WO2020105714A1 - 光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法 - Google Patents

光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Info

Publication number
WO2020105714A1
WO2020105714A1 PCT/JP2019/045682 JP2019045682W WO2020105714A1 WO 2020105714 A1 WO2020105714 A1 WO 2020105714A1 JP 2019045682 W JP2019045682 W JP 2019045682W WO 2020105714 A1 WO2020105714 A1 WO 2020105714A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
isotope
carbon
carbon dioxide
Prior art date
Application number
PCT/JP2019/045682
Other languages
English (en)
French (fr)
Inventor
吉田 賢二
真一 二宮
英生 富田
哲夫 井口
西澤 典彦
フォルカ ゾンネンシャイン
稜平 寺林
Original Assignee
積水メディカル株式会社
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社, 国立大学法人名古屋大学 filed Critical 積水メディカル株式会社
Priority to US17/293,668 priority Critical patent/US20220011221A1/en
Priority to CN201980074973.0A priority patent/CN113015899A/zh
Priority to JP2020557637A priority patent/JP7440869B2/ja
Publication of WO2020105714A1 publication Critical patent/WO2020105714A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/067Electro-optic, magneto-optic, acousto-optic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices

Definitions

  • the present invention relates to an optical resonator capable of suppressing a parasitic etalon effect, a carbon isotope analyzer using the same, and a carbon isotope analysis method. More specifically, the present invention relates to an optical resonator useful for measuring radiocarbon isotope 14 C and the like, a radiocarbon isotope analyzer using the same, and a radiocarbon isotope analysis method.
  • Carbon isotopes have been widely applied in a wide range of humanities such as environmental dynamics evaluation based on carbon cycle and empirical study of history by dating. Carbon isotopes differ slightly by region and environment, but stable isotopes 12 C and 13 C are 98.89% and 1.11%, respectively, and radioactive isotope 14 C is 1 ⁇ 10 ⁇ 10 % natural. Exists in. Since the isotopes have the same chemical behavior with only the difference in weight, the concentration of isotopes with a low abundance ratio can be increased by an artificial operation, and accurate measurement can be performed to enable accurate measurement of various reaction processes. Observation becomes possible.
  • radiocarbon isotope 14 C to a living body as a labeled compound for analysis in order to evaluate pharmacokinetics, and, for example, in Phase I and Phase IIa, it is actually used. Has been analyzed.
  • a labeled compound having a dose (hereinafter, also referred to as “microdose”) that does not exceed the dose (pharmacologic effect level) estimated to exert a pharmacological action in humans
  • an extremely small amount of radiocarbon isotope 14 C (hereinafter simply referred to as “ 14 (C) is administered to the human body and analyzed, which provides insight into drug efficacy and toxicity due to pharmacokinetic problems, and is therefore expected to significantly shorten the development lead time in the drug discovery process. Is expected.
  • LSC liquid scintillation counting
  • AMS accelerator mass spectrometry
  • Non-Patent Document 1 I. Galli et al. Demonstrated 14 C analysis of natural isotope abundance level by Cavity Ring-Down Spectroscopy (hereinafter also referred to as “CRDS”), and The possibility was noticed.
  • CRDS Cavity Ring-Down Spectroscopy
  • the 14 C analysis by CRDS was proved, the 4.5 ⁇ m band laser light generator used had an extremely complicated structure, so a simpler and more convenient 14 C analyzer and analysis method were required. Was there. Therefore, the present inventors have completed a compact and easy-to-use carbon isotope analysis device by independently developing an optical comb light source that generates an optical comb from one light source (see Patent Document 2).
  • An object of the present invention is to provide an optical resonator capable of suppressing the parasitic etalon effect, a carbon isotope analysis device and a carbon isotope analysis method using the same.
  • the present invention relates to the following contents.
  • An optical resonator having a pair of mirrors, a photodetector for detecting the intensity of transmitted light from the optical resonator, and a first interference removing means for adjusting the relative positional relationship between the mirrors. Equipped spectroscopic device.
  • the first interference removing means can mount one of the mirrors for preventing the interference of the light on the optical axis of the irradiation light irradiated into the optical resonator, and the three-dimensional position of the mirror.
  • the spectroscopic device according to [1] which is an adjustable alignment mechanism.
  • the alignment mechanism uses the X-axis as the optical axis of the irradiation light irradiated into the optical resonator, (I) Can move in each direction of X-axis, Y-axis, Z-axis, (Ii) Can rotate about 360 degrees around each of the X, Y, and Z axes,
  • the spectroscopic device according to [2] which satisfies at least one of the above.
  • a carbon dioxide isotope generator including a combustion unit that generates a carbon dioxide isotope-containing gas from a carbon isotope, a carbon dioxide isotope purification unit, and [1] to [4].
  • Carbon isotope analysis device including the spectroscopic device and the light generation device.
  • the light generating device includes one light source, a first optical fiber for transmitting the first light from the light source, a branch point of the first optical fiber, a branch point of the first optical fiber, and a merge point of the first optical fiber.
  • a second optical fiber for generating a second light having a long wavelength a first amplifier arranged between a branch point and a junction point of the first optical fiber, and a first amplifier arranged between a branch point and a junction point of the second optical fiber.
  • a second amplifier having a different band and a plurality of light beams having different frequencies are passed, so that the light having the absorption wavelength of the carbon dioxide isotope has a wavelength of 4.5 ⁇ m to 4.8 ⁇ m in the mid-infrared region due to the difference in frequency.
  • the carbon isotope analysis device which includes a nonlinear optical crystal that generates an optical comb.
  • the light generator further includes a wavelength filter that divides the light from the light source into a plurality of spectral components, and a delay line that includes a spectroscopic unit that adjusts the time difference between each of the plurality of spectral components and focuses the nonlinear crystal. 5] or the carbon isotope analyzer according to [6]. [8] A step of generating a carbon dioxide isotope from a carbon isotope, a step of filling the carbon dioxide isotope in an optical resonator having a pair of mirrors, and an absorption wavelength for the carbon dioxide isotope in the optical resonator.
  • a carbon isotope analysis method comprising: a step of measuring the intensity of transmitted light obtained by irradiating and resonating with irradiation light; [9] The carbon isotope analysis method according to [8], wherein the radioactive carbon dioxide isotope 14 CO 2 is irradiated with irradiation light.
  • As irradiation light a plurality of lights are passed through a nonlinear optical crystal to generate an optical comb having an optical frequency in the mid-infrared region from the wavelength difference of 4.5 ⁇ m to 4.8 ⁇ m.
  • the carbon isotope analysis method according to any one of [10].
  • a resonator capable of suppressing a parasitic etalon effect and thereby reducing baseline noise, a carbon isotope analyzer and a carbon isotope analysis method using the resonator are provided.
  • FIG. 1 is a conceptual diagram of a first embodiment of a carbon isotope analyzer.
  • FIG. 2 is an assembly drawing of the alignment mechanism.
  • 3A, 3B, and 3C are diagrams showing the movement of the alignment mechanism.
  • 4A and 4B are diagrams showing the principle of a method of removing the etalon effect using an alignment mechanism.
  • FIG. 5A is a diagram showing long-period oscillation observed when using a conventional resonator, and FIG. 5B shows that long-period oscillation can be suppressed by performing measurement using the resonator of the present invention.
  • FIG. 6A and 6B are diagrams showing the principle of a high-speed scanning type cavity ring-down absorption spectroscopy using laser light.
  • FIG. 7 is a graph showing the temperature dependence of the absorption amount ⁇ of 13 CO 2 and 14 CO 2 in CRDS.
  • FIG. 8 is a conceptual diagram of a modification of the optical resonator.
  • FIG. 9 is a diagram showing absorption spectra of 14 CO 2 and a competitive gas in the 4.5 ⁇ m band.
  • FIG. 10 is a conceptual diagram of the second embodiment of the carbon isotope analyzer.
  • FIG. 11 is a diagram showing the relationship between the absorption wavelength and the absorption intensity of the analytical sample.
  • FIG. 12 is a diagram showing the principle of mid-infrared comb generation using one optical fiber.
  • FIG. 13A shows spectra measured with and without the sample gas (CO 2 ) filled in the gas cell.
  • FIG. 13A shows spectra measured with and without the sample gas (CO 2 ) filled in the gas cell.
  • FIG. 13B is a diagram showing a spectrum measured before filling the gas cell with the sample gas (CO 2 ) (before the subtraction process) and a spectrum after the subtraction process.
  • 14A and 14B are conceptual diagrams of the etalon effect.
  • FIG. 15A is a diagram showing a spectrum obtained by measuring a gas containing 14 CO 2
  • FIG. 15B is a diagram showing a spectrum obtained by subtracting the measured spectrum from the calculated spectrum to extract an oscillation component. ..
  • carbon isotope means stable carbon isotopes 12 C, 13 C and radioactive carbon isotopes 14 C unless otherwise specified. Further, when simply expressed by the element symbol “C”, it means a carbon isotope mixture in a natural abundance ratio. Stable isotopes of oxygen exist in 16 O, 17 O and 18 O, but when represented by the element symbol “O”, it means an oxygen isotope mixture in a natural abundance ratio. “Carbon dioxide isotope” means 12 CO 2 , 13 CO 2 and 14 CO 2 , unless otherwise specified. Further, when simply expressed as “CO 2 ”, it means a carbon dioxide molecule composed of natural abundance ratios of carbon and oxygen isotopes.
  • biological sample means blood, plasma, serum, urine, feces, bile, saliva, other body fluids and secretory fluids, exhaled gas, oral gas, skin gas, other biological gases, and lungs.
  • Various organs such as heart, liver, kidney, brain, skin, and crushed materials thereof, and all samples that can be collected from a living body.
  • the origin of the biological sample includes all organisms including animals, plants and microorganisms, preferably mammals, and more preferably humans. Mammals include, but are not limited to, humans, monkeys, mice, rats, guinea pigs, rabbits, sheep, goats, horses, cows, pigs, dogs, cats, and the like.
  • the present inventors have studied to reduce noise due to the parasitic etalon effect, as a result, in the optical resonator, by shifting the optical axis of the original light and the optical axis of the etalon, We have found that the drift of the baseline can be solved.
  • a new spectroscopic device and a carbon isotope analysis device including the new spectroscopic device have been completed.
  • a new spectroscopic device will be described through the description of the carbon isotope analysis device.
  • FIG. 1 is a conceptual diagram of a carbon isotope analyzer.
  • the carbon isotope analysis device 1 includes a carbon dioxide isotope generation device 40, a light generation device 20, a spectroscopic device 10, and an arithmetic device 30.
  • the radioactive isotope 14 C which is a carbon isotope, will be described as an example of the analysis target.
  • the light having the absorption wavelength of the carbon dioxide isotope 14 CO 2 generated from the radioactive isotope 14 C is the light in the 4.5 ⁇ m band.
  • the spectroscopic device 10A includes an optical resonator 11 and a photodetector 15 that detects the intensity of transmitted light from the optical resonator 11.
  • the optical resonator or optical cavity 11 is arranged such that a cylindrical main body in which the carbon dioxide isotope to be analyzed is enclosed and one end and the other end in the longitudinal direction inside the main body have concave surfaces facing each other.
  • a pair of high-reflectance mirrors 12a, 12b, a piezo element 13 arranged at the other end inside the main body for adjusting the distance between the mirrors 12a, 12b, and the relative positional relationship between the mirrors 12a, 12b.
  • the mirrors 12a and 12b are provided with alignment mechanisms (first and second interference removing means) 14a and 14b capable of three-dimensional position adjustment, and a cell 16 filled with a gas to be analyzed.
  • alignment mechanisms first and second interference removing means
  • two alignment mechanisms are arranged here, one may be provided as long as the relative positional relationship between the mirrors 12a and 12b can be adjusted.
  • the reflectance of the pair of mirrors 12a and 12b is preferably 99% or more, more preferably 99.99% or more.
  • the alignment mechanism 14 includes alignment bodies 141 and 142, a mirror mount 143 that is arranged in holes provided in the alignment bodies 141 and 142 and mounts the mirror 12, and a sliding base 145.
  • the sliding base 145, the piezo element 13, and the piezo element adapter 131 may be integrally formed with an adhesive or the like.
  • FIG. 3A by operating the alignment mechanism 14, the mirror 12 moves in the direction indicated by the arrow.
  • the mount bodies 141 and 142 are movable in the respective directions of the X axis, the Y axis, and the Z axis, and are rotatable about the X axis, the Y axis, and the Z axis by approximately 360 degrees. Therefore, the mount bodies 141 and 142 can be moved as shown by the arrow in FIG. 3B.
  • FIG. 3C is a view seen from the alignment body 142 side (back surface).
  • FIG. 14A when the conventional optical resonator 111 is used, the optical path of the light reflected by the back surfaces of the mirrors 12a and 12b, which are not high reflection surfaces, may coincide with the original optical axis of the optical resonator. ..
  • FIG. 14B shows that the optical axis of the light reflected by the highly reflective surface of the mirror 12a and the optical axis E of the light reflected by the rear surface of the mirror 12a coincide with the original optical axis C of the optical resonator. In such a case, the light reflected on the back surface reaches another optical component 101 or the like on the optical axis, and further reflection occurs between the surfaces.
  • FIG. 15A the spectrum measured by filling the cell with a gas containing 14 CO 2 contains components other than the absorption due to the components contained in the gas. From the experimental value obtained by the measurement, the absorption amount due to CO 2 , N 2 O, 14 CO 2, and H 2 O contained in the calculated gas was subtracted, and oscillation (apparent attenuation rate changes periodically)
  • FIG. 15B shows the extracted data. As described above, when a trace amount of 14 C is analyzed, the oscillation component may be as large as or larger than the amount of 14 CO 2 absorbed, which causes a large noise.
  • the present inventors actuate the alignment mechanism to move the position of the mirror 12a along the Y axis as shown in FIG. 4A, or as shown in FIG. 4B. It has been found that the optical axis E of the light generated by the etalon effect is displaced from the optical axis C by rotating around the Z axis. This completed an optical resonator that can suppress the etalon effect.
  • the laser light When laser light enters and is confined inside the optical resonator 11, the laser light repeats multiple reflections on the order of several thousand to 10,000 times while outputting light with an intensity corresponding to the reflectance of the mirror. Therefore, the effective optical path extends to several tens of km, so that a large absorption amount can be obtained even if the gas to be analyzed enclosed in the optical resonator is extremely small.
  • FIGS. 6A and 6B are diagrams showing the principle of high-speed scanning type cavity ring-down absorption spectroscopy (hereinafter also referred to as “CRDS”) using laser light.
  • CRDS high-speed scanning type cavity ring-down absorption spectroscopy
  • FIG. 6A when the mirror spacing satisfies the resonance condition, a high-intensity signal is transmitted from the optical resonator.
  • the piezo element 13 is operated to change the mirror spacing and the non-resonance condition is set, the signal cannot be detected due to the interference effect of light. That is, by rapidly changing the optical resonator length from the resonance to the non-resonance condition, an exponential decay signal [Ringdown signal] as shown in FIG. 6A can be observed.
  • a method of quickly blocking the input laser light with an optical switch can be exemplified.
  • the inside of the optical resonator is not filled with the absorbing material, the time-dependent ring-down signal transmitted becomes a curve as shown by the dotted line in FIG. 6B.
  • the optical resonator is filled with a light-absorbing substance, as shown by the solid line in FIG. 6B, the laser light is absorbed every time it reciprocates in the optical resonator, so that the light decay time is shortened.
  • the absolute concentration of the absorbing substance can be calculated by applying Beer-Lambert's law ii. ..
  • the concentration of the absorbing substance in the optical resonator can be measured by measuring the amount of change in the attenuation rate (ring-down rate) that is proportional to the concentration of the absorbing substance in the optical resonator.
  • the transmitted light leaking from the optical resonator can be detected by a photodetector, the 14 CO 2 concentration can be calculated using an arithmetic device, and then the 14 C concentration can be calculated from the 14 CO 2 concentration.
  • the distance between the mirrors 12a and 12b of the optical resonator 11, the radius of curvature of the mirrors 12a and 12b, and the length and width of the main body in the longitudinal direction are preferably changed according to the absorption wavelength of the carbon dioxide isotope to be analyzed.
  • An assumed resonator length is 1 mm to 10 m.
  • a long resonator length is effective for securing the optical path length, but a long resonator length increases the volume of the gas cell and the required sample amount, and
  • the vessel length is preferably between 10 cm and 60 cm.
  • the radius of curvature of the mirrors 12a and 12b is preferably the same as or longer than the resonator length.
  • the mirror interval can be adjusted by driving the piezo element 13, for example, on the order of several micrometers to several tens of micrometers. Fine adjustment by the piezo element 13 can be performed in order to create the optimum resonance condition.
  • a pair of concave mirrors has been illustrated and described as the pair of mirrors 12a and 12b, other combinations of concave mirrors and plane mirrors or combinations of plane mirrors may be used as long as a sufficient optical path can be obtained. It doesn't matter.
  • Sapphire glass, CaF 2 , or ZnSe can be used as the material forming the mirrors 12a and 12b.
  • the cell 16 filled with the gas to be analyzed preferably has a smaller volume.
  • the capacity of the cell 16 can be exemplified by 8 mL to 1000 mL.
  • the cell capacity can be appropriately selected according to the amount of 14 C source that can be used for measurement, and 80 mL to 120 mL of cells are suitable for a large amount of 14 C source that can be obtained such as urine.
  • 14 C sources such as tear fluid, 8 mL to 12 mL cells are preferred.
  • ⁇ 14 ( ⁇ , T, P) N (T, P, X 14 ) c
  • FIG. 7 is a diagram showing the temperature dependence of ⁇ due to absorption of 13 CO 2 and 14 CO 2 obtained by calculation. From FIG. 7, when 14 C / Total C is 10 ⁇ 10 , 10 ⁇ 11 , and 10 ⁇ 12 , the absorption by 13 CO 2 at room temperature of 300 K exceeds or is about the same as the absorption amount of 14 CO 2 , so cooling is performed. I knew I had to do it. On the other hand, if the variation ⁇ 0 to 10 1 s ⁇ 1 of the ring down rate, which is a noise component originating from the optical resonator, can be realized, it can be seen that the measurement of 14 C / Total C ratio of 10 ⁇ 11 can be realized.
  • FIG. 8 shows a conceptual diagram (partially cutaway view) of a specific mode of the optical resonator.
  • the optical resonator 51 has a cylindrical heat insulating chamber 58 as a vacuum device, a measurement gas cell 56 arranged in the heat insulating chamber 58, and both ends of the measurement gas cell 56.
  • a water cooling heat sink 54 having a cooling pipe 54a connected to a circulation cooler (not shown).
  • the carbon dioxide isotope generation device 40 includes a combustion unit that generates a gas containing a carbon dioxide isotope from a carbon isotope, and a carbon dioxide isotope purification unit.
  • the carbon dioxide isotope generation device 40 is not particularly limited as long as it can convert a carbon isotope into a carbon dioxide isotope, and various devices can be used.
  • the carbon dioxide isotope generator 40 preferably has a function of oxidizing a sample and converting carbon contained in the sample into carbon dioxide.
  • total organic carbon (hereinafter referred to as “TOC”) generator sample gas generator for gas chromatography, sample gas generator for combustion ion chromatography, elemental analyzer (EA), etc.
  • a carbon generator (G) 41 can be used.
  • FIG. 9 shows 14 CO 2 and 13 CO 2 competing gas under the conditions of 273 K, CO 2 partial pressure 20%, CO partial pressure 1.0 ⁇ 10 ⁇ 4 % and N 2 O partial pressure 3.0 ⁇ 10 ⁇ 8 %. 2 shows 4.5 ⁇ m band absorption spectra of 2 , CO, and N 2 O.
  • a gas containing carbon dioxide isotope 14 CO 2 (hereinafter, also referred to as “ 14 CO 2 ”) can be generated.
  • contaminant gases such as CO and N 2 O are also generated. Since CO and N 2 O each have an absorption spectrum in the 4.5 ⁇ m band as shown in FIG. 9, they compete with the absorption spectrum in the 4.5 ⁇ m band of 14 CO 2 . Therefore, it is preferable to remove CO and N 2 O in order to improve the analysis sensitivity.
  • a method of removing CO and N 2 O a method of capturing and separating 14 CO 2 can be mentioned as follows. Further, a method of removing / reducing CO and N 2 O with an oxidation catalyst or a platinum catalyst, and a combined use with the above-mentioned collection / separation method can be mentioned.
  • the carbon dioxide isotope generator is preferably provided with a combustion section and a carbon dioxide isotope purification section.
  • the combustion unit preferably includes a combustion pipe and a heating unit capable of heating the combustion pipe. It is preferable that the combustion tube is made of heat-resistant glass (quartz glass or the like) so that the sample can be housed therein, and the sample introduction port is formed in a part of the combustion tube.
  • the combustion tube may have a carrier gas inlet so that a carrier gas can be introduced into the combustion tube.
  • a sample inlet is formed at one end of the combustion tube by a member different from the combustion tube, and the sample inlet and carrier gas are introduced into the sample inlet. It may be configured to form a mouth.
  • the heating unit include an electric furnace such as a tubular electric furnace in which the combustion tube can be arranged and the combustion tube can be heated.
  • An example of the tubular electric furnace is ARF-30M (Asahi Rika Seisakusho).
  • the combustion pipe is provided with an oxidizing part and / or a reducing part filled with at least one kind of catalyst on the downstream side of the carrier gas flow path.
  • the oxidation part and / or the reduction part may be provided at one end of the combustion tube or may be provided as a separate member.
  • the catalyst to be filled in the oxidation part include copper oxide and silver / cobalt oxide mixture. In the oxidation part, it can be expected to oxidize H 2 and CO generated by combustion of the sample into H 2 O and CO 2 .
  • the catalyst filled in the reducing section include reduced copper and platinum catalysts. It can be expected that nitrogen oxide (NO x ) containing N 2 O is reduced to N 2 in the reducing section.
  • a thermal desorption column such as that used in gas chromatography (GC) of 14 CO 2 in the gas generated by combustion of a biological sample
  • GC gas chromatography
  • the influence of CO and N 2 O can be reduced or removed at the stage of detecting 14 CO 2 .
  • CO 2 gas is trapped Temporary containing 14 CO 2 in the GC column, since the 14 CO 2 concentration is expected, it is expected to improve the partial pressure of 14 CO 2.
  • the carbon dioxide isotope generation device 40b preferably includes a combustion unit and a carbon dioxide isotope purification unit.
  • the combustion section can be configured similarly to the above.
  • a 14 CO 2 adsorbent such as soda lime or calcium hydroxide can be used.
  • the problem of contaminant gas can be solved by isolating 14 CO 2 in the form of carbonate. Since it retains 14 CO 2 as a carbonate, it is possible to temporarily store the sample.
  • phosphoric acid can be used for re-release.
  • Contaminant gas can be removed by providing either or both of (i) and (ii).
  • (Iii) Concentration of 14 CO 2 (separation) 14 CO 2 generated by the combustion of the biological sample diffuses in the pipe. Therefore, the detection sensitivity (strength) may be improved by adsorbing 14 CO 2 on an adsorbent and concentrating it. Separation of 14 CO 2 from CO and N 2 O can also be expected by such concentration.
  • the light generator 20 is not particularly limited as long as it is a device that can generate light having a carbon dioxide isotope absorption wavelength, and various devices can be used.
  • a description will be given by taking as an example a light generating device that easily generates light in the 4.5 ⁇ m band, which is the absorption wavelength of the radioactive carbon dioxide isotope 14 CO 2 , and has a compact device size.
  • the light generating device 20 has one light source, a first optical fiber that transmits light from the light source, and a first optical fiber that branches from a branch point of the first optical fiber and merges at a merge point on the downstream side of the first optical fiber.
  • a second optical fiber for transmitting light of a long wavelength, a first amplifier arranged between a branch point and a junction point of the first optical fiber, and a first amplifier arranged between a branch point and a junction point of the second optical fiber. Includes a second amplifier having a different band, and a non-linear optical crystal that passes light having different frequencies to generate light having an absorption wavelength of the carbon dioxide isotope from the difference in frequency.
  • an ultrashort pulse wave generator As the light source 23, it is preferable to use an ultrashort pulse wave generator.
  • an ultrashort pulse wave generator is used as the light source 23, since the photon density per pulse is high, a nonlinear optical effect easily occurs, and light in the 4.5 ⁇ m band, which is the absorption wavelength of the radioactive carbon dioxide isotope 14 CO 2. Can be easily generated. Further, since a comb-shaped light bundle (optical frequency comb, hereinafter also referred to as “optical comb”) in which the wavelength width of each wavelength is uniform can be obtained, the fluctuation of the oscillation wavelength can be made negligible. When a continuous wave generator is used as the light source, the oscillation wavelength varies, so it is necessary to measure the variation in the oscillation wavelength with an optical comb or the like.
  • the light source 23 for example, a solid-state laser, a semiconductor laser, or a fiber laser that outputs a short pulse by mode locking can be used. Of these, it is preferable to use a fiber laser. This is because the fiber laser is a practical light source that is compact and has excellent environmental stability.
  • a fiber laser an erbium (Er) -based (1.55 ⁇ m band) or ytterbium (Yb) -based (1.04 ⁇ m band) fiber laser can be used. It is preferable to use a commonly used Er-based fiber laser from the economical viewpoint, and it is preferable to use a Yb-based fiber laser from the viewpoint of increasing the light intensity.
  • the plurality of optical fibers 21 and 22 include a first optical fiber 21 that transmits light from a light source, and a second optical fiber 22 for wavelength conversion that branches from the first optical fiber 21 and joins on the downstream side of the first optical fiber 21.
  • a fiber connected from a light source to an optical resonator can be used.
  • a plurality of optical components and a plurality of types of optical fibers can be arranged on the respective paths in the respective optical fibers.
  • DCF dispersion compensating fiber
  • a double clad fiber etc.
  • the second optical fiber 22 it is preferable to use an optical fiber that can efficiently generate ultrashort pulsed light on a desired long wavelength side and can transmit the generated high-intensity ultrashort pulsed light without deteriorating the characteristics thereof.
  • it may include a polarization maintaining fiber, a single mode fiber, a photonic crystal fiber, a photonic bandgap fiber and the like. It is preferable to use an optical fiber having a length of several meters to several hundreds of meters depending on the wavelength shift amount. It is preferable to use fibers made of fused silica as the material.
  • the light generating device is, for example, as shown in FIG. 10, a wavelength filter that divides the light from the light source 23 into a plurality of spectral components, and a spectroscopic unit that adjusts the time difference between each of the plurality of spectral components and focuses the nonlinear crystal 24. It is preferable to further include a delay line 28 including Details will be described later.
  • an Er-doped optical fiber amplifier is arranged as the first amplifier 21 arranged on the path of the first optical fiber 21, and a Tm-doped optical fiber amplifier is arranged as the second amplifier 26 arranged on the path of the second optical fiber 22. It is preferable to use.
  • the first optical fiber 21 preferably further includes a third amplifier, and more preferably includes a third amplifier between the first amplifier 21 and the confluence. This is because the intensity of the obtained light is improved.
  • An Er-doped optical fiber amplifier is preferably used as the third amplifier.
  • the first optical fiber 21 preferably further includes a wavelength shift fiber, and more preferably includes a wavelength shift fiber between the first amplifier and the confluence. This is because the intensity of the obtained light is improved.
  • the nonlinear optical crystal 24 is appropriately selected according to the incident light and the emitted light, but in the case of this embodiment, it is said that light having a wavelength of around 4.5 ⁇ m band is generated from each incident light.
  • PPMgSLT peripherally poled MgO-doped Stoichiometric Lithium Tantalate (LiTaO 3 )) crystal
  • PPLN peripherally poled Lithium Niobate
  • GaSe GaSe
  • the length in the irradiation direction is preferably longer than 11 mm, more preferably 32 mm to 44 mm. This is because a high-power optical comb can be obtained.
  • difference frequency generation a plurality of lights having different wavelengths (frequencies) transmitted by the first and second optical fibers 21 and 22 are passed through a nonlinear optical crystal.
  • Light corresponding to the difference frequency can be obtained from the difference in frequency.
  • one light source 23 generates two lights having wavelengths ⁇ 1 and ⁇ 2 , and the two lights are passed through the nonlinear optical crystal.
  • Light of the absorption wavelength of the body can be generated.
  • the conversion efficiency of a DFG using a nonlinear optical crystal depends on the photon density of a light source of a plurality of original wavelengths ( ⁇ 1 , ⁇ 2 , ... ⁇ x ).
  • a single pulsed laser light source can generate the light of the difference frequency by the DFG.
  • f r mode
  • f ceo is canceled and f ceo becomes 0 in the process of difference frequency mixing.
  • Non-Patent Document 1 In the case of the carbon isotope analyzer devised by I. Galli et al. Of Non-Patent Document 1, two types of laser devices (Nd: YAG laser and external-cavity diode laser (ECDL)) having different wavelengths are prepared and laser Irradiation light having an absorption wavelength of carbon dioxide isotope was generated from the difference in the frequency of light. Since both are continuous wave lasers and the intensity of ECDL is low, in order to obtain a DFG of sufficient intensity, a non-linear optical crystal used in the DFG is installed in the optical resonator, and the light of both is injected there. , It was necessary to increase the photon density.
  • YAG laser and external-cavity diode laser (ECDL) external-cavity diode laser
  • the light generator according to the embodiment of the present invention is composed of one fiber laser light source, a few m of optical fiber, and a nonlinear optical crystal, and therefore is compact, easy to carry, and easy to operate. .. Further, since a plurality of lights are generated from one light source, the fluctuation width and fluctuation timing of each light are the same. Therefore, the fluctuation of the optical frequency can be easily canceled by performing the difference frequency mixing without using the control device.
  • the optical comb only needs to be obtained in a range that covers the wavelength range used in the 14 C analysis. Therefore, the inventors of the present invention have found that the narrower the oscillation spectrum of the optical comb light source, the higher the output. We paid attention to the fact that the light can be obtained.
  • the oscillation spectrum is narrow, amplification by an amplifier having a different band or a long nonlinear optical crystal can be used. Therefore, as a result of investigations by the present inventors, in the generation of an optical comb using the difference frequency mixing method, (a) a plurality of lights having different frequencies are generated from one light source, and (b) a plurality of obtained lights.
  • the attenuation rate due to the sample and the background attenuation rate can be evaluated independently by fitting the attenuation signal obtained by SCAR, so that it is affected by fluctuations in the background attenuation rate such as the parasitic etalon effect.
  • the attenuation factor of the sample can be obtained without using it, and the saturation effect of 14 CO 2 is greater than that of the contaminated gas, so that the light absorption by 14 CO 2 can be measured more selectively. Therefore, it is expected that the sensitivity of analysis will be improved by using irradiation light with higher light intensity. Since the light generator of the present invention can generate irradiation light with high light intensity, it is expected to improve the analytical sensitivity when used for carbon isotope analysis.
  • the light source is not limited to the optical comb, and various light sources can be used.
  • a beat signal measuring device that uses light with a narrow line width (optical comb) generated from the above-described light generation device as a frequency reference
  • fluctuations in the oscillation wavelength of light emitted from a quantum cascade laser hereinafter also referred to as “QCL”
  • QCL quantum cascade laser
  • the arithmetic unit 30 is not particularly limited as long as it can measure the concentration of the absorbing substance in the optical resonator from the above-described decay time and ring down rate and can measure the carbon isotope concentration from the concentration of the absorbing substance.
  • a device can be used.
  • the arithmetic control unit 31 may be constituted by an arithmetic means used in a normal computer system such as a CPU.
  • Examples of the input device 32 include a pointing device such as a keyboard and a mouse.
  • Examples of the display device 33 include an image display device such as a liquid crystal display and a monitor.
  • Examples of the output device 34 include a printer and the like.
  • As the storage device 35 a storage device such as a ROM, a RAM, or a magnetic disk can be used.
  • the carbon isotope analysis device has been described above, but the carbon isotope analysis device is not limited to the above-described embodiment, and various changes can be made. Another aspect of the carbon isotope analyzer will be described below, focusing on the changes from the first aspect.
  • FIG. 10 is a conceptual diagram of the second mode of the carbon isotope analyzer.
  • the spectroscopic device 1 a may further include a Peltier element 19 that cools the optical resonator 11, and a vacuum device 18 that houses the optical resonator 11. Since the light absorption of 14 CO 2 has temperature dependence, the absorption temperature of 14 CO 2 and the absorption lines of 13 CO 2 and 12 CO 2 are reduced by lowering the set temperature in the optical resonator 11 by the Peltier element 19. This makes it easier to distinguish and the absorption intensity of 14 CO 2 becomes stronger.
  • the analysis accuracy is improved.
  • a liquid nitrogen tank, a dry ice tank, or the like can be used in addition to the Peltier element 19.
  • the Peltier element 19 is preferably used from the viewpoint of downsizing the spectroscopic device 10, and the liquid nitrogen water tank or the dry ice tank is preferably used from the viewpoint of reducing the manufacturing cost of the device.
  • the vacuum device 18 is not particularly limited as long as it can accommodate the optical resonator 11 and can irradiate the irradiation light from the light generating device 20 into the optical resonator 11 and transmit the transmitted light to the photodetector.
  • Various vacuum devices can be used.
  • a dehumidifying device may be provided. At that time, dehumidification may be performed by a cooling unit such as a Peltier element, or dehumidification may be performed by a membrane separation method using a polymer film for water vapor removal such as a fluorine-based ion exchange resin film.
  • the detection sensitivity for the radioactive carbon isotope 14 C is assumed to be about “0.1 dpm / ml”.
  • this detection sensitivity it is not enough to use a "narrow band laser” as the light source, and stability of the wavelength (frequency) of the light source is required. That is, it is necessary that the wavelength of the absorption line does not deviate and the line width is narrow.
  • this problem can be solved by using a stable light source using “optical frequency comb light” for CRDS.
  • the carbon isotope analyzer 1 has an advantageous effect that it is possible to measure even a sample containing a low concentration of radioactive carbon isotope.
  • the 14 C concentration in carbon dioxide is measured by CRDS.
  • the signal processing method using the Fast Fourier Transform (FFT) described in the prior document achieves detection sensitivity of "0.1 dpm / ml" because the baseline fluctuation becomes large although the data processing becomes faster. Is difficult to do.
  • FIG. 11 (quoted from Applied Physics Vol.24, pp.381-386, 1981) shows the absorption wavelengths of the analytical samples 12 C 16 O 2 , 13 C 18 O 2 , 13 C 16 O 2 and 14 C 16 O 2. The relationship of absorption intensity is shown.
  • carbon dioxide containing each carbon isotope has a unique absorption line. In actual absorption, each absorption line has a finite width due to the spread due to the pressure and temperature of the sample. Therefore, it is preferable that the pressure of the sample is atmospheric pressure or less and the temperature thereof is 273 K (0 ° C.) or less.
  • the absorption intensity of 14 CO 2 has temperature dependence, it is preferable to set the set temperature in the optical resonator 11 as low as possible.
  • a specific set temperature in the optical resonator 11 is preferably 273 K (0 ° C.) or less.
  • the lower limit is not particularly limited, but it is preferable to cool to 173K to 253K (-100 ° C to -20 ° C), particularly 233K (-40 ° C) from the cooling effect and economical viewpoint.
  • the spectroscopic device may further include vibration absorbing means. This is because it is possible to prevent the mirror interval from shifting due to vibration from the outside of the spectroscopic device and improve the measurement accuracy.
  • vibration absorbing means for example, a shock absorber (polymer gel) or a seismic isolation device can be used.
  • a seismic isolation device it is possible to use a device capable of giving a vibration having a phase opposite to the external vibration to the spectroscopic device.
  • a delay line 28 (optical path difference adjuster) may be provided on the first optical fiber 21. This is because the fine adjustment of the wavelength of the light generated on the first optical fiber 21 is facilitated, and the maintenance of the light generation device is ready.
  • FIG. 12 is a diagram showing the principle of mid-infrared comb generation using one optical fiber.
  • the delay line 28 will be described with reference to FIGS. 10 and 12.
  • the carbon isotope analysis device 1 of FIG. 10 includes a delay line 28 including a plurality of wavelength filters between the light source 23 and the nonlinear optical crystal 24. The light from the light source 23 is transmitted by the first optical fiber 21 and the spectrum is expanded (extension of the spectrum).
  • the delay line 28 (optical path difference adjuster) divides the spectral components and adjusts the time difference. Then, by focusing on the nonlinear crystal 25, a mid-infrared comb can be generated.
  • the delay line has been described as the spectroscopic unit, the dispersion medium is not limited thereto and a dispersion medium may be used.
  • an acousto-optic modulator (hereinafter, also referred to as “AOM”) including an optical crystal and a piezoelectric element is used.
  • AOM acousto-optic modulator
  • Can be used.
  • an acoustic wave propagates in the optical crystal, which creates a periodic refractive index distribution in the optical crystal and diffracts the incident light to turn on / off the light from the light source.
  • the emission of light was controlled to be off, a slight leak of uncontrolled light caused an error in the ringdown signal.
  • the present inventors have completed a light generation device having a double path in which a mirror is arranged, in order to solve the above problems. That is, the present invention includes a light source, an optical switch for controlling on / off of light from the light source, a light generator including a mirror that reflects light from the optical switch and sends the light back to the optical switch; carbon isotope to carbon dioxide isotope
  • the present invention also relates to a carbon isotope analysis device including a carbon dioxide isotope generation device including a combustion unit that generates a gas containing a body and a carbon dioxide isotope purification unit; and a spectroscopic device including an optical resonator and a photodetector.
  • an acousto-optic modulator can be used as the optical switch.
  • a light generation device having a small residual error in fitting a ring-down signal, a radiocarbon isotope analysis device and a radiocarbon isotope analysis method using the same.
  • a carbon isotope analyzer 1 as shown in FIG. 1 is prepared. Further, a biological sample containing 14 C, such as blood, plasma, urine, feces, bile, etc., is prepared as a 14 C source of radioisotope.
  • the biological source carbon source is removed by performing deproteinization as a pretreatment of the biological sample.
  • the pretreatment of the biological sample includes a biological-source-derived carbon source removal step and a contaminant gas removal (separation) step.
  • the biological-source-derived carbon source removal step will be mainly described.
  • a biological sample containing a trace amount of 14 C-labeled compound eg, blood, plasma, urine, feces, bile, etc.
  • 14 C-labeled compound eg, blood, plasma, urine, feces, bile, etc.
  • the ratio of 14 C to total carbon in a biological sample is one of the factors that determine the detection sensitivity of the measurement. It is preferable to remove.
  • the deproteinization method examples include a deproteinization method in which a protein is insolubilized with an acid or an organic solvent, a deproteinization method by ultrafiltration or dialysis utilizing a difference in molecular size, a deproteinization method by solid phase extraction, and the like.
  • the deproteinization method using an organic solvent is preferable because the 14 C-labeled compound can be extracted and the organic solvent itself can be easily removed.
  • an organic solvent is added to a biological sample to insolubilize the protein. At this time, the 14 C-labeled compound adsorbed on the protein is extracted into the organic solvent-containing solution.
  • an operation of collecting the solution containing the organic solvent in another container, further adding an organic solvent to the residue, and extracting may be performed.
  • the extraction operation may be repeated multiple times.
  • the biological sample is feces, organs such as lungs, or when it is difficult to uniformly mix it with an organic solvent
  • the biological sample is homogenized such that the biological sample and the organic solvent are uniformly mixed.
  • the insolubilized protein may be removed by centrifugation, filtration with a filter, or the like.
  • the organic solvent is evaporated to dry the extract containing the 14 C-labeled compound, and the carbon source derived from the organic solvent is removed.
  • the organic solvent is preferably methanol (MeOH), ethanol (EtOH), or acetonitrile (ACN), more preferably acetonitrile.
  • (D) It is preferable to remove water from the obtained 14 CO 2 .
  • the 14 CO 2 or passed over drying agent such as calcium carbonate it is preferred to remove water by condensation of moisture by cooling the 14 CO 2. This is because the reduction of the mirror reflectance due to the icing / frosting of the optical resonator 11 caused by the moisture contained in 14 CO 2 lowers the detection sensitivity, and therefore the moisture can be removed to improve the analysis accuracy.
  • (E) 14 CO 2 is filled in the optical resonator 11 having the pair of mirrors 12a and 12b as shown in FIG. And it is preferable to cool 14 CO 2 to 273 K (0 ° C.) or less. This is because the absorption intensity of irradiation light is increased. Further, it is preferable to keep the optical resonator 11 in a vacuum atmosphere. This is because the measurement accuracy is improved by reducing the influence of the external temperature.
  • the optical axis E of the reflected light from the back surfaces of the mirror 12a and the mirror 12b is the optical axis of the optical resonator (the mirror 12a and the mirror 12a). It is adjusted so that it does not coincide with the optical axis C of the light reflected from the highly reflective surface of the mirror 12b.
  • the first light obtained from the light source 23 is transmitted to the first optical fiber 21.
  • the first light is transmitted to the second optical fiber 22 that branches from the first optical fiber 21 and joins at the merge point on the downstream side of the first optical fiber 21, and the second light having a wavelength longer than the first light is transmitted by the second optical fiber 22.
  • the obtained intensities of the first light and the second light are respectively amplified by using the amplifiers 21 and 26 having different bands. Then, the first optical fiber 21 on the short wavelength side generates light in the 1.3 ⁇ m to 1.7 ⁇ m band, and the second optical fiber 22 on the long wavelength side generates light in the 1.8 ⁇ m to 2.4 ⁇ m band.
  • the second light is merged on the downstream side of the first optical fiber 21, the first light and the second light are passed through the nonlinear optical crystal 24, and the absorption wavelength of the carbon dioxide isotope 14 CO 2 is determined based on the difference in frequency.
  • an optical comb having an optical frequency in the mid-infrared region of a wavelength of 4.5 ⁇ m to 4.8 ⁇ m is generated as irradiation light.
  • a long-axis crystal having a length in the longitudinal direction longer than 11 mm as the nonlinear optical crystal 24, it is possible to generate light with high intensity.
  • the carbon dioxide isotope 14 CO 2 is irradiated with irradiation light to cause resonance.
  • the other end on the downstream side of the first optical fiber 21 is irradiated while being brought into contact with the mirror 12a so that the irradiation light does not come into contact with the air.
  • the intensity of the transmitted light from the optical resonator 11 is measured. As shown in FIG. 5, the transmitted light may be dispersed, and the intensity of each of the dispersed transmitted light may be measured.
  • the carbon isotope analysis method according to the first aspect has been described above, but the carbon isotope analysis method is not limited to the above-described embodiment, and various changes can be added. Another aspect of the carbon isotope analysis method will be described below, focusing on the changes from the first aspect.
  • the above-mentioned problem is solved from the viewpoint of improving the structure of the spectroscopic device.
  • the present invention can also solve the above-mentioned problems from the viewpoint of control.
  • A The spectrum is measured with no gas (sample) in the cell. Acquire a spectrum of only periodic fluctuations.
  • FIG. 13B shows the spectrum after the above adjustment.
  • the radioactive isotope 14 C is mainly described as the carbon isotope to be analyzed.
  • stable isotope elements 12 C and 13 C can be analyzed.
  • irradiation light in that case, for example, when performing 12 C and 13 C analysis as absorption line analysis of 12 CO 2 and 13 CO 2 , it is preferable to use light of 2 ⁇ m band or 1.6 ⁇ m band.
  • the mirror interval is 10 to 60 cm and the radius of curvature of the mirror is the same as or larger than the mirror interval.
  • 12 C, 13 C, and 14 C each chemically exhibit the same behavior, but since the natural abundance ratio of the radioactive isotope 14 C is lower than that of the stable isotope elements 12 C and 13 C, the radioactive isotope It becomes possible to observe various reaction processes by increasing the concentration of 14 C by an artificial operation and measuring it accurately.
  • the carbon isotope analysis device may further include a third optical fiber composed of a non-linear fiber that branches from the first optical fiber and joins the first optical fiber on the downstream side of the branch point. This is because by combining the first to third optical fibers, it is possible to generate light of two or more kinds of various frequencies.
  • the optical resonator including the alignment mechanism described in the first embodiment can cancel the baseline noise by preventing the etalon effect, and thus can be used in various applications. For example, it is possible to manufacture a measuring device, a medical diagnostic device, an environment measuring device (chronological measuring device), etc., which partially includes the configuration described in the first embodiment.
  • the optical frequency comb is a light source in which the longitudinal modes of the laser spectrum are arranged at equal frequency intervals with extremely high accuracy, and is expected as a highly functional new light source in the fields of precision spectroscopy and highly accurate distance measurement.
  • the light generation device described above can be utilized in various applications. As described above, needless to say, the present invention includes various embodiments and the like not described here. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention according to the scope of claims appropriate from the above description.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

炭素同位体から二酸化炭素同位体を生成する工程と、二酸化炭素同位体を1対のミラーを有する光共振器内に充填する工程と、光共振器内に前記二酸化炭素同位体に対する吸収波長を有する照射光を照射する工程と、照射光の光軸とエタロン効果により生じる光の光軸とが一致しないように、ミラーの互いの相対的位置関係を調整する工程と、二酸化炭素同位体に前記照射光を照射し共振させた際に得られる透過光の強度を測定する工程と、透過光の強度から炭素同位体濃度を計算する工程と、を有する炭素同位体分析方法。寄生エタロン効果を抑制できる光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法が提供される。

Description

光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法
 本発明は、寄生エタロン効果を抑制できる光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法に関する。より詳しくは、放射性炭素同位体14C等の測定に有用な光共振器並びにそれを用いた放射性炭素同位体分析装置及び放射性炭素同位体分析方法に関する。
 炭素同位体は、従来より炭素循環に基づく環境動態評価や年代測定による歴史学の実証研究など、文理に渡る広範な応用展開がなされている。炭素同位体は、地域・環境によりわずかに異なるものの、安定同位体元素である12Cと13Cはそれぞれ98.89%と1.11%、放射性同位体14Cは1×10-10%天然に存在している。同位体は重量の相違があるだけで、化学的には同じ挙動を示すため、存在比の低い同位体の濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。
 特に、臨床の分野においては医薬品体内動態評価を行うために、標識化合物として、例えば放射性炭素同位体14Cを生体に投与し分析することは極めて有用であり、例えばPhase I、Phase IIaにおいて実際に分析されている。ヒトにおいて薬理作用を発現すると推定される投与量(薬効発現量)を超えない用量(以下「マイクロドーズ」ともいう)の標識化合物として、極微量の放射性炭素同位体14C(以下、単に「14C」ともいう)を人体に投与し、分析することは、体内動態の問題に起因する医薬品の薬効・毒性についての知見が得られるため、創薬プロセスにおける開発リードタイムを大幅に短縮するものとして期待されている。
 従来より提案されている14C分析法としては、液体シンシチレーションカウンティング法(liquid Scintillation Counting、以下「LSC」ともいう)と、加速器質量分析法(Accelerator Mass Spectrometry、以下「AMS」ともいう)とが挙げられる。
 LSCは、テーブルトップサイズの比較的小型な装置であるため簡便かつ迅速な分析が可能であるが、14Cの検出限界濃度が10dpm/mLと高いため臨床試験での使用に耐えうるものではなかった。一方、AMSは14Cの検出限界濃度が0.001dpm/mLと低く、LSCの14Cの検出限界濃度の1000倍以上低いため臨床試験での使用に耐えうるが、装置が大きくしかも高額であるためその利用が制限されていた。例えば日本国内にはAMSは十数台しか設置されていないことより、試料分析の順番待の時間を考慮すると、1サンプルの分析に1週間程度の時間を要していた。そのため、簡易、かつ迅速な14Cの分析法の開発が望まれていた。
 上述の課題を解決する手段としていくつかの技術が提案されている(例えば、非特許文献1、特許文献1参照。)。
 例えば非特許文献1では、I. Galliらにより、キャビティーリングダウン分光法(Cavity Ring-Down Spectroscopy、以下「CRDS」ともいう)による天然同位体存在比レベルの14C分析の実証がなされ、その可能性が注目された。
 しかしながら、CRDSによる14C分析が実証されたものの、利用された4.5μm帯レーザー光発生装置は極めて複雑な構造であったため、より簡易で使い勝手のよい14Cの分析装置及び分析方法が求められていた。そのため、本発明者等は1つの光源から光コムを発生する光コム光源を独自に開発することにより、コンパクトで使い勝手がよい、炭素同位体分析装置を完成した(特許文献2参照)。
特許第3390755号公報 特許第6004412号公報
「I.Galli et al.,Phy. Rev. Lett.2011, 107, 270802」
 本発明者等は炭素同位体分析装置の更なる分析精度の向上を図るため更なる検討を行ったところ、CRDSにおいては、光共振器と光路上の光学部品との表面間で反射が起こり、寄生エタロン効果が生じることにより、ベースラインに大きなノイズが生じていた。そのため、寄生エタロン効果を抑制できる光共振器が求められていた。
 本発明は、寄生エタロン効果を抑制できる光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法を提供することを課題とする。
 本発明は以下の内容に関する。
 [1]一対のミラーを備える光共振器と、光共振器からの透過光の強度を検出する光検出器と、ミラーの互いの相対的位置関係を調整する第一の干渉除去手段と、を備える分光装置。
 [2]第一の干渉除去手段は、光共振器内に照射される照射光の光軸上の光の干渉を防止するための、ミラーの一方が搭載可能であり、ミラーの3次元の位置調整が可能なアライメント機構である、[1]に記載の分光装置。
 [3]アライメント機構は、光共振器内に照射される照射光の光軸をX軸としたときに、
 (i)X軸、Y軸、Z軸のそれぞれの方向に移動可能、
 (ii)X軸、Y軸、Z軸のそれぞれの軸を中心に略360度回転可能、
の少なくとも一方を満たす、[2]に記載の分光装置。
 [4]分光装置は、さらに第二の干渉除去手段を備える、[1]から[3]のいずれか1項に記載の分光装置。
 [5]炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備える二酸化炭素同位体生成装置と、[1]から[4]のいずれか1項に記載の分光装置と、光発生装置と、を備える炭素同位体分析装置。
 [6]光発生装置は、1つの光源、光源からの第1光を伝送する第1光ファイバー、第1光ファイバーの分岐点から分岐し第1光ファイバーの下流側の合流点で合流し第1光よりも長波長の第2光を発生させる第2光ファイバー、第1光ファイバーの分岐点と合流点の間に配置された第1増幅器、第2光ファイバーの分岐点と合流点の間に配置され第1増幅器とは帯域が異なる第2増幅器、周波数が異なる複数の光を通過させることで周波数の差から二酸化炭素同位体の吸収波長の光として波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる非線形光学結晶を備える[5]に記載の炭素同位体分析装置。
 [7]光発生装置は、光源からの光を複数のスペクトル成分に分ける波長フィルタ、複数のスペクトル成分のそれぞれの時間差を調整し非線形結晶に集光させる分光手段を備えるディレイラインをさらに備える、[5]または[6]に記載の炭素同位体分析装置。
 [8]炭素同位体から二酸化炭素同位体を生成する工程と、二酸化炭素同位体を1対のミラーを有する光共振器内に充填する工程と、光共振器内に二酸化炭素同位体に対する吸収波長を有する照射光を照射する工程と、照射光の光軸と、エタロン効果により生じる光の光軸とが一致しないように、ミラーの互いの相対的位置関係を調整する工程と、二酸化炭素同位体に照射光を照射し共振させた際に得られる透過光の強度を測定する工程と、透過光の強度から炭素同位体濃度を計算する工程と、を有する炭素同位体分析方法。
 [9]照射光を放射性二酸化炭素同位体14COに照射する、[8]に記載の炭素同位体分析方法。
 [10]光共振器内にガスが充填されていない状態で第一のスペクトルを測定する工程と、光共振器内に試料ガスを充填した状態で第二のスペクトルを測定する工程と、第一、第二のスペクトルを対比し、オシレーションの値を除去する工程と、をさらに有する[8]または[9]に記載の炭素同位体分析方法。
 [11]照射光として、複数の光を非線形光学結晶に通過させることにより周波数の差から波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる、[8]から[10]のいずれか1項に記載の炭素同位体分析方法。
 本発明によれば、寄生エタロン効果を抑制できることより、ベースラインのノイズを減少できる共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法が提供される。
図1は炭素同位体分析装置の第1の実施態様の概念図である。 図2はアライメント機構の組立図である。 図3A、図3B、図3Cはアライメント機構の動きを示す図である。 図4A、図4Bはアライメント機構を用いてエタロン効果を取り除く方法の原理を示す図である。 図5Aは従来の共振器を用いて測定した際に見られる長周期のオシレーションを示す図であり、図5Bは本発明の共振器を用いた測定することで長周期のオシレーションを抑制できることを示す図である。 図6A、図6Bはレーザー光を用いた高速走査型のキャビティーリングダウン吸収分光法の原理を示す図である。 図7はCRDSにおける13CO14COの吸収量Δβの温度依存性を示す図である。 図8は光共振器の変形例の概念図である。 図9は14COと競合ガスの4.5μm帯吸収スペクトルを示す図である。 図10は炭素同位体分析装置の第2の実施態様の概念図である。 図11は分析試料の吸収波長と吸収強度の関係を示す図である。 図12は1本の光ファイバーを用いた中赤外コム生成の原理を示す図である。 図13Aは試料ガス(CO)をガスセルに充填した場合としなかった場合に測定されたスペクトルである。図13Bは、試料ガス(CO)をガスセルに充填した場合に測定されたスペクトル(引き算処理前)と引き算処理を行った後のスペクトルを示す図である。 図14A、図14Bは、エタロン効果の概念図である。 図15Aは、14COを含むガスを測定したスペクトルを示す図であり、図15Bは、測定されたスペクトルと計算より求めたスペクトルを差し引きしてオシレーション成分を抽出したものを示す図である。
 以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断されるべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 本明細書において「炭素同位体」とは、特に断りのない限り安定炭素同位体12C、13C、及び放射性炭素同位体14Cを意味する。また、単に元素記号「C」と表示される場合、天然存在比での炭素同位体混合物を意味する。
 酸素の安定同位体は16O、17O及び18Oが存在するが、元素記号「O」と表示される場合、天然存在比での酸素同位体混合物を意味する。
 「二酸化炭素同位体」とは、特に断りのない限り12CO13CO及び14COを意味する。また、単に「CO」と表示される場合、天然存在比の炭素及び酸素同位体により構成される二酸化炭素分子を意味する。
 本明細書において「生体試料」とは、血液、血漿、血清、尿、糞便、胆汁、唾液、その他の体液や分泌液、呼気ガス、口腔ガス、皮膚ガス、その他の生体ガス、さらには、肺、心臓、肝臓、腎臓、脳、皮膚などの各種臓器及びこれらの破砕物など、生体から採取し得るあらゆる試料を意味する。さらに、当該生体試料の由来は、動物、植物、微生物を含むあらゆる生物が挙げられ、好ましくは哺乳動物、より好ましくはヒトの由来である。哺乳動物としては、ヒト、サル、マウス、ラット、モルモット、ウサギ、ヒツジ、ヤギ、ウマ、ウシ、ブタ、イヌ、ネコなどが挙げられるが、これらに限定されない。
 上述の課題を解決するべく、本発明者等は、寄生エタロン効果によるノイズを減少させるべく検討した結果、光共振器内において、本来の光の光軸と、エタロンの光軸をずらすことにより、ベースラインのドリフトを解決できることを知見した。そして、更なる検討を加えた結果、新たな分光装置及びそれを備える炭素同位体分析装置を完成するに至った。以下、炭素同位体分析装置の説明を通じて、新たな分光装置について説明する。
[炭素同位体分析装置の第1の態様]
 図1は、炭素同位体分析装置の概念図である。炭素同位体分析装置1は、二酸化炭素同位体生成装置40と、光発生装置20と、分光装置10と、さらに演算装置30とを備える。
 ここでは、分析対象として、炭素同位体である放射性同位体14Cを例にあげて説明する。なお、放射性同位体14Cから生成される二酸化炭素同位体14COの吸収波長を有する光は4.5μm帯の光である。詳細は後述するが、測定対象物質の吸収線、光発生装置、及び光共振器モードの複合による選択性により、高感度化を実現することが可能となる。
〈分光装置〉
 図1に示すように、分光装置10Aは、光共振器11と、光共振器11からの透過光の強度を検出する光検出器15とを備える。光共振器(Optical resonator or Optical cavity)11は、分析対象の二酸化炭素同位体が封入される筒状の本体と、本体の内部の長手方向の一端と他端に凹面が向かい合うように配置された高反射率の1対のミラー12a、12bと、本体内部の他端に配置されたミラー12a、12b間隔を調整するピエゾ素子13と、ミラー12a、12bの互いの相対的位置関係を調整する、ミラー12a、12bの3次元の位置調整が可能なアライメント機構(第一、第二の干渉除去手段)14a、14bと、分析対象ガスが充填されるセル16と、を備える。ここでは、2つのアライメント機構を配置しているが、ミラー12a、12bの互いの相対的位置関係を調整できるのであれば、1つであっても構わない。
 なお、ここでは図示を省略しているが、本体の側部に二酸化炭素同位体を注入するためのガス注入口や、本体内の気圧を調整する気圧調整口を設けておくことが好ましい。また、1対のミラー12a、12bの反射率は、99%以上が好ましく、99.99%以上がより好ましい。
 図2に示すように、アライメント機構14は、アライメント本体141,142と、アライメント本体141,142に設けられた穴部に配置され、ミラー12を搭載するミラーマウント143と、スライディングベース145と、を備える。なお、特に制限はないが、スライディングベース145、ピエゾ素子13、ピエゾ素子アダプター131を接着剤等で一体に形成してもよい。
 図3Aに示すように、アライメント機構14を作動させることにより、ミラー12は矢印で示す方向に移動する。またマウント本体141,142は、X軸、Y軸、Z軸のそれぞれの方向に移動可能であると共に、X軸、Y軸、Z軸のそれぞれの軸を中心に略360度回転可能である。そのため、図3Bの矢印で示すように、マウント本体141,142を移動させることができる。なお、図3Cは、アライメント本体142側(裏面)からみた図である。
 図14Aに示すように、従来の光共振器111を用いた場合、ミラー12aと12bの高反射面ではない裏面で反射した光の光路が光共振器の本来の光軸と一致する場合がある。図14Bにミラー12aの高反射面で反射した光の光軸と裏面で反射した光の光軸Eが光共振器の本来の光軸Cと一致する様子が示されている。このような場合、裏面で反射した光が光軸上の他の光学部品101等に到達し、その表面間でさらに反射が起こる。これによって、ミラー12a、12b間の光路長Lcの光の乱反射の他に、ミラー12aと光学部品101間の光路長Leで共振が起こり、エタロン効果が生じ、ベースラインに大きなノイズが生じていた。なお、同じことがミラー12bにおいても起こり、ミラー12bの裏面で反射した光が光軸上の他の光学部品101等に到達し、その表面間でさらに反射が起こる。これによって、ミラー12a、12b間の光路長Lcの光の乱反射の他に、ミラー12bと光学部品101間の光路長で共振が起こり、エタロン効果が生じ、ベースラインに大きなノイズが生じていた。
 図15Aに示されるように、14COを含むガスをセルに充填して測定されたスペクトルには、ガスに含まれる成分による吸収以外の成分が含まれる。測定で得られた実験値から、計算で求めたガスに含まれるCO、NO、14CO2、Oによる吸収量を差し引き、オシレーション(見かけ上の減衰率が周期的に変化すること)を抽出したものを図15Bに示す。このようにオシレーション成分はより微量な14Cを分析する際に、14CO吸収量と同程度またはそれを超える大きさとなる場合があり、大きなノイズの要因となっていた。
 本発明者等は、上述の知見に基づいて検討した結果、図4Aに示すように、アライメント機構を作動させて、ミラー12aの位置をY軸に沿って移動させ、または図4Bに示すようにZ軸を中心にして回転させることにより、エタロン効果により生じた光の光軸Eを、光軸Cからずらすことを見出した。これにより、エタロン効果を抑制できる光共振器を完成した。
 図5Aに示すように、従来の共振器を用いた測定では、オシレーションが見られたが、本発明の共振器を用いた測定では図5Bに示すように、オシレーションを抑制することが可能となりノイズが大幅に減少した。
 光共振器内部11にレーザー光を入射し閉じ込めると、レーザー光はミラーの反射率に対応した強度の光を出力しながら、数千回~一万回というオーダーで多重反射を繰り返す。そのため実効的な光路が数10kmにも及ぶため、光共振器内部に封入された分析対象のガスが極微量であっても大きな吸収量を得ることができる。
 図6A、図6Bはレーザー光を用いた高速走査型のキャビティーリングダウン吸収分光法(Cavity Ring-Down Spectroscopy 以下「CRDS」ともいう)の原理を示す図である。
 図6Aに示すように、ミラー間隔が共鳴条件を満たしているときは、高強度の信号が光共振器から透過される。一方、ピエゾ素子13を作動させてミラー間隔を変更し、非共鳴条件とすると、光の干渉効果により信号を検出することができなくなる。つまり、光共振器長を共鳴から非共鳴条件へとすばやく変化させることで、図6Aに示すような指数関数的な減衰信号[リングダウン信号(Ringdown signal)]を観測することができる。リングダウン信号を観測する別の方法として、入力レーザー光を光学スイッチにて素早く遮断する方法が例示できる。
 光共振器の内部に吸収物質が充填されていない場合、透過してくる時間依存のリングダウン信号は図6Bの点線で示すような曲線となる。一方、光共振器内に吸光物質が充填されている場合、図6Bの実線で示すように、レーザー光が光共振器内で往復するごとに吸収されるため、光の減衰時間が短くなる。この光の減衰時間は、光共振器内の吸光物質濃度及び入射レーザー光の波長に依存しているため、Beer-Lambertの法則iiを適用することで吸収物質の絶対濃度を算出することができる。また光共振器内の吸収物質濃度と比例関係にある減衰率(リングダウンレート)の変化量を測定することにより、光共振器内の吸収物質濃度を測定することができる。
 光共振器から漏れ出た透過光を光検出器により検知し、演算装置を用いて14CO濃度を算出した後、14CO濃度から14C濃度を算出することができる。
 光共振器11のミラー12a、12b間隔、ミラー12a、12bの曲率半径、本体の長手方向長さや幅等は、分析対象である二酸化炭素同位体が持つ吸収波長により変化させることが好ましい。想定される共振器長は1mm~10mが挙げられる。
 二酸化炭素同位体14COの場合、共振器長が長いことは光路長を確保するのに有効であるが、共振器長が長くなるとガスセルの体積が増え、必要な試料量が増えるため、共振器長は10cm~60cmの間が好ましい。またミラー12a、12bの曲率半径は、共振器長と同じか、長くすることが好ましい。
 なおミラー間隔は、ピエゾ素子13を駆動することにより、一例として数マイクロメートルから数十マイクロメートルのオーダーで調整することが可能である。最適な共鳴条件を作り出すために、ピエゾ素子13による微調整を行うこともできる。
 なお、1対のミラー12a、12bとしては、1対の凹面鏡を図示して説明してきたが、十分な光路が得られるのであれば、その他にも凹面鏡と平面鏡の組み合わせや、平面鏡同士の組み合わせであっても構わない。
 ミラー12a、12bを構成する材料としては、サファイアガラス、CaF、ZnSeを用いることができる。
 分析対象ガスを充填するセル16は、容積がより小さいことが好ましい。少ない分析試料であっても効果的に光の共振効果を得ることができるからである。セル16の容量は、8mL~1000mLが例示できる。セル容量は、例えば測定に供することができる14C源の量に応じて適宜好ましい容量を選択でき、尿のように大量に入手できる14C源では80mL~120mLのセルが好適であり、血液や涙液のように入手量が限られる14C源では8mL~12mLのセルが好適である。
 光共振器の安定性条件の評価
 CRDSにおける14CO吸収量と検出限界を評価するため、分光データに基づく計算を行った。12CO13COなどに関する分光データは大気吸収線データベース(HITRAN)を利用し、14COに関しては文献値(「S. Dobos et al., Z. Naturforsch, 44a, 633-639 (1989)」)を使用した。
 ここで、14COの吸収によるリングダウンレート(指数関数的減衰の割合)の変化量Δβ(=β-β0、β:試料有りの減衰率、β0:試料なしの減衰率)は、14COの光吸収断面積σ14、分子数密度N、光速cにより以下のように表せる。
 Δβ=σ14(λ,T,P)N(T,P,X14)c
 (式中、σ14、Nは、レーザー光波長λ、温度T、圧力P、X14=14C/TotalC比の関数である。)
 図7は、計算で求められた13CO14COの吸収によるΔβの温度依存性を示す図である。図7より、14C/TotalCが10-10、10-11、10-12では、室温300Kでの13COによる吸収が14COの吸収量を超えるか同程度となるため、冷却を行う必要があることが分かった。
 一方、光共振器由来のノイズ成分であるリングダウンレートのばらつきΔβ0~10-1が実現できれば、14C/TotalC比~10-11の測定を実現できることが分かる。これにより、分析時の温度として摂氏-40度程度の冷却が必要であることが明らかとなった。例えば、定量下限として14C/TotalCを10-11とすると、COガスの濃縮によるCOガス分圧の上昇(例えば20%)と、前記温度条件とが必要であることが示唆される。
 なお、冷却装置や冷却温度について、後述の炭素同位体分析装置の第2の態様の欄においてより詳細に述べる。
 光共振器11について説明したが、光共振器の具体的態様の概念図(一部切欠図)を図8示す。図8に示すように、光共振器51は、真空装置としての円筒状の断熱用チャンバー58と、断熱用チャンバー58内に配置された測定用ガスセル56と、測定用ガスセル56の両端に配置された1対の高反射率ミラー52と、測定用ガスセル56の一端に配置されたミラー駆動機構55と、測定用ガスセル56の他端に配置されたリングピエゾアクチュエーター53と、測定用ガスセル56を冷却するペルチェ素子59と、循環冷却器(図示せず)に接続された冷却パイプ54aを有する水冷ヒートシンク54と、を備える。
〈二酸化炭素同位体生成装置〉
 二酸化炭素同位体生成装置40は、炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部と、二酸化炭素同位体精製部とを備える。二酸化炭素同位体生成装置40は、炭素同位体を二酸化炭素同位体に変換可能であれば特に制限されることなく種々の装置を用いることができる。二酸化炭素同位体生成装置40としては、試料を酸化させ、試料中に含まれる炭素を二酸化炭素にする機能を有していることが好ましい。
 例えば全有機炭素(total organic carbon 以下「TOC」という)発生装置、ガスクロマトグラフィー用の試料ガス発生装置、燃焼イオンクロマトグラフィー用の試料ガス発生装置、元素分析装置(Elemental Analyzer:EA)等の二酸化炭素生成装置(G)41を用いることができる。
 図9に、273K、CO分圧20%、CO分圧1.0×10-4%、NO分圧3.0×10-8%の条件下における14COと競合ガス13CO,CO,及びNOの4.5μm帯吸収スペクトルを示す。
 前処理後の生体試料を燃焼させることにより、二酸化炭素同位体14CO(以下、「14CO」ともいう)を含むガスを生成できる。しかし、14COの発生と共に、CO、NOといった夾雑ガスも発生する。これらCO、NOは、図9に示すように、それぞれ4.5μm帯の吸収スペクトルを有するので、14COが有する4.5μm帯の吸収スペクトルと競合する。そのため、分析感度を向上させるために、CO、NOを除去することが好ましい。
 CO、NOの除去方法としては、以下のように14COを捕集・分離する方法が挙げられる。また、酸化触媒や白金触媒により、CO、NOを除去・低減する方法、及び前記捕集・分離方法との併用が挙げられる。
 (i)加熱脱着カラムによる14COの捕集・分離
 二酸化炭素同位体生成装置は、燃焼部と、二酸化炭素同位体精製部と、を備えることが好ましい。燃焼部は、燃焼管と、燃焼管を加熱可能とする加熱部と、を備えることが好ましい。燃焼管は、試料を内部に収容可能に耐熱性ガラス(石英ガラス等)で構成され、燃焼管の一部に試料導入口が形成されていることが好ましい。燃焼管は試料導入口の他に、キャリアガスを燃焼管に導入可能にキャリアガス導入口を形成してもよい。なお、燃焼管の一部に試料導入口等を設ける態様の他にも、燃焼管の一端に燃焼管とは別部材で試料導入部を形成し、試料導入部に試料導入口やキャリアガス導入口を形成する構成としてもよい。
 加熱部としては、燃焼管を内部に配置可能とし燃焼管を加熱可能とする、管状電気炉といった電気炉が挙げられる。管状電気炉の例としては、ARF-30M(アサヒ理化製作所)が挙げられる。
 また、燃焼管は、キャリアガス流路の下流側に、少なくとも一種類の触媒を充填させた酸化部及び/又は還元部を具備することが好ましい。酸化部及び/又は還元部は、燃焼管の一端に設けてもよいし、別部材として設けてもよい。酸化部に充填する触媒として、酸化銅、銀・酸化コバルト混合物が例示できる。酸化部において、試料の燃焼により発生したH、COをHO、COに酸化することが期待できる。還元部に充填する触媒として、還元銅、白金触媒が例示できる。還元部において、NOを含む窒素酸化物(NO)をNに還元することが期待できる。
 二酸化炭素同位体精製部としては、生体試料の燃焼により生じたガス中の14COを、ガスクロマトグラフィ(GC)で用いられるような、加熱脱着カラム(CO捕集カラム)を用いることができる。これにより14COを検出する段階でCO、NOの影響を軽減あるいは除去できる。またGCカラムに14COを含むCOガスが一時捕集されることで、14COの濃縮が見込まれるので、14COの分圧の向上が期待できる。
 (ii)14CO吸着剤による14COのトラップ、再放出による14COの分離
 二酸化炭素同位体生成装置40bは、燃焼部と、二酸化炭素同位体精製部と、を備えることが好ましい。燃焼部は、上述と同様に構成することができる。
 二酸化炭素同位体精製部としては、14CO吸着剤、例えばソーダ石灰や水酸化カルシウム等を用いることができる。これにより、14COを炭酸塩の形で単離することで夾雑ガスの問題を解消できる。炭酸塩として14COを保持するので、サンプルを一時保存することも可能である。なお、再放出にはリン酸を用いることができる。
 (i),(ii)のいずれか、あるいは両構成を備えることで、夾雑ガスを除去できる。
 (iii)14COの濃縮(分離)
 生体試料の燃焼により発生した14COは配管内で拡散する。そのため、14COを吸着剤に吸着させ濃縮することにより、検出感度(強度)を向上させてもよい。かかる濃縮によりCO、NOから14COの分離も期待できる。
〈光発生装置〉
 光発生装置20としては、二酸化炭素同位体の吸収波長を有する光を発生できる装置であれば特に制限されることなく種々の装置を用いることができる。ここでは、放射性二酸化炭素同位体14COの吸収波長である4.5μm帯の光を簡易に発生させ、しかも装置サイズがコンパクトな光発生装置を例に挙げて説明する。
 光発生装置20は、1つの光源と、光源からの光を伝送する第1光ファイバーと、第1光ファイバーの分岐点から分岐し前記第1光ファイバーの下流側の合流点で合流する第1光ファイバーよりも長波長の光を伝送する第2光ファイバーと、第1光ファイバーの分岐点から合流点の間に配置された第1増幅器と、第2光ファイバーの分岐点から合流点の間に配置され、第1増幅器とは帯域が異なる第2増幅器と、周波数が異なる複数の光を通過させることで周波数の差から前記二酸化炭素同位体の吸収波長の光を発生させる非線形光学結晶と、を備える。
 光源23としては、超短パルス波発生装置を用いることが好ましい。光源23として超短パルス波発生装置を用いた場合、パルスあたりの光子密度が高いため、非線形光学効果が容易に起こり、放射性二酸化炭素同位体14COの吸収波長である4.5μm帯の光を簡易に発生できる。また、各波長の波長幅が均等な櫛状の光の束(光周波数コム、以下「光コム」ともいう。)が得られるため、発振波長の変動が無視できるほど小さくできるからである。なお、光源として連続発振発生装置を用いた場合には、発振波長の変動があるため、光コムなどにより発振波長の変動を測定する必要がある。
 光源23としては、例えばモード同期により短パルスを出力する固体レーザー,半導体レーザー,ファイバーレーザーを用いることができる。なかでもファイバーレーザーを用いることが好ましい。ファイバーレーザーは、コンパクトで対環境安定性にも優れた,実用的な光源であるからである。
 ファイバーレーザーとしては、エルビウム(Er)系(1.55μm帯)またはイッテルビウム(Yb)系(1.04μm帯)のファイバーレーザーを用いることができる。経済的な観点からは汎用されているEr系ファイバーレーザーを用いることが好ましく、光強度を高める観点からはYb系ファイバーレーザーを用いることが好ましい。
 複数の光ファイバー21、22としては、光源からの光を伝送する第1光ファイバー21と、第1光ファイバー21から分岐し第1光ファイバー21の下流側で合流する波長変換用の第2光ファイバー22と、を用いることができる。第1光ファイバー21としては、光源から光共振器までつながっているものを用いることができる。また、それぞれの光ファイバーには、それぞれの経路上に複数の光学的部品や複数種類の光ファイバーを配置することができる。
 第1光ファイバー21としては、生成した高強度な超短パルス光の特性を劣化させずに伝送できる光ファイバーを用いることが好ましい。具体的には、分散補償ファイバー(DCF)、ダブルクラッドファイバーなどを含むことができる。材料は、溶融石英でできたファイバーを用いることが好ましい。
 第2光ファイバー22としては、効率良く所望の長波長側に超短パルス光を生成し、生成した高強度な超短パルス光の特性を劣化させずに伝送できる光ファイバーを使用することが好ましい。具体的には、偏波保持ファイバーや単一モードファイバー、フォトニック結晶ファイバー、フォトニックバンドギャップファイバーなどを含むことができる。波長のシフト量に合わせて、数mから数百mまでの長さの光ファイバーを使用することが好ましい。材料は、溶融石英でできたファイバーを用いることが好ましい。
 光発生装置は、例えば図10に示すような、光源23からの光を複数のスペクトル成分に分ける波長フィルタと、複数のスペクトル成分のそれぞれの時間差を調整し、非線形結晶24に集光させる分光手段と、を備えるディレイライン28をさらに備えることが好ましい。詳細については後述する。
 増幅器としては、例えば、第1光ファイバー21の経路上に配置される第1増幅器21としてEr添加型光ファイバー増幅器、第2光ファイバー22の経路上に配置される第2増幅器26としてTm添加型光ファイバー増幅器を用いることが好ましい。
 第1光ファイバー21は、第3増幅器をさらに備えることが好ましく、第1増幅器21と合流点の間に第3増幅器を備えることがより好ましい。得られる光の強度が向上するからである。第3増幅器としては、Er添加型光ファイバー増幅器を用いることが好ましい。
 第1光ファイバー21は、波長シフトファイバーをさらに備えることが好ましく、第1増幅器と合流点の間に波長シフトファイバーを備えることがより好ましい。得られる光の強度が向上するからである。
 非線形光学結晶24としては、入射される光と出射される光に応じて適宜選択されるが、本実施例の場合は、それぞれの入射光から4.5μm帯前後の波長の光を発生するという観点から、例えばPPMgSLT(periodically poled MgO-dopedStoichiometric Lithium Tantalate(LiTaO))結晶もしくはPPLN(periodically poled Lithium Niobate)結晶、またはGaSe(Gallium selenide)結晶を用いることができる。また、1つのファイバーレーザー光源を用いているため、後述の通り、差周波混合において、光周波数の揺らぎをキャンセルすることができるからである。
 非線形光学結晶24としては、照射方向(長手方向)長さが11mmよりも長尺のものが好ましく、32mm~44mmがより好ましい。高出力の光コムが得られるからである。
 差周波混合(Difference Frequency Generation 以下「DFG」ともいう)によれば、第1、第2光ファイバー21,22が伝送する波長(周波数)が異なる複数の光を非線形光学結晶に通過させることで、この周波数の差から、差周波数に対応した光を得ることができる。つまり、本実施例の場合、1つの光源23から、波長がλ、λである2つの光を発生させ、2つの光を非線形光学結晶に通過させることにより、周波数の差から二酸化炭素同位体の吸収波長の光を発生させることができる。非線形光学結晶を用いるDFGの変換効率は、元となる複数の波長(λ、λ、…λ)の光源の光子密度に依存する。そのため1つのパルスレーザー光源からDFGにより差周波の光を発生することができる。
 このようにして得られる4.5μm帯の光は1パルスが規則的な周波数間隔fの複数の周波数の光(モード)からなる光コム(周波数f=fceo+N・f、N:モード数)である。光コムを用いてCRDSを行うためには、分析対象の吸収帯の光を分析対象の含まれる光共振器に導入する必要がある。なお、生成される光コムは、差周波混合のプロセスにおいてfceoがキャンセルされfceoが0になる。
 非特許文献1のI. Galliらに考案された炭素同位体分析装置の場合、波長の異なる2種類のレーザー装置(Nd:YAG laserとexternal-cavity diode laser (ECDL))を用意して、レーザー光の周波数の差から二酸化炭素同位体の吸収波長を有する照射光を発生させていた。両者は連続発振レーザーであり、かつ、ECDLの強度が低いため、十分な強度のDFGを得るために、DFGで使用する非線形光学結晶を光共振器内に設置し、そこに両者の光を入れ、光子密度を高める必要があった。また、ECDLの強度を高めるために、Ti:Sapphire結晶を別のNd:YAGレーザーの2倍波にて励起し、ECDL光を増幅する必要もあった。これらを行う共振器の制御が必要になるなど、装置が大がかりで、操作が複雑になっていた。一方、本発明の実施形態に係る光発生装置は、1つのファイバーレーザー光源と、数mの光ファイバーと、非線形光学結晶とで構成されているため、コンパクトで搬送しやすく、しかも操作が簡単である。また1つの光源から複数の光を発生させているため、それぞれの光の揺らぎ幅及び揺らぎのタイミングが同一となる。そのため、制御装置を用いることなく、差周波混合を行うことで簡易に光周波数の揺らぎをキャンセルすることができる。
 第1光ファイバーと第2光ファイバーの合流点から光共振器の間の光路について、空気中にレーザー光を伝送させる態様や、必要に応じてレンズによるレーザー光の集光及び/または拡大をする光学系を含む光伝送装置を構築してもよい。
 本分析では、14Cの分析で使用する波長領域をカバーする範囲で光コムが得られていればよいため、本発明者等は、光コム光源の発振スペクトルをより狭くしたほうが、より高出力の光が得られることに着目した。発振スペクトルが狭い場合には、帯域が異なる増幅器による増幅や、長尺の非線形光学結晶を用いることができる。そこで、本発明者らは検討の結果、差周波混合法を用いた光コムの発生において、(イ)1つの光源から周波数が異なる複数の光を発生させ、(ロ)得られた複数の光の強度を帯域が異なる増幅器を用いてそれぞれ増幅し、(ハ)複数の光を従来の非線形光学結晶よりも長尺の非線形光学結晶に通過させることにより周波数の差から二酸化炭素同位体の吸収波長を有する高出力の照射光を発生させることを着想した。本発明は上記知見により基づいて完成したものである。なお、従来の差周波混合法において、帯域が異なる複数の増幅器を用いて光の強度を増幅することや、長尺の結晶を用いて高出力の照射光が得られる旨の報告はなかった。
 光吸収物質の光吸収は、吸収線強度が大きく、かつ、照射光の光強度も高い場合は、その光吸収に対応した下準位が著しく減少し、実効的な光吸収量が飽和したようになる(これを飽和吸収と呼ぶ)。SCAR理論(Saturated Absorption CRDS)によれば、光共振器内の14CO等の試料に吸収線強度が大きな4.5μm帯の光を照射すると、得られる減衰信号(リングダウン信号)の初期は光共振器内に蓄積されている光強度が高いため飽和効果が大きく見られ、その後、減衰が進むにつれて光共振器内に蓄積されている光強度が徐々に低くなるため飽和効果が小さくなる。このため、このような飽和効果が見られる減衰信号は、単純な指数関数減衰ではなくなる。この理論に基づけば、SCARで得られた減衰信号のフィッティングにより、試料による減衰率とバックグラウンドの減衰率を独立に評価できるため、寄生エタロン効果などのバックグラウンドの減衰率の変動に影響されることなく試料による減衰率を求めることができ、かつ、夾雑ガスと比較して14COの飽和効果が大きいため、14COによる光吸収をより選択的に測定できる。したがって、より光強度の高い照射光を用いるほうが、分析の感度が向上することが期待されている。本発明の光発生装置は、光強度が高い照射光を発生させることができるので、炭素同位体分析に用いた場合、分析感度が向上することが期待される。
 光源として光コムについて中心に説明してきたが、光源は光コムに制限されることはなく、種々の光源を用いることができる。例えば、上述の光発生装置から発生する線幅の狭い光(光コム)を周波数リファレンスとして用いるビート信号測定装置により、量子カスケードレーザー(以下「QCL」ともいう)から発する光の発振波長の揺らぎを補正した光源を用いてもよい。
〈演算装置〉
 演算装置30としては、上述の減衰時間やリングダウンレートから光共振器内の吸収物質濃度を測定し、吸収物質濃度から炭素同位体濃度を測定できるものであれば特に制限されることなく種々の装置を用いることができる。
 演算制御部31としては、CPU等の通常のコンピュータシステムで用いられる演算手段等で構成すればよい。入力装置32としては、例えばキーボード、マウス等のポインティングデバイスが挙げられる。表示装置33としては、例えば液晶ディスプレイ、モニタ等の画像表示装置等が挙げられる。出力装置34としては、例えばプリンタ等が挙げられる。記憶装置35としてはROM、RAM、磁気ディスクなどの記憶装置が使用可能である。
 以上、第1の態様に係る炭素同位体分析装置について説明してきたが、炭素同位体分析装置は、上述の実施形態に限定されることなく、種々の変更を加えることができる。以下に炭素同位体分析装置の別の態様について、第1の態様からの変更点を中心に説明する。
[炭素同位体分析装置の第2の態様]
〈冷却、除湿装置〉
 図10は、炭素同位体分析装置の第2の態様の概念図である。図10に示すように、分光装置1aは、光共振器11を冷却するペルチェ素子19と、光共振器11を収納する真空装置18と、をさらに備えてもよい。14COの光吸収は温度依存性を有するため、ペルチェ素子19により光共振器11内の設定温度を低くすることで、14COの吸収線と13CO12COの吸収線との区別が容易になり、14COの吸収強度が強くなるからである。また光共振器11を真空装置18内に配置して、光共振器11が外気に晒されることを防止して外部温度の影響を軽減することで、分析精度が向上するからである。
 光共振器11を冷却する冷却装置としては、ペルチェ素子19の他にも、例えば、液体窒素槽、ドライアイス槽などを用いることができる。分光装置10を小型化できる観点からはペルチェ素子19を用いることが好ましく、装置の製造コストを下げる観点からは液体窒素水槽もしくはドライアイス槽を用いることが好ましい。
 真空装置18としては、光共振器11を収納でき、また光発生装置20からの照射光を光共振器11内に照射でき、透過光を光検出器に透過できるものであれば、特に制限なく様々な真空装置を用いることができる。
 除湿装置を設けてもよい。その際、ペルチェ素子等の冷却手段により除湿してもよいが、フッ素系イオン交換樹脂膜といった水蒸気除去用高分子膜を使用した膜分離法によって除湿してもよい
 上述の炭素同位体分析装置1をマイクロドーズに用いる場合、放射性炭素同位体14Cに対する検出感度は「0.1dpm/ml」程度が想定される。この検出感度「0.1dpm/ml」を達成するためには、光源として「狭帯域レーザー」を用いるだけでは不十分であり、光源の波長(周波数)の安定性が求められる。即ち、吸収線の波長からずれないこと、線幅が狭いことが要件となる。この点、炭素同位体分析装置1では、「光周波数コム光」を用いた安定な光源をCRDSに用いることでこの課題を解決できる。炭素同位体分析装置1によれば、低濃度の放射性炭素同位体を含む検体に対しても測定が可能であるという有利な作用効果が奏される。
 なお、先行文献(廣本 和郎等、「キャビティーリングダウン分光に基づく14C連続モニタリングの設計検討」、日本原子力学会春の年会予稿集、2010年3月19日、P432)には、原子力発電関連の使用済み燃料の濃度モニタリングに関連して、CRDSにより二酸化炭素中の14C濃度を測定する旨が開示されている。しかし、先行文献に記載された、高速フーリエ変換(FFT)を用いた信号処理方法は、データ処理が早くなるものの、ベースラインのゆらぎが大きくなるため、検出感度「0.1dpm/ml」を達成することは困難である。
 図11(Applied Physics Vol.24, pp.381-386, 1981より引用)は、分析試料1216131813161416の吸収波長と吸収強度の関係を示す。図11に示すように、それぞれの炭素同位体を含む二酸化炭素は、固有の吸収線を有している。実際の吸収では、各吸収線は試料の圧力や温度に起因する拡がりによって有限の幅を持つ。このため、試料の圧力は大気圧以下、温度は273K(0℃)以下にすることが好ましい。
 以上、14COの吸収強度は温度依存性があるため、光共振器11内の設定温度を、できるだけ低く設定することが好ましい。具体的な光共振器11内の設定温度は273K(0℃)以下が好ましい。下限値は特に制限はないが、冷却効果と経済的観点から、173K~253K(-100℃~-20℃)、特に233K(-40℃)程度に冷却することが好ましい。
 分光装置は、振動吸収手段をさらに備えてもよい。分光装置の外部からの振動によりミラー間隔がずれることを防止して、測定精度を上げることができるからである。振動吸収手段としては、例えば衝撃吸収剤(高分子ゲル)や免震装置を用いることができる。免震装置としては外部振動の逆位相の振動を分光装置に与えることができる装置を用いることができる。
〈ディレイライン〉
 図10に示すように、第1光ファイバー21上にディレイライン28(光路差調整器)を設けてもよい。第1光ファイバー21上で発生した光の波長の微調整が容易になり、光発生装置のメンテナンスが用意になるからである。
 図12は1本の光ファイバを用いた中赤外コム生成の原理を示す図である。図10、図12を参照しつつ、ディレイライン28について説明する。図10の炭素同位体分析装置1は、光源23と非線形光学結晶24の間に、複数の波長フィルタからなるディレイライン28を備える。第1光ファイバー21により、光源23からの光が伝送され、スペクトルが拡げられる(スペクトルの伸張)。そして、スペクトル成分が時間的にずれている場合、図10に示されるように、ディレイライン28(光路差調整器)により、スペクトル成分が分けられ、時間差の調整が行われる。そして、非線形結晶25に集光させることで中赤外コムを生成することができる。
 なお、分光手段としてディレイラインを挙げたが、それに限定されることなく、分散媒体を用いてもよい。
[炭素同位体分析装置の第3の態様]
 本発明者等は炭素同位体分析装置の更なる分析精度の向上を図るため更なる検討を行ったところ、光スイッチの性能(オンオフ比)が想定したものよりも低いことに起因して減衰率に誤差(リングダウン信号の減衰率を求めるための減衰関数によるフィッティングにおける残差)が生じていることを知見した。しかしながら、簡易で効果的なオンオフ制御の機構や方法は見当たらなかった。そのため、光スイッチの性能(オンオフ比)の向上を通じて、リングダウン信号のフィッティングにおける残差を解消し、分析精度の向上を図ることが求められていた。
 炭素同位体分析装置に用いられる光スイッチとしては、特に制限なく様々なものを用いられているが、光学結晶と、圧電素子と、を備える音響光学変調器(以下、「AOM」ともいう。)を用いることができる。このAOMの圧電素子を作動させると、音響波が光学結晶内を伝播し、これにより光学結晶内に周期的な屈折率の分布が生まれ、入射光が回折されることで光源からの光のオンオフを制御することができる。ところが、光の放出をオフに制御しても、僅かに漏れ出した制御されていない光がリングダウン信号の誤差を生じさせていた。そこで、本発明者等は上記課題を解決するために、ミラーを配置した、ダブルパスを備える光発生装置を完成した。
 即ち、本発明は、光源、光源からの光のオンオフを制御する光スイッチ、光スイッチからの光を反射して光スイッチに光を送り返すミラーを備える光発生装置と;炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備える二酸化炭素同位体生成装置と;光共振器、光検出器を備える分光装置と;を備える炭素同位体分析装置にも関する。この場合、光スイッチとしては音響光学変調器を用いることができる。炭素同位体分析装置の第3の態様によれば、リングダウン信号のフィッティングにおける残差が少ない光発生装置並びにそれを用いた放射性炭素同位体分析装置及び放射性炭素同位体分析方法が提供される。
[炭素同位体分析方法の第1の態様]
 分析対象として放射性同位体14Cを例にあげて説明する。
(生体試料の前処理)
(イ)まず図1に示すような炭素同位体分析装置1を用意する。また放射性同位体14C源として、14Cを含む生体試料、例えば、血液、血漿、尿、糞、胆汁などを用意する。
(ロ)生体試料の前処理として除タンパクを行うことにより、生体由来炭素源を除去する。生体試料の前処理は、広義には、生体由来の炭素源除去工程と、夾雑ガス除去(分離)工程とが含まれるが、ここでは、生体由来の炭素源除去工程を中心に説明する。
 マイクロドーズ試験では極微量の14C標識化合物が含まれる生体試料(例えば、血液、血漿、尿、糞、胆汁など)について分析が行われる。そのため、分析効率を上げるためには、生体試料の前処理を行うことが好ましい。CRDS装置の特性上、生体試料中14Cと全炭素との比(14C/TotalC)が測定の検出感度を決定する要素の一つであるため、生体試料中から生体由来の炭素源を除去することが好ましい。
 除タンパクの方法としては、酸や有機溶媒によりタンパク質の不溶化させる除タンパク法、分子サイズの違いを利用する限外濾過または透析による除タンパク法、固相抽出による除タンパク法等が例示できる。後述するように、14C標識化合物の抽出が行えることや、有機溶媒自身の除去が容易であることから、有機溶媒による除タンパク法が好ましい。
 有機溶媒を用いた除タンパク法の場合、まず生体試料に有機溶媒を添加し、タンパク質を不溶化する。このとき、タンパク質に吸着している14C標識化合物が、有機溶媒含有溶液へ抽出される。14C標識化合物の回収率を高めるために、前記有機溶媒含有溶液を別の容器に採取後、残差にさらに有機溶媒を添加し、抽出する操作を行ってもよい。前記抽出操作は複数回繰り返してもよい。なお、生体試料が糞である場合、肺など臓器である場合等、有機溶媒と均一に混合しにくい形態の場合には、該生体試料をホモジネートする等、生体試料と有機溶媒とが均一に混合されるための処理をすることが好ましい。また必要に応じて、不溶化したタンパク質を、遠心操作、フィルターによるろ過等により除去してもよい。
 その後、有機溶媒を蒸発させることにより14C標識化合物を含む抽出物を乾固させ、有機溶媒由来の炭素源を取り除く。前記有機溶媒は、メタノール(MeOH)、エタノール(EtOH)、またはアセトニトリル(ACN)が好ましく、アセトニトリルがさらに好ましい。
(ハ)前処理後の生体試料を加熱・燃焼させて、放射性同位体14C源から二酸化炭素同位体14COを含むガスを生成する。そして、得られたガスからNO、COを除去する。
(ニ)得られた14COから水分を取り除いておくことが好ましい。例えば二酸化炭素同位体生成装置40内にて、14COを炭酸カルシウム等の乾燥剤上を通過させたり、14COを冷却して水分を結露させることにより水分を除去することが好ましい。14COに含まれる水分に起因する光共振器11の着氷・着霜によるミラー反射率低下が検出感度を低下させるため、水分を除去しておくことで分析精度が上がるからである。なお、分光工程を考慮すると、分光装置10へ14COを導入する前に、14COを冷却しておくことが好ましい。室温の14COを導入すると、共振器の温度が大きく変化し、分析精度が低下するためである。
(ホ)14COを、図1に示すような1対のミラー12a、12bを有する光共振器11内に充填する。そして14COを273K(0℃)以下に冷却することが好ましい。照射光の吸収強度が高まるからである。また光共振器11を真空雰囲気に保つことが好ましい。外部温度の影響を軽減させることで、測定精度が高まるからである。
(ヘ)図2のアライメント機構14を作動させて、図4A、図4Bに示すように、ミラー12aとミラー12bの裏面からの反射光の光軸Eが光共振器の光軸(ミラー12aとミラー12bの高反射面からの反射光の光軸)Cと一致しないように調整する。
(ト)光源23から得られた第1光を第1光ファイバー21に伝送する。また第1光ファイバー21から分岐し第1光ファイバー21の下流側の合流点で合流する第2光ファイバー22に第1光を伝送させて、第2光ファイバー22により第1光よりも長波長の第2光を発生させる。得られた第1光と第2光の強度を、帯域が異なる増幅器21,26を用いてそれぞれ増幅する。そして、短波長側の第1光ファイバー21から1.3μm~1.7μm帯の光を発生させ、長波長側の第2光ファイバー22から1.8μm~2.4μm帯の光を発生させる。次に第2光を第1光ファイバー21の下流側で合流させ、第1光と第2光を非線形光学結晶24に通過させ、周波数の差から二酸化炭素同位体14COの吸収波長の4.5μm帯の光として、波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを照射光として発生させる。その際、非線形光学結晶24として長手方向の長さが11mmよりも長尺の長軸結晶を用いることにより強度の高い光を生成することができる。
(チ)二酸化炭素同位体14COに照射光を照射し共振させる。その際、測定精度を上げるためには、光共振器11の外部からの振動を吸収し、ミラー12a、12b間隔にずれが生じないようにすることが好ましい。また照射光が空気に触れないように、第1光ファイバー21の下流側の他端をミラー12aに当接させながら照射することが好ましい。そして光共振器11からの透過光の強度を測定する。図5に示すように透過光を分光し、分光されたそれぞれの透過光について強度を測定してもよい。
(リ)透過光の強度から炭素同位体14C濃度を計算する。
 以上、第1の態様に係る炭素同位体分析方法について説明してきたが、炭素同位体分析方法は、上述の実施形態に限定されることなく、種々の変更を加えることができる。以下に炭素同位体分析方法の別の態様について、第1の態様からの変更点を中心に説明する。
[炭素同位体分析方法の第2の態様]
 第1の態様では、分光装置の構造を改良する観点から、上述の課題を解決することとした。しかし、本発明はその他に、制御の観点から上述の課題を解決することもできる。
 (イ)セル内にガス(試料)がない状態でスペクトルを測定する。周期的変動のみのスペクトルを取得する。
 (ロ)サンプルガス(例えば、CO)を導入してスペクトルを測定する。
 (ハ)(イ)と(ロ)で取得したスペクトルを差し引きする。
 これにより、ベースラインのノイズを大幅に軽減することができる。
 図13Bは、上述の調整後のスペクトルである。
(その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 実施形態に係る炭素同位体分析装置においては、分析対象である炭素同位体として放射性同位体14Cを中心に説明した。放射性同位体14Cの他にも、安定同位体元素である12C、13Cを分析することができる。その場合の照射光としては、例えば、12C及び13C分析を12CO及び13COの吸収線分析として行う場合は、2μm帯や1.6μm帯の光を用いることが好ましい。
 12CO、及び13COの吸収線分析を行う場合、ミラー間隔は10~60cm、ミラーの曲率半径はミラー間隔と同じかそれ以上、とすることが好ましい。
 なお、12C、13C、14Cはそれぞれ化学的には同じ挙動を示すが、安定同位体元素12C、13Cよりも放射性同位体14Cの天然存在比が低いことから、放射性同位体14Cはその濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。
 実施形態に係る炭素同位体分析装置は、第1光ファイバーから分岐し分岐点より下流側で第1光ファイバーに合流する非線形ファイバーで構成された第3の光ファイバーをさらに備えてもよい。第1~第3の光ファイバーを組み合わせることで2種以上の様々な周波数の光を発生することが可能になるからである。
 第1の実施形態において説明したアライメント機構を備える光共振器は、エタロン効果を防止することによりベースラインのノイズをキャンセルできるため、種々の用途で活用可能である。例えば、第1の実施形態において説明した構成を一部に含む測定装置、医療診断装置、環境測定装置(年代測定装置)等も製造することができる。
 光周波数コムは、レーザースペクトルの縦モードが非常に高い精度で等周波数間隔に並んだ光源であり、精密分光や高精度距離計測の分野において高機能な新しい光源として期待されている。また、物質の吸収スペクトルが中赤外域に多く存在するため、中赤外域の光周波数コム光源の開発は重要である。上述の光発生装置は種々の用途で活用可能である。
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
  1 炭素同位体分析装置
 10A、10B 分光装置
 11 光共振器
 12a、12b ミラー
 13 ピエゾ素子
 14a、14b アライメント機構(第一、第二の干渉除去手段)
 15 光検出器
 16 セル
 18 真空装置
 19 ペルチェ素子
 20A、20B 光発生装置
 21 第1光ファイバー
 22 第2光ファイバー
 23 光源
 24 非線形光学結晶
 25 第一増幅器
 26 第二増幅器
 28 ディレイライン
 29 光学スイッチ
 30 演算装置
 40 二酸化炭素同位体生成装置
 50 光発生装置
 

Claims (11)

  1.  一対のミラーを備える光共振器と、
     前記光共振器からの透過光の強度を検出する光検出器と、
     前記ミラーの互いの相対的位置関係を調整する第一の干渉除去手段と、を備える分光装置。
  2.  前記第一の干渉除去手段は、前記光共振器内に照射される照射光の光軸上の光の干渉を防止するための、前記ミラーの一方が搭載可能であり、前記ミラーの3次元の位置調整が可能なアライメント機構である、請求項1に記載の分光装置。
  3.  前記アライメント機構は、光共振器内に照射される照射光の光軸をX軸としたときに、
     (i)X軸、Y軸、Z軸のそれぞれの方向に移動可能、
     (ii)X軸、Y軸、Z軸のそれぞれの軸を中心に略360度回転可能、
    の少なくとも一方を満たす、請求項2に記載の分光装置。
  4.  前記分光装置は、さらに第二の干渉除去手段を備える、請求項1から3のいずれか1項に記載の分光装置。
  5.  炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備える二酸化炭素同位体生成装置と、
     請求項1から4のいずれか1項に記載の分光装置と、
     光発生装置と、を備える炭素同位体分析装置。
  6.  前記光発生装置は、1つの光源、前記光源からの第1光を伝送する第1光ファイバー、前記第1光ファイバーの分岐点から分岐し前記第1光ファイバーの下流側の合流点で合流し前記第1光よりも長波長の第2光を発生させる第2光ファイバー、前記第1光ファイバーの前記分岐点と前記合流点の間に配置された第1増幅器、前記第2光ファイバーの前記分岐点と前記合流点の間に配置され前記第1増幅器とは帯域が異なる第2増幅器、周波数が異なる複数の光を通過させることで周波数の差から前記二酸化炭素同位体の吸収波長の光として波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる非線形光学結晶を備える請求項5に記載の炭素同位体分析装置。
  7.  前記光発生装置は、前記光源からの光を複数のスペクトル成分に分ける波長フィルタ、前記複数のスペクトル成分のそれぞれの時間差を調整し前記非線形結晶に集光させる分光手段を備えるディレイラインをさらに備える、請求項5または6に記載の炭素同位体分析装置。
  8.  炭素同位体から二酸化炭素同位体を生成する工程と
     二酸化炭素同位体を1対のミラーを有する光共振器内に充填する工程と、
     前記光共振器内に前記二酸化炭素同位体に対する吸収波長を有する照射光を照射する工程と、
     前記照射光の光軸と、エタロン効果により生じる光の光軸とが一致しないように、前記ミラーの互いの相対的位置関係を調整する工程と、
     前記二酸化炭素同位体に前記照射光を照射し共振させた際に得られる透過光の強度を測定する工程と、
     透過光の強度から炭素同位体濃度を計算する工程と、を有する炭素同位体分析方法。
  9.  前記照射光を放射性二酸化炭素同位体14COに照射する、請求項8に記載の炭素同位体分析方法。
  10.  前記光共振器内にガスが充填されていない状態で第一のスペクトルを測定する工程と、
     前記光共振器内に試料ガスを充填した状態で第二のスペクトルを測定する工程と、
     前記第一、第二のスペクトルを対比し、オシレーションの値を除去する工程と、をさらに有する請求項8または9に記載の炭素同位体分析方法。
  11.  前記照射光として、複数の光を非線形光学結晶に通過させることにより周波数の差から波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる、請求項8から10のいずれか1項に記載の炭素同位体分析方法。
PCT/JP2019/045682 2018-11-21 2019-11-21 光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法 WO2020105714A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/293,668 US20220011221A1 (en) 2018-11-21 2019-11-21 Optical resonator, carbon isotope analysis device using same, and carbon isotope analysis method
CN201980074973.0A CN113015899A (zh) 2018-11-21 2019-11-21 光谐振器、使用该光谐振器的碳同位素分析设备以及碳同位素分析方法
JP2020557637A JP7440869B2 (ja) 2018-11-21 2019-11-21 光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-217938 2018-11-21
JP2018217938 2018-11-21
JP2018-217929 2018-11-21
JP2018217929 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020105714A1 true WO2020105714A1 (ja) 2020-05-28

Family

ID=70773947

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/045683 WO2020105715A1 (ja) 2018-11-21 2019-11-21 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法
PCT/JP2019/045682 WO2020105714A1 (ja) 2018-11-21 2019-11-21 光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045683 WO2020105715A1 (ja) 2018-11-21 2019-11-21 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Country Status (4)

Country Link
US (2) US20220011220A1 (ja)
JP (2) JP7393767B2 (ja)
CN (2) CN112997065A (ja)
WO (2) WO2020105715A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425442B2 (ja) 2020-06-19 2024-01-31 国立大学法人東海国立大学機構 ガス吸収分光システムおよびガス吸収分光方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948310A (zh) * 2020-08-10 2020-11-17 华东师范大学 一种氧化亚氮进样分析方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516405A (ja) * 2011-03-25 2014-07-10 ユニバーシティ オブ ヴァージニア パテント ファウンデーション 分光装置に適合可能なセルデザイン
WO2015122475A1 (ja) * 2014-02-12 2015-08-20 積水メディカル株式会社 炭素同位体分析装置および炭素同位体分析方法
WO2016140254A1 (ja) * 2015-03-04 2016-09-09 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410287B2 (ja) * 1996-04-11 2003-05-26 Kddi株式会社 光スイッチ
JP3274605B2 (ja) * 1996-05-01 2002-04-15 日本無線株式会社 炭素同位体分析装置
US5832153A (en) * 1996-06-20 1998-11-03 Duck; Gary Stephen Method and system for reducing unwanted effects of back reflections between two lenses in an optical system
US6205159B1 (en) * 1997-06-23 2001-03-20 Newport Corporation Discrete wavelength liquid crystal tuned external cavity diode laser
JP3390755B2 (ja) * 1998-09-29 2003-03-31 科学技術振興事業団 波長可変短パルス光発生装置及び方法
JP2000162568A (ja) * 1998-11-27 2000-06-16 Anritsu Corp 光スイッチ
JP2000162567A (ja) * 1998-11-27 2000-06-16 Anritsu Corp 光スイッチ
US20050122523A1 (en) * 2003-12-03 2005-06-09 Wen-Bin Yan Device and method of trace gas analysis using cavity ring-down spectroscopy
JP2006202915A (ja) * 2005-01-19 2006-08-03 Eudyna Devices Inc 光学装置、レーザ装置、チューナブルミラーおよび光検知方法
JP2009128193A (ja) 2007-11-22 2009-06-11 Graduate School For The Creation Of New Photonics Industries 波長センサ
DE102009045458B3 (de) * 2009-08-28 2011-06-22 Freie Universität Berlin, 14195 Verfahren zur Bestimmung des 14C-Gehaltes eines Gasgemisches und hierfür geeignete Anordnung
US9086421B1 (en) * 2010-07-29 2015-07-21 Entanglement Technologies, Inc. Device and method for cavity detected high-speed diffusion chromatography
US9651488B2 (en) * 2010-10-14 2017-05-16 Thermo Fisher Scientific (Bremen) Gmbh High-accuracy mid-IR laser-based gas sensor
US9372339B2 (en) * 2011-01-05 2016-06-21 Nippon Telegraph and Telephone Communications Wavelength swept light source
DE102012007030C5 (de) * 2012-04-05 2019-01-10 Drägerwerk AG & Co. KGaA Vorrichtung und Verfahren zur schnellen Aufnahme eines Absorptionsspektrums eines Fluids
US9625702B2 (en) * 2012-05-17 2017-04-18 Joseph T. Hodges Coupled cavity spectrometer with enhanced sensitivity and dynamic range
JP6252176B2 (ja) * 2014-01-06 2017-12-27 富士電機株式会社 ガス分析計
US10067050B2 (en) * 2016-12-05 2018-09-04 The United States Of America, As Represented By The Secretary Of Commerce Linear absorption spectrometer to optically determine an absolute mole fraction of radiocarbon in a sample

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516405A (ja) * 2011-03-25 2014-07-10 ユニバーシティ オブ ヴァージニア パテント ファウンデーション 分光装置に適合可能なセルデザイン
WO2015122475A1 (ja) * 2014-02-12 2015-08-20 積水メディカル株式会社 炭素同位体分析装置および炭素同位体分析方法
WO2016140254A1 (ja) * 2015-03-04 2016-09-09 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GALLI, I. ET AL.: "Molecular Gas Sensing Below Parts Per Trillion: Radiocarbon-Dioxide Optical Detection", PHYSICAL REVIEW LETTERS, vol. 107, no. 27, 30 December 2011 (2011-12-30), pages 270802 - 1 - 270802-4, XP055072423, DOI: 10.1103/PhysRevLett.107.270802 *
GALLI, I. ET AL.: "OPTICAL DETECTION OF RADIOCARBON DIOXIDE: FIRST RESULTS AND AMS INTERCOMPARISON", RADIOCARBON, vol. 55, no. 2-3, 2013, pages 213 - 223, XP055498122 *
TAKEDA, SHIN ET AL.: "Non-official translation: Reduction of background noise in mid-IR cavity ring-down spectroscopy", JAPAN SOCIETY OF APPLIED PHYSICS; PROCEEDINGS OF THE 79TH JSAP AUTUMN MEETING, 5 September 2018 (2018-09-05) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425442B2 (ja) 2020-06-19 2024-01-31 国立大学法人東海国立大学機構 ガス吸収分光システムおよびガス吸収分光方法

Also Published As

Publication number Publication date
CN112997065A (zh) 2021-06-18
JP7440869B2 (ja) 2024-02-29
CN113015899A (zh) 2021-06-22
US20220011220A1 (en) 2022-01-13
JPWO2020105715A1 (ja) 2021-11-11
JP7393767B2 (ja) 2023-12-07
JPWO2020105714A1 (ja) 2021-10-14
WO2020105715A1 (ja) 2020-05-28
US20220011221A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP6824496B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
JP7256501B2 (ja) 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法
JP6004412B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
JP7097583B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
WO2020105714A1 (ja) 光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法
JP6802963B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
WO2019142944A1 (ja) 炭素同位体分析装置及び炭素同位体分析方法
JP2016156706A (ja) 炭素同位体分析装置および炭素同位体分析方法
JP6792778B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
JP2022168861A (ja) 炭素同位体分析装置及び炭素同位体分析方法
WO2020184474A1 (ja) 分析装置
JP2020076783A (ja) 炭素同位体分析装置および炭素同位体分析方法
JP2021032632A (ja) 植物試料分析用炭素同位体分析装置及びそれを用いた植物試料分析用炭素同位体分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557637

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886781

Country of ref document: EP

Kind code of ref document: A1