WO2019142944A1 - 炭素同位体分析装置及び炭素同位体分析方法 - Google Patents

炭素同位体分析装置及び炭素同位体分析方法 Download PDF

Info

Publication number
WO2019142944A1
WO2019142944A1 PCT/JP2019/001906 JP2019001906W WO2019142944A1 WO 2019142944 A1 WO2019142944 A1 WO 2019142944A1 JP 2019001906 W JP2019001906 W JP 2019001906W WO 2019142944 A1 WO2019142944 A1 WO 2019142944A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
carbon dioxide
isotope
carbon
dioxide isotope
Prior art date
Application number
PCT/JP2019/001906
Other languages
English (en)
French (fr)
Inventor
淳史 佐藤
哲夫 井口
英生 富田
西澤 典彦
Original Assignee
積水メディカル株式会社
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社, 国立大学法人名古屋大学 filed Critical 積水メディカル株式会社
Priority to US16/960,763 priority Critical patent/US20200348227A1/en
Priority to CN201980009399.0A priority patent/CN111630370A/zh
Priority to JP2019566546A priority patent/JPWO2019142944A1/ja
Publication of WO2019142944A1 publication Critical patent/WO2019142944A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/084Fibres for remote transmission

Definitions

  • the present invention relates to a carbon isotope analyzer and a carbon isotope analysis method. More specifically, a light generator for generating light with a narrow line width and high intensity that is useful for measuring radioactive carbon isotope 14 C and the like, and a radioactive carbon isotope analyzer using the same and a radioactive carbon isotope analysis method
  • the present invention relates to an apparatus and method for purifying a radioactive carbon isotope-containing gas to be analyzed.
  • Carbon isotopes have been widely applied in a wide range of contexts, such as environmental dynamics evaluation based on the carbon cycle and empirical research of history by dating.
  • the carbon isotopes differ slightly depending on the area and environment, but stable isotopes 12 C and 13 C are 98.89% and 1.11%, respectively, and radioactive isotope 14 C is 1 ⁇ 10 -10 % natural.
  • the concentration of the isotope with a low abundance ratio can be increased by artificial manipulation to accurately measure various reaction processes. Observation becomes possible.
  • radioactive carbon isotope 14 C as a labeled compound to a drug in vivo pharmacokinetic evaluation, for example, in Phase I, Phase IIa. It is being analyzed.
  • a trace amount of radioactive carbon isotope 14 C (hereinafter simply referred to as “ 14 C)) can be administered to the human body and analyzed, as it will provide insights on the efficacy and toxicity of the drug caused by the problem of pharmacokinetics, thus significantly reducing the development lead time in the drug discovery process It is expected.
  • LSC liquid scintillation counting
  • AMS accelerator mass spectrometry
  • Non-Patent Document 1 I. Galli et al. Demonstrated 14 C analysis of natural isotope abundance level by cavity ring-down spectroscopy (hereinafter referred to as “CRDS”), and The possibility was noted.
  • CRDS cavity ring-down spectroscopy
  • the 14 C analysis by CRDS has been demonstrated, the 4.5 ⁇ m band laser light generator used has a very complicated structure. Therefore, there has been a demand for a simpler and more convenient 14 C analyzer and analysis method.
  • Patent No. 3390755 gazette Patent No. 6004412
  • the present inventors et al. Proposed a simple and convenient carbon isotope analyzer and analysis method using an optical comb as a light source (see Patent Document 2).
  • Patent Document 2 Proposed a simple and convenient carbon isotope analyzer and analysis method using an optical comb as a light source (see Patent Document 2).
  • Patent Document 2 Proposed a simple and convenient carbon isotope analyzer and analysis method using an optical comb as a light source (see Patent Document 2).
  • Patent Document 2 a further problem has arisen of increasing the partial pressure of carbon dioxide isotope in the gas fed into the optical resonator.
  • the present invention provides a carbon isotope analyzer having high sensitivity performance and high analysis accuracy, and an analysis method using the same, which has a high partial pressure of carbon dioxide isotope in a gas fed into an optical resonator. To be an issue.
  • a combustion unit for producing a gas containing carbon dioxide isotope from carbon isotope a carbon dioxide isotope generation apparatus provided with a carbon dioxide isotope purification unit, an optical resonator having a set of mirrors, an optical resonator And a carbon dioxide isotope trap provided with a cooling device for freezing carbon dioxide isotope, which is disposed between the carbon dioxide isotope generation device and the spectroscopy device, and the spectroscopy device provided with a light detector for detecting the intensity of transmitted light of And a light generator, a carbon isotope analyzer.
  • a combustion unit for producing a gas containing carbon dioxide isotopes from carbon isotopes and a carbon dioxide isotope purification unit are provided, and the carbon dioxide isotope purification unit is a contaminant gas separation unit, a carbon dioxide isotope enrichment unit, a dehumidification unit
  • a carbon dioxide isotope generating device comprising: an optical resonator having a pair of mirrors and a cooling device for preventing noise generation; a spectroscope comprising a light detector for detecting the intensity of transmitted light from the optical resonator;
  • a carbon isotope analyzer comprising: a carbon dioxide isotope trap provided with a carbon dioxide isotope freezing refrigerator disposed between the carbon isotope generator and the spectrometer; and a light generator.
  • the light generating device includes one light source, a branching means for branching light from the light source, a condensing lens for condensing light from the branching means, and light from the condensing lens to be reflected and branched.
  • the carbon isotope analysis device according to (1) or (2) comprising: a light generating device comprising a mirror that sends light back to the light source via the means.
  • the light generator comprises a main light source, a light generator main body having an optical fiber for transmitting light from the main light source, and a light bundle having a narrow line width of 4500 nm to 4800 nm for one light wavelength range.
  • Optical comb source for generating a comb, optical fiber for beat signal measurement for transmitting light from the optical comb source, branching means disposed on an optical fiber for transmitting light from the main light source, light from the main light source via the branching means And an optical fiber for branching a part of the light into an optical fiber for measuring a beat signal, and a beat signal measuring machine provided with a photodetector for measuring a beat signal generated by a frequency difference between light from a main light source and light from an optical comb source.
  • the carbon isotope analyzer according to (1) or (2).
  • the light generating device is branched from the branch point of the first optical fiber and the first optical fiber for transmitting the first light from the light source, and the first optical fiber, and merges at the junction on the downstream side of the first optical fiber
  • the second amplifier which has a different band from the first amplifier, and a plurality of light with different frequencies are passed to allow light of the absorption wavelength of the carbon dioxide isotope to be within the wavelength of 4.5 ⁇ m to 4.8 ⁇ m.
  • a carbon isotope analyzer comprising: a nonlinear optical crystal that generates an optical comb of infrared light frequencies. (7) generating carbon dioxide isotope from carbon isotope, cooling carbon dioxide isotope trap to 0 ° C.
  • a carbon isotope analysis method comprising the steps of measuring the intensity of transmitted light and calculating the carbon isotope concentration from the intensity of transmitted light.
  • a carbon isotope analyzer which has a high partial pressure of carbon dioxide isotope in a gas fed into an optical resonator and which has higher sensitivity performance and analysis accuracy, and an analysis method using the same.
  • FIG. 1 is a schematic view of a first embodiment of a carbon isotope analyzer.
  • FIG. 2 is a schematic diagram of an embodiment of a carbon isotope trap system.
  • FIG. 3 is a diagram showing 4.5 ⁇ m band absorption spectra of 14 CO 2 and a competing gas.
  • FIGS. 4A and 4B are diagrams showing the principle of high-speed scanning type cavity ring-down absorption spectroscopy using laser light.
  • FIG. 5 is a graph showing the temperature dependency of absorbed amounts ⁇ of 13 CO 2 and 14 CO 2 in CRDS.
  • FIG. 6 is a conceptual view of a modification of the optical resonator.
  • FIG. 7 is a diagram showing the relationship between the absorption wavelength and the absorption intensity of the analysis sample.
  • FIG. 8 is a conceptual view of a delay line.
  • FIG. 9 is a diagram showing the principle of mid-infrared comb generation using one optical fiber.
  • FIG. 10 is a conceptual view of a second embodiment of a carbon isotope analyzer.
  • FIG. 11 is a diagram showing an Er-doped fiber-laser-based mid-infrared (MIR) comb generation system 1.
  • FIG. 12 is a conceptual view of a third embodiment of a carbon isotope analyzer.
  • FIG. 13A, FIG. 13B, and FIG. 13C are process schematic diagrams of a light generator of a third carbon isotope analyzer.
  • FIG. 14 is a conceptual view of a fourth embodiment of a carbon isotope analyzer.
  • FIG. 15 is a figure which shows the effect of a carbon-dioxide isotope trap.
  • FIG. 1 is a conceptual view of a carbon isotope analyzer according to a first aspect.
  • the carbon isotope analyzer 1 comprises a carbon dioxide isotope generator 40, a spectroscope 10, a carbon dioxide isotope trap 60, a light generator 20A, and an arithmetic unit 30. .
  • the carbon dioxide isotope production unit 40 comprises a combustion unit for producing a gas containing carbon dioxide isotope from carbon isotope, a carbon dioxide isotope purification unit, and a carbon quantity measurement unit for measuring the total carbon quantity from carbon dioxide quantity Equipped with
  • the spectroscope device 10 includes an optical resonator 11 having a pair of mirrors 12 a and 12 b, and a photodetector 15 for detecting the intensity of transmitted light from the optical resonator 11.
  • FIG. 2 is a conceptual view of a carbon dioxide isotope trap system.
  • the carbon dioxide isotope trap 60 is disposed upstream of the gas supply pipe 69 for feeding carbon dioxide isotopes from the carbon dioxide isotope generator 40 to the spectrometer 10, and the gas supply pipe 69.
  • a radioactive isotope 14 C which is a carbon isotope will be described as an example of an analysis target.
  • the light having the absorption wavelength of the carbon dioxide isotope 14 CO 2 generated from the radioactive isotope 14 C is light in the 4.5 ⁇ m band.
  • carbon isotope means stable carbon isotopes 12 C, 13 C and radioactive carbon isotope 14 C unless otherwise specified. Moreover, when it displays only with elemental symbol “C”, it means the carbon isotope mixture in natural abundance ratio.
  • the stable isotopes of oxygen include 16 O, 17 O and 18 O, but when expressed as the elemental symbol “O”, it means an oxygen isotope mixture in a natural abundance ratio.
  • carbon dioxide isotope is meant 12 CO 2 , 13 CO 2 and 14 CO 2 unless otherwise noted. Also, when simply expressed as “CO 2 ", it means a carbon dioxide molecule composed of carbon and oxygen isotopes of natural abundance.
  • biological sample refers to blood, plasma, serum, urine, feces, bile, saliva, other body fluids or secretions, exhalation gas, oral gas, skin gas, other biological gas, lung
  • organs such as heart, liver, kidney, brain, skin and their fragments
  • the source of the biological sample includes all organisms including animals, plants and microorganisms, preferably mammalian and more preferably human. Mammals include, but are not limited to, humans, monkeys, mice, rats, guinea pigs, rabbits, sheep, goats, horses, cows, pigs, dogs, cats and the like.
  • the carbon dioxide isotope production apparatus 40 can use various apparatuses without particular limitation as long as it can convert carbon isotopes to carbon dioxide isotopes.
  • the carbon dioxide isotope production apparatus 40 preferably has a function of oxidizing a sample and converting carbon contained in the sample into carbon dioxide.
  • a total organic carbon (hereinafter referred to as "TOC") generator a sample gas generator for gas chromatography, a sample gas generator for combustion ion chromatography, an element analyzer (EA), etc.
  • a carbon generator (G) 41 can be used.
  • TOC total organic carbon
  • FIG. 3 By burning the biological sample after the pretreatment, a gas containing carbon dioxide isotope 14 CO 2 (hereinafter, also referred to as “ 14 CO 2 ”) can be generated. However, along with the generation of 14 CO 2 , contaminant gases such as CO and N 2 O are also generated. Since CO and N 2 O each have an absorption spectrum of 4.5 ⁇ m band as shown in FIG.
  • the combustion unit 41 of the carbon dioxide isotope production apparatus 40 preferably includes a combustion tube 410, a heating unit (not shown) capable of heating the combustion tube, and a reduction unit 412. .
  • the carbon dioxide isotope purification unit 43 preferably includes a dryer 430, an adsorbent 431, a thermal desorption column 432, and a detector 433.
  • the combustion tube 410 is made of heat-resistant glass (such as quartz glass) so as to be able to accommodate a sample therein, and a sample inlet is formed in part of the combustion tube.
  • the combustion tube may form a carrier gas inlet in such a manner that carrier gas can be introduced into the combustion tube in addition to the sample inlet.
  • the sample introduction section is formed of a separate member from the combustion pipe at one end of the combustion pipe, and the sample introduction port and carrier gas are introduced The mouth may be formed.
  • the heating unit include an electric furnace such as a tubular electric furnace which can dispose the combustion pipe inside and can heat the combustion pipe.
  • An example of a tubular electric furnace is ARF-30M (Asahi Rika Seisakusho Co., Ltd.).
  • the combustion tube 410 is provided with an oxidation unit 410 and / or a reduction unit 412 filled with at least one type of catalyst on the downstream side of the carrier gas flow channel.
  • the oxidizing unit and / or the reducing unit may be provided at one end of the combustion tube 41, or may be provided as a separate member.
  • Copper oxide and a silver-cobalt oxide mixture can be exemplified as a catalyst for filling the oxidation part.
  • the catalyst to be charged in the reduction portion include reduced copper and platinum catalysts.
  • the reduction part it can be expected to reduce nitrogen oxides (NO x ) containing N 2 O to N 2 .
  • a thermal desorption column (CO 2 capture column) 432 used in gas chromatography (GC) of 14 CO 2 in a gas generated by combustion of a biological sample is used. Can. This can reduce or eliminate the effects of CO and N 2 O at the stage of detecting 14 CO 2 . In addition, since the concentration of 14 CO 2 is expected by temporarily collecting CO 2 gas containing 14 CO 2 in the GC column, an improvement in the partial pressure of 14 CO 2 can be expected.
  • the carbon dioxide isotope purification unit 43 preferably includes an adsorbent 431 of 14 CO 2 such as soda lime or calcium hydroxide. Thereby, the problem of contaminant gas can be eliminated by isolating 14 CO 2 in the form of carbonate.
  • the spectroscopic device 10 includes an optical resonator 11 and a photodetector 15 that detects the intensity of transmitted light from the optical resonator 11.
  • the optical resonator (Optical resonator or Optical cavity) 11 is disposed so that the cylindrical main body in which the carbon dioxide isotope to be analyzed is enclosed and the concave surface on one end side and the other end side in the longitudinal direction inside the main body
  • omitted here it is preferable to provide the gas injection port for inject
  • the reflectance of the pair of mirrors 12a and 12b is preferably 99% or more and more preferably 99.99% or more.
  • the laser light When the laser light is incident and confined within the optical resonator 11, the laser light repeats multiple reflection in the order of several thousand times to ten thousand times while outputting light of intensity corresponding to the reflectance of the mirror. Therefore, since the effective optical path extends to several tens of kilometers, a large amount of absorption can be obtained even if the amount of the gas to be analyzed enclosed inside the optical resonator is very small.
  • CRDS using fiber Bragg grading (FBG) and a gain switch semiconductor laser, or CRDS using an evanescent optical device can also be used.
  • FIGS. 4A and 4B are diagrams showing the principle of high-speed scanning type cavity ring-down absorption spectroscopy (hereinafter referred to as “CRDS”) using laser light.
  • CRDS high-speed scanning type cavity ring-down absorption spectroscopy
  • the transmitted time-dependent ring down signal has a curve as shown by the dotted line in FIG. 4B.
  • the light resonator is filled with a light absorbing material, as shown by the solid line in FIG. 4B, the laser light is absorbed as it travels back and forth in the light resonator, so the light attenuation time is shortened. Since the attenuation time of this light depends on the concentration of the light absorbing material in the optical resonator and the wavelength of the incident laser light, the absolute concentration of the absorbing material can be calculated by applying the Beer-Lambert law ii. . Further, the concentration of the absorbing substance in the optical resonator can be measured by measuring the amount of change in the attenuation factor (ring down rate) proportional to the concentration of the absorbing substance in the optical resonator.
  • the 14 C concentration can be calculated from the 14 CO 2 concentration.
  • the distance between the mirrors 12a and 12b of the optical resonator 11, the radius of curvature of the mirrors 12a and 12b, and the longitudinal length and width of the main body are preferably changed according to the absorption wavelength of the carbon dioxide isotope to be analyzed.
  • the assumed resonator length is 1 mm to 10 m. In the case of carbon dioxide isotope 14 CO 2 , having a long resonator length is effective for securing the optical path length, but as the resonator length increases, the volume of the gas cell increases and the required amount of sample increases, so resonance is caused.
  • the length is preferably between 10 cm and 60 cm.
  • the radius of curvature of the mirrors 12a and 12b is preferably equal to or longer than the resonator length.
  • the mirror interval can be adjusted, for example, on the order of several micrometers to several tens of micrometers by driving the piezo element 13. Fine adjustment by the piezo element 13 can also be performed to create an optimal resonance condition.
  • a pair of concave mirrors has been illustrated and described as the pair of mirrors 12a and 12b, other combinations of concave mirrors and plane mirrors or combinations of plane mirrors may be used if sufficient optical path can be obtained. It does not matter.
  • the material constituting the mirror 12a, a 12b it is possible to use a sapphire glass, CaF 2, ZnSe.
  • the cells 16 filled with the gas to be analyzed preferably have a smaller volume. This is because the resonance effect of light can be effectively obtained even with a small number of analysis samples.
  • the volume of the cell 16 can be, for example, 8 mL to 1000 mL.
  • the cell volume can be appropriately selected depending on, for example, the amount of 14 C source that can be subjected to measurement, and for 14 C sources that can be obtained in large amounts like urine, 80 mL to 120 mL of cells are preferable, and blood and For 14 C sources with limited availability, such as tears, cells of 8 mL to 12 mL are preferred.
  • FIG. 5 is a diagram showing the temperature dependency of ⁇ by absorption of 13 CO 2 and 14 CO 2 determined by calculation. As shown in FIG.
  • FIG. 6 a conceptual view (a partially cutaway view) of a specific embodiment of the optical resonator is shown in FIG.
  • the optical resonator 91 is disposed at both ends of the cylindrical heat insulation chamber 98 as a vacuum device, the measurement gas cell 96 disposed in the heat insulation chamber 98, and the measurement gas cell 96.
  • the water cooling heat sink 94 can dissipate the heat emitted from the Peltier element 99.
  • ⁇ Light generator> Various devices can be used without particular limitation as long as the device can generate light having an absorption wavelength of carbon dioxide isotope as the light generation device 20A of FIG.
  • a light generating device that easily generates light in the 4.5 ⁇ m band, which is the absorption wavelength of the radioactive carbon dioxide isotope 14 CO 2 , and whose device size is compact will be described as an example.
  • an ultrashort pulse wave generator As the light source 23, it is preferable to use an ultrashort pulse wave generator.
  • an ultrashort pulse wave generator is used as the light source 23, nonlinear optical effects easily occur because the photon density per pulse is high, and light in the 4.5 ⁇ m band, which is the absorption wavelength of the radioactive carbon dioxide isotope 14 CO 2 Can be generated easily.
  • a comb-like light beam optical frequency comb, hereinafter also referred to as “optical comb” having an even wavelength width of each wavelength can be obtained, the fluctuation of the oscillation wavelength can be made as small as negligible.
  • a continuous oscillation generator when used as a light source, it is necessary to measure the fluctuation of the oscillation wavelength by an optical comb or the like because there is a fluctuation of the oscillation wavelength.
  • the light source 23 for example, a solid-state laser, a semiconductor laser, or a fiber laser that outputs short pulses by mode locking can be used. Among them, it is preferable to use a fiber laser.
  • the fiber laser is a practical light source which is compact and excellent in environmental stability.
  • an erbium (Er) -based (1.55 ⁇ m band) or ytterbium (Yb) -based (1.04 ⁇ m band) fiber laser can be used. From the economical point of view, it is preferable to use a widely used Er-based fiber laser, and from the viewpoint of increasing the light intensity, it is preferable to use a Yb-based fiber laser.
  • the plurality of optical fibers 21 and 22 include a first optical fiber 21 for transmitting light from a light source, and a second optical fiber 22 for wavelength conversion which branches from the first optical fiber 21 and joins on the downstream side of the first optical fiber 21. It can be used.
  • the first optical fiber 21 one that is connected from the light source to the optical resonator can be used.
  • a plurality of optical components and plural types of optical fibers can be arranged on each path.
  • a dispersion compensating fiber (DCF), a double clad fiber, etc. can be included.
  • the material is preferably a fiber made of fused quartz.
  • the second optical fiber 22 it is preferable to use an optical fiber that can efficiently generate ultrashort pulse light on a desired long wavelength side and can transmit the generated high-intensity ultrashort pulse light without deteriorating the characteristics of the generated high-intensity ultrashort pulse light.
  • polarization maintaining fiber, single mode fiber, photonic crystal fiber, photonic band gap fiber, etc. can be included. It is preferable to use an optical fiber having a length of several meters to several hundreds of meters in accordance with the shift amount of the wavelength.
  • the material is preferably a fiber made of fused quartz.
  • the nonlinear optical crystal 24 is appropriately selected according to the incident light and the emitted light, but in the case of the present embodiment, light of a wavelength around 4.5 ⁇ m band is generated from each incident light. From the viewpoint, it is possible to use, for example, PPMG SLT (periodically poled MgO-doped Stoichiometric Lithium (LiTaO 3 )) crystal or PPLN (periodically poled Lithium Niobate) crystal, or GaSe (Gallium selenium) crystal. In addition, since one fiber laser light source is used, it is possible to cancel the fluctuation of the light frequency in the difference frequency mixing as described later.
  • the nonlinear optical crystal 24 preferably has a length in the irradiation direction (longitudinal direction) longer than 11 mm, and more preferably 32 mm to 44 mm. This is because a high-power optical comb can be obtained.
  • difference frequency generation a plurality of light beams having different wavelengths (frequencies) transmitted by the first and second optical fibers 21 and 22 are allowed to pass through the nonlinear optical crystal. From the frequency difference, light corresponding to the difference frequency can be obtained. That is, in the case of the present embodiment, two light beams having wavelengths ⁇ 1 and ⁇ 2 are generated from one light source 23, and two light beams are introduced into the nonlinear optical crystal, thereby making it possible to obtain carbon dioxide isotope from the difference in frequency. It can generate light of the absorption wavelength of the body.
  • the conversion efficiency of DFG using a nonlinear optical crystal depends on the photon density of the light source of a plurality of original wavelengths ( ⁇ 1 , ⁇ 2 ,... ⁇ x ). Therefore, light of difference frequency can be generated by DFG from one pulse laser light source.
  • mode light of light
  • the light generating device be configured of one fiber laser light source, several m of optical fiber, and a nonlinear optical crystal. It is compact, easy to transport, and easy to operate. In addition, since a plurality of lights are generated from one light source, the fluctuation width and fluctuation timing of each light are the same, so that the difference frequency mixing can be performed easily without using the control device. It is because the fluctuation can be canceled.
  • An optical transmission apparatus including the
  • the arithmetic unit 30 is not particularly limited as long as it can measure the concentration of the absorbing substance in the optical resonator from the above-mentioned attenuation time and ring down rate, and can measure the carbon isotope concentration from the absorbing substance concentration.
  • An apparatus can be used.
  • the calculation control unit 31 may be configured by calculation means used in a normal computer system such as a CPU.
  • Examples of the input device 32 include pointing devices such as a keyboard and a mouse.
  • Examples of the display device 33 include an image display device such as a liquid crystal display and a monitor.
  • the output device 34 may be, for example, a printer.
  • As the storage device 35 storage devices such as a ROM, a RAM, and a magnetic disk can be used.
  • the carbon isotope analyzer according to the first aspect has been described above, but the carbon isotope analyzer is not limited to the above-described embodiment, and various modifications can be made. Hereinafter, another aspect of the carbon isotope analyzer will be described focusing on the changes from the first aspect.
  • the spectrometer 10 may further include a Peltier device 19 for cooling the optical resonator 11 and a vacuum device 18 for housing the optical resonator 11. Since the light absorption of 14 CO 2 has temperature dependency, the absorption line of 14 CO 2 and the absorption line of 13 CO 2 and 12 CO 2 can be obtained by lowering the set temperature in the optical resonator 11 with the Peltier element 19. This makes it easy to distinguish the two , and the absorption intensity of 14 CO 2 becomes strong. In addition, by arranging the optical resonator 11 in the vacuum device 18 to prevent the optical resonator 11 from being exposed to the outside air to reduce the influence of the external temperature, the analysis accuracy is improved.
  • a cooling device for cooling the optical resonator 11 in addition to the Peltier device 19, for example, a liquid nitrogen tank, a dry ice tank or the like can be used. It is preferable to use a Peltier element 19 from the viewpoint of downsizing of the spectroscopic device 10, and it is preferable to use a liquid nitrogen water tank or a dry ice tank from the viewpoint of reducing the manufacturing cost of the device.
  • the vacuum device 18 is not particularly limited as long as it can store the optical resonator 11, can irradiate the irradiation light from the light generator 20 into the optical resonator 11, and can transmit the transmitted light to the photodetector. Various vacuum devices can be used. A dehumidifier may be provided.
  • dehumidification may be performed by a cooling means such as a Peltier element
  • dehumidification may be performed by a membrane separation method using a polymer membrane for water vapor removal such as a fluorine-based ion exchange resin membrane.
  • the detection sensitivity for the radioactive carbon isotope 14 C is assumed to be about “0.1 dpm / ml”.
  • the detection sensitivity of “0.1 dpm / ml” it is not sufficient to use “narrow band laser” as a light source, and stability of the wavelength (frequency) of the light source is required. That is, it is necessary that the wavelength does not deviate from the wavelength of the absorption line and that the line width is narrow.
  • the carbon isotope analyzer 1 can solve this problem by using a stable light source using “optical frequency comb light” for CRDS.
  • the carbon isotope analyzer 1 exhibits an advantageous effect that measurement can be performed even on an analyte containing a low concentration of radioactive carbon isotope.
  • Prior literature Karlinsky et al., "Design study of 14C continuous monitoring based on cavity ring down spectroscopy, Proceedings of Annual Meeting of the Atomic Energy Society of Japan, March 19, 2010, P432
  • CRDS measures the 14 C concentration in carbon dioxide in connection with the concentration monitoring of the spent fuel.
  • FFT fast Fourier transform
  • the partial pressure of the carbon dioxide isotope 14 CO 2 in the sample gas is improved, whereby the detection sensitivity to the radioactive carbon isotope 14 C is improved, and the detection sensitivity “0. "01 dpm / ml" can be achieved.
  • Figure 7 (quoted from Applied Physics Vol. 24, pp. 381-386, 1981) shows the absorption wavelengths of the analysis samples 12 C 16 O 2 , 13 C 18 O 2 , 13 C 16 O 2 , 14 C 16 O 2 and The relationship of absorption intensity is shown.
  • carbon dioxide containing each carbon isotope has a unique absorption line. In actual absorption, each absorption line has a finite width due to the spread caused by the pressure and temperature of the sample.
  • the pressure of the sample is preferably below atmospheric pressure, and the temperature is preferably below 273 K (0 ° C.).
  • the spectroscopy apparatus may further comprise vibration absorbing means. This is because the measurement accuracy can be improved by preventing the mirror interval from being shifted due to the vibration from the outside of the spectroscopic device.
  • vibration absorbing means for example, a shock absorber (polymer gel) or a seismic isolation device can be used.
  • a seismic isolation apparatus an apparatus capable of giving the vibration of the opposite phase of the external vibration to the spectroscope can be used.
  • a delay line 28 (optical path difference adjuster) may be provided on the first optical fiber 21.
  • the delay line 28 includes a wavelength filter that divides the light from the light source 23 into a plurality of spectral components, and a spectral unit that adjusts the time difference between the plurality of spectral components and causes the nonlinear crystal 24 to focus the light. This is because fine adjustment of the wavelength of light generated on the first optical fiber 21 becomes easy, and maintenance of the light generation device becomes ready.
  • FIG. 9 is a diagram showing the principle of mid-infrared comb generation using one optical fiber. The delay line 28 will be described with reference to FIGS. 8 and 9.
  • the 8 includes a delay line 28 composed of a plurality of wavelength filters between the light source 23 and the nonlinear optical crystal 24.
  • the first optical fiber 21 transmits the light from the light source 23 and spreads the spectrum (stretching of the spectrum). Then, when the spectral components are shifted in time, as shown in FIG. 9, the spectral components are divided by the delay line 28 (optical path difference adjuster), and the time difference is adjusted. Then, the mid-infrared comb can be generated by focusing on the nonlinear crystal 25.
  • the delay line was mentioned as a spectroscopy means, you may use a dispersion medium, without being limited to it.
  • ⁇ Light blocking device> adjustment of the mirror spacing by the piezoelectric element 13 is used in the spectroscopic device 10 as the ring-down signal acquisition means, but in order to obtain the ring-down signal, an optical resonator in the light generation device 20 It is good also as composition provided with the light interception device which intercepts the light to 11, and performing on-off control of the irradiation light irradiated to an optical resonator.
  • the light blocking device various devices can be used without particular limitation as long as the device can quickly block light of the absorption wavelength of carbon dioxide isotope. In addition, it is necessary to shut off the light sufficiently faster than the decay time of the light in the optical resonator.
  • the carbon isotope analyzer 1C is obtained by replacing the light generator 20A of FIG. 1 with the light generator 20C of FIG. 10, and comprises a carbon dioxide isotope generator 40, a light generator 20A, and a spectroscope 10. Furthermore, an arithmetic unit 30 is provided.
  • the light generation device 20C of FIG. 10 branches from the branch point of one light source 23, the first optical fiber 21 transmitting the light from the light source 23, and the first optical fiber 21 and is joined at the junction on the downstream side of the first optical fiber 21.
  • a second optical fiber 22 transmitting light of a longer wavelength than the joining first optical fiber, and a non-linear optical crystal generating light of an absorption wavelength of carbon dioxide isotope from a difference in frequency by transmitting a plurality of light having different frequencies.
  • 24 A first amplifier disposed between the branch point of the first optical fiber 21 and the junction, a second amplifier disposed between the branch point of the second optical fiber and the junction, and a band different from that of the first amplifier; And a non-linear optical crystal that generates light of the absorption wavelength of the carbon dioxide isotope from a difference in frequency by transmitting a plurality of different lights.
  • the first optical fiber 21 preferably further comprises a third amplifier, and more preferably comprises a third amplifier between the first amplifier 21 and the junction. This is because the intensity of the obtained light is improved. It is preferable to use an Er-doped optical fiber amplifier as the third amplifier.
  • the first optical fiber 21 preferably further includes a wavelength shift fiber, and more preferably includes a wavelength shift fiber between the first amplifier and the junction. This is because the intensity of the obtained light is improved.
  • FIG. 11 is a diagram showing an Er-doped fiber-laser based mid-infrared (MIR) comb generation system 1.
  • MIR mid-infrared
  • a carbon isotope analysis method using the carbon isotope analysis apparatus according to the third aspect will be described with reference to FIG.
  • a light source a single-walled carbon nanotube (SWNT) film using 980 nm LD as an excitation laser is prepared.
  • a highly repetitive ultrashort pulse fiber laser having a wavelength of emitted light of 1.55 ⁇ m and a repetition frequency of 160 MHz is prepared.
  • the light emitted from this light source is input as seed light, amplified by an Er-doped fiber amplifier (EDFA), and split into two by a polarization beam splitter (PBS).
  • EDFA Er-doped fiber amplifier
  • PBS polarization beam splitter
  • chirped pulse amplification is performed by a dispersion compensating fiber (DCF), an EDFA, and an amplifier (DCF-Er-amp) using an Er: Yb-doped double clad fiber.
  • DCF dispersion compensating fiber
  • EDFA EDFA
  • DCF-Er-amp amplifier
  • Er: Yb-doped double clad fiber Er: Yb-doped double clad fiber
  • the dispersion of pulsed light amplified by using a large aperture photonic crystal fiber (LMA-PCF) is compensated to generate high-intensity ultrashort pulse light,
  • the wavelength is shifted to about 1.85 ⁇ m by a small core polarization maintaining fiber (Smallcore PMF), and the light is amplified by a Tm-doped fiber amplifier (TDFA).
  • TDFA Tm-doped fiber amplifier
  • wavelength conversion extension
  • PM-HN-DSF highly nonlinear polarization maintaining dispersion shifted fiber
  • SC supercontinuum
  • the output of the two paths is a nonlinear optical crystal with a length of 40 mm (PPMgSLT (Non-linear Coefficient (deff)> 7.5 pm / V, Typical PMT 44 +/- 5 degree C, manufactured by Oxide Corporation)
  • PPMgSLT Non-linear Coefficient (deff)> 7.5 pm / V, Typical PMT 44 +/- 5 degree C, manufactured by Oxide Corporation
  • AR Coat S1 & S2 R ⁇ 0.5% @ 1064/532 nm
  • Crystal Length (L) 40 mm) is vertically incident on S1 surface to perform difference frequency mixing.
  • the mid-infrared light frequency comb with a wavelength of 4400 to 4800 nm (4.5 ⁇ m) can be emitted from the S2 plane.
  • the half width is narrow and high intensity.
  • the selectivity of the light of the target wavelength can be improved and desired light can be efficiently obtained with high intensity.
  • the present inventors have narrowed the oscillation spectrum of the optical comb light source We focused on the fact that higher output light was obtained.
  • the oscillation spectrum is narrow, amplification by amplifiers with different bands or a long nonlinear optical crystal can be used.
  • the inventors of the present invention in the generation of the optical comb using the difference frequency mixing method, (a) generate a plurality of light having different frequencies from one light source, and (b) a plurality of obtained lights Is amplified by using amplifiers with different bands, and (c) a plurality of lights are passed through a nonlinear optical crystal longer than a conventional nonlinear optical crystal, and the difference in frequency is caused by the absorption wavelength of carbon dioxide isotope. It was conceived to generate high-power illumination light having. The present invention has been completed based on the above findings. In the conventional difference frequency mixing method, it has not been reported that the intensity of light is amplified using a plurality of amplifiers with different bands, or that a high output light can be obtained using a long crystal.
  • the light absorption of the light absorbing material when the absorption line intensity is high and the light intensity of the irradiation light is also high, the lower level corresponding to the light absorption is significantly reduced, and the effective light absorption amount seems to be saturated. (This is called saturated absorption).
  • fitting of the attenuation signal obtained by SCAR can evaluate the attenuation factor by the sample and the attenuation factor of the background independently, so it is influenced by the fluctuation of the background attenuation factor such as the parasitic etalon effect.
  • the rate of attenuation by the sample can be determined without the need, and since the saturation effect of 14 CO 2 is large compared to the contaminant gas, the light absorption by 14 CO 2 can be more selectively measured. Therefore, it is expected that the sensitivity of analysis will be improved by using irradiation light with higher light intensity. Since the light generating device of the present invention can generate irradiation light with high light intensity, when used for carbon isotope analysis, it is expected that the analysis sensitivity will be improved.
  • the present inventors completed the light generator for generating light with a narrow line width and high output (high intensity) as described above.
  • the inventors of the present invention have determined that the oscillation wavelength of the light emitted from the QCL is fluctuated by the beat signal measuring device using the narrow line width light generated from the light generating device described above as a frequency reference. I thought about correcting it.
  • a compact, easy-to-use, highly reliable light generator using a light source other than a light comb as a main light source and a carbon isotope analyzer using the same were completed.
  • FIG. 12 is a diagram showing an outline of a carbon isotope analyzer 1D according to a third aspect.
  • the carbon isotope analyzer 11D is obtained by replacing the light generator 20A of FIG. 1 with the light generator 50 of FIG. 12, and comprises a carbon dioxide isotope generator 40, a light generator 50, and a spectroscope 10. Furthermore, an arithmetic unit 30 is provided.
  • the light generator 50 includes a main light source 51, and a light generator main body 50A including an optical fiber 54 for transmitting light from the main light source 51;
  • An optical comb source 52 for generating an optical comb composed of a bundle of light having a narrow line width of 4500 nm to 4800 nm, and a beat signal measuring optical fiber 56 for transmitting the light from the optical comb source 52;
  • Branching means 58, 59 disposed on the optical fibers 54, 56, an optical fiber 55 for branching a part of light from the main light source 51 to the beat signal measuring optical fiber 56 via the branching means 58, 59, the main light source 51
  • a beat signal measuring device 50B comprising: a light detector 53 for measuring a beat signal generated by the frequency difference between the light from the light source and the light from the light comb source 52;
  • the carbon isotope analyzer 1C provided with the light generator 50 is not limited to the optical comb as the main light source, and a general light source such as QCL can be used
  • the light generator 50 of FIG. 12 can perform carbon isotope analysis by generating predetermined light through the following steps. It demonstrates using the process schematic of FIG. 13A, FIG. 13B, and FIG. 13C.
  • a light comb is generated which is a bundle of light having a narrow line width in which the frequency range of one light is 4500 nm to 4800 nm.
  • B Next, as shown in FIG. 13A, the spectrum of one of the light combs is displayed at the center of the absorption wavelength region of the object under test in the light spectrum diagram of intensity against frequency.
  • C Transmit the light from the optical comb to the optical fiber for beat signal measurement.
  • (D) The light from the light source is irradiated to the object to be detected, and the light absorption amount is measured by the optical resonator (CRDS).
  • (E) A part of the light from the light source is branched to the optical fiber for beat signal measurement, and a beat signal is generated by the frequency difference between the light from the light source and the light from the light comb source.
  • beat signals may be generated while scanning a wide range of frequencies as (1), (2), and so on. Further, as shown in FIG. 13C, a beat signal may be generated in a desired frequency region.
  • FIG. 14 is a conceptual view of a fourth embodiment of a carbon isotope analyzer.
  • the light generator 20E includes a light source 23, a branching means (delay line) 82 for branching the light from the light source 23, and a condensing lens 80b for condensing the light from the branching means 82,
  • the cat's eye 80 is comprised of a mirror 80a that reflects the light from the condensing lens 80b and sends the light back to the light source 23 through the condensing lens 80b and the branching means 82.
  • the light generator 20 further comprises an optical separator 29. As the cat's eye 25 reduces the dependency of back reflection on angle adjustment, easy re-incident on the QCL becomes possible.
  • the optical separator 29 makes it possible to block light.
  • a mid-infrared quantum cascade laser (QCL) can be used as the light source 23 .
  • optical fiber 21 it is preferable to use an optical fiber which can transmit without deteriorating the characteristics of the generated high-intensity ultrashort pulse light.
  • the material is preferably a fiber made of fused quartz.
  • laser light is generated from the light source 23 and the obtained light is transmitted to the optical fiber 21; light from the light source 23 is branched using the branching means 28; It is preferable that the light collected on 25b be reflected by the mirror 25a and sent back to the light source 23 through the mirror 25a and the branching means 28 (feedback step).
  • the present inventors have proposed a carbon isotope analyzer capable of simple and rapid 14 C analysis and a carbon isotope analysis method using the same (see Patent Document 2).
  • a distributed feedback (DFB) quantum cascade laser hereinafter also referred to as “QCL”
  • MIR mid-infrared
  • the present inventors focused on a method using optical feedback known as delayed self injection as an alternative to high-speed electrical signal feedback using a frequency discriminator. By applying this passive feedback to the QCL, it has been found that the laser line width can be reduced with minimal cost. That is, according to the fourth embodiment described above, there is provided a carbon isotope analyzer and a carbon isotope analysis method using the same, in which the stability of the light source is improved.
  • the carbon dioxide isotope trap system (purifier) and the light source have also been described through the description of the first to fourth embodiments of the carbon isotope analyzer. Both the purifier and the light source have a compact and space-saving simple arrangement. The high degree of freedom in the layout of the refining device and the light source can significantly reduce the overall volume of the carbon isotope analyzer.
  • the radioactive isotope 14 C will be described as an example of the analysis target. Although the carbon isotope analysis method does not include pretreatment of the biological sample (step (a)), it is preferable to perform carbon isotope analysis after pretreatment of the biological sample.
  • a radioactive isotope 14 C source a biological sample containing 14 C, for example, blood, plasma, urine, feces, bile and the like are prepared. By removing protein from the prepared biological sample, the biological carbon source is removed.
  • the pretreatment of a biological sample broadly includes a carbon source removal step derived from a living body and a contaminant gas removal (separation) step, but here, the carbon source removal step derived from a living body will be mainly described.
  • a biological sample eg, blood, plasma, urine, feces, bile, etc.
  • 14 C-labeled compound e.g., blood, plasma, urine, feces, bile, etc.
  • a protein removing method in which protein is insolubilized with an acid or an organic solvent, a protein removing method by ultrafiltration or dialysis using a difference in molecular size, a protein removing method by solid phase extraction, and the like.
  • the deproteinization method using an organic solvent is preferable because extraction of the 14 C-labeled compound can be performed and removal of the organic solvent itself is easy.
  • an organic solvent is added to a biological sample to insolubilize proteins. At this time, the 14 C-labeled compound adsorbed to the protein is extracted into the organic solvent-containing solution.
  • an operation of adding an additional organic solvent to the residual may be performed.
  • the extraction operation may be repeated multiple times.
  • the biological sample is feces, when it is an organ such as lung, or in a form that is difficult to uniformly mix with the organic solvent, the biological sample is homogeneously mixed, such as homogenizing the biological sample. It is preferable to carry out the treatment to be done. If necessary, the insolubilized protein may be removed by centrifugation, filtration with a filter, or the like. Thereafter, the extract containing the 14 C-labeled compound is dried by evaporating the organic solvent to remove the carbon source derived from the organic solvent.
  • the organic solvent is preferably methanol (MeOH), ethanol (EtOH) or acetonitrile (ACN), more preferably acetonitrile.
  • a carbon isotope analyzer 1 as shown in FIG. 1 is provided, which comprises the carbon isotope trap system of FIG.
  • the pretreated biological sample is heated and burned to generate a gas containing carbon dioxide isotope 14 CO 2 from a radioactive isotope 14 C source.
  • a gas containing carbon dioxide isotope 14 CO 2 is produced by the combustion tube 410 of the carbon dioxide isotope production apparatus 40 of FIG. It is preferable to remove N 2 O and CO from the obtained gas.
  • N 2 O and CO can be removed together with the He gas by operating a carbon isotope trap system described later.
  • the trap tube 61 is inserted into the Dewar bottle 63 provided with liquid nitrogen 65, and the trap tube 61 is cooled to 0 ° C. or less. Then, the generated 14 CO 2 is fed into the trap tube 61 together with the carrier gas whose freezing point is lower than that of 14 CO 2 .
  • the carrier gas whose freezing point is lower than that of 14 CO 2 .
  • helium gas can be used as a carrier gas. Then, carbon dioxide isotopes are condensed in the trap tube 61. After the 14 CO 2 condenses, the gas in the trap tube 61 is removed.
  • the helium gas in the trap tube 61 can be removed by closing the valves 66a and 66b in FIG. 2 and operating the pump P to evacuate the interior of the trap tube 61.
  • the inside of the carbon dioxide isotope trap 60 is shielded from the outside by closing the valves 66c and 66d. Thereafter, the trap tube 61 is taken out of the Dewar bottle 63, and the trap tube 61 is heated to about room temperature to vaporize the condensed 14 CO 2 .
  • the vaporized 14 CO 2 is filled in the optical resonator 11.
  • the vaporized 14 CO 2 can be filled in the optical resonator 11. It is preferable to cool 14 CO 2 to 273 K (0 ° C.) or less.
  • 14 CO 2 can be cooled. It is because the absorption intensity of irradiation light increases. Further, it is preferable to keep the optical resonator 11 in a vacuum atmosphere. This is because the measurement accuracy is improved by reducing the influence of the external temperature.
  • the carbon dioxide isotope 14 CO 2 is irradiated with irradiation light to resonate.
  • the intensity of the transmitted light from the optical resonator 11 is measured. As shown in FIG. 5, the transmitted light may be split, and the intensity of each split transmitted light may be measured.
  • Carbon Dioxide Isotope Generation After the sample is enclosed in a tin capsule or tin foil, the following carbon dioxide isotope is obtained using an organic element analyzer (hereinafter also referred to as “EA” ./ elementar company, trade name “Vario MICRO cube”). Oxidative combustion was performed under body formation conditions to obtain a carbon dioxide isotope.
  • EA organic element analyzer
  • ⁇ CO2 isotope production conditions Burning temperature: 950 ° C (instant maximum of 1800 ° C) Reduction temperature: 600 ° C Carrier gas: He Flow rate: 200 mL / min Oxygen supply: 70 to 80 seconds at 30 mL / min Oxidation catalyst: Copper oxide Reduction catalyst: Reduced copper Halogen removal catalyst: Silver Dehumidifying agent: Sicapent
  • the carbon isotope analysis method according to the first aspect has been described above, but the carbon isotope analysis method is not limited to the above embodiment, and various modifications can be added.
  • another aspect of the carbon isotope analysis method will be described focusing on the changes from the first aspect.
  • the radio isotope 14 C is mainly described as a carbon isotope to be analyzed. Besides the radioactive isotope 14 C, stable isotopes 12 C and 13 C can be analyzed.
  • the mirror spacing is preferably 10 to 60 cm, and the radius of curvature of the mirror is preferably equal to or greater than the mirror spacing.
  • 12 C, 13 C, and 14 C chemically behave in the same manner, radioactive isotopes 14 C have a lower natural abundance than radioactive isotopes 12 C and 13 C.
  • the concentration of 14 C can be increased by artificial manipulation, and by performing measurement with high accuracy, observation of various reaction processes becomes possible.
  • the carbon isotope analysis apparatus may further include a third optical fiber constituted by a non-linear fiber which branches from the first optical fiber and joins the first optical fiber downstream of the branch point.
  • a third optical fiber constituted by a non-linear fiber which branches from the first optical fiber and joins the first optical fiber downstream of the branch point.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

光共振器内に送り混まれるガス中の二酸化炭素同位体の分圧が高く、感度性能および分析精度が高い炭素同位体分析装置及びそれを用いた分析方法を提供する。 炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備える二酸化炭素同位体生成装置と;1対のミラーを有する光共振器、光共振器からの透過光の強度を検出する光検出器を備える分光装置と;二酸化炭素同位体生成装置と分光装置の間に配置された、二酸化炭素同位体の凍結用冷却装置を備える二酸化炭素同位体トラップと;光発生装置と、を備える、炭素同位体分析装置。

Description

炭素同位体分析装置及び炭素同位体分析方法
 本発明は、炭素同位体分析装置及び炭素同位体分析方法に関する。より詳しくは、放射性炭素同位体14C等の測定に有用な線幅が狭く高強度の光を発生する光発生装置並びにそれを用いた放射性炭素同位体分析装置及び放射性炭素同位体分析方法に用いる分析ガス対象の放射性炭素同位体含有ガスの精製装置及び方法に関する。
 炭素同位体は、従来より炭素循環に基づく環境動態評価や年代測定による歴史学の実証研究など、文理に渡る広範な応用展開がなされている。炭素同位体は、地域・環境によりわずかに異なるものの、安定同位体元素である12Cと13Cはそれぞれ98.89%と1.11%、放射性同位体14Cは1×10-10%天然に存在している。同位体は重量の相違があるだけで、化学的には同じ挙動を示すため、存在比の低い同位体の濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。
 特に、臨床の分野においては医薬品体内動態評価を行うために、標識化合物として、例えば放射性炭素同位体14Cを生体に投与し分析することは極めて有用であり、例えばPhase I、Phase IIaにおいて実際に分析されている。ヒトにおいて薬理作用を発現すると推定される投与量(薬効発現量)を超えない用量(以下「マイクロドーズ」ともいう)の標識化合物として、極微量の放射性炭素同位体14C(以下、単に「14C」ともいう)を人体に投与し、分析することは、体内動態の問題に起因する医薬品の薬効・毒性についての知見が得られるため、創薬プロセスにおける開発リードタイムを大幅に短縮するものとして期待されている。
 従来より提案されている14C分析法としては、液体シンシチレーションカウンティング法(liquid Scintillation Counting、以下「LSC」ともいう)と、加速器質量分析法(Accelerator Mass Spectrometry、以下「AMS」ともいう)とが挙げられる。
 LSCは、テーブルトップサイズの比較的小型な装置であるため簡便かつ迅速な分析が可能であるが、14Cの検出限界濃度が10dpm/mLと高いため臨床試験での使用に耐えうるものではなかった。一方、AMSは14Cの検出限界濃度が0.001dpm/mLと低く、LSCの14Cの検出限界濃度の1000倍以上低いため臨床試験での使用に耐えうるが、装置が大きくしかも高額であるためその利用が制限されていた。例えば日本国内にはAMSは十数台しか設置されていないことより、試料分析の順番待の時間を考慮すると、1サンプルの分析に1週間程度の時間を要していた。そのため、簡易、かつ迅速な14Cの分析法の開発が望まれていた。
 上述の課題を解決する手段としていくつかの技術が提案されている(例えば、非特許文献1、特許文献1参照。)。
 例えば非特許文献1では、I. Galliらにより、キャビティーリングダウン分光法(Cavity Ring-Down Spectroscopy、以下「CRDS」ともいう)による天然同位体存在比レベルの14C分析の実証がなされ、その可能性が注目された。
 しかしながら、CRDSによる14C分析が実証されたものの、利用された4.5μm帯レーザー光発生装置は極めて複雑な構造であった。そのため、より簡易で使い勝手のよい14Cの分析装置及び分析方法が求められていた。
特許第3390755号公報 特許第6004412号公報
「I.Galli et al.,Phy. Rev. Lett.2011, 107, 270802」
 上述の課題を解決すべく検討した結果、本発明者等らにより、光源として光コムを用いた、簡易で使い勝手のよい炭素同位体分析装置及び分析方法が提案された(特許文献2参照)。
 しかしながら、更なる感度性能と分析精度を高めるため、光共振器内に送り込まれるガス中の二酸化炭素同位体の分圧を高めるというさらなる課題が生じた。
 以上より、本発明は、光共振器内に送り混まれるガス中の二酸化炭素同位体の分圧が高く、感度性能および分析精度の高い炭素同位体分析装置及びそれを用いた分析方法を提供することを課題とする。
 本発明は以下の内容に関する。
(1)炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備える二酸化炭素同位体生成装置と、1組のミラーを有する光共振器、光共振器からの透過光の強度を検出する光検出器を備える分光装置と、二酸化炭素同位体生成装置と分光装置の間に配置された、二酸化炭素同位体の凍結用冷却装置を備える二酸化炭素同位体トラップと、光発生装置と、を備える、炭素同位体分析装置。
(2)炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備え、二酸化炭素同位体精製部は夾雑ガス分離部、二酸化炭素同位体の濃縮部、除湿部を備える二酸化炭素同位体生成装置と、1対のミラー及びノイズ発生防止用冷却装置を有する光共振器、光共振器からの透過光の強度を検出する光検出器を備える分光装置と、二酸化炭素同位体生成装置と分光装置の間に配置された、二酸化炭素同位体の凍結用冷却装置を備える二酸化炭素同位体トラップと、光発生装置と、を備える、炭素同位体分析装置。
(3)光発生装置は、1つの光源、光源からの光を分岐させる分岐手段、分岐手段からの光を集光する集光レンズ、集光レンズからの光を反射して集光レンズと分岐手段を介して光源に光を送り返すミラーを備える光発生装置とを備える、(1)又は(2)記載の炭素同位体分析装置。
(4)光発生装置は、主光源、主光源からの光を伝送する光ファイバーを有する光発生装置本体と、1つの光の波長領域が4500nm~4800nmである線幅の狭い光の束からなる光コムを発生させる光コム源、光コム源からの光を伝送するビート信号測定用光ファイバー、主光源からの光を伝送する光ファイバー上に配置された分岐手段、分岐手段を介して主光源からの光の一部をビート信号測定用光ファイバーに分岐させる光ファイバー、主光源からの光と光コム源からの光の周波数差により生じるビート信号を測定する光検出器を備えるビート信号測定機と、を備える、(1)又は(2)記載の炭素同位体分析装置。
(5)光源は、中赤外量子カスケードレーザーである、(4)に記載の炭素同位体分析装置。
(6)光発生装置は、1つの光源と、光源からの第1光を伝送する第1光ファイバーと、第1光ファイバーの分岐点から分岐し第1光ファイバーの下流側の合流点で合流し第1光よりも長波長の第2光を発生させる第2光ファイバーと、第1光ファイバーの分岐点と合流点の間に配置された第1増幅器と、第2光ファイバーの分岐点と合流点の間に配置され第1増幅器とは帯域が異なる第2増幅器と、周波数が異なる複数の光を通過させることで周波数の差から二酸化炭素同位体の吸収波長の光として波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる非線形光学結晶と、を備える、(1)又は(2)記載の炭素同位体分析装置。
(7)炭素同位体から二酸化炭素同位体を生成する工程と、二酸化炭素同位体トラップを0℃以下まで冷却する工程と、二酸化炭素同位体及び二酸化炭素同位体よりも凝固点が低いキャリアガスを含んだガスを二酸化炭素同位体トラップ内に送り込み二酸化炭素同位体を凝結させる工程と、二酸化炭素同位体トラップ内のガスを取り除く工程と、二酸化炭素同位体トラップ内を外部から遮蔽しつつ、二酸化炭素同位体トラップ内を加温して、凝結した二酸化炭素同位体を気化させる工程と、気化した二酸化炭素同位体を光共振器内に充填する工程と、二酸化炭素同位体の吸収波長を有する照射光として波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる工程と、二酸化炭素同位体に照射光を照射し共振させた際に得られる透過光の強度を測定する工程と、透過光の強度から炭素同位体濃度を計算する工程と、を有する炭素同位体分析方法。
(8)冷却工程において、二酸化炭素同位体トラップを二酸化炭素同位体の凝固点以下まで冷却する、(18)に記載の炭素同位体分析方法。
(9)キャリアガスが、ヘリウム(He)ガスである、(7)又は(8)に記載の炭素同位体分析方法。
 本発明によれば、光共振器内に送り込まれるガス中の二酸化炭素同位体の分圧が高く、より感度性能および分析精度の高い炭素同位体分析装置及びそれを用いた分析方法が提供される。
図1は炭素同位体分析装置の第1の実施態様の概念図である。 図2は炭素同位体トラップシステムの実施態様の概念図である。 図3は14COと競合ガスの4.5μm帯吸収スペクトルを示す図である。 図4A、図4Bはレーザー光を用いた高速走査型のキャビティーリングダウン吸収分光法の原理を示す図である。 図5はCRDSにおける13CO14COの吸収量Δβの温度依存性を示す図である。 図6は光共振器の変形例の概念図である。 図7は、分析試料の吸収波長と吸収強度の関係を示す図である。 図8はディレイラインの概念図である。 図9は1本の光ファイバーを用いた中赤外コム生成の原理を示す図である。 図10は炭素同位体分析装置の第2の実施態様の概念図である。 図11はEr添加ファイバ-レーザーべースの中赤外(MIR)コム生成系1を示す図である。 図12は炭素同位体分析装置の第3の実施態様の概念図である。 図13A、図13B、図13Cは、第3の炭素同位体分析装置の光発生装置の工程概要図である。 図14は炭素同位体分析装置の第4の実施態様の概念図である。 図15は二酸化炭素同位体トラップの作用効果を示す図である。
 以下に、実施形態を挙げて本発明の説明を行うが、本発明は以下の実施形態に限定されるものではない。図中同一の機能又は類似の機能を有するものについては、同一又は類似の符号を付して説明を省略する。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断されるべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
[炭素同位体分析装置の第1の態様]
 図1は、第1の態様に係る炭素同位体分析装置の概念図である。図1に示すように、炭素同位体分析装置1は、二酸化炭素同位体生成装置40と、分光装置10と、二酸化炭素同位体トラップ60と、光発生装置20Aと、さらに演算装置30とを備える。 二酸化炭素同位体生成装置40は、炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部と、二酸化炭素同位体精製部と、二酸化炭素量から全炭素量を測定する炭素量測定部とを備える。
 分光装置10は、1対のミラー12a,12bを有する光共振器11と、光共振器11からの透過光の強度を検出する光検出器15とを備える。
 図2は二酸化炭素同位体トラップシステムの概念図である。図2に示すように、二酸化炭素同位体トラップ60は、二酸化炭素同位体生成装置40から分光装置10へ二酸化炭素同位体を送り込むガス供給管69と、ガス供給管69の上流側に配置されたバルブ66a、66bと、U字状のトラップ管61と、ガス供給管69の下流側に配置されたバルブ66c、66dと、ガス供給管69からバルブ66cで分岐して配置されたガス供給管69および共振器11を陰圧にするためのポンプPと、トラップ管61を冷却するための液体窒素65を内部に充填可能なデュワー瓶63とを備える。
 ポンプPを作動させつつ、バルブ66a~66dの開閉を制御することで、二酸化炭素同位体生成装置で生成された二酸化炭素同位体の光共振器11内への導入制御が可能となる。
 ここでは、分析対象として、炭素同位体である放射性同位体14Cを例にあげて説明する。なお、放射性同位体14Cから生成される二酸化炭素同位体14COの吸収波長を有する光は4.5μm帯の光である。詳細は後述するが、測定対象物質の吸収線、光発生装置、及び光共振器モードの複合による選択性により、高感度化を実現することが可能となる。
 本明細書において「炭素同位体」とは、特に断りのない限り安定炭素同位体12C、13C、及び放射性炭素同位体14Cを意味する。また、単に元素記号「C」と表示される場合、天然存在比での炭素同位体混合物を意味する。
 酸素の安定同位体は16O、17O及び18Oが存在するが、元素記号「O」と表示される場合、天然存在比での酸素同位体混合物を意味する。
 「二酸化炭素同位体」とは、特に断りのない限り12CO13CO及び14COを意味する。また、単に「CO」と表示される場合、天然存在比の炭素及び酸素同位体により構成される二酸化炭素分子を意味する。
 本明細書において「生体試料」とは、血液、血漿、血清、尿、糞便、胆汁、唾液、その他の体液や分泌液、呼気ガス、口腔ガス、皮膚ガス、その他の生体ガス、さらには、肺、心臓、肝臓、腎臓、脳、皮膚などの各種臓器及びこれらの破砕物など、生体から採取し得るあらゆる試料を意味する。さらに、当該生体試料の由来は、動物、植物、微生物を含むあらゆる生物が挙げられ、好ましくは哺乳動物、より好ましくはヒトの由来である。哺乳動物としては、ヒト、サル、マウス、ラット、モルモット、ウサギ、ヒツジ、ヤギ、ウマ、ウシ、ブタ、イヌ、ネコなどが挙げられるが、これらに限定されない。
〈二酸化炭素同位体生成装置〉
 二酸化炭素同位体生成装置40は、炭素同位体を二酸化炭素同位体に変換可能であれば特に制限されることなく種々の装置を用いることができる。二酸化炭素同位体生成装置40としては、試料を酸化させ、試料中に含まれる炭素を二酸化炭素にする機能を有していることが好ましい。
 例えば全有機炭素(total organic carbon 以下「TOC」という)発生装置、ガスクロマトグラフィー用の試料ガス発生装置、燃焼イオンクロマトグラフィー用の試料ガス発生装置、元素分析装置(Elemental Analyzer:EA)等の二酸化炭素生成装置(G)41を用いることができる。
 図3に、273K、CO分圧20%、CO分圧1.0×10-4%、NO分圧3.0×10-8%の条件下における14COと競合ガス13CO,CO,及びNOの4.5μm帯吸収スペクトルを示す。
 前処理後の生体試料を燃焼させることにより、二酸化炭素同位体14CO(以下、「14CO」ともいう)を含むガスを生成できる。しかし、14COの発生と共に、CO、NOといった夾雑ガスも発生する。これらCO、NOは、図3に示すように、それぞれ4.5μm帯の吸収スペクトルを有するので、14COが有する4.5μm帯の吸収スペクトルと競合する。そのため、分析感度を向上させるために、CO、NOを除去することが好ましい。
 CO、NOの除去方法としては、以下のように14COを捕集・分離する方法が挙げられる。また、酸化触媒や白金触媒により、CO、NOを除去・低減する方法、及び前記捕集・分離方法との併用が挙げられる。
 図2に示すように、二酸化炭素同位体生成装置40の燃焼部41は、燃焼管410と、燃焼管を加熱可能とする加熱部(図示せず)と、還元部412とを備えることが好ましい。また二酸化炭素同位体精製部43は、乾燥器430と、吸着剤431と、加熱脱着カラム432と、検出器433とを備えることが好ましい。
 燃焼管410は、試料を内部に収容可能に耐熱性ガラス(石英ガラス等)で構成され、燃焼管の一部に試料導入口が形成されていることが好ましい。燃焼管は試料導入口の他に、キャリアガスを燃焼管に導入可能にキャリアガス導入口を形成してもよい。なお、燃焼管の一部に試料導入口等を設ける態様の他にも、燃焼管の一端に燃焼管とは別部材で試料導入部を形成し、試料導入部に試料導入口やキャリアガス導入口を形成する構成としてもよい。
 加熱部としては、燃焼管を内部に配置可能とし燃焼管を加熱可能とする、管状電気炉といった電気炉が挙げられる。管状電気炉の例としては、ARF-30M(アサヒ理化製作所)が挙げられる。
 また、燃焼管410は、キャリアガス流路の下流側に、少なくとも一種類の触媒を充填させた酸化部410及び/又は還元部412を具備することが好ましい。酸化部及び/又は還元部は、燃焼管41の一端に設けてもよいし、別部材として設けてもよい。酸化部に充填する触媒として、酸化銅、銀・酸化コバルト混合物が例示できる。酸化部において、試料の燃焼により発生したH、COをHO、COに酸化することが期待できる。還元部に充填する触媒として、還元銅、白金触媒が例示できる。還元部において、NOを含む窒素酸化物(NO)をNに還元することが期待できる。
 二酸化炭素同位体精製部43としては、生体試料の燃焼により生じたガス中の14COを、ガスクロマトグラフィ(GC)で用いられるような、加熱脱着カラム(CO捕集カラム)432を用いることができる。これにより14COを検出する段階でCO、NOの影響を軽減あるいは除去できる。またGCカラムに14COを含むCOガスが一時捕集されることで、14COの濃縮が見込まれるので、14COの分圧の向上が期待できる。
 二酸化炭素同位体精製部43は、14COの吸着剤431、例えばソーダ石灰や水酸化カルシウム等を備えることが好ましい。これにより、14COを炭酸塩の形で単離することで夾雑ガスの問題を解消できる。炭酸塩として14COを保持するので、サンプルを一時保存することも可能である。なお、再放出にはリン酸を用いることができる。
 上述の(i)加熱脱着カラムによる14COの捕集・分離、(ii)14CO吸着剤による14COのトラップ、再放出による14COの分離のいずれか、あるいは両構成を備えることで、夾雑ガスを除去できる
 (iii)14COの濃縮(分離)
 生体試料の燃焼により発生した14COは配管内で拡散する。そのため、14COを吸着剤に吸着させ濃縮することにより、検出感度(強度)を向上させてもよい。かかる濃縮によりCO、NOから14COの分離も期待できる。
〈分光装置〉
 図1に示すように、分光装置10は、光共振器11と、光共振器11からの透過光の強度を検出する光検出器15とを備える。光共振器(Optical resonator or Optical cavity)11は、分析対象の二酸化炭素同位体が封入される筒状の本体と、本体の内部の長手方向の一端側と他端側に凹面が向かい合うように配置された高反射率の1対のミラー12a、12bと、本体内部の他端側に配置されたミラー12aと12bの間隔を調整するピエゾ素子13と、分析対象ガスが充填されるセル16と、を備える。なお、ここでは図示を省略しているが、本体の側部に二酸化炭素同位体を注入するためのガス注入口や、本体内の気圧を調整する気圧調整口を設けておくことが好ましい。なお、1対のミラー12a、12bの反射率は、99%以上が好ましく、99.99%以上がより好ましい。
 光共振器内部11にレーザー光を入射し閉じ込めると、レーザー光はミラーの反射率に対応した強度の光を出力しながら、数千回~一万回というオーダーで多重反射を繰り返す。そのため実効的な光路が数10kmにも及ぶため、光共振器内部に封入された分析対象のガスが極微量であっても大きな吸収量を得ることができる。
 なお、光共振器としては、ファイバーブラッググレーディング(FBG)とゲインスイッチ半導体レーザーを用いたCRDSや、エバネッセント光デバイスによるCRDSを用いることもできる。
 図4A、図4Bはレーザー光を用いた高速走査型のキャビティーリングダウン吸収分光法(Cavity Ring-Down Spectroscopy、以下「CRDS」ともいう)の原理を示す図である。
 図4Aに示すように、ミラー間隔が共鳴条件を満たしているときは、高強度の信号が光共振器から透過される。一方、ピエゾ素子13を作動させてミラー間隔を変更し、非共鳴条件とすると、光の干渉効果により信号を検出することができなくなる。つまり、光共振器長を共鳴から非共鳴条件へとすばやく変化させることで、図4Aに示すような指数関数的な減衰信号[リングダウン信号(Ringdown signal)]を観測することができる。
 光共振器の内部に吸収物質が充填されていない場合、透過してくる時間依存のリングダウン信号は図4Bの点線で示すような曲線となる。一方、光共振器内に吸光物質が充填されている場合、図4Bの実線で示すように、レーザー光が光共振器内で往復するごとに吸収されるため、光の減衰時間が短くなる。この光の減衰時間は、光共振器内の吸光物質濃度及び入射レーザー光の波長に依存しているため、Beer-Lambertの法則iiを適用することで吸収物質の絶対濃度を算出することができる。また光共振器内の吸収物質濃度と比例関係にある減衰率(リングダウンレート)の変化量を測定することにより、光共振器内の吸収物質濃度を測定することができる。
 光共振器から漏れ出た透過光を光検出器により検知し、演算装置を用いて14CO濃度を算出した後、14CO濃度から14C濃度を算出することができる。
 光共振器11のミラー12a、12b間隔、ミラー12a、12bの曲率半径、本体の長手方向長さや幅等は、分析対象である二酸化炭素同位体が持つ吸収波長により変化させることが好ましい。想定される共振器長は1mm~10mが挙げられる。
 二酸化炭素同位体14COの場合、共振器長が長いことは光路長を確保するのに有効であるが、共振器長が長くなるとガスセルの体積が増え、必要な試料量が増えるため、共振器長は10cm~60cmの間が好ましい。またミラー12a、12bの曲率半径は、共振器長と同じか、長くすることが好ましい。
 なおミラー間隔は、ピエゾ素子13を駆動することにより、一例として数マイクロメートルから数十マイクロメートルのオーダーで調整することが可能である。最適な共鳴条件を作り出すために、ピエゾ素子13による微調整を行うこともできる。
 なお、1対のミラー12a、12bとしては、1対の凹面鏡を図示して説明してきたが、十分な光路が得られるのであれば、その他にも凹面鏡と平面鏡の組み合わせや、平面鏡同士の組み合わせであっても構わない。
 ミラー12a、12bを構成する材料としては、サファイアガラス、CaF、ZnSeを用いることができる。
 分析対象ガスを充填するセル16は、容積がより小さいことが好ましい。少ない分析試料であっても効果的に光の共振効果を得ることができるからである。セル16の容量は、8mL~1000mLが例示できる。セル容量は、例えば測定に供することができる14C源の量に応じて適宜好ましい容量を選択でき、尿のように大量に入手できる14C源では80mL~120mLのセルが好適であり、血液や涙液のように入手量が限られる14C源では8mL~12mLのセルが好適である。
 光共振器の安定性条件の評価
 CRDSにおける14CO吸収量と検出限界を評価するため、分光データに基づく計算を行った。12CO13COなどに関する分光データは大気吸収線データベース(HITRAN)を利用し、14COに関しては文献値(「S. Dobos et al., Z. Naturforsch, 44a, 633-639 (1989)」)を使用した。
 ここで、14COの吸収によるリングダウンレート(指数関数的減衰の割合)の変化量Δβ(=β-β0、β:試料有りの減衰率、β0:試料なしの減衰率)は、14COの光吸収断面積σ14、分子数密度N、光速cにより以下のように表せる。
 Δβ=σ14(λ,T,P)N(T,P,X14)c
 (式中、σ14、Nは、レーザー光波長λ、温度T、圧力P、X14=14C/TotalC比の関数である。)
 図5は、計算で求められた13CO14COの吸収によるΔβの温度依存性を示す図である。図5より、14C/TotalCが10-10、10-11、10-12では、室温300Kでの13COによる吸収が14COの吸収量を超えるか同程度となるため、冷却を行う必要があることが分かった。
 一方、光共振器由来のノイズ成分であるリングダウンレートのばらつきΔβ0~10-1が実現できれば、14C/TotalC比~10-11の測定を実現できることが分かる。これにより、分析時の温度として摂氏-40度程度の冷却が最も好ましいことが明らかとなった。
 例えば、定量下限として14C/TotalCを10-11とすると、COガスの濃縮によるCOガス分圧の上昇(例えば20%)と、前記温度条件とが必要であることが示唆される。
 なお、冷却装置や冷却温度について、後述の炭素同位体分析装置の第2の態様の欄においてより詳細に述べる。
 光共振器11について説明したが、光共振器の具体的態様の概念図(一部切欠図)を図6示す。図6に示すように、光共振器91は、真空装置としての円筒状の断熱用チャンバー98と、断熱用チャンバー98内に配置された測定用ガスセル96と、測定用ガスセル96の両端に配置された1対の高反射率ミラー92と、測定用ガスセル96の一端に配置されたミラー駆動機構99と、測定用ガスセル96の他端に配置されたリングピエゾアクチュエーター93と、測定用ガスセル96を冷却するペルチェ素子99と、循環冷却器(図示せず)に接続された冷却パイプ94aを有する水冷ヒートシンク94と、を備える。なお、水冷ヒートシンク94により、ペルチェ素子99から出る熱を放熱させることができる。
〈光発生装置〉
 図1の光発生装置20Aとしては、二酸化炭素同位体の吸収波長を有する光を発生できる装置であれば特に制限されることなく種々の装置を用いることができる。ここでは、放射性二酸化炭素同位体14COの吸収波長である4.5μm帯の光を簡易に発生させ、しかも装置サイズがコンパクトな光発生装置を例に挙げて説明する。
 光源23としては、超短パルス波発生装置を用いることが好ましい。光源23として超短パルス波発生装置を用いた場合、パルスあたりの光子密度が高いため、非線形光学効果が容易に起こり、放射性二酸化炭素同位体14COの吸収波長である4.5μm帯の光を簡易に発生できる。また、各波長の波長幅が均等な櫛状の光の束(光周波数コム、以下「光コム」ともいう。)が得られるため、発振波長の変動が無視できるほど小さくできるからである。なお、光源として連続発振発生装置を用いた場合には、発振波長の変動があるため、光コムなどにより発振波長の変動を測定する必要がある。
 光源23としては、例えばモード同期により短パルスを出力する固体レーザー,半導体レーザー,ファイバーレーザーを用いることができる。なかでもファイバーレーザーを用いることが好ましい。ファイバーレーザーは、コンパクトで対環境安定性にも優れた,実用的な光源であるからである。
 ファイバーレーザーとしては、エルビウム(Er)系(1.55μm帯)またはイッテルビウム(Yb)系(1.04μm帯)のファイバーレーザーを用いることができる。経済的な観点からは汎用されているEr系ファイバーレーザーを用いることが好ましく、光強度を高める観点からはYb系ファイバーレーザーを用いることが好ましい。
 複数の光ファイバー21、22としては、光源からの光を伝送する第1光ファイバー21と、第1光ファイバー21から分岐し第1光ファイバー21の下流側で合流する波長変換用の第2光ファイバー22と、を用いることができる。第1光ファイバー21としては、光源から光共振器までつながっているものを用いることができる。また、それぞれの光ファイバーには、それぞれの経路上に複数の光学的部品や複数種類の光ファイバーを配置することができる。
 第1光ファイバー21としては、生成した高強度な超短パルス光の特性を劣化させずに伝送できる光ファイバーを用いることが好ましい。具体的には、分散補償ファイバー(DCF)、ダブルクラッドファイバーなどを含むことができる。材料は、溶融石英でできたファイバーを用いることが好ましい。
 第2光ファイバー22としては、効率良く所望の長波長側に超短パルス光を生成し、生成した高強度な超短パルス光の特性を劣化させずに伝送できる光ファイバーを使用することが好ましい。具体的には、偏波保持ファイバーや単一モードファイバー、フォトニック結晶ファイバー、フォトニックバンドギャップファイバーなどを含むことができる。波長のシフト量に合わせて、数mから数百mまでの長さの光ファイバーを使用することが好ましい。材料は、溶融石英でできたファイバーを用いることが好ましい。
 非線形光学結晶24としては、入射される光と出射される光に応じて適宜選択されるが、本実施例の場合は、それぞれの入射光から4.5μm帯前後の波長の光を発生するという観点から、例えばPPMgSLT(periodically poled MgO-dopedStoichiometric Lithium Tantalate(LiTaO))結晶もしくはPPLN(periodically poled Lithium Niobate)結晶、またはGaSe(Gallium selenide)結晶を用いることができる。また、1つのファイバーレーザー光源を用いているため、後述の通り、差周波混合において、光周波数の揺らぎをキャンセルすることができるからである。
 非線形光学結晶24としては、照射方向(長手方向)長さが11mmよりも長尺のものが好ましく、32mm~44mmがより好ましい。高出力の光コムが得られるからである。
 差周波混合(Difference Frequency Generation 以下「DFG」ともいう)によれば、第1、第2光ファイバー21,22が伝送する波長(周波数)が異なる複数の光を非線形光学結晶に通過させることで、この周波数の差から、差周波数に対応した光を得ることができる。つまり、本実施例の場合、1つの光源23から、波長がλ、λである2つの光を発生させ、2つの光を非線形光学結晶に導入させることにより、周波数の差から二酸化炭素同位体の吸収波長の光を発生させることができる。非線形光学結晶を用いるDFGの変換効率は、元となる複数の波長(λ、λ、…λ)の光源の光子密度に依存する。そのため1つのパルスレーザー光源からDFGにより差周波の光を発生することができる。
 このようにして得られる4.5μm帯の光は1パルスが規則的な周波数間隔fの複数の周波数の光(モード)からなる光コム(周波数f=fceo+N・f、N:モード数)である。光コムを用いてCRDSを行うためには、分析対象の吸収帯の光を分析対象の含まれる光共振器に導入する必要がある。なお、生成される光コムは、差周波混合のプロセスにおいてfceoがキャンセルされfceoが0になる。
 また光源としては、波長の異なる2種類のレーザー装置(Nd:YAG laserとexternal-cavity diode laser (ECDL))を用意して、レーザー光の周波数の差から二酸化炭素同位体の吸収波長を有する照射光を発生させてもよい。
 また光発生装置は、1つのファイバーレーザー光源と、数mの光ファイバーと、非線形光学結晶とで構成することが好ましい。コンパクトで搬送しやすく、しかも操作が簡単であるからである。また1つの光源から複数の光を発生させているため、それぞれの光の揺らぎ幅及び揺らぎのタイミングが同一となるため、制御装置を用いることなく、差周波混合を行うことで簡易に光周波数の揺らぎをキャンセルすることができるからである。
 第1光ファイバーと第2光ファイバーの合流点から光共振器の間の光路について、空気中にレーザー光を伝送させる態様や、必要に応じてレンズによるレーザー光の集光及び/または拡大をする光学系を含む光伝送装置を構築してもよい。
〈演算装置〉
 演算装置30としては、上述の減衰時間やリングダウンレートから光共振器内の吸収物質濃度を測定し、吸収物質濃度から炭素同位体濃度を測定できるものであれば特に制限されることなく種々の装置を用いることができる。
 演算制御部31としては、CPU等の通常のコンピュータシステムで用いられる演算手段等で構成すればよい。入力装置32としては、例えばキーボード、マウス等のポインティングデバイスが挙げられる。表示装置33としては、例えば液晶ディスプレイ、モニタ等の画像表示装置等が挙げられる。出力装置34としては、例えばプリンタ等が挙げられる。記憶装置35としてはROM、RAM、磁気ディスクなどの記憶装置が使用可能である。
 以上、第1の態様に係る炭素同位体分析装置について説明してきたが、炭素同位体分析装置は、上述の実施形態に限定されることなく、種々の変更を加えることができる。以下に炭素同位体分析装置の別の態様について、第1の態様からの変更点を中心に説明する。
〈冷却、除湿装置〉
 図2に示すように、分光装置10は、光共振器11を冷却するペルチェ素子19と、光共振器11を収納する真空装置18と、をさらに備えてもよい。14COの光吸収は温度依存性を有するため、ペルチェ素子19により光共振器11内の設定温度を低くすることで、14COの吸収線と13CO12COの吸収線との区別が容易になり、14COの吸収強度が強くなるからである。また光共振器11を真空装置18内に配置して、光共振器11が外気に晒されることを防止して外部温度の影響を軽減することで、分析精度が向上するからである。
 光共振器11を冷却する冷却装置としては、ペルチェ素子19の他にも、例えば、液体窒素槽、ドライアイス槽などを用いることができる。分光装置10を小型化できる観点からはペルチェ素子19を用いることが好ましく、装置の製造コストを下げる観点からは液体窒素水槽もしくはドライアイス槽を用いることが好ましい。
 真空装置18としては、光共振器11を収納でき、また光発生装置20からの照射光を光共振器11内に照射でき、透過光を光検出器に透過できるものであれば、特に制限なく様々な真空装置を用いることができる。
 除湿装置を設けてもよい。その際、ペルチェ素子等の冷却手段により除湿してもよいが、フッ素系イオン交換樹脂膜といった水蒸気除去用高分子膜を使用した膜分離法によって除湿してもよい。
 上述の炭素同位体分析装置1をマイクロドーズに用いる場合、放射性炭素同位体14Cに対する検出感度は「0.1dpm/ml」程度が想定される。この検出感度「0.1dpm/ml」を達成するためには、光源として「狭帯域レーザー」を用いるだけでは不十分であり、光源の波長(周波数)の安定性が求められる。即ち、吸収線の波長からずれないこと、線幅が狭いことが要件となる。この点、炭素同位体分析装置1では、「光周波数コム光」を用いた安定な光源をCRDSに用いることでこの課題を解決できる。炭素同位体分析装置1によれば、低濃度の放射性炭素同位体を含む検体に対しても測定が可能であるという有利な作用効果が奏される。
 先行文献(廣本 和郎等、「キャビティーリングダウン分光に基づく14C連続モニタリングの設計検討」、日本原子力学会春の年会予稿集、2010年3月19日、P432)には、原子力発電関連の使用済み燃料の濃度モニタリングに関連して、CRDSにより二酸化炭素中の14C濃度を測定する旨が開示されている。しかし、先行文献に記載された、高速フーリエ変換(FFT)を用いた信号処理方法は、データ処理が早くなるものの、ベースラインのゆらぎが大きくなるため、検出感度「0.1dpm/ml」を達成することは困難である。
 しかしながら、上述の通り、本発明によれば、試料ガス中の二酸化炭素同位体14COの分圧が向上することで、放射性炭素同位体14Cに対する検出感度が向上し、検出感度「0.01dpm/ml」を達成することができる。
 図7(Applied Physics Vol.24, pp.381-386, 1981より引用)は、分析試料1216131813161416の吸収波長と吸収強度の関係を示す。図7に示すように、それぞれの炭素同位体を含む二酸化炭素は、固有の吸収線を有している。実際の吸収では、各吸収線は試料の圧力や温度に起因する拡がりによって有限の幅を持つ。試料の圧力は大気圧以下、温度は273K(0℃)以下にすることが好ましい。
 14COの吸収強度は温度依存性があるため、光共振器11内の設定温度を、できるだけ低く設定することが好ましい。具体的な光共振器11内の設定温度は273K(0℃)以下が好ましい。下限値は特に制限はないが、冷却効果と経済的観点から、173K~253K(-100℃~-20℃)、特に233K(-40℃)程度に冷却することが好ましい。
 分光装置は、振動吸収手段をさらに備えてもよい。分光装置の外部からの振動によりミラー間隔がずれることを防止して、測定精度を上げることができるからである。振動吸収手段としては、例えば衝撃吸収剤(高分子ゲル)や免震装置を用いることができる。免震装置としては外部振動の逆位相の振動を分光装置に与えることができる装置を用いることができる。
〈ディレイライン〉
 図8に示すように、第1光ファイバー21上にディレイライン28(光路差調整器)を設けてもよい。ディレイライン28は、光源23からの光を複数のスペクトル成分に分ける波長フィルタと、複数のスペクトル成分のそれぞれの時間差を調整し、非線形結晶24に集光させる分光手段と、を備える。第1光ファイバー21上で発生した光の波長の微調整が容易になり、光発生装置のメンテナンスが用意になるからである。
 図9は1本の光ファイバを用いた中赤外コム生成の原理を示す図である。図8、図9を参照しつつ、ディレイライン28について説明する。図8の炭素同位体分析装置1は、光源23と非線形光学結晶24の間に、複数の波長フィルタからなるディレイライン28を備える。第1光ファイバー21により、光源23からの光が伝送され、スペクトルが拡げられる(スペクトルの伸張)。そして、スペクトル成分が時間的にずれている場合、図9に示されるように、ディレイライン28(光路差調整器)により、スペクトル成分が分けられ、時間差の調整が行われる。そして、非線形結晶25に集光させることで中赤外コムを生成することができる。
 なお、分光手段としてディレイラインを挙げたが、それに限定されることなく、分散媒体を用いてもよい。
 <光遮断装置>
 上述の実施形態においては、リングダウン信号の取得手段として、分光装置10内においてピエゾ素子13によるミラー間隔の調整を用いたが、リングダウン信号を得るために、光発生装置20内において光共振器11への光を遮断する光遮断装置を設けて光共振器に照射される照射光のオンオフ制御を行う構成としてもよい。光遮断装置としては、二酸化炭素同位体の吸収波長の光をすばやく遮断できる装置であれば特に制限されることなく種々の装置を用いることができる。なお、光共振器内の光の減衰時間よりも十分にすばやく光を遮断する必要がある。
[炭素同位体分析装置の第2の態様]
 炭素同位体分析装置1Cは、図1の光発生装置20Aを図10の光発生装置20Cに置き換えたものであり、二酸化炭素同位体生成装置40と、光発生装置20Aと、分光装置10と、さらに演算装置30とを備える。
 図10の光発生装置20Cは、1つの光源23と、光源23からの光を伝送する第1光ファイバー21と、第1光ファイバー21の分岐点から分岐し第1光ファイバー21の下流側の合流点で合流する第1光ファイバーよりも長波長の光を伝送する第2光ファイバー22と、周波数が異なる複数の光を通過させることで周波数の差から二酸化炭素同位体の吸収波長の光を発生させる非線形光学結晶24と、を備える。
 第1光ファイバー21の分岐点から合流点の間に配置された第1増幅器と、第2光ファイバーの分岐点から合流点の間に配置され、第1増幅器とは帯域が異なる第2増幅器と、周波数が異なる複数の光を通過させることで周波数の差から前記二酸化炭素同位体の吸収波長の光を発生させる非線形光学結晶と、を備える。
 増幅器としては、例えば、第1光ファイバー21の経路上に配置される第1増幅器25としてEr添加型光ファイバー増幅器、第2光ファイバー22の経路上に配置される第2増幅器26としてTm添加型光ファイバー増幅器を用いることが好ましい。
 第1光ファイバー21は、第3増幅器をさらに備えることが好ましく、第1増幅器21と合流点の間に第3増幅器を備えることがより好ましい。得られる光の強度が向上するからである。第3増幅器としてはEr添加型光ファイバー増幅器を用いることが好ましい。
 第1光ファイバー21は、波長シフトファイバーをさらに備えることが好ましく、第1増幅器と合流点の間に波長シフトファイバーを備えることがより好ましい。得られる光の強度が向上するからである。
 図11は、Er添加ファイバ-レーザーべースの中赤外(MIR)コム生成系1を示す図である。図11を参照しつつ、第3の態様に係る炭素同位体分析装置を用いた、炭素同位体分析方法について説明する。
 光源として、980nmLDを励起レーザとして用いた単層カーボンナノチューブ(SWNT)フィルムを用意する。出射光の波長が1.55μmで、繰り返し周波数160MHzの高繰り返し超短パルスファイバーレーザーを用意する。この光源からの出射光を種光として入力し、Er添加ファイバー増幅器(EDFA)で増幅し、偏光ビームスプリッタ(PBS)により二つに分離する。
 一方の短波長側経路(第1光ファイバー)では、分散補償ファイバー(DCF)、EDFA、そしてEr:Yb添加ダブルクラッドファイバーを用いた増幅器(DCF-Er-amp)によって、チャープパルス増幅を行う。なお、図示したディレイラインにより、波長の微修正をかけることも可能である。
 他方の長波長側経路(第2光ファイバー)では、大口径フォトニッククリスタルファイバー(LMA-PCF)を用いて増幅したパルス光の分散を補償して、高強度な超短パルス光を生成した後、細径コア偏波保持ファイバー(Smallcore PMF)により、約1.85μmまで波長シフトを行い、その光をTm添加ファイバー増幅器(TDFA)により増幅する。そして高非線形偏波保持分散シフトファイバー(PM-HN-DSF)でさらに波長変換(伸張)を行う。
 以上により、平均出力300mW、波長帯域1700~2400nm(1.7~2.4μm)に渡って広がるスーパコンティニューム(SC)光を生成することができる。
 最後に二つの経路の出力を、長手方向の長さが40mmの非線形光学結晶(株式会社オキサイド製PPMgSLT(Non-linear Coefficient (deff) > 7.5pm/V、Typical PMT 44+/- 5 degree C、AR Coat S1&S2 R<0.5% @ 1064/532nm、Crystal Size (T x W)  1mm x 2mm、Crystal Length (L) 40mm))のS1面に垂直に入射することにより差周波混合を行う。以上により、波長4400~4800nm(4.5μm)帯の中赤外域光周波数コムがS2面から出射することができる。
 従来の方法で作成された中赤外コムの光スペクトル図に比べて、半値幅が狭く高強度である。また、TDFAの後段に高非線形偏波保持分散シフトファイバーを加えることによって、目的とする波長の光の選択性を向上させるとともに、所望の光を効率的に高強度で得られる。
 炭素同位体分析においては、分析対象の14Cの分析で使用する波長領域をカバーする範囲で光コムが得られていればよいため、本発明者等は、光コム光源の発振スペクトルをより狭くしたほうが、より高出力の光が得られることに着目した。発振スペクトルが狭い場合には、帯域が異なる増幅器による増幅や、長尺の非線形光学結晶を用いることができる。そこで、本発明者らは検討の結果、差周波混合法を用いた光コムの発生において、(イ)1つの光源から周波数が異なる複数の光を発生させ、(ロ)得られた複数の光の強度を帯域が異なる増幅器を用いてそれぞれ増幅し、(ハ)複数の光を従来の非線形光学結晶よりも長尺の非線形光学結晶に通過させることにより周波数の差から二酸化炭素同位体の吸収波長を有する高出力の照射光を発生させることを着想した。本発明は上記知見により基づいて完成したものである。なお、従来の差周波混合法において、帯域が異なる複数の増幅器を用いて光の強度を増幅することや、長尺の結晶を用いて高出力の照射光が得られる旨の報告はなかった。
 光吸収物質の光吸収は、吸収線強度が大きく、かつ、照射光の光強度も高い場合は、その光吸収に対応した下準位が著しく減少し、実効的な光吸収量が飽和したようになる(これを飽和吸収と呼ぶ)。SCAR理論(Saturated Absorption CRDS)によれば、光共振器内の14CO等の試料に吸収線強度が大きな4.5μm帯の光を照射すると、得られる減衰信号(リングダウン信号)の初期は光共振器内に蓄積されている光強度が高いため飽和効果が大きく見られ、その後、減衰が進むにつれて光共振器内に蓄積されている光強度が徐々に低くなるため飽和効果が小さくなる。このため、このような飽和効果が見られる減衰信号は、単純な指数関数減衰ではなくなる。この理論に基づけば、SCARで得られた減衰信号のフィッティングにより、試料による減衰率とバックグラウンドの減衰率を独立に評価できるため、寄生エタロン効果などのバックグラウンドの減衰率の変動に影響されることなく試料による減衰率を求めることができ、かつ、夾雑ガスと比較して14COの飽和効果が大きいため、14COによる光吸収をより選択的に測定できる。したがって、より光強度の高い照射光を用いるほうが、分析の感度が向上することが期待されている。本発明の光発生装置は、光強度が高い照射光を発生させることができるので、炭素同位体分析に用いた場合、分析感度が向上することが期待される。
[炭素同位体分析装置の第3の態様]
〈光コム以外の光源を主光源として備える光発生装置〉
 従来、量子カスケードレーザー(QCL)には、発振波長の揺らぎがあり、また14C、13Cの吸収波長が隣接するため、14Cの分析に用いられるような炭素同位体分析装置の光源として用いることは困難であると考えられていた。そのため、本発明者等は1つの光源から光コムを発生する光コム光源を独自に開発することにより、コンパクトで使い勝手がよい、炭素同位体分析装置を完成した(特許文献2参照)。
 そして、本発明者等は炭素同位体分析装置の更なる分析精度の向上を図るため、上述の通り、線幅が狭く高出力(高強度)の光を発生する光発生装置を完成した。
 本発明者等は光発生装置のさらなる用途を検討した結果、上述の光発生装置から発生する線幅の狭い光を周波数リファレンスとして用いるビート信号測定装置により、QCLから発する光の発振波長の揺らぎを補正することを着想した。この着想に基づいて研究を進めた結果、光コム以外の光源を主光源とする、コンパクトで使い勝手がよく、信頼性が高い光発生装置及びそれを用いた炭素同位体分析装置を完成した。
 図12は第3の態様に係る炭素同位体分析装置1Dの概要を示す図である。炭素同位体分析装置11Dは、図1の光発生装置20Aを図12の光発生装置50に置き換えたものであり、二酸化炭素同位体生成装置40と、光発生装置50と、分光装置10と、さらに演算装置30とを備える。
 光発生装置50は、主光源51、主光源51からの光を伝送する光ファイバー54を備える光発生装置本体50Aと;
 1つの光の周波数領域が4500nm~4800nmである線幅の狭い光の束からなる光コムを発生させる光コム源52と、光コム源52からの光を伝送するビート信号測定用光ファイバー56と、光ファイバー54、56上に配置された分岐手段58、59と、分岐手段58,59を介して主光源51からの光の一部をビート信号測定用光ファイバー56に分岐させる光ファイバー55と、主光源51からの光と光コム源52からの光の周波数差により生じるビート信号を測定する光検出器53と、を備えるビート信号測定機50Bと;を備える。
 光発生装置50を備える炭素同位体分析装置1Cは、主光源が光コムに制限されず、QCLのような汎用の光源を用いることができるので、炭素同位体分析装置1Cの設計やメンテナンスの自由度が高くなる。
 図12の光発生装置50は、以下の工程により、所定の光を発生することで、炭素同位体分析を行うことができる。図13A、図13B、図13Cの工程概要図を用いて説明する。
(イ)1つの光の周波数領域が4500nm~4800nmである線幅の狭い光の束からなる光コムを発生させる。
(ロ)次に、図13Aに示すように、周波数に対する強度の光スペクトル図の被検対象物の吸収波長領域の中心に光コムのうちの1つの光のスペクトルを表示する。
(ハ)光コムからの光をビート信号測定用光ファイバーに伝送する。
(ニ)光源からの光を被検対象物に照射し光共振器(CRDS)により光吸収量を測定する。
(ホ)光源からの光の一部をビート信号測定用光ファイバーに分岐させ、光源からの光と光コム源からの光の周波数差によりビート信号を生じさせる。その際、図13Bの矢印で示すように(1)、(2)…と、広範囲の周波数をスキャンしながらビート信号を発生させてもよい。また図13Cに示すように所望の周波数領域でビート信号を発生させてもよい。
(ヘ)(ニ)工程で得られた光吸収量と共に(ホ)工程で得られたビート信号より得られる被検対象物に照射された光の波長を記録する。それらの記録に基づいて、被検対象物の正確な光吸収量を測定する。
 なお、本発明では、あえて光コムによるフェーズロックを行わないものの、簡便な測定系で正確な測定が実現できる。
[炭素同位体分析装置の第4の態様]
 図14は炭素同位体分析装置の第4の実施態様の概念図である。図14に示されるように、光発生装置20Eは、光源23と、光源23からの光を分岐させる分岐手段(ディレイライン)82と、分岐手段82からの光を集光する集光レンズ80b、集光レンズ80bからの光を反射して集光レンズ80bと分岐手段82を介して光源23に光を送り返すミラー80aからなるキャットアイ80とを備える。光発生装置20は、さらに光学分離器29を備える。
 キャットアイ25により角度調整に及ぼす後方反射の依存性が小さくなることで、QCLへの容易な再入射が可能となる。光学分離器29により光の遮断が可能となる。
 光源23としては、中赤外量子カスケードレーザー(Quantum Cascade Laser: QCL)を用いることができる。
 光ファイバー21としては、生成した高強度な超短パルス光の特性を劣化させずに伝送できる光ファイバーを用いることが好ましい。材料は、溶融石英でできたファイバーを用いることが好ましい。
 第4の実施態様において、光源23からレーザー光を発生させ、得られた光を光ファイバー21に伝送し;光源23からの光を分岐手段28を用いて分岐させ;分岐させた光を集光レンズ25bに集光し、集光させた光をミラー25aを用いて反射させ;ミラー25aと分岐手段28を介して光源23に送り返す(フィードバック工程)ことが好ましい。
 本発明者等は、簡易、かつ迅速な14Cの分析が可能な炭素同位体分析装置およびそれを用いた炭素同位体分析方法を提案した(特許文献2参照)。これにより、14Cを用いたマイクロドーズの研究を簡易かつ安価に行なえることとなった。
 ここで、14Cの分析に用いられ得る中赤外(MIR)レーザの1態様として、分布帰還型(DFB)量子カスケードレーザ(以下「QCL」ともいう。)システムの要望が高まっている。その理由は、それらのシステムは市販されており、数ナノメートルの広いモードホップフリー同調範囲と数MHzの典型的な線幅の単一モード発光で簡単に取り扱えるからである。
 ところが、QCLシステムは、多くの分光用途においては上記の性能で十分であるが、レーザーとCRDSで使用される高フィネス光共振器(反射率R>99.9%)とのカップリングにおいては、線幅100kHz以下が求められていた。この線幅を減少させるという課題を解決する手段としては、例えば周波数弁別器を用いた高速の電気信号フィードバック(例えば、PDHロック)があるが、高速な信号処理系が必要であり、また高価であるという問題があった。さらに、レーザー光源に高帯域幅変調が必要であった。
 このように、14Cの分析を行なうに当たっては、光源の安定性の更なる改善が求められていた。
 本発明者等は研究の結果、周波数弁別器を用いた高速の電気信号フィードバックの代替案として、遅延自己注入として知られている光フィードバックを用いる方法に着目した。この受動フィードバックをQCLに応用することにより、最小限の費用でレーザ線幅を低減することができることを知見した。即ち、上述の第4の実施態様によれば、光源の安定性が改善された、炭素同位体分析装置およびそれを用いた炭素同位体分析方法が提供される。
 炭素同位体分析装置の第1~4の態様の説明を通じて、二酸化炭素同位体トラップシステム(精製装置)や光源についても説明してきた。精製装置と光源の両者は、コンパクトでスペースを取らない簡易な構成を備える。精製装置や光源のレイアウトの自由度が高くなることで、炭素同位体分析装置の全体の容積を大幅に減少させることができる。
[炭素同位体分析方法]
 分析対象として放射性同位体14Cを例にあげて説明する。炭素同位体分析方法に、生体試料の前処理((イ)工程)は含まれないが、生体試料の前処理を行った後に、炭素同位体分析を行うことが好ましい。
(イ)放射性同位体14C源として、14Cを含む生体試料、例えば、血液、血漿、尿、糞、胆汁などを用意する。用意した生体試料から除タンパクを行うことにより生体由来炭素源を除去する。生体試料の前処理は、広義には、生体由来の炭素源除去工程と、夾雑ガス除去(分離)工程とが含まれるが、ここでは、生体由来の炭素源除去工程を中心に説明する。
 マイクロドーズ試験では極微量の14C標識化合物が含まれる生体試料(例えば、血液、血漿、尿、糞、胆汁など)について分析が行われる。そのため、分析効率を上げるためには、生体試料の前処理を行うことが好ましい。CRDS装置の特性上、生体試料中14Cと全炭素との比(14C/TotalC)が測定の検出感度を決定する要素の一つであるため、生体試料中から生体由来の炭素源を除去することが好ましい。
 除タンパクの方法としては、酸や有機溶媒によりタンパク質の不溶化させる除タンパク法、分子サイズの違いを利用する限外濾過または透析による除タンパク法、固相抽出による除タンパク法等が例示できる。後述するように、14C標識化合物の抽出が行えることや、有機溶媒自身の除去が容易であることから、有機溶媒による除タンパク法が好ましい。
 有機溶媒を用いた除タンパク法の場合、まず生体試料に有機溶媒を添加し、タンパク質を不溶化する。このとき、タンパク質に吸着している14C標識化合物が、有機溶媒含有溶液へ抽出される。14C標識化合物の回収率を高めるために、前記有機溶媒含有溶液を別の容器に採取後、残差にさらに有機溶媒を添加し、抽出する操作を行ってもよい。前記抽出操作は複数回繰り返してもよい。なお、生体試料が糞である場合、肺など臓器である場合等、有機溶媒と均一に混合しにくい形態の場合には、該生体試料をホモジネートする等、生体試料と有機溶媒とが均一に混合されるための処理をすることが好ましい。また必要に応じて、不溶化したタンパク質を、遠心操作、フィルターによるろ過等により除去してもよい。
 その後、有機溶媒を蒸発させることにより14C標識化合物を含む抽出物を乾固させ、有機溶媒由来の炭素源を取り除く。前記有機溶媒は、メタノール(MeOH)、エタノール(EtOH)、またはアセトニトリル(ACN)が好ましく、アセトニトリルがさらに好ましい。
(ロ)図2の炭素同位体トラップシステムを備える、図1に示すような炭素同位体分析装置1を用意する。前処理後の生体試料を加熱・燃焼させて、放射性同位体14C源から二酸化炭素同位体14COを含むガスを生成する。例えば、図2の二酸化炭素同位体生成装置40の燃焼管410により二酸化炭素同位体14COを含むガスを生成する。得られたガスからNO、COを除去することが好ましい。なお、後述の炭素同位体トラップシステムを作動させることにより、Heガスと併せてNO、COも除去できる。
(ハ)得られた14COから水分を取り除いておくことが好ましい。例えば二酸化炭素同位体生成装置40内にて、14COを乾燥装置44を通過させたり、また14COを炭酸カルシウム等の乾燥剤46上を通過させることにより水分を除去することができる。その他14COを冷却して水分を結露させることにより水分を除去することができる。例えば、図2のU字状の供給管48を冷水に挿入することにより、水分を結露させることができる。14COに含まれる水分に起因する光共振器11の着氷・着霜によるミラー反射率低下により検出感度が低下するが、水分を除去しておくことにより、分析精度を上げることができる。なお、分光工程を考慮すると、分光装置10へ14COを導入する前に、14COを冷却しておくことが好ましい。室温の14COを導入すると、共振器の温度が大きく変化し、分析精度が低下するためである。
(ニ)液体窒素65を備えるデュワー瓶63内にトラップ管61を挿入しトラップ管61を0℃以下まで冷却する。そして、生成された14CO14COよりも凝固点が低いキャリアガスと共にトラップ管61に送り込む。キャリアガスとして例えばヘリウムガスを用いることができる。そして、トラップ管61内で二酸化炭素同位体を凝結させる。14COが凝結した後、トラップ管61内のガスを取り除く。例えば、図2のバルブ66a、66bを閉め、ポンプPを作動させてトラップ管61内を真空にすることにより、トラップ管61内のヘリウムガスを取り除くことができる。バルブ66a、66bに加え、バルブ66c、66dも閉めることにより二酸化炭素同位体トラップ60内を外部から遮蔽する。その後、トラップ管61をデュワー瓶63から取り出しトラップ管61を室温程度まで加温し、凝結した14COを気化させる。
(ホ)気化した14COを光共振器11内に充填する。ポンプPを作動させたままバルブ66a、66b、66c、66dを開放することにより、気化した14COを光共振器11内に充填することができる。14COを273K(0℃)以下に冷却することが好ましい。ペルチェ素子19により光共振器11を冷却することにより、14COを冷却することができる。照射光の吸収強度が高まるからである。また光共振器11を真空雰囲気に保つことが好ましい。外部温度の影響を軽減させることで、測定精度が高まるからである。
(ヘ)二酸化炭素同位体の吸収波長を有する照射光として波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる。
(ト)二酸化炭素同位体14COに照射光を照射し共振させる。その際、測定精度を上げるためには、光共振器11の外部からの振動を吸収し、ミラー12a、12b間隔にずれが生じないようにすることが好ましい。また照射光が空気に触れないように、第1光ファイバー21の下流側の他端をミラー12aに当接させながら照射することが好ましい。そして光共振器11からの透過光の強度を測定する。図5に示すように透過光を分光し、分光されたそれぞれの透過光について強度を測定してもよい。
(チ)透過光の強度から炭素同位体14C濃度を計算する。
 図2の二酸化炭素同位体のトラップシステムの基本性能の評価実験を以下の条件で行なった。
 [実施例]
[操作手順]
1.測定試料(ラット尿サンプル)
 ラットを3匹用意し、各ラットから24時間毎にケージを少量の蒸留水で洗浄し、洗いこんだ蒸留水を100gに合して尿サンプル(500uL/1回)とした。各ラットから合計で8時点における尿サンプルを採取した。得られた合計24のサンプルについて、以下のような実験を行った。
2.二酸化炭素同位体生成
 試料を、スズカプセルまたはスズホイルに内包した後、有機元素分析計(以下「EA」ともいう。/elementar社製、商品名「Vario MICRO cube」)を用いて以下の二酸化炭素同位体生成条件で酸化燃焼し、二酸化炭素同位体とした。
<二酸化炭素同位体生成条件>
 燃焼温度:950℃(瞬間最大1800℃)
 還元温度:600℃
 キャリアガス:He
 流量:200mL/min
 酸素供給量:30mL/minで70~80秒
 酸化触媒:酸化銅
 還元触媒:還元銅
 ハロゲン除去触媒:銀
 除湿剤:シカぺント
3.二酸化炭素同位体分圧の取得
 図2の二酸化炭素同位体トラップシステムを供える炭素同位体分析装置を用いて、試料ガスの精製を行った後、光共振器内に試料ガスを供給して、光共振器内における二酸化炭素同位体の分圧値を測定した。
 得られた24サンプル(3個体×8時点)の測定結果の平均値は、炭素量平均:2.2mgC/500uL、分圧平均:80.4%であった。
[比較例]
[操作手順]
1.測定試料(グルコース試料)
 測定試料として、後述するような、炭素量0~96.2(mgC)のグルコース試料を用意した。
2.二酸化炭素同位体生成および分圧の取得
 二酸化炭素同位体トラップシステムを用いて試料ガスの精製を行わなかったことを除き、実施例と同様にして、各グルコース試料から二酸化炭素同位体を生成し、その後、光共振器内における二酸化炭素同位体の分圧値を測定した。
 得られたサンプルの炭素量に対する二酸化炭素同位体の分圧値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例と比較例で得られた結果をまとめて図15に示す。図15に示されるように、酸化炭素同位体トラップシステムを用いて試料ガスの精製を行った実施例によれば、炭素量が約2.0(mgC)と低濃度でありながら、二酸化炭素同位体の分圧が約80%と高かった。一方、試料ガスの精製を行わなかった比較例においては、炭素量が実施例の約4倍以上であるにも関わらず、二酸化炭素同位体の分圧は約40%程度であった。
 以上より、酸化炭素同位体トラップシステムを用いて試料ガスの精製を行うことにより、光共振器内における二酸化炭素同位体の分圧が高くなることが確認された。
 以上、第1の態様に係る炭素同位体分析方法について説明してきたが、炭素同位体分析方法は、上述の実施形態に限定されることなく、種々の変更を加えることができる。以下に炭素同位体分析方法の別の態様について、第1の態様からの変更点を中心に説明する。
(その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 実施形態に係る炭素同位体分析装置においては、分析対象である炭素同位体として放射性同位体14Cを中心に説明した。放射性同位体14Cの他にも、安定同位体元素である12C、13Cを分析することができる。その場合の照射光としては、例えば、12C及び13C 分析を12CO及び13COの吸収線分析として行う場合は、2μm帯や1.6μm帯の光を用いることが好ましい。
 12CO、及び13COの吸収線分析を行う場合、ミラー間隔は10~60cm、ミラーの曲率半径はミラー間隔と同じかそれ以上、とすることが好ましい。
 なお、12C、13C、14Cはそれぞれ化学的には同じ挙動を示すが、安定同位体元素12C、13Cよりも放射性同位体14Cの天然存在比が低いことから、放射性同位体
14Cはその濃度を人工的な操作により高くし、精度よく測定を行うことで様々な反応過程の観測が可能となる。
 実施形態に係る炭素同位体分析装置は、第1光ファイバーから分岐し分岐点より下流側で第1光ファイバーに合流する非線形ファイバーで構成された第3の光ファイバーをさらに備えてもよい。第1~第3の光ファイバーを組み合わせることで2種以上の様々な周波数の光を発生することが可能になるからである。
 その他にも、例えば、実施形態において説明した構成を一部に含む医療診断装置、環境測定装置も同様に製造することができる。また実施形態において説明した光発生装置を測定装置として用いることができる。
 光周波数コムは、レーザースペクトルの縦モードが非常に高い精度で等周波数間隔に並んだ光源であり、精密分光や高精度距離計測の分野において高機能な新しい光源として期待されている。また物質の吸収スペクトルが中赤外域に多く存在するため、中赤外域の光周波数コム光源の開発は重要である。上述の光発生装置は種々の用途で活用可能である。
 このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
  1 炭素同位体分析装置
 10 分光装置
 11 光共振器
 12 ミラー
 13 ピエゾ素子
 14 回折格子
 15 光検出器
 16 セル
 18 真空装置
 19 ペルチェ素子
 20A、20B 光発生装置
 21 第1光ファイバー
 22 第2光ファイバー
 23 光源
 24 非線形光学結晶
 25 第一増幅器
 26 第二増幅器
 28 ディレイライン
 30 演算装置
 40 二酸化炭素同位体生成装置
 50 光発生装置
 50A 光発生装置本体
 51 主光源
 52 光源
 54 光ファイバー
 58 分岐手段
 50B ビート信号測定機
 52 光コム源
 53 光検出器
 55、56 光ファイバー
 59 分岐手段
 60 二酸化炭素同位体トラップ
 80 キャットアイ

Claims (9)

  1.  炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備える二酸化炭素同位体生成装置と、
     1組のミラーを有する光共振器、光共振器からの透過光の強度を検出する光検出器を備える分光装置と、
     前記二酸化炭素同位体生成装置と前記分光装置の間に配置された、前記二酸化炭素同位体の凍結用冷却装置を備える二酸化炭素同位体トラップと、
     光発生装置と、を備える炭素同位体分析装置。
  2.  炭素同位体から二酸化炭素同位体を含むガスを生成する燃焼部、二酸化炭素同位体精製部を備え、前記二酸化炭素同位体精製部は夾雑ガス分離部、前記二酸化炭素同位体の濃縮部、除湿部を備える二酸化炭素同位体生成装置と、
     1対のミラー及びノイズ発生防止用冷却装置を有する光共振器、前記光共振器からの透過光の強度を検出する光検出器を備える分光装置と、
     前記二酸化炭素同位体生成装置と前記分光装置の間に配置された、前記二酸化炭素同位体の凍結用冷却装置を備える二酸化炭素同位体トラップと、
     光発生装置と、を備える炭素同位体分析装置。
  3.  前記光発生装置は、1つの光源、前記光源からの光を分岐させる分岐手段、前記分岐手段からの光を集光する集光レンズ、前記集光レンズからの光を反射して前記集光レンズと前記分岐手段を介して前記光源に光を送り返すミラーを備える光発生装置とを備える請求項1又は2記載の炭素同位体分析装置。
  4.  前記光発生装置は、主光源、主光源からの光を伝送する光ファイバーを有する光発生装置本体と、
     1つの光の波長領域が4500nm~4800nmである線幅の狭い光の束からなる光コムを発生させる光コム源、光コム源からの光を伝送するビート信号測定用光ファイバー、主光源からの光を伝送する光ファイバー上に配置された分岐手段、分岐手段を介して主光源からの光の一部をビート信号測定用光ファイバーに分岐させる光ファイバー、主光源からの光と光コム源からの光の周波数差により生じるビート信号を測定する光検出器を備えるビート信号測定機と、を備える請求項1又は2記載の炭素同位体分析装置。
  5.  前記光源は、中赤外量子カスケードレーザーである請求項4に記載の炭素同位体分析装置。
  6.  前記光発生装置は、1つの光源と、
     前記光源からの第1光を伝送する第1光ファイバーと、
     前記第1光ファイバーの分岐点から分岐し前記第1光ファイバーの下流側の合流点で合流し前記第1光よりも長波長の第2光を発生させる第2光ファイバーと、
     前記第1光ファイバーの前記分岐点と前記合流点の間に配置された第1増幅器と、
     前記第2光ファイバーの前記分岐点と前記合流点の間に配置され前記第1増幅器とは帯域が異なる第2増幅器と、
     周波数が異なる複数の光を通過させることで周波数の差から前記二酸化炭素同位体の吸収波長の光として波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる非線形光学結晶と、を備える請求項1又は2記載の炭素同位体分析装置。
  7.  炭素同位体から二酸化炭素同位体を生成する工程と、
     二酸化炭素同位体トラップを0℃以下まで冷却する工程と、
     前記二酸化炭素同位体及び前記二酸化炭素同位体よりも凝固点が低いキャリアガスを含んだガスを前記二酸化炭素同位体トラップ内に送り込み前記二酸化炭素同位体を凝結させる工程と、
     前記二酸化炭素同位体トラップ内のガスを取り除く工程と、
     前記二酸化炭素同位体トラップ内を外部から遮蔽しつつ、前記二酸化炭素同位体トラップ内を加温して、凝結した二酸化炭素同位体を気化させる工程と、
     気化した前記二酸化炭素同位体を光共振器内に充填する工程と、
     前記二酸化炭素同位体の吸収波長を有する照射光として波長4.5μm~4.8μm帯の中赤外域光周波数の光コムを発生させる工程と、
     前記二酸化炭素同位体に前記照射光を照射し共振させた際に得られる透過光の強度を測定する工程と、
     前記透過光の強度から炭素同位体濃度を計算する工程と、を有する炭素同位体分析方法。
  8.  前記冷却工程において、前記二酸化炭素同位体トラップを二酸化炭素同位体の凝固点以下まで冷却する請求項18に記載の炭素同位体分析方法。
  9.  前記キャリアガスが、ヘリウム(He)ガスである請求項7又は8に記載の炭素同位体分析方法。
PCT/JP2019/001906 2018-01-22 2019-01-22 炭素同位体分析装置及び炭素同位体分析方法 WO2019142944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/960,763 US20200348227A1 (en) 2018-01-22 2019-01-22 Carbon isotope analysis device and carbon isotope analysis method
CN201980009399.0A CN111630370A (zh) 2018-01-22 2019-01-22 碳同位素分析设备以及碳同位素分析方法
JP2019566546A JPWO2019142944A1 (ja) 2018-01-22 2019-01-22 炭素同位体分析装置及び炭素同位体分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-007874 2018-01-22
JP2018007874 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019142944A1 true WO2019142944A1 (ja) 2019-07-25

Family

ID=67302157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001906 WO2019142944A1 (ja) 2018-01-22 2019-01-22 炭素同位体分析装置及び炭素同位体分析方法

Country Status (4)

Country Link
US (1) US20200348227A1 (ja)
JP (1) JPWO2019142944A1 (ja)
CN (1) CN111630370A (ja)
WO (1) WO2019142944A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032632A (ja) * 2019-08-21 2021-03-01 積水メディカル株式会社 植物試料分析用炭素同位体分析装置及びそれを用いた植物試料分析用炭素同位体分析方法
JP7406766B2 (ja) 2020-03-26 2023-12-28 国立研究開発法人産業技術総合研究所 ガス分析装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517461A (en) * 1982-11-29 1985-05-14 Phillips Petroleum Co Carbon isotope analysis of hydrocarbons
JP2006345766A (ja) * 2005-06-15 2006-12-28 Central Res Inst Of Electric Power Ind 二酸化炭素放出量の構成比率の推定方法
JP2014036152A (ja) * 2012-08-09 2014-02-24 Nikon Corp ファイバレーザ、このファイバレーザを備えたレーザ装置、露光装置及び検査装置
US20150185141A1 (en) * 2012-03-29 2015-07-02 Imra America, Inc. Methods for precision optical frequency synthesis and molecular detection
JP2016519755A (ja) * 2014-01-29 2016-07-07 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ 放射性炭素年代測定用試料前処理のための全自動還元装置
WO2016140254A1 (ja) * 2015-03-04 2016-09-09 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法
WO2018135619A1 (ja) * 2017-01-20 2018-07-26 積水メディカル株式会社 炭素同位体分析装置および炭素同位体分析方法
WO2019039584A1 (ja) * 2017-08-24 2019-02-28 国立大学法人名古屋大学 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1249036A (zh) * 1997-03-11 2000-03-29 菲舍尔分析仪器有限公司 碳同位素分析仪
JP3336261B2 (ja) * 1998-07-17 2002-10-21 日本酸素株式会社 半導体レーザを用いた同位体の分光分析方法
US6800855B1 (en) * 1999-12-27 2004-10-05 Nippon Sanso Corporation Spectroscopic method for analyzing isotopes by using a semiconductor laser
JP2002340795A (ja) * 2001-05-16 2002-11-27 Shimadzu Corp 同位体ガス測定装置
AU2003236427B2 (en) * 2003-08-22 2010-04-22 Halliburton Energy Services, Inc. Method and apparatus for performing rapid isotopic analysis via laser spectroscopy
MX2011008148A (es) * 2009-02-02 2012-01-25 Planetary Emissions Man Sistema de sistemas para monitorear flujos de gas de invernadero.
CN102175641B (zh) * 2010-12-10 2013-03-20 中国科学院安徽光学精密机械研究所 基于中红外量子级联激光器直接吸收光谱法的痕量气体检测装置及方法
US8665442B2 (en) * 2011-08-18 2014-03-04 Li-Cor, Inc. Cavity enhanced laser based isotopic gas analyzer
CN103115894B (zh) * 2013-01-31 2015-03-18 中国科学院合肥物质科学研究院 一种稳定同位素丰度实时在线监测装置和方法
JP6252176B2 (ja) * 2014-01-06 2017-12-27 富士電機株式会社 ガス分析計
CN106654844A (zh) * 2016-12-30 2017-05-10 中国科学院合肥物质科学研究院 一种基于室温qcl激光器的同位素探测在线锁频装置和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517461A (en) * 1982-11-29 1985-05-14 Phillips Petroleum Co Carbon isotope analysis of hydrocarbons
JP2006345766A (ja) * 2005-06-15 2006-12-28 Central Res Inst Of Electric Power Ind 二酸化炭素放出量の構成比率の推定方法
US20150185141A1 (en) * 2012-03-29 2015-07-02 Imra America, Inc. Methods for precision optical frequency synthesis and molecular detection
JP2014036152A (ja) * 2012-08-09 2014-02-24 Nikon Corp ファイバレーザ、このファイバレーザを備えたレーザ装置、露光装置及び検査装置
JP2016519755A (ja) * 2014-01-29 2016-07-07 コリア インスティチュート オブ ジオサイエンス アンド ミネラル リソースズ 放射性炭素年代測定用試料前処理のための全自動還元装置
WO2016140254A1 (ja) * 2015-03-04 2016-09-09 国立大学法人名古屋大学 炭素同位体分析装置および炭素同位体分析方法
WO2018135619A1 (ja) * 2017-01-20 2018-07-26 積水メディカル株式会社 炭素同位体分析装置および炭素同位体分析方法
WO2019039584A1 (ja) * 2017-08-24 2019-02-28 国立大学法人名古屋大学 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHURIN D ET AL.: "Efficient Frequency Comb Generation in the 9-,um Region Using Compact Fiber Sources", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 26, no. 22, 22 August 2014 (2014-08-22), pages 2271 - 2274, XP011562732, doi:10.1109/LPT.2014.2350472 *
LEE K F ET AL.: "Midinfrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide", OPTICS EXPRESS, vol. 25, no. 15, 12 July 2017 (2017-07-12), pages 17411 - 17416, XP055579128, doi:10.1364/OE.25.017411 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032632A (ja) * 2019-08-21 2021-03-01 積水メディカル株式会社 植物試料分析用炭素同位体分析装置及びそれを用いた植物試料分析用炭素同位体分析方法
JP7371888B2 (ja) 2019-08-21 2023-10-31 国立大学法人東海国立大学機構 植物試料分析用炭素同位体分析装置及びそれを用いた植物試料分析用炭素同位体分析方法
JP7406766B2 (ja) 2020-03-26 2023-12-28 国立研究開発法人産業技術総合研究所 ガス分析装置

Also Published As

Publication number Publication date
JPWO2019142944A1 (ja) 2021-02-25
US20200348227A1 (en) 2020-11-05
CN111630370A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
JP6824496B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
JP7256501B2 (ja) 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法
JP7097583B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
JP6004412B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
WO2019142944A1 (ja) 炭素同位体分析装置及び炭素同位体分析方法
JP7440869B2 (ja) 光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法
JP6802963B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
JP2016156706A (ja) 炭素同位体分析装置および炭素同位体分析方法
JP6792778B2 (ja) 炭素同位体分析装置および炭素同位体分析方法
JP2022168861A (ja) 炭素同位体分析装置及び炭素同位体分析方法
WO2020184474A1 (ja) 分析装置
JP7371888B2 (ja) 植物試料分析用炭素同位体分析装置及びそれを用いた植物試料分析用炭素同位体分析方法
JP2020076783A (ja) 炭素同位体分析装置および炭素同位体分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741808

Country of ref document: EP

Kind code of ref document: A1