WO2020100716A1 - 蓄電デバイスおよび蓄電パック - Google Patents

蓄電デバイスおよび蓄電パック Download PDF

Info

Publication number
WO2020100716A1
WO2020100716A1 PCT/JP2019/043709 JP2019043709W WO2020100716A1 WO 2020100716 A1 WO2020100716 A1 WO 2020100716A1 JP 2019043709 W JP2019043709 W JP 2019043709W WO 2020100716 A1 WO2020100716 A1 WO 2020100716A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
end surface
substrate
electric double
double layer
Prior art date
Application number
PCT/JP2019/043709
Other languages
English (en)
French (fr)
Inventor
真野響太郎
福田恭丈
上田安彦
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020100716A1 publication Critical patent/WO2020100716A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electricity storage device and an electricity storage pack having the electricity storage device housed in a container.
  • Patent Document 1 describes a power storage device having a structure in which cells, which are power storage elements, are housed in a housing container.
  • the cell leads connected to each of the positive electrode and the negative electrode of the cell are welded to the pad arranged on the inner bottom surface of the container.
  • the pad is electrically connected to an external terminal arranged on the outer bottom surface of the container via the through hole.
  • Patent Document 1 since the power storage device described in Patent Document 1 has a configuration in which the electrode of the cell and the external terminal are connected by the cell lead, the step of welding the cell lead to the pad during the manufacturing thereof, and the cell lead being bent and accommodated A step of accommodating the cells in the container is required, which complicates the manufacturing process.
  • the present invention is to solve the above problems, and an electric storage device capable of simplifying the manufacturing process by a configuration that does not require a lead wire for connecting between an internal electrode and an external electrode of an electric storage element, Another object is to provide an electricity storage pack in which such an electricity storage device is housed in a housing container.
  • the electricity storage device of the present invention is A first substrate, A second substrate, An electric storage element sandwiched between the first substrate and the second substrate, which is a surface extending along the length direction and the width direction, and which is opposed to the first main surface and the second main surface in the thickness direction.
  • An electric storage element having two internal electrodes; A first external electrode provided on a first main surface of the two main surfaces of the first substrate that does not face the power storage element; A second external electrode provided on the first main surface of the first substrate; A first end surface electrode provided on the first end surface and electrically connecting the first inner electrode and the first outer electrode; A second end surface electrode that is provided on the second end surface and electrically connects the second inner electrode and the second outer electrode; It is characterized by including.
  • the resin layer may be further provided on the first side surface side and the second side surface side of the power storage element.
  • An electricity storage device is A first substrate, A second substrate, An electric storage element sandwiched between the first substrate and the second substrate, which is a surface extending along the length direction and the width direction, and which is opposed to the first main surface and the second main surface in the thickness direction.
  • a first storage element having two internal electrodes; An electric storage element sandwiched between the first substrate and the second substrate, which is a surface extending along the length direction and the width direction, and which is opposed to the first main surface and the second main surface in the thickness direction.
  • a first internal electrode having a first end surface and a second end surface facing each other in the length direction, the first internal electrode being drawn to the first end surface, and the second internal electrode being drawn to the second end surface.
  • An internal electrode of, and a second power storage element that is arranged such that the second side surface faces the first side surface of the first power storage element.
  • a first external electrode provided on a first main surface of both main surfaces of the first substrate, which does not face the first power storage element and the second power storage element;
  • a second external electrode provided on the first main surface of the first substrate;
  • a first end surface electrode that is provided on the first end surface of the first power storage element and electrically connects the first inner electrode and the first outer electrode of the first power storage element;
  • Of the first internal electrode and the second internal electrode of the second storage element which are provided on one end surface of the first end surface and the second end surface of the second storage element.
  • a second end surface electrode for electrically connecting one of the inner electrodes and the second outer electrode;
  • the second end surface of the first power storage element and the other end surface of the first end surface and the second end surface of the second power storage element are integrally provided, and the first power storage element is provided.
  • a third end face electrode electrically connecting the second internal electrode of the element and the other internal electrode of the first internal electrode and the second internal electrode of the second storage element; , It is characterized by including.
  • the material of the second substrate may be the same as the material of the first substrate.
  • the electricity storage pack according to the present invention is One of the above-described power storage device, A container for housing the electricity storage device, Equipped with The container is A first internal terminal provided on an inner bottom surface that is a surface facing the electricity storage device and electrically connected to the first end surface electrode; A second internal terminal provided on the inner bottom surface and electrically connected to the second end surface electrode; A first external terminal provided on an outer bottom surface that is a surface opposite to the inner bottom surface and electrically connected to the first inner terminal; A second external terminal provided on the outer bottom surface and electrically connected to the second internal terminal; It is characterized by including.
  • the storage container has a bottomed tubular shape having an opening at one end, A metal lid for sealing the opening of the storage container may be further provided.
  • the electricity storage device of the present invention electrically connects the first inner electrode and the first outer electrode by means of the first end face electrode provided on the first end face of the electricity storage element, and is provided on the second end face.
  • the second inner surface electrode and the second outer electrode are electrically connected by the second end surface electrode thus formed. Therefore, a lead wire such as a cell lead for connecting the internal electrode and the external electrode of the power storage element is unnecessary, and the manufacturing process can be simplified.
  • an electricity storage device wherein a first end face electrode provided on a first end face of a first electricity storage element allows a first inner electrode and a first outer electrode of the first electricity storage element to be provided.
  • An electrode is electrically connected, and the second end surface electrode provided on one end surface of the second power storage element electrically connects the one inner electrode and the second outer electrode of the second power storage element.
  • the third end-face electrode connected to the second end face of the first electricity storage device and the other end face of the second electricity storage device is integrated with the second inner electrode of the first electricity storage device.
  • And is electrically connected to the other internal electrode of the second power storage element.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of the electric double layer capacitor shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III of the electric double layer capacitor shown in FIG. 1.
  • FIG. 6 is a diagram for explaining the method for manufacturing the electric double layer capacitor according to the first embodiment, and a diagram showing a step of sandwiching the base material between the first substrate and the second substrate.
  • FIG. 6 is a diagram for explaining the method for manufacturing the electric double layer capacitor according to the first embodiment, showing a step of cutting the base material sandwiched between the first substrate and the second substrate into individual pieces. Is.
  • FIG. 6 is a diagram for explaining the method for manufacturing the electric double layer capacitor according to the first embodiment, showing a step of cutting the base material sandwiched between the first substrate and the second substrate into individual pieces. Is.
  • FIG. 1 is a schematic cross-sectional view taken along line II-II of the electric double layer capacitor shown in FIG. 1.
  • FIG. 3 is
  • FIG. 6 is a diagram for explaining the method for manufacturing the electric double layer capacitor according to the first embodiment, and is a perspective view showing a chip that has been cut into individual pieces.
  • FIG. 7 is a diagram for explaining the manufacturing method for the electric double layer capacitor according to the first embodiment, and is a diagram showing a state in which first end face electrodes and second end face electrodes are formed. It is a typical sectional view showing the composition of the electric double layer capacitor in a 2nd embodiment.
  • FIG. 6 is a diagram for explaining the method for manufacturing the electric double layer capacitor according to the second embodiment, in which a plurality of strip-shaped base materials for forming the electric double layer capacitor element are provided on the second main substrate of the first substrate. It is a figure which shows the state arrange
  • FIG. 11 is a schematic cross-sectional view of the electric double layer capacitor shown in FIG. 10, taken along line XI-XI. It is a typical sectional view showing composition of an electric double layer capacitor in a 4th embodiment. It is a typical perspective view which shows the structure of the electric double layer capacitor pack in 5th Embodiment.
  • FIG. 14 is a schematic sectional view taken along line XIV-XIV of the electric double layer capacitor pack shown in FIG. 13. It is a typical sectional view showing composition of an electric double layer capacitor pack in a 6th embodiment.
  • an electric double layer capacitor will be described as an example of the electricity storage device of the present invention.
  • the electricity storage device is not limited to the electric double layer capacitor, and may be various electrochemical electricity storage devices such as a lithium ion capacitor, a redox capacitor, and a lithium ion battery.
  • FIG. 1 is a schematic perspective view showing the configuration of the electric double layer capacitor 100 according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II of electric double layer capacitor 100 shown in FIG.
  • FIG. 3 is a schematic sectional view taken along line III-III of electric double layer capacitor 100 shown in FIG. 1 to 3, L represents the length direction, W the width direction, and T the thickness direction (the stacking direction of the internal electrodes).
  • the electric double layer capacitor 100 includes a first substrate 1, a second substrate 2, an electric double layer capacitor element 10, a first end face electrode 3, and a second end face electrode 4. , A first external electrode 5 and a second external electrode 6.
  • the electric double layer capacitor element 10 corresponds to the “electric storage element” of the present invention.
  • the electric double layer capacitor 100 corresponds to the “electric storage device” of the present invention.
  • the first substrate 1 is made of, for example, glass epoxy resin.
  • the material of the first substrate 1 is not limited to the glass epoxy resin, and another resin may be used or a material other than the resin may be used.
  • the second substrate 2 is made of, for example, glass epoxy resin.
  • the material of the first substrate 1 is not limited to the glass epoxy resin, and another resin may be used or a material other than the resin may be used.
  • the material forming the second substrate 2 preferably has a small difference in linear expansion coefficient from the material forming the first substrate 1, and more preferably the same as the material forming the first substrate 1.
  • First external electrode 5 and second external electrode 6 are provided on first main surface 1a of first substrate 1. More specifically, of the first main surface 1a of the first substrate 1, the first external electrode 5 is provided on the first end surface 10a side of the electric double layer capacitor element 10 described later, and the second external electrode 5 is provided. The second external electrode 6 is provided on the end surface 10b side.
  • the second main surface 1b of the first substrate 1 faces the electric double layer capacitor element 10. That is, the first main surface 1 a of the first substrate 1 is a surface not facing the electric double layer capacitor element 10.
  • an electric double layer capacitor element 10 which is a storage element is provided. That is, the electric double layer capacitor element 10 is sandwiched between the first substrate 1 and the second substrate 2.
  • the electric double layer capacitor element 10 has a substantially rectangular parallelepiped shape. That is, the electric double layer capacitor element 10 includes the first end surface 10a and the second end surface 10b facing in the length direction L, and the first main surface 10c and the second main surface 10d facing in the thickness direction T. , And a first side surface 10e and a second side surface 10f facing each other in the width direction W.
  • the first end surface 10a and the second end surface 10b extend along the width direction W and the thickness direction T.
  • the first main surface 10c and the second main surface 10d extend along the length direction L and the width direction W.
  • the first side surface 10e and the second side surface 10f extend along the length direction L and the thickness direction T.
  • the “cuboid” also includes chamfered corners and ridges and rounded shapes.
  • the corner portion is a portion where the three surfaces of the electric double layer capacitor element 10 intersect, and the ridge portion is a portion where the two surfaces of the electric double layer capacitor element 10 intersect.
  • the electric double layer capacitor element 10 has a structure in which a plurality of first internal electrodes 11 and second internal electrodes 12 are alternately laminated with an electrolyte layer 13 in between. That is, the plurality of first inner electrodes 11 and the plurality of second inner electrodes 12 are alternately laminated with the electrolyte layer 13 in between.
  • the first internal electrode 11 has a first current collector 11a and first active material layers 11b provided on both surfaces of the first current collector 11a. However, when the first internal electrode 11 is located on the outermost side in the stacking direction, the first current collector 11a of the first internal electrode 11 located on the outermost layer has the first active material on only one surface. A layer 11b is provided.
  • the first current collector 11a is, for example, a metal foil made of a metal such as aluminum or copper.
  • the “metal” includes an alloy.
  • the first active material layer 11b contains an active material.
  • the first active material layer 11b is a polarizable electrode and preferably contains, for example, a carbon material such as activated carbon as an active material.
  • the first internal electrode 11 is drawn to the first end surface 10a of the electric double layer capacitor element 10, while being drawn to the second end surface 10b, the first side surface 10e, and the second side surface 10f. Absent.
  • the first current collector 11a of the first internal electrode 11 is drawn out to the first end surface 10a of the electric double layer capacitor element 10.
  • the second internal electrode 12 has a second current collector 12a and second active material layers 12b provided on both surfaces of the second current collector 12a. However, when the second internal electrode 12 is located on the outermost side in the stacking direction, the second current collector 12a of the second internal electrode 12 located on the outermost layer has the second active material only on one side. A layer 12b is provided.
  • the second current collector 12a is, for example, a metal foil made of a metal such as aluminum or copper.
  • the second active material layer 12b contains an active material.
  • the second active material layer 12b is a polarizable electrode and preferably contains, for example, a carbon material such as activated carbon as an active material.
  • the second inner electrode 12 is drawn to the second end surface 10b of the electric double layer capacitor element 10, while being drawn to the first end surface 10a, the first side surface 10e, and the second side surface 10f. Absent.
  • the second current collector 12a of the second internal electrode 12 is drawn out to the second end face 10b of the electric double layer capacitor element 10.
  • An electrolyte layer 13 is provided between the first active material layer 11b of the first internal electrode 11 and the second active material layer 12b of the second internal electrode 12.
  • the electrolyte layer 13 is a layer containing an electrolyte.
  • the electrolyte layer 13 may be made of a gel electrolyte which is a gel electrolyte, or may be made of a porous body such as a separator impregnated with an electrolytic solution.
  • Specific examples of the polymer gel material constituting the gel electrolyte include polyvinylidene fluoride and polyethylene oxide.
  • electrolyte examples include ionic liquids such as EMITFSI (1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide) and EMIBF4 (1-ethyl-3-methylimidazolium borofluoride), or , A solution obtained by dissolving the ionic liquid in an organic solvent such as propylene carbonate or acetonitrile. Only one kind of these electrolytes may be used, or a plurality of kinds may be mixed and used.
  • ionic liquids such as EMITFSI (1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide) and EMIBF4 (1-ethyl-3-methylimidazolium borofluoride), or , A solution obtained by dissolving the ionic liquid in an organic solvent such as propylene carbonate or acetonitrile. Only one kind of these electrolytes may be used, or a plurality
  • An insulating layer 14 is provided between them.
  • the insulating layer 14 is made of, for example, urethane resin, acrylic resin, epoxy resin, polyimide resin, silicone resin, or the like.
  • the first end surface electrode 3 is provided on the first end surface 10 a of the electric double layer capacitor element 10, and electrically connects the plurality of first inner electrodes 11 and the first outer electrode 5.
  • the first end surface electrode 3 includes the first end surface 10a, the first main surface 10c side, the second main surface 10d side, the first side surface 10e side, and the second side surface 10f. It is provided so as to wrap around to the side.
  • the second end face electrode 4 is provided on the second end face 10b of the electric double layer capacitor element 10, and electrically connects the plurality of second inner electrodes 12 and the second outer electrode 6.
  • the second end surface electrode 4 includes the second end surface 10b, the first main surface 10c side, the second main surface 10d side, the first side surface 10e side, and the second side surface 10f. It is provided so as to wrap around to the side.
  • the first end surface electrode 3 and the second end surface electrode 4 are made of aluminum, for example.
  • the 1st end surface electrode 3 and the 2nd end surface electrode 4 can be made into the sprayed film formed by aluminum spraying.
  • a base material for forming a plurality of electric double layer capacitor elements 10 is manufactured.
  • the base material can be produced by a known method.
  • the manufactured base material 40 was sandwiched between the first substrate 1 and the second substrate 2 (see FIG. 4), and the first external electrode 5 and the second external electrode 6 were formed at predetermined positions. After that, it is cut (see FIG. 5). However, the formation of the first external electrode 5 and the second external electrode 6 may be performed after the individual pieces are separated in the cutting step described later.
  • the electric double layer capacitor 100 is manufactured by the process described above.
  • the electric double layer capacitor 100 includes the first inner electrode 11 and the first outer electrode by the first end surface electrode 3 provided on the first end surface 10a side of the electric double layer capacitor element 10. 5 is electrically connected to each other, and the second inner electrode 12 and the second outer electrode 6 are electrically connected by the second end surface electrode 4 provided on the second end surface 10b side. ing. Therefore, a lead wire such as a cell lead for connecting the internal electrode and the external electrode is unnecessary, and the manufacturing process can be simplified. ..
  • FIG. 8 is a schematic cross-sectional view showing the configuration of the electric double layer capacitor 100A in the second embodiment. Similar to FIG. 3, FIG. 8 shows a schematic cross section when the electric double layer capacitor 100A is cut along a plane orthogonal to the length direction L.
  • the electric double layer capacitor 100A according to the second embodiment is similar to the electric double layer capacitor 100 according to the first embodiment except that the first side surface 10e side and the second side surface 10f side of the electric double layer capacitor element 10 are provided. And further includes a resin layer 30 provided on the. Specifically, resin layer 30 is provided so as to cover insulating layer 14 provided on each of first side surface 10e and second side surface 10f of electric double layer capacitor element 10.
  • the resin layer 30 is made of, for example, an epoxy resin.
  • the resin forming the resin layer 30 is not limited to the epoxy resin.
  • the electric double layer capacitor 100A of the second embodiment since the resin layer 30 is provided on the first side face 10e side and the second side face 10f side of the electric double layer capacitor element 10, the electric double layer capacitor 100A is provided.
  • the strength of 100 A is further increased, and the penetration of water and the like into the inside can be suppressed more effectively.
  • a plurality of strip-shaped base materials 90 are produced by cutting the base material into strips, and the produced plurality of strip-shaped base materials 90 are predetermined. Are arranged on the second main surface 1b of the first substrate 1 at intervals (see FIG. 9).
  • the subsequent manufacturing process is the same as the manufacturing process of the electric double layer capacitor 100 according to the first embodiment.
  • FIG. 10 is a schematic perspective view showing the configuration of the electric double layer capacitor 100B according to the third embodiment. Further, FIG. 11 is a schematic cross-sectional view taken along line XI-XI of electric double layer capacitor 100B shown in FIG.
  • the electric double layer capacitor 100B includes a first substrate 1, a second substrate 2, a first electric double layer capacitor element 10A, a second electric double layer capacitor element 10B, and a first electric double layer capacitor element 10B.
  • the first end face electrode 31, the second end face electrode 32, the third end face electrode 33, the first outer electrode 5, and the second outer electrode 6 are provided.
  • the configurations of the first electric double layer capacitor element 10A and the second electric double layer capacitor element 10B are the same as the configurations of the electric double layer capacitor element 10 described in the first embodiment.
  • the configurations of the first electric double layer capacitor element 10A and the second electric double layer capacitor element 10B do not have to be completely the same.
  • the first electric double layer capacitor element 10A and the second electric double layer capacitor element 10B are opposed to each other in the length direction and the width direction.
  • the first side face has a second side face and a first end face and a second end face which are faces extending in the width direction and the thickness direction and which face each other in the length direction, and which are pulled out to the first end face. It suffices to have a configuration including the internal electrode of 1) and the second internal electrode drawn to the second end face.
  • the first electric double layer capacitor element 10A and the second electric double layer capacitor element 10B are sandwiched between the first substrate 1 and the second substrate 2, and the second electric double layer capacitor element 10B.
  • the second side surface of the first electric double layer capacitor element 10A faces the first side surface of the first electric double layer capacitor element 10A, and the end surfaces of the electric double layer capacitor element 10A are substantially aligned with each other.
  • the first end surface electrode 31 is provided on the first end surface of the first electric double layer capacitor element 10A, and the first inner electrode and the first outer electrode 5 of the first electric double layer capacitor element 10A. And are electrically connected.
  • the second end face electrode 32 is provided on one end face of the second electric double layer capacitor element 10B and connects one inner electrode of the second electric double layer capacitor element 10B and the second outer electrode 6. Connect electrically.
  • the one end surface of the second electric double layer capacitor element 10B is either one of the first end surface and the second end surface of the second electric double layer capacitor element 10B, and This is an end face that is located at substantially the same position in the length direction L as the first end face of the electric double layer capacitor element 10A.
  • the one internal electrode of the second electric double layer capacitor element 10B is an internal electrode of either the first internal electrode or the second internal electrode of the second electric double layer capacitor element 10B. is there.
  • the third end face electrode 33 is integrally provided on the second end face of the first electric double layer capacitor element 10A and the other end face of the second electric double layer capacitor element 10B, and has a first electric capacitance.
  • the second internal electrode of multilayer capacitor element 10A and the other internal electrode of second electric double layer capacitor element 10B are electrically connected.
  • the first end surface electrode 31, the second end surface electrode 32, and the third end surface electrode 33 are made of aluminum, for example.
  • the 1st end surface electrode 31, the 2nd end surface electrode 32, and the 3rd end surface electrode 33 can be made into the sprayed film formed by aluminum spraying.
  • first external electrode 5 and the second external electrode 6 are provided on the first main surface 1 a of the first substrate 1.
  • the first external electrode 5 is electrically connected to the first end surface electrode 31, but is not electrically connected to the second end surface electrode 32 and the third end surface electrode 33.
  • the second external electrode 6 is electrically connected to the second end surface electrode 32, but is not electrically connected to the first end surface electrode 31 and the third end surface electrode 33.
  • First main surface 1a is a surface that does not face first electric double layer capacitor element 10A and second electric double layer capacitor element 10B.
  • the electric double layer capacitor 100B according to the third embodiment has a structure in which the first electric double layer capacitor element 10A and the second electric double layer capacitor element 10B are connected in series.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the electric double layer capacitor 100C in the fourth embodiment.
  • the electric double layer capacitor 100C according to the fourth embodiment is different from the electric double layer capacitor 100 according to the first embodiment in the configuration of the first connection electrode 41, the first via conductor 42, and the second connection electrode 43. , And a second via conductor 44.
  • the first connection electrode 41 is provided inside the first substrate 1 and on the first end face 10a side of the electric double layer capacitor element 10. The first connection electrode 41 is exposed on the end face of the first substrate 1 and is electrically connected to the first end face electrode 3.
  • the first via conductor 42 is provided inside the first substrate 1 and electrically connects the first connection electrode 41 and the first external electrode 5.
  • the first external electrode 5 is electrically connected to the first end surface electrode 3 at a position in contact with the first end surface electrode 3, and the first via conductor 42 and the first connection are formed. It is electrically connected to the first end face electrode 3 via the electrode 41.
  • the second connection electrode 43 is provided inside the first substrate 1 and on the second end face 10b side of the electric double layer capacitor element 10. The second connection electrode 43 is exposed on the end surface of the first substrate 1 and is electrically connected to the second end surface electrode 4.
  • the second via conductor 44 is provided inside the first substrate 1 and electrically connects the second connection electrode 43 and the second external electrode 6.
  • the second external electrode 6 is electrically connected to the second end surface electrode 4 at the position in contact with the second end surface electrode 4, and the second via conductor 44 and the second connection are formed. It is electrically connected to the second end face electrode 4 via the electrode 43.
  • the electric double layer capacitor 100C of the fourth embodiment between the first end face electrode 3 and the first outer electrode 5, and between the second end face electrode 4 and the second outer electrode 6.
  • the electrical connectivity of can be further improved.
  • FIG. 13 is a schematic perspective view showing the configuration of the electric double layer capacitor pack 500 according to the fifth embodiment.
  • FIG. 14 is a schematic sectional view taken along line XIV-XIV of electric double layer capacitor pack 500 shown in FIG.
  • the electric double layer capacitor pack 500 corresponds to the “electric storage pack” of the present invention.
  • the electric double layer capacitor pack 500 according to the fifth embodiment includes the electric double layer capacitor 100 according to the first embodiment, a container 50, a metallic lid 60, and a seal ring 65.
  • the storage container 50 is a bottomed cylindrical housing having an opening at one end, a bottom surface facing the opening, and a side wall extending substantially vertically from the bottom, and stores the electric double layer capacitor 100.
  • the storage container 50 is made of an insulating material, and in the present embodiment, is made of, for example, a ceramic material.
  • the storage container 50 includes four sidewalls, a first sidewall 50c, a second sidewall 50d, a third sidewall, and a fourth sidewall.
  • the first side wall 50c is a side wall of the four side walls of the container 50 that faces the first end surface electrode 3 of the electric double layer capacitor 100
  • the second side wall 50d is the side wall of the electric double layer capacitor 100.
  • 2 is a side wall facing the end surface electrode 4.
  • a first internal terminal 51 and a second internal terminal 52 are provided on the inner bottom surface 50a, which is the bottom surface of the storage container 50 and is the surface on the opening side.
  • the inner bottom surface 50a is a surface of the electric double layer capacitor 100 facing the first substrate 1.
  • one end of the first internal terminal 51 is in contact with the first side wall 50c of the storage container 50, and one end of the second internal terminal 52 is connected to the second side wall 50d of the storage container 50. Abutting.
  • a first external terminal 53 and a second external terminal 54 are provided on the outer bottom surface 50b, which is the bottom surface of the container 50 and the surface opposite to the inner bottom surface 50a.
  • the first external terminal 53 is electrically connected to the first internal terminal 51.
  • the first external terminal 53 is connected to the bottom surface side of the first internal terminal 51, and is drawn to the side surface of the first side wall 50c of the storage container 50 and wraps around the outer bottom surface 50b as it is. It is installed in.
  • the second external terminal 54 is electrically connected to the second internal terminal 52.
  • the second external terminal 54 is connected to the bottom surface side of the second internal terminal 52, and is drawn to the side surface of the second side wall 50d of the storage container 50 and wraps around the outer bottom surface 50b as it is. It is installed in.
  • the lid 60 is provided to seal the opening above the storage container 50.
  • a seal ring 65 is provided between the lid 60 and the storage container 50, and the lid 60 and the seal ring 65 are welded to be sealed. As a result, it is possible to prevent moisture or the like from entering from the interface between the lid 60 and the storage container 50.
  • the lid 60 and the seal ring 65 are made of Kovar, for example, and have Ni plating formed on their surfaces. Ni on the surface of the lid 60 and Ni on the surface of the seal ring 65 are joined by welding. Welding can be performed by, for example, seam welding or laser welding.
  • the first external electrode 5 of the electric double layer capacitor 100 is fixed and electrically connected to the first internal terminal 51 of the storage container 50 via the conductive adhesive 57. That is, the first external electrode 5 of the electric double layer capacitor 100 is electrically connected to the first external terminal 53 via the first internal terminal 51.
  • the second external electrode 6 of the electric double layer capacitor 100 is fixed and electrically connected to the second internal terminal 52 of the container 50 via the conductive adhesive 57. That is, the second outer electrode 6 of the second outer electrode 6 of the electric double layer capacitor 100 is electrically connected to the second outer terminal 54 via the second inner terminal 52.
  • the electric double layer capacitor pack 500 according to the fifth embodiment has a structure in which the electric double layer capacitor 100 according to the first embodiment is housed in the housing container 50, so that moisture and the like can be effectively prevented from entering the inside. It can be suppressed and reliability can be improved.
  • the electric double layer capacitor 100 according to the first embodiment is housed in the container
  • the electric double layer capacitor 100A according to the second embodiment and the electric double layer capacitor according to the third embodiment are described.
  • 100B and the electric double layer capacitor 100C according to the fourth embodiment may be housed in respective housings.
  • FIG. 15 is a schematic cross-sectional view showing the configuration of the electric double layer capacitor pack 500A in the sixth embodiment.
  • the insulating resin 70 is filled in the space between the electric double layer capacitor 100 and the container 50 and the lid 60.
  • the insulating resin 70 can be formed by the following method. That is, after the electric double layer capacitor 100 is housed in the container 50, an insulating liquid resin is poured so as to cover the electric double layer capacitor 100.
  • the liquid resin for example, an epoxy resin or a silicone resin can be used.
  • the poured liquid resin enters the space between the container 50 and the electric double layer capacitor 100. Further, the upper surface of the electric double layer capacitor 100 is covered with the liquid resin. After that, the liquid resin is cured by heating. As a result, the insulating resin 70 is formed.
  • the liquid resin may be cured by leaving it for a predetermined time without heating.
  • the electric double layer capacitor pack 500A in the sixth embodiment since the electric double layer capacitor 100 is covered with the insulating resin 70, if the electrolytic solution leaks from the electric double layer capacitor 100 for some reason. However, it is possible to prevent the electrolytic solution from adhering to the first internal terminal 51 and the second internal terminal 52 of the container 50. As a result, it is possible to suppress corrosion caused by the electrolytic solution adhering to the first internal terminal 51 and the second internal terminal 52, and it is possible to improve the reliability of the electric double layer capacitor pack 500A.
  • the electric double layer capacitor 100 and the container 50 can be more firmly fixed by the insulating resin 70, the electric double layer capacitor 100 is housed when the electric double layer capacitor pack 500A is impacted. It is possible to suppress disconnection due to detachment from the container 50.
  • the insulating resin 70 is present between the electric double layer capacitor 100 and the lid 60 made of metal, between the electric double layer capacitor 100 and the lid 60, for example, between the first end surface electrode 3 and the lid 60. It is possible to prevent a short circuit between the second end surface electrode 4 and the lid 60.
  • the electric double layer capacitor 100B in the third embodiment has a configuration in which two electric double layer capacitor elements 10A and 10B are connected in series, but may have a configuration in which three or more electric double layer capacitor elements are connected in series. Good. Further, it may have a configuration in which two or more electric double layer capacitor elements are connected in parallel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

蓄電デバイス(電気二重層キャパシタ100)は、第1の基板1と、第2の基板3と、第1の基板と前記第2の基板とに挟まれた蓄電素子であって、第1の主面および第2の主面と、第1の側面および第2の側面と、第1の端面および第2の端面とを有し、第1の端面に引き出された第1の内部電極11と、第2の端面に引き出された第2の内部電極12とを備える蓄電素子(電気二重層キャパシタ素子10)と、第1の基板の第1の主面に設けられた第1の外部電極5および第2の外部電極6と、第1の端面に設けられ、第1の内部電極と第1の外部電極とを電気的に接続する第1の端面電極3と、第2の端面に設けられ、第2の内部電極と第2の外部電極とを電気的に接続する第2の端面電極4とを備える。

Description

蓄電デバイスおよび蓄電パック
 本発明は、蓄電デバイス、および、蓄電デバイスを収容容器に収容した蓄電パックに関する。
 従来、電気二重層キャパシタや二次電池などの蓄電デバイスが種々知られている。
 そのような蓄電デバイスの1つとして、特許文献1には、蓄電素子であるセルを収容容器に収容した構造の蓄電デバイスが記載されている。この蓄電デバイスでは、セルの正極および負極のそれぞれと接続されたセルリードが、収容容器の内側底面に配置されたパッドに溶接されている。パッドは、スルーホールを介して、収容容器の外側底面に配置された外部端子と電気的に接続されている。
特開2013-30750号公報
 しかしながら、特許文献1に記載の蓄電デバイスは、セルの電極と外部端子との間をセルリードで接続する構成であるため、その製造時に、セルリードをパッドに溶接する工程、および、セルリードを折り曲げて収容容器にセルを収容する工程が必要となり、製造工程が煩雑となる。
 本発明は、上記課題を解決するものであり、蓄電素子の内部電極と外部電極との間を接続するためのリード線を必要としない構成によって、製造工程を簡易化することができる蓄電デバイス、および、そのような蓄電デバイスを収容容器に収容した蓄電パックを提供することを目的とする。
 本発明の蓄電デバイスは、
 第1の基板と、
 第2の基板と、
 前記第1の基板と前記第2の基板とに挟まれた蓄電素子であって、長さ方向および幅方向に沿って延びる面であり、厚み方向に対向する第1の主面および第2の主面と、前記長さ方向および前記厚み方向に沿って延びる面であり、前記幅方向に対向する第1の側面および第2の側面と、前記幅方向および前記厚み方向に沿って延びる面であり、前記長さ方向に対向する第1の端面および第2の端面と、を有し、前記第1の端面に引き出された第1の内部電極と、前記第2の端面に引き出された第2の内部電極とを備える蓄電素子と、
 前記第1の基板の両主面のうち、前記蓄電素子とは対向していない第1の主面に設けられた第1の外部電極と、
 前記第1の基板の前記第1の主面に設けられた第2の外部電極と、
 前記第1の端面に設けられ、前記第1の内部電極と前記第1の外部電極とを電気的に接続する第1の端面電極と、
 前記第2の端面に設けられ、前記第2の内部電極と前記第2の外部電極とを電気的に接続する第2の端面電極と、
を備えることを特徴とする。
 前記蓄電素子の前記第1の側面側および前記第2の側面側に設けられた樹脂層をさらに備えていてもよい。
 本発明の別の態様における蓄電デバイスは、
 第1の基板と、
 第2の基板と、
 前記第1の基板と前記第2の基板とに挟まれた蓄電素子であって、長さ方向および幅方向に沿って延びる面であり、厚み方向に対向する第1の主面および第2の主面と、前記長さ方向および前記厚み方向に沿って延びる面であり、前記幅方向に対向する第1の側面および第2の側面と、前記幅方向および前記厚み方向に沿って延びる面であり、前記長さ方向に対向する第1の端面および第2の端面と、を有し、前記第1の端面に引き出された第1の内部電極と、前記第2の端面に引き出された第2の内部電極とを備える第1の蓄電素子と、
 前記第1の基板と前記第2の基板とに挟まれた蓄電素子であって、長さ方向および幅方向に沿って延びる面であり、厚み方向に対向する第1の主面および第2の主面と、前記長さ方向および前記厚み方向に沿って延びる面であり、前記幅方向に対向する第1の側面および第2の側面と、前記幅方向および前記厚み方向に沿って延びる面であり、前記長さ方向に対向する第1の端面および第2の端面とを有し、前記第1の端面に引き出された第1の内部電極と、前記第2の端面に引き出された第2の内部電極とを備え、前記第2の側面が前記第1の蓄電素子の前記第1の側面と互いに対向するように配置された第2の蓄電素子と、
 前記第1の基板の両主面のうち、前記第1の蓄電素子および前記第2の蓄電素子とは対向していない第1の主面に設けられた第1の外部電極と、
 前記第1の基板の前記第1の主面に設けられた第2の外部電極と、
 前記第1の蓄電素子の前記第1の端面に設けられ、前記第1の蓄電素子の前記第1の内部電極と前記第1の外部電極とを電気的に接続する第1の端面電極と、
 前記第2の蓄電素子の前記第1の端面および前記第2の端面のうちの一方の端面に設けられ、前記第2の蓄電素子の前記第1の内部電極および前記第2の内部電極のうちの一方の内部電極と前記第2の外部電極とを電気的に接続する第2の端面電極と、
 前記第1の蓄電素子の前記第2の端面と前記第2の蓄電素子の前記第1の端面および前記第2の端面のうちの他方の端面とに一体的に設けられ、前記第1の蓄電素子の前記第2の内部電極と、前記第2の蓄電素子の前記第1の内部電極および前記第2の内部電極のうちの他方の内部電極とを電気的に接続する第3の端面電極と、
を備えることを特徴とする。
 前記第2の基板の材料は、前記第1の基板の材料と同じであってもよい。
 本発明による蓄電パックは、
 上述したいずれかの蓄電デバイスと、
 前記蓄電デバイスを収容する収容容器と、
を備え、
 前記収容容器は、
 前記蓄電デバイスと対向する面である内側底面に設けられ、前記第1の端面電極と電気的に接続されている第1の内部端子と、
 前記内側底面に設けられ、前記第2の端面電極と電気的に接続されている第2の内部端子と、
 前記内側底面と反対側の面である外側底面に設けられ、前記第1の内部端子と電気的に接続されている第1の外部端子と、
 前記外側底面に設けられ、前記第2の内部端子と電気的に接続されている第2の外部端子と、
を備えることを特徴とする。
 前記収容容器は、一端に開口部を有する有底筒状の形状を有しており、
 前記収容容器の前記開口部を封止するための金属製の蓋をさらに備えていてもよい。
 本発明の蓄電デバイスは、蓄電素子の第1の端面に設けられた第1の端面電極によって、第1の内部電極と第1の外部電極とを電気的に接続し、第2の端面に設けられた第2の端面電極によって、第2の内部電極と第2の外部電極とを電気的に接続した構成とされている。したがって、蓄電素子の内部電極と外部電極とを接続するためのセルリードのようなリード線が不要であり、製造工程を簡易化することができる。
 また、本発明の別の態様による蓄電デバイスは、第1の蓄電素子の第1の端面に設けられた第1の端面電極によって、第1の蓄電素子の第1の内部電極と第1の外部電極とを電気的に接続し、第2の蓄電素子の一方の端面に設けられた第2の端面電極によって、第2の蓄電素子の一方の内部電極と第2の外部電極とを電気的に接続し、第1の蓄電素子の第2の端面と第2の蓄電素子の他方の端面とに一体的に設けられた第3の端面電極によって、第1の蓄電素子の第2の内部電極と、第2の蓄電素子の他方の内部電極とを電気的に接続した構成とされている。このように、2つの蓄電素子を直列に接続した構成であっても、蓄電素子の内部電極と外部電極とを接続するためのセルリードのようなリード線が不要であり、製造工程を簡易化することができる。
第1の実施形態における電気二重層キャパシタの構成を示す模式的斜視図である。 図1に示す電気二重層キャパシタのII-II線に沿った模式的断面図である。 図1に示す電気二重層キャパシタのIII-III線に沿った模式的断面図である。 第1の実施形態における電気二重層キャパシタの製造方法を説明するための図であって、母材を第1の基板と第2の基板とで挟み込む工程を示す図である。 第1の実施形態における電気二重層キャパシタの製造方法を説明するための図であって、第1の基板と第2の基板とで挟み込んだ母材を切断して個片化する工程を示す図である。 第1の実施形態における電気二重層キャパシタの製造方法を説明するための図であって、切断により個片化されたチップを示す斜視図である。 第1の実施形態における電気二重層キャパシタの製造方法を説明するための図であって、第1の端面電極および第2の端面電極を形成した状態を示す図である。 第2の実施形態における電気二重層キャパシタの構成を示す模式的断面図である。 第2の実施形態における電気二重層キャパシタの製造方法を説明するための図であって、電気二重層キャパシタ素子を構成するための複数の短冊状母材を、第1の基板の第2の主面上に配置した状態を示す図である。 第3の実施形態における電気二重層キャパシタの構成を示す模式的斜視図である。 図10に示す電気二重層キャパシタのXI-XI線に沿った模式的断面図である。 第4の実施形態における電気二重層キャパシタの構成を示す模式的断面図である。 第5の実施形態における電気二重層キャパシタパックの構成を示す模式的斜視図である。 図13に示す電気二重層キャパシタパックのXIV-XIV線に沿った模式的断面図である。 第6の実施形態における電気二重層キャパシタパックの構成を示す模式的断面図である。
 以下に本発明の実施形態を示して、本発明の特徴とするところを具体的に説明する。以下の説明では、本発明の蓄電デバイスの一例として、電気二重層キャパシタを例に挙げて説明する。ただし、蓄電デバイスが電気二重層キャパシタに限定されることはなく、リチウムイオンキャパシタやレドックスキャパシタ、リチウムイオン電池などの各種電気化学蓄電デバイスなどであってもよい。
 <第1の実施形態>
 図1は、第1の実施形態における電気二重層キャパシタ100の構成を示す模式的斜視図である。図2は、図1に示す電気二重層キャパシタ100のII-II線に沿った模式的断面図である。図3は、図1に示す電気二重層キャパシタ100のIII-III線に沿った模式的断面図である。図1~図3において、Lは長さ方向、Wは幅方向、Tは厚み方向(内部電極の積層方向)をそれぞれ示す。
 第1の実施形態における電気二重層キャパシタ100は、第1の基板1と、第2の基板2と、電気二重層キャパシタ素子10と、第1の端面電極3と、第2の端面電極4と、第1の外部電極5と、第2の外部電極6とを備える。
 本実施形態では、電気二重層キャパシタ素子10が、本発明の「蓄電素子」に相当する。また、電気二重層キャパシタ100が、本発明の「蓄電デバイス」に相当する。
 第1の基板1は、例えばガラスエポキシ樹脂からなる。ただし、第1の基板1の材料がガラスエポキシ樹脂に限定されることはなく、別の樹脂を用いてもよいし、樹脂以外の材料を用いてもよい。
 第2の基板2は、例えばガラスエポキシ樹脂からなる。ただし、第1の基板1の材料がガラスエポキシ樹脂に限定されることはなく、別の樹脂を用いてもよいし、樹脂以外の材料を用いてもよい。第2の基板2を構成する材料は、第1の基板1を構成する材料と線膨張係数の差が小さいことが好ましく、第1の基板1を構成する材料と同じであることがより好ましい。
 第1の基板1の第1の主面1aには、第1の外部電極5と第2の外部電極6が設けられている。より具体的には、第1の基板1の第1の主面1aのうち、後述する電気二重層キャパシタ素子10の第1の端面10a側に第1の外部電極5が設けられ、第2の端面10b側に第2の外部電極6が設けられている。
 第1の基板1の第2の主面1bは、電気二重層キャパシタ素子10と対向している。すなわち、第1の基板1の第1の主面1aは、電気二重層キャパシタ素子10と対向していない面である。
 第1の基板1と第2の基板2との間には、蓄電素子である電気二重層キャパシタ素子10が設けられている。すなわち、電気二重層キャパシタ素子10は、第1の基板1と第2の基板2とに挟まれている。
 電気二重層キャパシタ素子10は、略直方体の形状を有する。すなわち、電気二重層キャパシタ素子10は、長さ方向Lに対向する第1の端面10aおよび第2の端面10bと、厚み方向Tに対向する第1の主面10cおよび第2の主面10dと、幅方向Wに対向する第1の側面10eおよび第2の側面10fとを備える。第1の端面10aおよび第2の端面10bは、幅方向Wおよび厚み方向Tに沿って延びている。第1の主面10cおよび第2の主面10dは、長さ方向Lおよび幅方向Wに沿って延びている。第1の側面10eおよび第2の側面10fは、長さ方向Lおよび厚み方向Tに沿って延びている。
 なお、「直方体」には、角部や稜線部が面取りされた形状や丸められた形状も含まれる。角部は、電気二重層キャパシタ素子10の3面が交わる部分であり、稜線部は、電気二重層キャパシタ素子10の2面が交わる部分である。
 電気二重層キャパシタ素子10は、第1の内部電極11と第2の内部電極12とが電解質層13を介して交互に複数積層された構造を有する。すなわち、複数の第1の内部電極11と複数の第2の内部電極12とが電解質層13を介して交互に積層されている。
 第1の内部電極11は、第1の集電体11aと、第1の集電体11aの両面に設けられた第1の活物質層11bとを有する。ただし、積層方向の最も外側に第1の内部電極11が位置する場合、その最外層に位置する第1の内部電極11の第1の集電体11aには、片面にのみ第1の活物質層11bが設けられている。
 第1の集電体11aは、例えば、アルミニウムや銅等の金属からなる金属箔等である。ただし、本発明において、「金属」には合金が含まれるものとする。
 第1の活物質層11bは、活物質を含む。第1の活物質層11bは、分極性電極であって、例えば、活性炭などの炭素材料を活物質として含んでいることが好ましい。
 第1の内部電極11は、電気二重層キャパシタ素子10の第1の端面10aに引き出されている一方、第2の端面10b、第1の側面10e、および第2の側面10fには引き出されていない。本実施形態では、第1の内部電極11のうちの第1の集電体11aが電気二重層キャパシタ素子10の第1の端面10aに引き出されている。
 第2の内部電極12は、第2の集電体12aと、第2の集電体12aの両面に設けられた第2の活物質層12bとを有する。ただし、積層方向の最も外側に第2の内部電極12が位置する場合、その最外層に位置する第2の内部電極12の第2の集電体12aには、片面にのみ第2の活物質層12bが設けられている。
 第2の集電体12aは、例えば、アルミニウムや銅等の金属からなる金属箔等である。
 第2の活物質層12bは、活物質を含む。第2の活物質層12bは、分極性電極であって、例えば、活性炭などの炭素材料を活物質として含んでいることが好ましい。
 第2の内部電極12は、電気二重層キャパシタ素子10の第2の端面10bに引き出されている一方、第1の端面10a、第1の側面10e、および第2の側面10fには引き出されていない。本実施形態では、第2の内部電極12のうちの第2の集電体12aが電気二重層キャパシタ素子10の第2の端面10bに引き出されている。
 第1の内部電極11の第1の活物質層11bと、第2の内部電極12の第2の活物質層12bとの間には、電解質層13が設けられている。電解質層13は、電解質を含む層である。電解質層13は、ゲル状の電解質であるゲル電解質からなっていてもよいし、電解液が含浸したセパレータ等の多孔質体からなっていてもよい。ゲル電解質を構成する高分子ゲル材料の具体例としては、例えば、ポリフッ化ビニリデン、ポリエチレンオキサイド等が挙げられる。
 電解質の具体例としては、例えば、EMITFSI(1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド)、EMIBF4(ホウフッ化1-エチル-3-メチルイミダゾリウム)等のイオン性液体、または、そのイオン性液体をプロピレンカーボネート、アセトニトリル等の有機溶媒に溶解させたもの等が挙げられる。これらの電解質のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。
 第1の活物質層11b、第2の活物質層12b、および電解質層13と、第1の端面10a、第2の端面10b、第1の側面10e、および第2の側面10fのそれぞれとの間には、絶縁層14が設けられている。絶縁層14は、例えば、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂等からなる。
 第1の端面電極3は、電気二重層キャパシタ素子10の第1の端面10aに設けられ、複数の第1の内部電極11と第1の外部電極5とを電気的に接続する。本実施形態では、第1の端面電極3は、第1の端面10aから、第1の主面10c側、第2の主面10d側、第1の側面10e側、および、第2の側面10f側まで回り込むように設けられている。
 第2の端面電極4は、電気二重層キャパシタ素子10の第2の端面10bに設けられ、複数の第2の内部電極12と第2の外部電極6とを電気的に接続する。本実施形態では、第2の端面電極4は、第2の端面10bから、第1の主面10c側、第2の主面10d側、第1の側面10e側、および、第2の側面10f側まで回り込むように設けられている。
 第1の端面電極3および第2の端面電極4は、例えばアルミニウムからなる。その場合、第1の端面電極3および第2の端面電極4は、アルミニウム溶射によって形成される溶射膜とすることができる。
 (電気二重層キャパシタの製造方法)
 以下、電気二重層キャパシタ100の製造方法の一例について、図4~図7を参照しながら説明する。
 初めに、複数の電気二重層キャパシタ素子10を構成するための母材を作製する。母材は、公知の方法により作製することができる。
 続いて、作製した母材40を第1の基板1と第2の基板2とで挟み込んで(図4参照)、所定の位置に第1の外部電極5と第2の外部電極6を形成した後、切断する(図5参照)。ただし、第1の外部電極5と第2の外部電極6の形成は、後述する切断工程で個片化した後に行ってもよい。
 続いて、切断により個片化されたチップCP(図6参照)に対して、稜線部および角部に面取り加工を施す。そして、内部電極が露出している両端面に、溶射ガンを用いてアルミニウム溶射を行い、第1の端面電極3および第2の端面電極4を形成する(図7参照)。
 上述した工程により、電気二重層キャパシタ100が作製される。
 第1の実施形態における電気二重層キャパシタ100は、電気二重層キャパシタ素子10の第1の端面10a側に設けられた第1の端面電極3によって、第1の内部電極11と第1の外部電極5とを電気的に接続し、第2の端面10b側に設けられた第2の端面電極4によって、第2の内部電極12と第2の外部電極6とを電気的に接続した構成とされている。したがって、内部電極と外部電極とを接続するためのセルリードのようなリード線が不要であり、製造工程を簡易化することができる。 
 <第2の実施形態>
 図8は、第2の実施形態における電気二重層キャパシタ100Aの構成を示す模式的断面図である。図8は、図3と同様に、長さ方向Lと直交する平面で電気二重層キャパシタ100Aを切断した場合の模式的断面を示す。
 第2の実施形態における電気二重層キャパシタ100Aは、第1の実施形態における電気二重層キャパシタ100の構成に加えて、電気二重層キャパシタ素子10の第1の側面10e側および第2の側面10f側に設けられた樹脂層30をさらに備える。具体的には、電気二重層キャパシタ素子10の第1の側面10eおよび第2の側面10fにそれぞれ設けられている絶縁層14を覆うように、樹脂層30が設けられている。
 樹脂層30は、例えばエポキシ樹脂からなる。ただし、樹脂層30を構成する樹脂がエポキシ樹脂に限定されることはない。
 第2の実施形態における電気二重層キャパシタ100Aによれば、電気二重層キャパシタ素子10の第1の側面10e側および第2の側面10f側に樹脂層30が設けられているので、電気二重層キャパシタ100Aの強度がより高くなり、かつ、内部への水分等の侵入をより効果的に抑制することができる。また、電気二重層キャパシタ100Aの外部へと電解液が漏れ出ることをより効果的に抑制することができる。
 第2の実施形態における電気二重層キャパシタ100Aの製造時には、まず、母材を短冊状にカットすることにより、短冊状母材90を複数作製し、作製した複数の短冊状母材90を、所定の間隔で、第1の基板1の第2の主面1bの上に配置する(図9参照)。
 続いて、隣り合う短冊状母材90の間に樹脂を充填して硬化させた後、複数の短冊状母材90の上に第2の基板2を配置して切断することによって個片化する。その後の製造工程は、第1の実施形態における電気二重層キャパシタ100の製造工程と同じである。
 <第3の実施形態>
 図10は、第3の実施形態における電気二重層キャパシタ100Bの構成を示す模式的斜視図である。また、図11は、図10に示す電気二重層キャパシタ100BのXI-XI線に沿った模式的断面図である。
 第3の実施形態における電気二重層キャパシタ100Bは、第1の基板1と、第2の基板2と、第1の電気二重層キャパシタ素子10Aと、第2の電気二重層キャパシタ素子10Bと、第1の端面電極31と、第2の端面電極32と、第3の端面電極33と、第1の外部電極5と、第2の外部電極6とを備える。
 第1の電気二重層キャパシタ素子10A、および、第2の電気二重層キャパシタ素子10Bの構成は、第1の実施形態で説明した電気二重層キャパシタ素子10の構成と同じである。
 ただし、第1の電気二重層キャパシタ素子10Aと、第2の電気二重層キャパシタ素子10Bの構成が完全に同一である必要はない。第1の電気二重層キャパシタ素子10Aおよび第2の電気二重層キャパシタ素子10Bは、第1の実施形態で説明した電気二重層キャパシタ素子10のように、厚み方向に対向する長さ方向および幅方向に沿って延びる面であり、厚み方向に対向する第1の主面および第2の主面と、長さ方向および厚み方向に沿って延びる面であり、幅方向に対向する第1の側面および第2の側面と、幅方向および厚み方向に沿って延びる面であり、長さ方向に対向する第1の端面および第2の端面と、を有し、第1の端面に引き出された第1の内部電極と、第2の端面に引き出された第2の内部電極とを備えた構成であればよい。
 第1の電気二重層キャパシタ素子10A、および、第2の電気二重層キャパシタ素子10Bは、第1の基板1と第2の基板2とに挟まれており、第2の電気二重層キャパシタ素子10Bの第2の側面が第1の電気二重層キャパシタ素子10Aの第1の側面と互いに対向し、かつ、端面の位置が略一致するように配置されている。
 第1の端面電極31は、第1の電気二重層キャパシタ素子10Aの第1の端面に設けられており、第1の電気二重層キャパシタ素子10Aの第1の内部電極と第1の外部電極5とを電気的に接続する。
 第2の端面電極32は、第2の電気二重層キャパシタ素子10Bの一方の端面に設けられており、第2の電気二重層キャパシタ素子10Bの一方の内部電極と第2の外部電極6とを電気的に接続する。第2の電気二重層キャパシタ素子10Bの一方の端面とは、第2の電気二重層キャパシタ素子10Bの第1の端面と第2の端面のうちのいずれか一方の端面であって、第1の電気二重層キャパシタ素子10Aの第1の端面と長さ方向Lにおいて略同じ位置にある端面である。また、第2の電気二重層キャパシタ素子10Bの一方の内部電極とは、第2の電気二重層キャパシタ素子10Bの第1の内部電極と第2の内部電極のうちのいずれか一方の内部電極である。
 第3の端面電極33は、第1の電気二重層キャパシタ素子10Aの第2の端面と、第2の電気二重層キャパシタ素子10Bの他方の端面とに一体的に設けられ、第1の電気二重層キャパシタ素子10Aの第2の内部電極と、第2の電気二重層キャパシタ素子10Bの他方の内部電極とを電気的に接続する。
 第1の端面電極31、第2の端面電極32、および、第3の端面電極33は、例えばアルミニウムからなる。その場合、第1の端面電極31、第2の端面電極32、および、第3の端面電極33は、アルミニウム溶射によって形成される溶射膜とすることができる。
 図11に示すように、第1の外部電極5および第2の外部電極6は、第1の基板1の第1の主面1aに設けられている。第1の外部電極5は、第1の端面電極31と電気的に接続されているが、第2の端面電極32および第3の端面電極33とは電気的に接続されていない。また、第2の外部電極6は、第2の端面電極32と電気的に接続されているが、第1の端面電極31および第3の端面電極33とは電気的に接続されていない。第1の主面1aは、第1の電気二重層キャパシタ素子10Aおよび第2の電気二重層キャパシタ素子10Bとは対向していない面である。
 上述した構成により、第3の実施形態における電気二重層キャパシタ100Bでは、第1の電気二重層キャパシタ素子10Aと第2の電気二重層キャパシタ素子10Bとが直列に接続された構造を有する。
 <第4の実施形態>
 図12は、第4の実施形態における電気二重層キャパシタ100Cの構成を示す模式的断面図である。
 第4の実施形態における電気二重層キャパシタ100Cは、第1の実施形態における電気二重層キャパシタ100の構成に対して、第1の接続電極41、第1のビア導体42、第2の接続電極43、および第2のビア導体44をさらに備える。
 第1の接続電極41は、第1の基板1の内部であって、電気二重層キャパシタ素子10の第1の端面10a側に設けられている。第1の接続電極41は、第1の基板1の端面に露出し、第1の端面電極3と電気的に接続されている。
 第1のビア導体42は、第1の基板1の内部に設けられ、第1の接続電極41と第1の外部電極5とを電気的に接続する。
 すなわち、第1の外部電極5は、第1の端面電極3と接している位置において、第1の端面電極3と電気的に接続されているとともに、第1のビア導体42および第1の接続電極41を介して、第1の端面電極3と電気的に接続されている。
 第2の接続電極43は、第1の基板1の内部であって、電気二重層キャパシタ素子10の第2の端面10b側に設けられている。第2の接続電極43は、第1の基板1の端面に露出し、第2の端面電極4と電気的に接続されている。
 第2のビア導体44は、第1の基板1の内部に設けられ、第2の接続電極43と第2の外部電極6とを電気的に接続する
 すなわち、第2の外部電極6は、第2の端面電極4と接している位置において、第2の端面電極4と電気的に接続されているとともに、第2のビア導体44および第2の接続電極43を介して、第2の端面電極4と電気的に接続されている。
 第4の実施形態における電気二重層キャパシタ100Cによれば、第1の端面電極3と第1の外部電極5との間、および、第2の端面電極4と第2の外部電極6との間の電気的接続性をさらに向上させることができる。
 <第5の実施形態>
 図13は、第5の実施形態における電気二重層キャパシタパック500の構成を示す模式的斜視図である。図14は、図13に示す電気二重層キャパシタパック500のXIV-XIV線に沿った模式的断面図である。本実施形態では、電気二重層キャパシタパック500が、本発明の「蓄電パック」に相当する。
 第5の実施形態における電気二重層キャパシタパック500は、第1の実施形態における電気二重層キャパシタ100と、収容容器50と、金属製の蓋60と、シールリング65とを備える。
 収容容器50は、一端に開口部を有し、開口部に対向する底面と、底面から略垂直に連なる側壁とを備える有底筒状の筐体であり、電気二重層キャパシタ100を収容する。収容容器50は、絶縁性材料からなり、本実施形態では、例えばセラミック材料からなる。
 収容容器50は、第1の側壁50c、第2の側壁50d、第3の側壁、および第4の側壁の4つの側壁を備える。第1の側壁50cは、収容容器50の4つの側壁のうち、電気二重層キャパシタ100の第1の端面電極3に対向する側壁であり、第2の側壁50dは、電気二重層キャパシタ100の第2の端面電極4に対向する側壁である。
 収容容器50の底面であって、開口部側の面である内側底面50aには、第1の内部端子51と第2の内部端子52とが設けられている。内側底面50aは、電気二重層キャパシタ100の第1の基板1と対向する面である。本実施形態では、第1の内部端子51の一端は、収容容器50の第1の側壁50cと当接しており、第2の内部端子52の一端は、収容容器50の第2の側壁50dと当接している。
 収容容器50の底面であって、内側底面50aとは反対側の面である外側底面50bには、第1の外部端子53と第2の外部端子54が設けられている。第1の外部端子53は、第1の内部端子51と電気的に接続されている。具体的には、第1の外部端子53は、第1の内部端子51の底面側に接続されており、収容容器50の第1の側壁50cの側面に引き出されてそのまま外側底面50bに回り込むように配設されている。また、第2の外部端子54は、第2の内部端子52と電気的に接続されている。具体的には、第2の外部端子54は、第2の内部端子52の底面側に接続されており、収容容器50の第2の側壁50dの側面に引き出されてそのまま外側底面50bに回り込むように配設されている。
 蓋60は、収容容器50の上方の開口部を封止するために設けられている。蓋60と収容容器50との間にはシールリング65が設けられており、蓋60とシールリング65とが溶接されることによって、封止されている。これにより、蓋60と収容容器50との界面から水分等が侵入することを抑制することができる。蓋60およびシールリング65は、例えば、コバールからなり、表面にNiめっきが形成されている。蓋60の表面のNiと、シールリング65の表面のNiとは、溶接により接合される。溶接は、例えばシーム溶接やレーザ溶接により行うことができる。
 電気二重層キャパシタ100の第1の外部電極5は、導電性接着剤57を介して、収容容器50の第1の内部端子51と固着され、かつ、電気的に接続されている。すなわち、電気二重層キャパシタ100の第1の外部電極5は、第1の内部端子51を介して、第1の外部端子53と電気的に接続されている。
 電気二重層キャパシタ100の第2の外部電極6は、導電性接着剤57を介して、収容容器50の第2の内部端子52と固着され、かつ、電気的に接続されている。すなわち、電気二重層キャパシタ100の第2の外部電極6の第2の外部電極6は、第2の内部端子52を介して、第2の外部端子54と電気的に接続されている。
 第5の実施形態における電気二重層キャパシタパック500によれば、第1の実施形態における電気二重層キャパシタ100を収容容器50に収容した構造を有するので、内部への水分等の侵入を効果的に抑制することができ、信頼性を向上させることができる。
 なお、ここでは、第1の実施形態における電気二重層キャパシタ100を収容容器に収容した構造について説明したが、第2の実施形態における電気二重層キャパシタ100A、第3の実施形態における電気二重層キャパシタ100B、および、第4の実施形態における電気二重層キャパシタ100Cをそれぞれ収容容器に収容した構造とすることもできる。
 <第6の実施形態>
 図15は、第6の実施形態における電気二重層キャパシタパック500Aの構成を示す模式的断面図である。第6の実施形態における電気二重層キャパシタパック500Aは、電気二重層キャパシタ100と収容容器50および蓋60との間の空間に、絶縁性樹脂70が充填されている。
 絶縁性樹脂70は、以下のような方法により形成することができる。すなわち、収容容器50内に電気二重層キャパシタ100を収容した後、電気二重層キャパシタ100を覆うように、絶縁性の液状樹脂を流し込む。液状樹脂として、例えば、エポキシ樹脂やシリコーン樹脂を用いることができる。流し込まれた液状樹脂は、収容容器50と電気二重層キャパシタ100との間の空隙に入り込む。また、液状樹脂で、電気二重層キャパシタ100の上面を覆うようにする。その後、加熱することによって、液状樹脂を硬化させる。これにより、絶縁性樹脂70が形成される。なお、加熱をせずに、所定の時間放置することによって、液状樹脂を硬化させるようにしてもよい。
 第6の実施形態における電気二重層キャパシタパック500Aによれば、電気二重層キャパシタ100が絶縁性樹脂70で覆われているので、何らかの理由によって、電気二重層キャパシタ100から電解液が漏れ出た場合でも、電解液が収容容器50の第1の内部端子51および第2の内部端子52に付着することを抑制することができる。これにより、電解液が第1の内部端子51および第2の内部端子52に付着することによる腐食を抑制することができ、電気二重層キャパシタパック500Aの信頼性を向上させることができる。
 また、絶縁性樹脂70によって、電気二重層キャパシタ100と収容容器50とをより強固に固定することができるので、電気二重層キャパシタパック500Aに衝撃が加わったときに、電気二重層キャパシタ100が収容容器50から外れることによる断線を抑制することができる。
 また、絶縁性樹脂70が電気二重層キャパシタ100と金属製の蓋60との間に存在するので、電気二重層キャパシタ100と蓋60との間、例えば第1の端面電極3と蓋60との間や、第2の端面電極4と蓋60との間がショートすることを抑制することができる。
 本発明は、上記実施形態に限定されるものではなく、本発明の範囲内において、種々の応用、変形を加えることが可能である。
 第3の実施形態における電気二重層キャパシタ100Bは、2つの電気二重層キャパシタ素子10A、10Bを直列に接続した構成であるが、3つ以上の電気二重層キャパシタ素子を直列に接続した構成としてもよい。また、2つ以上の電気二重層キャパシタ素子を並列に接続した構成としてもよい。
1   第1の基板
2   第2の基板
3   第1の端面電極
4   第2の端面電極
5   第1の外部電極
6   第2の外部電極
10  電気二重層キャパシタ素子
10A 第1の電気二重層キャパシタ素子
10B 第2の電気二重層キャパシタ素子
11  第1の内部電極
12  第2の内部電極
13  電解質層
14  絶縁層
30  樹脂層
31  第1の端面電極
32  第2の端面電極
33  第3の端面電極
40  母材
41  第1の接続電極
42  第1のビア導体
43  第2の接続電極
44  第2のビア導体
50  収容容器
51  第1の内部端子
52  第2の内部端子
53  第1の外部端子
54  第2の外部端子
57  導電性接着剤
60  蓋
65  シールリング
70  絶縁性樹脂
100、100A、100B 電気二重層キャパシタ
500、500A 電気二重層キャパシタパック

Claims (6)

  1.  第1の基板と、
     第2の基板と、
     前記第1の基板と前記第2の基板とに挟まれた蓄電素子であって、長さ方向および幅方向に沿って延びる面であり、厚み方向に対向する第1の主面および第2の主面と、前記長さ方向および前記厚み方向に沿って延びる面であり、前記幅方向に対向する第1の側面および第2の側面と、前記幅方向および前記厚み方向に沿って延びる面であり、前記長さ方向に対向する第1の端面および第2の端面と、を有し、前記第1の端面に引き出された第1の内部電極と、前記第2の端面に引き出された第2の内部電極とを備える蓄電素子と、
     前記第1の基板の両主面のうち、前記蓄電素子とは対向していない第1の主面に設けられた第1の外部電極と、
     前記第1の基板の前記第1の主面に設けられた第2の外部電極と、
     前記第1の端面に設けられ、前記第1の内部電極と前記第1の外部電極とを電気的に接続する第1の端面電極と、
     前記第2の端面に設けられ、前記第2の内部電極と前記第2の外部電極とを電気的に接続する第2の端面電極と、
    を備えることを特徴とする蓄電デバイス。
  2.  前記蓄電素子の前記第1の側面側および前記第2の側面側に設けられた樹脂層をさらに備えることを特徴とする請求項1に記載の蓄電デバイス。
  3.  第1の基板と、
     第2の基板と、
     前記第1の基板と前記第2の基板とに挟まれた蓄電素子であって、長さ方向および幅方向に沿って延びる面であり、厚み方向に対向する第1の主面および第2の主面と、前記長さ方向および前記厚み方向に沿って延びる面であり、前記幅方向に対向する第1の側面および第2の側面と、前記幅方向および前記厚み方向に沿って延びる面であり、前記長さ方向に対向する第1の端面および第2の端面と、を有し、前記第1の端面に引き出された第1の内部電極と、前記第2の端面に引き出された第2の内部電極とを備える第1の蓄電素子と、
     前記第1の基板と前記第2の基板とに挟まれた蓄電素子であって、長さ方向および幅方向に沿って延びる面であり、厚み方向に対向する第1の主面および第2の主面と、前記長さ方向および前記厚み方向に沿って延びる面であり、前記幅方向に対向する第1の側面および第2の側面と、前記幅方向および前記厚み方向に沿って延びる面であり、前記長さ方向に対向する第1の端面および第2の端面とを有し、前記第1の端面に引き出された第1の内部電極と、前記第2の端面に引き出された第2の内部電極とを備え、前記第2の側面が前記第1の蓄電素子の前記第1の側面と互いに対向するように配置された第2の蓄電素子と、
     前記第1の基板の両主面のうち、前記第1の蓄電素子および前記第2の蓄電素子とは対向していない第1の主面に設けられた第1の外部電極と、
     前記第1の基板の前記第1の主面に設けられた第2の外部電極と、
     前記第1の蓄電素子の前記第1の端面に設けられ、前記第1の蓄電素子の前記第1の内部電極と前記第1の外部電極とを電気的に接続する第1の端面電極と、
     前記第2の蓄電素子の前記第1の端面および前記第2の端面のうちの一方の端面に設けられ、前記第2の蓄電素子の前記第1の内部電極および前記第2の内部電極のうちの一方の内部電極と前記第2の外部電極とを電気的に接続する第2の端面電極と、
     前記第1の蓄電素子の前記第2の端面と前記第2の蓄電素子の前記第1の端面および前記第2の端面のうちの他方の端面とに一体的に設けられ、前記第1の蓄電素子の前記第2の内部電極と、前記第2の蓄電素子の前記第1の内部電極および前記第2の内部電極のうちの他方の内部電極とを電気的に接続する第3の端面電極と、
    を備えることを特徴とする蓄電デバイス。
  4.  前記第2の基板の材料は、前記第1の基板の材料と同じであることを特徴とする請求項1~3のいずれかに記載の蓄電デバイス。
  5.  請求項1~4のいずれかに記載の蓄電デバイスと、
     前記蓄電デバイスを収容する収容容器と、
    を備え、
     前記収容容器は、
     前記蓄電デバイスと対向する面である内側底面に設けられ、前記第1の端面電極と電気的に接続されている第1の内部端子と、
     前記内側底面に設けられ、前記第2の端面電極と電気的に接続されている第2の内部端子と、
     前記内側底面と反対側の面である外側底面に設けられ、前記第1の内部端子と電気的に接続されている第1の外部端子と、
     前記外側底面に設けられ、前記第2の内部端子と電気的に接続されている第2の外部端子と、
    を備えることを特徴とする蓄電パック。
  6.  前記収容容器は、一端に開口部を有する有底筒状の形状を有しており、
     前記収容容器の前記開口部を封止するための金属製の蓋をさらに備えることを特徴とする請求項5に記載の蓄電パック。
PCT/JP2019/043709 2018-11-13 2019-11-07 蓄電デバイスおよび蓄電パック WO2020100716A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-212934 2018-11-13
JP2018212934 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020100716A1 true WO2020100716A1 (ja) 2020-05-22

Family

ID=70731351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043709 WO2020100716A1 (ja) 2018-11-13 2019-11-07 蓄電デバイスおよび蓄電パック

Country Status (1)

Country Link
WO (1) WO2020100716A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607118A (ja) * 1983-06-27 1985-01-14 株式会社東芝 コンデンサ
JPH0363922U (ja) * 1989-10-27 1991-06-21
JP2002352850A (ja) * 2001-05-24 2002-12-06 Matsushita Electric Ind Co Ltd チップ電池とその製法
JP2004179090A (ja) * 2002-11-28 2004-06-24 Kyocera Corp 積層型電池
WO2013001908A1 (ja) * 2011-06-28 2013-01-03 株式会社村田製作所 蓄電デバイス用素子および蓄電デバイス
WO2014171309A1 (ja) * 2013-04-17 2014-10-23 日本碍子株式会社 全固体電池
JP2017152247A (ja) * 2016-02-25 2017-08-31 セイコーインスツル株式会社 全固体型電極体及び電気化学セル
WO2018154928A1 (ja) * 2017-02-23 2018-08-30 株式会社村田製作所 蓄電シート及び電池
WO2019167857A1 (ja) * 2018-03-02 2019-09-06 株式会社村田製作所 全固体電池及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607118A (ja) * 1983-06-27 1985-01-14 株式会社東芝 コンデンサ
JPH0363922U (ja) * 1989-10-27 1991-06-21
JP2002352850A (ja) * 2001-05-24 2002-12-06 Matsushita Electric Ind Co Ltd チップ電池とその製法
JP2004179090A (ja) * 2002-11-28 2004-06-24 Kyocera Corp 積層型電池
WO2013001908A1 (ja) * 2011-06-28 2013-01-03 株式会社村田製作所 蓄電デバイス用素子および蓄電デバイス
WO2014171309A1 (ja) * 2013-04-17 2014-10-23 日本碍子株式会社 全固体電池
JP2017152247A (ja) * 2016-02-25 2017-08-31 セイコーインスツル株式会社 全固体型電極体及び電気化学セル
WO2018154928A1 (ja) * 2017-02-23 2018-08-30 株式会社村田製作所 蓄電シート及び電池
WO2019167857A1 (ja) * 2018-03-02 2019-09-06 株式会社村田製作所 全固体電池及びその製造方法

Similar Documents

Publication Publication Date Title
US8771861B2 (en) Secondary battery and method for manufacturing the same
JP5282070B2 (ja) 二次電池
KR20050066120A (ko) 파우치형 리튬 이차 전지
JP6432952B1 (ja) 電気化学セル
KR101578794B1 (ko) 우수한 결합력의 전극리드-전극 탭 결합부를 포함하는 전지셀
JP2018181622A (ja) 積層型二次電池
US20220271399A1 (en) Battery
KR20020059594A (ko) 전지 박스
KR101222873B1 (ko) 표면 실장형 슈퍼 커패시터
CN113924684B (zh) 电池
US11942270B2 (en) Electricity storage device with sintered body
JP2014203885A (ja) 蓄電装置の封止構造および電気二重層キャパシタ
WO2020100716A1 (ja) 蓄電デバイスおよび蓄電パック
CN113258215A (zh) 二次电池
US20140293511A1 (en) Electric storage device
WO2020022022A1 (ja) 蓄電デバイス
US10680272B2 (en) Power storage device
KR101337373B1 (ko) 표면 실장형 슈퍼 커패시터
KR101211668B1 (ko) 표면 실장형 슈퍼 커패시터
JP6285513B1 (ja) 蓄電モジュール
KR101306601B1 (ko) 표면 실장형 슈퍼 커패시터
WO2020039785A1 (ja) 蓄電デバイス
JP2020205305A (ja) 蓄電パック
KR101297091B1 (ko) 표면 실장형 슈퍼 커패시터 및 그의 제조 방법
JP2020004515A (ja) 電池セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP