WO2020101317A1 - 전기접속용 커넥터 - Google Patents

전기접속용 커넥터 Download PDF

Info

Publication number
WO2020101317A1
WO2020101317A1 PCT/KR2019/015313 KR2019015313W WO2020101317A1 WO 2020101317 A1 WO2020101317 A1 WO 2020101317A1 KR 2019015313 W KR2019015313 W KR 2019015313W WO 2020101317 A1 WO2020101317 A1 WO 2020101317A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
connector
magnetic particles
vertical direction
elastic
Prior art date
Application number
PCT/KR2019/015313
Other languages
English (en)
French (fr)
Inventor
정영배
Original Assignee
주식회사 아이에스시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이에스시 filed Critical 주식회사 아이에스시
Priority to CN201980074601.8A priority Critical patent/CN113015914A/zh
Publication of WO2020101317A1 publication Critical patent/WO2020101317A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0491Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets for testing integrated circuits on wafers, e.g. wafer-level test cartridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Definitions

  • the present disclosure relates to a connector for electrically connecting the device under test and the inspection device.
  • a connector for electrically connecting the device under test and the inspection device is used in the art.
  • the connector transmits an electrical test signal of the inspection device to the device under test, and transmits a response signal of the device under test to the inspection device.
  • a conductive rubber sheet is used as such a connector.
  • the conductive rubber sheet can be elastically deformed in response to an external force applied to the device under test.
  • the conductive rubber sheet has a plurality of conductive parts electrically connecting the device under test and the inspection device, and an insulating part separating the conductive parts.
  • the insulation may be made of cured silicone rubber.
  • the conductive portion of the conductive rubber sheet may have a structure in which a plurality of metal particles are contacted in the vertical direction.
  • the conductive portion For reliable inspection of the device under test, the conductive portion needs to have high conductivity and high elasticity.
  • the conductive portion configured such that a plurality of metal particles are contacted in the vertical direction is disadvantageous to improve both conductivity and elasticity.
  • attempts to form the conductive portion with carbon nanotubes to increase the elasticity of the conductive portion have been considered in the art.
  • Korean Patent Application Publication No. 10-2011-0061998 proposes a conductive portion made of pure carbon nanotubes.
  • the agglomerated carbon nanotubes are partially present in the conductive part and are not uniformly contacted, thereby limiting the conductivity and elasticity of the conductive part by the carbon nanotubes.
  • a hole corresponding to the conductive part is formed in a sheet made of a cured silicone rubber using a laser, and a mixed material in which liquid silicon and pure carbon nanotubes are mixed is injected into the hole.
  • a mixed material in which liquid silicon and pure carbon nanotubes are mixed is injected into the hole.
  • the carbon nanotubes are irregularly present in the conductive portion, are not uniformly distributed, and can only be bundled, so that the effects of high conductivity and high elasticity of the carbon nanotubes cannot be maximized.
  • One embodiment of the present disclosure provides a connector having a conductive portion in which carbon nanotubes are evenly distributed and arranged along a vertical direction and electrically conductively contacted.
  • One embodiment of the present disclosure provides a connector having a conductive portion including carbon nanotubes that are evenly distributed and arranged along a vertical direction by magnetic force and are in contact with conductively.
  • Embodiments of the present disclosure relate to a connector disposed between an inspection device and a device under test to electrically connect the inspection device and the device under test.
  • the connector according to an embodiment includes a plurality of elastic conductive parts and an elastic insulating part.
  • Each elastic conductive portion includes a plurality of carbon nanotubes.
  • the elastic insulation part spaces and insulates the plurality of elastic conductive parts in the horizontal direction.
  • Each of the carbon nanotubes includes a plurality of magnetic particles.
  • a plurality of carbon nanotubes are distributed and arranged along the vertical direction, and are conductively contacted with each other along the vertical direction.
  • a plurality of carbon nanotubes are distributed and arranged along a vertical direction by a force in which a plurality of magnetic particles are arranged by a magnetic force in a magnetic field.
  • the plurality of magnetic particles are located inside each of the plurality of carbon nanotubes. At least some of the plurality of carbon nanotubes may have closed ends.
  • the plurality of magnetic particles are chemically bonded to the carbon atom outside each of the plurality of carbon nanotubes.
  • each of the plurality of carbon nanotubes has a plurality of hexagonal holes, and each of some of the plurality of hexagonal holes has one of a plurality of magnetic particles.
  • the plurality of magnetic particles may be made of any one of nickel, cobalt, chromium, iron, iron carbide, iron oxide, chromium oxide, nickel oxide, nickel cobalt oxide, cobalt iron, and single molecule magnetic materials.
  • the elastic conductive portion includes a plurality of conductive metal particles in contact with the plurality of carbon nanotubes.
  • a connector including a plurality of elastic conductive parts capable of conducting in the vertical direction and an elastic insulating part separating and insulating the plurality of elastic conductive parts in the horizontal direction, a plurality of carbon nanotubes each including a plurality of magnetic particles And a liquid silicone rubber material in which a plurality of carbon nanotubes are dispersed.
  • a magnetic field is applied in the vertical direction for each elastic conductive portion, and a plurality of carbon nanotubes are gathered for each elastic conductive portion in the magnetic field by the force in which magnetic particles are arranged by the magnetic force in the magnetic field, and the vertical direction is adjusted It is distributed and arranged accordingly, and can be formed in contact with each other so as to be electrically conductive in the vertical direction.
  • the elastic insulating portion may be formed by curing a liquid silicone rubber material.
  • One embodiment of the present disclosure can provide a connector having an elastic conductive portion in which carbon nanotubes are evenly distributed and arranged along the vertical direction by magnetic particles and electrically conductively contacted.
  • the connector of this exemplary embodiment may have an elastic conductive part having high conductivity and high elasticity by reliable contact between the evenly distributed and arranged carbon nanotubes. Since the elastic conductive parts having evenly distributed and arranged carbon nanotubes have improved durability, the service life of the connector can be improved.
  • carbon nanotubes dispersed in a liquid silicone rubber material and having magnetic particles are arranged by a magnetic force to form an elastic conductive portion.
  • the elastic conductive portion of the connector of one embodiment compared to the elastic conductive portion formed by forming a hole of the elastic conductive portion in the sheet of the cured silicone rubber and the mixed material of the liquid silicone rubber and carbon nanotubes injected into the hole. , Can be manufactured with an easy process and reduced manufacturing cost.
  • FIG. 1 is a cross-sectional view schematically showing an example to which a connector according to an embodiment is applied.
  • FIG. 2 is a cross-sectional perspective view schematically showing a connector according to an embodiment.
  • FIG 3 is an enlarged cross-sectional view schematically showing a part of the connector.
  • FIG. 4 is a cross-sectional view schematically showing an example of manufacturing a connector according to an embodiment.
  • FIG. 5 is a cross-sectional view schematically showing another example in which carbon nanotubes are distributed and arranged along the vertical direction.
  • FIG. 6 shows an example of a carbon nanotube having magnetic particles.
  • FIG. 7 schematically illustrates an example of forming the carbon nanotube illustrated in FIG. 6.
  • FIG. 8 schematically shows another example of forming the carbon nanotube illustrated in FIG. 6.
  • FIG. 9 schematically shows another example of forming the carbon nanotube illustrated in FIG. 6.
  • FIG. 10 schematically shows another example of forming the carbon nanotube illustrated in FIG. 6.
  • FIG. 11 schematically shows another example of forming the carbon nanotube illustrated in FIG. 6.
  • FIG 13 shows another example of a carbon nanotube having magnetic particles.
  • FIG. 14 schematically shows an example of forming the carbon nanotube illustrated in FIG. 13.
  • FIG. 15 schematically shows another example of forming the carbon nanotube illustrated in FIG. 13.
  • FIG. 16 shows another example of a carbon nanotube having magnetic particles.
  • FIG. 17 schematically illustrates an example of forming the carbon nanotube illustrated in FIG. 16.
  • a component when referred to as being “connected” or “coupled” to another component, the component is capable of being directly connected to or connected to the other component, or new It should be understood that they can be connected or combined through other components.
  • the "direction" direction directive is based on the direction in which the connector is positioned relative to the inspection device, and the "downward” direction directive means the opposite direction upward. It should be understood that the direction directives of the "up and down direction” used in the present disclosure include the up direction and the down direction, but do not mean a specific one of the up direction and the down direction.
  • the embodiments described below and the examples shown in the accompanying drawings relate to connectors for electrical connection of two electronic devices.
  • one of the two electronic devices may be an inspection device
  • the other of the two electronic devices may be an inspection device to be inspected by the inspection device.
  • the connectors of the embodiments can be used for electrical connection of the inspection device and the device under test during electrical inspection of the device under test.
  • the connector of the embodiments may be used for a final and timely inspection of the device under test in a post process during the manufacturing process of the semiconductor device.
  • the example of the inspection to which the connector of the embodiments is applied is not limited to the above-described inspection.
  • 1 shows an example in which a connector according to an embodiment is applied.
  • 1 shows an exemplary shape of a connector, an inspection device in which the connector is disposed, and a device under test in contact with the connector, for description of the embodiment.
  • the connector 100 is disposed between the inspection apparatus 10 and the device under test 20.
  • the connector 100 is in contact with each of the inspection device 10 and the device under test 20, thereby electrically connecting the inspection device 10 and the device under test 20 to each other. Connect it.
  • the connector 100 may be coupled to the test socket 30 as a sheet-shaped structure.
  • the test socket 30 may have a frame 31 that holds and supports the connector 100, and may be removably attached to the socket housing 40 through the frame 31.
  • the socket housing 40 may be removably mounted to the inspection device 10.
  • the socket housing 40 accommodates the device under test 20 carried by the transport device to the device 10 and places the device under test 20 in the device 10.
  • the device under test 20 may be a semiconductor package, but is not limited thereto.
  • the semiconductor package is a semiconductor device in which a semiconductor IC chip, a plurality of lead frames, and a plurality of terminals are packaged in a hexahedron shape using a resin material.
  • the semiconductor IC chip may be a memory IC chip or a non-memory IC chip.
  • As the terminal a pin or a solder ball can be used.
  • the device under test 20 illustrated in FIG. 1 has a plurality of hemispherical terminals 21 on its lower side.
  • the inspection apparatus 10 may inspect electrical characteristics, functional characteristics, operating speed, etc. of the device under test 20.
  • the inspection device 10 may have a plurality of terminals 11 capable of outputting an electrical test signal and receiving a response signal in a board on which inspection is performed.
  • the connector 100 may be arranged to contact the terminal 11 of the inspection device 10 by the test socket 30 and the socket housing 40.
  • the terminal 21 of the device under test 20 is electrically connected to the terminal 11 of the corresponding inspection device 10 through the connector 100. That is, the connector 100 is electrically connected to the terminal under test 10 by the connector 100 by electrically connecting the terminal 21 of the device under test and the terminal 11 of the device under test in the vertical direction VD. 20) is performed.
  • the connector 100 may be made of an elastic polymer material, and the connector 100 may have elasticity in the vertical direction (VD) and the horizontal direction (HD).
  • VD vertical direction
  • HD horizontal direction
  • the connector 100 may be elastically deformed in the downward direction and the horizontal direction HD.
  • the external force may be generated by the pusher device pressing the device under test 20 toward the inspection device 10.
  • the terminal 21 of the device under test and the connector 100 can be contacted in the vertical direction (VD), and the connector 100 and the terminal 11 of the inspection device are contacted in the vertical direction (VD). Can be.
  • the connector 100 can be restored to its original shape.
  • the connector 100 includes a plurality of elastic conductive parts 110 and an elastic insulating part 120.
  • the plurality of elastic conductive parts 110 are positioned in the vertical direction VD, and are configured to be conductive in the vertical direction VD.
  • the elastic insulating part 120 separates the plurality of elastic conductive parts 110 from the horizontal direction HD and insulates the plurality of elastic conductive parts 110 from each other.
  • the elastic insulating portion 120 maintains the plurality of elastic conductive portions 110 in the vertical direction.
  • the elastic conductive portion 110 is in contact with the terminal 21 of the device under test at its upper end and in contact with the terminal 11 of the test device at its lower end. Accordingly, a conductive path in the vertical direction is formed between the terminal 11 and the terminal 21 corresponding to one elastic conductive portion 110 through the elastic conductive portion 110. Accordingly, the test signal of the inspection apparatus can be transmitted from the terminal 11 to the terminal 21 of the device under test 20 through the elastic conductive portion 110, and the response signal of the device under test 20 is the terminal ( From 21) may be transmitted to the terminal 11 of the inspection device 10 through the elastic conductive portion 110.
  • the upper and lower ends of the elastic conductive portion 110 may form the same plane as the upper and lower surfaces of the elastic insulating portion 120 or may slightly protrude therefrom.
  • the planar arrangement of the elastic conductive parts 110 may vary according to the planar arrangement of the terminals 21 of the device under test 20.
  • the elastic conductive parts 110 may be arranged in a matrix form or a pair of matrix forms within the rectangular elastic insulation part 120.
  • the elastic conductive parts 110 may be arranged in a plurality of rows along each side of the rectangular elastic conductive part 120.
  • the elastic conductive portion 110 includes a plurality of carbon nanotubes forming the conductive path.
  • the plurality of carbon nanotubes may be maintained in the shape of the elastic conductive portion 110 by an elastic polymer material constituting the elastic insulating portion 120.
  • all of the plurality of carbon nanotubes are evenly distributed and arranged, and some or all of them are positioned along the vertical direction VD.
  • a plurality of carbon nanotubes are in contact with each other to be conductive along the vertical direction VD.
  • FIGS. 2-5 schematically show the shape of the connector, the shape of the elastic conductive portion, the shape of the elements constituting the elastic conductive portion, and the shape of the elastic insulating portion, and these are only examples selected for understanding the embodiment.
  • Fig. 2 is a sectional perspective view of a connector in one embodiment
  • Fig. 3 is an enlarged sectional view showing a part of the connector. Referring to Figures 2 and 3 together, an embodiment connector is described.
  • each elastic conductive portion 110 functions as a conductive portion between the inspection apparatus and the device under test, and performs signal transmission in the vertical direction VD.
  • the elastic conductive portion 110 may have a cylindrical shape extending in the vertical direction (VD). In this cylindrical shape, the diameter at the middle may be smaller than the diameter at the top and bottom.
  • the elastic insulation part 120 may form a rectangular elastic region of the connector 100.
  • the plurality of elastic conductive parts 110 are spaced apart from each other at equal intervals or at equal intervals in the horizontal directions HD1 and HD2 by the elastic insulation parts 120.
  • the elastic insulating part 120 is formed as one elastic body, and the plurality of elastic conductive parts 110 are embedded in the elastic insulating part 120 in the thickness direction (vertical direction VD) of the elastic insulating part 120. .
  • the elastic insulating portion 120 made of an elastic body not only maintains the elastic conductive portion 110 in its shape, but also maintains the elastic conductive portion 110 in the vertical direction.
  • the elastic insulating part 120 is made of an elastic polymer material, and has elasticity in the vertical direction (VD) and the horizontal direction (HD).
  • the elastic insulating portion 120 may be made of a cured silicone rubber material.
  • a liquid silicone rubber is injected into a molding mold for molding the connector 100 and cured, so that the elastic insulation portion 120 can be formed.
  • a liquid silicone rubber material for molding the elastic insulating portion 120 an additive liquid silicone rubber, a condensed liquid silicone rubber, a liquid silicone rubber including a vinyl group or a hydroxy group, or the like can be used.
  • the liquid silicone rubber material may include dimethylsilicone raw rubber, methylvinylsilicone raw rubber, methylphenylvinylsilicone raw rubber, and the like.
  • Each elastic conductive portion 110 includes a plurality of carbon nanotubes 111.
  • the carbon nanotubes 111 in contact with each other form not only the elastic conductive portion 110, but also a plurality of conductive paths along the vertical direction in the elastic conductive portion 110.
  • Between each carbon nanotube 111 may be filled with a material forming the elastic insulating portion 120. Therefore, the elastic conductive portion 110 has elasticity in the vertical direction (VD) and the horizontal direction (HD).
  • VD vertical direction
  • HD horizontal direction
  • the elastic conductive portion 110 When the elastic conductive portion 110 is pressed downward in the vertical direction VD by the terminal of the device under test, the elastic conductive portion 110 may be slightly expanded in the horizontal direction HD, and the elastic insulating portion 120 May allow such expansion of the elastic conductive portion 110.
  • an armchair-type carbon nanotube, a single-walled carbon nanotube, or a multi-walled carbon nanotube may be used.
  • a plurality of carbon nanotubes 111 are evenly distributed and arranged along the vertical direction VD.
  • at least two adjacent carbon nanotubes 111 are horizontal in the vertical direction VD, horizontal direction HD, or vertical direction. They are in contact with each other in the inclined direction between the directions.
  • the elastic conductive portion 110 is made of a plurality of carbon nanotubes evenly distributed and arranged and in contact with each other, and may have high conductivity and high elasticity due to the carbon nanotubes.
  • the carbon nanotubes are evenly distributed and arranged along the vertical direction, most of the carbon nanotubes 111 belonging to one elastic conductive portion, in the vertical direction passing the upper and lower ends of the elastic conductive portion, or such vertical direction And may be distributed and arranged in a direction slightly inclined with respect to, or in a direction orthogonal to the vertical direction.
  • the contacted carbon nanotubes 111 enable transmission of a test signal and a response signal through the elastic conductive portion 110. Accordingly, a plurality of up and down conductive paths may be formed in one elastic conductive portion 111 by a plurality of contacted carbon nanotubes 111.
  • Such a conductive path may be formed in the elastic conductive portion 111 in a shape of any one of a straight line, a curved line, an angled curve, and a zigzag line, depending on the contact form between the carbon nanotubes 111.
  • a plurality of carbon nanotubes 111 are distributed and arranged along the vertical direction VD, and are in contact with each other to form the conductive path described above. .
  • the carbon nanotubes 111 are positioned in any one of the vertical direction, the horizontal direction, and the inclined direction, and may be distributed and arranged along the vertical direction.
  • the plurality of carbon nanotubes 111 positioned as described above may be held by a liquid silicone rubber that is cured, for example, during molding of the connector 100. That is, while the liquid silicone rubber is cured to form the elastic conductive portion 110 and the elastic insulating portion 120, a plurality of carbon nanotubes 111 are lined up and down, each of the carbon nanotubes 111
  • the silver may be positioned in any one of up, down, horizontal, and inclined directions.
  • a plurality of carbon nanotubes 111 are arranged and contacted in the direction of the magnetic force line by a magnetic force in the liquid silicone rubber material, and the plurality of carbon nanotubes 111 are distributed along the vertical direction (VD) and The arranged elastic conductive portion 120 may be formed.
  • each carbon nanotube 111 includes a plurality of magnetic particles.
  • a magnetic field is applied in the vertical direction (VD)
  • a plurality of carbon nanotubes 111 are distributed, arranged and contacted in the vertical direction by a force in which the magnetic particles are arranged along the magnetic force line by the magnetic force in the magnetic field. Can be.
  • the carbon nanotubes 111 may be evenly distributed and arranged along the vertical direction while being positioned in the vertical direction, horizontal direction, or inclined direction.
  • the position of the magnetic particles in the carbon nanotubes, the amount of magnetic particles contained in the carbon nanotubes, the amount of carbon nanotubes having the magnetic particles, and the viscosity of the liquid silicone rubber material affect the behavior of the carbon nanotubes.
  • the magnetic particles particles made of a ferromagnetic material that is magnetized in the absence of an external magnetic field may be used.
  • the magnetic particles may be made of any one of nickel, cobalt, chromium, iron, iron carbide, iron oxide, chromium oxide, nickel oxide, nickel cobalt oxide, cobalt iron, and single molecule magnetic materials.
  • the iron carbide triiron carbide (Fe3C) may be used.
  • the iron oxide iron trioxide (Fe2O3), triiron tetraoxide (Fe3O4), or ferrite may be used.
  • the single-molecule magnet material a Mn12 single-molecule magnet, dysprosium (III) acetylacetonate hydrate, terbium (III) bis-phthalocyanine (Terbium (III) bis-phthalocyanine) can be used. have.
  • a plurality of carbon nanotubes 111 are distributed and arranged along the vertical direction by a force in which the magnetic particles are arranged along a magnetic force line by a magnetic force.
  • FIG. 4 showing an example of manufacturing the connector of one embodiment.
  • the connector of one embodiment may be molded using a molding die 51.
  • the liquid molding material 53 may be injected as an elastic polymer material forming a connector in the molding cavity 52 of the molding mold 51.
  • the liquid molding material 53 includes a liquid silicone rubber material and a plurality of carbon nanotubes 111 described above, and the plurality of carbon nanotubes 111 are dispersed in a liquid silicone rubber material.
  • the liquid silicone rubber material may be one of the liquid silicone rubber materials exemplified above.
  • Each carbon nanotube 111 includes magnetic particles according to one or more examples of magnetic particles described above.
  • a magnetic field may be applied in the vertical direction VD for each position of the elastic conductive portion by the magnetic field applying portions 54 and 56.
  • Each magnetic field applying portion 54, 56 has a plurality of magnets 55, 57 arranged at positions of the elastic conductive portions of the connector. Electromagnets may be employed as magnets 55 and 57.
  • the magnets 55 of the upper magnetic field applying portion 54 and the magnets 57 of the lower magnetic field applying portion 56 are arranged to face each other in the vertical direction (ie, the vertical direction of the connector) of the molding die 51. . Accordingly, the upper magnet 55 and the corresponding lower magnet 57 form a pair, and the pair of magnets 55 and 57 corresponds to one elastic conductive portion.
  • each carbon nanotube 111 the magnetic particles included in each carbon nanotube 111 are arranged along a magnetic force line within a magnetic field applied by each pair of magnets 55 and 57. Due to the force that the magnetic particles are arranged in the magnetic field, the carbon nanotubes 111 between each pair of magnets 55 and 57 are evenly distributed and arranged along the vertical direction VD as well as the vertical direction VD. It is in contact with each other to make it possible to conduct along. Accordingly, as illustrated in FIG. 3, an elastic conductive portion 110 formed of a plurality of carbon nanotubes distributed and arranged along the vertical direction may be formed.
  • the carbon nanotubes 111 collected by each pair of magnets 55 and 57 are distributed and arranged along the vertical direction VD, the carbon nanotubes 111 may be positioned in the vertical direction, horizontal direction, or inclined direction. Can be. In particular, as illustrated in FIG. 4, most of the carbon nanotubes 111 may be positioned in the vertical direction (VD). In this regard, the ratio of the aforementioned directions of the carbon nanotubes 111 can be appropriately controlled.
  • the strength of the magnetic force applied to form the elastic conductive portion 110, the viscosity of the liquid silicone rubber, and the aspect ratio of the carbon nanotube 111 (the ratio of the carbon nanotube height to the width of the carbon nanotube)
  • the ratio of the direction of the carbon nanotube 111 that is, the ratio of the vertical direction, horizontal direction, and inclination direction of the carbon nanotube 111 may be controlled.
  • the aspect ratio of the carbon nanotube 111 is greater than 1, a high magnetic force and a low viscosity may be applied, so that almost all the carbon nanotubes 111 may be positioned in the vertical direction.
  • the liquid silicone rubber material of the liquid molding material 53 is cured, so that the connector 100 shown in FIG. 2 can be molded. have.
  • the cured liquid silicone rubber material not only forms the elastic insulation portion 120, but also forms part of the elastic conductive portion 110.
  • the cured elastic insulating portion 120 maintains the plurality of elastic conductive portions 110 in its shape.
  • the cured silicone rubber material in the elastic conductive portion 110 maintains the plurality of carbon nanotubes 111 positioned in the vertical direction, horizontal direction, or inclined direction, and enables a plurality of carbon nanoparticles to be conductive along the vertical direction VD
  • the tube 111 remains in contact.
  • adjacent carbon nanotubes 111 in the vertical direction may contact each other in the vertical direction, the horizontal direction, or the inclined direction.
  • adjacent carbon nanotubes 111 in the vertical direction VD may be arranged in the vertical direction VD so that some of them overlap in the vertical direction VD, and in the horizontal direction HD Can be in contact with each other.
  • the carbon nanotubes 111 may be arranged in a linear shape along the vertical direction VD.
  • the carbon nanotubes may take a straight shape in the elastic conductive portion 110.
  • the carbon nanotubes 111 may be arranged in a curved shape along the vertical direction VD.
  • the carbon nanotubes may take a curved shape in the elastic conductive portion 110.
  • Carbon nanotubes 111 having a curved shape may be located in the vertical direction, horizontal direction or inclined direction.
  • the carbon nanotube 111 may be positioned in a horizontal direction.
  • the connector 100 of one embodiment includes an elastic conductive portion 110 made of a plurality of carbon nanotubes 111 having magnetic particles.
  • the connector 100 can be molded from the liquid molding material 53 using the molding mold 51.
  • the liquid molding material 53 includes a plurality of carbon nanotubes 111 each containing a plurality of magnetic particles, and a liquid silicone rubber material of the above-described example in which a plurality of carbon nanotubes 111 are dispersed.
  • the plurality of elastic conductive parts 110 may be formed by contacting a plurality of carbon nanotubes 111 so that the magnetic particles are electrically conductive by a force arranged by a magnetic force in a magnetic field.
  • a magnetic field is applied in the vertical direction VD by each pair of magnets 55 and 57 corresponding to each elastic conductive portion 110 in the molding die 51. Due to the force in which the magnetic particles are arranged by the magnetic force in the magnetic field, the plurality of carbon nanotubes 111 gather in the magnetic field applied by each pair of magnets 55 and 57, and the vertical direction (VD) in the magnetic field As conductive as possible is in contact with each other. In addition, almost all of the plurality of carbon nanotubes 111 collected between each pair of magnets 55 and 57 by the force in which the magnetic particles are arranged by the magnetic force in the magnetic field is in the vertical direction (VD). It is evenly distributed and arranged along. After the plurality of elastic conductive parts 110 made of a plurality of carbon nanotubes 111 are formed, the liquid silicone rubber material is cured, so that the elastic insulating part 120 of the connector 100 may be formed.
  • a sheet-shaped elastic insulating portion may be formed from a liquid silicone rubber material not containing carbon nanotubes.
  • a plurality of holes corresponding to the plurality of elastic conductive parts may be formed through the sheet using a laser.
  • a liquid silicone rubber material containing the aforementioned carbon nanotubes is injected into the hole, and a magnetic field may be applied in the vertical direction. Accordingly, by the force that the magnetic particles are arranged in the magnetic field, a plurality of carbon nanotubes can be distributed and arranged along the vertical direction in the hole, as well as contact with each other so as to be electrically conductive in the vertical direction.
  • the carbon nanotubes uniformly distributed and arranged along the vertical direction to form the elastic conductive portion may include magnetic particles in various forms. 6 to 17, various examples of carbon nanotubes including magnetic particles in the connector of the embodiment will be described.
  • the magnetic particles in the examples of carbon nanotubes described with reference to FIGS. 6 to 17 are only examples selected for illustrative description of carbon nanotubes including magnetic particles.
  • the magnetic particles according to one of the examples of the magnetic particles described above may be included in the carbon nanotubes in the form described with reference to FIGS. 6 to 17.
  • FIG. 6 shows an example of a carbon nanotube containing magnetic particles.
  • a plurality of magnetic particles 112 may be located inside one carbon nanotube 111. That is, the magnetic particle 112 is inserted into the inner space of the carbon nanotube 111, and the carbon nanotube 111 may include the magnetic particle 112.
  • FIGS. 7 to 11 are referred to.
  • Carbon nanotubes can be produced and grown by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the magnetic particles can be used as a catalyst and inserted into the interior space of the carbon nanotubes.
  • the generation and growth of carbon nanotubes using chemical vapor deposition may be performed by supplying hydrocarbon gas as a transport gas to a reactor for chemical vapor deposition and growing carbon nanotubes vertically from a substrate installed in the reactor.
  • . 7 to 9 schematically show an example in which magnetic particles are inserted into the space inside the carbon nanotubes as the carbon nanotubes are generated and grown by chemical vapor deposition.
  • magnetic particles 112 or clusters of magnetic particles 112 are weakly bonded to the surface of the substrate 211 made of silicon or aluminum.
  • the hydrocarbon supplied as the transport gas is decomposed into carbon and hydrogen by exothermic decomposition at the top of the magnetic particles 112. Due to exothermic decomposition, the temperature and carbon concentration at the top of the magnetic particles 112 increase, and the magnetic particles 112 are separated from the substrate 211. As the carbon diffuses and precipitates into the cooler region, the carbon nanotube 111 may be formed while enclosing the magnetic particles 112 in the vertical direction from the substrate 211.
  • a magnetic particle cluster 213 is deposited on the surface of the substrate 211.
  • the magnetic particle cluster 213 on the surface of the substrate 211 is exposed to hydrocarbons.
  • Hydrocarbons are catalytically exothermic decomposed on the surface of the cluster 213, and decomposed into hydrogen and carbon.
  • the decomposed carbon diffuses and precipitates from the higher concentration of the high temperature region to the cold region of the cluster 213, so that the carbon nanotube 111 is formed in the vertical direction from the substrate 211 while enclosing the magnetic particle cluster 213.
  • carbon nanotubes may be grown by chemical vapor deposition, and the inside of the carbon nanotubes may be filled with magnetic particles. While the carbon nanotube 111 is growing at a slow rate, a cluster of magnetic particles contained in the crucible may be vaporized and introduced into the growing carbon nanotube. The cluster of magnetic particles is attached to the open end of the carbon nanotube 111, and accordingly, the carbon nanotube 111 can grow rapidly. The cluster 213 is deformed by the force of the rapidly growing carbon nanotubes around the cluster 213 of magnetic particles. When the supply of the cluster 213 of magnetic particles, which are catalytic materials, is stopped, the carbon nanotube 111 may grow slowly again.
  • the carbon nanotubes in which the magnetic particles are inserted into the inner space may be formed by rolling a graphene sheet to which the magnetic particles are attached to become carbon nanotubes.
  • 10 schematically illustrates an example of forming a carbon nanotube by rolling a graphene sheet to which magnetic particles are attached.
  • the carbon nanotube 111 into which the magnetic particles are inserted is formed by attaching the magnetic particles 112 to the graphene sheet 221 using arc discharge, and rolling the graphene sheets 221.
  • a solution containing magnetic particles is introduced into a container having a negative electrode and a positive electrode made of graphite, and direct current is supplied to the negative electrode and the positive electrode to perform arc discharge between the negative electrode and the positive electrode.
  • the temperature inside the container can rise to about 3000 degrees by arc discharge. At this temperature, the magnetic particles are ionized into nanoparticles, a graphene sheet is formed from an electrode made of graphite, and magnetic particles can be attached to the graphene sheet.
  • Carbon nanotubes in which magnetic particles are inserted into the inner space may be formed using a capillary effect.
  • 11 shows an example of inserting magnetic particles into the inside of a carbon nanotube using a capillary phenomenon.
  • carbon nanotubes 232 are grown on the surface of a hole in the substrate 231 made of alumina by chemical vapor deposition.
  • a carrier fluid 233 containing the magnetic particles is dropped on the carbon nanotube 232.
  • the carrier fluid 233 fills the carbon nanotube 232 by the capillary effect.
  • the carrier fluid 233 may fill the carbon nanotube 232 in whole or in part.
  • magnetic particles 112 are introduced into the carbon nanotube 232.
  • the carbon nanotube 111 in which the magnetic particles 112 are inserted into the inner space may be formed.
  • the substrate 231 made of alumina is dissolved in a sodium hydroxide (NaOH) solution
  • the carbon nanotube 111 in which the magnetic particles 112 are inserted into the interior space can be obtained.
  • the substrate 231 is dissolved in a sodium hydroxide (NaOH) solution, and thus from the substrate 231.
  • NaOH sodium hydroxide
  • the aforementioned transport fluid 233 is dropped on the carbon nanotube 232 and the inside of the carbon nanotube 232 is filled with the transport fluid 233 with a capillary effect.
  • the carbon nanotube 111 in which the magnetic particles 112 are inserted into the inner space can be obtained.
  • the carbon nanotube 111 may have a closed end. 12 shows a carbon nanotube in which magnetic particles are inserted and one end is closed. Referring to FIG. 12, the carbon nanotube 111 having one end closed may prevent the magnetic particles 112 inserted in the inner space from being separated from the carbon nanotube 111.
  • FIG. 13 shows another example of a carbon nanotube containing magnetic particles.
  • the magnetic particle 112 may be coupled to the carbon nanotube 111 from the outside of one carbon nanotube 111.
  • each magnetic particle 112 may be combined with a carbon atom of the carbon nanotube 111 by chemical bonding.
  • 14 and 15 schematically show an example in which magnetic particles are bonded to a carbon atom of a carbon nanotube by chemical bonding.
  • FIG. 15 shows another example in which magnetic particles are bonded by chemical bonding with carbon atoms of a carbon nanotube, and shows that magnetic particles are combined with carbon atoms of a carbon nanotube by a so-called click chemical reaction.
  • a carbon nanotube 251 modified with alkyne and a dendrimer having an azide containing magnetic particles 112 are combined.
  • sodium ascorbate and copper sulfate (CuSO4) were added to a solution in which the carbon nanotube 251 and the dendrimer were mixed in a ratio of 3: 1 with tetrahydrofolic acid and water (H2O). And reacted together.
  • the magnetic particles 112 are bonded to the carbon atoms of the carbon nanotubes 111, that is, the carbon particles are bonded to the magnetic particles 112 on the outer surface of the carbon nanotubes
  • the nanotube 111 can be obtained.
  • the carbon nanotube 111 has a plurality of hexagonal holes formed by six carbon atoms in a graphite wall. Each of the hexagonal holes of some of the multiple hexagonal holes has one of the multiple magnetic particles 112. Each of the plurality of magnetic particles 112 is randomly located in one of the plurality of hexagonal holes.
  • magnetic particles are not located in the inner space of the carbon nanotube or outside the carbon nanotube, and the magnetic particles 112 are located in the hexagonal hole of the carbon nanotube and are trapped within the hexagonal hole. . That is, the carbon nanotube 111 shown in FIG. 16 has a structure of a particle-free surface, and does not affect contact and conductivity between the carbon nanotubes 111.
  • FIG. 17 schematically shows an example of a carbon nanotube in which magnetic particles are located in a hexagonal hole of the carbon nanotube.
  • the substrate 251 may be used.
  • Carbon nanotubes may be generated along the cylindrical wall surface 255 of the hole 254 of the template 253.
  • the cylindrical wall surface 255 is coated with the aforementioned magnetic particles (eg, triiron tetraoxide (Fe 3 O 4)).
  • a substrate 251 coated with magnetic particles on a cylindrical wall surface 255 is disposed in a reactor for chemical vapor deposition. Fe3O4 is reduced to FeC by heating in the reactor.
  • the carbon nanotube 111 is generated and grown along the cylindrical wall surface 255 by chemical vapor deposition. Since there is no space between the cylindrical wall surface 255 and the carbon nanotube 111, the magnetic particles cannot go out of the carbon nanotube 111, and are trapped in the hexagonal hole of the carbon nanotube 111.
  • the elastic conductive portion 110 of the connector 200 includes a plurality of carbon nanotubes 111 including the magnetic particles described above, and a plurality of conductive contacts with the plurality of carbon nanotubes 111.
  • Metal particles 113 are included.
  • the conductive metal particles 113 may be in contact with the plurality of carbon nanotubes 111 in the vertical direction (VD) or the horizontal direction (HD), or the conductive metal particles 113 It may be in the vertical direction (VD) or in the horizontal direction (HD).
  • a plurality of carbon nanotubes 111 and conductive metal particles 113 distributed and arranged along the vertical direction VD form a conductive path.
  • the material constituting the elastic insulating portion 120 can maintain the plurality of carbon nanotubes 111 and the plurality of conductive metal particles 113 in the shape of the elastic conductive portion 110.
  • the conductive metal particles 113 may be formed by coating the surface of the core particles with a highly conductive metal.
  • the core particles may be made of a metal material such as iron, nickel, or cobalt, or may be made of a resin material having elasticity.
  • gold, silver, rhodium, platinum, chromium, and the like can be used as the highly conductive metal coated on the surface of the core particles.
  • the connector 200 may be molded in the molding method described with reference to FIG. 4.
  • a plurality of carbon nanotubes 111 and a liquid molding material 53 including a plurality of conductive metal particles 113 are injected into the molding mold 51, and the liquid molding material is injected.
  • the connector 200 can be molded.
  • the plurality of carbon nanotubes 111 and the plurality of conductive metal particles 113 are dispersed in a liquid silicone rubber material.
  • the carbon nanotube 111 has one of the magnetic particles described above, and the magnetic particle may be disposed on the carbon nanotube 111 as shown in FIGS. 6, 13, and 16.
  • a plurality of carbon nanotubes 111 and a plurality of conductive metal particles 113 are distributed and arranged along the vertical direction VD for each elastic conductive part, and up and down It is in contact with each other to be conductive in the direction VD.
  • the liquid molding material 53 is cured, and the connector 200 shown in FIG. 18 is cured. Can be molded.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

검사 장치와 피검사 디바이스의 사이에 배치되어 이들을 전기적으로 접속시키는 커넥터가 제공된다. 커넥터는, 복수의 탄성 도전부와, 탄성 절연부를 포함한다. 각 탄성 도전부는 다수의 탄소나노튜브를 포함한다. 탄성 절연부는 복수의 탄성 도전부를 수평 방향으로 이격 및 절연시킨다. 다수의 탄소나노튜브는 각각 다수의 자성 입자를 포함한다. 다수의 탄소나노튜브는 상하 방향을 따라 분포 및 배열되며 상하 방향을 따라 도전 가능하게 서로 접촉된다.

Description

전기접속용 커넥터
본 개시는 피검사 디바이스와 검사 장치를 전기적으로 접속시키는 커넥터에 관한 것이다.
피검사 디바이스의 전기적 검사를 위해, 피검사 디바이스와 검사 장치를 전기적으로 접속시키는 커넥터가 당해 분야에서 사용되고 있다. 커넥터는 검사 장치의 전기적 테스트 신호를 피검사 디바이스에 전달하고, 피검사 디바이스의 응답 신호를 검사 장치에 전달한다. 이러한 커넥터로서, 도전성 러버 시트(conductive rubber sheet)가 사용되고 있다.
도전성 러버 시트는 피검사 디바이스에 가해지는 외력에 응해 탄성 변형할 수 있다. 도전성 러버 시트는 피검사 디바이스와 검사 장치를 전기적으로 접속시키는 복수의 도전부와 도전부들을 이격시키는 절연부를 가진다. 절연부는 경화된 실리콘 러버로 이루어질 수 있다. 도전성 러버 시트의 도전부는, 다수의 금속 입자가 상하 방향으로 접촉된 구조를 가질 수 있다.
피검사 디바이스의 신뢰성 높은 검사를 위해, 도전부는 고전도성과 고탄성을 가질 필요가 있다. 그러나, 다수의 금속 입자가 상하 방향으로 접촉되도록 구성된 도전부는, 전도성과 탄성을 함께 향상시키기에는 불리하다. 금속 입자의 도전부에 대한 대안으로서, 도전부의 탄성을 증가시키도록 도전부를 탄소나노튜브로 형성하는 시도가 당해 분야에서 고려되고 있다. 일 예로, 대한민국 공개특허공보 제10-2011-0061998호는, 순수한 탄소나노튜브로 이루어지는 도전부를 제안한다.
위 문헌이 제안하는 종래기술에 따른 도전부에서는, 뭉친 탄소나노튜브가 도전부 내에 부분적으로 존재하며 균일하게 접촉되지 않아, 탄소나노튜브에 의해 도전부의 전도성과 탄성을 향상시키는데 한계가 있다.
탄소나노튜브로 도전부를 제조하는 일 예로서, 경화된 실리콘 러버로 이루어진 시트에 레이저를 이용해 도전부에 대응하는 홀을 형성하고, 이러한 홀에 액상 실리콘과 순수한 탄소나노튜브가 혼합된 혼합 물질이 주입될 수 있다. 그러나, 이러한 제조 예에서는, 탄소나노튜브는 도전부 내에 불규칙적으로 존재하고 균일하게 분포되지 않으며 뭉칠수 밖에 없어, 탄소나노튜브가 갖는 고도전성과 고탄성의 효과를 극대화시키지 못한다.
본 개시의 일 실시예는, 탄소나노튜브가 상하 방향을 따라 고르게 분포 및 배열되고 도전 가능하게 접촉되어 있는 도전부를 갖는 커넥터를 제공한다. 본 개시의 일 실시예는, 자력에 의해 상하 방향을 따라 고르게 분포 및 배열되고 도전 가능하게 접촉되는 탄소나노튜브를 포함하는 도전부를 갖는 커넥터를 제공한다.
본 개시의 실시예들은, 검사 장치와 피검사 디바이스의 사이에 배치되어 검사 장치와 피검사 디바이스를 전기적으로 접속시키는 커넥터에 관련된다. 일 실시예에 따른 커넥터는, 복수의 탄성 도전부와, 탄성 절연부를 포함한다. 각 탄성 도전부는 다수의 탄소나노튜브를 포함한다. 탄성 절연부는 복수의 탄성 도전부를 수평 방향으로 이격 및 절연시킨다. 다수의 탄소나노튜브는 각각 다수의 자성 입자를 포함한다. 다수의 탄소나노튜브는 상하 방향을 따라 분포 및 배열되며 상하 방향을 따라 도전 가능하게 서로 접촉된다.
일 실시예에 있어서, 다수의 자성 입자가 자기장 내에서 자기력에 의해 배열되는 힘에 의해 다수의 탄소나노튜브가 상하 방향을 따라 분포 및 배열된다.
일 실시예에 있어서, 다수의 자성 입자는 다수의 탄소나노튜브 각각의 내부에 위치한다. 다수의 탄소나노튜브 중 적어도 일부는 폐쇄된 단부를 가질 수 있다.
일 실시예에 있어서, 다수의 자성 입자는 다수의 탄소나노튜브 각각의 외측에서 탄소 원자에 화학적 결합되어 있다.
일 실시예에 있어서, 각각의 다수의 탄소나노튜브는 다수의 육각 구멍을 갖고, 다수의 육각 구멍 중 일부의 육각 구멍 각각은 다수의 자성 입자 중 하나를 갖는다.
일 실시예에 있어서, 다수의 자성 입자는, 니켈, 코발트, 크롬, 철, 철탄화물, 철산화물, 크롬산화물, 니켈산화물, 니켈코발트산화물, 코발트철 및 단분자 자석 물질 중 어느 하나로 이루어질 수 있다.
일 실시예에 있어서, 탄성 도전부는 상기 다수의 탄소나노튜브와 접촉된 다수의 도전성 금속 입자를 포함한다.
일 실시예에 있어서, 상하 방향으로 도전 가능한 복수의 탄성 도전부와 복수의 탄성 도전부를 수평 방향으로 이격 및 절연시키는 탄성 절연부를 포함하는 커넥터는, 다수의 자성 입자를 각각 포함하는 다수의 탄소나노튜브 및 다수의 탄소나노튜브가 분산된 액상 실리콘 러버 재료를 포함하는 액상 성형 재료로부터 성형될 수 있다. 복수의 탄성 도전부는, 각 탄성 도전부마다 상하 방향으로 자기장이 인가되고, 자성 입자가 자기장 내에서 자기력에 의해 배열되는 힘에 의해 다수의 탄소나노튜브가 자기장 내로 각 탄성 도전부마다 모이고 상하 방향을 따라 분포 및 배열되며 상하 방향으로 도전 가능하게 서로 접촉되어, 형성될 수 있다. 탄성 절연부는 액상 실리콘 러버 재료가 경화되어 형성될 수 있다.
본 개시의 일 실시예는, 탄소나노튜브가 자성 입자에 의해 상하 방향을 따라 고르게 분포 및 배열되고 도전 가능하게 접촉된 탄성 도전부를 갖는 커넥터를 제공할 수 있다. 이러한 일 실시예의 커넥터는, 고르게 분포 및 배열된 탄소나노튜브들 간의 확실한 접촉에 의해, 고전도성 및 고탄성을 갖는 탄성 도전부를 가질 수 있다. 탄소나노튜브가 고르게 분포 및 배열된 탄성 도전부는 향상된 내구성을 가지므로, 커넥터의 사용 수명이 향상될 수 있다. 일 실시예의 커넥터에 의하면, 액상 실리콘 러버 재료 내에 분산되고 자성 입자를 갖는 탄소나노튜브들이 자기력에 의해 배열되어 탄성 도전부를 형성한다. 따라서, 일 실시예의 커넥터의 탄성 도전부는, 경화된 실리콘 러버의 시트에 탄성 도전부의 홀을 형성하고 이러한 홀에 액상 실리콘 러버와 탄소나노튜브가 혼합된 혼합 물질이 주입하여 형성되는 탄성 도전부에 비해, 용이한 공정 및 절감된 제조 비용으로 제조될 수 있다.
도 1은 일 실시예에 따른 커넥터가 적용되는 예를 개략적으로 도시하는 단면도이다.
도 2는 일 실시예에 따른 커넥터를 개략적으로 도시하는 단면 사시도이다.
도 3은 커넥터의 일부를 개략적으로 도시하는 확대 단면도이다.
도 4는 일 실시예에 따른 커넥터를 제조하는 일 예를 개략적으로 도시하는 단면도이다.
도 5는 탄소나노튜브들이 상하 방향을 따라 분포 및 배열된 또 하나의 예를 개략적으로 도시하는 단면도이다.
도 6은 자성 입자를 갖는 탄소나노튜브의 일 예를 도시한다.
도 7은 도 6에 예시된 탄소나노튜브를 형성하는 일 예를 개략적으로 도시한다.
도 8은 도 6에 예시된 탄소나노튜브를 형성하는 또 하나의 예를 개략적으로 도시한다.
도 9는 도 6에 예시된 탄소나노튜브를 형성하는 또 다른 예를 개략적으로 도시한다.
도 10은 도 6에 예시된 탄소나노튜브를 형성하는 또 다른 예를 개략적으로 도시한다.
도 11은 도 6에 예시된 탄소나노튜브를 형성하는 또 다른 예를 개략적으로 도시한다.
도 12는 폐쇄 단부를 갖는 탄소나노튜브를 개략적으로 도시한다.
도 13은 자성 입자를 갖는 탄소나노튜브의 또 하나의 예를 도시한다.
도 14는 도 13에 예시된 탄소나노튜브를 형성하는 일 예를 개략적으로 도시한다.
도 15는 도 13에 예시된 탄소나노튜브를 형성하는 또 하나의 예를 개략적으로 도시한다.
도 16은 자성 입자를 갖는 탄소나노튜브의 또 다른 예를 도시한다.
도 17은 도 16에 예시된 탄소나노튜브를 형성하는 일 예를 개략적으로 도시한다.
도 18은 또 하나의 실시예에 따른 커넥터를 개략적으로 도시한다.
본 개시의 실시예들은 본 개시의 기술적 사상을 설명하기 위한 목적으로 예시된 것이다. 본 개시에 따른 권리범위가 이하에 제시되는 실시예들이나 이들 실시예들에 대한 구체적 설명으로 한정되는 것은 아니다.
본 개시에 사용되는 모든 기술적 용어들 및 과학적 용어들은, 달리 정의되지 않는 한, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 일반적으로 이해되는 의미를 갖는다. 본 개시에 사용되는 모든 용어들은 본 개시를 더욱 명확히 설명하기 위한 목적으로 선택된 것이며 본 개시에 따른 권리범위를 제한하기 위해 선택된 것이 아니다.
본 개시에서 사용되는 "포함하는", "구비하는", "갖는" 등과 같은 표현은, 해당 표현이 포함되는 어구 또는 문장에서 달리 언급되지 않는 한, 다른 실시예를 포함할 가능성을 내포하는 개방형 용어(open-ended terms)로 이해되어야 한다.
본 개시에서 기술된 단수형의 표현은 달리 언급하지 않는 한 복수형의 의미를 포함할 수 있으며, 이는 청구범위에 기재된 단수형의 표현에도 마찬가지로 적용된다.
본 개시에서 사용되는 "제1", "제2" 등의 표현들은 복수의 구성요소들을 상호 구분하기 위해 사용되며, 해당 구성요소들의 순서 또는 중요도를 한정하는 것은 아니다.
본 개시에서, 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "결합되어" 있다고 언급된 경우, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결될 수 있거나 결합될 수 있는 것으로, 또는 새로운 다른 구성요소를 매개로 하여 연결될 수 있거나 결합될 수 있는 것으로 이해되어야 한다.
본 개시에서 사용되는 "상방"의 방향지시어는 커넥터가 검사 장치에 대해 위치하는 방향에 근거하고, "하방"의 방향지시어는 상방의 반대 방향을 의미한다. 본 개시에서 사용되는 "상하 방향"의 방향지시어는 상방 방향과 하방 방향을 포함하지만, 상방 방향과 하방 방향 중 특정한 하나의 방향을 의미하지는 않는 것으로 이해되어야 한다.
첨부한 도면에 도시된 예들을 참조하여, 실시예들이 설명된다. 첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나, 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.
이하에 설명되는 실시예들과 첨부된 도면에 도시된 예들은, 두개의 전자 디바이스의 전기적 접속을 위한 커넥터에 관련된다. 실시예들의 커넥터의 적용예에 있어서, 상기 두개의 전자 디바이스 중 하나는 검사 장치가 될 수 있고, 상기 두개의 전자 디바이스 중 다른 하나는 검사 장치에 의해 검사되는 피검사 디바이스가 될 수 있다. 따라서, 실시예들의 커넥터는 피검사 디바이스의 전기적 검사 시에 검사 장치와 피검사 디바이스의 전기적 접속을 위해 사용될 수 있다. 일 예로, 실시예들의 커넥터는, 반도체 디바이스의 제조 공정 중 후공정에서, 피검사 디바이스의 최종적인 적기적 검사를 위해 사용될 수 있다. 그러나, 실시예들의 커넥터가 적용되는 검사의 예가 전술한 검사에 한정되지는 않는다.
도 1은 일 실시예에 따른 커넥터가 적용되는 예를 도시한다. 도 1은, 실시예의 설명을 위해, 커넥터, 커넥터가 배치되는 검사 장치, 커넥터와 접촉되는 피검사 디바이스의 예시적 형상을 도시한다.
도 1을 참조하면, 일 실시예에 따른 커넥터(100)는 검사 장치(10)와 피검사 디바이스(20)의 사이에 배치된다. 피검사 디바이스(20)의 전기적 검사를 위해, 커넥터(100)는 검사 장치(10)와 피검사 디바이스(20)에 각각 접촉되어, 검사 장치(10)와 피검사 디바이스(20)를 서로 전기적으로 접속시킨다.
일 예로서, 커넥터(100)는 시트(sheet) 형상의 구조물로서 테스트 소켓(30)에 결합될 수 있다. 테스트 소켓(30)은 커넥터(100)를 유지하고 지지하는 프레임(31)을 가질 수 있으며, 프레임(31)을 통해 소켓 하우징(40)에 제거 가능하게 부착될 수 있다. 소켓 하우징(40)은 검사 장치(10)에 제거가능하게 장착될 수 있다. 소켓 하우징(40)은, 운반 장치에 의해 검사 장치(10)로 운반된 피검사 디바이스(20)를 그 안에 수용하고 피검사 디바이스(20)를 검사 장치(10)에 위치시킨다.
피검사 디바이스(20)는 반도체 패키지일 수 있지만, 이에 한정되지는 않는다. 반도체 패키지는, 반도체 IC 칩과 다수의 리드 프레임(lead frame)과 다수의 단자를 수지 재료를 사용하여 육면체 형태로 패키징한 반도체 디바이스이다. 상기 반도체 IC 칩은 메모리 IC 칩 또는 비메모리 IC 칩이 될 수 있다. 상기 단자로서, 핀 또는 솔더볼(solder ball)이 사용될 수 있다. 도 1에 도시된 피검사 디바이스(20)는 그 하측에 반구형의 다수의 단자(21)를 가진다.
검사 장치(10)는 피검사 디바이스(20)의 전기적 특성, 기능적 특성, 동작 속도 등을 검사할 수 있다. 검사 장치(10)는, 검사가 수행되는 보드 내에, 전기적 테스트 신호를 출력할 수 있고 응답 신호를 받을 수 있는 다수의 단자(11)를 가질 수 있다. 커넥터(100)는 테스트 소켓(30)과 소켓 하우징(40)에 의해 검사 장치(10)의 단자(11)와 접촉되도록 배치될 수 있다. 피검사 디바이스(20)의 단자(21)는 커넥터(100)를 통해 대응하는 검사 장치(10)의 단자(11)와 전기적으로 접속된다. 즉, 커넥터(100)가 피검사 디바이스의 단자(21)와 이것에 대응하는 검사 장치의 단자(11)를 상하 방향(VD)으로 전기적으로 접속시킴으로써, 검사 장치(10)에 의해 피검사 디바이스(20)의 검사가 수행된다.
커넥터(100)의 대부분은 탄성 고분자 물질로 이루어질 수 있으며, 커넥터(100)는 상하 방향(VD)과 수평 방향(HD)으로 탄성을 가질 수 있다. 외력이 상하 방향(VD)에서의 하방으로 커넥터(100)에 가해지면, 커넥터(100)는 하방 방향과 수평 방향(HD)으로 탄성 변형될 수 있다. 상기 외력은, 푸셔 장치가 피검사 디바이스(20)를 검사 장치(10) 측으로 눌러서 발생될 수 있다. 이러한 외력에 의해, 피검사 디바이스의 단자(21)와 커넥터(100)가 상하 방향(VD)으로 접촉될 수 있고, 커넥터(100)와 검사 장치의 단자(11)가 상하 방향(VD)으로 접촉될 수 있다. 상기 외력이 제거되면, 커넥터(100)는 그 원래 형상으로 복원될 수 있다.
도 1을 참조하면, 커넥터(100)는 복수의 탄성 도전부(110)와, 탄성 절연부(120)를 포함한다. 복수의 탄성 도전부(110)는 상하 방향(VD)으로 위치하며, 상하 방향(VD)으로 도전 가능하도록 구성된다. 탄성 절연부(120)는 복수의 탄성 도전부(110)를 수평 방향(HD)에서 이격시키고 복수의 탄성 도전부(110)를 서로 절연시킨다. 또한, 탄성 절연부(120)는 복수의 탄성 도전부(110)를 상하 방향으로 유지한다.
탄성 도전부(110)는 그 상단에서 피검사 디바이스의 단자(21)와 접촉되고 그 하단에서 검사 장치의 단자(11)와 접촉된다. 이에 따라, 하나의 탄성 도전부(110)에 대응하는 단자(11) 및 단자(21)의 사이에서, 탄성 도전부(110)를 매개로 하여 상하 방향의 도전로가 형성된다. 따라서, 검사 장치의 테스트 신호는 단자(11)로부터 탄성 도전부(110)를 통해 피검사 디바이스(20)의 단자(21)에 전달될 수 있고, 피검사 디바이스(20)의 응답 신호는 단자(21)로부터 탄성 도전부(110)를 통해 검사 장치(10)의 단자(11)에 전달될 수 있다. 탄성 도전부(110)의 상단과 하단은 탄성 절연부(120)의 상면 및 하면과 동일 평면을 형성하거나 그보다 약간 돌출할 수 있다.
탄성 도전부(110)들의 평면 배열은 피검사 디바이스(20)의 단자(21)의 평면 배열에 따라 다양할 수 있다. 예컨대, 탄성 도전부들(110)은 사각형의 탄성 절연부(120) 내에서 하나의 행렬 형태 또는 한 쌍의 행렬 형태로 배열될 수 있다. 또는, 탄성 도전부(110)들은 사각형 탄성 도전부(120)의 각 변을 따라 복수 열로 배열될 수 있다.
실시예들의 커넥터에서, 탄성 도전부(110)는 상기 도전로를 형성하는 다수의 탄소나노튜브를 포함한다. 다수의 탄소나노튜브는 탄성 절연부(120)를 이루는 탄성 고분자 재료에 의해 탄성 도전부(110)의 형상으로 유지될 수 있다. 하나의 탄성 도전부(110) 내에서, 다수의 탄소나노튜브의 전부는 고르게 분포 및 배열되어 있고, 그 일부 또는 전부는 상하 방향(VD)을 따라 위치한다. 또한, 하나의 탄성 도전부(110) 내에서, 다수의 탄소나노튜브는 상하 방향(VD)을 따라 도전 가능하도록 서로 접촉되어 있다.
커넥터의 실시예들의 설명을 위해 도 2 내지 도 5에 도시된 예가 참조된다. 도 2 내지 도 5는 커넥터의 형상, 탄성 도전부의 형상, 탄성 도전부를 구성하는 요소의 형상, 탄성 절연부의 형상을 개략적으로 도시하며, 이들은 실시예의 이해를 위해 선택된 예에 불과하다.
도 2는 일 실시예의 커넥터의 단면 사시도이고, 도 3은 커넥터의 일부를 도시하는 확대 단면도이다. 도 2 및 도 3을 함께 참조하여, 일 실시예의 커넥터가 설명된다.
커넥터(100)에서, 각 탄성 도전부(110)가 검사 장치와 피검사 디바이스의 사이에서 도전부로서 기능하여, 상하 방향(VD)에서의 신호 전달을 실행한다. 탄성 도전부(110)는 상하 방향(VD)으로 연장하는 원기둥 형상을 가질 수 있다. 이러한 원기둥 형상에 있어서, 중간에서의 직경은 상단 및 하단에서의 직경보다 작을 수 있다.
탄성 절연부(120)는 커넥터(100)의 사각형의 탄성 영역을 형성할 수 있다. 복수의 탄성 도전부(110)는 탄성 절연부(120)에 의해 수평 방향(HD1, HD2)으로 등간격 또는 부등간격으로 서로간에 이격되고 절연된다. 탄성 절연부(120)는 하나의 탄성체로서 형성되어 있으며, 복수의 탄성 도전부(110)는 탄성 절연부(120)의 두께 방향(상하 방향(VD))에서 탄성 절연부(120)에 박혀 있다. 탄성체로 이루어지는 탄성 절연부(120)는 탄성 도전부(110)를 그 형상으로 유지시킬뿐만 아니라, 탄성 도전부(110)를 상하 방향으로 유지시킨다. 탄성 절연부(120)는 탄성 고분자 재료로 이루어지며, 상하 방향(VD)과 수평 방향(HD)으로 탄성을 가진다.
상세하게는, 탄성 절연부(120)는 경화된 실리콘 러버 재료로 이루어질 수 있다. 예컨대, 액상의 실리콘 러버가 커넥터(100)를 성형하기 위한 성형 금형 내에 주입되고 경화됨으로써, 탄성 절연부(120)가 형성될 수 있다. 탄성 절연부(120)를 성형하기 위한 액상의 실리콘 러버 재료로서, 부가형 액상 실리콘 고무, 축합형 액상 실리콘 고무, 비닐기나 히드록시기를 포함하는 액상 실리콘 고무 등이 사용될 수 있다. 구체적인 예로서, 상기 액상 실리콘 러버 재료는, 디메틸실리콘 생고무, 메틸비닐실리콘 생고무, 메틸페닐비닐실리콘 생고무 등을 포함할 수 있다.
각 탄성 도전부(110)는 다수의 탄소나노튜브(111)를 포함한다. 서로 접촉된 다수의 탄소나노튜브(111)가 탄성 도전부(110)를 형성할 뿐만 아니라, 탄성 도전부(110) 내에서 상하 방향을 따라 다수의 도전로를 형성한다. 각 탄소나노튜브(111) 사이는 탄성 절연부(120)를 형성하는 재료로 채워질 수 있다. 따라서, 탄성 도전부(110)는 상하 방향(VD)과 수평 방향(HD)으로 탄성을 가진다. 피검사 디바이스의 단자에 의해 탄성 도전부(110)가 상하 방향(VD)의 하방으로 눌릴 때, 탄성 도전부(110)는 수평 방향(HD)으로 약간 팽창될 수 있고, 탄성 절연부(120)는 탄성 도전부(110)의 이러한 팽창을 허용할 수 있다. 일 예로, 실시예의 커넥터(100)에 있어서, 암체어형 탄소나노튜브, 단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브가 사용될 수 있다.
하나의 탄성 도전부(110)에서, 다수의 탄소나노튜브(111)는 상하 방향(VD)을 따라 고르게 분포 및 배열되어 있다. 또한, 상하 방향(VD)을 따라 분포 및 배열된 탄소나토튜브(111)들에서, 이웃한 적어도 두개의 탄소나노튜브(111)는 상하 방향(VD), 수평 방향(HD) 또는 상하 방향과 수평 방향 사이의 경사 방향에서 서로 접촉되어 있다. 따라서, 탄성 도전부(110)는, 고르게 분포 및 배열되고 확실히 접촉된 다수의 탄소나노튜브로 이루어져, 탄소나노튜브로 인한 고전도성 및 고탄성을 가질 수 있다. 여기서, 탄소나노튜브들이 상하 방향을 따라 고르게 분포 및 배열된다는 것은, 하나의 탄성 도전부에 속하는 대부분의 탄소나노튜브(111)들이, 탄성 도전부의 상단과 하단을 지나는 상하 방향으로, 또는 이러한 상하 방향에 대해 약간 경사진 방향으로, 또는 상하 방향에 직교하는 방향으로 분포되고 배열되는 것을 포함할 수 있다. 접촉된 탄소나노튜브(111)들은 탄성 도전부(110)를 통해 테스트 신호와 응답 신호의 전달을 가능하게 한다. 이에 따라, 접촉된 다수의 탄소나노튜브(111)들에 의해 다수의 상하 방향 도전로가 하나의 탄성 도전부(111) 내에 형성될 수 있다. 이러한 도전로는, 탄소나노튜브(111) 간의 접촉 형태에 따라, 직선, 곡선, 각진 곡선, 지그재그 중 어느 하나의 형상으로 탄성 도전부(111) 내에 형성될 수 있다.
도 3을 참조하면, 하나의 탄성 도전부(110) 내에서, 다수의 탄소나노튜브(111)들이 상하 방향(VD)을 따라 분포 및 배열되어 있으면서, 상기한 도전로를 형성하도록 서로 접촉되어 있다. 하나의 탄성 도전부(110) 내에서, 탄소나노튜브(111)들은, 상하 방향, 수평 방향, 경사 방향 중 어느 하나의 방향으로 위치되어 상하 방향을 따라 분포 및 배열될 수 있다.
전술한 바와 같이 위치하는 다수의 탄소나노튜브(111)들은, 예컨대 커넥터(100)의 성형 도중, 경화되는 액상의 실리콘 러버에 의해 유지될 수 있다. 즉, 액상의 실리콘 러버가 경화하여 탄성 도전부(110) 및 탄성 절연부(120)를 형성하면서, 다수의 탄소나노튜브(111)가 상하 방향을 따라 늘어서게 되며, 탄소나노튜브(111) 각각은 상하 방향, 수평 방향 및 경사 방향 중 어느 하나의 방향으로 위치할 수 있다.
실시예에 의하면, 액상 실리콘 러버 재료 내에서 다수의 탄소나노튜브(111)가 자기력에 의해 자기력선의 방향으로 배열 및 접촉되면서, 다수의 탄소나노튜브(111)들이 상하 방향(VD)을 따라 분포 및 배열된 탄성 도전부(120)가 형성될 수 있다. 자기장 내에서의 전술한 탄소나노튜브(111)들의 거동을 위해, 각 탄소나노튜브(111)는 다수의 자성 입자를 포함한다. 예컨대, 상하 방향(VD)으로 자기장이 가해질 때, 상기 자성 입자가 자기장 내에서 자기력에 의해 자기력선을 따라 배열되는 힘에 의해, 다수의 탄소나노튜브(111)가 상하 방향을 따라 분포 및 배열되고 접촉될 수 있다. 또한, 이러한 탄소나노튜브(111)의 거동 도중, 탄소나노튜브(111)들이 상하 방향, 수평 방향 또는 경사 방향으로 위치하면서 상하 방향을 따라 고르게 분포 및 배열될 수 있다. 이와 관련하여, 탄소나노튜브에서의 자성 입자의 위치, 탄소나노튜브에 포함되는 자성 입자의 양, 자성 입자를 갖는 탄소나노튜브의 양, 액상 실리콘 러버 재료의 점도 등이 탄소나노튜브의 거동에 영향을 줄 수 있다.
상기 자성 입자로서, 외부 자기장이 없는 상태에서 자화되는 강자성체 물질로 된 입자가 사용될 수 있다. 예컨대, 상기 자성 입자는, 니켈, 코발트, 크롬, 철, 철탄화물, 철산화물, 크롬산화물, 니켈산화물, 니켈코발트산화물, 코발트철 및 단분자 자석 물질중 어느 하나로 이루어질 수 있다. 상기 철탄화물로서, 일탄화삼철(Fe3C)이 사용될 수 있다. 상기 철산화물로서, 삼산화철(Fe2O3), 사산화삼철(Fe3O4), 페라이트(ferrite)가 사용될 수 있다. 상기 단분자 자석 물질로서, Mn12 단분자 자석, 디스프로슘(III) 아세토네이트 하이드레이트(Dysprosium(III) acetylacetonate hydrate), 터븀(III) 비스-프탈로사이아닌(Terbium(III) bis-phthalocyanine)이 사용될 수 있다.
전술한 바와 같이, 상기 자성 입자가 자기력에 의해 자기력선을 따라 배열되는 힘에 의해, 다수의 탄소나노튜브(111)가 상하 방향을 따라 분포 및 배열된다. 이러한 탄소나노튜브의 분포 및 배열에 관련해, 일 실시예의 커넥터를 제조하는 일 예를 도시하는 도 4가 참조된다.
도 4를 참조하면, 일 실시예의 커넥터는 성형 금형(51)을 사용하여 성형될 수 있다. 성형 금형(51)의 성형 공동(52)에 커넥터를 형성하는 탄성 고분자 재료로서 액상 성형 재료(53)가 주입될 수 있다. 액상 성형 재료(53)는 액상 실리콘 러버 재료와 전술한 다수의 탄소나노튜브(111)를 포함하며, 다수의 탄소나노튜브(111)는 액상 실리콘 러버 재료 내에 분산되어 있다. 액상 실리콘 러버 재료는 위에서 예시한 액상 실리콘 러버 재료 중 하나가 될 수 있다. 각 탄소나노튜브(111)는 전술한 자성 입자의 예들 중 하나의 예 또는 하나 이상의 예에 따른 자성 입자를 포함한다.
액상 성형 재료(53)가 성형 공동(52)에 주입된 후, 자기장 인가부(54, 56)에 의해 탄성 도전부의 위치마다 상하 방향(VD)으로 자기장이 인가될 수 있다. 각 자기장 인가부(54, 56)는 커넥터의 탄성 도전부들의 위치마다 배치된 복수의 자석(55, 57)을 가진다. 전자석이 자석(55, 57)으로서 채용될 수 있다. 상측의 자기장 인가부(54)의 자석(55)과 하측의 자기장 인가부(56)의 자석(57)은 성형 금형(51)의 상하 방향(즉, 커넥터의 상하 방향)으로 서로 대향하도록 배치된다. 따라서, 상측의 자석(55)과 이에 대응하는 하측의 자석(57)이 한 쌍을 이루며, 이러한 한 쌍의 자석(55, 57)이 하나의 탄성 도전부에 대응한다.
각 쌍의 자석(55, 57)에 의해 자기장이 인가되면, 액상 성형 재료(53) 내에 분산된 탄소나노튜브(111)들이 각 쌍의 자석(55, 57)으로 모여든다. 또한, 각 쌍의 자석(55, 57)에 모여든 탄소나노튜브(111)들은 상하 방향을 따라 고르게 분포 및 배열되면서 서로 접촉된다. 탄소나노튜브(111)들의 이러한 거동은 각 탄소나노튜브(111)에 포함된 상기 자성 입자에 의해 실행된다. 즉, 자기장이 인가되는 상황에서, 각 탄소나노튜브(111)에 포함된 상기 자성 입자가 각 쌍의 자석(55, 57)의 자기장으로 이끌려, 탄소나노튜브(111)들을 각 쌍의 자석(55, 57)의 사이로 이동시킨다. 또한, 각 탄소나노튜브(111)에 포함된 상기 자성 입자가 각 쌍의 자석(55, 57)이 인가하는 자기장 내에서 자기력선을 따라 배열된다. 자성 입자가 자기장 내에서 배열되는 힘으로 인해, 각 쌍의 자석(55, 57)의 사이에서 탄소나노튜브(111)들은 상하 방향(VD)을 따라 고르게 분포 및 배열될 뿐만 아니라 상하 방향(VD)을 따라 도전 가능하도록 서로 접촉된다. 이에 따라, 도 3에 도시된 바와 같이 상하 방향을 따라 분포 및 배열된 다수의 탄소나노튜브로 이루어지는 탄성 도전부(110)가 형성될 수 있다.
각 쌍의 자석(55, 57)으로 모여든 탄소나노튜브(111)들이 상하 방향(VD)을 따라 분포 및 배열될 때, 탄소나노튜브(111)들은 상하 방향, 수평 방향 또는 경사 방향으로 위치될 수 있다. 특히, 도 4에 도시된 바와 같이, 대부분의 탄소나노튜브(111)들이 상하 방향(VD)으로 위치할 수 있다. 이와 관련하여, 탄소나노튜브(111)들의 전술한 방향들의 비율은 적절히 제어될 수 있다. 예를 들어, 탄성 도전부(110)를 형성하기 위해 인가하는 자기력의 강도, 액상 실리콘 러버의 점도, 탄소나노튜브(111)의 aspect ratio(탄소나노튜브의 폭에 대한 탄소나노튜브 높이의 비)를 적절히 제어하여 탄소나노튜브(111)의 방향 비율, 즉 탄소나노튜브(111)의 상하 방향, 수평 방향, 경사 방향의 비율을 제어할 수도 있다. 일 실시예로, 탄소나노튜브(111)의 aspect ratio가 1보다 큰 경우, 높은 자기력과 낮은 점도를 적용하여, 거의 모든 탄소나노튜브(111)들이 실질적으로 상하 방향으로 위치하게 할 수도 있다.
다수의 탄소나노튜브(111)들이 상하 방향(VD)을 따라 분포 및 배열된 후, 액상 성형 재료(53)의 액상 실리콘 러버 재료가 경화되어, 도 2에 도시된 커넥터(100)가 성형될 수 있다. 경화된 액상 실리콘 러버 재료가 탄성 절연부(120)를 형성할 뿐만 아니라, 탄성 도전부(110)의 일부를 형성한다. 경화된 탄성 절연부(120)가 복수의 탄성 도전부(110)를 그 형상으로 유지한다. 탄성 도전부(110) 내의 경화된 실리콘 러버 재료가 상하 방향, 수평 방향 또는 경사 방향으로 위치된 다수의 탄소나노튜브(111)를 유지하고, 상하 방향(VD)을 따라 도전 가능하게 다수의 탄소나노튜브(111)이 접촉한 상태를 유지한다. 상하 방향(VD)을 따라 분포 및 배열된 다수의 탄소나노튜브(111)에 있어서, 상하 방향으로 인접한 탄소나노튜브(111)는 상하 방향, 수평 방향 또는 경사 방향으로 서로 접촉될 수 있다. 도 3에 도시된 바와 같이, 상하 방향(VD)으로 인접한 탄소나노튜브(111)들은 그들의 일부가 상하 방향(VD)으로 겹치도록 상하 방향(VD)으로 배열될 수 있고, 수평 방향(HD)으로 서로 접촉될 수 있다.
도 3에 도시된 바와 같이, 탄소나노튜브(111)들은 상하 방향(VD)을 따라 직선 형상으로 배열될 수 있다. 탄소나노튜브의 길이가 비교적 짧고 자성 입자의 양이 비교적 많은 경우, 탄소나노튜브들은 탄성 도전부(110) 내에서 직선 형상을 취할 수 있다.
도 5는 탄소나노튜브들의 분포 및 배열의 또 하나의 예를 도시한다. 도 5에 도시된 바와 같이, 탄소나노튜브(111)들은 상하 방향(VD)을 따라 곡선 형상으로 배열될 수 있다. 탄소나노튜브의 길이가 비교적 길고 자성 입자의 양이 비교적 적은 경우, 탄소나노튜브들은 탄성 도전부(110) 내에서 곡선 형상을 취할 수 있다. 곡선 형상을 취하는 탄소나노튜브(111)들은 상하 방향, 수평 방향 또는 경사 방향으로 위치할 수 있다. 또한, 자기력의 세기가 강한 탄성 도전부(110)의 상단과 하단에서, 탄소나노튜브(111)는 수평 방향으로 위치할 수 있다.
전술한 바와 같이, 일 실시예의 커넥터(100)는, 자성 입자를 갖는 다수의 탄소나노튜브(111)로 이루어진 탄성 도전부(110)를 포함한다. 이러한 커넥터(100)의 성형에 관련하여, 도 2 내지 도 4를 함께 참조한다. 커넥터(100)는 액상 성형 재료(53)로부터 성형 금형(51)을 사용해 성형될 수 있다. 액상 성형 재료(53)는, 다수의 자성 입자를 각각 포함하는 다수의 탄소나노튜브(111) 및 다수의 탄소나노튜브(111)가 분산된 전술한 예의 액상 실리콘 러버 재료를 포함한다. 복수의 탄성 도전부(110)는, 상기 자성 입자가 자기장 내에서 자기력에 의해 배열되는 힘에 의해 다수의 탄소나노튜브(111)가 도전 가능하게 접촉됨으로써 형성될 수 있다. 상세하게는, 성형 금형(51)에서 각 탄성 도전부(110)에 대응하는 각 쌍의 자석(55, 57)에 의해 상하 방향(VD)으로 자기장이 인가된다. 상기 자성 입자가 상기 자기장 내에서 자기력에 의해 배열되는 힘에 의해, 다수의 탄소나노튜브(111)는 각 쌍의 자석(55, 57)이 인가하는 자기장 내로 모이면서 자기장 내에서 상하 방향(VD)으로 도전 가능하게 서로 접촉된다. 또한, 상기 자성 입자가 상기 자기장 내에서 자기력에 의해 배열되는 힘에 의해, 각 쌍의 자석(55, 57)의 사이에 모인 상기 다수의 탄소나노튜브(111)의 거의 전부가 상하 방향(VD)을 따라 고르게 분포 및 배열된다. 다수의 탄소나노튜브(111)로 이루어진 복수의 탄성 도전부(110)가 형성된 후, 상기 액상 실리콘 러버 재료가 경화됨으로써, 커넥터(100)의 탄성 절연부(120)가 형성될 수 있다.
커넥터(100)를 성형하는 다른 실시예로서, 탄소나노튜브를 포함하지 않는 액상 실리콘 러버 재료로부터 시트 형상의 탄성 절연부가 형성될 수 있다. 경화된 실리콘 러버로 이루어진 시트에, 복수의 탄성 도전부에 대응하는 복수의 홀이 레이저를 사용해 시트를 관통해 형성될 수 있다. 홀에 전술한 탄소나노튜브를 포함하는 액상의 실리콘 러버 재료를 주입하고, 상하 방향으로 자기장이 인가될 수 있다. 이에 따라, 자성 입자가 자기장 내에서 배열되는 힘에 의해, 다수의 탄소나노튜브는 상기 홀 내에서 상하 방향을 따라 분포 및 배열될 뿐만 아니라, 상하 방향으로 도전 가능하게 서로 접촉될 수 있다.
상하 방향을 따라 고르게 분포 및 배열되어 탄성 도전부를 형성하는 탄소나노튜브는, 다양한 형태로 자성 입자를 포함할 수 있다. 도 6 내지 도 17을 참조하여, 실시예의 커넥터에 있어서, 자성 입자를 포함하는 탄소나노튜브의 다양한 예를 설명한다. 도 6 내지 도 17을 참조하여 설명하는 탄소나노튜브의 예에서의 자성 입자는, 자성 입자를 포함하는 탄소나노튜브의 예시적 설명을 위해 선택된 예에 불과하다. 전술한 자성 입자의 예들 중 하나의 예에 따른 자성 입자가 도 6 내지 도 17을 참조하여 설명하는 형태로 탄소나노튜브에 포함될 수 있다.
도 6은 자성 입자를 포함하는 탄소나노튜브의 일 예를 도시한다. 도 6을 참조하면, 다수의 자성 입자(112)는 하나의 탄소나노튜브(111)의 내부에 위치할 수 있다. 즉, 자성 입자(112)가 탄소나노튜브(111)의 내부 공간으로 삽입되는 형태로, 탄소나노튜브(111)가 자성 입자(112)를 포함할 수 있다. 자성 입자가 탄소나노튜브 내부의 공간에 삽입되는 예에 관련하여, 도 7 내지 도 11이 참조된다.
탄소나노튜브는 화학기상증착(chemical vapor deposition, CVD)에 의해 생성 및 성장될 수 있다. 화학기상증착에 의해 탄소나노튜브가 생성 및 성장하는 도중, 상기 자성 입자가 촉매로 사용되어 탄소나노튜브의 내부 공간에 삽입될 수 있다. 일 예로, 화학기상증착을 사용하는 탄소나노튜브의 생성과 성장은, 화학기상증착을 위한 반응기에 탄화수소 가스를 이송 가스로서 공급하고 반응기 내에 설치된 기판으로부터 탄소나노튜브가 수직 방향으로 성장함으로써 행해질 수 있다. 도 7 내지 도 9는 화학기상증착에 의해 탄소나노튜브가 생성 및 성장되면서 자성 입자가 탄소나노튜브 내부 공간에 삽입되는 예를 개략적으로 도시한다.
도 7을 참조하면, 자성 입자(112) 또는 자성 입자(112)의 클러스터는, 실리콘 또는 알루미늄으로 이루어진 기판(211)의 표면에 약하게 결합되어 있다. 이송 가스로서 공급된 탄화수소는 자성 입자(112)의 상부에서 발열 분해에 의해 탄소와 수소로 분해된다. 발열 분해로 인해, 자성 입자(112)의 상단에서 온도와 탄소 농도가 증가하고, 자성 입자(112)는 기판(211)으로부터 분리된다. 탄소가 더욱 차가운 영역으로 확산되고 침전되면서, 탄소나노튜브(111)가 기판(211)으로부터 상하 방향으로 자성 입자(112)를 내포하면서 형성될 수 있다.
도 8을 참조하면, 자성 입자 클러스터(213)가 기판(211)의 표면에 증착되어 있다. 기판(211)의 표면의 자성 입자 클러스터(213)가 탄화수소에 노출된다. 탄화수소는 클러스터(213)의 표면에서 촉매적으로 발열 분해되어, 수소와 탄소로 분해된다. 분해된 탄소는 더욱 높은 농도의 고온 영역으로부터 클러스터(213)의 차가운 영역으로 확산되고 침전되어, 탄소나노튜브(111)가 자성 입자 클러스터(213)를 내포하면서 기판(211)으로부터 수직 방향으로 형성될 수 있다.
도 9를 참조하면, 화학기상증착에 의해 탄소나노튜브가 성장하는 동시에 탄소나노튜브의 내부가 자성 입자로 채워질 수 있다. 탄소나노튜브(111)가 느린 속도로 성장하는 도중, 도가니에 담긴 자성 입자의 클러스터가 기화되어 성장하는 탄소나노튜브에 투입될 수 있다. 자성 입자의 클러스터는 탄소나노튜브(111)의 개방 단부에 부착되고, 이에 따라 탄소나노튜브(111)는 빠른 속도로 성장할 수 있다. 자성 입자의 클러스터(213) 주변에서 빠르게 성장하는 탄소나노튜브의 힘에 의해, 클러스터(213)가 변형된다. 촉매 물질인 자성 입자의 클러스터(213)의 공급이 중지하면, 탄소나노튜브(111)는 다시 느리게 성장할 수 있다.
자성 입자가 내부 공간에 삽입된 탄소나노튜브는, 자성 입자가 부착된 그래핀 시트(graphine sheet)를 탄소나노튜브가 되도록 말아서 형성될 수 있다. 도 10은 자성 입자가 부착된 그래핀 시트를 말아서 탄소나노튜브를 형성하는 일 예를 개략적으로 도시한다. 도 10을 참조하면, 아크 방전을 사용하여 자성 입자(112)를 그래핀 시트(221)에 부착하고, 그러한 그래핀 시트(221)를 말아서 자성 입자가 삽입된 탄소나노튜브(111)가 형성될 수 있다. 예컨대, 흑연으로 된 음극 전극과 양극 전극을 갖는 용기에 자성 입자를 포함하는 용액을 투입하고, 음극 전극과 양극 전극에 직류 전기를 공급하여 음극 전극과 양극 전극 사이에서 아크 방전을 실행할 수 있다. 아크 방전에 의해 용기 내부의 온도는 약 3000도까지 상승할 수 있다. 이러한 온도에서, 자성 입자는 나노 입자로 이온화되고, 흑연으로 된 전극으로부터 그래핀 시트가 형성되며, 그래핀 시트에 자성 입자가 부착될 수 있다.
자성 입자가 내부 공간에 삽입된 탄소나노튜브는 모세관 효과를 사용하여 형성될 수도 있다. 도 11은 모세관 현상을 사용하여 탄소나노튜브의 내부에 자성 입자를 삽입하는 일 예를 도시한다. 도 11을 참조하면, 알루미나로 이루어진 기판(231)의 구멍의 표면에 화학기상증착에 의해 탄소나노튜브(232)가 성장되어 있다. 탄소나노튜브(232)에, 상기 자성 입자를 포함하는 운반 유체(233)를 떨어뜨린다. 그러면, 모세관 효과에 의해 운반 유체(233)가 탄소나노튜브(232)를 채운다. 운반 유체(233)는 탄소나노튜브(232)를 전체적으로 또는 부분적으로 채울 수 있다. 그 후, 운반 유체(233)를 건조시키면, 탄소나노튜브(232) 내부에 자성 입자(112)가 투입된다. 이에 따라, 자성 입자(112)가 내부 공간에 삽입된 탄소나노튜브(111)가 형성될 수 있다. 알루미나로 이루어진 기판(231)을 수산화나트륨(NaOH) 용액으로 용해시키면, 자성 입자(112)가 내부 공간에 삽입된 탄소나노튜브(111)가 얻어질 수 있다. 다른 예로서, 알루미나로 이루어진 기판(231)에 화학기상증착에 의해 생성 및 성장되어 있는 탄소나노튜브(232)를, 기판(231)을 수산화나트륨(NaOH) 용액으로 용해시킴으로써, 기판(231)으로부터 분리시킨다. 그 후, 전술한 운반 유체(233)를 탄소나노튜브(232)에 떨어뜨리고 탄소나노튜브(232)의 내부를 모세관 효과로 운반 유체(233)로 채운다. 그 후, 운반 유체(233)를 건조시킴으로써, 자성 입자(112)가 내부 공간에 삽입된 탄소나노튜브(111)가 얻어질 수 있다.
도 7 내지 도 11을 참조하여 설명한 탄소나노튜브의 예에서, 탄소나노튜브(111)는 폐쇄된 단부를 가질 수 있다. 도 12는 자성 입자가 삽입되고 일측 단부가 폐쇄된 탄소나노튜브를 도시한다. 도 12를 참조하면, 일측 단부가 폐쇄된 탄소나노튜브(111)는 그 내부 공간에 삽입된 자성 입자(112)가 탄소나노튜브(111)로부터 이탈하는 것을 방지할 수 있다.
도 13은 자성 입자를 포함하는 탄소나노튜브의 또 하나의 예를 도시한다. 도 13을 참조하면, 자성 입자(112)는 하나의 탄소나노튜브(111)의 외측에서 탄소나노튜브(111)에 결합될 수 있다. 상세하게는, 각 자성 입자(112)는 탄소나노튜브(111)의 탄소 원자와 화학적 결합에 의해 결합될 수 있다. 도 14와 도 15는 자성 입자가 탄소나노튜브의 탄소 원자에 화학적 결합에 의해 결합되는 예를 개략적으로 도시한다.
도 14를 참조하면, 순수한 탄소나노튜브(241)를 질산(HNO3)으로 처리하면, 탄소나노튜브(241)의 탄소 원자에는 히드록시기(OH)와 카르복시기(COOH)가 부착된다. 그 후, 히드록시기(OH)와 카르복시기(COOH)를 가진 탄소나노튜브(241)에 니켈과 코발트를 전구체로서 부착시킨다. 그 후, 수열(hydrothermal) 처리 및 어닐링(annealing) 처리에 의해, 도 13에 도시된 탄소나노튜브(111), 즉, 자성 입자(112)가 탄소나노튜브의 탄소 원자에 화학적 결합으로 결합된 탄소나노튜브(111)가 얻어질 수 있다. 이 때의 자성 입자(112)는 니켈코발트산화물(NiCo2O4)이 될 수 있다.
도 15는 자성 입자가 탄소나노튜브의 탄소 원자와 화학적 결합에 의해 결합되는 또 하나의 예를 도시하며, 이른바 클릭화학반응에 의해 자성 입자가 탄소나노튜브의 탄소 원자와 결합되는 것을 도시한다. 도 15의 좌측에 도시된 바와 같이, 알킨으로 모디파이된 탄소나노튜브(251)와, 자성 입자(112)(도 15에서는 철산화물의 자성입자)가 포함된 아지드화물을 갖는 덴드리머를 결합시킨다. 이 경우, 탄소나노튜브(251)와 상기 덴드리머를, 테트라하이드로엽산(tetrahydrofolic acid)과 물(H2O)을 3:1의 비율로 혼합한 용액에 아스코리빈산 나트륨(sodium ascorbate)과 황산구리(CuSO4)를 함께 투입하여 반응시킨다. 이에 따라, 도 15의 우측에 도시된 바와 같이, 탄소나노튜브(111)의 탄소 원자에 자성 입자(112)가 결합된, 즉, 탄소나노튜브의 외측 표면에 자성 입자(112)가 결합된 탄소나노튜브(111)가 얻어질 수 있다.
도 16은 자성 입자를 포함하는 탄소나노튜브의 또 다른 예를 도시한다. 도 16을 참조하면, 탄소나노튜브(111)는 흑연벽(graphitic wall)에서 6개의 탄소 원자들이 이루는 다수의 육각 구멍을 갖는다. 다수의 육각 구멍 중 일부의 육각 구멍의 각각은 다수의 자성 입자(112) 중 하나를 갖는다. 다수의 자성 입자(112) 각각은 다수의 육각 구멍 들 중 하나에 무작위적으로 위치한다. 도 16에 도시된 탄소나노튜브에서는, 탄소나노튜브의 내부 공간이나 탄소나노튜브의 외부에 자성 입자가 위치하지 않고, 탄소나노튜브의 육각 구멍에 자성 입자(112)가 위치하여 육각 구멍 내에 갇혀있다. 즉, 도 16에 도시된 탄소나노튜브(111)는 입자가 없는 표면(particle-free surface)의 구조를 가져, 탄소나노튜브(111) 간의 접촉과 전도성에 영향을 주지 않는다.
도 17은 자성 입자가 탄소나노튜브의 육각 구멍에 위치하는 탄소나노튜브의 예를 개략적으로 도시한다. 도 17의 좌측에 도시된 바와 같이, 알루미늄으로 이루어진 판(252)과, 판(252) 위에 양극산화알루미나(anodic aluminum oxide)로 이루어지고 다수의 구멍(254)을 가진 템플릿(253)을 포함하는 기판(251)이 사용될 수 있다. 템플릿(253)의 구멍(254)의 원통형 벽면(255)을 따라 탄소나노튜브가 생성될 수 있다. 원통형 벽면(255)은 전술한 자성 입자(예컨대, 사산화삼철(Fe3O4))로 코팅된다. 원통형 벽면(255)이 자성 입자로 코팅된 기판(251)이 화학기상증착용 반응기 내에 배치된다. 반응기 내에서의 가열에 의해, Fe3O4는 FeC로 환원된다. 도 17의 우측에 도시된 바와 같이, 화학기상증착에 의해 원통형 벽면(255)을 따라 탄소나노튜브(111)가 생성 및 성장한다. 원통형 벽면(255)과 탄소나노튜브(111)의 사이에 공간이 없으므로, 자성 입자는 탄소나노튜브(111)의 외부로 나갈 수 없고, 탄소나노튜브(111)의 육각 구멍 내에 갇힌다.
도 18은 또 하나의 실시예에 따른 커넥터를 도시한다. 도 18을 참조하면, 커넥터(200)의 탄성 도전부(110)는, 전술한 자성 입자를 포함하는 다수의 탄소나노튜브(111)와, 다수의 탄소나노튜브(111)와 접촉된 다수의 도전성 금속 입자(113)를 포함한다. 각 탄성 도전부(110) 내에서, 도전성 금속 입자(113)들은 다수의 탄소나노튜브(111)와 상하 방향(VD) 또는 수평 방향(HD)으로 접촉될 수 있거나, 도전성 금속 입자(113)들이 상하 방향(VD) 또는 수평 방향(HD)으로 접촉될 수 있다. 각 탄성 도전부(110) 내에서, 상하 방향(VD)을 따라 분포 및 배열된 다수의 탄소나노튜브(111)와 도전성 금속 입자(113)들이 도전로를 형성한다. 탄성 절연부(120)를 구성하는 재료가, 다수의 탄소나노튜브(111)와 다수의 도전성 금속 입자(113)를 탄성 도전부(110)의 형상으로 유지할 수 있다.
도전성 금속 입자(113)는 코어 입자의 표면을 고전도성 금속으로 피복하여 이루어질수 있다. 코어 입자는 철, 니켈, 코발트 등의 금속 재료로 이루어지거나, 탄성을 지닌 수지 재료로 이루어질 수 있다. 코어 입자의 표면에 피복되는 고전도성 금속으로는, 금, 은, 로듐, 백금, 크롬 등이 사용될 수 있다.
커넥터(200)는 도 4를 참조하여 설명한 성형 방식으로 성형될 수 있다. 예컨대, 위에서 예시한 액상 실리콘 러버 재료, 다수의 탄소나노튜브(111) 및 다수의 도전성 금속 입자(113)를 포함하는 액상 성형 재료(53)를 성형 금형(51)에 주입하고, 액상 성형 재료를 경화시킴으로써 커넥터(200)가 성형될 수 있다. 다수의 탄소나노튜브(111)와 다수의 도전성 금속 입자(113)는 액상 실리콘 러버 재료 내에 분산되어 있다. 탄소나노튜브(111)는 전술한 자성 입자 중 하나를 가지며, 자성 입자는 도 6, 도 13 및 도 16에 도시된 바와 같이 탄소나노튜브(111)에 배치될 수 있다. 자기장 인가부(54, 56)가 가하는 자기장에 의해, 다수의 탄소나노튜브(111)와 다수의 도전성 금속 입자(113)가 각 탄성 도전부마다 상하 방향(VD)을 따라 분포 및 배열되고, 상하 방향(VD)으로 도전 가능하도록 서로 접촉된다. 다수의 탄소나노튜브(111)와 다수의 도전성 금속 입자(113)가 상하 방향(VD)을 따라 분포 및 배열된 후, 액상 성형 재료(53)가 경화되어, 도 18에 도시된 커넥터(200)가 성형될 수 있다.
이상 일부 실시예들과 첨부된 도면에 도시하는 예에 의해 본 개시의 기술적 사상이 설명되었지만, 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 이해할 수 있는 본 개시의 기술적 사상 및 범위를 벗어나지 않는 범위에서 다양한 치환, 변형 및 변경이 이루어질 수 있다는 점을 알아야 할 것이다. 또한, 그러한 치환, 변형 및 변경은 첨부된 청구범위 내에 속하는 것으로 생각되어야 한다.

Claims (13)

  1. 검사 장치와 피검사 디바이스의 사이에 배치되어 상기 검사 장치와 상기 피검사 디바이스를 전기적으로 접속시키는 커넥터이며,
    다수의 탄소나노튜브를 각각 포함하는 복수의 탄성 도전부와,
    상기 복수의 탄성 도전부를 수평 방향으로 이격 및 절연시키는 탄성 절연부를 포함하고,
    상기 다수의 탄소나노튜브는 각각 다수의 자성 입자를 포함하고 상하 방향을 따라 분포 및 배열되며 상기 상하 방향을 따라 도전 가능하게 서로 접촉되어 있는,
    커넥터.
  2. 제1항에 있어서,
    상기 다수의 자성 입자가 자기장 내에서 자기력에 의해 배열되는 힘에 의해 상기 다수의 탄소나노튜브가 상기 상하 방향을 따라 분포 및 배열된,
    커넥터.
  3. 제1항에 있어서,
    상기 다수의 자성 입자는 상기 다수의 탄소나노튜브 각각의 내부에 위치하는,
    커넥터.
  4. 제3항에 있어서,
    상기 다수의 탄소나노튜브 중 적어도 일부는 폐쇄된 단부를 갖는,
    커넥터.
  5. 제1항에 있어서,
    상기 다수의 자성 입자는 상기 다수의 탄소나노튜브 각각의 외측에서 탄소 원자에 화학적 결합된,
    커넥터.
  6. 제1항에 있어서,
    각각의 상기 다수의 탄소나노튜브는 다수의 육각 구멍을 갖고, 상기 다수의 육각 구멍 중 일부의 육각 구멍 각각은 상기 다수의 자성 입자 중 하나를 갖는,
    커넥터.
  7. 제3항 내지 제6항 중 어느 한 항에 있어서,
    상기 다수의 자성 입자는, 니켈, 코발트, 크롬, 철, 철탄화물, 철산화물, 크롬산화물, 니켈산화물, 니켈코발트산화물, 코발트철 및 단분자 자석 물질 중 어느 하나로 이루어지는,
    커넥터.
  8. 제1항에 있어서,
    상기 탄성 도전부는 상기 다수의 탄소나노튜브와 접촉된 다수의 도전성 금속 입자를 더 포함하는,
    커넥터.
  9. 상하 방향으로 도전 가능한 복수의 탄성 도전부와 상기 복수의 탄성 도전부를 수평 방향으로 이격 및 절연시키는 탄성 절연부를 포함하여 상기 복수의 탄성 도전부에 의해 검사 장치와 피검사 디바이스를 전기적 접속시키는 커넥터이며,
    상기 커넥터는, 다수의 자성 입자를 각각 포함하는 다수의 탄소나노튜브 및 상기 다수의 탄소나노튜브가 분산된 액상 실리콘 러버 재료를 포함하는 액상 성형 재료로부터 성형되고,
    상기 복수의 탄성 도전부는, 각 탄성 도전부마다 상기 상하 방향으로 자기장이 인가되고, 상기 자성 입자가 상기 자기장 내에서 자기력에 의해 배열되는 힘에 의해 상기 다수의 탄소나노튜브가 상기 자기장 내로 각 탄성 도전부마다 모이고 상기 상하 방향을 따라 분포 및 배열되며 상기 상하 방향으로 도전 가능하게 서로 접촉되어, 형성되고,
    상기 탄성 절연부는 상기 액상 실리콘 러버 재료가 경화되어 형성되는,
    커넥터.
  10. 제9항에 있어서,
    상기 다수의 자성 입자는 상기 다수의 탄소나노튜브 각각의 내부에 위치하는,
    커넥터.
  11. 제10항에 있어서,
    상기 다수의 탄소나노튜브 중 적어도 일부는 폐쇄된 단부를 갖는,
    커넥터.
  12. 제9항에 있어서,
    상기 다수의 자성 입자는 상기 다수의 탄소나노튜브 각각의 외측에서 탄소 원자에 화학적 결합된,
    커넥터.
  13. 제9항에 있어서,
    각각의 상기 다수의 탄소나노튜브는 다수의 육각 구멍을 갖고, 상기 다수의 육각 구멍 중 일부의 육각 구멍 각각은 상기 다수의 자성 입자 중 하나를 갖는,
    커넥터.
PCT/KR2019/015313 2018-11-13 2019-11-12 전기접속용 커넥터 WO2020101317A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980074601.8A CN113015914A (zh) 2018-11-13 2019-11-12 用于电连接的连接器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0138752 2018-11-13
KR1020180138752A KR102148330B1 (ko) 2018-11-13 2018-11-13 전기접속용 커넥터

Publications (1)

Publication Number Publication Date
WO2020101317A1 true WO2020101317A1 (ko) 2020-05-22

Family

ID=70731255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015313 WO2020101317A1 (ko) 2018-11-13 2019-11-12 전기접속용 커넥터

Country Status (4)

Country Link
KR (1) KR102148330B1 (ko)
CN (1) CN113015914A (ko)
TW (1) TWI730498B (ko)
WO (1) WO2020101317A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117825767A (zh) * 2024-03-06 2024-04-05 季华实验室 单分子器件探针进针装置、电学检测装置及电学检测装置的导通控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102571582B1 (ko) * 2021-07-01 2023-08-28 주식회사 아이에스시 검사용 소켓
KR102635714B1 (ko) * 2021-09-14 2024-02-13 주식회사 아이에스시 검사용 소켓 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018566A1 (en) * 2005-06-24 2011-01-27 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
KR20110061999A (ko) * 2009-12-02 2011-06-10 주식회사 오킨스전자 반도체칩 패키지 테스트용 콘택트
KR101393601B1 (ko) * 2013-07-24 2014-05-13 주식회사 아이에스시 도전성 커넥터 및 그 제조방법
KR20170108522A (ko) * 2016-03-18 2017-09-27 주식회사 오킨스전자 도전성 파티클이 자화된 도전 와이어에 의하여 자성 배열되는 테스트 소켓 및 그 제조 방법
KR101839949B1 (ko) * 2016-10-14 2018-03-19 부경대학교 산학협력단 반도체 소자 테스트용 소켓의 제조 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04186173A (ja) * 1990-11-21 1992-07-02 Nisshin Koki Kk 電子部品検査用具
JP2002124318A (ja) * 2000-10-12 2002-04-26 Jsr Corp 複合シートおよびその製造方法
JP4748553B2 (ja) * 2000-09-12 2011-08-17 Hoya株式会社 ウエハ一括コンタクトボード用コンタクト部品及びその製造方法
CN1546365A (zh) * 2003-12-04 2004-11-17 东南大学 磁性纳米管及其制备方法
US7731503B2 (en) * 2006-08-21 2010-06-08 Formfactor, Inc. Carbon nanotube contact structures
CN100453456C (zh) * 2006-12-31 2009-01-21 哈尔滨工业大学 一种磁性可控的超顺磁性纳米碳管的制备方法
CN101559938B (zh) * 2008-04-18 2011-05-11 中国科学院大连化学物理研究所 一种高度石墨化纳米碳材料的制备方法
KR101378505B1 (ko) 2009-12-02 2014-03-31 주식회사 오킨스전자 반도체칩 패키지 테스트용 콘택트
US8872176B2 (en) * 2010-10-06 2014-10-28 Formfactor, Inc. Elastic encapsulated carbon nanotube based electrical contacts
KR101246301B1 (ko) * 2012-01-18 2013-03-22 이재학 미세선형체가 마련된 테스트용 소켓
JP6212814B2 (ja) * 2013-05-21 2017-10-18 国立研究開発法人科学技術振興機構 多点プローブ及びそれを構成する電子接点シート、多点プローブアレイ並びに多点プローブの製造方法
KR101573450B1 (ko) * 2014-07-17 2015-12-11 주식회사 아이에스시 테스트용 소켓
KR101588844B1 (ko) * 2014-12-30 2016-01-26 주식회사 아이에스시 코일형 탄소나노튜브를 가지는 검사용 커넥터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018566A1 (en) * 2005-06-24 2011-01-27 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
KR20110061999A (ko) * 2009-12-02 2011-06-10 주식회사 오킨스전자 반도체칩 패키지 테스트용 콘택트
KR101393601B1 (ko) * 2013-07-24 2014-05-13 주식회사 아이에스시 도전성 커넥터 및 그 제조방법
KR20170108522A (ko) * 2016-03-18 2017-09-27 주식회사 오킨스전자 도전성 파티클이 자화된 도전 와이어에 의하여 자성 배열되는 테스트 소켓 및 그 제조 방법
KR101839949B1 (ko) * 2016-10-14 2018-03-19 부경대학교 산학협력단 반도체 소자 테스트용 소켓의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117825767A (zh) * 2024-03-06 2024-04-05 季华实验室 单分子器件探针进针装置、电学检测装置及电学检测装置的导通控制方法
CN117825767B (zh) * 2024-03-06 2024-05-07 季华实验室 单分子器件探针进针装置、电学检测装置及电学检测装置的导通控制方法

Also Published As

Publication number Publication date
CN113015914A (zh) 2021-06-22
KR20200055280A (ko) 2020-05-21
KR102148330B1 (ko) 2020-08-26
TWI730498B (zh) 2021-06-11
TW202024646A (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2020101317A1 (ko) 전기접속용 커넥터
WO2020111709A1 (ko) 전기접속용 커넥터
WO2016105031A1 (ko) 전기적 검사 소켓 및 전기적 검사 소켓용 도전성 입자의 제조방법
EP1553622B1 (en) Anisotropic conductivity testconnector
JP4240724B2 (ja) 異方導電性シートおよびコネクター
WO2013151316A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓 및 그 제조방법
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
KR101246301B1 (ko) 미세선형체가 마련된 테스트용 소켓
US6849335B2 (en) Anisotropic conductive sheet
JP4415968B2 (ja) 異方導電性シートおよびコネクター並びに異方導電性シートの製造方法
WO2020138882A1 (ko) 전기접속용 커넥터 및 그 제조 방법
WO2020096238A1 (ko) 도전성 입자 및 이를 갖는 신호 전송 커넥터
WO2013100560A1 (ko) 전기적 콘택터 및 전기적 콘택터의 제조방법
WO2024147491A1 (ko) 신호 손실 방지용 테스트 소켓
KR101976702B1 (ko) 탄소나노튜브가 포함된 검사용 소켓
JP2002157918A (ja) 導電性複合粒子およびそれを用いた応用製品
WO2022186680A1 (ko) 플렉서블 컨택터 및 그 제조 방법
WO2022182133A1 (ko) 전기 접속용 커넥터
WO2019039628A1 (ko) 레이저 가공 기술이 적용된 양방향 도전성 모듈 및 그 제조방법
JP2001093599A (ja) 異方導電性コネクターおよびこれを備えてなる検査装置
JP3879464B2 (ja) 回路装置検査用異方導電性シートおよびその製造方法並びにその応用製品
JP4099905B2 (ja) 異方導電性シート用支持体および支持体付異方導電性シート
WO2009128619A1 (ko) 판형 도전입자를 포함한 실리콘 콘택터
KR100441578B1 (ko) 이방도전성 쉬이트 및 커넥터
WO2020122452A2 (ko) 유황 전극 및 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883420

Country of ref document: EP

Kind code of ref document: A1