WO2020105217A1 - 火格子 - Google Patents

火格子

Info

Publication number
WO2020105217A1
WO2020105217A1 PCT/JP2019/026978 JP2019026978W WO2020105217A1 WO 2020105217 A1 WO2020105217 A1 WO 2020105217A1 JP 2019026978 W JP2019026978 W JP 2019026978W WO 2020105217 A1 WO2020105217 A1 WO 2020105217A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall portion
upper wall
cooling
grate
tip
Prior art date
Application number
PCT/JP2019/026978
Other languages
English (en)
French (fr)
Inventor
成貴 小高
博之 中拂
貴宏 小田野
浩輝 松田
駿一 永原
Original Assignee
三菱重工環境・化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境・化学エンジニアリング株式会社 filed Critical 三菱重工環境・化学エンジニアリング株式会社
Priority to CN201990000396.6U priority Critical patent/CN212869812U/zh
Priority to EP19886731.9A priority patent/EP3885652B1/en
Priority to BR112020014213-1A priority patent/BR112020014213B1/pt
Priority to RU2020122866U priority patent/RU206500U1/ru
Priority to SG11202006518QA priority patent/SG11202006518QA/en
Priority to KR1020217014151A priority patent/KR20210076060A/ko
Priority to DK19886731.9T priority patent/DK3885652T3/da
Priority to KR2020217000043U priority patent/KR200497218Y1/ko
Publication of WO2020105217A1 publication Critical patent/WO2020105217A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H1/00Grates with solid bars
    • F23H1/02Grates with solid bars having provision for air supply or air preheating, e.g. air-supply or blast fittings which form a part of the grate structure or serve as supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H3/00Grates with hollow bars
    • F23H3/02Grates with hollow bars internally cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H11/00Travelling-grates
    • F23H11/18Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H17/00Details of grates
    • F23H17/12Fire-bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H7/00Inclined or stepped grates
    • F23H7/06Inclined or stepped grates with movable bars disposed parallel to direction of fuel feeding
    • F23H7/08Inclined or stepped grates with movable bars disposed parallel to direction of fuel feeding reciprocating along their axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H7/00Inclined or stepped grates
    • F23H7/12Inclined or stepped grates with movable bars disposed transversely to direction of fuel feeding
    • F23H7/14Inclined or stepped grates with movable bars disposed transversely to direction of fuel feeding reciprocating along their axis

Definitions

  • the present invention relates to grate.
  • the present application claims priority to Japanese Patent Application No. 2018-004543 filed in Japan on Nov. 22, 2018, the content of which is incorporated herein by reference.
  • a stoker furnace is known as an incinerator that incinerates incinerators such as garbage, which can efficiently incinerate a large amount of garbage without selecting it.
  • the stoker furnace has a stoker consisting of a fixed grate stage and a moving grate stage, which are alternately arranged in the direction of waste transport.
  • a fixed grate stage and a moving grate stage are reciprocally moved to sufficiently stir and burn the dust (see, for example, Patent Document 1).
  • Some stoker furnaces have a cooling structure that cools the grate in order to improve the durability and extend the life of the stoker.
  • a cooling structure for example, there is a structure in which cooling air is introduced into a cooling flow path that reciprocates within the grate several times to cool the upper wall portion of the grate by forced convection.
  • cooling air is caused to flow along the wall of the grate to be cooled, and heat is transported through diffusion of vortices generated near the wall.
  • the temperature of the grate may be further increased by performing a low air ratio operation or the like.
  • the forced convection cooling structure it is possible to improve the cooling performance by increasing the flow velocity of the cooling air, for example.
  • the cooling performance becomes insufficient and the grate temperature may rise. Further, from the viewpoint of material life, further improvement in cooling performance is desired.
  • the present invention provides a grate that has improved cooling performance in a grate having a cooling structure.
  • the grate is provided on the upper wall portion extending in the first direction, the front wall portion extending downward from the tip of the upper wall portion, and the back side of the upper wall portion.
  • a plurality of cooling holes for impingement cooling the upper wall portion for impingement cooling the upper wall portion.
  • the cooling medium ejected from the cooling holes directly collides with the upper wall portion, so that the cooling performance can be improved.
  • formed in the flow path between the partition wall and the upper wall portion is formed to extend in the first direction on the tip side from the central portion of the upper wall portion in the first direction.
  • a slit for discharging the cooling medium may be provided, and the slit and the cooling hole may be formed so as not to overlap with each other when viewed from the normal direction of the main surface of the upper wall portion.
  • the air discharge hole can be enlarged by forming the slit functioning as the air discharge hole in the upper wall portion. Therefore, the pressure loss due to the air discharge hole is reduced, and the power of the blower fan for supplying the cooling air can be reduced. Further, by displacing the positions of the slits and the cooling holes, the cooling medium ejected from the cooling holes reliably hits the upper wall portion. Therefore, the cooling performance of the collision jet can be reliably obtained.
  • the partition wall body has a main portion that is substantially parallel to the upper wall portion, and a tip end portion that is connected to the tip end side of the main portion, and is formed at the tip end portion. At least a part of the plurality of cooling holes may be oriented such that the cooling medium ejected from the cooling holes hits the front wall portion.
  • the cooling medium ejected from the cooling holes hits not only the upper wall but also the front wall (tip of the grate). Therefore, the cooling performance of the tip of the grate can be improved.
  • a plate-shaped fin may be provided integrally with the upper wall portion on the back surface of the upper wall portion and project downward from the upper wall portion.
  • the fins are formed on the upper wall portion, so that a heat dissipation effect can be obtained. Therefore, the cooling performance of the grate is improved.
  • the cooling holes may have a circular shape, and the inner peripheral surface of the cooling holes may have a conical shape whose diameter decreases as it goes upward.
  • the pressure loss due to the cooling hole can be reduced by increasing the inner diameter of the cooling hole on the inlet side. Further, by reducing the inner diameter of the cooling hole on the outlet side, it is possible to increase the flow velocity of the cooling medium and improve the cooling performance.
  • the grate has an upper wall portion that extends in the first direction, a front wall portion that extends downward from a tip of the upper wall portion, and a downward direction from a side edge of the upper wall portion.
  • a pair of extending side wall portions Formed on the duct body, a pair of extending side wall portions, a duct main body disposed in a space surrounded by the upper wall portion and the pair of side wall portions, and having a tubular shape extending in the first direction with the tip end side closed.
  • a plurality of cooling holes for impingement cooling by injecting a cooling medium toward the back surface of the upper wall portion, the back surface of the front wall portion, and the back surfaces of the pair of side wall portions. You can do it.
  • the gap between the side wall portion and the duct functions as a cooling medium discharge hole that is long in the first direction, so that the flow rate of the cooling medium is reduced. Even if the number is increased, the cooling effect of the collision jet is hardly disturbed by the flow of the cooling medium toward the cooling medium discharge hole, and the effect of the collision jet can be maximized.
  • the structure of the grate can be simplified. In addition, the simplification of the structure of the grate facilitates maintenance.
  • the cooling medium ejected from the cooling holes directly collides with the upper wall portion, whereby the cooling performance can be improved.
  • FIG. 5 is a sectional view taken along line VV of FIG. 4 and is a sectional view of the grate according to the first embodiment of the present invention. It is a figure explaining the effect
  • FIG. 8 is a sectional view taken along the line VIII-VIII of FIG. 7, showing a sectional view of the grate according to the second embodiment of the present invention. It is sectional drawing of the grate of 3rd embodiment of this invention. It is sectional drawing of the grate of 4th embodiment of this invention. It is sectional drawing of the grate of 5th embodiment of this invention. It is sectional drawing of the cooling hole and the air discharge hole of the grate of 6th embodiment of this invention. It is a perspective view of a grate of a seventh embodiment of the present invention.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV of FIG.
  • FIG. 15 is a cross-sectional view taken along line XV-XV of FIG. 14 and is a cross-sectional view of the grate according to the seventh embodiment of the present invention.
  • the grate of the first embodiment of the present invention is used for a stoker furnace for burning incineration objects such as dust.
  • the stoker furnace 50 includes a hopper 51 that temporarily stores the incineration object B, an incinerator 52 that burns the incineration object B, and a feeder that supplies the incineration object B to the incinerator 52.
  • a stoker 54 (including a drying stage 61, a combustion stage 62, and a grate 1 of a post-combustion stage 63) provided on the bottom side of the incinerator 52, and a wind box 55 provided below the stoker 54. , Are provided.
  • the feeder 53 continuously pushes out the incineration target B supplied onto the feed table 56 via the hopper 51 into the incinerator 52.
  • the feeder 53 reciprocates on the feed table 56 with a predetermined stroke by the feeder driving device 57.
  • the wind box 55 supplies primary air supplied from a blower (not shown) to each part of the stoker 54.
  • the incinerator 52 is provided above the stoker 54 and has a combustion chamber 58 composed of a primary combustion chamber and a secondary combustion chamber.
  • the incinerator 52 has a secondary air supply nozzle 59 that supplies secondary air to the combustion chamber 58.
  • the stoker 54 is a combustion device in which the grate 1 is arranged in a stepwise manner.
  • the incineration object B burns on the stoker 54.
  • the direction in which the incineration object B is transported is referred to as the transport direction TD.
  • the incineration object B is transported on the stoker 54 in the transport direction TD.
  • the right side is the downstream side TD1 in the transport direction.
  • the stoker 54 includes, in order from the upstream side in the conveyance direction of the incinerated material B, a drying stage 61 for drying the incinerated material B, a combustion stage 62 for incinerating the incinerated material B, and complete incineration of unburned components (post-combustion). And a post-combustion stage 63).
  • the drying stage 61, the combustion stage 62, and the post-combustion stage 63 perform drying, burning, and post-burning, respectively, while sequentially transporting the incineration object B.
  • Each of the stages 61, 62, 63 has a fixed grate stage having a plurality of fixed grate 1a and a moving grate stage having a plurality of moving grate 1b.
  • the fixed grate stage is configured by arranging a plurality of fixed grate 1a in the width direction of the stalker 54 (depth direction in FIG. 1).
  • the moving grate stage is configured by arranging a plurality of moving grate 1b in the width direction of the stalker 54.
  • the fixed grate 1a (fixed grate stage) and the moving grate 1b (moving grate stage) are alternately arranged in the transport direction TD.
  • the moving grate 1b reciprocates in the transport direction TD of the incineration object B. Due to the reciprocating motion of the moving grate 1b, the material B to be incinerated on the stoker 54 is transported and stirred. That is, the lower layer portion of the incineration object B is moved and replaced with the upper layer portion of the incineration object B.
  • the drying stage 61 receives the incineration object B pushed out by the feeder 53 and dropped into the incinerator 52, evaporates the water content of the incineration object B and partially thermally decomposes it.
  • the combustion stage 62 ignites the incineration object B dried in the drying stage 61 with the primary air supplied from the wind box 55 below, and burns the volatile components and the fixed carbon components.
  • the post-combustion stage 63 burns unburned components such as fixed carbon components that have passed through the combustion stage 62 without being combusted until they are completely ashed.
  • the ash is discharged from the incinerator 52 through a discharge chute 64 provided at the outlet of the post combustion stage 63.
  • Each stage 61, 62, 63 has a drive mechanism 65 for driving the moving grate 1b.
  • the driving speeds of the moving grate 1b in the drying stage 61, the combustion stage 62, and the post-combustion stage 63 are the same as each other or at least part of the drying stage 61, the combustion stage 62, and the post-combustion stage 63. Can be different speeds.
  • the shapes of the fixed grate 1a and the moving grate 1b of this embodiment will be described. Since the fixed grate 1a and the moving grate 1b have the same shape, the grate 1 will be described below. However, a part of the fixed grate 1a and the moving grate 1b may be a grate with protrusions. The grate with protrusions has a protrusion protruding upward at the tip of the grate 1, but the other structure is the same as that of the grate 1 described below.
  • the grate 1 of this embodiment has a cooling structure.
  • the grate 1 is cooled by using the primary air supplied from the wind box 55 as cooling air (cooling medium).
  • the grate 1 includes an upper wall portion 2 extending in a first direction D (trash transport direction TD) and a tip of the upper wall portion 2 (transport direction).
  • the front wall portion 3 extends downward from the downstream side TD1), the pair of side wall portions 4 extends downward from the side edge 2a of the upper wall portion 2, and the rear wall portion 5.
  • the upper surface of the upper wall portion 2 is a surface on which dust is placed.
  • the upper wall portion 2, the front wall portion 3, the pair of side wall portions 4, and the rear wall portion 5 are integrally formed.
  • a recess 6 is formed at the rear end of the upper wall 2.
  • the concave portion 6 of the grate 1 is fitted into a convex portion (not shown) provided on the installation surfaces 61a, 62a, 63a (see FIG. 1) of the respective steps 61, 62, 63. Thereby, the grate 1 is attached to each of the steps 61, 62, 63.
  • the upper wall portion 2 has a rectangular shape and forms an upper surface of the stalker 54 together with the grate 1 adjacent to each other in the width direction W (direction orthogonal to the first direction D).
  • the front wall portion 3 is formed so as to project downward from the upper wall portion 2 so that the main surface of the upper wall portion 2 and the main surface of the front wall portion 3 intersect at an angle close to a right angle.
  • the thickness of the front wall portion 3 is thicker than the thickness of the upper wall portion 2 and the side wall portion 4.
  • the side wall portion 4 is formed so that the main surface of the upper wall portion 2 and the main surface of the side wall portion 4 intersect at a substantially right angle.
  • the side wall portion 4 is formed so that its width becomes wider toward the tip of the grate 1.
  • the rear wall portion 5 has a plate shape protruding downward from the upper wall portion 2, and is formed such that the main surface of the rear wall portion 5 faces the first direction D.
  • the rear wall portion 5 is arranged behind the grate 1 (between the front wall portion 3 and the concave portion 6 and on the concave portion 6 side).
  • a flow path S is formed below the upper wall portion 2 (on the back side of the upper wall portion 2).
  • the grate 1 has an upper wall part 2, a front wall part 3, a pair of side wall parts 4, and a partition wall 8 that divides the flow path S into upper and lower parts.
  • the partition wall 8 has a plate shape and is attached so as to be parallel to the upper wall portion 2.
  • the main surface of the partition wall 8 faces the upper wall portion 2, and the flow path S is divided into an upper flow path S1 between the upper wall portion 2 and the partition wall 8 and a lower flow path S2 below the partition wall 8. It has a partition wall body 9 and a plurality of cooling holes 10 formed in the partition wall body 9.
  • the plurality of cooling holes 10 are uniformly arranged in the partition wall body 9.
  • the plurality of cooling holes 10 can be arranged in a grid, for example.
  • the number and size of the plurality of cooling holes 10 are set so that the pressure loss is 500 mmAq (4.90 kPa) or less so that the grate 1 does not float due to the pressure loss of the cooling holes 10.
  • the side wall portion 4 is formed with an air discharge hole 12 for discharging the cooling air from the upper flow path S1.
  • the air discharge hole 12 is arranged on the tip side in the first direction D.
  • the cooling air C becomes a plurality of cooling holes in the partition wall 8. It passes through 10, and jets out toward the back surface of the upper wall portion 2.
  • the cooling air C flows so as to collide with the upper wall portion 2, and then is discharged from the air discharge hole 12. As a result, the upper wall portion 2 is impingement cooled.
  • the cooling air C ejected from the cooling holes 10 directly collides with the upper wall portion 2 and the cooling air C directly transports heat, thereby increasing the heat transfer coefficient.
  • the cooling performance can be improved. That is, the cooling air C collides with the upper wall portion 2 to improve the cooling performance of the grate 1.
  • the ratio L / Di between the inner diameter Di and the distance L to 2 ⁇ L / Di ⁇ 35 it is possible to increase the dimensional tolerance when the grate 1 is manufactured. As a result, the product cost can be reduced.
  • the shape of the cooling hole 10 is circular, but the shape is not limited to this.
  • the shape of the cooling holes 10 may be elliptical or polygonal.
  • the cooling medium used for cooling is primary air, but the cooling medium is not limited to this, and for example, cooling may be performed by supplying steam to the grate 1.
  • the air discharge hole 12 has a square shape, but the present invention is not limited to this.
  • the air discharge hole 12 may be circular or elliptical.
  • a grate according to a second embodiment of the present invention will be described in detail with reference to the drawings.
  • differences from the above-described first embodiment will be mainly described, and description of similar parts will be omitted.
  • a plurality of air discharge holes 12B of the grate 1 of the present embodiment are formed in the upper wall portion 2.
  • the plurality of air discharge holes 12B have a slit shape (long hole) extending in the first direction D.
  • the plurality of air discharge holes 12B are formed closer to the tip side than the central portion of the upper wall portion 2 in the first direction D.
  • the air discharge holes 12B are formed at equal intervals in the width direction W.
  • each air discharge hole 12B is set so that the flow velocity of the cooling air discharged from the air discharge hole 12B is equal to or higher than the terminal velocity of the dust particles.
  • the number of air discharge holes 12B and the positions in the width direction W correspond to the cooling holes 10.
  • the air discharge holes 12 and the cooling holes 10 overlap each other when viewed from the normal direction of the main surface of the upper wall portion 2 (above the upper wall portion 2).
  • the number of the air discharge holes 12B and the positions in the width direction W do not have to correspond to the cooling holes 10. That is, the air discharge holes 12 and the cooling holes 10 do not have to overlap with each other when viewed from the direction normal to the main surface of the upper wall portion 2.
  • the slit-shaped air discharge hole 12B in the upper wall portion 2 of the grate 1B it is possible to improve the size and the degree of freedom of the shape of the air discharge hole 12B. Further, if the flow velocity of the cooling air ejected from the cooling holes 10 is increased, the cooling performance is improved, but as a contradiction event, the pressure loss due to the partition wall 8 (perforated plate) increases. When the pressure loss increases, the lifting of the grate 1 becomes a problem. Therefore, the upper limit of the flow velocity of the cooling air is determined by the pressure loss of the entire grate due to the partition wall 8 and the air discharge hole 12.
  • the pressure loss due to the air discharge holes 12B is reduced.
  • the power of the blower fan for supplying the cooling air can be reduced.
  • the air discharge holes 12B and the cooling holes 10 do not overlap with each other when viewed from the direction normal to the main surface of the upper wall portion 2.
  • four air discharge holes 12B are formed in the width direction W.
  • the cooling holes 10 are formed between the air discharge holes 12B that are adjacent to each other in the width direction W when viewed from the normal direction of the main surface of the upper wall portion 2. That is, the air ejected from the cooling hole 10 hits the upper wall portion 2 and is then discharged from the air discharge hole 12B.
  • the cooling air ejected from the cooling hole 10 reliably hits the upper wall portion 2. Therefore, it is possible to reliably obtain the cooling performance of the impinging jet even at the location where the slit-shaped air discharge hole 12B is formed.
  • the partition wall body 9D of the partition wall 8 of the present embodiment includes a main portion 14 that is substantially parallel to the upper wall portion 2, a tip portion 15 connected to a tip side of the main portion 14, have.
  • the tip portion 15 is formed such that the main surface of the tip portion 15 is substantially parallel to the front wall portion 3.
  • the main portion 14 and the tip portion 15 are smoothly connected. At least some of the plurality of cooling holes 10 formed in the tip portion 15 are oriented so that the cooling air C ejected from the cooling holes 10 hits the front wall portion 3.
  • the cooling air C ejected from the cooling holes 10 hits not only the upper wall portion 2 but also the front wall portion 3 (the tip of the grate 1D). Therefore, the cooling performance of the tip of the grate 1D can be improved.
  • the tip portion 15 is formed so as to be substantially parallel to the front wall portion 3, but if it is formed so that the cooling air C ejected from the cooling holes 10 hits the front wall portion 3, It is not limited to For example, the angle formed by the main portion 14 and the tip portion 15 may be an obtuse angle, or the tip portion 15 may be a plate having a curvature.
  • the grate 1E of the present embodiment has fins 16 formed on the upper wall portion 2.
  • the fin 16 has a plate shape, and is provided integrally with the upper wall 2 on the back surface 2 b of the upper wall 2.
  • the fins 16 are formed so as to project downward from the upper wall portion 2.
  • the fin 16 is formed such that the main surface of the fin 16 extends in the first direction D and faces the width direction W.
  • the fin 16 is formed on the upper wall portion 2, so that the heat radiation effect can be obtained. Therefore, the cooling performance of the grate 1E is improved.
  • the cooling hole 10F of the grate 1F of this embodiment has a circular shape.
  • the inner peripheral surface 10a of the cooling hole 10F has a conical shape whose diameter decreases toward the upper side (upper wall 2 side).
  • the cooling hole 10F is formed so that Di1> Di2, where Di1 is the inner diameter of the lower end and Di2 is the upper end.
  • the pressure loss due to the cooling hole 10F can be reduced by increasing the inner diameter Di1 on the inlet side of the cooling hole 10F. Further, by reducing the inner diameter Di2 on the outlet side of the cooling hole 10F, the flow velocity of the cooling air can be increased and the cooling performance can be improved.
  • the grate 1G of the present embodiment has an upper wall portion 2, a front wall portion 3, a pair of side wall portions 4, a rear wall portion 5, and a rear wall.
  • a duct 18 fixed to the portion 5 and extending in the first direction D.
  • the duct 18 is arranged in a space surrounded by the upper wall portion 2 and the pair of side wall portions 4.
  • the duct 18 is formed into a rectangular tube-shaped duct body 19 extending in the first direction D, and is formed on the duct body 19 to the back surface of the upper wall portion 2, the back surface of the front wall portion 3, and the back surface of the pair of side wall portions 4. It has a plurality of cooling holes 10 for injecting the cooling air C toward and impingement cooling, and an air introduction hole 11 formed at the rear end of the duct body 19.
  • the duct body 19 includes a first surface 21 that is parallel to the upper wall portion 2, a pair of second surfaces 22 that are parallel to the side wall portion 4, and a pair of second surfaces 22 that are parallel to the first surface 21. It has a third surface 23 that forms a square tube together with the second surface 22 and a fourth surface 24 that closes the tip of the duct body 19.
  • the cooling holes 10 are regularly formed on the first surface 21 and the pair of second surfaces 22.
  • the axis A of the cooling hole 10 formed on the second surface 22 is not orthogonal to the second surface 22 and is inclined.
  • the cooling holes 10 formed in the second surface 22 are inclined so that the cooling air C ejected from the cooling holes 10 is ejected upward so that the outside is higher.
  • the cooling air ejected from the cooling holes 10 of the duct 18 hits the upper wall portion 2, the side wall portion 4, and the front wall portion 3 to cool them. Then, the cooling air is discharged from the gap G between the side wall portion 4 and the duct 18 on the bottom side of the grate 1.
  • the cooling air is discharged from the air discharge holes 12B along the upper wall portion 2.
  • the flow of the cooling air makes it difficult for the collision jet near the air discharge hole 12B to contribute to cooling. That is, the energy of the impinging jet impinging on the inner surface of the wall from the cooling hole 10 is weakened by the cooling air flowing along the wall toward the air discharge hole 12.
  • the gap G between the side wall portion 4 and the duct 18 functions as an air discharge hole that is long in the first direction D, so that cross flow is eliminated. Therefore, the effect of the collision jet can be maximized.
  • the structure of the grate 1G can be simplified. Moreover, the simplification of the structure of the grate 1G facilitates maintenance.
  • the duct body 19 has a square tubular shape, but the duct body 19 is not limited to this as long as it has a tubular shape.
  • the shape of the duct body 19 may be cylindrical.
  • the cooling medium ejected from the cooling holes directly collides with the upper wall portion, whereby the cooling performance can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Abstract

第一方向(D)に延びる上壁部(2)と、上壁部(2)の先端から下方に延びる前壁部(3)と、上壁部(2)の裏側に設けられた流路(S)と、流路(S)を上下に仕切る仕切壁(8)であって、主面が上壁部(2)を向く仕切壁本体(9)と、仕切壁本体(9)に形成されて上壁部2の裏面へ向けて冷却媒体を噴出して上壁部(2)をインピンジメント冷却する複数の冷却孔(10)と、を有する仕切壁(8)と、を有する火格子(1)を提供する。

Description

火格子
 本発明は、火格子に関する。
 本願は、2018年11月22日に日本に出願された実願2018-004543号について優先権を主張し、その内容をここに援用する。
 ごみ等の被焼却物を焼却する焼却炉として、大量のごみを選別することなく効率的に焼却処理することができるストーカ炉が知られている。ストーカ炉は、ごみの搬送方向で交互に配置した固定火格子段と移動火格子段からなるストーカを有している。ストーカ炉は、固定火格子段と移動火格子段を往復運動させ、ごみを十分に撹拌して燃焼させている(例えば、特許文献1参照)。
 ストーカ炉としては、ストーカの耐久性向上と長寿命化を図るために火格子を冷却する冷却構造を有するものもある。冷却構造としては、例えば、火格子内を数往復する冷却流路に冷却空気を導入し、火格子の上壁部を強制対流により冷却する構造がある。強制対流による冷却構造では、冷却空気を冷却対象である火格子の壁に沿って流し、壁近傍で発生する渦の拡散を介して熱を輸送している。
特開平6-265125号公報
 ストーカ炉では、例えば、低空気比運転などを行うことによって火格子の温度が更に上昇する可能性がある。強制対流による冷却構造の場合、例えば、冷却空気の流速を上げる事で冷却性能を向上させることが可能である。
 しかし、例えば、冷却空気の流速を上げられないストーカ炉の場合は冷却性能が不十分となり,火格子温度が上昇してしまう恐れがある。
 また、材料寿命の観点からも、更なる冷却性能の向上が望まれている。
 この発明は、冷却構造を有する火格子において、冷却性能を向上させることができる火格子を提供する。
 本発明の第一の態様によれば、火格子は、第一方向に延びる上壁部と、前記上壁部の先端から下方に延びる前壁部と、前記上壁部の裏側に設けられた流路と、前記流路を上下に仕切る仕切壁であって、主面が前記上壁部を向く仕切壁本体と、前記仕切壁本体に形成されて前記上壁部の裏面へ向けて冷却媒体を噴出して前記上壁部をインピンジメント冷却する複数の冷却孔と、を有する仕切壁と、を有する。
 このような構成によれば、冷却孔から噴出する冷却媒体が直接的に上壁部に衝突することによって、冷却性能を向上させることができる。
 上記火格子において、前記仕切壁と前記上壁部との間の距離をL、前記冷却孔の内径をDiとすると、2<L/Di<35であってよい。
 このような構成によれば、火格子を製作するときの寸法公差を大きくすることができ、製品コストの低減を図ることができる。
 上記火格子において、前記上壁部の前記第一方向の中央部よりも前記先端側に前記第一方向に延びるように形成され、前記仕切壁と前記上壁部との間の流路内の前記冷却媒体を排出するスリットを有し、前記スリットと前記冷却孔とは、前記上壁部の主面の法線方向から見て重ならないように形成されてよい。
 このような構成によれば、上壁部に空気排出孔として機能するスリットを形成することで、空気排出孔を大きくすることができる。そのため、空気排出孔による圧力損失が低減され、冷却空気を供給するための送風ファンの動力を小さくすることができる。
 また、スリットと冷却孔の位置をずらすことによって、冷却孔から噴出した冷却媒体が確実に上壁部に当たる。そのため、衝突噴流の冷却性能を確実に得ることができる。
 上記火格子において、前記仕切壁本体は、前記上壁部と略平行をなす主部と、前記主部の前記先端側に接続された先端部と、を有し、前記先端部に形成された複数の前記冷却孔の少なくとも一部は、前記冷却孔から噴出された前記冷却媒体が前記前壁部に当たるように指向されてよい。
 このような構成によれば、冷却孔から噴出した冷却媒体が上壁部のみならず、前壁部(火格子の先端)にも当たる。そのため、火格子の先端の冷却性能を向上させることができる。
 上記火格子において、前記上壁部の前記裏面に前記上壁部と一体に設けられ、前記上壁部から下方に突出するように形成された板状のフィンを有してよい。
 このような構成によれば、上壁部にフィンが形成されていることにより、放熱効果が得られる。そのため、火格子の冷却性能が向上する。
 上記火格子において、前記冷却孔は円形をなし、前記冷却孔の内周面は上方に向かうにしたがって縮径する円錐形状をなしてよい。
 このような構成によれば、冷却孔の入り口側の内径を大きくすることによって、冷却孔による圧力損失を低減することができる。また、冷却孔の出口側の内径を小さくすることによって、冷却媒体の流速を上げて冷却性能を向上させることができる。
 本発明の第二の態様によれば、火格子は、第一方向に延びる上壁部と、前記上壁部の先端から下方に延びる前壁部と、前記上壁部の側縁から下方に延びる一対の側壁部と、前記上壁部及び一対の側壁部に囲まれた空間に配置され、前記先端側が閉塞されて前記第一方向に延びる筒状をなすダクト本体と、前記ダクト本体に形成されて前記上壁部の裏面、前記前壁部の裏面、及び前記一対の側壁部の裏面へ向けて冷却媒体を噴射してインピンジメント冷却する複数の冷却孔と、を有するダクトと、を有してよい。
 このような構成によれば、ダクトから噴出された冷却媒体が排出されるときに、側壁部とダクトとの隙間が第一方向に長い冷却媒体排出孔として機能することによって、冷却媒体の流量を増加させても冷却媒体排出孔に向かう冷却媒体の流れによって衝突噴流の冷却効果が妨害されにくく、衝突噴流の効果を最大限に得ることができる。
 また、火格子の構造を簡素化できる。また、火格子の構造が簡素化することで、メンテナンスが容易となる。
 本発明によれば、冷却孔から噴出する冷却媒体が直接的に上壁部に衝突することによって、冷却性能を向上させることができる。
本発明の第一実施形態のストーカ炉の概略構成図である。 本発明の第一実施形態の火格子の上方から見た斜視図である。 本発明の第一実施形態の火格子の下方から見た斜視図である。 本発明の第一実施形態の火格子の下方から見た平面図である。 図4のV-V断面図であって、本発明の第一実施形態の火格子の断面図である。 本発明の第一実施形態の火格子の作用を説明する図である。 本発明の第二実施形態の火格子の上方から見た斜視図である。 図7のVIII-VIII断面図であって、本発明の第二実施形態の火格子の断面図である。 本発明の第三実施形態の火格子の断面図である。 本発明の第四実施形態の火格子の断面図である。 本発明の第五実施形態の火格子の断面図である。 本発明の第六実施形態の火格子の冷却孔及び空気排出孔の断面図である。 本発明の第七実施形態の火格子の斜視図である。 図13のXIV-XIV断面図であって、本発明の第七実施形態の火格子の断面図である。 図14のXV-XV断面図であって、本発明の第七実施形態の火格子の断面図である。
〔第一実施形態〕
 以下、本発明の第一実施形態の火格子について図面を参照して詳細に説明する。
 本発明の火格子は、ごみ等の被焼却物燃焼用ストーカ炉に用いられるものである。図1に示すように、ストーカ炉50は、被焼却物Bを一時的に貯留するホッパ51と、被焼却物Bを燃焼させる焼却炉52と、焼却炉52に被焼却物Bを供給するフィーダ53と、焼却炉52の底部側に設けられたストーカ54(乾燥段61、燃焼段62、及び後燃焼段63の火格子1を含む)と、ストーカ54の下方に設けられた風箱55と、を備えている。
 フィーダ53は、ホッパ51を介して連続的にフィードテーブル56上に供給された被焼却物Bを焼却炉52内に押し出す。フィーダ53は、フィーダ駆動装置57によってフィードテーブル56上を所定のストロークで往復運動する。
 風箱55は、送風機(図示せず)から供給される一次空気をストーカ54の各部に供給する。
 焼却炉52は、ストーカ54の上方に設けられ、一次燃焼室と二次燃焼室とからなる燃焼室58を有している。焼却炉52は、燃焼室58に二次空気を供給する二次空気供給ノズル59を有している。
 ストーカ54は、火格子1を階段状に並べた燃焼装置である。被焼却物Bは、ストーカ54上で燃焼する。
 以下、被焼却物Bが搬送される方向を搬送方向TDと呼ぶ。被焼却物Bは、ストーカ54上を搬送方向TDに搬送される。図1において、右側が搬送方向下流側TD1である。
 ストーカ54は、被焼却物Bの搬送方向上流側から順に、被焼却物Bを乾燥させる乾燥段61と、被焼却物Bを焼却する燃焼段62と、未燃分を完全に焼却(後燃焼)する後燃焼段63と、を有している。ストーカ54では、乾燥段61、燃焼段62、及び後燃焼段63で、被焼却物Bを順次搬送しつつ、それぞれ乾燥、燃焼、及び後燃焼を行う。
 各々の段61、62、63は、複数の固定火格子1aを有する固定火格子段と、複数の移動火格子1bを有する移動火格子段と、を有している。固定火格子段は、複数の固定火格子1aがストーカ54の幅方向(図1の奥行き方向)に配列されることで構成されている。移動火格子段は、複数の移動火格子1bがストーカ54の幅方向に配列されることで構成されている。
 固定火格子1a(固定火格子段)と移動火格子1b(移動火格子段)とは、搬送方向TDで交互に配置されている。移動火格子1bは、被焼却物Bの搬送方向TDに往復運動する。移動火格子1bの往復運動によってストーカ54上の被焼却物Bが搬送されるとともに攪拌される。即ち、被焼却物Bの下層部が動かされ、被焼却物Bの上層部と入れ替えられる。
 乾燥段61は、フィーダ53によって押し出されて焼却炉52内に落下した被焼却物Bを受け、被焼却物Bの水分を蒸発させるとともに一部熱分解する。燃焼段62は、下方の風箱55から供給される一次空気によって、乾燥段61で乾燥した被焼却物Bに着火させ、揮発分および固定炭素分を燃焼させる。後燃焼段63は、燃焼段62で燃焼されずに通過してきた固定炭素分等の未燃分を完全に灰になるまで燃焼させる。
 灰は、後燃焼段63の出口に設けられている排出シュート64を通じて焼却炉52から排出される。
 各々の段61、62、63は、移動火格子1bを駆動する駆動機構65を有している。
 ストーカ炉50は、乾燥段61、燃焼段62、及び後燃焼段63における移動火格子1bの駆動の速度を、互いに同じ速度または乾燥段61、燃焼段62、及び後燃焼段63の少なくとも一部で異なる速度とすることができる。
 次に、本実施形態の固定火格子1aと移動火格子1bの形状について説明する。固定火格子1aと移動火格子1bの形状は同じであるので、以下、火格子1として説明する。ただし、固定火格子1aと移動火格子1bの一部を突起付火格子としてもよい。突起付火格子は、火格子1の先端に上方に突出する突起を有しているが、それ以外の構造は、以下に説明する火格子1と同じである。
 本実施形態の火格子1は、冷却構造を有している。火格子1は、風箱55から供給される一次空気を冷却空気(冷却媒体)として冷却される。
 図2、図3、図4、及び図5に示すように、火格子1は、第一方向D(ごみの搬送方向TD)に延びる上壁部2と、上壁部2の先端(搬送方向下流側TD1の端部)から下方に延びる前壁部3と、上壁部2の側縁2aから下方に延びる一対の側壁部4と、後壁部5と、を有している。上壁部2の上面は、ごみが載置される面である。
 上壁部2と、前壁部3と、一対の側壁部4と、後壁部5とは、一体に形成されている。上壁部2の後端には凹部6が形成されている。
 火格子1の凹部6は、各々の段61、62、63の据付面61a、62a、63a(図1参照)に設けられた凸部(図示せず)に嵌め込まれる。これにより、火格子1が各々の段61、62、63に取り付けられる。
 上壁部2は、矩形状をなし、幅方向W(第一方向Dと直交する方向)に隣り合う火格子1とともにストーカ54の上面をなす。
 前壁部3は、上壁部2の主面と前壁部3の主面とが直角に近い角度で交差するように、上壁部2から下方に突出するように形成されている。前壁部3の厚さは、上壁部2及び側壁部4の厚さよりも厚い。
 側壁部4は、上壁部2の主面と側壁部4の主面とが略直角で交差するように形成されている。側壁部4は、火格子1の先端に向かうにしたがって幅が広くなるように形成されている。
 後壁部5は、上壁部2から下方に突出する板状をなし、後壁部5の主面が第一方向Dを向くように形成されている。後壁部5は、火格子1の後方(前壁部3と凹部6との間であって凹部6側)に配置されている。
 上壁部2の下方(上壁部2の裏側)には流路Sが形成される。
 火格子1は、上壁部2、前壁部3、一対の側壁部4、及び流路Sを上下に仕切る仕切壁8と、を有している。仕切壁8は、板状をなし、上壁部2と平行となるように取り付けられている。
 仕切壁8は、主面が上壁部2を向き、流路Sを上壁部2と仕切壁8との間の上側流路S1と、仕切壁8の下方の下側流路S2とに仕切る仕切壁本体9と、仕切壁本体9に形成された複数の冷却孔10と、を有している。
 複数の冷却孔10は、仕切壁本体9に一様に配置されている。複数の冷却孔10は、例えば、格子状に配置することができる。複数の冷却孔10の数や大きさは、冷却孔10の圧力損失によって火格子1が浮き上がらないよう、圧力損失が500mmAq(4.90kPa)以下となるように設定されている。
 側壁部4には、上側流路S1から冷却空気を排出する空気排出孔12が形成されている。空気排出孔12は、第一方向Dの先端側に配置されている。
 図6に示すように、仕切壁8は、冷却孔10の内径をDi、仕切壁8の上面と上壁部2の下面との距離をLとすると、内径Diと距離Lとの比L/Diが、
 2<L/Di<35
となるように配置されている。
 次に、本実施形態の火格子1の作用について説明する。
 図6に示すように、風箱55(図1参照)から供給される一次空気(冷却空気)が下側流路S2に導入されると、冷却空気Cは、仕切壁8の複数の冷却孔10を通過し、上壁部2の裏面に向かって噴出する。冷却空気Cは、上壁部2に衝突するように流れた後、空気排出孔12から排出される。これにより、上壁部2がインピンジメント冷却される。
 上記実施形態によれば、冷却孔10から噴出する冷却空気Cが直接的に上壁部2に衝突して冷却空気Cが直接的に熱を輸送することによって、熱伝達率が大きくなる。その結果、冷却性能を向上させることができる。即ち、冷却空気Cが上壁部2に衝突することで、火格子1の冷却性能を向上させることができる。
 また、内径Diと距離Lとの比L/Diを、2<L/Di<35とすることによって、火格子1を製作するときの寸法公差を大きくすることができる。その結果、製品コストの低減を図ることができる。
 なお、上記実施形態では、冷却孔10の形状を円形としたが、これに限ることはない。例えば、冷却孔10の形状を楕円としたり、多角形としたりしてもよい。
 また、上記実施形態では、冷却に用いられる冷却媒体を一次空気としたが、これに限らず、例えば、蒸気を火格子1に供給することで冷却を行ってもよい。
 また、上記実施形態では、空気排出孔12を四角形としたが、これに限ることはない。例えば、空気排出孔12を円形や楕円としてもよい。
〔第二実施形態〕
 以下、本発明の第二実施形態の火格子について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図7に示すように、本実施形態の火格子1の空気排出孔12Bは、上壁部2に複数形成されている。複数の空気排出孔12Bは、第一方向Dに延びるスリット状(長孔)をなしている。複数の空気排出孔12Bは、上壁部2の第一方向Dの中央部よりも先端側に形成されている。空気排出孔12Bは、幅方向Wに等間隔に形成されている。
 各々の空気排出孔12Bの面積は、空気排出孔12Bから排出される冷却空気の流速が、ごみ粒子の終末速度以上となるように設定されている。
 図8に示すように、空気排出孔12Bの数、及び幅方向Wの位置は、冷却孔10に対応している。上壁部2の主面の法線方向(上壁部2の上方)から見て、空気排出孔12と冷却孔10とは重なっている。
 ただし、空気排出孔12Bの数、及び幅方向Wの位置は、冷却孔10に対応しなくてもよい。即ち、上壁部2の主面の法線方向から見て、空気排出孔12と冷却孔10とは重ならなくてもよい。
 上記実施形態によれば、火格子1Bの上壁部2にスリット状の空気排出孔12Bを設けることによって、空気排出孔12Bの大きさや、形状に対する自由度を向上させることができる。
 また、冷却孔10から噴出する冷却空気の流速を大きくすると冷却性能は向上するが、背反事象として仕切壁8(多孔板)による圧力損失が大きくなる。圧力損失が大きくなると、火格子1の浮き上がりが問題となる。そのため、冷却空気の流速の上限は、仕切壁8と空気排出孔12による火格子全体の圧力損失で決まる。上記実施形態の火格子1Bのように、上壁部2に空気排出孔12Bを複数形成することや、空気排出孔12Bを大きくすることで、空気排出孔12Bによる圧力損失が低減される。その結果、冷却空気を供給するための送風ファンの動力を小さくすることができる。
〔第三実施形態〕
 以下、本発明の第三実施形態の火格子について図面を参照して詳細に説明する。なお、本実施形態では、上述した第二実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図9に示すように、本実施形態の火格子1Cでは、上壁部2の主面の法線方向から見て、空気排出孔12Bと冷却孔10とは重なっていない。具体的には、空気排出孔12Bは幅方向Wに4本形成されている。冷却孔10は、上壁部2の主面の法線方向から見て、幅方向Wに隣り合う空気排出孔12Bの間に形成されている。即ち、冷却孔10から噴出した空気は、上壁部2に当たった後、空気排出孔12Bから排出される。
 上記実施形態によれば、空気排出孔12Bと冷却孔10の位置をずらすことによって、冷却孔10から噴出した冷却空気が確実に上壁部2に当たる。そのため、スリット状の空気排出孔12Bが形成されている箇所においても衝突噴流の冷却性能を確実に得ることができる。
〔第四実施形態〕
 以下、本発明の第四実施形態の火格子について図面を参照して詳細に説明する。なお、本実施形態では、上述した第二実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図10に示すように、本実施形態の仕切壁8の仕切壁本体9Dは、上壁部2と略平行をなす主部14と、主部14の先端側に接続された先端部15と、を有している。先端部15は、先端部15の主面が前壁部3と略平行となるように形成されている。主部14と先端部15とは、滑らかに接続されている。先端部15に形成された複数の冷却孔10の少なくとも一部は、冷却孔10から噴出された冷却空気Cが前壁部3に当たるように指向されている。
 上記実施形態によれば、冷却孔10から噴出した冷却空気Cが上壁部2のみならず、前壁部3(火格子1Dの先端)にも当たる。そのため、火格子1Dの先端の冷却性能が向上させることができる。
 なお、上記実施形態では、先端部15が前壁部3と略平行となるように形成したが、冷却孔10から噴出された冷却空気Cが前壁部3に当たるよう形成されていれば、これに限ることはない。例えば、主部14と先端部15とのなす角を鈍角としたり、先端部15を、曲率を持った板としたりしてもよい。
〔第五実施形態〕
 以下、本発明の第五実施形態の火格子について図面を参照して詳細に説明する。なお、本実施形態では、上述した第二実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図11に示すように、本実施形態の火格子1Eは、上壁部2に形成されたフィン16を有している。フィン16は、板状をなし、上壁部2の裏面2bに上壁部2と一体に設けられている。フィン16は、上壁部2から下方に突出するように形成されている。
 フィン16は、フィン16の主面が第一方向Dに沿うとともに、幅方向Wを向くように形成されている。
 上記実施形態によれば、上壁部2にフィン16が形成されていることにより、放熱効果が得られる。そのため、火格子1Eの冷却性能が向上する。
〔第六実施形態〕
 以下、本発明の第六実施形態の火格子について図面を参照して詳細に説明する。なお、本実施形態では、上述した第二実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図12に示すように、本実施形態の火格子1Fの冷却孔10Fは円形をなしている。冷却孔10Fの内周面10aは上方(上壁部2の側)に向かうにしたがって縮径する円錐形状をなしている。冷却孔10Fは、下端の内径をDi1、上端の内径をDi2とすると、Di1>Di2となるように形成されている。
 上記実施形態によれば、冷却孔10Fの入り口側の内径Di1を大きくすることによって、冷却孔10Fによる圧力損失を低減することができる。また、冷却孔10Fの出口側の内径Di2を小さくすることによって、冷却空気の流速を上げて冷却性能を向上させることができる。
〔第七実施形態〕
 以下、本発明の第七実施形態の火格子について図面を参照して詳細に説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図13、図14、及び図15に示すように、本実施形態の火格子1Gは、上壁部2と、前壁部3と、一対の側壁部4と、後壁部5と、後壁部5に固定されて第一方向Dに延びるダクト18と、を有している。
 ダクト18は、上壁部2及び一対の側壁部4に囲まれた空間に配置されている。ダクト18は、第一方向Dに延びる四角筒状をなすダクト本体19と、ダクト本体19に形成されて上壁部2の裏面、前壁部3の裏面、及び一対の側壁部4の裏面へ向けて冷却空気Cを噴射してインピンジメント冷却する複数の冷却孔10と、ダクト本体19の後端に形成されている空気導入孔11と、を有している。
 ダクト本体19は、上壁部2と平行をなす第一面21と、側壁部4と平行をなす一対の第二面22と、第一面21と平行をなし、第一面21及び一対の第二面22とともに四角筒を形成する第三面23と、ダクト本体19の先端を閉塞する第四面24と、を有している。
 冷却孔10は、第一面21及び一対の第二面22に規則的に形成されている。第二面22に形成されている冷却孔10の軸線Aは、第二面22と直交しておらず傾斜している。第二面22に形成されている冷却孔10は、冷却孔10から噴出された冷却空気Cが、上方に噴出するように、外側が高くなるように傾斜している。
 図14及び図15に示すように、ダクト18の冷却孔10から噴出された冷却空気は、上壁部2、側壁部4、及び前壁部3に当たって、これらを冷却する。その後、冷却空気は、火格子1の底側であって、側壁部4とダクト18との間の隙間Gから排出される。
 例えば、第二実施形態の火格子1B(図7、及び図8参照)では、上側流路S1を流れる冷却空気の流量が増加すると、上壁部2に沿って空気排出孔12Bから排出される冷却空気の流れ(クロスフロー)によって、空気排出孔12B近くの衝突噴流が冷却に寄与しにくくなる。即ち、冷却孔10から壁の内面に当たる衝突噴流のエネルギーが、空気排出孔12に向かって壁に沿って流れる冷却空気によって弱められる。
 一方、本実施形態の火格子1Gによれば、側壁部4とダクト18との間の隙間Gが第一方向Dに長い空気排出孔として機能することによって、クロスフローがなくなる。そのため、衝突噴流の効果を最大限に得ることができる。
 また、仕切壁8を火格子1Gの本体側に溶接する必要がないため、火格子1Gの構造を簡素化できる。また、火格子1Gの構造が簡素化することで、メンテナンスが容易となる。
 なお、上記実施形態では、ダクト本体19の形状を四角筒状としたが、筒状であれば、これに限ることはない。例えば、ダクト本体19の形状を、円筒状としてもよい。
 以上、本発明の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明によれば、冷却孔から噴出する冷却媒体が直接的に上壁部に衝突することによって、冷却性能を向上させることができる。
 1、1B、1C、1D、1E、1F、1G 火格子
 1a 固定火格子
 1b 移動火格子
 2 上壁部
 3 前壁部
 4 側壁部
 5 後壁部
 6 凹部
 8 仕切壁
 9、9D 仕切壁本体
 10 冷却孔
 11 空気導入孔
 12、12B 空気排出孔
 14 主部
 15 先端部
 16 フィン
 18 ダクト
 19 ダクト本体
 21 第一面
 22 第二面
 23 第三面
 24 第四面
 50 ストーカ炉
 51 ホッパ
 52 焼却炉
 53 フィーダ
 54 ストーカ
 55 風箱
 56 フィードテーブル
 57 フィーダ駆動装置
 58 燃焼室
 59 二次空気供給ノズル
 61 乾燥段
 62 燃焼段
 63 後燃焼段
 64 排出シュート
 65 駆動機構
 B 被焼却物
 C 冷却空気
 D 第一方向
 S 流路
 S1 上側流路
 S2 下側流路
 TD 搬送方向
 TD1 搬送方向下流側
 W 幅方向

Claims (10)

  1.  第一方向に延びる上壁部と、
     前記上壁部の先端から下方に延びる前壁部と、
     前記上壁部の裏側に設けられた流路と、
     前記流路を上下に仕切る仕切壁であって、主面が前記上壁部を向く仕切壁本体と、前記仕切壁本体に形成されて前記上壁部の裏面へ向けて冷却媒体を噴出して前記上壁部をインピンジメント冷却する複数の冷却孔と、を有する仕切壁と、を有する火格子。
  2.  前記仕切壁と前記上壁部との間の距離をL、
     前記冷却孔の内径をDiとすると、
     2<L/Di<35
     である請求項1に記載の火格子。
  3.  前記上壁部の前記第一方向の中央部よりも前記先端側に前記第一方向に延びるように形成され、前記仕切壁と前記上壁部との間の流路内の前記冷却媒体を排出するスリットを有し、前記スリットと前記冷却孔とは、前記上壁部の主面の法線方向から見て重ならないように形成されている請求項1または請求項2に記載の火格子。
  4.  前記仕切壁本体は、前記上壁部と略平行をなす主部と、
     前記主部の前記先端側に接続された先端部と、を有し、
     前記先端部に形成された複数の前記冷却孔の少なくとも一部は、前記冷却孔から噴出された前記冷却媒体が前記前壁部に当たるように指向されている請求項1または請求項2に記載の火格子。
  5.  前記仕切壁本体は、前記上壁部と略平行をなす主部と、
     前記主部の前記先端側に接続された先端部と、を有し、
     前記先端部に形成された複数の前記冷却孔の少なくとも一部は、前記冷却孔から噴出された前記冷却媒体が前記前壁部に当たるように指向されている請求項3に記載の火格子。
  6.  前記上壁部の前記裏面に前記上壁部と一体に設けられ、前記上壁部から下方に突出するように形成された板状のフィンを有する請求項4に記載の火格子。
  7.  前記上壁部の前記裏面に前記上壁部と一体に設けられ、前記上壁部から下方に突出するように形成された板状のフィンを有する請求項5に記載の火格子。
  8.  前記冷却孔は円形をなし、前記冷却孔の内周面は上方に向かうにしたがって縮径する円錐形状をなす請求項4に記載の火格子。
  9.  前記冷却孔は円形をなし、前記冷却孔の内周面は上方に向かうにしたがって縮径する円錐形状をなす請求項5に記載の火格子。
  10.  第一方向に延びる上壁部と、
     前記上壁部の先端から下方に延びる前壁部と、
     前記上壁部の側縁から下方に延びる一対の側壁部と、
     前記上壁部及び一対の側壁部に囲まれた空間に配置され、前記先端側が閉塞されて前記第一方向に延びる筒状をなすダクト本体と、前記ダクト本体に形成されて前記上壁部の裏面、前記前壁部の裏面、及び前記一対の側壁部の裏面へ向けて冷却媒体を噴射してインピンジメント冷却する複数の冷却孔と、を有するダクトと、を有する火格子。
PCT/JP2019/026978 2018-11-22 2019-07-08 火格子 WO2020105217A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201990000396.6U CN212869812U (zh) 2018-11-22 2019-07-08 炉排片
EP19886731.9A EP3885652B1 (en) 2018-11-22 2019-07-08 Fire grate
BR112020014213-1A BR112020014213B1 (pt) 2018-11-22 2019-07-08 Barra de grelha
RU2020122866U RU206500U1 (ru) 2018-11-22 2019-07-08 Колосник
SG11202006518QA SG11202006518QA (en) 2018-11-22 2019-07-08 Grate bar
KR1020217014151A KR20210076060A (ko) 2018-11-22 2019-07-08 화격자
DK19886731.9T DK3885652T3 (da) 2018-11-22 2019-07-08 Brandgitter
KR2020217000043U KR200497218Y1 (ko) 2018-11-22 2019-07-08 화격자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-004543U 2018-11-22
JP2018004543U JP3219985U (ja) 2018-11-22 2018-11-22 火格子

Publications (1)

Publication Number Publication Date
WO2020105217A1 true WO2020105217A1 (ja) 2020-05-28

Family

ID=65228737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026978 WO2020105217A1 (ja) 2018-11-22 2019-07-08 火格子

Country Status (8)

Country Link
EP (1) EP3885652B1 (ja)
JP (1) JP3219985U (ja)
KR (2) KR200497218Y1 (ja)
CN (1) CN212869812U (ja)
DK (1) DK3885652T3 (ja)
RU (1) RU206500U1 (ja)
SG (1) SG11202006518QA (ja)
WO (1) WO2020105217A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7386361B2 (ja) * 2020-12-04 2023-11-24 株式会社G.I.E 火格子及び火格子装置
AT526670B1 (de) * 2023-03-27 2024-06-15 Polytechnik Luft Und Feuerungstechnik Gmbh Treppenrost für Festbrennstoff-Gegenstromvergaser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086730U (ja) * 1983-11-14 1985-06-14 三菱重工業株式会社 耐熱火格子
JPH06265125A (ja) 1993-03-15 1994-09-20 Unitika Ltd ごみ焼却炉の火格子
JP2004037016A (ja) * 2002-07-04 2004-02-05 Takuma Co Ltd 階段式ストーカ
JP2018004543A (ja) 2016-07-06 2018-01-11 株式会社エクサ 形状解析プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2257287A (en) * 1939-06-01 1941-09-30 Comb Eng Co Inc Grate bar
DE2806974C2 (de) * 1978-02-18 1980-01-31 Josef Martin Feuerungsbau Gmbh, 8000 Muenchen Roststab für Rostbeläge, insbesondere von Feuerungen
DE3734043A1 (de) * 1987-10-08 1989-04-20 Kloeckner Humboldt Deutz Ag Rostkuehler zum kuehlen von heissem schuettgut
CH684118A5 (de) * 1993-04-20 1994-07-15 Doikos Investments Ltd Verfahren zum Verbrennen von Kehricht auf einem Verbrennungsrost sowie Verbrennungsrost zur Ausübung des Verfahrens und Rostplatte für einen solchen Verbrennungsrost.
EP0924464A1 (de) * 1997-12-19 1999-06-23 KOCH, Theodor Verfahren zur Kühlung des Rostes von Verbrennungsanlagen und Verbrennungsrost
CN2654607Y (zh) * 2003-10-15 2004-11-10 燕山大学 冷却高温散料用的变流阻箅板
JP5111033B2 (ja) * 2007-09-26 2012-12-26 日立造船株式会社 廃棄物焼却炉の火格子ブロック
JP6086730B2 (ja) * 2013-01-04 2017-03-01 桐灰化学株式会社 連結具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086730U (ja) * 1983-11-14 1985-06-14 三菱重工業株式会社 耐熱火格子
JPH06265125A (ja) 1993-03-15 1994-09-20 Unitika Ltd ごみ焼却炉の火格子
JP2004037016A (ja) * 2002-07-04 2004-02-05 Takuma Co Ltd 階段式ストーカ
JP2018004543A (ja) 2016-07-06 2018-01-11 株式会社エクサ 形状解析プログラム

Also Published As

Publication number Publication date
JP3219985U (ja) 2019-01-31
EP3885652B1 (en) 2024-08-07
KR20210001749U (ko) 2021-07-28
EP3885652A4 (en) 2022-08-31
BR112020014213A2 (pt) 2021-07-27
RU206500U1 (ru) 2021-09-14
KR200497218Y1 (ko) 2023-08-31
SG11202006518QA (en) 2020-08-28
DK3885652T3 (da) 2024-09-23
KR20210076060A (ko) 2021-06-23
CN212869812U (zh) 2021-04-02
EP3885652A1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
JP7254445B2 (ja) ごみ焼却炉の火格子の冷却構造、ごみ焼却炉の火格子の冷却方法及びごみ焼却炉の燃焼用空気予熱方法
WO2020105217A1 (ja) 火格子
US6964237B2 (en) Grate block for a refuse incineration grate
AU599821B2 (en) Rotary combustor with efficient air distribution
US20060000396A1 (en) Grate panel, as well as corresponding incineration grate and waste incineration plant
JP6551927B2 (ja) 燃焼炉の燃えカス、及び灰の処理とクリンカ対策方法
BR112020014213B1 (pt) Barra de grelha
JP6109400B1 (ja) 耐火物及び焼却炉
JP2001108221A (ja) 焼却炉
JP7357100B1 (ja) 火格子および火格子の運転方法
TWI853401B (zh) 燃燒設備及控制裝置
JPH074635A (ja) ストーカ式焼却炉のロストル構造
KR102069303B1 (ko) 소각장치
JP7416822B2 (ja) ストーカ炉
JP7199153B2 (ja) 焼却炉
JP6800251B2 (ja) 流動床式焼却炉
JP2019211106A (ja) 廃棄物焼却炉及び廃棄物焼却方法
JPH09159125A (ja) ゴミ焼却炉のストーカ装置
JPH07248104A (ja) 固形廃棄物焼却装置
KR20240155283A (ko) 연소 설비, 및 제어 장치
JP2019211123A (ja) 廃棄物焼却炉及び廃棄物焼却方法
JP5878420B2 (ja) 壁面輻射式バーナー
JP2005036994A (ja) 焼却装置及び方法
JP2540669Y2 (ja) ストーカ式燃焼炉の乾燥ストーカ装置
JPH08240305A (ja) ゴミ焼却炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886731

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020014213

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217014151

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019886731

Country of ref document: EP

Effective date: 20210622

ENP Entry into the national phase

Ref document number: 112020014213

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200710