WO2020106045A1 - 광-디지털 pcr 챔버 및 이를 이용하는 광-디지털 pcr 기기 - Google Patents

광-디지털 pcr 챔버 및 이를 이용하는 광-디지털 pcr 기기

Info

Publication number
WO2020106045A1
WO2020106045A1 PCT/KR2019/015897 KR2019015897W WO2020106045A1 WO 2020106045 A1 WO2020106045 A1 WO 2020106045A1 KR 2019015897 W KR2019015897 W KR 2019015897W WO 2020106045 A1 WO2020106045 A1 WO 2020106045A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital pcr
thin film
pcr
photo
light
Prior art date
Application number
PCT/KR2019/015897
Other languages
English (en)
French (fr)
Inventor
권오석
김경호
박선주
서성은
하태환
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to CN201980074688.9A priority Critical patent/CN113015579B/zh
Priority to US17/291,180 priority patent/US20220062888A1/en
Priority to JP2021527238A priority patent/JP7158079B2/ja
Priority to EP19886397.9A priority patent/EP3885047A4/en
Publication of WO2020106045A1 publication Critical patent/WO2020106045A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1861Means for temperature control using radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an optical-digital PCR chamber and an optical-digital PCR instrument using the same.
  • PCR polymerase chain reaction
  • digital PCR is a new method for detecting and quantitatively analyzing nucleic acids (DNA or RNA). These digital PCR reactions are performed individually on hundreds or thousands of divided samples in a sample, enabling sensitive measurement with a small amount of sample. There is an advantage, and since various types of samples can be processed at the same time, there is an advantage that can be applied in various ranges.
  • Digital PCR measures the intensity of fluorescence after a specific amplification cycle to determine the relative amount of nucleic acid (gene) to be detected, and quantifies the result by comparing the quantified standard with the result value.
  • the advantage of this digital PCR is that the nucleic acid to be detected is amplified to allow absolute quantification by the sample itself, and has good reproducibility and high sensitivity.
  • the three-step process proceeds in one cycle. It is very important to shorten the PCR reaction time by rapidly raising and lowering the temperature according to the temperature suitable for each step.
  • the conventional PCR device uses electrical energy as a heat energy source, so it takes longer than an hour to complete the nucleic acid amplification reaction, and requires accessories such as heat generating equipment and a heat sink.
  • the equipment takes up a lot of volume, and it is somewhat inconvenient to apply it to a site requiring rapid diagnosis of disease.
  • micro-reactor chips and micro-heater chips which are used for micro-polymerase chain reaction, are produced separately, and micro-heater chips are used semi-permanently.
  • a reaction chip is disclosed, it has a limitation in that detection time is longer than that of PCR based on light energy in that heat is generated by applying current to a gold thin film.
  • a light energy-based PCR system is disclosed, but as a PCR reaction in a liquid phase, multiple diagnosis is impossible in one chamber and recovery of used primers is impossible. There is this.
  • Patent Document 1 Korean Patent Publication No. 2009-0021957
  • Patent Document 2 Korean Patent Publication No. 2017-0106995
  • the present invention has been devised to solve the above problems, and in a photo-digital PCR using thermal energy generated by irradiating light energy, a very small amount of sample can be used for very rapid and high sensitivity PCR analysis.
  • the present invention is to provide an optical-digital PCR chamber and an optical-digital PCR device that optimize PCR performance by preventing quenching of PCR fluorescent substances.
  • the present invention is a transparent substrate; A metal thin film layer formed on the transparent substrate; A light shielding layer formed on the metal thin film layer; And a microchannel structure formed on the light shielding layer.
  • the present invention provides a photo-digital PCR instrument comprising a laminate comprising a transparent substrate, a metal thin film layer formed on the transparent substrate and a light blocking layer formed on the metal thin film layer.
  • the temperature change can be adjusted more quickly than in the prior art. It has the effect of shortening the time much more than the PCR reaction.
  • the metal thin film layer is micro-patterned, a vortex phenomenon is caused due to a temperature difference, so that the above temperature control can be performed more quickly. Accordingly, the PCR reaction time can be further shortened.
  • quenching of the PCR fluorescent material used in the photo-digital PCR process by introducing a light-blocking layer on the metal thin-film layer formed to apply the photo-energy-based PCR to prevent the light irradiated on the metal thin-film layer from reaching the microchannel structure ( It has the effect of preventing the reduction of the performance of the photo-digital PCR according to the quenching phenomenon. Therefore, even if the PCR based on the light energy is applied as described above, since the PCR fluorescent substance is not quenched, it is possible to perform rapid and sensitive quantitative analysis even with a much smaller amount of samples than the conventional digital PCR.
  • FIG. 1 is a view showing a laminate including a glass substrate / metal thin film layer / fine flow path structure included in the photo-digital PCR chamber of the present invention.
  • FIG. 2 is a view showing a micro-channel structure included in the photo-digital PCR chamber of the present invention.
  • Example 3 is a view showing the time required for the photo-digital PCR reaction using the photo-digital PCR chamber of Example 1 according to Experimental Example 1
  • Example 5 is a view showing the time required for the photo-digital PCR reaction using the photo-digital PCR chamber of Example 2 according to Experimental Example 2.
  • FIG. 6 is a view showing the time required for the photo-digital PCR reaction using the photo-digital PCR chamber of Example 4 according to Experimental Example 2.
  • FIG. 7 is a view showing a schematic diagram and a result of contact angle analysis of the surface treatment of the dapsil / carbene of the micro-patterned gold thin film according to Experimental Example 3.
  • FIG. 7 is a view showing a schematic diagram and a result of contact angle analysis of the surface treatment of the dapsil / carbene of the micro-patterned gold thin film according to Experimental Example 3.
  • FIG. 8 is a diagram showing the results of surface treatment photoelectron spectroscopy analysis of the dapsil / carbene of the micro-patterned gold thin film according to Experimental Example 3.
  • FIG. 9 is a view showing the results of fluorescence evaluation after a photo-digital PCR reaction according to Experimental Example 4-1.
  • FIG. 10 is a view showing the results of fluorescence evaluation after a photo-digital PCR reaction according to Experimental Example 4-2.
  • Example 11 is a view showing the results of fluorescence evaluation after the photo-digital PCR reaction of Example 4 according to Experimental Example 5.
  • FIG. 12 is a view showing the results of evaluating the effect of preventing the quenching phenomenon of the PCR fluorescent material after the photo-digital PCR reaction according to Experimental Example 6-1.
  • FIG. 13 is a view showing the results of evaluating the effect of preventing the quenching phenomenon of the PCR fluorescent material after the photo-digital PCR reaction according to Experimental Example 6-2.
  • FIG. 14 is a view showing a surface picture of the micro-patterned gold thin film of the present invention.
  • 15 is a view showing a vortex phenomenon due to heat transfer on the micro patterned gold thin film surface of the present invention.
  • 16 is a graph showing the temperature distribution on the micro patterned gold thin film surface of the present invention.
  • PCR Polymerase Chain Reaction
  • DNA or RNA DNA or RNA
  • the first step is denaturation of DNA (or RNA).
  • the two strands of DNA can be separated by heating, and each of the separated DNAs serves as a template.
  • the denaturation temperature is generally 90 ° C to 96 ° C, but depends on the amount of base G + C in the DNA and the length of the DNA.
  • the second step of PCR is annealing. In this step, two types of primers are each bound to complementary template DNA. The binding temperature is an important factor in determining the accuracy of the reaction.
  • the third step of PCR is the elongation step. At this stage, heat-resistant DNA polymerase creates new DNA from the template DNA. At this time, the elongation temperature is 70 ° C to 75 ° C. As above, the PCR reaction has a series of three steps, and the PCR reaction is performed by repeating about 30 to 40 cycles using the above three steps as one cycle.
  • digital PCR is a form that employs reagents such as primers and PCR fluorescent materials (staining reagents) or enzymes used in conventional PCR, and more accurate quantitative analysis and detection target nucleic acids (DNA or RNA) than conventional PCR. High sensitivity detection is possible.
  • Digital PCR which is a digital analysis method with a result signal having a value of "0" or "1" is used for analysis of large samples, inspection of various samples at once, and various types It has the advantage of being able to perform inspection items at once.
  • Digital PCR technology enables absolute quantification of a DNA sample by applying a single molecular counting method that does not require a standard curve.It is an advantage that more accurate absolute quantification can be performed by PCR reaction for one droplet per well. There is this. Therefore, even if only a sample of about 10 to 1,000 pico liter is loaded compared to the conventional PCR or real-time PCR (qPCR), the PCR reaction proceeds to identify the gene of the sample to be detected.
  • conventional conventional PCR performs one reaction per well (sample), whereas digital PCR separates one sample into a large number of compartments, allowing a single reaction within a sample contained within each compartment. By performing, there is an advantage that can analyze / confirm various types of nucleic acids (genes).
  • photonic PCR is a PCR using plasmon photothermal conversion by the interaction of photons, electrons, and phonons on the surface of a metal thin film layer.
  • photons photons
  • electrons electrons
  • phonons plasmon photothermal conversion by the interaction of photons, electrons, and phonons on the surface of a metal thin film layer.
  • photon from the excited energy source reaches the surface of the metal thin film layer
  • light absorption occurs and excites electrons to a higher state near the surface to form high temperature electrons.
  • high-temperature electrons are rapidly diffused and uniformly distributed throughout the metal thin film layer, heating of the surrounding solution is possible due to the high-temperature metal surface.
  • the hot electrons can be cooled again by energy exchange with the lattice phonon.
  • the plasmon-excited metal thin film layer is heated to a maximum of 500 ° C, and the PCR sample solution around the metal thin film layer can be heated to 150 ° C or more in a short period of time, and thus has an advantage of performing a PCR reaction very quickly.
  • the present invention provides both the advantages of digital PCR and optical PCR as described above, and provides a technique capable of performing digital PCR based on plasmon photothermal conversion as in optical PCR. This will be referred to as photo-digital PCR technology in the present invention.
  • the present invention provides a chamber used for photo-digital PCR.
  • the optical-digital PCR chamber of the present invention includes a transparent substrate; A metal thin film layer formed on the transparent substrate; A light shielding layer formed on the metal thin film layer; And a microchannel structure formed on the light shielding layer.
  • the transparent substrate may be manufactured to transmit light irradiated from one or more light sources located on the lower side of the opposite side where the metal thin film layer is formed to the metal thin film layer without loss, and to have excellent adhesion with the metal thin film layer.
  • the light source is not limited to those that can generate visible light or infrared light, and can use a halogen lamp, LED lamp, fluorescent lamp, incandescent lamp, arc source lamp, infrared lamp, HMI lamp, and power efficiency. Or, from an economical point of view, an LED lamp is preferred.
  • the transparent substrate may be made of a transparent material to transmit the irradiated light, or may be made of a material that is hardly deformed by light or heat.
  • it may be a glass substrate, a plastic substrate (such as a polyester substrate, a polyacrylic substrate) or a silicon substrate, but is not limited thereto.
  • the transparent substrate has a constant thickness, and the thickness of the transparent substrate may be 0.1 mm to 10 mm, preferably 0.3 mm to 5 mm, and more preferably 0.3 mm to 1.5 mm.
  • the thickness of the transparent substrate satisfies the above range, thermal energy due to light energy irradiated from the light source can be efficiently transferred to optimize the photo-digital PCR reaction cycle.
  • the photo-digital PCR chamber may use a metal thin film layer to use thermal energy by light energy irradiation. Since the metal thin film provided on the metal thin film layer can instantly rise up to 500 ° C or more, it is possible to quickly perform a temperature change within the temperature range of the PCR cycle (about 50 ° C to 95 ° C).
  • PCR using the secondary thermal energy generated by applying the voltage that is the primary energy based on the existing Peltier heating (max. 95 °C / cooling (repetition time of 60 °C (2 ⁇ 3 °C per second is relatively long
  • heating maximum. 95 °C / cooling
  • the temperature change can proceed at a rate of 4 to 5 ° C per second, it is based on 40 PCR cycles (repeat of heating / cooling).
  • the photo-digital PCR results can be confirmed within a very fast time of about 10 to 11 minutes.
  • the metal of the metal thin film layer is copper (Cu), silver (Ag), gold (Au), palladium (Pd), platinum (Pt), rhodium (Rh), and combinations thereof (for example, two metal nanoparticles (bimetallic) nanoparticles)).
  • it may be gold (Au) having excellent stability and fast light absorption.
  • the method of coating the metal thin film layer on one surface of the transparent substrate is not limited to this as long as it is a coating or deposition technique, and chemical vapor deposition (CVD), physical vapor deposition (PVD), and thermal evaporation vacuum deposition (Thermal evaporation deposition), sputtering deposition (Sputtering deposition) or atomic layer deposition (Atomic Layer Deposition, ALD) may be formed to a uniform thickness on the transparent substrate.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Thermal evaporation deposition Thermal evaporation deposition
  • Sputtering deposition sputtering deposition
  • ALD atomic layer deposition
  • the thickness of the metal thin film layer may be 10 nm to 200 nm. When the thickness of the metal thin film layer exceeds the above range, there is a problem in performing a temperature change according to thermal energy conversion by light energy.
  • the metal thin film layer can be micro-patterned.
  • the temperature of the micro-patterned portion rises rapidly, and the temperature between the unpatterned patterns becomes relatively low, and a vortex phenomenon occurs due to a difference in water temperature.
  • the portion where heat energy is generated by light irradiated during the photo-digital PCR reaction is limited to the metal thin film pattern, and heat energy is not generated between the metal thin film patterns. Therefore, as shown in FIGS. 15 and 16, a temperature difference occurs between the metal thin film pattern and the metal thin film pattern, which eventually results in a vortex phenomenon. At this time, the degree of vortex phenomena due to heat transfer is determined according to the spacing between the micro patterns and the size and shape of the pattern.
  • the micro pattern may be a polygon such as a circle or a triangle, a square, a pentagon, and a hexagon.
  • the micro pattern may have an average diameter or a radius of a circumscribed circle of 1 ⁇ m to 20 ⁇ m.
  • the radius of the circumscribed circle may be 1 ⁇ m to 20 ⁇ m.
  • the average spacing between the micro patterns may be 3 ⁇ m to 5 ⁇ m.
  • the method of micro-patterning the metal thin film layer is not limited to the patterning technique, and double exposure lithography, nano imprint lithography (NIL), electron beam lithography (EBL) ),
  • the metal thin film layer can be micro-patterned by a method such as focusing ion beam (FIB), soft lithography (SL), or self-assembly of a block copolymer.
  • patterning by a double exposure lithography method rather than a conventional single exposure lithography method enables clear micro-patterning in a pattern form having a more uniform interval.
  • the light shielding layer is formed on the metal thin film layer to prevent the quenching phenomenon of the PCR fluorescent substance included in the sample during the photo-digital PCR reaction.
  • the PCR fluorescent substance used to confirm the PCR results naturally binds to the DNA double bond, and these PCR fluorescent substances are used to confirm the results by adding them after 40 cycles of the PCR reaction in the light energy-based PCR.
  • the PCR fluorescent material may be quenched in the PCR fluorescent material after 40 cycles of the PCR reaction by including the PCR fluorescent material in the sample at the beginning of the PCR reaction.
  • the light-blocking layer is formed in the photo-digital PCR chamber of the present invention, between the metal thin film layer and the micro-channel structure, thereby preventing the light irradiated from the light source from reaching the micro-channel structure, the photo-digital PCR of the present invention It has the effect of preventing the reduction of performance, and as a result, it was confirmed that the limit detection ability increased by about 10 times or more compared to the case of only the metal thin film layer, and a very small amount (about 2 pg / ⁇ l) by applying the light shielding layer ) Can improve the performance by 10 times or more.
  • the light shielding layer may be a polydopamine film, a photocatalytic organic compound film, or a dabyl organic compound film.
  • the photocatalytic organic compound may include at least one selected from Melem and gC 3 N 4 (graphitic carbon nitride).
  • the thickness of the light blocking layer may be 1 nm to 1 ⁇ m.
  • the thickness of the light shielding layer is less than 1 nm, the light entering the microfluidic structure may not be effectively blocked, so that the fluorescence of the PCR fluorescent material may occur, and when it exceeds 1 ⁇ m, the thermal energy converted from the light energy in the metal thin film layer is a microfluidic structure. The temperature change of the PCR sample within can be reduced.
  • the thickness of the Dabsil layer formed by combining the Dabsil with carbene is less than 10 nm, and the concentration may be 10 ⁇ M to 3 mM.
  • concentration of the dapsil satisfies the above range, light entering the microfluidic structure can be effectively blocked to prevent the quenching phenomenon of the PCR fluorescent material.
  • an N-heterocyclic carbene compound As a linker for immobilizing the dapsyl on the surface of the micro-patterned metal thin film, an N-heterocyclic carbene compound can be used.
  • the N-heterocyclic carbene compound may be introduced through a metal-carbene bond to the surface of the micro-patterned metal thin film.
  • a linker having a thiol (-SH) group used for solid-phase PCR has a high temperature of metal-sulfur bond (70 ° C).
  • the reproducibility of the PCR reaction results is poor due to instability in the above (broken metal-sulfur bond).
  • the N-heterocyclic carbene compound is used as a linker for immobilizing the dapsil on a micro-patterned metal thin film, the surface temperature of the micro-patterned metal thin film by a light source is temporarily up to 500 Even if the temperature rises to °C, it is possible to obtain stability at a high temperature due to the metal-carbene bond, and thus has the advantage of being applicable to a PCR device using light energy.
  • the N-heterocyclic carbene compound may be represented by the following Formula 1 or 2.
  • R 1 , R 2 , R 5 and R 6 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or 2 to 30 carbon atoms.
  • a heteroaryl group
  • R 4 and R 9 are the same as or different from each other, and each independently hydrogen or an alkyl group having 1 to 20 carbon atoms,
  • R 3 , R 7 , R 8 and R 10 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or 2 to 30 carbon atoms. Or a heteroaryl group of R 7 and R 8 may combine with each other to form a hydrocarbon ring.
  • the “adjacent” group means a substituent substituted on an atom directly connected to an atom in which the substituent is substituted, a substituent positioned closest to the substituent and the other substituent substituted on the atom in which the substituent is substituted.
  • a substituent substituted on an atom directly connected to an atom in which the substituent is substituted a substituent positioned closest to the substituent and the other substituent substituted on the atom in which the substituent is substituted.
  • two substituents substituted in the ortho position on the benzene ring and two substituents substituted on the same carbon in the aliphatic ring may be interpreted as "adjacent" to each other.
  • the alkyl group may be straight chain or branched chain, and may have 1 to 20 carbon atoms, and preferably 1 to 10 carbon atoms. More preferably, it may be 1 to 6 carbon atoms.
  • Specific examples of the alkyl group are methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methylbutyl, 1-ethylbutyl, pentyl, n- Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n-heptyl, 1-methylhexyl, cyclopentyl
  • the cycloalkyl group may have 3 to 20 carbon atoms, and preferably 3 to 10 carbon atoms.
  • Specific examples of the cycloalkyl group include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethyl Cyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but is not limited thereto.
  • the aryl group may have 6 to 30 carbon atoms, and preferably 6 to 10 carbon atoms.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group. Specific examples of the monocyclic aryl group include a phenyl group, a biphenyl group, a terphenyl group, etc., and specific examples of the polycyclic aryl group include a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, and chrysenyl group. Group, fluorenyl group, triphenylene group, and the like, but is not limited thereto.
  • the heteroaryl group is a hetero atom and is an aromatic ring group including one or more selected from N, O, P, S, Si, and Se, and may have 2 to 30 carbon atoms, and preferably 2 to 20 carbon atoms.
  • Specific examples of the heteroaryl group include thiophene group, furan group, pyrrol group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, pyrimidyl group, triazine group, triazole group, and acryl Dill group, quinolinyl group, quinazolinyl group, quinoxalinyl group, phthalazinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group , Dibenzothiophene group, benzofuranyl
  • the hydrocarbon ring may be an aliphatic ring or an aromatic ring, the aliphatic ring may include the aforementioned cycloalkyl group, and the aromatic ring may include the aforementioned aryl group or heteroaryl group.
  • alkyl group, cycloalkyl group, aryl group, heteroaryl group or hydrocarbon ring may be substituted or unsubstituted with an alkyl group, cycloalkyl group, aryl group, or heteroaryl group.
  • One end of the N-heterocyclic carbene compound may be coupled to the surface of the micro-patterned metal thin film, and at this time, chemical vapor deposition (CVD), physical vapor deposition (PVD) , Metal-carbine bonding by methods such as thermal evaporation deposition, sputtering deposition, atomic layer deposition (ALD), and chemical-bath deposition (CBD) Can be formed.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Metal-carbine bonding by methods such as thermal evaporation deposition, sputtering deposition, atomic layer deposition (ALD), and chemical-bath deposition (CBD) Can be formed.
  • the terminal of the N-heterocyclic carbene compound may be functionalized with a carboxyl group.
  • the amine layer may be formed by functionalization using various amines at the ends of the N-heterocyclic carbene compound.
  • the amine may include diamine, triamine, tetraamine, pentaamine, hexaamine or mixtures thereof.
  • the amine is methylenediamine, ethylenediamine, propylenediamine, butylenediamine, hexamethyldiamine, aminoethylethanolamine, phenylenediamine, dimethylenetriamine, diethylenetriamine, triethylenetetraamine (TETA), tetra Ethylene pentaamine (TEPA), pentaethylene hexaamine (PEHA), hexamethylene diamine (HMDA), and the like, but are not limited thereto.
  • the amine may be polyethyleneimine, in which case the weight average molecular weight may be 1,000 to 1,000,000 g / mol.
  • the amine layer of the N-heterocyclic carbene compound may be immobilized by combining dacyl.
  • the microfluidic structure is formed on the light shielding layer, thereby maximizing the efficiency of the photo-digital PCR reaction of the present invention.
  • the microchannel structure may be one or more microchannel sets independently formed.
  • the microchannel set includes at least one sample injection unit and at least one sample extraction unit, and a plurality of microchannels connecting the sample injection unit and the sample extraction unit may be formed.
  • the micro-channel may include one stem channel and a plurality of branch channels connected to the stem channel.
  • a plurality of photo-digital PCR reactions can be simultaneously performed by independently injecting a detection target sample into one or more sample injection units included in each microchannel set.
  • the material of the micro-channel structure is not limited to this as long as it is a transparent material or a material having thermal conductivity, and may be a polymer material that can be molded, such as polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the micro-channel of the micro-channel structure is a groove having a cross-section of a micro-channel with a round bottom, and a transparent film may be attached to the top, and the size of the micro-channel cross section is 5 ⁇ m to 100 ⁇ m wide and 5 ⁇ m to 100 ⁇ m high.
  • the photo-digital PCR chamber may be positioned adjacent (close to) the light source. If the light energy generated from the light source can reach the metal thin film layer, the position of the light source is not limited thereto. However, in one embodiment of the present invention, in the case where the photo-digital PCR chamber is a stacked structure such as a transparent substrate / metal thin film layer / light shielding layer / microchannel structure, the light source is a lower portion of the transparent substrate (of the transparent substrate. Metal thin film layer).
  • the light source when the light source is disposed under the transparent substrate of the photo-digital PCR chamber of the present invention, light energy from the light source located under the transparent substrate passes through the transparent substrate to reach the metal thin film layer. . The light energy reaching the metal thin film layer is converted into thermal energy as plasmon photothermal conversion occurs in the metal thin film layer.
  • the temperature of the metal thin film layer is raised to a maximum of 500 ° C, and this thermal energy causes a temperature change (about 50 ° C to 95 ° C) of the PCR sample present in the microfluidic structure, denaturation, binding ( The cycle of annealing and elongation can be repeatedly performed, thereby amplifying the DNA (or RNA), and the amplified DNA (or RNA) is used to fluoresce the PCR fluorescent material in the PCR sample.
  • the metal thin film layer can use a gold thin film for more efficient photothermal conversion, and as the gold thin film is micro-patterned, a faster temperature change is possible, so that the photo-digital PCR reaction of the present invention can be performed. Time can be shortened.
  • a droplet (PCR sample) containing a target gene (template), a primer, Taq polymerase, dNTP and PCR fluorescent material prepared to be diluted to an average of 0.5 to 1 copy number for digital PCR is used as a micro-flow path.
  • a PCR fluorescent substance is also included in the PCR sample present in the microfluidic structure, and the PCR fluorescent substance is quenched by light from the light source.
  • the PCR fluorescent substance is quenched by light from the light source.
  • the optical-digital PCR chamber of the present invention is provided anywhere in the PCR device equipped with the light source, and simultaneously using optical PCR and digital PCR, accurate and quantitative PCR analysis is possible in a very short time.
  • the present invention provides a photo-digital PCR instrument comprising a laminate comprising a transparent substrate, a metal thin film layer formed on the transparent substrate and a light blocking layer formed on the metal thin film layer.
  • the transparent substrate, the metal thin film layer, and the light-blocking layer constituting the laminate included in the photo-digital PCR device may have the same content as defined in the above-described photo-digital PCR chamber.
  • the photo-digital PCR device including the stacked body may further include a light source.
  • the light source is not limited to those that can generate visible light or infrared light, and can use a halogen lamp, LED lamp, fluorescent lamp, incandescent lamp, arc source lamp, infrared lamp, HMI lamp, and power efficiency. Or, from an economical point of view, an LED lamp is preferred.
  • the position of the light source in the photo-digital PCR device is not limited to this, as long as light energy can reach the metal thin film layer of the laminate, preferably, a laminate (transparent substrate / metal thin film layer / light shielding layer) ) Is located at the bottom of the transparent substrate (opposite to the side where the metal thin film layer of the transparent substrate is located), so that heat energy transfer can be most efficiently performed.
  • a laminate transparent substrate / metal thin film layer / light shielding layer
  • a droplet (PCR sample) containing a gene to be detected (template), a primer, Taq polymerase, dNTP and a PCR fluorescent substance is prepared and distributed to each well of the microfluidic structure. Then, the prepared microchannel structure is placed on the stacked body present in the photo-digital PCR instrument.
  • the light energy generated from the light source of the photo-digital PCR device reaches the metal thin film layer of the laminate, the light energy reaching the metal thin film layer is thermal energy as plasmon photothermal conversion occurs in the metal thin film layer. Is switched to. In this case, the temperature of the metal thin film layer is raised to a maximum of 500 ° C, and this thermal energy is a change in temperature of the PCR sample present in the microfluidic structure disposed on the stack of the photo-digital PCR device (about 50).
  • Raising the temperature of °C to 95 °C it is possible to repeatedly perform the cycle of denaturation (anneaturing), elongation (elongation) steps in the sample distributed to each well of the microfluidic structure, thereby the DNA ( Alternatively, RNA) can be amplified, and after performing PCR, the wells showing a fluorescence signal are counted with a value of "1" and the wells without a fluorescence signal are counted with a value of "0".
  • the metal thin film layer may use a gold thin film for more efficient photothermal conversion, and as the gold thin film is micro-patterned, a faster temperature change is possible, thereby shortening the photo-digital PCR reaction time of the present invention. .
  • a PCR fluorescent substance is included in the PCR sample present in the microfluidic structure, and the PCR fluorescent substance is quenched by light from the light source.
  • the PCR fluorescent substance is quenched by light from the light source.
  • a light-blocking layer of a polydopamine film, a photocatalytic organic compound film or a dapsil organic compound film between the metal thin film layer and the microfluidic structure light to the PCR fluorescent substance existing in the microfluidic structure is included. By blocking, it is possible to rapidly and highly sensitive photo-digital PCR reactions and analyzes, even with very small amounts of reagents.
  • a micro-flow structure containing various types of PCR reagents may be used, and one micro-flow structure may contain multiple wells
  • droplets containing various types of target genes, primers, and PCR fluorescent substances it is possible to analyze by multiple PCR reactions at once, and by using optical PCR and digital PCR at the same time, very fast time within, accurate and quantitative PCR analysis is possible.
  • cDNA of lung cancer cell line A549 was used, and dNTP, Taq polymerase, reverse primers and forward primers as shown below, and liquid PCR reactant A containing SYBR Green as a PCR fluorescent material were prepared.
  • cDNA of lung cancer cell line A549 was used, and dNTP, Taq polymerase, reverse primers and forward primers as shown below, and liquid PCR reactant B containing Fluorescein as a PCR fluorescent material were prepared.
  • a micro-patterned gold thin film was formed on a glass substrate (0.5 mm) by a chemical vapor deposition method to a thickness of 160 nm, and after forming a polydopamine film on the gold thin film, a micro-flow structure was then placed on it to form a laminate. After forming a, a photo-digital PCR chamber including PCR reactant A prepared according to Preparation Example 1 was prepared.
  • Example 1 a photo-digital PCR chamber was prepared in the same manner as in Example 1, except that a photocatalyst 1 organic compound (Melem) film was formed instead of a polydopamine film as a light-shielding layer.
  • a photocatalyst 1 organic compound (Melem) film was formed instead of a polydopamine film as a light-shielding layer.
  • Example 1 a photo-digital PCR chamber was prepared in the same manner as in Example 1, except that a photocatalyst 2 organic compound (gC 3 N 4 ) film was formed as a light shielding layer instead of a polydopamine film.
  • a photocatalyst 2 organic compound (gC 3 N 4 ) film was formed as a light shielding layer instead of a polydopamine film.
  • Example 1 a photo-digital PCR chamber was prepared in the same manner as in Example 1, except that a dapsil organic compound film was formed instead of a polydopamine film as a light-shielding layer.
  • Example 1 a photo-digital PCR chamber was prepared in the same manner as in Example 1, except that the PCR reactant B prepared according to Preparation Example 2 was used instead of the PCR reactant A prepared according to Preparation Example 1. Did.
  • Example 2 a photo-digital PCR chamber was prepared in the same manner as in Example 2, except that the PCR reactant B prepared according to Preparation Example 2 was used instead of the PCR reactant A prepared according to Preparation Example 1. Did.
  • Example 3 a photo-digital PCR chamber was prepared in the same manner as in Example 3, except that the PCR reactant B prepared according to Preparation Example 2 was used instead of the PCR reactant A prepared according to Preparation Example 1. Did.
  • Example 4 a photo-digital PCR chamber was prepared in the same manner as in Example 4, except that the PCR reactant B prepared according to Preparation Example 2 was used instead of the PCR reactant A prepared according to Preparation Example 1. Did.
  • a photo-digital PCR chamber containing the prepared PCR reactant A was prepared.
  • Comparative Example 1 a photo-digital PCR chamber was prepared in the same manner as in Comparative Example 1, except that the PCR reactant B prepared according to Preparation Example 2 was used instead of the PCR reactant A prepared according to Preparation Example 1. Did.
  • a micro-patterned gold thin film is formed on a glass substrate (0.5 mm) by a chemical vapor deposition method to a thickness of 160 nm, and after a polydopamine film is formed on the gold thin film, a microfluidic structure is then placed thereon and laminated. After the sieve was formed, a photo-digital PCR chamber containing PCR reactant A prepared according to Preparation Example 1 was prepared.
  • Comparative Example 4 a photo-digital PCR chamber was prepared in the same manner as in Comparative Example 4, except that the PCR reactant B prepared according to Preparation Example 2 was used instead of the PCR reactant A prepared according to Preparation Example 1. Did.
  • Example 3 Using the optical-digital PCR chamber prepared in Example 1 and Comparative Example 3, the time required as a result of performing 40 optical-digital PCR cycles is shown in FIGS. 3 and 4, respectively.
  • Example 1 in which the gold thin film is micro-patterned, it takes 10 minutes to perform a 40-cycle photo-digital PCR reaction, while the gold thin film is micro
  • Comparative Example 3 in the case of Comparative Example 3 without patterning, it was confirmed that it takes 12 minutes to perform a 40-cycle photo-digital PCR reaction.
  • Example 2 in which a photocatalyst 1 organic compound (Melem) film was formed on a micropatterned gold thin film
  • 40 cycles of photo-digital PCR It takes 10 minutes to perform the reaction
  • Example 4 in which a dapsil organic compound film was formed instead of the photocatalyst 1 organic compound film as a light-shielding layer, the 40-cycle photo-digital PCR reaction was performed 9 It was confirmed that the time of minutes was required.
  • Step-by-step schematic and contact angle and photoelectron spectroscopy measurements were performed for the immobilization of the dapsils of Examples 4 and 8, and changes in surface properties according to the surface treatment were confirmed according to FIGS. 7 and 8.
  • Example 4 After performing the photo-digital PCR cycle 40 times while varying the concentration of the dapsil organic compound to 0 mM, 0.3 mM, 0.5 mM, 1 mM, 3 mM, the fluorescence intensity of the PCR fluorescent substance contained in the sample The results of measuring are shown in FIG. 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 투명 기판; 상기 투명 기판 상에 형성된 금속박막층; 상기 금속박막층 상에 형성된 차광층; 및 상기 차광층 상에 형성된 미세유로 구조체;를 포함하는 것인 광-디지털 PCR 챔버 및 투명 기판, 상기 투명 기판 상에 형성된 금속박막층 및 상기 금속박막층 상에 형성된 차광층을 포함하는 적층체를 포함하는 것인 광-디지털 PCR 기기에 관한 것이다.

Description

광-디지털 PCR 챔버 및 이를 이용하는 광-디지털 PCR 기기
본 발명은 광-디지털 PCR 챔버 및 이를 이용하는 광-디지털 PCR 기기에 관한 것이다.
중합효소 연쇄반응(polymerase chain reaction, PCR)법은 핵산(DNA 또는 RNA)의 특정영역을 시험관 내에 대량으로 증폭하는 기술이다. 위와 같은 기술을 이용한 PCR 장비는 병원, 연구소 등에서 혈액에 들어 있는 적은 양의 DNA를 증폭시키기 위해 사용되며, 말라리아, 결핵, 간염 등의 다양한 질병의 진단을 위해서도 PCR 장비가 사용된다.
이러한 PCR 방법은 최근에는 실시간 PCR(real-time PCR), 디지털 PCR(digital PCR) 등으로 발전하고 있으며, 기존의 PCR이 제공하지 못했던 실시간 진단, 고민감도, 측정결과의 디지털화 등 다양한 편의와 높은 정확도의 결과를 제공하고 있다.
그 중에서도, 디지털 PCR은 핵산(DNA 또는 RNA)을 탐지하고 정량 분석하는 새로운 방법으로서, 이러한 디지털 PCR 반응은 샘플 내에 수백, 수천 개의 분할된 샘플에서 개별적으로 수행되어, 소량의 시료만으로도 민감한 측정이 가능한 장점이 있고, 여러 종류의 시료를 동시에 처리할 수 있어서, 다양한 범위에서 응용될 수 있는 장점이 있다.
디지털 PCR은 검출 대상 핵산(유전자)의 상대적인 양을 확인하기 위해 특정 증폭 사이클 이후에 형광의 강도를 측정하고, 정량화된 표준물질과 결과 값의 비교를 통해 정량화한다. 이러한 디지털 PCR의 장점은 검출 대상 핵산을 증폭하여 샘플 자체로 절대 정량이 가능하고, 좋은 재현성과 높은 민감도를 가진다.
그러나, 디지털 PCR에 있어서 오일 에멀젼을 통한 DNA 용액 분할 기술 등의 종래 기술들은, 제품을 패키징하는 과정에서 발생하는 높은 소요 비용과 분할 기술 등에서 소요되는 긴 검출 시간이 한계점으로 인식되고 있다. 따라서, 이러한 디지털 PCR의 한계점을 극복하기 위한 개발이 지속되고 있다.
한편, PCR은 변성, 결합, 신장의 3단계의 과정이 1 사이클로 진행이 되는데, 각 단계에 적합한 온도에 맞추어 온도를 신속하게 상승 및 하강하도록 하는 것이 PCR 반응 시간을 단축시키는데 매우 중요하다. 그러나, 기존에 이용되는 PCR 장치는 전기에너지를 열에너지원으로 사용하여, 핵산 증폭 반응을 완료하는데 있어 1시간 이상의 긴 시간이 소요되고, 발열 장비, 히트 싱크(heat sink) 등의 부속품들이 필요하기 때문에, 장비가 부피를 많이 차지하게 되는 불편함이 있는 문제점이 있어, 신속한 질병의 진단을 요하는 현장에 적용하기에는 다소 불편함이 있었다.
한국 공개특허공보 2009-0021957에는, 마이크로 중합효소 연쇄반응에 이용되는 마이크로 반응조칩과 마이크로 히터칩을 분리 제작하여, 마이크로 히터칩을 반영구적으로 사용함으로써, 제작이 용이하고 대량 생산이 가능한 마이크로 중합효소 연쇄반응용 칩이 개시되어 있으나, 금 박막에 전류를 걸어주어 열을 발생시킨다는 점에서, 광 에너지 기반의 PCR에 비하여 검출시간이 오래 걸리는 한계가 있다. 또한, 한국 공개특허공보 2017-0106995에는, 광 에너지 기반의 PCR 시스템이 개시되어 있으나, 액체상에서 PCR 반응을 수행하는 것으로서, 하나의 챔버 내에서 다중 진단이 불가능하고, 사용된 프라이머의 회수가 불가능한 문제점이 있다.
특히, 기존의 PCR 장치는 높은 가격, 장비의 거대화, 오랜 검출 시간(1시간 이상)으로 인해 휴대가 불편하고, 현장에서 즉각적인 진단에 있어 한계가 있어서, 이러한 문제를 해결하기 위해 PCR에 대한 연구가 꾸준히 진행되고 있다.
[선행기술문헌]
(특허문헌 1) 한국 공개특허공보 2009-0021957
(특허문헌 2) 한국 공개특허공보 2017-0106995
본 발명은 위와 같은 문제점을 해결하기 위하여 안출된 것으로서, 광 에너지를 조사하여 발생하는 열 에너지를 이용한 광-디지털 PCR에서 극소량의 시료만으로도 매우 신속하고, 높은 민감도를 가지는 PCR 분석이 가능하면서도, 또한, PCR 형광 물질의 퀀칭(quenching) 현상을 방지하여 PCR 성능을 최적화한 광-디지털 PCR 챔버 및 광-디지털 PCR 기기를 제공하고자 한다.
본 발명은 투명 기판; 상기 투명 기판 상에 형성된 금속박막층; 상기 금속박막층 상에 형성된 차광층; 및 상기 차광층 상에 형성된 미세유로 구조체;를 포함하는 것인 광-디지털 PCR 챔버를 제공한다.
또한, 본 발명은 투명 기판, 상기 투명 기판 상에 형성된 금속박막층 및 상기 금속박막층 상에 형성된 차광층을 포함하는 적층체를 포함하는 것인 광-디지털 PCR 기기를 제공한다.
본 발명의 광-디지털 PCR 챔버를 이용하는 경우에, 광에 의해 금속박막층에서 급속하게 발생되는 열로 PCR 반응을 진행시키기 때문에(광 에너지 기반 PCR) 종래에 비해 온도 변화를 보다 신속하게 조절할 수 있어서 기존의 PCR 반응보다 시간을 훨씬 단축시킬 수 있는 효과가 있다. 그리고 상기 금속박막층을 마이크로 패턴화하면, 온도 차이에 의한 와류 현상이 유발되어 위와 같은 온도 조절을 더욱 신속하게 수행할 수 있고. 이에 따라서 PCR 반응 시간을 더욱 단축시킬 수 있다.
아울러, 광 에너지 기반의 PCR을 적용하기 위해 형성된 금속박막층 위에 차광층을 도입하여 금속박막층에 조사된 광이 미세유로 구조체에까지 도달하지 못하게 함으로써, 광-디지털 PCR 과정에서 이용되는 PCR 형광 물질의 퀀칭(quenching) 현상에 따른 광-디지털 PCR의 성능 감소를 방지할 수 있는 효과가 있다. 따라서, 위와 같이 광 에너지 기반의 PCR을 적용하더라도 PCR 형광 물질이 퀀칭되지 않기 때문에, 종래의 디지털 PCR에 비해 훨씬 적은 양의 시료로도 신속하고 민감한 정량 분석이 가능하다.
도 1은 본 발명의 광-디지털 PCR 챔버에 포함되는 유리 기판/금속박막층/미세유로 구조체를 포함하는 적층체를 나타낸 도시이다.
도 2는 본 발명의 광-디지털 PCR 챔버에 포함되는 미세유로 구조체를 나타낸 도시이다.
도 3은 실험예 1에 따라 실시예 1의 광-디지털 PCR 챔버를 이용한 광-디지털 PCR 반응에 소요되는 시간을 나타낸 도시이다
도 4는 실험예 1에 따라 비교예 3의 광-디지털 PCR 챔버를 이용한 광-디지털 PCR 반응에 소요되는 시간을 나타낸 도시이다.
도 5는 실험예 2에 따라 실시예 2의 광-디지털 PCR 챔버를 이용한 광-디지털 PCR 반응에 소요되는 시간을 나타낸 도시이다.
도 6은 실험예 2에 따라 실시예 4의 광-디지털 PCR 챔버를 이용한 광-디지털 PCR 반응에 소요되는 시간을 나타낸 도시이다.
도 7은 실험예 3에 따라 마이크로 패턴화된 금박막의 댑실/카벤의 표면 처리의 개략도 및 접촉각 분석 결과를 나타낸 도시이다.
도 8은 실험예 3에 따라 마이크로 패턴화된 금박막의 댑실/카벤의 표면 처리 광전자 분광법 분석 결과를 나타낸 도시이다.
도 9는 실험예 4-1에 따라 광-디지털 PCR 반응 후 형광 평가를 실시한 결과를 나타낸 도시이다.
도 10은 실험예 4-2에 따라 광-디지털 PCR 반응 후 형광 평가를 실시한 결과를 나타낸 도시이다.
도 11은 실험예 5에 따라 실시예 4의 광-디지털 PCR 반응 후 형광 평가를 실시한 결과를 나타낸 도시이다.
도 12는 실험예 6-1에 따라 광-디지털 PCR 반응 후 PCR 형광 물질의 퀀칭 현상 방지 효과를 평가한 결과를 나타낸 도시이다.
도 13은 실험예 6-2에 따라 광-디지털 PCR 반응 후 PCR 형광 물질의 퀀칭 현상 방지 효과를 평가한 결과를 나타낸 도시이다.
도 14는 본 발명의 마이크로 패턴화된 금 박막의 표면 사진을 나타낸 도시이다.
도 15는 본 발명의 마이크로 패턴화된 금 박막 표면에서 열 전달에 따른 와류 현상을 나타낸 도시이다.
도 16은 본 발명의 마이크로 패턴화된 금 박막 표면에서의 온도 분포를 나타낸 도시이다.
이하, 본 발명을 상세히 설명한다.
PCR(Polymerase Chain Reaction)은 검출 대상 유전자(DNA 또는 RNA)의 특정영역을 시험관 내에 대량으로 증폭(amplification)하는 기술로서, 그 첫 번째 단계는 DNA(또는 RNA)를 변성(Denaturation)시키는 단계이다. 두 가닥의 DNA는 가열함으로써 분리시킬 수 있고, 분리된 각각의 DNA는 주형(Template)으로서 역할을 하게 된다. 변성 온도는 일반적으로 90℃ 내지 96℃이나, DNA 내에 있는 염기 G+C의 양과 DNA의 길이에 따라 달라진다. PCR의 두 번째 단계는 결합(Annealing)하는 단계이다. 이 단계에서는 2 종류의 프라이머(Primer)를 각각 상보적인 주형 DNA에 결합시킨다. 결합 온도는 반응의 정확성을 결정하는 중요한 요소인데, 만약 온도를 너무 높게 하면 프라이머가 주형 DNA에 너무 약하게 결합되어서 증폭된 DNA의 산물이 매우 적어진다. 만약 온도를 너무 낮게 하면 프라이머가 비특이적으로 결합하기 때문에 원하지 않는 DNA가 증폭될 수 있다. 일반적인 결합 온도는 50℃ 내지 65℃이다. PCR의 세 번째 단계는 신장(Elongation) 단계이다. 이 단계에서는 열에 강한 DNA 중합효소(polymerase)가 주형 DNA에서 새로운 DNA를 만들게 된다. 이 때 신장 온도는 70℃ 내지 75℃이다. 위와 같이, PCR 반응은 일련의 세 단계가 있고, 위 세 단계를 1 사이클(cycle)로 하여 약 30 내지 40 사이클 정도 반복하여 PCR 반응이 수행된다.
또한, 디지털 PCR(dPCR)은 기존의 PCR에서 사용하는 프라이머와 PCR 형광 물질(염색 시약) 또는 효소 등의 시약을 채용한 형태로서, 기존 PCR에 비해 정확한 정량 분석과 검출 대상 핵산(DNA 또는 RNA)의 고감도 탐지가 가능하다. 기존의 PCR의 결과 분석 방식이 아날로그 방식인 점에 반해, 결과 신호가 "0" 또는 "1"의 값을 가지는 디지털 분석 방식인 디지털 PCR은 대용량 시료의 분석, 한번에 다양한 시료의 검사 그리고 다양한 종류의 검사 항목을 한번에 수행할 수 있는 장점이 있다. 디지털 PCR 기술은 DNA 시료를 표준 곡선이 필요 없는 단일 분자 계수법을 적용하여 절대 정량이 가능한 기술로서, 하나의 웰 당 하나의 액적(droplet)에 대한 PCR 반응으로 보다 정확한 절대 정량을 수행할 수 있는 장점이 있다. 따라서, 기존 PCR 또는 실시간 PCR(qPCR)에 비하여 10 내지 1,000 pico liter 정도의 샘플만을 로딩하더라도, PCR 반응이 진행되어, 검출 대상 시료의 유전자를 확인할 수 있다. 또한, 종래의 일반적인 PCR은 하나의 웰(샘플) 당 하나의 반응을 수행하는 반면에, 디지털 PCR은 하나의 샘플이 많은 수의 구획으로 분리되어, 각각의 구획 내에 포함된 시료 내에서 단일 반응을 수행함으로써, 다양한 종류의 핵산(유전자)을 분석/확인할 수 있는 이점이 있다. 또한, 종래의 일반적인 PCR의 경우 그 결과를 반드시 아가로즈겔(agarose gel)에 전개한 후 형광 이미징으로 관찰해야 하고 정량 분석 자체가 불가능하지만, 디지털 PCR의 경우에는 PCR 분석 결과를 형광 분석 프로그램을 통해 곧바로 확인이 가능하고, 나아가 정량 분석이 가능한 장점이 있다.
한편, 광 PCR(photonic PCR)은 금속박막층 표면의 광자(photon), 전자(electron), 포논(phonon)의 상호작용에 의한 플라즈몬 광열 변환을 이용한 PCR이다. 구체적으로, 여기된(excited) 에너지원으로부터 광자가 금속박막층의 표면에 도달하면, 광 흡수가 일어나고, 표면 근처에서 전자를 더 높은 상태로 여기하여 고온의 전자를 형성하게 된다. 이러한 고온의 전자가 금속박막층 전체에 빠르게 확산되어 균일하게 분포됨에 따라, 고온의 금속 표면으로 인하여 주변 용액의 가열이 가능하다. 또한 고온의 전자는 격자 포논과의 에너지 교환에 의해 다시 냉각될 수 있다. 위와 같이 플라즈몬 여기된 금속박막층은 최대 500℃까지 승온하고, 금속박막층 주변의 PCR 시료 용액을 150℃ 이상까지 빠른 시간 내에 가열할 수 있어서, 매우 신속하게 PCR 반응을 수행할 수 있는 이점이 있다.
본 발명은 위와 같은 디지털 PCR의 장점과 광 PCR의 장점을 모두 구비한 것으로서, 광 PCR에서와 같은 플라즈몬 광열 변환에 기초하여 디지털 PCR를 수행할 수 있는 기술을 제공한다. 이를 본 발명에서는 광-디지털 PCR 기술이라고 지칭하도록 한다.
1. 광-디지털 PCR 챔버
본 발명은 광-디지털 PCR에 이용되는 챔버를 제공한다.
본 발명의 광-디지털 PCR 챔버는 투명 기판; 상기 투명 기판 상에 형성된 금속박막층; 상기 금속박막층 상에 형성된 차광층; 및 상기 차광층 상에 형성된 미세유로 구조체;를 포함한다.
상기 투명 기판은 상기 금속박막층이 형성된 반대 면의 하부에 위치한 하나 이상의 광원으로부터 조사된 광을 상기 금속박막층에 손실 없이 전달하고, 상기 금속박막층과의 부착력이 우수하도록 제조될 수 있다.
상기 광원은 가시광선 또는 적외선을 발생할 수 있는 것이면 이에 한정되지 않으며, 할로겐 램프, LED 램프, 형광등, 백열 램프, 아크 램프(arc source lamp), 적외선 램프, HMI 램프 등을 이용할 수 있고, 전력효율, 또는 경제적인 측면에서 LED 램프가 바람직하다.
상기 투명 기판은 조사된 광을 투과시킬 수 있도록 투명한 소재로 이루어질 수 있고, 광 또는 열에 의해 변형이 거의 일어나지 않는 소재로 이루어질 수 있다. 바람직하게는, 유리 기판, 플라스틱 기판(폴리에스테르 기판, 폴리아크릴 기판 등) 또는 실리콘 기판 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 투명 기판은 일정한 두께를 가지며, 상기 투명 기판의 두께는 0.1 ㎜ 내지 10 ㎜일 수 있고, 바람직하게는 0.3 ㎜ 내지 5 ㎜일 수 있고, 더 바람직하게는 0.3 mm 내지 1.5 mm일 수 있다. 상기 투명 기판의 두께가 상기 범위를 만족하는 경우에 광원에서 조사된 광 에너지에 의한 열 에너지가 효율적으로 전달되어 광-디지털 PCR 반응 사이클을 최적화할 수 있다.
상기 광-디지털 PCR 챔버는 광 에너지 조사에 의한 열 에너지를 이용하기 위하여 금속박막층을 이용할 수 있다. 상기 금속박막층에 구비된 금속박막은, 순간적으로 온도가 최고 500℃ 이상 상승할 수 있기 때문에, PCR 사이클의 온도 범위(약 50℃ 내지 95℃ 내의 온도 변화를 신속하게 수행할 수 있다.
특히 기존의 펠티어 기반의 1차 에너지인 전압을 가함으로써 발생되는 2차 열 에너지를 활용한 PCR은, 가열(max. 95℃/식힘(60℃의 반복 시간(초당 2~3℃이 상대적으로 길어지는데, 본 발명에서와 같이 광 에너지를 열 에너지로 전환하는 금속박막층을 이용하는 경우에는 온도 변화가 초당 4~5℃의 속도로 진행될 수 있기 때문에, PCR 사이클(가열/식힘의 반복) 40회 기준으로 약 10~11분의 매우 빠른 시간 내에 광-디지털 PCR 결과를 확인할 수 있다.
상기 금속박막층의 금속은 구리(Cu), 은(Ag), 금(Au), 팔라듐(Pd), 백금(Pt), 로듐(Rh) 및 이들의 조합(예를 들어, 두 금속나노입자(bimetallic nanoparticles))으로 이루어진 군에서 선택되는 어느 하나일 수 있다. 바람직하게는, 안정성이 우수하고, 광 흡수가 빠른 금(Au)일 수 있다.
상기 금속박막층을 상기 투명 기판의 일면에 코팅하는 방법은 코팅 또는 증착 기술이라면 이에 한정되지 않으며, 화학적 기상 증착(Chemical Vapor Deposition, CVD), 물리적 기상 증착(Physical Vapor Deposition, PVD), 열증발 진공 증착(Thermal evaporation deposition), 스퍼터링 증착(Sputtering deposition) 또는 원자층 증착(Atomic Layer Deposition, ALD) 등의 방법에 의하여 상기 투명 기판에 균일한 두께로 형성될 수 있다.
상기 금속박막층의 두께는 10 ㎚ 내지 200 ㎚일 수 있다. 상기 금속박막층의 두께가 상기 범위를 초과하는 경우에는 광 에너지에 의한 열 에너지 전환에 따른 온도 변화를 수행하는데 문제가 있다.
또한, 상기 금속박막층은 마이크로 패턴화할 수 있다. 상기 금속박막층을 마이크로 패턴화 하는 경우, 마이크로 패턴화된 부분은 온도가 급격히 상승하고, 패턴화되지 않은 패턴 사이의 온도는 상대적으로 낮아지게 되어, 수온 차에 따른 와류 현상이 발생하게 된다.
다시 말해서, 위와 같이 금속박막층을 마이크로 패턴화하는 경우, 광-디지털 PCR 반응 시 조사되는 광에 의해 열 에너지가 발생되는 부분은 금속박막 패턴에 한정되고, 금속박막 패턴 사이에서는 열 에너지가 발생되지 않기 때문에, 도 15 및 16과 같이 금속박막 패턴과 금속박막 패턴 사이의 온도 차이가 발생하여, 결국 와류 현상이 발생하게 된다. 이 때, 마이크로 패턴 간의 간격, 패턴의 크기 및 모양에 따라, 열 전달에 따른 와류 현상의 정도가 결정된다.
상기 마이크로 패턴은 원 또는 삼각형, 사각형, 오각형, 육각형 등의 다각형일 수 있다. 상기 마이크로 패턴의 크기는 평균 직경 또는 외접원의 반지름이 1 ㎛ 내지 20 ㎛일 수 있다. 예를 들어, 마이크로 패턴이 원인 경우 직경 또는 마이크로 패턴이 다각형인 경우 외접원의 반지름이 1 ㎛ 내지 20 ㎛일 수 있다. 상기 마이크로 패턴 간의 평균 간격은 3 ㎛ 내지 5 ㎛일 수 있다.
상기 금속박막층을 마이크로 패턴화하는 방법은, 패터닝(patterning) 기술이라면 이에 제한되지 않으며, 이중 노광 리소그라피(Double exposure lithography), 나노 임프린트 리소그라피(Nano Imprint Lithography, NIL), 전자빔 리소그라피(Electron Beam Lithography, EBL), 집속이온빔(Focused Ion Beam, FIB), 소프트 리소그라피(Soft Lithography, SL), 또는 블록공중합체의 자기조립 등의 방법에 의하여 상기 금속박막층을 마이크로 패턴화할 수 있다.
바람직하게는, 기존의 싱글 노광 리소그라피(single exposure lithography) 방법이 아닌 이중 노광 리소그라피(double exposure lithography) 방법에 의해 패턴화하는 것이 보다 균일한 간격을 가지는 패턴 형태로 선명한 마이크로 패턴화가 가능하다.
상기 차광층은 상기 금속박막층 상에 형성되어, 광-디지털 PCR 반응 시에 시료에 포함된 PCR 형광 물질의 퀀칭 현상을 방지한다.
특히, PCR 결과를 확인할 때 사용하는 PCR 형광 물질은 DNA 이중결합에 자연적으로 결합하게 되는데, 이들 PCR 형광 물질은 광 에너지 기반의 PCR에서는 PCR 반응 40 사이클 후에 첨가하여 결과를 확인할 때 사용하는 것이어서, PCR 형광 물질의 광에 의한 퀀칭 현상이 발생될 우려가 없으나, 디지털 PCR에서는 PCR 반응 초기에 PCR 형광 물질을 시료에 함께 포함함으로써, PCR 반응 40 사이클 이후에는 PCR 형광 물질에 퀀칭 현상이 발생할 수 있다.
상기 차광층은 본 발명의 광-디지털 PCR 챔버 내에서, 상기 금속박막층과 상기 미세유로 구조체 사이에 형성되어서, 광원으로부터 조사된 광이 미세유로 구조체에까지 도달하지 못하게 함으로써, 본 발명의 광-디지털 PCR의 성능 감소를 방지하는 효과를 가져오며, 결과적으로 금속박막층만 있는 경우보다 한계 검출 능력이 약 10 배 이상 증가하는 것을 확인할 수 있었으며, 이렇게 차광층을 적용함으로 인하여 매우 적은 극소량(약 2 pg/㎕)의 시료만으로도 10 배 이상의 성능을 향상시킬 수 있다.
상기 차광층은 폴리도파민막, 광 촉매 유기 화합물막 또는 댑실(Dabcyl) 유기 화합물막일 수 있다.
상기 광 촉매 유기 화합물은 Melem 및 g-C3N4 (graphitic carbon nitride) 중에서 선택되는 적어도 하나를 포함할 수 있다.
상기 차광층의 두께는 1 ㎚ 내지 1 ㎛일 수 있다. 상기 차광층의 두께가 1 ㎚ 미만인 경우 미세유로 구조체로 들어오는 광을 효과적으로 차단하지 못해서 PCR 형광 물질의 퀀칭이 발생할 수 있고, 1 ㎛ 초과인 경우 금속박막층에서 광 에너지로부터 전환된 열 에너지가 미세유로 구조체 내의 PCR 시료의 온도 변화를 저하시킬 수 있다.
상기 댑실이 카벤과 결합하여 형성된 댑실층의 두께는 10 nm 미만이며, 농도는 10 μM 내지 3 mM 일 수 있다. 상기 댑실의 농도가 상기 범위를 만족하는 경우에 미세유로 구조체로 들어오는 광을 효과적으로 차단하여 PCR 형광 물질의 퀀칭 현상을 방지할 수 있다.
상기 마이크로 패턴화된 금속 박막의 표면에 상기 댑실을 고정화시키기 위한 링커로서, N-헤테로사이클릭 카벤 화합물을 이용할 수 있다. 상기 N-헤테로사이클릭 카벤 화합물은 상기 마이크로 패턴화된 금속 박막의 표면에 금속-카벤 결합을 통해 도입될 수 있다.
특히, 고체상 PCR에 이용되는 티올(Thiol: -SH)기를 가진 링커는, 금속-황 결합의 고온(70℃ 이상)에서의 불안정성(금속-황 결합의 깨짐)때문에 PCR 반응 결과의 재현성이 떨어지는 문제가 있다. 이와 대조적으로, 상기 댑실을 마이크로 패턴화된 금속 박막에 고정화시키기 위한 링커로, N-헤테로사이클릭 카벤 화합물을 이용하는 경우에는, 광원에 의한 상기 마이크로 패턴화된 금속 박막의 표면 온도가 일시적으로 최고 500℃까지 상승하게 되더라도, 금속-카벤 결합으로 인하여 고온에서 안정성을 획득할 수 있어서, 광에너지를 이용한 PCR 장치에도 적용이 가능한 장점이 있다.
상기 N-헤테로사이클릭 카벤 화합물은 하기 화학식 1 또는 2로 표시될 수 있다.
[화학식 1]
Figure PCTKR2019015897-appb-I000001
[화학식 2]
Figure PCTKR2019015897-appb-I000002
상기 화학식 1 및 2에 있어서,
R1, R2, R5 및 R6은 서로 같거나 상이하고 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 30의 아릴기 또는 탄소수 2 내지 30의 헤테로아릴기이거나,
R4 및 R9는 서로 같거나 상이하고 각각 독립적으로 수소, 또는 탄소수 1 내지 20의 알킬기이고,
R3, R7, R8 및 R10은 서로 같거나 상이하고 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 시클로알킬기, 탄소수 6 내지 30의 아릴기, 또는 탄소수 2 내지 30의 헤테로아릴기이거나, R7 및 R8은 서로 결합하여 탄화수소 고리를 형성할 수 있다.
본 발명에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오쏘(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한"기로 해석될 수 있다.
상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수 1 내지 20일 수 있고, 바람직하게는 탄소수 1 내지 10일 수 있다. 더 바람직하게는 탄소수 1 내지 6일 수 있다. 상기 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸부틸, 1-에틸부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸프로필, 1,1-디메틸프로필, 이소헥실, 4-메틸헥실, 5-메틸헥실, 벤질 등이 있으나, 이에 한정되는 것은 아니다.
상기 시클로알킬기는 탄소수 3 내지 20일 수 있고, 바람직하게는 탄소수 3 내지 10일 수 있다. 상기 시클로알킬기의 구체적인 예로는 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.
상기 아릴기는 탄소수 6 내지 30일 수 있고, 바람직하게는 탄소수 6 내지 10일 수 있다. 상기 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 상기 단환식 아릴기의 구체적인 예로는 페닐기, 바이페닐기, 터페닐기 등이 있고, 상기 다환식 아릴기의 구체적인 예로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기, 트리페닐렌기 등이 있으나, 이에 한정되는 것은 아니다.
상기 헤테로아릴기는 이종원자로 N, O, P, S, Si 및 Se 중 선택되는 1개 이상을 포함하는 방향족 고리기로서, 탄소수는 2 내지 30일 수 있고, 바람직하게는 탄소수 2 내지 20일 수 있다. 상기 헤테로아릴기의 구체적인 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.
상기 탄화수소 고리는 지방족 고리 또는 방향족 고리일 수 있고, 상기 지방족 고리는 전술한 시클로알킬기를 포함할 수 있으며, 상기 방향족 고리는 전술한 아릴기 또는 헤테로아릴기를 포함할 수 있다.
또한, 상기 알킬기, 시클로알킬기, 아릴기, 헤테로아릴기 또는 탄화수소 고리는 다시 알킬기, 시클로알킬기, 아릴기 또는 헤테로아릴기로 치환 또는 비치환될 수 있다.
상기 마이크로 패턴화된 금속 박막의 표면에는 N-헤테로사이클릭 카벤 화합물의 일 말단이 결합될 수 있고, 이 때, 화학적 기상 증착(Chemical Vapor Deposition, CVD), 물리적 기상 증착(Physical Vapor Deposition, PVD), 열증발 진공 증착(Thermal evaporation deposition), 스퍼터링 증착(Sputtering deposition), 원자층 증착(Atomic Layer Deposition, ALD), 화학용액 증착(Chemical-bath deposition, CBD) 등의 방법에 의하여 금속-카벤 결합이 형성될 수 있다.
상기 N-헤테로사이클릭 카벤 화합물의 말단은 카르복실기(Carboxyl group)로 기능화된 것일 수 있다.
상기 N-헤테로사이클릭 카벤 화합물의 말단에 다양한 아민을 사용하여 기능기화(functionalization)하여 아민 층(amine layer)을 형성할 수 있다.
상기 아민은 디아민, 트리아민, 테트라아민, 펜타아민, 헥사아민 또는 이들의 혼합물을 포함할 수 있다. 구체적으로 상기 아민은 메틸렌디아민, 에틸렌디아민, 프로필렌디아민, 부틸렌디아민, 헥사메틸디아민, 아미노에틸에탄올아민, 페닐렌디아민, 디메틸렌트리아민, 디에틸렌트리아민, 트리에틸렌테트라아민(TETA), 테트라에틸렌펜타아민(TEPA), 펜타에틸렌헥사아민(PEHA), 헥사메틸렌디아민(HMDA) 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 아민은 폴리에틸렌이민일 수 있으며, 이 경우 중량평균분자량이 1,000 내지 1,000,000 g/mol일 수 있다.
상기 N-헤테로사이클릭 카벤 화합물의 아민층에는 댑실(Dabcyl)이 결합되어 고정화 될 수 있다.
상기 N-헤테로사이클릭 카벤 화합물의 타 말단이 상기 카르복실기로 기능화되는 경우, 도 7과 같이 아민으로 표면처리를 진행하여 기능기를 카르복실기에서 아민으로 치환할 수 있고, 이렇게 형성된 아민층에 댑실(Dabcyl)을 고정화 할 수 있다. 이에 따라, 일반적으로 댑실이 마이크로 패턴화된 금속 박막과 정전기적 인력에 의하여 결합되는 것과는 대비하여, 댑실이 마이크로 패턴화된 금속 박막에 더 단단한 화학적 결합으로 고정화될 수 있기 때문에, 이를 고온의 고체상의 PCR 반응에 이용하는 경우 우수한 안정성, 저장성 및 보관 용이성이 향상되는 효과가 있다.
상기 미세유로 구조체는 상기 차광층 상에 형성되어서, 본 발명의 광-디지털 PCR 반응의 효율을 극대화 할 수 있다.
특히, 상기 미세유로 구조체는 하나 이상의 미세유로 세트가 독립적으로 형성된 것일 수 있다. 상기 미세유로 세트는, 하나 이상의 시료 주입부와 하나 이상의 시료 추출부를 포함하며, 상기 시료 주입부와 상기 시료 추출부를 연결하는 복수 개의 미세유로가 형성될 수 있다. 또한, 상기 미세유로는 하나의 줄기유로와 상기 줄기유로에 연결되어 있는 복수 개의 가지유로를 포함할 수 있다. 이러한 형상을 가짐으로써, 광-디지털 PCR 반응이 일어나는 홀(웰)의 개수를 극대화 할 수 있고, 검출 대상 시료가 원활하게 분배되어, 미세유로 구조체 내에 존재하는 다수 개의 홀(웰) 내에서 PCR 반응을 수행할 수 있다.
또한, 하나 이상의 미세유로 세트가 독립적으로 형성됨으로써, 각각의 미세유로 세트에 포함된 하나 이상의 시료 주입부에 검출 대상 시료를 독립적으로 주입하여, 동시에 다중 광-디지털 PCR 반응을 수행할 수 있다.
상기 미세유로 구조체의 소재는 투명한 재질이거나, 열전도성이 있는 재질이면 이에 한정되지 않으며, 구체적으로 폴리디메틸실록산(PDMS) 등과 같이 성형이 가능한 고분자 물질일 수 있다.
상기 미세유로 구조체의 미세유로는 바닥이 둥근 미세유로 단면을 가지는 홈으로서, 상부에 투명 필름이 부착될 수도 있고, 상기 미세유로 단면의 크기는, 폭 5 ㎛ 내지 100 ㎛, 높이 5 ㎛ 내지 100 ㎛일 수 있다.
구체적으로 본 발명의 광-디지털 PCR 챔버를 이용한 광-디지털 PCR 반응의 일련의 과정 및 작용을 설명하면 아래와 같다.
상기 광-디지털 PCR 챔버는 광원에 인접(근접)하게 위치될 수 있다. 상기 광원으로부터 발생하는 광 에너지가 금속박막층에 도달할 수 있기만 한다면, 광원의 위치는 이에 한정되지 않는다. 다만, 본 발명의 일 실시형태에 있어서, 상기 광-디지털 PCR 챔버가 투명 기판/금속박막층/차광층/미세유로 구조체와 같은 적층구조인 경우에, 상기 광원은 상기 투명 기판의 하부(투명 기판의 금속박막층이 위치한 면의 반대 쪽)에 위치될 수 있다.
예를 들어, 상기 광원이 본 발명의 상기 광-디지털 PCR 챔버의 투명 기판의 하부에 배치되는 경우, 상기 투명 기판의 하부에 위치한 광원으로부터 나온 광 에너지는 투명 기판을 투과하여 금속박막층에 도달하게 된다. 상기 금속박막층에 도달된 광 에너지는, 금속박막층에서 플라즈몬 광열 변환이 일어남에 따라 열 에너지로 전환된다. 이 경우, 상기 금속박막층의 온도는 최대 500℃까지 승온하게 되고, 이러한 열 에너지는 상기 미세유로 구조체에 존재하는 PCR 시료의 온도 변화(약 50℃ 내지 95℃를 일으켜서, 변성(denaturation), 결합(annealing), 신장(elongation) 단계의 사이클을 반복적으로 수행할 수 있도록 하고, 그로 인해 DNA(또는 RNA)를 증폭시킬 수 있다. 이렇게 증폭된 DNA(또는 RNA)는 PCR 시료 내의 PCR 형광 물질의 형광을 검출하여 분석할 수 있다. 상기 금속박막층은 보다 효율적인 광열 변환을 위하여, 금 박막을 이용할 수 있고, 금 박막을 마이크로 패턴화함에 따라, 보다 신속한 온도 변화가 가능하여, 본 발명의 광-디지털 PCR 반응 시간을 단축시킬 수 있다.
상기 미세유로 구조체에는 디지털 PCR을 위하여, 평균 0.5개 내지 1개의 카피수로 희석되도록 준비된 검출 대상 유전자(주형), 프라이머, Taq polymerase, dNTP 및 PCR 형광 물질을 포함하는 액적(PCR 시료)을 미세유로 구조체에 존재하는 각각의 웰에 분배하고, 위와 같은 온도 변화에 따라 PCR을 수행한 후, 형광 신호가 나타나는 웰은 "1"의 값으로 카운트하고 형광 신호가 없는 웰은 "0"으로 카운트함으로써 절대 정량을 할 수 있다.
특히, 본 발명의 광-디지털 PCR 챔버는 디지털 PCR을 이용함에 따라, 상기 미세유로 구조체에 존재하는 PCR 시료에 PCR 형광 물질도 함께 포함이 되는데, PCR 형광 물질이 상기 광원으로부터의 광에 의해 퀀칭 현상이 발생하는 것을 방지하기 위해, 금속박막층과 미세유로 구조체 사이에 차광층을 포함함으로써, 상기 미세유로 구조체에 존재하는 PCR 형광 물질로의 광을 차단시킴에 따라, 매우 신속하고, 높은 민감도의 광-디지털 PCR 반응이 가능하다.
위와 같이, 본 발명의 광-디지털 PCR 챔버는, 광원이 구비된 PCR 장치에는 어디든지 구비하여, 광 PCR과 디지털 PCR을 동시에 이용함으로써, 매우 빠른 시간 내에 정확하고 정량적인 PCR 분석이 가능하다.
2. 광-디지털 PCR 기기
본 발명은 투명 기판, 상기 투명 기판 상에 형성된 금속박막층 및 상기 금속박막층 상에 형성된 차광층을 포함하는 적층체를 포함하는 것인 광-디지털 PCR 기기를 제공한다.
상기 광-디지털 PCR 기기에 포함된 상기 적층체를 구성하는 상기 투명 기판, 상기 금속박막층, 상기 차광층은, 전술한 광-디지털 PCR 챔버에서 정의한 내용이 동일하게 적용될 수 있다.
상기 적층체를 포함하는 광-디지털 PCR 기기는 광원을 더 포함할 수 있다. 상기 광원은 가시광선 또는 적외선을 발생할 수 있는 것이면 이에 한정되지 않으며, 할로겐 램프, LED 램프, 형광등, 백열 램프, 아크 램프(arc source lamp), 적외선 램프, HMI 램프 등을 이용할 수 있고, 전력효율, 또는 경제적인 측면에서 LED 램프가 바람직하다.
상기 광-디지털 PCR 기기 내에서 광원의 위치는, 상기 적층체의 금속박막층에 광 에너지가 도달될 수 있기만 한다면, 이에 한정되는 것은 아니나, 바람직하게는, 적층체(투명 기판/금속박막층/차광층)의 투명 기판의 하부(투명 기판의 금속박막층이 위치한 면의 반대 쪽)에 위치하여, 열 에너지 전달을 가장 효율적으로 할 수 있다.
구체적으로 본 발명의 광-디지털 PCR 기기를 이용한 광-디지털 PCR 반응의 일련의 과정 및 작용을 설명하면 아래와 같다.
우선, 디지털 PCR을 위하여, 검출 대상 유전자(주형), 프라이머, Taq polymerase, dNTP 및 PCR 형광 물질을 포함하는 액적(PCR 시료)을 준비하고, 이를 미세유로 구조체의 각각의 웰에 분배시킨다. 그리고 준비된 미세유로 구조체를, 상기 광-디지털 PCR 기기 내에 존재하는 상기 적층체 상에 배치한다.
그런 다음, 상기 광-디지털 PCR 기기의 광원으로부터 발생하는 광 에너지가 상기 적층체의 금속박막층에 도달되도록 하면, 상기 금속박막층에 도달된 광 에너지는, 금속박막층에서 플라즈몬 광열 변환이 일어남에 따라 열 에너지로 전환된다. 이 경우, 상기 금속박막층의 온도는 최대 500℃까지 승온하게 되고, 이러한 열 에너지는 상기 광-디지털 PCR 기기의 상기 적층체 상에 배치된 상기 미세유로 구조체에 존재하는 PCR 시료의 온도 변화(약 50℃ 내지 95℃를 일으켜서, 상기 미세유로 구조체의 각각의 웰에 분배된 시료에서 변성(denaturation), 결합(annealing), 신장(elongation) 단계의 사이클을 반복적으로 수행할 수 있도록 하고, 그로 인해 DNA(또는 RNA)를 증폭시킬 수 있다. 이 때, PCR을 수행한 후, 형광 신호가 나타나는 웰은 "1"의 값으로 카운트하고 형광 신호가 없는 웰은 "0"으로 카운트함으로써 절대 정량을 할 수 있다. 상기 금속박막층은 보다 효율적인 광열 변환을 위하여, 금 박막을 이용할 수 있고, 금 박막을 마이크로 패턴화함에 따라, 보다 신속한 온도 변화가 가능하여, 본 발명의 광-디지털 PCR 반응 시간을 단축시킬 수 있다.
특히, 본 발명의 광-디지털 PCR 기기는 디지털 PCR을 이용함에 따라, 상기 미세유로 구조체에 존재하는 PCR 시료에 PCR 형광 물질도 함께 포함이 되는데, PCR 형광 물질이 상기 광원으로부터의 광에 의해 퀀칭 현상이 발생하는 것을 방지하기 위해, 금속박막층과 미세유로 구조체 사이에 폴리도파민막, 광 촉매 유기 화합물막 또는 댑실 유기 화합물막의 차광층을 포함함으로써, 상기 미세유로 구조체에 존재하는 PCR 형광 물질로의 광을 차단시킴에 따라, 매우 극소량의 시약으로도, 신속하고, 높은 민감도의 광-디지털 PCR 반응 및 분석이 가능하다.
위와 같이, 본 발명의 광-디지털 PCR 기기에서 광-디지털 PCR 반응을 수행함에 있어서, 다양한 종류의 PCR 시약을 포함하는 미세유로 구조체를 이용할 수도 있고, 하나의 미세유로 구조체 내에, 다수의 웰을 포함함으로써 다양한 종류의 검출 대상 유전자, 프라이머, PCR 형광 물질을 포함하는 액적을 분배시켜, 한 번에 다중 PCR 반응에 의한 분석이 가능하게 할 수도 있으며, 광 PCR과 디지털 PCR을 동시에 이용함으로써, 매우 빠른 시간 내에 정확하고 정량적인 PCR 분석이 가능하다.
이하에서, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다.
그러나 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이에 의하여 한정되는 것은 아니다.
<제조예>
<제조예 1>
주형 DNA로 폐암 세포주인 A549의 cDNA를 이용하였고, dNTP, Taq polymerase, 아래와 같은 역방향 프라이머 및 정방향 프라이머, PCR 형광 물질로 SYBR Green이 포함된 액상의 PCR 반응물 A를 준비하였다.
<제조예 2>
주형 DNA로 폐암 세포주인 A549의 cDNA를 이용하였고, dNTP, Taq polymerase, 아래와 같은 역방향 프라이머 및 정방향 프라이머, PCR 형광 물질로 Fluorescein이 포함된 액상의 PCR 반응물 B를 준비하였다.
[액상의 PCR 반응물 내 프라이머]
- 정방향 프라이머: 5'-GACCCAATCATGAGCACTG-3'
- 역방향 프라이머: 5'-TGAAGCGACCCTCTGATG-3'
<제조예 3>
Figure PCTKR2019015897-appb-I000003
<실시예>
<실시예 1>
유리 기판(0.5 mm) 상에 마이크로 패턴화된 금 박막을 160 ㎚ 두께로 화학적 기상 증착 방법으로 형성하고, 금 박막 상에 폴리도파민막을 형성한 후, 이어서 그 위에 미세유로 구조체를 배치하여, 적층체를 형성한 후에, 제조예 1에 따라 제조된 PCR 반응물 A를 포함하는 광-디지털 PCR 챔버를 제조하였다.
<실시예 2>
실시예 1에 있어서, 차광층으로 폴리도파민막 대신에 광 촉매 1 유기 화합물(Melem)막을 형성한 것으로 제외하고는, 상기 실시예 1과 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<실시예 3>
실시예 1에 있어서, 차광층으로 폴리도파민막 대신에 광 촉매 2 유기 화합물(g-C3N4)막을 형성한 것으로 제외하고는, 상기 실시예 1과 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<실시예 4>
실시예 1에 있어서, 차광층으로 폴리도파민막 대신에 댑실 유기 화합물막을 형성한 것으로 제외하고는, 상기 실시예 1과 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<실시예 5>
실시예 1에 있어서, 제조예 1에 따라 제조된 PCR 반응물 A 대신에 제조예 2에 따라 제조된 PCR 반응물 B를 이용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<실시예 6>
실시예 2에 있어서, 제조예 1에 따라 제조된 PCR 반응물 A 대신에 제조예 2에 따라 제조된 PCR 반응물 B를 이용하는 것을 제외하고는, 상기 실시예 2와 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<실시예 7>
실시예 3에 있어서, 제조예 1에 따라 제조된 PCR 반응물 A 대신에 제조예 2에 따라 제조된 PCR 반응물 B를 이용하는 것을 제외하고는, 상기 실시예 3과 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<실시예 8>
실시예 4에 있어서, 제조예 1에 따라 제조된 PCR 반응물 A 대신에 제조예 2에 따라 제조된 PCR 반응물 B를 이용하는 것을 제외하고는, 상기 실시예 4와 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<비교예 1>
유리 기판(0.5 mm) 상에 마이크로 패턴화된 금 박막을 160 ㎚ 두께로 화학적 기상 증착 방법으로 형성하고, 금 박막 상에 미세유로 구조체를 배치하여, 적층체를 형성한 후에, 제조예 1에 따라 제조된 PCR 반응물 A를 포함하는 광-디지털 PCR 챔버를 제조하였다.
<비교예 2>
비교예 1에 있어서, 제조예 1에 따라 제조된 PCR 반응물 A 대신에 제조예 2에 따라 제조된 PCR 반응물 B를 이용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<비교예 3>
유리 기판(0.5 mm) 상에 마이크로 패턴화되지 않은 금 박막을 160 ㎚ 두께로 화학적 기상 증착 방법으로 형성하고, 금 박막 상에 폴리도파민막을 형성한 후, 이어서 그 위에 미세유로 구조체를 배치하여, 적층체를 형성한 후에, 제조예 1에 따라 제조된 PCR 반응물 A를 포함하는 광-디지털 PCR 챔버를 제조하였다.
<비교예 4>
유리 기판(0.5 mm) 상에 마이크로 패턴화된 금 박막을 160 ㎚ 두께로 화학적 기상 증착 방법으로 형성한 적층체를 형성한 후에, 제조예 1에 따라 제조된 PCR 반응물 A를 포함하는 광-디지털 PCR 챔버를 제조하였다.
<비교예 5>
비교예 4에 있어서, 제조예 1에 따라 제조된 PCR 반응물 A 대신에 제조예 2에 따라 제조된 PCR 반응물 B를 이용하는 것을 제외하고는, 상기 비교예 4와 동일한 방법으로 광-디지털 PCR 챔버를 제조하였다.
<실험예 1>
금 박막의 마이크로 패턴화 유무에 따른 광-디지털 PCR 반응 시간 평가
상기 실시예 1 및 비교예 3에서 제조된 광-디지털 PCR 챔버를 이용하여, 광-디지털 PCR 사이클을 40회 수행한 결과 소요되는 시간을 각각 도 3 및 도 4에 나타내었다.
상기 실시예 1, 도 3 및 도 4에 따르면, 금 박막을 마이크로 패턴화한 실시예 1의 경우에 40 사이클의 광-디지털 PCR 반응을 수행하는데 10분의 시간이 소요되는 반면, 금 박막을 마이크로 패턴화하지 않은 비교예 3의 경우에는 40 사이클의 광-디지털 PCR 반응을 수행하는데 12분의 시간이 소요되는 것을 확인할 수 있었다.
<실험예 2>
차광층에 따른 광-디지털 PCR 반응 시간 평가
상기 실시예 2 및 4에서 제조된 광-디지털 PCR 챔버를 이용하여, 광-디지털 PCR 사이클을 40회 수행 결과 소요되는 시간을 도 5 및 도 6에 나타내었다.
상기 실시예 2, 4, 도 5 및 도 6에 따르면, 마이크로 패턴화된 금박막에 광 촉매 1 유기 화합물(Melem)막을 형성한 실시예 2(도 5)의 경우에 40 사이클의 광-디지털 PCR 반응을 수행하는데 10분의 시간이 소요되며, 차광층으로 광 촉매 1 유기 화합물막 대신 댑실 유기 화합물막을 형성한 실시예 4(도 6)의 경우에 40 사이클의 광-디지털 PCR 반응을 수행하는데 9분의 시간이 소요되는 것을 확인할 수 있었다.
<실험예 3>
마이크로 패턴된 금박막의 카벤 및 댑실 표면처리의 개략도 및 표면 특성 변화 검토
상기 실시예 4 및 8의 댑실 고정화를 위한 단계별 개략도와 접촉각 및 광전자 분광법 측정을 실시하였으며, 표면처리에 따라 표면 성질의 변화를 도 7 및 도 8에 따라 확인할 수 있었다.
도 8에 따르면, 금 박막(Bare gold)에서 카벤 처리 후 N 1s narrow에서 피크가 생성됨에 따라 금-카벤 결합이 형성되었다는 것을 확인할 수 있었다. 또한, 댑실 고정화한 금 박막의 경우에 피크 강도가 증가하는 것은 표면 처리가 되었음을 의미한다.
<실험예 4>
1. 차광층에 따른 광-디지털 PCR 반응 형광 평가
상기 실시예 1, 2, 4 및 비교예 1에서 제조된 광-디지털 PCR 챔버를 이용하여, 광-디지털 PCR 사이클을 40회 수행한 후, 형광 현미경을 통해 측정한 형광 결과를 도 9에 나타내었다.
2. 차광층에 따른 광-디지털 PCR 반응 형광 평가
상기 실시예 5, 6, 8 및 비교예 2에서 제조된 광-디지털 PCR 챔버를 이용하여, 광-디지털 PCR 사이클을 40회 수행한 후, 형광 현미경을 통해 측정한 형광 결과를 도 10에 나타내었다.
상기 실험예 2에 따르면, 폴리도파민막을 차광층으로 이용한 실시예 1 및 5, 광 촉매 1 유기 화합물(Melem)막을 차광층으로 이용한 실시예 2 및 6, 댑실 유기 화합물막을 차광층으로 이용한 실시예 4 및 8의 경우에는 40 사이클의 광-디지털 PCR 반응을 수행한 후에도, PCR 형광 물질의 퀀칭 현상을 방지하여 PCR 반응 결과를 보다 정확하고 정밀하게 검출해 낼 수 있음을 확인하였으나, 차광층을 이용하지 않은 비교예 1 및 2의 경우에는 PCR 형광 물질의 퀀칭 현상이 발생되는 것을 확인할 수 있었다.
<실험예 5>
차광층 댑실 유기 화합물 농도에 따른 PCR 형광 물질(SYBR Green)에 대한 광-디지털 PCR 반응 후 퀀칭 방지 효과 평가
실시예 4에 대하여 댑실 유기 화합물의 농도를 0 mM, 0.3 mM, 0.5 mM, 1 mM, 3 mM로 변동하면서 광-디지털 PCR 사이클을 40회 수행한 후에, 시료 내에 포함된 PCR 형광 물질의 형광 강도를 측정한 결과를 도 11에 나타내었다.
상기 실험에 5 및 도 11에 따르면, 댑실의 농도가 증가함에 따라 퀀칭 현상을 방지하는 효과가 향상됨을 알 수 있다.
<실험예 6>
1. PCR 형광 물질(SYBR Green)에 대한 광-디지털 PCR 반응 후 퀀칭 방지 효과 평가
실시예 1, 2, 3, 4 및 비교예 4에 대하여, 광-디지털 PCR 사이클을 40회 수행한 후에, 시료 내에 포함된 PCR 형광 물질의 형광 강도를 측정한 결과를 도 12에 나타내었다. (유리 기판을 대조군으로 평가하였다.)
2. PCR 형광 물질(Fluorescein)에 대한 광-디지털 PCR 반응의 퀀칭 방지 효과 평가
실시예 5, 6, 7, 8및 비교예 5에 대하여, 광-디지털 PCR 사이클을 40회 수행한 후에, 시료 내에 포함된 PCR 형광 물질의 형광 강도를 측정한 결과를 도 13에 나타내었다. (유리 기판을 대조군으로 평가하였다.)
상기 실험예 6, 도 12 및 도 13에 따르면, 폴리도파민막, 광 촉매 1 유기 화합물(Melem)막, 광 촉매 2 유기 화합물(g-C3N4)막 또는 댑실 유기 화합물막을 차광층으로 이용한 실시예 1 내지 8의 경우에는, 광-디지털 PCR 반응(40 사이클) 후에도 PCR 형광 물질의 퀀칭 현상을 방지하는 효과가 뛰어난 것을 확인할 수 있었다.
이상에서 본 발명은 기재된 실시예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 청구범위에 속함은 당연한 것이다.

Claims (11)

  1. 투명 기판;
    상기 투명 기판 상에 형성된 금속박막층;
    상기 금속박막층 상에 형성된 차광층; 및
    상기 차광층 상에 형성된 미세유로 구조체;
    를 포함하는 것인 광-디지털 PCR 챔버.
  2. 청구항 1에 있어서, 상기 금속박막층은 금 박막층인 것인 광-디지털 PCR 챔버.
  3. 청구항 1에 있어서, 상기 금속박막층은 마이크로 패턴화된 것인 광-디지털 PCR 챔버.
  4. 청구항 1에 있어서, 상기 차광층은 폴리도파민막, 광 촉매 유기 화합물막 및 댑실 유기 화합물막 중에서 선택되는 적어도 하나를 포함하는 것인 광-디지털 PCR 챔버.
  5. 청구항 1에 있어서, 상기 미세유로 구조체는 하나 이상의 미세유로 세트가 독립적으로 형성된 것인 광-디지털 PCR 챔버.
  6. 청구항 5에 있어서, 상기 미세유로 세트는, 하나 이상의 시료 주입부와 하나 이상의 시료 추출부를 포함하며, 상기 시료 주입부와 상기 시료 추출부를 연결하는 복수 개의 미세유로를 포함하는 것인 광-디지털 PCR 챔버.
  7. 투명 기판, 상기 투명 기판 상에 형성된 금속박막층 및 상기 금속박막층 상에 형성된 차광층을 포함하는 적층체를 포함하는 것인 광-디지털 PCR 기기.
  8. 청구항 7에 있어서, 상기 금속박막층은 금 박막층인 것인 광-디지털 PCR 기기.
  9. 청구항 7에 있어서, 상기 금속박막층은 마이크로 패턴화된 것인 광-디지털 PCR 기기.
  10. 청구항 7에 있어서, 상기 차광층은 폴리도파민막, 광 촉매 유기 화합물막 및 댑실 유기 화합물막 중에서 선택되는 적어도 하나를 포함하는 것인 광-디지털 PCR 기기.
  11. 청구항 7에 있어서, 상기 적층체의 투명 기판의 하부에 광원이 배치되는 것인 광-디지털 PCR 기기.
PCT/KR2019/015897 2018-11-19 2019-11-19 광-디지털 pcr 챔버 및 이를 이용하는 광-디지털 pcr 기기 WO2020106045A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980074688.9A CN113015579B (zh) 2018-11-19 2019-11-19 光数字pcr腔室和使用其的光数字pcr装置
US17/291,180 US20220062888A1 (en) 2018-11-19 2019-11-19 Light-digital pcr chamber and light-digital pcr device using same
JP2021527238A JP7158079B2 (ja) 2018-11-19 2019-11-19 光‐デジタルpcrチャンバおよびこれを用いる光‐デジタルpcr機器
EP19886397.9A EP3885047A4 (en) 2018-11-19 2019-11-19 PHOTO-DIGITAL LIGHT PCR CHAMBER AND PHOTO-DIGITAL LIGHT PCR DEVICE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0142944 2018-11-19
KR20180142944 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020106045A1 true WO2020106045A1 (ko) 2020-05-28

Family

ID=70678586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015897 WO2020106045A1 (ko) 2018-11-19 2019-11-19 광-디지털 pcr 챔버 및 이를 이용하는 광-디지털 pcr 기기

Country Status (6)

Country Link
US (1) US20220062888A1 (ko)
EP (1) EP3885047A4 (ko)
JP (1) JP7158079B2 (ko)
KR (1) KR102111024B1 (ko)
CN (1) CN113015579B (ko)
WO (1) WO2020106045A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102510536B1 (ko) * 2020-09-18 2023-03-15 광주과학기술원 증폭/검출 키트, 이를 이용한 광열 pcr 증폭 방법 및 미생물 검출 방법
KR102668654B1 (ko) * 2020-10-19 2024-05-24 한국과학기술원 박막 미세유체칩, 이를 포함하는 중합효소연쇄반응 장치 및 중합효소연쇄반응 장치를 이용한 중합효소연쇄반응 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090021957A (ko) 2007-08-29 2009-03-04 한양대학교 산학협력단 마이크로 중합효소 연쇄반응용 칩 및 이의 제조방법
KR20100006842A (ko) * 2008-07-10 2010-01-22 한국과학기술원 금속―단백질 격자패턴 바이오칩 및 그 제조방법
JP4502167B2 (ja) * 2001-07-06 2010-07-14 大日本印刷株式会社 マイクロアレイチップ
JP2014020920A (ja) * 2012-07-18 2014-02-03 Canon Inc 発光検出用流路デバイス
US20150352539A1 (en) * 2012-12-21 2015-12-10 Riken g-C3N4 FILM PRODUCTION METHOD, AND USE OF SAID FILM
WO2017127570A1 (en) * 2016-01-20 2017-07-27 Triv Tech, Llc Point-of-care nucleic acid amplification and detection
KR20170106995A (ko) 2015-01-16 2017-09-22 더 리전트 오브 더 유니버시티 오브 캘리포니아 핵산 증폭용 led 구동 플라즈몬 가열 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538287A (ja) * 2002-08-15 2005-12-15 エムイーエムエスフロー・アンパルトセルスカブ マイクロ液体処理装置とその使用方法
CN100439515C (zh) 2003-03-03 2008-12-03 清华大学 一种核酸分析芯片实验室系统与应用
WO2007141034A1 (en) * 2006-06-08 2007-12-13 Epigenomics Ag Carry-over protection in enzyme-based dna amplification systems targeting methylation analysis
CN104830160B (zh) 2015-04-17 2017-08-25 北京欣奕华科技有限公司 一种黑矩阵用改性黑色颜料液及其制备方法
CN107921399B (zh) * 2015-07-30 2021-07-27 加利福尼亚大学董事会 光腔pcr

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502167B2 (ja) * 2001-07-06 2010-07-14 大日本印刷株式会社 マイクロアレイチップ
KR20090021957A (ko) 2007-08-29 2009-03-04 한양대학교 산학협력단 마이크로 중합효소 연쇄반응용 칩 및 이의 제조방법
KR20100006842A (ko) * 2008-07-10 2010-01-22 한국과학기술원 금속―단백질 격자패턴 바이오칩 및 그 제조방법
JP2014020920A (ja) * 2012-07-18 2014-02-03 Canon Inc 発光検出用流路デバイス
US20150352539A1 (en) * 2012-12-21 2015-12-10 Riken g-C3N4 FILM PRODUCTION METHOD, AND USE OF SAID FILM
KR20170106995A (ko) 2015-01-16 2017-09-22 더 리전트 오브 더 유니버시티 오브 캘리포니아 핵산 증폭용 led 구동 플라즈몬 가열 장치
WO2017127570A1 (en) * 2016-01-20 2017-07-27 Triv Tech, Llc Point-of-care nucleic acid amplification and detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3885047A4

Also Published As

Publication number Publication date
KR102111024B1 (ko) 2020-05-15
US20220062888A1 (en) 2022-03-03
CN113015579A (zh) 2021-06-22
JP7158079B2 (ja) 2022-10-21
CN113015579B (zh) 2023-02-28
EP3885047A4 (en) 2022-01-19
JP2022507752A (ja) 2022-01-18
EP3885047A1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
WO2020106045A1 (ko) 광-디지털 pcr 챔버 및 이를 이용하는 광-디지털 pcr 기기
EP1984731B1 (en) Apparatus for regulating the temperature of a biological and/or chemical sample and method of using the same
WO2016068663A1 (ko) 표적 유전자 검출용 미세 유동 장치, 이의 제조방법 및 이를 이용한 검출 방법
WO2020209638A1 (ko) 중합효소 연쇄반응 시스템
WO2014148877A1 (ko) 식중독 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
WO2016013770A1 (ko) 멀티플렉스 pcr 칩 및 이를 포함하는 멀티플렉스 pcr 장치
WO2015102379A1 (ko) 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법
KR101244125B1 (ko) 아민 결합 기를 갖는 가교결합된 중합체
WO2018208133A1 (ko) 고순도 뉴클레오타이드 획득 방법 및 장치
WO2020013668A1 (ko) 핵산 증폭용 기판 및 이의 제조방법
WO2012060596A2 (en) Apparatus and method for detecting multiplex target nucleic acids in real time
WO2019182407A1 (ko) 고속 중합효소 연쇄반응 분석 플레이트
WO2023163276A1 (ko) 히팅 시스템을 포함하는 랩온페이퍼 플랫폼
WO2020013664A1 (ko) 핵산 증폭용 기판 및 이의 제조방법
WO2014104771A1 (ko) 식중독 검출용 프라이머 세트를 포함하는 마이크로 pcr 칩, 이를 포함하는 실시간 pcr 장치, 및 이를 이용한 식중독 검출 방법
WO2014104770A1 (ko) 식중독 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
WO2023080710A1 (ko) 나노입자를 이용한 표적물질의 증폭 또는 검출 방법
WO2018199465A1 (ko) 재귀반사 현상을 이용한 분자 비콘 기반의 광학 유전자 바이오센서 및 이를 이용한 핵산 분자의 정량 분석 방법
WO2023054987A1 (ko) Tir 렌즈를 포함하는 타깃 분석물 검출장치
WO2021246745A1 (en) Optical signal detection device for detecting multiple optical signals for multiple target analytes from sample
JP2001235474A (ja) 生化学反応検出チップ用基板およびその製造方法、生化学反応検出チップ、生化学反応を行うための装置および方法、ならびに記録媒体
JP4309729B2 (ja) 核酸センサ用基板
WO2013065881A1 (en) Apparatus and method for determining sequences of nucleic acids using atomic force microscope
WO2014062033A1 (ko) 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
WO2022225347A1 (ko) 바이러스 수용체를 포함하는 그래핀 채널 부재, 이를 포함하는 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019886397

Country of ref document: EP

Effective date: 20210621