JP2020076783A - 炭素同位体分析装置および炭素同位体分析方法 - Google Patents
炭素同位体分析装置および炭素同位体分析方法 Download PDFInfo
- Publication number
- JP2020076783A JP2020076783A JP2020013574A JP2020013574A JP2020076783A JP 2020076783 A JP2020076783 A JP 2020076783A JP 2020013574 A JP2020013574 A JP 2020013574A JP 2020013574 A JP2020013574 A JP 2020013574A JP 2020076783 A JP2020076783 A JP 2020076783A
- Authority
- JP
- Japan
- Prior art keywords
- light
- carbon
- isotope
- optical
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
LSCは、テーブルトップサイズの比較的小型な装置であるため簡便かつ迅速な分析が可能であるが、14Cの検出限界濃度が10dpm/mLと高いため臨床試験での使用に耐えうるものではなかった。一方、AMSは14Cの検出限界濃度が0.001dpm/mLと低く、LSCの14Cの検出限界濃度の1000倍以上低いため臨床試験での使用に耐えうるが、装置が大きくしかも高額であるためその利用が制限されていた。例えば日本国内にはAMSは数十台しか設置されていないことより、試料分析の順番待の時間を考慮すると、1サンプルの分析に1週間程度の時間を要していた。そのため、簡易、かつ迅速な14Cの分析法の開発が望まれていた。
例えば非特許文献1では、I. Galliらにより、キャビティーリングダウン分光法(Cavity Ring-Down Spectroscopy、以下「CRDS」ともいう)による天然同位体存在比レベルの14C分析の実証がなされ、その可能性が注目された。
しかしながら、CRDSによる14C分析が実証されたものの、利用された4.5μm帯レーザー光発生装置は極めて複雑な構造であった。そのため、より簡易で使い勝手のよい14Cの分析装置及び分析方法が求められていた。
以上より、本発明は簡易で使い易く14C分析可能な炭素同位体分析装置及び分析方法を提供することを課題とする。
〈1〉炭素同位体から二酸化炭素同位体を生成する二酸化炭素同位体生成装置と、1対のミラーを有する光共振器、光共振器からの透過光の強度を検出する光検出器を備える分光装置と、1つの光源、光源からの光を伝送する第1光ファイバー、第1光ファイバーから分岐し第1光ファイバーの下流側の合流点で合流する波長変換用の第2光ファイバー、周波数が異なる複数の光を通過させることで周波数の差から二酸化炭素同位体の吸収波長の光を発生させる非線形光学結晶を備える光発生装置と、を備える炭素同位体分析装置。
〈2〉炭素同位体は放射性炭素同位体14Cであり、二酸化炭素同位体は放射性二酸化炭素同位体14CO2である〈1〉に記載の炭素同位体分析装置。
〈3〉光源は、光周波数コム光を発生する〈1〉または〈2〉に記載の炭素同位体分析装置。
〈4〉光源は、ファイバーレーザーである〈1〉から〈3〉のいずれか1つに記載の炭素同位体分析装置。
〈5〉二酸化炭素同位体の吸収波長を有する光は、4.5μm帯の光である〈1〉〜〈4〉のいずれか1つに記載の炭素同位体分析装置。
〈6〉二酸化炭素同位体生成装置は、全有機炭素発生装置により炭素同位体から二酸化炭素同位体を生成するものである〈1〉〜〈5〉のいずれか1つに記載の炭素同位体分析装置。
〈7〉第1光ファイバーは、光源から光共振器までつながる〈1〉〜〈6〉のいずれか1つに記載の炭素同位体分析装置。
〈8〉第1光ファイバーは、光源から非線形光学結晶までつながる第1光ファイバーaと、非線形光学結晶から光共振器までつながる中赤外用の第1光ファイバーbと、を備える〈1〉〜〈7〉のいずれか1つに記載の炭素同位体分析装置。
〈9〉光発生装置は、非線形光学結晶から光共振器へ光を伝送する光伝送装置をさらに備える〈1〉〜〈6〉,〈8〉のいずれか1つに記載の炭素同位体分析装置。
〈10〉第1光ファイバーは、光源から非線形光学結晶までつながる第1光ファイバーaである〈9〉に記載の炭素同位体分析装置。
〈11〉光発生装置は、第1、第2光ファイバーの合流点と非線形光学結晶の間、および非線形光学結晶と光共振器の間、の少なくともいずれか一方、または両方に光学レンズをさらに備える〈1〉〜〈6〉、〈8〉〜〈10〉のいずれか1つに記載の炭素同位体分析装置。
〈12〉第1光ファイバーの下流側の他端は、ミラーに当接されている〈1〉〜〈11〉のいずれか1つに記載の炭素同位体分析装置。
〈13〉第2光ファイバーは、非線形ファイバーで構成されている〈1〉〜〈12〉のいずれか1つに記載の炭素同位体分析装置。
〈14〉分光装置は、光共振器を冷却する冷却装置をさらに備える〈1〉〜〈13〉のいずれか1つに記載の炭素同位体分析装置。
〈15〉分光装置は、光共振器を収容する真空装置をさらに備える〈1〉〜〈14〉のいずれか1つに記載の炭素同位体分析装置。
〈16〉分光装置は、振動吸収手段をさらに備える〈1〉〜〈15〉のいずれか1つに記載の炭素同位体分析装置。
〈17〉分光装置は、透過光を分光する回折格子をさらに備え、光検出器は、それぞれ異なる波長の透過光を検出する、光検出器aと、光検出器bと、を備える〈1〉〜〈16〉のいずれか1つに記載の炭素同位体分析装置。
〈19〉炭素同位体は、放射性炭素同位体14Cであり、二酸化炭素同位体は放射性二酸化炭素同位体14CO2である〈18〉に記載の炭素同位体分析方法。
〈20〉照射光は4.5μm帯の光である〈18〉または〈19〉に記載の炭素同位体分析方法。
〈21〉光源から、光周波数コム光を発生させる〈18〉〜〈20〉のいずれか1つに記載の炭素同位体分析方法。
〈22〉光源は、ファイバーレーザーである〈18〉から〈21〉のいずれか1つに記載の炭素同位体分析方法。
〈23〉透過光の強度の測定は、透過光が空気に触れないように、第1光ファイバーの下流側の他端をミラーに当接させて行う〈18〉〜〈22〉のいずれか1つに記載の炭素同位体分析方法。
〈24〉透過光の強度の測定は、二酸化炭素同位体を273K(0℃)以下に冷却しながら行う〈18〉〜〈23〉のいずれか1つに記載の炭素同位体分析方法。
〈25〉照射光を発生させる工程において、光源からの第1光を第1光ファイバーに伝送し、第1光ファイバーから分岐する波長変換用の第2光ファイバーに第1光を伝送させ第1光とは異なる波長の第2光を発生させ、第2光を第1光ファイバーの下流側で合流させ、第1光と第2光を非線形光学結晶に通過させることにより周波数の差から二酸化炭素同位体の吸収波長を有する照射光を発生させる〈18〉〜〈24〉のいずれか1つに記載の炭素同位体分析方法。
〈26〉第1光ファイバーは、光源から光共振器までつながる〈18〉〜〈25〉のいずれか1つに記載の炭素同位体分析方法。
〈27〉第1光ファイバーは、光源から非線形光学結晶までつながる第1光ファイバーaと、非線形光学結晶から光共振器までつながる中赤外用の第1光ファイバーbと、を備える〈18〉〜〈26〉のいずれか1つに記載の炭素同位体分析方法。
〈28〉第2光ファイバーは、非線形ファイバーで構成されている〈18〉〜〈27〉のいずれか1つに記載の炭素同位体分析方法。
〈29〉二酸化炭素同位体は、分光装置に導入される前に冷却される〈18〉〜〈28〉に記載の炭素同位体分析方法。
〈30〉透過光の強度の測定は、光共振器を真空雰囲気内に配置して行う〈18〉〜〈29〉のいずれか1つに記載の炭素同位体分析方法。
〈31〉透過光の強度の測定は、光共振器の外部からの振動を吸収しながら行う〈18〉〜30〉のいずれか1つに記載の炭素同位体分析方法。
〈32〉透過光の強度の測定は、複数に分光されたそれぞれの透過光について行う〈18〉〜〈31〉のいずれか1つに記載の炭素同位体分析方法。
図1は、炭素同位体分析装置の概念図である。炭素同位体分析装置1は、二酸化炭素同位体生成装置40と、光発生装置20と、分光装置10と、さらに演算装置30とを備える。ここでは、分析対象として、炭素同位体である放射性同位体14Cを例にあげて説明する。なお、放射性同位体14Cから生成される二酸化炭素同位体14CO2の吸収波長を有する光は4.5μm帯の光である。詳細は後述するが、測定対象物質の吸収線、光発生装置、及び光共振器モードの複合による選択性により、高感度化を実現することが可能となる。
図1に示すように、分光装置10は、光共振器11と、光共振器11からの透過光の強度を検出する光検出器15とを備える。光共振器(Optical resonator or Optical cavity)11は、分析対象の二酸化炭素同位体が封入される筒状の本体と、本体の内部の長手方向の一端と他端に凹面が向かい合うように配置された高反射率の1対のミラー12a、12b(反射率:99.99%以上)と、本体内部の他端に配置されたミラー12a、12b間隔を調整するピエゾ素子13と、分析対象ガスが充填されるセル16と、を備える。なお、ここでは図示を省略しているが、本体の側部に二酸化炭素同位体を注入するためのガス注入口や、本体内の気圧を調整する気圧調整口を設けておくことが好ましい。
光共振器内部11にレーザー光を入射し閉じ込めると、レーザー光はミラーの反射率に対応した強度の光を出力しながら、数千回〜一万回というオーダーで多重反射を繰り返す。そのため実効的な光路が数10kmにも及ぶため、光共振器内部に封入された分析対象のガスが極微量であっても大きな吸収量を得ることができる。
図2Aに示すように、ミラー間隔が共鳴条件を満たしているときは、高強度の信号が光共振器から透過される。一方、ピエゾ素子13を作動させてミラー間隔を変更し、非共鳴条件とすると、光の干渉効果により信号を検出することができなくなる。つまり、光共振器長を共鳴から非共鳴条件へとすばやく変化させることで、図2Aに示すような指数関数的な減衰信号[リングダウン信号(Ringdown signal)]を観測することができる。リングダウン信号を観測する別の方法として、入力レーザー光を光学スイッチ26(図3)にて素早く遮断する方法が例示できる。
光共振器の内部に吸収物質が充填されていない場合、透過してくる時間依存のリングダウン信号は図2Bの点線で示すような曲線となる。一方、光共振器内に吸光物質が充填されている場合、図2Bの実線で示すように、レーザー光が光共振器内で往復するごとに吸収されるため、光の減衰時間が短くなる。この光の減衰時間は、光共振器内の吸光物質濃度及び入射レーザー光の波長に依存しているため、Beer-Lambertの法則iiを適用することで吸収物質の絶対濃度を算出することができる。また光共振器内の吸収物質濃度と比例関係にある減衰率(リングダウンレート)の変化量を測定することにより、光共振器内の吸収物質濃度を測定することができる。
光共振器から漏れ出た透過光を光検出器により検知し、演算装置を用いて14CO2濃度を算出した後、14CO2濃度から14C濃度を算出することができる。
なお、光検出器と併せて回折格子14を用いて、所定の波長の光を検知する構成としてもよい(図5)。詳細は光発生と併せて後述する。
二酸化炭素同位体14Cの場合、光共振器長が長いことは光路長を確保するのに有効であるが、光共振器長が長くなるとガスセルの体積が増え、必要な試料量が増えるため、光共振器長は10cm〜60cmの間が好ましい。またミラー12a、12bの曲率半径は、光共振器長と同じか、わずかに長くすることが好ましい。
なおミラー間隔は、ピエゾ素子13を駆動することにより、一例として数マイクロメートルから数十マイクロメートルのオーダーで調整することが可能である。最適な共鳴条件を作り出すために、ピエゾ素子13による微調整を行うこともできる。
なお、1対のミラー12a、12bとしては、1対の凹面鏡を図示して説明してきたが、十分な光路が得られるのであれば、その他にも凹面鏡と平面鏡の組み合わせや、平面鏡同士の組み合わせであっても構わない。
ミラー12a、12bを構成する材料としては、サファイアガラスを用いることができる。
分析対象ガスを充填するセル16は、容積がより小さいことが好ましい。少ない分析試料であっても効果的に光の共振効果を得ることができるからである。セル16の容量は、8mL〜1000mLが例示できる。セル容量は、例えば測定に供することができる14C源の量に応じて適宜好ましい容量を選択でき、尿のように大量に入手できる14C源では80mL〜120mLのセルが好適であり、血液や涙液のように入手量が限られる14C源では8mL〜12mLのセルが好適である。
CRDSにおける14CO2吸収量と検出限界を評価するため、分光データに基づく計算を行った。12CO2、13CO2などに関する分光データは大気吸収線データベース(HITRAN)を利用し、14CO2に関しては文献値(「S. Dobos et al., Z. Naturforsch, 44a, 633-639 (1989)」)を使用した。
ここで、14CO2の吸収によるリングダウンレート(指数関数的減衰の割合)の変化量Δβ(=β−β0、β:試料有りの減衰率、β0:試料なしの減衰率)は、14CO2の光吸収断面積σ14、分子数密度N、光速cにより以下のように表せる。
Δβ=σ14(λ,T,P)N(T,P,X14)c
(式中、σ14、Nは、レーザー光波長λ、温度T、圧力P、X14=14C/TotalC比の関数である。)
図7は、計算で求められた13CO2と14CO2の吸収によるΔβの温度依存性を示す図である。図7より、14C/TotalCが10−10、10−11、10−12では、室温300Kでの13CO2による吸収が14CO2の吸収量を超えるか同程度となるため、冷却を行う必要があることが分かった。
一方、光共振器由来のノイズ成分であるリングダウンレートのばらつきΔβ0〜101s−1が実現できれば、14C/TotalC比〜10−11の測定を実現できることが分かる。これにより、分析時の温度として摂氏−40度程度の冷却が必要であることが明らかとなった。
なお、冷却装置や冷却温度について、後述の炭素同位体分析装置の変形例1の欄においてより詳細に述べる。
光発生装置20としては、二酸化炭素同位体の吸収波長を有する光を発生できる装置であれば特に制限されることなく種々の装置を用いることができる。ここでは、放射性炭素同位体14Cの吸収波長である4.5μm帯の光を簡易に発生させ、しかも装置サイズがコンパクトな光発生装置を例に挙げて説明する。光発生装置20は、1つの光源23と、光源23から異なる複数の周波数の光を発生させる複数の光ファイバー(第1光ファイバー21、第2光ファイバー22)と、得られた複数の光を通過させることにより光の周波数の差から二酸化炭素同位体の吸収波長を有する光を発生させる非線形光学結晶25とを備える。
光源23としては、例えばモード同期により短パルスを出力する固体レーザー,半導体レーザー,ファイバーレーザーを用いることができる。なかでもファイバーレーザーを用いることが好ましい。コンパクトで対環境安定性にも優れた,実用的な光源であるからである。
ファイバーレーザーとしては、エルビウム(Er)系(1.55μm帯)またはイッテルビウム(Yb)系(1.04μm帯)のファイバーレーザーを用いることができる。経済的な観点からは汎用されているEr系ファイバーレーザーを用いることが好ましく、光吸収強度を高める観点からはYb系ファイバーレーザーを用いることが好ましい。
第1光ファイバー21の下流側の他端は、ミラー12aに当接されていることが好ましい。光共振器11からの透過光が空気に触れることを防止することで、透過光の強度測定の精度を高めることができるからである。
第1光ファイバー21としては、生成した高強度な超短パルス光の特性を劣化させずに伝送できる光ファイバーを用いることが好ましい。具体的には、溶融石英でできたファイバーを用いることが好ましい。
第2光ファイバー22としては、異常分散の特性を有し,誘導ラマン散乱とソリトン効果によって、効率良く所望の長波長側に超短パルスを生成できる光ファイバーを使用することが好ましい。具体的には、偏波保持ファイバーや単一モードファイバー、フォトニック結晶ファイバー、フォトニックバンドギャップファイバーなどを用いることができる。波長のシフト量に合わせて、数mから数百mまでの長さの光ファイバーを使用することが好ましい。第2光ファイバー22としては、溶融石英でできたファイバーを用いることが好ましい。
このようにして得られる4.5μm帯の光は1パルスが規則的な周波数間隔frの複数の周波数の光(モード)からなる光コム(周波数f=fceo+N・fr、N:モード数)である。光コムを用いてCRDSを行うためには、分析対象の吸収帯の光を取り出す必要がある。
第1光ファイバーと第2光ファイバーの合流点から光共振器の間の光路について、空気中にレーザー光を伝送させる態様や、必要に応じてレンズによるレーザー光の集光及び/または拡大をする光学系を含む光伝送装置を構築してもよい。より好ましい態様として、光源から光共振器までの光路を全て光ファイバーで構築することで、空気によるレーザーの散乱及び吸収を起こさず、さらに光軸のずれを起こしにくい、より安定な装置構成をとることができる。
さらに、光共振器と検出器の間についても、光は空間を伝送させたり、あるいは光ファイバーを用いて伝送してもよく、様々な態様をとり得る。
演算装置30としては、上述の減衰時間やリングダウンレートから光共振器内の吸収物質濃度を測定し、吸収物質濃度から炭素同位体濃度を測定できるものであれば特に制限されることなく種々の装置を用いることができる。
演算制御部31としては、CPU等の通常のコンピュータシステムで用いられる演算手段等で構成すればよい。入力装置32としては、例えばキーボード、マウス等のポインティングデバイスが挙げられる。表示装置33としては、例えば液晶ディスプレイ、モニタ等の画像表示装置等が挙げられる。出力装置34としては、例えばプリンタ等が挙げられる。記憶装置35としてはROM、RAM、磁気ディスクなどの記憶装置が使用可能である。
二酸化炭素同位体生成装置40は、炭素同位体を二酸化炭素同位体に変換可能であれば特に制限されることなく種々の装置を用いることができる。二酸化炭素同位体生成装置40としては、試料を酸化させ、試料中に含まれる炭素を二酸化炭素にする機能を有していることが好ましい。例えば全有機炭素(total organic carbon 以下「TOC」という)発生装置、ガスクロマトグラフィー用の試料ガス発生装置、燃焼イオンクロマトグラフィー用の試料ガス発生装置等の二酸化炭素生成装置(G)41を用いることができる。なかでも炭素同位体から二酸化炭素同位体を簡易に生成可能であるTOC発生装置を用いることが好ましい。
なお本明細書中において、全有機炭素とは、水素原子、酸素原子、窒素原子等と結合して有機化合物を構成する炭素を表す。また、無機体炭素とは、二酸化炭素、炭酸イオン、炭酸水素イオンのような無機化合物を構成する炭素を表す。
全有機炭素分析装置(TOC)を用いた実験により、試料の燃焼による二酸化炭素(CO2)化と試料導入について以下のような実験を行った。
生体試料を模擬したグルコース水溶液をセラミック製燃焼皿に滴下してTOCに導入し、約900度の加熱によりCO2化を行った。発生したCO2は、キャリアガス(O2:99.9%以上+N2:<900ppm)とともにCRDSシステムを模擬したCO2濃度計に導入された。導入されたガス中のCO2分圧の時間変化の結果を図8に示す。グルコース水溶液14μL(含有炭素量70μgC)、ガス流量320mL/minの場合、約20秒間で導入され、CO2分圧は最大2.2%となることがわかった。
以上より、生体試料中の炭素をCRDSシステムに導入し、炭素同位体分析を行うに当たり、生体試料の二酸化炭素化を行えることが確認できた。
LSCで生体試料を測定する場合の前処理工程について、生体試料の種類により処理時間に差はあるものの、数分から約28時間を要する。尿と血液の前処理法の例を挙げる。
尿をLSC測定に供する場合、尿試料を必要に応じて蒸留水で希釈すればよい。当該前処理に要する時間は、数分である。
LSCは,試料から発する放射線とシンチレーターにより発する蛍光を検出し,放射線量を計測するが血液をLSC測定に供する場合、血液由来の色素が蛍光の検出を妨害し,正しく測定できない場合がある。このような場合,血液試料に組織溶解剤Soluene−350(PerkinElmer社)などを添加し、数時間40℃から60℃に加温し、さらに30%過酸化水素を添加して血液色素を脱色させる必要がある場合がある。当該前処理に要する時間は、約4〜24時間である。また別の前処理方法としては、血液試料を乾燥させたのち、試料中の炭素を二酸化炭素に燃焼酸化させ、生成した二酸化炭素をアミンなどでトラップする方法が挙げられる。
当該前処理に要する時間は、約4〜24時間である。
第1の工程は、測定に供する生体試料を、必要に応じて希釈溶媒で希釈し、分取する工程である。希釈溶媒として、超純水またはブランク試料等が好適に用いられる。
第2の工程は、上記分取した試料を酸化させ、試料中に含まれる炭素を二酸化炭素にする工程である。
第3の工程は、水や窒素などから二酸化炭素を単離・精製する工程である。精製後の二酸化炭素について、炭素量を定量する。
第4の工程は、精製された二酸化炭素を還元反応によりグラファイトにする工程である。還元反応の例として、還元剤である鉄粉末と水素ガスを混合し電気炉で加熱しグラファイトを作製する方法が挙げられる。
第5の工程は、調製したグラファイトをプレスする工程である。
上記前処理工程に要する時間は約6日間である。
14C分析装置として14Cに対する検出感度0.1dpm/mL
測定処理能力:400サンプル/1日、
装置サイズ:2m×1m×1m以下、である。
一方、LSCの性能やサイズを挙げると概ね以下の通りとなる。
14Cに対する検出感度:10dpm/mL
測定処理能力:400サンプル/1日、
装置サイズ:1m×1m×0.5m、である。
またAMSの性能やサイズを挙げると概ね以下の通りとなる。
14Cに対する検出感度:0.001dpm/mL
測定処理能力:5サンプル/1日、
装置サイズ:15m×10m×3m程度、である。
図3は、炭素同位体分析装置の変形例1の概念図である。図3に示すように、分光装置1aは、光共振器11を冷却するペルチェ素子19と、光共振器11を収納する真空装置18と、をさらに備えてもよい。14CO2の光吸収は温度依存性を有するため、ペルチェ素子19により光共振器11内の設定温度を低くすることで、14CO2の吸収線と13CO2、12CO2の吸収線との区別が容易になり、14CO2の吸収強度が強くなるからである。また光共振器11を真空装置18内に配置して、光共振器11が外気に晒されることを防止して外部温度の影響を軽減することで、分析精度が向上するからである。
光共振器11を冷却する冷却装置としては、ペルチェ素子19の他にも、例えば、液体窒素槽、ドライアイス槽などを用いることができる。分光装置11を小型化できる観点からはペルチェ素子19を用いることが好ましく、装置の製造コストを下げる観点からは液体窒素水槽もしくはドライアイス槽を用いることが好ましい。
真空装置18としては、光共振器11を収納でき、また光発生装置20からの照射光を光共振器11内に照射でき、透過光を光検出器に透過できるものであれば、特に制限なく様々な真空装置を用いることができる。
分光装置は、振動吸収手段をさらに備えてもよい。分光装置の外部からの振動によりミラー間隔がずれることを防止して、測定精度を上げることができるからである。振動吸収手段としては、例えば衝撃吸収剤(高分子ゲル)や免震装置を用いることができる。免震装置としては外部振動の逆位相の振動を分光装置に与えることができる装置を用いることができる。
上述の実施形態においては、リングダウン信号の取得手段として、分光装置10内においてピエゾ素子13によるミラー間隔の調整を用いたが、リングダウン信号を得るために、光発生装置20内において光共振器11への光を遮断する光遮断装置を設けて光共振器に照射される照射光のオンオフ制御を行う構成としてもよい。光遮断装置としては、二酸化炭素同位体の吸収波長の光をすばやく遮断できる装置であれば特に制限されることなく種々の装置を用いることができ、図3に示すような光学スイッチ26を例示できる。なお、光共振器内の光の減衰時間よりも十分にすばやく光を遮断する必要がある。
第1光ファイバー21aとしては、上述の第1光ファイバー21と同様のファイバーを用いることができる。第1光ファイバー21bとしては、4.5μm帯の光を吸収しずらい中赤外用の光ファイバーであれば特に制限なく様々な光ファイバーを用いることができ、フッ化物系ファイバーや中空ファイバーを用いることが好ましい。
なお、光発生装置20は、図3に示す第1光ファイバー21bに代えて、非線形光学結晶25から光共振器11へ光を伝送する光伝送装置を備えてもよい。光伝送装置としては1以上の光学レンズが例示でき、光学レンズを非線形光学結晶の上流、下流、あるいはその両方に配置した光路、さらにそれらをモジュール化した光学装置等を用いることができる。
図5は、炭素同位体分析装置の変形例2の概念図である。図5に示すように、分光装置1bは、透過光を分光する回折格子14をさらに備えてもよい。その際、光検出器は、それぞれ異なる波長の透過光を検出する、光検出器15aと、光検出器15bと、を備えることが好ましい。分光された波長の異なる透過光についてそれぞれ分析することで、測定精度を上げることができるからである。
光共振器を用いて所定の光を選択すると共に、通過後に回折格子を設置し、さらに波長選択を行うことで、必要な吸収線のみの透過光強度を得て測定試料ガス中の14C濃度を測定してもよい。回折格子を設置することでより分析能が向上するからである。
分析対象として放射性同位体14Cを例にあげて説明する。
上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
実施形態に係る炭素同位体分析装置においては、分析対象である炭素同位体として放射性同位体14Cを中心に説明した。放射性同位体14Cの他にも、安定同位体元素である12C、13Cを分析することができる。その場合の照射光としては、例えば、12C及び13C分析を12CO2及び13CO2の吸収線分析として行う場合は、2μm帯や1.6μm帯の光を用いることが好ましい。
12CO2、及び13CO2の吸収線分析を行う場合、ミラー間隔は10〜60cm、ミラーの曲率半径はミラー間隔と同じかそれ以上、とすることが好ましい。
なお、12C、13C、14Cはそれぞれ化学的には同じ挙動を示すが、安定同位体元素12C、13Cよりも放射性同位体14Cの天然存在比が低いことから、放射性同位体14Cはその濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。
実施形態に係る炭素同位体分析装置は、第1光ファイバーから分岐し分岐点より下流側で第1光ファイバーに合流する非線形ファイバーで構成された第3の光ファイバーをさらに備えてもよい。第1〜第3の光ファイバーを組み合わせることで2種以上の様々な周波数の光を発生することが可能になるからである。
例えば、実施形態において説明した構成を一部に含む医療診断装置、環境測定装置も同様に製造することができる。
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
10 分光装置
11 光共振器
12 ミラー
13 ピエゾ素子
14 回折格子
15 光検出器
16 セル
18 真空装置
19 ペルチェ素子
20 光発生装置
21 第1光ファイバー
22 第2光ファイバー
23 光源
25 非線形光学結晶
26 光学スイッチ
30 演算装置
40 二酸化炭素同位体生成装置
Claims (32)
- 炭素同位体から二酸化炭素同位体を生成する二酸化炭素同位体生成装置と、
1対のミラーを有する光共振器、前記光共振器からの透過光の強度を検出する光検出器を備える分光装置と、
1つの光源、前記光源からの光を伝送する第1光ファイバー、前記第1光ファイバーから分岐し前記第1光ファイバーの下流側の合流点で合流する波長変換用の第2光ファイバー、周波数が異なる複数の光を通過させることで周波数の差から前記二酸化炭素同位体の吸収波長の光を発生させる非線形光学結晶を備える光発生装置と
を備えることを特徴とする炭素同位体分析装置。 - 前記炭素同位体は放射性炭素同位体14Cであり、前記二酸化炭素同位体は放射性二酸化炭素同位体14CO2であることを特徴とする請求項1に記載の炭素同位体分析装置。
- 前記光源は、光周波数コム光を発生することを特徴とする請求項1または2に記載の炭素同位体分析装置。
- 前記光源は、ファイバーレーザーであることを特徴とする請求項1〜3のいずれか1項に記載の炭素同位体分析装置。
- 前記二酸化炭素同位体の吸収波長を有する光は、4.5μm帯の光であることを特徴とする請求項1〜4のいずれか1項に記載の炭素同位体分析装置。
- 前記二酸化炭素同位体生成装置は、全有機炭素発生装置により前記炭素同位体から前記二酸化炭素同位体を生成するものであることを特徴とする請求項1〜5のいずれか1項に記載の炭素同位体分析装置。
- 前記第1光ファイバーは、前記光源から前記光共振器までつながることを特徴とする請求項1〜6のいずれか1項に記載の炭素同位体分析装置。
- 前記第1光ファイバーは、前記光源から前記非線形光学結晶までつながる第1光ファイバーaと、前記非線形光学結晶から前記光共振器までつながる中赤外用の第1光ファイバーbと、を備えることを特徴とする請求項1〜7のいずれか1項に記載の炭素同位体分析装置。
- 前記光発生装置は、前記非線形光学結晶から前記光共振器へ光を伝送する光伝送装置をさらに備えることを特徴とする請求項1〜6,8のいずれか1項に記載の炭素同位体分析装置。
- 前記第1光ファイバーは、前記光源から前記非線形光学結晶までつながる第1光ファイバーaであることを特徴とする請求項9に記載の炭素同位体分析装置。
- 前記光発生装置は、
前記第1、第2光ファイバーの合流点と前記非線形光学結晶の間、および
前記非線形光学結晶と前記光共振器の間、の少なくともいずれか一方、または両方に光学レンズをさらに備えることを特徴とする請求項1〜6、8〜10のいずれか1項に記載の炭素同位体分析装置。 - 前記第1光ファイバーの下流側の他端は、前記ミラーに当接されていることを特徴とする請求項1〜11のいずれか1項に記載の炭素同位体分析装置。
- 前記第2光ファイバーは、非線形ファイバーで構成されていることを特徴とする請求項1〜12のいずれか1項に記載の炭素同位体分析装置。
- 前記分光装置は、前記光共振器を冷却する冷却装置をさらに備えることを特徴とする請求項1〜13のいずれか1項に記載の炭素同位体分析装置。
- 前記分光装置は、前記光共振器を収容する真空装置をさらに備えることを特徴とする請求項1〜14のいずれか1項に記載の炭素同位体分析装置。
- 前記分光装置は、振動吸収手段をさらに備えることを特徴とする請求項1〜15のいずれか1項に記載の炭素同位体分析装置。
- 前記分光装置は、前記透過光を分光する回折格子をさらに備え、
前記光検出器は、それぞれ異なる波長の透過光を検出する、光検出器aと、光検出器bと、を備えることを特徴とする請求項1〜16のいずれか1項に記載の炭素同位体分析装置。 - 炭素同位体から二酸化炭素同位体を生成する工程と、
前記二酸化炭素同位体を1対のミラーを有する光共振器内に充填する工程と、
1つの光源から周波数が異なる複数の光を発生させ、前記複数の光を非線形光学結晶に通過させることにより周波数の差から前記二酸化炭素同位体の吸収波長を有する照射光を発生させる工程と、
前記二酸化炭素同位体に前記照射光を照射し共振させた際に得られる透過光の強度を測定する工程と、
前記透過光の強度から炭素同位体濃度を計算する工程と、を有する炭素同位体分析方法。 - 前記炭素同位体は放射性炭素同位体14Cであり、前記二酸化炭素同位体は放射性二酸化炭素同位体14CO2であることを特徴とする請求項18に記載の炭素同位体分析方法。
- 前記照射光は4.5μm帯の光であることを特徴とする請求項18または19に記載の炭素同位体分析方法。
- 前記光源から、光周波数コム光を発生させることを特徴とする18〜20のいずれか1項に記載の炭素同位体分析方法。
- 前記光源は、ファイバーレーザーであることを特徴とする請求項18〜21のいずれか1項に記載の炭素同位体分析方法。
- 前記透過光の強度の測定は、前記透過光が空気に触れないように、前記第1光ファイバーの下流側の他端を前記ミラーに当接させて行うことを特徴とする請求項18〜22のいずれか1項に記載の炭素同位体分析方法。
- 前記透過光の強度の測定は、前記二酸化炭素同位体を273K(0℃)以下に冷却しながら行うことを特徴とする請求項18〜23のいずれか1項に記載の炭素同位体分析方法。
- 前記照射光を発生させる工程において、
前記光源からの第1光を第1光ファイバーに伝送し、
前記第1光ファイバーから分岐する波長変換用の第2光ファイバーに前記第1光を伝送させ前記第1光とは異なる波長の第2光を発生させ、
前記第2光を前記第1光ファイバーの下流側で合流させ、前記第1光と前記第2光を前記非線形光学結晶に通過させることにより周波数の差から前記二酸化炭素同位体の吸収波長を有する照射光を発生させることを特徴とする請求項18〜24のいずれか1項に記載の炭素同位体分析方法。 - 前記第1光ファイバーは、前記光源から前記光共振器までつながることを特徴とする請求項18〜25のいずれか1項に記載の炭素同位体分析方法。
- 前記第1光ファイバーは、前記光源から前記非線形光学結晶までつながる第1光ファイバーaと、前記非線形光学結晶から前記光共振器までつながる中赤外用の第1光ファイバーbと、を備えることを特徴とする請求項18〜26のいずれか1項に記載の炭素同位体分析方法。
- 前記第2光ファイバーは、非線形ファイバーで構成されていることを特徴とする請求項18〜27のいずれか1項に記載の炭素同位体分析方法。
- 前記二酸化炭素同位体は、分光装置に導入される前から冷却されることを特徴とする請求項18〜28のいずれか1項に記載の炭素同位体分析方法。
- 前記透過光の強度の測定は、前記光共振器を真空雰囲気内に配置して行うことを特徴とする請求項18〜29のいずれか1項に記載の炭素同位体分析方法。
- 前記透過光の強度の測定は、前記光共振器の外部からの振動を吸収しながら行うことを特徴とする請求項18〜30のいずれか1項に記載の炭素同位体分析方法。
- 前記透過光の強度の測定は、複数に分光されたそれぞれの透過光について行うことを特徴とする請求項18〜31のいずれか1項に記載の炭素同位体分析方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020013574A JP2020076783A (ja) | 2020-01-30 | 2020-01-30 | 炭素同位体分析装置および炭素同位体分析方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020013574A JP2020076783A (ja) | 2020-01-30 | 2020-01-30 | 炭素同位体分析装置および炭素同位体分析方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015035912A Division JP6802963B2 (ja) | 2015-02-25 | 2015-02-25 | 炭素同位体分析装置および炭素同位体分析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020076783A true JP2020076783A (ja) | 2020-05-21 |
Family
ID=70723930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020013574A Pending JP2020076783A (ja) | 2020-01-30 | 2020-01-30 | 炭素同位体分析装置および炭素同位体分析方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020076783A (ja) |
-
2020
- 2020-01-30 JP JP2020013574A patent/JP2020076783A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6004412B2 (ja) | 炭素同位体分析装置および炭素同位体分析方法 | |
JP6824496B2 (ja) | 炭素同位体分析装置および炭素同位体分析方法 | |
JP7256501B2 (ja) | 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法 | |
Wang et al. | Tunable fiber laser based photoacoustic spectrometer for multi-gas analysis | |
JPWO2019142944A1 (ja) | 炭素同位体分析装置及び炭素同位体分析方法 | |
JP6802963B2 (ja) | 炭素同位体分析装置および炭素同位体分析方法 | |
WO2020105714A1 (ja) | 光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法 | |
JP2016156706A (ja) | 炭素同位体分析装置および炭素同位体分析方法 | |
JP6792778B2 (ja) | 炭素同位体分析装置および炭素同位体分析方法 | |
JP2020076783A (ja) | 炭素同位体分析装置および炭素同位体分析方法 | |
JP7371888B2 (ja) | 植物試料分析用炭素同位体分析装置及びそれを用いた植物試料分析用炭素同位体分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20210407 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210604 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211027 |