CN106654844A - 一种基于室温qcl激光器的同位素探测在线锁频装置和方法 - Google Patents

一种基于室温qcl激光器的同位素探测在线锁频装置和方法 Download PDF

Info

Publication number
CN106654844A
CN106654844A CN201611261827.3A CN201611261827A CN106654844A CN 106654844 A CN106654844 A CN 106654844A CN 201611261827 A CN201611261827 A CN 201611261827A CN 106654844 A CN106654844 A CN 106654844A
Authority
CN
China
Prior art keywords
qcl
qcl laser
signal
room temperature
laser instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611261827.3A
Other languages
English (en)
Inventor
夏滑
董凤忠
庞涛
韩荦
刘硕
张志荣
吴边
孙鹏帅
崔小娟
李哲
余润磬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201611261827.3A priority Critical patent/CN106654844A/zh
Publication of CN106654844A publication Critical patent/CN106654844A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于室温QCL激光器的同位素探测在线锁频装置和方法。包括激光控制器、QCL激光器、MCT探测器、多功能信号发生器、锁相放大器、光学无源谐振腔、离轴抛物镜、金膜平面镜、真空泵、压力传感器、温度传感器、高速A/D采集卡和信号处理系统。其中信号处理系统通过串口发送控制命令给多功能信号发生器,改变QCL激光器的直流输入,调节中心波长,实现了QCL激光器的在线锁频控制,避免外界温度对激光同位素探测系统的影响,有效提高了同位素测量系统的稳定性和灵敏度。

Description

一种基于室温QCL激光器的同位素探测在线锁频装置和方法
技术领域
本发明涉及环境监测、大气物理及遥感探测等领域,具体涉及一种基于室温QCL激光器的同位素探测在线锁频装置和方法。
背景技术
稳定同位素分析是温室气体排放源汇在排放通量的贡献估算中重要的分析依据。相对传统的质谱技术和傅立叶变换红外光谱技术,激光光谱技术具有高选择性、高灵敏度、体积小、响应快、可实现在线分析等优点。因气体同位素分子的较强吸收谱线普遍存在于中红外波段,随着半导体激光材料的发展,近年来QCL激光器越来越广泛地应用于气体监测方面。然而外界温度的变化影响半导体激光器中心波长的谱线漂移,是目前激光光谱检测技术中普遍遇到难以克服的器件难题,特别是对于大功率、宽调谐范围的量子级联激光器QCL(Quantum Cascade Laser),外界温度变化对波长漂移的影响更为明显,为了克服这一困扰,通过信号处理软件反馈控制激光驱动器的电路系统,实现QCL激光器的在线锁频,显著提高了同位素测量系统的稳定性和灵敏度。
发明内容
本发明目的是实现一种基于室温QCL激光器的同位素探测在线锁频装置和方法,以解决现有的稳定同位素丰度监测装置和方法因外界温度影响引起的灵敏度低、稳定性差等问题。
为了达到上述目的,本发明所采用的技术方案为:一种基于室温QCL激光器的同位素探测在线锁频装置,包括激光控制器、QCL激光器、MCT探测器、多功能信号发生器、锁相放大器、光学无源谐振腔、离轴抛物镜、金膜平面镜、真空泵、压力传感器、温度传感器、高速A/D采集卡和信号处理系统。其中,通过激光控制器驱动QCL激光器,设置所需工作电流和温度,QCL出射光束经金膜平面镜调节进入光学无源谐振腔,在腔内形成谐振光路,其透射光经离轴抛物镜汇聚到MCT探测器,信号光电转换后进入锁相放大器对信号进行解调放大,由高速A/D采集卡模数转化后进入信号处理系统,信号处理系统根据根据压力传感器和温度传感器及中心波长峰值位置的偏移,通过串口对多功能信号发生器发送命令,改变扫描信号的直流量微调QCL激光器的驱动电流调节波长,实现在线锁频。
所述的基于室温QCL激光器的同位素探测在线锁频装置,光源采用中心波长为4.3um室温QCL激光器,用于测量大气中16O12C16O、16O13C16O、16O12C18O分子的碳和氧同位素丰度。
所述的基于室温QCL激光器的同位素探测在线锁频装置,光学无源谐振腔基长为25.6cm,两端镜头为双面高度抛光单面镀4±0.5um高反膜的平凹球面镜,直径2.54cm,曲率半径1m,腔体体积0.15L,侧面装有压力、温度传感器,靠近两端头处装有进出气阀用于控制气体进出和谐振腔内压力,腔内压力控制在100mbar。
所述的基于室温QCL激光器的同位素探测在线锁频装置,所述的多功能信号发生器具有小于100Hz低频扫描信号、大于10KHz高频调制信号和±1V的直流输出,三种信号混合叠加后进入激光控制器,扫描和调制QCL激光器的输出波长,同时根据信号处理系统的反馈信号改变直流输出,从而锁定QCL激光器输出的中心波长。
所述的基于室温QCL激光器的同位素探测在线锁频装置和方法,信号处理系统具有同位素信号反演、QCL激光器波长偏移监控、压力和温度监测、背景扣除、同位素丰度在线定标、压力和波长反馈控制命令的串口通信等功能。
本发明另外提供一种基于室温QCL激光器的同位素探测在线锁频方法,用于室温QCL激光器的在线锁频,应用于痕量气体和大气同位素探测系统,通过激光控制器驱动QCL激光器,设置所需工作电流和温度,QCL出射光束经金膜平面镜调节进入光学无源谐振腔,在腔内形成谐振光路,其透射光经离轴抛物镜汇聚到MCT探测器,信号光电转换后进入锁相放大器对信号进行解调放大,由高速A/D采集卡模数转化后进入信号处理系统,信号处理系统根据根据压力传感器和温度传感器及中心波长峰值位置的偏移,通过串口对多功能信号发生器发送命令,改变扫描信号的直流量微调QCL激光器的驱动电流调节波长,实现在线锁频。
本发明有如下优点:
本装置和方法可以有效实现室温QCL激光器的同位素探测在线锁频,无需增加复杂装置,解决了外界温度变化对QCL激光测量系统的稳定性、精确度和灵敏度影响,极大地提高了仪器检测的有效性,为环境监测提供更精确的数据分析。
附图说明
图1为本发明整体装置结构示意图。
图2为本发明QCL锁频控制流程图。
图3为的大气中CO2同位素分子吸收光谱模拟图。
具体实施方式
下面结合法附图以及具体实施方式进一步说明本发明。
本发明的整体装置结构示意图如图1所示。激光控制器设置温度和电流调节QCL激光器的工作波长,同时多功能信号发生器将产生的小于100Hz低频扫描信号、大于10KHz高频调制信号和±1V的直流输出,三种信号混合叠加后进入激光控制器,扫描和调制QCL激光器的输出波长;QCL准直光束由金膜平面镜调节入射角度进入光学无源谐振腔内,在腔内形成稳定的驻波分布;多次透射光束经过离轴抛物镜聚焦到MCT探测器,光学积分能量经光电转换进入到锁相放大器,结合多功能信号发生器产生的高频调制参考信号,将探测器获得的光谱信号解调为二次谐波形式,有效降低1/f噪声,提高探测灵敏度;二次谐波信号由信号采集系统完成模数转换进入信号处理系统,采样周期由多功能信号发生器产生的方波时钟控制;信号处理系统将采集到的二次谐波信号做去噪、背景扣除、浓度拟合和卡尔曼滤波等处理,反演出各同位素分子的浓度,同时对比标准值,计算碳和氧同位素丰度。
由于外界温度变化引起QCL激光器的波长漂移,在连续监测过程中,CO2同位素分子吸收谱线(如附图3所示)间隔仅为0.14cm-1,波长漂移引起同位素分子吸收二次谐波信号峰值的位移,导致位于两端的16O12C16O和16O13C16O同位素分子谱线的不完整,对浓度反演和同位素丰度计算带来严重误差。本发明结合QCL激光器电流-波长的相应关系和信号的采样频率,编写多功能信号放生器的串口控制命令(流程图如附图2所示),动态调节多功能信号发生器的输出直流量,从而改变激光控制器的设置电流,补偿外界温漂对QCL激光波长的影响和因波长漂移带来的背景畸变,极大地提高了测量稳定性和灵敏度。

Claims (6)

1.一种基于室温QCL激光器的同位素探测在线锁频装置,其特征在于:包括激光控制器、QCL激光器、MCT探测器、多功能信号发生器、锁相放大器、光学无源谐振腔、离轴抛物镜、金膜平面镜、真空泵、压力传感器、温度传感器、高速A/D采集卡和信号处理系统;其中,通过激光控制器驱动QCL激光器,设置所需工作电流和温度,QCL出射光束经金膜平面镜调节进入光学无源谐振腔,在腔内形成谐振光路,其透射光经离轴抛物镜汇聚到MCT探测器,信号光电转换后进入锁相放大器对信号进行解调放大,由高速A/D采集卡模数转化后进入信号处理系统,信号处理系统根据根据压力传感器和温度传感器及中心波长峰值位置的偏移,通过串口对多功能信号发生器发送命令,改变扫描信号的直流量微调QCL激光器的驱动电流调节波长,实现在线锁频。
2.根据权利要求1所述的一种基于室温QCL激光器的同位素探测在线锁频装置,其特征在于:室温QCL激光器中心波长为4.3um,用于测量大气中16O12C16O、16O13C16O、16O12C18O分子的碳和氧同位素丰度。
3.根据权利要求1所述的一种基于室温QCL激光器的同位素探测在线锁频装置,其特征在于:光学无源谐振腔基长为25.6cm,两端镜头为双面高度抛光单面镀4±0.5um高反膜的平凹球面镜,直径2.54cm,曲率半径1m,腔体体积0.15L,侧面装有压力、温度传感器,靠近两端头处装有进出气阀用于控制气体进出和谐振腔内压力。
4.根据权利要求1所述的一种基于室温QCL激光器的同位素探测在线锁频装置,其特征在于:所述的多功能信号发生器具有小于100Hz低频扫描信号、大于10KHz高频调制信号和±1V的直流输出,三种信号混合叠加后进入激光控制器,扫描和调制QCL激光器的输出波长,同时根据信号处理系统的反馈信号改变直流输出,从而锁定QCL激光器输出的中心波长。
5.根据权利要求1所述的一种基于室温QCL激光器的同位素探测在线锁频装置,其特征在于:信号处理系统具有同位素信号反演、QCL激光器波长偏移监控、压力和温度监测、背景扣除、同位素丰度在线定标功能。
6.一种基于室温QCL激光器的同位素探测在线锁频方法,其特征在于:用于室温QCL激光器的在线锁频,应用于痕量气体和大气同位素探测系统,通过激光控制器驱动QCL激光器,设置所需工作电流和温度,QCL出射光束经金膜平面镜调节进入光学无源谐振腔,在腔内形成谐振光路,其透射光经离轴抛物镜汇聚到MCT探测器,信号光电转换后进入锁相放大器对信号进行解调放大,由高速A/D采集卡模数转化后进入信号处理系统,信号处理系统根据根据压力传感器和温度传感器及中心波长峰值位置的偏移,通过串口对多功能信号发生器发送命令,改变扫描信号的直流量微调QCL激光器的驱动电流调节波长,实现在线锁频。
CN201611261827.3A 2016-12-30 2016-12-30 一种基于室温qcl激光器的同位素探测在线锁频装置和方法 Pending CN106654844A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611261827.3A CN106654844A (zh) 2016-12-30 2016-12-30 一种基于室温qcl激光器的同位素探测在线锁频装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611261827.3A CN106654844A (zh) 2016-12-30 2016-12-30 一种基于室温qcl激光器的同位素探测在线锁频装置和方法

Publications (1)

Publication Number Publication Date
CN106654844A true CN106654844A (zh) 2017-05-10

Family

ID=58837612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611261827.3A Pending CN106654844A (zh) 2016-12-30 2016-12-30 一种基于室温qcl激光器的同位素探测在线锁频装置和方法

Country Status (1)

Country Link
CN (1) CN106654844A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589084A (zh) * 2017-08-15 2018-01-16 中国科学院合肥物质科学研究院 一种基于自会聚镜片的离轴积分腔吸收光谱气体探测装置
CN108801977A (zh) * 2018-04-20 2018-11-13 吉林大学 无标定痕量碳12和碳13二氧化碳气体探测装置及方法
CN111562237A (zh) * 2020-05-26 2020-08-21 中国科学院合肥物质科学研究院 基于双光束腔增强光谱技术的co2、n2o稳定同位素同时探测装置及方法
CN111630370A (zh) * 2018-01-22 2020-09-04 积水医疗株式会社 碳同位素分析设备以及碳同位素分析方法
CN112067582A (zh) * 2020-09-04 2020-12-11 中国科学院合肥物质科学研究院 基于腔增强吸收光谱技术探测水汽稳定同位素装置及方法
CN112397986A (zh) * 2019-08-15 2021-02-23 中国科学院大连化学物理研究所 一种轮转式拉曼池的拉曼激光器
CN113295675A (zh) * 2021-05-10 2021-08-24 中国科学院合肥物质科学研究院 新型铀同位素比测量装置及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159341A1 (en) * 2006-06-23 2008-07-03 Patel C Kumar N Tunable quantum cascade lasers and photoacoustic detection of trace gases, TNT, TATP and precursors acetone and hydrogen peroxide
CN102175641A (zh) * 2010-12-10 2011-09-07 中国科学院安徽光学精密机械研究所 基于中外红量子级联激光器直接吸收光谱法的痕量气体检测装置及方法
CN102539377A (zh) * 2012-01-19 2012-07-04 广州昂昇环境分析仪器有限公司 基于中红外吸收光谱的多组分混合气体定性定量分析方法及系统
CN103115894A (zh) * 2013-01-31 2013-05-22 中国科学院合肥物质科学研究院 一种稳定同位素丰度实时在线监测装置和方法
CN104596986A (zh) * 2014-01-14 2015-05-06 王胤 光谱分析方法和系统
CN105811232A (zh) * 2016-05-06 2016-07-27 中国科学院合肥物质科学研究院 一种用于无源光学谐振腔产生模式激发光路的调节方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159341A1 (en) * 2006-06-23 2008-07-03 Patel C Kumar N Tunable quantum cascade lasers and photoacoustic detection of trace gases, TNT, TATP and precursors acetone and hydrogen peroxide
CN102175641A (zh) * 2010-12-10 2011-09-07 中国科学院安徽光学精密机械研究所 基于中外红量子级联激光器直接吸收光谱法的痕量气体检测装置及方法
CN102539377A (zh) * 2012-01-19 2012-07-04 广州昂昇环境分析仪器有限公司 基于中红外吸收光谱的多组分混合气体定性定量分析方法及系统
CN103115894A (zh) * 2013-01-31 2013-05-22 中国科学院合肥物质科学研究院 一种稳定同位素丰度实时在线监测装置和方法
CN104596986A (zh) * 2014-01-14 2015-05-06 王胤 光谱分析方法和系统
CN105811232A (zh) * 2016-05-06 2016-07-27 中国科学院合肥物质科学研究院 一种用于无源光学谐振腔产生模式激发光路的调节方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589084A (zh) * 2017-08-15 2018-01-16 中国科学院合肥物质科学研究院 一种基于自会聚镜片的离轴积分腔吸收光谱气体探测装置
CN111630370A (zh) * 2018-01-22 2020-09-04 积水医疗株式会社 碳同位素分析设备以及碳同位素分析方法
CN108801977A (zh) * 2018-04-20 2018-11-13 吉林大学 无标定痕量碳12和碳13二氧化碳气体探测装置及方法
CN108801977B (zh) * 2018-04-20 2020-09-18 吉林大学 无标定痕量碳12和碳13二氧化碳气体探测装置及方法
CN112397986A (zh) * 2019-08-15 2021-02-23 中国科学院大连化学物理研究所 一种轮转式拉曼池的拉曼激光器
CN112397986B (zh) * 2019-08-15 2021-09-21 中国科学院大连化学物理研究所 一种轮转式拉曼池的拉曼激光器
CN111562237A (zh) * 2020-05-26 2020-08-21 中国科学院合肥物质科学研究院 基于双光束腔增强光谱技术的co2、n2o稳定同位素同时探测装置及方法
CN112067582A (zh) * 2020-09-04 2020-12-11 中国科学院合肥物质科学研究院 基于腔增强吸收光谱技术探测水汽稳定同位素装置及方法
CN113295675A (zh) * 2021-05-10 2021-08-24 中国科学院合肥物质科学研究院 新型铀同位素比测量装置及其方法

Similar Documents

Publication Publication Date Title
CN106654844A (zh) 一种基于室温qcl激光器的同位素探测在线锁频装置和方法
CN106802288B (zh) 基于可调谐激光和超连续谱激光的气体检测装置和方法
Kwee et al. Laser beam quality and pointing measurement with an optical resonator
WO2011109557A1 (en) Method and apparatus for the photo-acoustic identification and quantification of analyte species in a gaseous or liquid medium
CN106950778B (zh) 一种基于飞秒光梳的高精度光波长标准的产生方法
CN106872402A (zh) 基于超连续谱激光的气体检测装置和方法
CN107941736B (zh) 基于宽带红外光源的调制吸收光谱气体检测装置及方法
CN106483094B (zh) 消除大气吸收干扰的红外光致发光光路系统和实验方法
CN110987870A (zh) 基于波长调制光谱技术的实时监测气体浓度的系统和方法
CN107171175B (zh) 一种能同时进行多束激光稳频的法布里珀罗腔装置
CN112067582A (zh) 基于腔增强吸收光谱技术探测水汽稳定同位素装置及方法
CN108288815A (zh) 一种环形激光谐振腔光阑装调系统及其装调方法
CN109507116B (zh) 一种基于聚合物薄膜微腔的光声光谱气体传感装置及方法
CN113451882B (zh) 一种激光稳频的方法及系统
CN111721968B (zh) 一种基于双光梳系统测定气体流速的方法
US3917407A (en) Spectrophotometer with automatically fine tuned monochromator
CN113008829A (zh) 一种基于光学反馈的近红外线性腔增强吸收光谱装置
US11914267B2 (en) Tunable mid-infrared laser source and method
CN115773816A (zh) 一种可调谐可溯源的光谱定标装置
CN115021064A (zh) 可见光到短波红外准直光源的功率稳定控制系统及方法
CN113567377A (zh) 一种基于石英音叉的免校准波长调制气体检测装置及方法
CN116124702B (zh) 一种基于扫频调制的光声池共振特性测量装置及方法
CN211505210U (zh) 基于波长调制光谱技术的实时监测气体浓度的系统
CN115014631B (zh) 一种适用于易电离气体的高真空测量系统
Shanin et al. An automated millimeter-wave resonator spectrometer for investigating the small absorption in gases

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510