则采用所述两相调制算法对所述功率模块进行控制,同时开始计时;
    当计时时间达到第一预设时间时,如果所述功率模块的温度仍然大于等于所述第二温度阈值,则降低所述功率模块的载波频率。
  4. 根据权利要求3所述的变频空调系统中功率模块的发热控制方法,其特征在于,在降低所述功率模块的载波频率的过程中,每隔所述第一预设时间以预设频率步长降低所述功率模块的载波频率,直至所述功率模块的载波频率降低至所述预设的载波频率下限或者所述功率模块的温度小于所述第二温度阈值。
  5. 根据权利要求2-4中任一项所述的变频空调系统中功率模块的发热控制方法,其特征在于,所述两相调制算法包括最小相两相调制算法、最大相两相调制算法和最大最小相两相调制算法中的任意一种。
  6. 根据权利要求3所述的变频空调系统中功率模块的发热控制方法,其特征在于,所述预设的温度保护阈值为95℃,所述第一温度阈值为85℃,所述第二温度阈值为75℃。
  7. 一种变频空调系统中功率模块的发热控制装置,其特征在于,包括:
    温度检测模块,用于检测所述功率模块的温度;
    控制模块,用于判断所述功率模块的温度是否大于等于预设的温度保护阈值,其中,
    如果所述功率模块的温度大于等于所述预设的温度保护阈值,所述控制模块则通过控制所述功率模块以使压缩机停止运行;
    如果所述功率模块的温度小于所述预设的温度保护阈值,所述控制模块则通过改变所述功率模块的调制算法和/或改变所述功率模块的载波频率,以调节所述功率模块的温度。
  8. 根据权利要求7所述的变频空调系统中功率模块的发热控制装置,其特征在于,当所述功率模块的温度小于所述预设的温度保护阈值时,所述控制模块还判断所述功率模块的温度是否大于等于第一温度阈值,其中,
    如果所述功率模块的温度大于等于所述第一温度阈值,所述控制模块则采用两相调制算法对所述功率模块进行控制,同时降低所述功率模块的载波频率至预设的载波频率下限。
  9. 根据权利要求8所述的变频空调系统中功率模块的发热控制装置,其特征在于,当所述功率模块的温度小于所述第一温度阈值时,所述控制模块还判断所述功率模块的温度是否大于等于第二温度阈值,其中,
    如果所述功率模块的温度大于等于所述第二温度阈值,所述控制模块则采用所述两相调制算法对所述功率模块进行控制,同时通过计时器开始计时;
    当所述计时器的计时时间达到第一预设时间时,如果所述功率模块的温度仍然大于等于所述第二温度阈值,所述控制模块则降低所述功率模块的载波频率。
  10. 根据权利要求9所述的变频空调系统中功率模块的发热控制装置,其特征在于,在降低所述功率模块的载波频率的过程中,所述控制模块每隔所述第一预设时间以预设频率步长降低所述功率模块的载波频率,直至所述功率模块的载波频率降低至所述预设的载波频率下限或者所述功率模块的温度小于所述第二温度阈值。
  11. 根据权利要求8-10中任一项所述的变频空调系统中功率模块的发热控制装置,其特征在于,所述两相调制算法包括最小相两相调制算法、最大相两相调制算法和最大最小相两相调制算法中的任意一种。
  12. 根据权利要求9所述的变频空调系统中功率模块的发热控制装置,其特征在于,所述预设的温度保护阈值为95℃,所述第一温度阈值为85℃,所述第二温度阈值为75℃。
  13. 根据权利要求7-12中任一项所述的变频空调系统中功率模块的发热控制装置,其特征在于,所述温度检测模块通过设置在所述功率模块表面的温度传感器或者集成在所述功率模块内部的温度检测组件检测所述功率模块的温度。
  14. 一种变频空调系统,其特征在于,包括根据权利要求7-13中任一项所述的变频空调系统中功率模块的发热控制装置。
PCT/CN2016/113776 2016-12-30 2016-12-30 变频空调系统及其的功率模块的发热控制方法、装置 WO2018120142A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113776 WO2018120142A1 (zh) 2016-12-30 2016-12-30 变频空调系统及其的功率模块的发热控制方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113776 WO2018120142A1 (zh) 2016-12-30 2016-12-30 变频空调系统及其的功率模块的发热控制方法、装置

Publications (1)

Publication Number Publication Date
WO2018120142A1 true WO2018120142A1 (zh) 2018-07-05

Family

ID=62706748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113776 WO2018120142A1 (zh) 2016-12-30 2016-12-30 变频空调系统及其的功率模块的发热控制方法、装置

Country Status (1)

Country Link
WO (1) WO2018120142A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617700A (zh) * 2019-09-26 2019-12-27 中山市泽凡电器有限公司 一种智能干燥机的节能调控方法
CN110736231A (zh) * 2019-10-29 2020-01-31 珠海格力电器股份有限公司 空调控制方法、装置、空调、存储介质以及处理器
CN113513821A (zh) * 2021-05-11 2021-10-19 宁波奥克斯电气股份有限公司 一种空调器散热控制方法及装置、空调器
CN114704933A (zh) * 2022-02-18 2022-07-05 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器
US11728757B2 (en) 2019-11-07 2023-08-15 Carrier Corporation System and method for controlling temperature inside electrical and electronics system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427670A (zh) * 2013-09-06 2013-12-04 海信(山东)空调有限公司 一种智能功率模块的温度控制方法及变频设备
CN204333931U (zh) * 2014-12-30 2015-05-13 广东美的制冷设备有限公司 一种变频空调及其智能功率模块过流保护调整电路
CN204333898U (zh) * 2014-12-22 2015-05-13 广东美的制冷设备有限公司 一种变频空调及其智能功率模块过流保护调整电路
CN106225186A (zh) * 2016-09-28 2016-12-14 广东美的制冷设备有限公司 变频空调系统及其的功率模块的发热控制方法、装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103427670A (zh) * 2013-09-06 2013-12-04 海信(山东)空调有限公司 一种智能功率模块的温度控制方法及变频设备
CN204333898U (zh) * 2014-12-22 2015-05-13 广东美的制冷设备有限公司 一种变频空调及其智能功率模块过流保护调整电路
CN204333931U (zh) * 2014-12-30 2015-05-13 广东美的制冷设备有限公司 一种变频空调及其智能功率模块过流保护调整电路
CN106225186A (zh) * 2016-09-28 2016-12-14 广东美的制冷设备有限公司 变频空调系统及其的功率模块的发热控制方法、装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110617700A (zh) * 2019-09-26 2019-12-27 中山市泽凡电器有限公司 一种智能干燥机的节能调控方法
CN110736231A (zh) * 2019-10-29 2020-01-31 珠海格力电器股份有限公司 空调控制方法、装置、空调、存储介质以及处理器
US11728757B2 (en) 2019-11-07 2023-08-15 Carrier Corporation System and method for controlling temperature inside electrical and electronics system
CN113513821A (zh) * 2021-05-11 2021-10-19 宁波奥克斯电气股份有限公司 一种空调器散热控制方法及装置、空调器
CN114704933A (zh) * 2022-02-18 2022-07-05 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器
CN114704933B (zh) * 2022-02-18 2023-12-19 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、空调器

Similar Documents

Publication Publication Date Title
WO2018120142A1 (zh) 变频空调系统及其的功率模块的发热控制方法、装置
CN106225186B (zh) 变频空调系统及其的功率模块的发热控制方法、装置
US10982890B2 (en) Air conditioner, and device and method for preventing cold air during heating of air conditioner
CN108534320B (zh) 空调器制冷启动控制方法、空调器及存储介质
CN105423513B (zh) 功率连续可调电加热系统及其控制方法
ES2795055T3 (es) Dispositivo de control para el circuito de suministro de energía de conmutación, y unidad de bomba de calor
CN107070364B (zh) 空调器、电机驱动器及其的防过热控制方法和装置
CN107155230B (zh) 电磁加热烹饪装置及其加热控制电路和低功率加热控制方法
CA2865319C (en) Air conditioner and control method of air conditioner
CN205299854U (zh) 功率连续可调电加热系统
CN107062556A (zh) 一种模块水机的冷媒流量控制方法
KR20170113633A (ko) 전자기 가열 제어 회로 및 전자기 가열 디바이스
WO2020107824A1 (zh) 运行控制方法及系统、压缩机和空调器
ES2784267T3 (es) Método de control de temperatura de un sistema inversor mediante el control de un ventilador
WO2021218485A1 (zh) 一种空调器及其控制方法和计算机可读存储介质
EP1977170A2 (en) Air conditioner and control method thereof
CN105309376A (zh) 一种半导体制冷制热恒温系统及其鱼缸
JP2012070531A (ja) インバータ装置
CN113566381B (zh) 一种家电设备及其过热保护控制方法、装置及存储介质
WO2021213272A1 (zh) 单系统冰箱的控制方法
JP2011237110A (ja) 空気調和機
KR100445465B1 (ko) 인버터 에어컨의 역률보상방법 및 장치
JP6939094B2 (ja) 電力変換装置の制御装置および冷凍装置
CN205656520U (zh) 一种双温控电路
CN106356921B (zh) 一种电动汽车的泄电电路、泄电方法及电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16926005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16926005

Country of ref document: EP

Kind code of ref document: A1