WO2020100531A1 - アクリル系樹脂組成物、架橋体および架橋体の製造方法 - Google Patents

アクリル系樹脂組成物、架橋体および架橋体の製造方法 Download PDF

Info

Publication number
WO2020100531A1
WO2020100531A1 PCT/JP2019/041185 JP2019041185W WO2020100531A1 WO 2020100531 A1 WO2020100531 A1 WO 2020100531A1 JP 2019041185 W JP2019041185 W JP 2019041185W WO 2020100531 A1 WO2020100531 A1 WO 2020100531A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
present disclosure
formula
vinyl compound
polyfunctional vinyl
Prior art date
Application number
PCT/JP2019/041185
Other languages
English (en)
French (fr)
Inventor
金子 知正
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201980073723.5A priority Critical patent/CN112969756A/zh
Priority to EP19883755.1A priority patent/EP3882310A4/en
Priority to US17/293,542 priority patent/US20220002534A1/en
Priority to JP2020556737A priority patent/JP7191979B2/ja
Publication of WO2020100531A1 publication Critical patent/WO2020100531A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1806C6-(meth)acrylate, e.g. (cyclo)hexyl (meth)acrylate or phenyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters

Definitions

  • a composition containing an acrylic resin and a polyfunctional vinyl compound is a composition containing an acrylic resin and a polyfunctional vinyl compound.
  • a cross-linking system consisting of a resin containing an active hydrogen group such as a hydroxyl group and a carboxy group and a cross-linking agent having a functional group that reacts with the active hydrogen group is used in many applications such as adhesives, adhesives and paints. ..
  • Examples of cross-linking systems that have been used since ancient times include a combination of polyol-polyvalent isocyanate and a combination of polycarboxylic acid-polyvalent epoxy.
  • a system that can be cross-linked under relatively mild conditions is A combination with a compound having a plurality of methylene malonate groups in the molecule (polyvalent methylene malonate) has been proposed (Patent Document 1).
  • the present invention has been made in view of the above-mentioned current situation, and it is easy to reflect the properties of a designed resin in the required physical properties of a crosslinked cured product, and a resin composition that can be efficiently crosslinked even under mild temperature conditions.
  • the purpose is to provide goods.
  • the present inventors have conducted extensive studies to solve the above problems, and have come up with a resin composition that can be efficiently crosslinked under mild conditions. That is, the resin composition of the present disclosure includes an acrylic resin having a carboxy group and a polyfunctional vinyl compound, the acrylic resin includes a carboxy group of 0.6 mmol / g or more, and the polyfunctional vinyl compound is A resin composition containing two or more structural units represented by the following formula (1) per molecule.
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms.
  • the resin composition of the present disclosure can be efficiently crosslinked even under mild conditions. Therefore, for example, it can be suitably used for various applications in which efficient cross-linking or the like is required under mild conditions.
  • the polyfunctional vinyl compound which is an essential component of the resin composition of the present disclosure (hereinafter referred to as “the polyfunctional vinyl compound of the present disclosure”) has the structural unit represented by the following formula (1) as the polyfunctional vinyl compound of the present disclosure. Two or more compounds are included per molecule of the compound.
  • the upper limit of the structural unit represented by the following formula (1) contained in one molecule of the polyfunctional vinyl compound of the present disclosure is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • the * marks in the formula each independently represent an atom contained in another structural unit contained in the polyfunctional vinyl compound, to which the structural unit represented by the formula (1) is bonded, and is represented by the formula (1). It is not included in the structural unit.
  • the atom represented by * above is not particularly limited, but is preferably an atom independently selected from a carbon atom, a nitrogen atom, and an oxygen atom, and more preferably an oxygen atom.
  • R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms, preferably one of which is a hydrogen atom, and more preferably , Both are hydrogen atoms.
  • the hydrocarbon group of R 1 and R 2 preferably has 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • Specific examples of R 1 and R 2 include methyl group, ethyl group, n-butyl group, n-pentyl group (amyl group), n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group.
  • the structural unit represented by the formula (1) is bonded to another structural unit contained in the polyfunctional vinyl compound via a linking group. That is, the structural unit represented by the formula (1) is usually bonded to 1 or 2 linking groups, and is bonded to at least 1 linking group.
  • the other structural unit contained in the polyfunctional vinyl compound to which the structural unit represented by the formula (1) is bonded is preferably a group selected from an alkoxy group, an alkyl group, an aryl group and a linking group. , These groups may have a substituent.
  • the linking group is usually a group having a structure in which two or more structural units represented by formula (1) are indirectly bonded.
  • the linking group may be an alkyl group, an alkoxy group, an alkenyl group, an aryl group, a heterocyclic group, etc., and two or more of these may be bonded by an ether bond, an ester bond, an amide bond, a single bond, and / or in the formula (1). Examples include a group bonded to the structural unit represented (however, the structural unit represented by the formula (1) is not included in the linking group).
  • the linking group may have one or two or more substituents.
  • substituent examples include an alkyl group, an aryl group, a heterocyclic group, an alkoxy group, an amide group, an acyl group, a halogen atom and the like, and these may further have a substituent.
  • Further specific examples of the linking group include a residue of a polyol such as a diol and a residue of a polyester.
  • the residue means a group remaining after removing at least one atom from a chemical species such as an original molecule.
  • the molecular weight of the linking group is not particularly limited, but it is preferable to set it so that the entire polyfunctional vinyl compound has the following molecular weight range.
  • the content of the structural unit represented by the formula (1) contained in the polyfunctional vinyl compound of the present disclosure is preferably 1.0 mmol / g or more, and more preferably 1. It is 5 mmol / g or more, more preferably 2.0 mmol / g or more, and even more preferably 2.5 mmol / g or more. Further, from the viewpoint of improving the compatibility with the acrylic resin of the present disclosure described later, it is preferably 6.0 mmol / g or less, more preferably 5.6 mmol / g or less, and further preferably 5.2 mmol / g or less. is there.
  • the polyfunctional vinyl compound of the present disclosure is not particularly limited, but the weight average molecular weight (hereinafter, also referred to as Mw) is preferably 300 or more and 10000 or less, more preferably 300 or more and 5000 or less, and further 400 or more. It is more preferably 3000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight of the polyfunctional vinyl compound according to the present disclosure is usually a gel permeation chromatography (GPC) measuring device manufactured by Tosoh Corporation, product number: HLC-8220GPC, separation column: Tosoh Corporation, Product number: A value converted using standard polystyrene [manufactured by Tosoh Corporation] using TSKgel Super Multipore HZ-N.
  • GPC gel permeation chromatography
  • polyfunctional vinyl compound of the present disclosure examples include those described in International Publication No. 2017/210415, Japanese Patent Publication No. 2015-517973, Japanese Patent Publication No. 2018-502852, or International Publication No. 2018/031101. Can be mentioned.
  • the polyfunctional vinyl compound of the present disclosure is not particularly limited as long as it is a polyfunctional vinyl compound described in the present specification, but the structural unit represented by two or more formulas (1) described in the present specification. Is more preferably a polyvalent methylene malonate linked by an ester bond, more preferably a polyvalent methylene malonate obtained from the above-mentioned dialkylmethylene malonate and a polyhydric alcohol having a molecular weight of 400 or less, and efficiently crosslinked under mild conditions.
  • the polyvalent methylene malonate obtained by transesterifying a dialkyl methylene malonate with a dihydric alcohol having a molecular weight of 400 or less is particularly preferable because it can be carried out.
  • dialkyl methylene malonate examples include methylpropyl methylene malonate, dihexyl methylene malonate, dicyclohexyl methylene malonate, diisopropyl methylene malonate, butyl methyl methylene malonate, ethoxyethyl ethyl methylene malonate, and methoxyethyl methyl methylene malonate.
  • Examples of the polyhydric alcohol include dihydric alcohols and trihydric or higher alcohols. There is no particular upper limit on the valency of the polyhydric alcohol.
  • the polyhydric alcohols may be used in combination of plural kinds.
  • Examples of the dihydric alcohol include alkylene glycols having 2 to 20 carbon atoms, and specifically, The compound represented by the general formula: HO—C m H 2m + 1 —OH (m is an integer of 2 to 15, preferably 2 to 10, and preferably 2 to 6) is exemplified. Examples thereof include ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, 1,5-pentylene glycol and 1,6-hexylene glycol.
  • divalent alcohol General formula; HO- (C r H 2r + 1 -O) s -H (r is an integer of 2 to 5, preferably 2 to 3, s is an integer of 2 to 100, and 10 to 80 is preferable, and 20 to 50 is more preferable.).
  • trihydric or higher alcohols examples include compounds such as glycerin, polyglycerin, erythritol, xylitol, sorbitol, trimethylolpropane, pentaerythritol, and dipentaerythritol.
  • the acrylic resin having a carboxy group (hereinafter referred to as “acrylic resin of the present disclosure”), which is an essential component of the resin composition of the present disclosure, includes (meth) acrylic acid, a salt of (meth) acrylic acid, and (meth) acrylic acid. )
  • a structural unit derived from one or more kinds of (meth) acrylic monomers selected from acrylic acid ester and (meth) acrylamide (hereinafter, also referred to as “(meth) acrylic structural unit”) is (meth) acrylic.
  • a copolymer or homopolymer containing 5% by mass or more based on the total of the system structural unit and other monomer structural units described later is preferable.
  • (Meth) acrylic acid means methacrylic acid and / or acrylic acid.
  • the structural unit derived from the (meth) acrylic monomer means a structural unit having the same structure as the structure formed by radical polymerization of the (meth) acrylic monomer, and if the structures are the same, It also includes a structural unit formed by a method other than the method in which the (meth) acrylic monomer is radically polymerized.
  • acrylic acid, CH 2 ⁇ CH (COOH), or a structural unit derived from it can be represented by —CH 2 —CH (COOH) —. Since the acrylic resin of the present disclosure has a high degree of freedom in resin design, the resin composition of the present disclosure can be applied to various uses.
  • the acrylic resin of the present disclosure contains a carboxy group at 0.6 mmol / g or more.
  • the carboxy group includes a salt of carboxy group. Salts of carboxy groups also contribute to crosslinking. A salt of a carboxy group may be included if desired such as pot life.
  • the salt is not limited, but examples thereof include ammonium salt, organic amine salt, metal salt, and the like, and alkali metal salt or organic amine salt is preferable.
  • the carboxy group may be bonded to any part of the polymer chain by a covalent bond, and may be bonded to the main chain or the graft chain, for example. Further, it may be bonded to the center or the end of the polymer chain.
  • the carboxy group content is required to be 0.6 mmol / g or more from the viewpoint of improving the crosslinking efficiency, but is preferably 0.8 mmol / g or more, more preferably 1.0 mmol / g or more, and further preferably 1. It is 2 mmol / g or more.
  • the carboxy group contained in the acrylic resin of the present disclosure may be partially or wholly neutralized, and the degree of neutralization may be selected so as to satisfy the curing condition required by the application.
  • the neutralization degree of the carboxy groups contained in the acrylic resin of the present disclosure is preferably 50 mol% or less, more preferably 20 mol% or less, and even more preferably 10 mol%. It is below.
  • the degree of neutralization is preferably 50 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more.
  • the upper limit of the content of the carboxy group is preferably 6.0 mmol / g or less, and more preferably 5.0 mmol / g, from the viewpoint of ensuring good compatibility with the polyfunctional vinyl compound of the present disclosure. Or less, and more preferably 3.5 mmol / g or less.
  • the acrylic resin of the present disclosure more preferably contains 10% by mass or more and 100% by mass or less of a (meth) acrylic structural unit from the viewpoint that various compositions and molecular weights can be easily obtained by a radical polymerization method. It is more preferably 20% by mass or more and 100% by mass or less, still more preferably 30% by mass or more and 100% by mass or less, and particularly preferably 40% by mass or more and 100% by mass or less.
  • the (meth) acrylic monomer is not particularly limited and may be appropriately selected depending on the application of the crosslinkable resin composition of the present disclosure. Specifically, for example, (meth) acrylic acid, (meth) (Meth) acrylic acid or salts thereof such as sodium acrylate and potassium (meth) acrylate; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, (meth) acrylic acid s -Butyl, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, ( Isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxy
  • the acrylic resin of the present disclosure is a structural unit derived from a monomer other than a (meth) acrylic monomer (hereinafter, also referred to as “other monomer”) (hereinafter, “other monomer structural unit”). It is also possible to include).
  • Other monomers include, for example, unsaturated carboxylic acids such as crotonic acid, cinnamic acid, vinylbenzoic acid, maleic acid, fumaric acid and itaconic acid; unsaturated acid anhydrides such as maleic anhydride and itaconic anhydride.
  • Aromatic vinyls such as styrene and vinyltoluene; N-substituted maleimides such as cyclohexylmaleimide, phenylmaleimide and benzylmaleimide; Vinyl esters such as vinyl acetate, vinyl propionate and vinyl benzoate; n-butyl vinyl ether, 2 -Vinyl ethers such as ethylhexyl vinyl ether and cyclohexyl vinyl ether; N-vinyl amides such as N-vinyl pyrrolidone and N-vinyl caprolactam; Conjugated dienes such as 1,3-butadiene, isoprene and chloroprene; Ethylene, propylene, 1-butene, etc. .Alpha.-olefins. These may be used alone or in combination of two or more. Other monomers may be appropriately used depending on the application of the crosslinkable resin composition of the present disclosure.
  • the content of the other monomer structural unit in the acrylic resin of the present disclosure is preferably 0% by mass or more and 95% by mass or less based on the total of the (meth) acrylic structural unit and the other monomer structural unit, It is more preferable to contain 0 mass% or more and 90 mass% or less, further preferably 0 mass% or more and 80 mass% or less, still more preferably 0 mass% or more and 70 mass% or less, and particularly preferably 0 mass% or more and 60 mass% or less. % Or less.
  • a chain transfer agent When polymerizing the (meth) acrylic monomer of the present disclosure, a chain transfer agent may be used, and the molecular weight of the polymer can be adjusted by adjusting the amount of the chain transfer agent.
  • chain transfer agents include, for example, 2-mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolic acid, octyl 3-mercaptopropionic acid, 2- Thiol compounds such as mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan and butylthioglycolate; halides such as carbon tetrachloride, methylene chloride, bromoform and bromotrichloroethane; secondary alcohols such as isopropanol; phosphorous acid and Examples thereof include
  • a solvent may be used when polymerizing the (meth) acrylic monomer, and examples of the solvent include aliphatic hydrocarbon compounds such as n-hexane and n-hepta; benzene, toluene, xylene, etc.
  • Aromatic compounds such as isopropyl alcohol and n-butyl alcohol; ethers such as propylene glycol methyl ether, dipropylene glycol methyl ether, ethyl cellosolve and butyl cellosolve; esters such as ethyl acetate, butyl acetate, cellosolve acetate; acetone, methyl ethyl ketone , Ketones such as methyl isobutyl ketone and diacetone alcohol; organic solvents such as amides such as dimethylformamide, but the present disclosure is not limited to such examples. These solvents may be used alone or in combination of two or more.
  • the molecular weight of the acrylic resin of the present disclosure may be appropriately adjusted depending on the use of the crosslinkable resin composition of the present invention, but from the viewpoint of crosslinking efficiency, it is preferably 500 or more, more preferably 1000 or more, still more preferably 2000. That is all. From the viewpoint of workability and compatibility with the polyfunctional vinyl compound, it is preferably 1,000,000 or less, more preferably 500,000 or less, and further preferably 300,000 or less.
  • the molecular weight in the present disclosure is generally as a gel permeation chromatography (GPC) measuring device, manufactured by Tosoh Corporation, product number: HLC-8220GPC, separation column: Tosoh Corporation, product number: TSKgel Super HZM-M. Is a value converted by standard polystyrene [manufactured by Tosoh Corporation]. For acrylic resins for which measurement under the above conditions is not appropriate, the above conditions may be measured with appropriate minimum changes.
  • GPC gel permeation chromatography
  • the resin composition of the present disclosure contains the acrylic resin of the present disclosure and the polyfunctional vinyl compound of the present disclosure, whereby the properties of the acrylic resin of the present disclosure can be reflected in the physical properties of a crosslinked cured product,
  • the mass ratio of the acrylic resin of the present disclosure to the polyfunctional vinyl compound 1 of the present disclosure is preferably 0.5 or more and 100 or less, more preferably 1 or more and 10 or less, still more preferably 1 or more and 5 or less. preferable.
  • the properties of the designed resin tend to be easily reflected in the required physical properties of the crosslinked cured product.
  • the resin composition of the present disclosure may contain one or more selected from anionic polymerization inhibitors, radical polymerization inhibitors and antioxidants from the viewpoint of improving storage stability.
  • the anionic polymerization inhibitor is preferably an acid having an acid dissociation constant of 2 or less in water, and specific examples thereof include sulfonic acids such as sulfuric acid, methanesulfonic acid and p-toluenesulfonic acid, sulfurous acid, phosphoric acid, trifluoroacetic acid. And so on.
  • an anionic polymerization inhibitor When an anionic polymerization inhibitor is contained, its content may be appropriately adjusted depending on the acidity, but from the viewpoint of balancing storage stability and reactivity, it is 0.1 to 2000 mass ppm with respect to the polyfunctional vinyl compound.
  • radical polymerization inhibitor or antioxidant hindered phenols, sulfur-based antioxidants and phosphorus-based antioxidants are preferable from the viewpoint of color suppression, and specifically, for example, 2,6-di-t-butyl.
  • the content thereof is preferably 50 to 5000 mass ppm with respect to the polyfunctional vinyl compound, and more preferably from the viewpoint of balancing storage stability and reactivity.
  • the amount is 100 to 3000 mass ppm, more preferably 200 to 2000 mass ppm.
  • the resin composition of the present disclosure may contain a non-reactive or reactive diluent from the viewpoint of avoiding an excessively high viscosity and ensuring ease of handling and improving workability.
  • the reactive diluent refers to a diluent having a functional group capable of copolymerizing with the polyfunctional vinyl compound of the present disclosure by an anionic polymerization mechanism.
  • the reactive diluent is incorporated into the cross-link while increasing its molecular weight, so that a cross-linkable resin composition that does not require the step of removing the volatile solvent should be formed.
  • the non-reactive diluent refers to a diluent having no functional group that copolymerizes with the polyfunctional vinyl compound of the present disclosure by an anionic polymerization mechanism.
  • non-reactive diluent water or an organic solvent may be mentioned, and it may be appropriately selected depending on the application, but the hydroxyl group of water is liable to cause chain transfer relatively easily, and thus the cross-linking resin composition of the present invention is cross-linked.
  • Organic solvents are preferred because they tend to inhibit.
  • the organic solvent is preferably volatile and capable of uniformly dissolving the acrylic resin of the present disclosure and the polyfunctional vinyl compound of the present disclosure.
  • esters such as ethyl acetate, butyl acetate, ethyl propionate, butyl propionate, methyl lactate, ethyl lactate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, Ketones such as cyclohexanone; ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, tetrahydrofuran, dioxane; dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.
  • Examples of the reactive diluent include monofunctional 1,1-disubstituted vinyl compounds, that is, vinyl compounds having only one structure represented by the formula (I) in the molecule.
  • Examples of such compounds include dimethyl methylene malonate, diethyl methylene malonate, di n-butyl methylene malonate, di n-hexyl methylene malonate, dicyclohexyl methylene malonate, methyl cyclohexyl methylene malonate, 2-ethylhexyl methyl
  • Specific examples thereof include methylene malonate. These may be used alone or in combination of two or more.
  • the resin composition of the present disclosure may contain a non-reactive diluent, for example, 0% by mass or more and 50% by mass or less, and a reactive diluent, for example, 0% by mass or more and 50% by mass or less. Is also good.
  • the content of water in the resin composition of the present disclosure is 2 parts by mass or less with respect to 1 part by mass of the polyfunctional vinyl compound of the present disclosure. Is preferred, and more preferably 1 part by mass or less, more preferably 0.5 part by mass or less.
  • the preferable lower limit of the amount of water contained in the resin composition of the present disclosure is 0 part by mass or more.
  • the amount of the organic solvent contained in the resin composition of the present disclosure is set to 0 with respect to 1 part by mass of the acrylic resin content of the present disclosure. It is preferably not less than 1 part by mass, more preferably not less than 0.3 part by mass, more preferably not less than 0.5 part by mass.
  • the preferable upper limit of the amount of the organic solvent contained in the resin composition of the present disclosure is preferably 50 parts by mass or less with respect to the content of 1 part by mass of the acrylic resin of the present disclosure from the viewpoint of improving the crosslinking efficiency. It is more preferably 10% by mass or less.
  • the resin composition of the present disclosure may optionally include a resin other than the acrylic resin of the present disclosure, a polyfunctional carboxylic acid, a polyfunctional vinyl compound other than the polyfunctional vinyl compound of the present disclosure, and the like.
  • Resins other than the acrylic resin of the present disclosure include polycarboxylic acids having a polymer chain other than acrylic, polycarboxylic acids having a carboxy group content of less than 0.6 mmol / g, and polycarboxylic acids other than the acrylic resin of the present disclosure.
  • the carboxylic acid include low molecular weight compounds having two or more carboxy groups in the molecule.
  • polycarboxylic acid having a polymer chain other than acrylic examples include polycarboxylic acid having a polyester chain, polycarboxylic acid having a polyether chain, polycarboxylic acid having a polyurethane chain, and polycarboxylic acid having a polysiloxane chain.
  • examples thereof include carboxylic acid and polycarboxylic acid having a polyamide chain.
  • Specific examples of the low molecular weight compound having two or more carboxy groups in the molecule include oxalic acid, succinic acid, maleic acid, phthalic acid, 1,2,3-propanetricarboxylic acid, 1,3,5-benzenetricarboxylic acid. Acid, 1,2,3,4-butanetetracarboxylic acid, pyromellitic acid and the like can be mentioned.
  • the resin composition of the present disclosure depending on the application, a light stabilizer, an ultraviolet absorber, an ultraviolet stabilizer, an infrared absorber, a crosslinking accelerator, a pigment, a dye, a dispersant, a release agent, a delustering agent, and a defoaming agent.
  • Agents, leveling agents, antistatic agents, fillers, flame retardants, tackifiers, waxes, conductive agents, plasticizers, modifiers, thixotropic agents, and the like may be included.
  • the resin composition of the present disclosure may be distributed in two parts, a composition containing the acrylic resin of the present disclosure and a composition containing the polyfunctional vinyl compound of the present disclosure.
  • the resin composition of the present disclosure As a preferred form of the resin composition of the present disclosure, (I) An acrylic resin having a carboxy group and a polyfunctional vinyl compound are contained, the acrylic resin contains a carboxy group of 0.6 mmol / g or more, and the polyfunctional vinyl compound is represented by the above formula (1). A resin composition containing two or more structural units represented by one molecule. (II) The polyfunctional vinyl compound has a structural unit represented by the formula (1) of 1.0 mmol / g or more, preferably 1.5 mmol / g or more, more preferably 2.0 mmol / g or more, and further preferably 2 The resin composition according to (I), which contains 0.5 mmol / g or more.
  • the structural unit represented by the formula (1) contained in the polyfunctional vinyl compound is 6.0 mmol / g or less, preferably 5.6 mmol / g or less, and more preferably 5.2 mmol / g.
  • a polyfunctional vinyl compound is selected from an alkoxy group, an alkyl group, an aryl group and a linking group.
  • the acrylic resin contains a carboxy group in an amount of 0.8 mmol / g or more, preferably 1.0 mmol / g or more, more preferably 1.2 mmol / g or more, (I) to (V). Resin composition.
  • the acrylic resin (VIII) contains the (meth) acrylic structural unit in an amount of 5% by mass or more, preferably 10% by mass or more and 100% by mass or less, more preferably 20% by mass or more and 100% by mass or less, and further preferably 30% by mass.
  • the mass ratio of the acrylic resin to the polyfunctional vinyl compound is preferably 0.5 or more and 100 or less, more preferably 1 or more and 10 or less, still more preferably 1 or more and 5 or less with respect to the polyfunctional vinyl compound 1.
  • the amount of water contained in the resin composition is 2 parts by mass or less, preferably 1 part by mass or less, and more preferably 0.5 part by mass based on 1 part by mass of the content of the polyfunctional vinyl compound of the present disclosure.
  • the resin composition according to (I) to (XI) which is less than or equal to 1 part.
  • the content of the organic solvent contained in the resin composition (XIII) is 0.1 parts by mass or more, preferably 0.3 parts by mass or more, and more preferably 1 part by mass of the acrylic resin content of the present disclosure.
  • the content of the organic solvent contained in the resin composition is 50 parts by mass or less, preferably 10 parts by mass or less, relative to 1 part by mass of the acrylic resin content of the present disclosure, (I) to The resin composition according to (XIII).
  • the crosslinked product of the present disclosure is a crosslinked product obtained by contacting the acrylic resin of the present disclosure, the polyfunctional vinyl compound of the present disclosure, and a base.
  • the crosslinked product of the present disclosure is a crosslinked product obtained by contacting the resin composition of the present disclosure with a base.
  • the preferred base is as described below.
  • the method for producing a crosslinked product of the present disclosure includes a step of contacting the acrylic resin of the present disclosure, the polyfunctional vinyl compound of the present disclosure, and a base. It is preferable to bring the polyfunctional vinyl compound of the present disclosure into contact with a base in the presence of the acrylic resin of the present disclosure, and to bring the acrylic resin of the present disclosure and the polyfunctional vinyl compound of the present disclosure into contact with a base. Examples of the method include a method of contacting the acrylic resin of the present disclosure with a base, and a method of contacting the polyfunctional vinyl compound of the present disclosure.
  • the contacting step may be carried out in the presence of other components as necessary, and examples thereof include optional components of the resin composition of the present disclosure.
  • the preferred use ratio of the acrylic resin of the present disclosure and the polyfunctional vinyl compound of the present disclosure is the same as the content ratio of the acrylic resin of the present disclosure and the polyfunctional vinyl compound of the present disclosure in the resin composition of the present disclosure.
  • the preferable temperature condition of the step of contacting is the same as the step of contacting the resin composition of the present disclosure with a base.
  • the base used in the contacting step and the proportion of the base used are preferably the same as those in the step of contacting the resin composition of the present disclosure with the base.
  • the amount of water present relative to the content of the polyfunctional vinyl compound of the present disclosure of 1 part by mass is adjusted.
  • the amount is preferably 2 parts by mass or less, more preferably 1 part by mass or less, and further preferably 0.5 part by mass or less.
  • the amount of water present at the time of contact may be 0 part by mass or more.
  • the method for producing a crosslinked product of the present disclosure preferably includes a step of bringing the resin composition of the present disclosure into contact with a base (hereinafter, also referred to as “contact step”).
  • a base is added to and mixed with the resin composition of the present disclosure. Examples include, but are not limited to, applying a resin composition, applying the resin composition of the present disclosure on a substrate, and then applying a base thereon.
  • the addition amount may be appropriately selected according to the type of base, the structure of the acrylic resin of the present disclosure, and the like. Further, a low molecular weight compound in which the added base reacts with a carboxy group to form a carboxylate is preferable from the viewpoint of the efficiency of the crosslinking system.
  • the form in which such a base is added and mixed can also be said to be a form in which a mixture of the acrylic resin of the present disclosure and the polyfunctional vinyl compound of the present disclosure is prepared.
  • the base that can be used in the method for producing a crosslinked product of the present disclosure is not particularly limited as long as it acts as a base, and an alkali metal, a basic low molecular weight compound to a high molecular weight compound, and a solid substance having a basic surface.
  • an alkali metal a basic low molecular weight compound to a high molecular weight compound
  • a solid substance having a basic surface Various things can be applied.
  • the basic low molecular weight compound metal oxides, hydroxide salts, alkoxide compounds, carboxylates, amines and the like are preferable from the viewpoint of availability and handleability.
  • metal oxide examples include basic metal oxides such as sodium oxide (Na 2 O), potassium oxide (K 2 O), magnesium oxide (MgO), calcium oxide (CaO), and copper oxide (CuO). , Zinc oxide (ZnO), and the like.
  • hydroxide salt examples include metal hydroxides such as sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, copper hydroxide and zinc hydroxide; tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra Ammonium hydroxides such as butylammonium hydroxide;
  • alkoxide compound examples include compounds represented by the formula (R 5 O) m1 M (wherein R 5 is an alkyl group or an aryl group which may have a substituent, and more specifically, Which may be an alkyl group or an aryl group having 1 to 10 carbon atoms, M represents a cation having a valency of m1 and m1 is an integer of 1 to 4), for example, sodium methoxide, sodium ethoxide. , Metal alkoxides such as aluminum isopropoxide and titanium tetraisopropoxide.
  • Examples of the carboxylic acid salt include salts of monocarboxylic acid and dicarboxylic acid, and may be salts of aliphatic carboxylic acid and aromatic carboxylic acid.
  • the carboxylic acid may have 1 to 10 carbon atoms, or 1 to 6 carbon atoms. More specifically, examples of the carboxylic acid salt include carboxylic acid salts such as sodium formate, sodium acetate, zinc acetate, sodium benzoate, sodium oxalate, ammonium acetate, and a salt of acetic acid and triethylamine.
  • Amines include R 1 R 2 R 3 N (R 1 , R 2 and R 3 each independently represent hydrogen, an alkyl group which may have a substituent, or a substituent which may have a substituent.
  • a good aryl group, which may be bonded to each other to form a cyclic structure) for example, ammonia, butylamine, dibutylamine, triethylamine, piperidine, 1-methylpiperidine, morpholine, 4-methylmorpholine, Specific examples thereof include pyridine, imidazole, 1-methylimidazole, tetramethylguanidine and the like.
  • Examples of the basic polymer compound include a polymer compound having a structure equivalent to that of the basic low-molecular compound described above. Specifically, for example, a sodium salt of a (meth) acrylic acid copolymer, ( Examples thereof include amine salts of (meth) acrylic acid copolymers, polymers having carboxylic acid salts other than (meth) acrylic acid-based copolymers, vinylpyridine copolymers, and polyethyleneimine.
  • the amount of base used may be selected so as to satisfy the curing conditions required by the application.
  • the neutralization degree of the carboxy groups contained in the acrylic resin of the present disclosure is preferably 50 mol% or less, more preferably 20 mol% or less, and even more preferably 10 mol%. It is below. Further, for example, when importance is attached to the rapidity of curing, the degree of neutralization is preferably 50 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more.
  • the number of moles of the basic compound is the number of moles of a monovalent strong acid required to completely neutralize the basic compound stoichiometrically.
  • solid substance having a basic surface a solid substance having a structure equivalent to the above basic low molecular weight compound on the surface can be mentioned, and specific examples thereof include basic alumina and soda lime glass. , Mortar, concrete, etc.
  • the temperature conditions for crosslinking the resin composition of the present disclosure may be appropriately selected depending on the method of contact with the base used, the type of base, the addition amount of the base, the use of the crosslinkable composition of the present invention, and the like. From the viewpoint of suppressing the energy used in the crosslinking process, it is preferably 120 ° C or lower, more preferably 100 ° C or lower, and further preferably 80 ° C or lower.
  • Crosslinking is preferably carried out at ambient temperature or higher, specifically ⁇ 20 ° C. or higher, more preferably ⁇ 10 ° C. or higher, further preferably 0 ° C. or higher.
  • the resin composition and the cross-linked product thereof of the present disclosure can be suitably used for various applications that require cross-linking under mild temperature conditions. Therefore, the crosslinkable resin composition of the present invention and the crosslinked product thereof can be widely used in various applications and fields such as adhesives, pressure-sensitive adhesives, inks, primers, protective coating agents, sealing agents, architectural coatings, and automotive coatings.
  • Example 1 A 40% propylene glycol monomethyl ether acetate solution of an acrylic polycarboxylic acid (main resin) having a carboxy group (COOH) content of 1.78 mmol / g and a weight average molecular weight of 8000, having a copolymer composition as shown in Table 2, synthesis A 50% propylene glycol monomethyl ether acetate solution of PD-PES obtained in Example 1 and a 10% propylene glycol monomethyl ether acetate solution of dimethylbenzylamine were prepared.
  • main resin acrylic polycarboxylic acid
  • COOH carboxy group
  • the content liquid gradually thickened and became fluid after 55 minutes from the addition of the PD-PES solution. This time was taken as the gelation time. Since the fluidity does not disappear unless the crosslink density becomes higher than a certain level, the gelling time is used as an index of crosslink efficiency.
  • the appearance when the appearance was observed 8 hours after the PD-PES solution was added, the appearance was uniform and transparent. If active hydrogen groups and methylene malonate groups are not efficiently generated and many bonds between methylene malonate groups are generated, the base resin that is not sufficiently incorporated in the crosslinks aggregates and separates, resulting in transparency and uniformity. Therefore, the transparency and uniformity of the appearance are indices for evaluating the crosslinking efficiency.
  • Example 1 As the main resin, as shown in the composition in Table 2, the hydroxyl group (OH) content is 1.67 mmol / g, the COOH content is 0.11 mmol / g (the total content of active hydrogen groups is the resin used in Example 1). Under the same conditions as in Example 1, except that an acrylic resin having a copolymer composition other than active hydrogen groups other than active hydrogen groups was similar to the resin used in Example 1 and a weight average molecular weight of 33000 was used. A crosslinkable resin composition was prepared and allowed to stand at room temperature.
  • Example 2 A crosslinkable resin composition was prepared under the same conditions as in Example 1 except that the resin shown in Table 2 was used as the main resin and allowed to stand at room temperature.
  • the gelling time was 40 minutes, and the appearance after 8 hours was uniform and transparent.
  • Example 3 A 10% aqueous sodium hydroxide solution was used as a base solution, and a crosslinkable resin composition was prepared under the same conditions as in Example 2 except that the amount of the base solution added was 0.06 g, and the mixture was allowed to stand at room temperature. ..
  • the gelation time was 13 minutes, and the appearance after 8 hours was uniform and transparent.
  • Example 1 except that the resin as shown in Table 2 was used as the main resin and the resin concentration was 35%, the addition amount of the resin solution was 2.29 g, and the addition amount of the PD-PES solution was 1.19 g.
  • a crosslinkable resin composition was prepared under the same conditions and allowed to stand at room temperature.
  • Example 5 A crosslinkable resin was prepared in the same manner as in Example 1 except that the resin shown in Table 2 was used as the main resin and the addition amount of the resin solution was 1.97 g and the addition amount of the PD-PES solution was 0.40 g. The composition was prepared and allowed to stand at room temperature.
  • the gelation time was 43 minutes, and the appearance after 8 hours was uniform and transparent.
  • Table 1 shows the abbreviations of compound names and compound names, and Table 2 shows the results.
  • Comparing Example 1 with Comparative Example 1 the base resin used in Example 1 gelled in a shorter time than Comparative Example 1 despite the fact that it has a low molecular weight and is disadvantageous in terms of crosslinking efficiency. The appearance was also uniform and transparent.
  • the base resin used in Comparative Example 1 should have a much higher molecular weight and better crosslinking efficiency than the resin used in Example 1, but required a longer gelation time than Example 1, and the appearance after 8 hours. Was cloudy. Therefore, it is understood that the carboxy group has a higher chain transfer efficiency than the hydroxyl group, and that polycarboxylic acid can be efficiently crosslinked with polyvalent methylene malonate under mild temperature conditions when the polycarboxylic acid is used as the main resin.
  • the resin composition of the present disclosure can easily reflect the properties of the designed resin in the required physical properties of the crosslinked cured product, and can be efficiently crosslinked even under mild temperature conditions. It was

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

カルボキシ基を有するアクリル系樹脂と、多官能ビニル化合物とを含み、該アクリル系樹脂は、カルボキシ基を0.6mmol/g以上含み、該多官能ビニル化合物は、下記式(1)で表される構造単位を1分子あたり2以上含む、樹脂組成物である。(式における*印は、それぞれ独立に、式(1)で表される構造単位が結合する、該多官能ビニル化合物に含まれる他の構造単位に含まれる原子を表し、式(1)で表される構造単位には含まれない。式(1)において、RおよびRは、それぞれ独立に、水素原子、または1~15個の炭素原子を有する炭化水素基である。)

Description

アクリル系樹脂組成物、架橋体および架橋体の製造方法
 アクリル系樹脂および多官能ビニル化合物を含む組成物に関する。
 水酸基、カルボキシ基などの活性水素基を含む樹脂と、活性水素基と反応する官能基を有する架橋剤とからなる架橋システムは、接着剤、粘着剤、塗料など、多くの用途で利用されている。古くから利用されている架橋システムとしては、例えば、ポリオール-多価イソシアネートの組合せ、ポリカルボン酸-多価エポキシの組合せが挙げられるが、近年、比較的温和な条件で架橋できるシステムとして、ポリオールとメチレンマロネート基を分子内に複数有する化合物(多価メチレンマロネート)との組合せが提案されている(特許文献1)。
国際公開第2017/210415号
 上記のとおり、種々の架橋システムが知られているが、樹脂設計の自由度が高く、温和な温度条件において効率よく架橋する架橋システムの要望があった。
 本発明は、上記現状に鑑みてなされたものであり、設計した樹脂の特性を架橋硬化物の要求される物性に反映させやすく、かつ温和な温度条件でも効率よく架橋することが可能な樹脂組成物を提供することを目的とする。
 本発明者らは上記課題を解決するため鋭意検討を行い、温和な条件で効率よく架橋することが可能な樹脂組成物に想到した。
 すなわち、本開示の樹脂組成物は、カルボキシ基を有するアクリル系樹脂と、多官能ビニル化合物とを含み、該アクリル系樹脂は、カルボキシ基を0.6mmol/g以上含み、該多官能ビニル化合物は、下記式(1)で表される構造単位を1分子あたり2以上含む、樹脂組成物である。
Figure JPOXMLDOC01-appb-C000004
(式における*印は、それぞれ独立に、式(1)で表される構造単位が結合する、該多官能ビニル化合物に含まれる他の構造単位に含まれる原子を表し、式(1)で表される構造単位には含まれない。式(1)において、RおよびRは、それぞれ独立に、水素原子、または1~15個の炭素原子を有する炭化水素基である。)
 本開示の樹脂組成物は、温和な条件でも効率よく架橋することが可能である。よって、例えば、温和な条件で効率よく架橋すること等が要求される種々の用途に好適に用いることができる。
 以下、本発明を説明する。なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
 <多官能ビニル化合物>
 本開示の樹脂組成物の必須成分である多官能ビニル化合物(以下、「本開示の多官能ビニル化合物」という)は、下記式(1)で表される構造単位を、本開示の多官能ビニル化合物1分子あたり2以上含む。本開示の多官能ビニル化合物1分子あたりに含まれる下記式(1)で表される構造単位の上限は、特に制限は無いが、好ましくは、20以下であり、より好ましくは10以下である。
Figure JPOXMLDOC01-appb-C000005
 式における*印は、それぞれ独立に、式(1)で表される構造単位が結合する、該多官能ビニル化合物に含まれる他の構造単位に含まれる原子を表し、式(1)で表される構造単位には含まれない。
 上記*で表される原子としては、特に制限されないが、それぞれ独立に、炭素原子、窒素原子、酸素原子、から選択される原子であることが好ましく、酸素原子であることがより好ましい。
 式(1)において、RおよびRは、それぞれ独立に、水素原子、1~15個の炭素原子を有する炭化水素基であり、好ましくは、いずれか一方が水素原子であり、更に好ましくは、両方が水素原子である。
 R及びRの炭化水素基の炭素数としては、1~10個が好ましく、1~5個がより好ましい。R及びRの具体例としては、メチル基、エチル基、n-ブチル基、n-ペンチル基(アミル基)、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、イソプロピル基、2-メチルブチル基、イソアミル基、3,3-ジメチルブチル基、2-エチルブチル基、2-エチル-2-メチルプロピル基、イソヘプチル基、イソオクチル基、2-エチルヘキシル基、2-プロピルペンチル基、ネオノニル基、2-エチルヘプチル基、2-プロピルヘキシル基、2-ブチルペンチル基、イソデシル基、ネオデシル基、2-エチルオクチル基、2-プロピルヘプチル基、2-ブチルヘキシル基、イソウンデシル基、ネオウンデシル基、2-エチルノニル基、2-プロピルオクチル基、2-ブチルヘプチル基、2-ペンチルヘキシル基、イソドデシル基、ネオドデシル基、2-エチルデシル基、2-プロピルノニル基、2-ブチルオクチル基、2-ペンチルヘプチル基、イソトリデシル基、ネオトリデシル基、2-エチルウンデシル基、2-プロピルデシル基、2-ブチルオクチル基、2-ペンチルオクチル基、2-ヘキシルヘプチル基、イソテトラデシル基、ネオテトラデシル基、2-エチルドデシル基、2-プロピルウンデシル基、2-ブチルデシル基、2-ペンチルノニル基、2-ヘキシルオクチル基、イソペンタデシル基、ネオペンタデシル基、シクロヘキシルメチル基、ベンジル基等が挙げられる。
 式(1)で表される構造単位は、それぞれ連結基を介して多官能ビニル化合物に含まれる他の構造単位と結合している。すなわち、式(1)で表される構造単位は、通常1または2の連結基と結合しており、少なくとも1の連結基と結合している。
 式(1)で表される構造単位が結合する、該多官能ビニル化合物に含まれる他の構造単位としては、アルコキシ基、アルキル基、アリール基、連結基から選択される基であることが好ましく、これらの基は置換基を有していても良い。
 上記連結基としては、通常は、2以上の式(1)で表される構造単位を間接的に結合させる構造の基である。連結基としては、アルキル基、アルコキシ基、アルケニル基、アリール基、複素環基等、及びエーテル結合、エステル結合、アミド結合、単結合等によりこれらが2以上結合した及び/又は式(1)で表される構造単位と結合している基(ただし式(1)で表される構造単位は上記連結基には含めない)が例示される。連結基は、1または2以上の置換基を有しても良い。上記置換基としては、アルキル基、アリール基、複素環基、アルコキシ基、アミド基、アシル基、ハロゲン原子等が挙げられ、これらはさらに置換基を有していても良い。さらに具体的な連結基としては、ジオール等のポリオールの残基や、ポリエステルの残基等が例示される。ここで残基とは、元の分子等の化学種から少なくとも1の原子を取り除いた残りの基を言う。連結基の分子量は特に制限は無いが、多官能ビニル化合物全体が下記の分子量の範囲となるように設定することが好ましい。
 本開示の多官能ビニル化合物に含まれる式(1)で表される構造単位の含有量は、架橋効率を向上させる観点から、1.0mmol/g以上であることが好ましく、より好ましくは1.5mmol/g以上、さらに好ましくは2.0mmol/g以上、よりさらに好ましくは2.5mmol/g以上である。また後述する本開示のアクリル樹脂との相溶性を向上させる観点から、6.0mmol/g以下であることが好ましく、より好ましくは5.6mmol/g以下、さらに好ましくは5.2mmol/g以下である。
 本開示の多官能ビニル化合物は、特に限定されないが、重量平均分子量(以下、Mwともいう)が、300以上10000以下であることが好ましく、300以上5000以下であることがより好ましく、更に400以上3000以下であることがより好ましい。
 本開示における多官能ビニル化合物の重量平均分子量は、通常はゲルパーミエイションクロマトグラフィー(GPC)の測定装置として、東ソー(株)製、品番:HLC-8220GPC、分離カラム:東ソー(株)製、品番:TSKgel Super MultiporeHZ-Nを用い、標準ポリスチレン〔東ソー(株)製〕によって換算した値である。上記の条件で測定することが妥当でない多官能ビニル化合物については、上記条件を適宜、最小限の変更を加えて測定しても良い。
 本開示の多官能ビニル化合物としては、例えば、国際公開第2017/210415号、特表2015-517973号公報、特表2018-502852号公報、または国際公開第2018/031101号公報に記載のものが挙げられる。また、本開示の多官能ビニル化合物は、本明細書に記載の多官能ビニル化合物であれば、特に制限はないが、本明細書に記載の2以上の式(1)で表される構造単位がエステル結合により連結した多価メチレンマロネートが好ましく、上記記載のジアルキルメチレンマロネートと分子量が400以下の多価アルコールとから得られる多価メチレンマロネートがより好ましく、温和な条件で効率よく架橋することが可能になる傾向にあることから、ジアルキルメチレンマロネートと分子量が400以下の2価のアルコールとをエステル交換させて得られる多価メチレンマロネートが特に好ましい。
 上記ジアルキルメチレンマロネートの具体例としては、メチレンマロン酸メチルプロピル、メチレンマロン酸ジヘキシル、メチレンマロン酸ジシクロヘキシル、メチレンマロン酸ジイソプロピル、メチレンマロン酸ブチルメチル、メチレンマロン酸エトキシエチルエチル、メチレンマロン酸メトキシエチルメチル、メチレンマロン酸ヘキシルエチル、メチレンマロン酸ジペンチル、メチレンマロン酸エチルペンチル、メチレンマロン酸メチルペンチル、メチレンマロン酸エチルエチルメトキシル、メチレンマロン酸エトキシエチルメチル、メチレンマロン酸ブチルエチル、メチレンマロン酸ジブチル、メチレンマロン酸ジエチル(DEMM)、メチレンマロン酸ジエトキシエチル、メチレンマロン酸ジメチル、メチレンマロン酸ジ-N-プロピル、メチレンマロン酸エチルヘキシル、メチレンマロン酸フェンキルメチル、メチレンマロン酸メンチルメチル、メチレンマロン酸2-フェニルプロピルエチル、メチレンマロン酸3-フェニルプロピル、及びメチレンマロン酸ジメトキシエチル等が挙げられる。
 上記多価アルコールとしては2価のアルコールおよび3価以上のアルコールが例示される。多価アルコールの価数の上限に特に制限は無い。上記多価アルコールは、複数種が組み合されて使用されても良い。2価のアルコールとしては、炭素数2~20のアルキレングリコールが挙げられ、具体的には、
 一般式;HO-C2m+1-OH(mは、2~15の整数であり、2~10が好ましく、2~6が好ましい。)で表される化合物が挙げられ、具体的には、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,5-ペンチレングリコール、1,6-ヘキシレングリコール等が挙げられる。
 また、2価のアルコールとしては、
 一般式;HO-(C2r+1-O)-H(rは、2~5の整数であり、2~3であることが好ましく、sは、2~100の整数であり、10~80が好ましく、20~50がより好ましい。)で表されるポリアルキレングリコールであってもよい。
 3価以上のアルコールとしては、グリセリン、ポリグリセリン、エリトリトール、キシリトール、ソルビトール、トリメチロールプロパン、ペンタエリトリトール、ジペンタエリスリトール等の化合物が挙げられる。
 <アクリル系樹脂>
 本開示の樹脂組成物の必須成分である、カルボキシ基を有するアクリル系樹脂(以下、「本開示のアクリル系樹脂」という)は、(メタ)アクリル酸、(メタ)アクリル酸の塩、(メタ)アクリル酸エステル、(メタ)アクリルアミドから選ばれる1種以上の(メタ)アクリル系単量体に由来する構造単位(以下、「(メタ)アクリル系構造単位」とも称する)を、(メタ)アクリル系構造単位と後述するその他の単量体構造単位の合計に対し、5質量%以上含む共重合体または単独重合体であることが好ましい。(メタ)アクリル酸とは、メタクリル酸および/またはアクリル酸を意味する。(メタ)アクリル系単量体に由来する構造単位とは、(メタ)アクリル系単量体がラジカル重合して形成される構造と同じ構造を有する構造単位を言い、構造が同じであれば、実際に(メタ)アクリル系単量体がラジカル重合する方法以外の方法で形成された構造単位も含む。例えば、アクリル酸、CH=CH(COOH)、由来の構造単位であれば-CH-CH(COOH)-で表すことができる。本開示のアクリル系樹脂は、樹脂設計の自由度が高いため、本開示の樹脂組成物は様々な用途に適用可能となる。
 本開示のアクリル系樹脂は、カルボキシ基を0.6mmol/g以上含む。なお、本開示において、上記カルボキシ基は、カルボキシ基の塩を含む。カルボキシ基の塩も架橋に寄与する。ポットライフ等の所望に応じてカルボキシ基の塩を含めても良い。塩としては、制限されないが、例えばアンモニウム塩、有機アミン塩、金属塩等が例示され、アルカリ金属塩、または有機アミンの塩が好ましい。カルボキシ基は、重合体鎖のどこかに共有結合で結合していればよく、例えば主鎖に結合してもいてもよいしグラフト鎖に結合していてもよい。また重合体鎖の中央に結合していてもよいし末端に結合していてもよい。カルボキシ基含有量としては、架橋効率を向上させる観点から0.6mmol/g以上が必要であるが、好ましくは0.8mmol/g以上、より好ましくは1.0mmol/g以上、さらに好ましくは1.2mmol/g以上である。
 本開示のアクリル系樹脂に含まれるカルボキシ基は、一部又は全部が中和されてもよく、その中和度は用途によって要求される硬化条件を満たすように選択すればよい。例えば、可使時間の確保を重視する場合は、本開示のアクリル系樹脂に含まれるカルボキシ基の内、中和度は50mol%以下が好ましく、より好ましくは20mol%以下、更により好ましくは10mol%以下である。また例えば、硬化の迅速性を重視する場合は、中和度は50mol%以上が好ましく、より好ましくは80mol%以上、更により好ましくは90mol%以上である。また、カルボキシ基の含有量の上限は、本開示の多官能ビニル化合物との良好な相溶性を確保する観点から、6.0mmol/g以下であることが好ましく、より好ましくは5.0mmol/g以下であり、さらに好ましくは3.5mmol/g以下である。
 本開示のアクリル系樹脂は、ラジカル重合法により種々の組成や分子量のものを容易に得ることができる観点から、(メタ)アクリル系構造単位を10質量%以上100質量%以下含むことがより好ましく、さらに好ましくは20質量%以上100質量%以下、よりさらに好ましくは30質量%以上100質量%以下、特に好ましくは40質量%以上100質量%以下である。
 (メタ)アクリル系単量体としては、特に制限されず、本開示の架橋性樹脂組成物の用途に応じて適宜選択すればよいが、具体的に例えば、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウムなどの(メタ)アクリル酸またはその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸グリシジル等の(メタ)アクリル酸エステル類;N,N-ジメチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等の(メタ)アクリルアミド類が挙げられ、これらは単独で用いても、2種以上を併用してもよい。
 本開示のアクリル系樹脂は、(メタ)アクリル系単量体以外の単量体(以下、「その他の単量体」ともいう)に由来する構造単位(以下、「その他の単量体構造単位」ともいう)を含んでいても良い。その他の単量体としては、例えば、クロトン酸、けい皮酸、ビニル安息香酸、マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸類;無水マレイン酸、無水イタコン酸等の不飽和酸無水物類;スチレン、ビニルトルエン等の芳香族ビニル類;シクロヘキシルマレイミド、フェニルマレイミド、ベンジルマレイミド等のN置換マレイミド類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等のビニルエステル類;n-ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル類;N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニルアミド類;1,3-ブタジエン、イソプレン、クロロプレン等の共役ジエン類;エチレン、プロピレン、1-ブテンなどのα-オレフィン類が挙げられる。これらは単独で用いても、2種以上を併用してもよい。その他の単量体は、本開示の架橋性樹脂組成物の用途に応じて適宜使用すれば良い。
 本開示のアクリル系樹脂におけるその他の単量体構造単位の含有量は、(メタ)アクリル系構造単位とその他の単量体構造単位の合計に対し、好ましくは0質量%以上95質量%以下、より好ましくは0質量%以上90質量%以下含むことが好ましく、さらに好ましくは0質量%以上80質量%以下、よりさらに好ましくは0質量%以上70質量%以下、特に好ましくは0質量%以上60質量%以下である。
 本開示の(メタ)アクリル系単量体を重合させる際には、連鎖移動剤を用いてもよく、連鎖移動剤の量を調整することによって重合体の分子量を調節することができる。連鎖移動剤の例として、例えば、2-メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸オクチル、3-メルカプトプロピオン酸オクチル、2-メルカプトエタンスルホン酸、n-ドデシルメルカプタン、オクチルメルカプタン、ブチルチオグリコレートなどのチオール化合物;四塩化炭素、塩化メチレン、ブロモホルム、ブロモトリクロロエタンなどのハロゲン化物;イソプロパノールなどの第2級アルコール;亜リン酸及びその塩、次亜リン酸及びその塩、亜硫酸及びその塩、亜硫酸水素及びその塩、亜二チオン酸及びその塩、メタ重亜硫酸及びその塩などが挙げられる。
 また、(メタ)アクリル系単量体を重合させる際には、溶媒を用いてもよく、溶媒の例として、n-ヘキサン、n-ヘプタなどの脂肪族炭化水素化合物;ベンゼン、トルエン、キシレンなどの芳香族化合物;イソプロピルアルコール、n-ブチルアルコールなどのアルコール;プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル、エチルセロソルブ、ブチルセロソルブなどのエーテル;酢酸エチル、酢酸ブチル、セロソルブアセテートなどのエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコールなどのケトン;ジメチルホルムアミドなどのアミドなどの有機溶媒が挙げられるが、本開示は、かかる例示のみに限定されるものではない。これらの溶媒は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。
 本開示のアクリル系樹脂の分子量は、本発明の架橋性樹脂組成物の用途に応じて適宜調整すればよいが、架橋効率の観点から500以上が好ましく、より好ましくは1000以上、さらに好ましくは2000以上である。また作業性や多官能ビニル化合物との相溶性の観点から1000000以下が好ましく、より好ましくは500000以下、さらに好ましくは300000以下である。本開示における分子量は、通常はゲルパーミエイションクロマトグラフィー(GPC)の測定装置として、東ソー(株)製、品番:HLC-8220GPC、分離カラム:東ソー(株)製、品番:TSKgel Super HZM-Mを用い、標準ポリスチレン〔東ソー(株)製〕によって換算した値である。上記の条件で測定することが妥当でないアクリル系樹脂については、上記条件を適宜、最小限の変更を加えて測定しても良い。
 <樹脂組成物>
 本開示の樹脂組成物は、本開示のアクリル系樹脂と、本開示の多官能ビニル化合物とを含むことにより、本開示のアクリル系樹脂の特性を架橋硬化物の物性に反映させることができ、本開示のアクリル系樹脂を設計することで架橋硬化物の物性改良が可能であり、良好な架橋効率を発現するものである。本観点から、本開示の多官能ビニル化合物1に対して本開示のアクリル系樹脂の質量比は、0.5以上100以下が好ましく、1以上10以下がより好ましく、1以上5以下が更により好ましい。上記範囲内であれば、設計した樹脂の特性を架橋硬化物の要求される物性に反映させやすくなる傾向にある。
 本開示の樹脂組成物は、貯蔵安定性を向上させる観点から、アニオン重合禁止剤、ラジカル重合禁止剤および酸化防止剤から選択される1種または2種以上を含んでいてもよい。アニオン重合禁止剤としては水中での酸解離定数が2以下である酸が好ましく、具体的には例えば、硫酸、メタンスルホン酸、p-トルエンスルホン酸などのスルホン酸類、亜硫酸、リン酸、トルフルオロ酢酸などが挙げられる。アニオン重合禁止剤を含む場合、その含有量は酸性度に応じて適宜調整すればよいが貯蔵安定性と反応性のバランスを取る観点から、多官能ビニル化合物に対して0.1~2000質量ppmであることが好ましく、より好ましくは1~1000質量ppm、さらに好ましくは3~500質量ppmである。ラジカル重合禁止剤または酸化防止剤としては、着色抑制の観点からヒンダードフェノール類、イオウ系酸化防止剤、リン系酸化防止剤が好ましく、具体的には例えば、2,6-ジ-t-ブチル-4-メチルフェノール、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアレート、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、テトラキス(メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)フロピオネート)メタン、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,5-ジ-t-ブチルヒドロキノン等のヒンダードフェノール類;ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等のイオウ系酸化防止剤;トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、テトラ(トリデシル)-1,1,3-トリス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)ブタンジホスファイト等のリン系酸化防止剤などが挙げられる。ラジカル重合禁止剤または酸化防止剤を含む場合、その含有量は貯蔵安定性と反応性のバランスを取る観点から、多官能ビニル化合物に対して50~5000質量ppmであることが好ましく、より好ましくは100~3000質量ppm、さらに好ましくは200~2000質量ppmである。
 本開示の樹脂組成物は、粘度が高くなり過ぎることを避け、取扱いの容易さを担保して作業性を向上させる観点から、非反応性あるいは反応性の希釈剤を含んでいてもよい。ここで反応性希釈剤とは、本開示の多官能ビニル化合物とアニオン重合機構により共重合することが可能な官能基を有する希釈剤のことを指す。希釈剤としてそのような反応性希釈剤のみを用いると、反応性希釈剤が高分子量化しながら架橋に取り込まれるため、揮発性溶剤を除去する工程を必要としない架橋性樹脂組成物を構成することができる。一方、非反応性の希釈剤とは、本開示の多官能ビニル化合物とアニオン重合機構により共重合する官能基を有さない希釈剤のことを指す。
 非反応性の希釈剤としては、水あるいは有機溶剤が挙げられ、用途に応じて適宜選択すればよいが、水の水酸基は比較的連鎖移動を起こし易く本発明の架橋性樹脂組成物の架橋を阻害する傾向にあるため、有機溶剤が好ましい。有機溶剤としては揮発性があり本開示のアクリル系樹脂と本開示の多官能ビニル化合物とを均一溶解できるものが好ましい。具体的には例えば、酢酸エチル、酢酸ブチル、プロピオン酸エチル、プロピオン酸ブチル、乳酸メチル、乳酸エチル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートなどのエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、テトラヒドロフラン,ジオキサン等のエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;メタノール、エタノール、イソプロパノール、n-ブタノール、s-ブタノール、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、3-メトキシブタノール等のアルコール類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類などが挙げられる。これらは単独で用いても、2種以上を併用してもよい。
 反応性希釈剤としては、単官能性1,1-二置換ビニル化合物すなわち、式(I)で表される構造を分子内に一個だけ有するビニル化合物を挙げることができる。そのような化合物としては、例えば、ジメチルメチレンマロネート、ジエチルメチレンマロネート、ジn-ブチルメチレンマロネート、ジn-ヘキシルメチレンマロネート、ジシクロヘキシルメチレンマロネート、メチルシクロヘキシルメチレンマロネート、2-エチルヘキシルメチルメチレンマロネートなどが具体的に挙げられる。これらは単独で用いても、2種以上を併用してもよい。
 本開示の樹脂組成物は、非反応性の希釈剤を、例えば0質量%以上50質量%以下含んでいても良く、反応性の希釈剤を、例えば0質量%以上50質量%以下含んでいても良い。
 架橋効率向上の観点から、本開示の樹脂組成物に含まれる水の量を、本開示の多官能ビニル化合物の含有量1質量部に対して、水の含有量を2質量部以下とすることが好ましく、1質量部以下とすることがより好ましく、0.5質量部以下とすることが好ましい。本開示の樹脂組成物に含まれる水の量の好ましい下限については、0質量部以上である。
 粘度を下げる等の取扱い性の観点から、本開示の樹脂組成物に含まれる上記有機溶剤の量を、本開示のアクリル系樹脂の含有量1質量部に対して、有機溶剤の含有量を0.1質量部以上とすることが好ましく、0.3質量部以上とすることがより好ましく、0.5質量部以上とすることが好ましい。本開示の樹脂組成物に含まれる有機溶剤の量の好ましい上限については、架橋効率向上の観点から本開示のアクリル系樹脂の含有量1質量部に対して、50質量部以下であることが好ましく、10質量%以下であることがより好ましい。
 本開示の樹脂組成物は、必要に応じて、本開示のアクリル系樹脂以外の樹脂または多官能カルボン酸、本開示の多官能ビニル化合物以外の多官能ビニル化合物等を含んでいても良い。本開示のアクリル系樹脂以外の樹脂としては、アクリル系以外の重合体鎖からなるポリカルボン酸、カルボキシ基含有量が0.6mmol/g未満のポリカルボン酸、本開示のアクリル系樹脂以外のポリカルボン酸としては、カルボキシ基を分子内に2個以上有する低分子化合物等が例示される。
 アクリル系以外の重合体鎖からなるポリカルボン酸としては具体的に例えば、ポリエステル鎖からなるポリカルボン酸、ポリエーテル鎖からなるポリカルボン酸、ポリウレタン鎖からなるポリカルボン酸、ポリシロキサン鎖からなるポリカルボン酸、ポリアミド鎖からなるポリカルボン酸などが挙げられる。カルボキシ基を分子内に2個以上有する低分子化合物としては具体的に例えば、シュウ酸、コハク酸、マレイン酸、フタル酸、1,2,3-プロパントリカルボン酸、1,3,5-ベンゼントリカルボン酸、1,2,3,4-ブタンテトラカルボン酸、ピロメリット酸などが挙げられる。
 本開示の樹脂組成物は、用途に応じて、光安定剤、紫外線吸収剤、紫外線安定剤、赤外線吸収剤、架橋促進剤、顔料、染料、分散剤、離型剤、艶消し剤、消泡剤、レベリング剤、帯電防止剤、フィラー、難燃剤、粘着付与剤、ワックス、導電剤、可塑剤、改質剤、チクソトロピック付与剤など前述した以外の成分を含んでいてもよい。
 本開示の樹脂組成物は、本開示のアクリル系樹脂を含む組成物と、本開示の多官能ビニル化合物を含む組成物の2つに分けて、流通させてもよい。
 本開示の樹脂組成物の好ましい形態として、
(I)カルボキシ基を有するアクリル系樹脂と、多官能ビニル化合物とを含み、該アクリル系樹脂は、カルボキシ基を0.6mmol/g以上含み、該多官能ビニル化合物は、上記式(1)で表される構造単位を1分子あたり2以上含む、樹脂組成物。
(II)多官能ビニル化合物が、式(1)で表される構造単位を1.0mmol/g以上、好ましくは1.5mmol/g以上、より好ましくは2.0mmol/g以上、さらに好ましくは2.5mmol/g以上含む(I)に記載の樹脂組成物。
(III)多官能ビニル化合物に含まれる、式(1)で表される構造単位が、6.0mmol/g以下であり、好ましくは5.6mmol/g以下であり、さらに好ましくは5.2mmol/g以下である(I)または(II)に記載の樹脂組成物。
(IV)上記式(1)における*で表される原子が、炭素原子、窒素原子、酸素原子、から選択される原子であり、好ましくは酸素原子である、(I)~(III)のいずれかに記載の樹脂組成物。
(V)式(1)で表される構造単位が結合する、該多官能ビニル化合物に含まれる他の構造単位として、多官能ビニル化合物が、アルコキシ基、アルキル基、アリール基、連結基から選択される基(これらの基は置換基を有していても良い)をさらに含む、(I)~(IV)のいずれかに記載の樹脂組成物。
(VI)アクリル系樹脂が、カルボキシ基を0.8mmol/g以上、好ましくは1.0mmol/g以上、より好ましくは1.2mmol/g以上含む、(I)~(V)のいずれかに記載の樹脂組成物。
(VII)アクリル系樹脂に含まれるカルボキシ基が、6.0mmol/g以下、好ましくは5.0mmol/g以下、より好ましくは3.5mmol/g以下である、(I)~(VI)のいずれかに記載の樹脂組成物。
(VIII)アクリル系樹脂が、(メタ)アクリル系構造単位を5質量%以上、好ましくは10質量%以上、100質量%以下、より好ましくは20質量%以上、100質量%以下、さらに好ましくは30質量%以上、100質量%以下、よりさらに好ましくは40質量%以上、100質量%以下含む、(I)~(VII)のいずれかに記載の樹脂組成物。
(IX)多官能ビニル化合物に対するアクリル系樹脂の質量比が、多官能ビニル化合物1に対して、0.5以上100以下が好ましく、1以上10以下がより好ましく、1以上5以下が更により好ましい、(I)~(VIII)のいずれかに記載の樹脂組成物。
(X)上記多官能ビニル化合物の重量平均分子量が、300以上、好ましくは400以上である、(I)~(IX)のいずれかに記載の樹脂組成物。
(XI)上記多官能ビニル化合物の重量平均分子量が、10000以下、好ましくは5000以下、より好ましくは3000以下である、(I)~(X)のいずれかに記載の樹脂組成物。
(XII)樹脂組成物に含まれる水の量が、本開示の多官能ビニル化合物の含有量1質量部に対して、2質量部以下、好ましくは1質量部以下、より好ましくは0.5質量部以下である、(I)~(XI)に記載の樹脂組成物。
(XIII)樹脂組成物に含まれる有機溶剤の含有量が、本開示のアクリル系樹脂の含有量1質量部に対して、0.1質量部以上、好ましくは0.3質量部以上、より好ましくは、0.5質量部以上である、(I)~(XII)に記載の樹脂組成物。
(XIV)樹脂組成物に含まれる有機溶剤の含有量が、本開示のアクリル系樹脂の含有量1質量部に対して、50質量部以下、好ましくは10質量部以下である、(I)~(XIII)に記載の樹脂組成物。
 なお、上記(I)~(XIV)においてカルボキシ基の記載がある場合は、カルボキシ基の塩を含んでもよい。
 <架橋体>
 本開示の架橋体は、本開示のアクリル系樹脂、本開示の多官能ビニル化合物、および塩基を接触させて得られる架橋体である。好ましくは、本開示の架橋体は、本開示の樹脂組成物と塩基とを接触させて得られる架橋体である。好ましい塩基については、後述のとおりである。
 <架橋体の製造方法>
 本開示の架橋体の製造方法は、本開示のアクリル系樹脂、本開示の多官能ビニル化合物、および塩基を接触させる工程を含む。本開示のアクリル系樹脂の存在下で、本開示の多官能ビニル化合物と塩基とを接触させることが好ましく、本開示のアクリル系樹脂と本開示の多官能ビニル化合物を接触させてから塩基と接触させる方法、本開示のアクリル系樹脂と塩基とを接触させてから、本開示の多官能ビニル化合物と接触させる方法などが例示される。上記接触させる工程は、必要に応じて他の成分の存在下で行っても良く、例えば本開示の樹脂組成物の任意成分などが例示される。本開示のアクリル系樹脂と本開示の多官能ビニル化合物の好ましい使用割合は、本開示の樹脂組成物における本開示のアクリル系樹脂と本開示の多官能ビニル化合物の含有割合と同様である。上記接触させる工程の好ましい温度条件としては、本開示の樹脂組成物と塩基とを接触させる工程と同様である。上記接触させる工程で使用する塩基およびその使用割合については、好ましくは本開示の樹脂組成物と塩基とを接触させる工程と同様である。
 本開示のアクリル系樹脂の存在下で、本開示の多官能ビニル化合物と塩基とを接触させる際に、本開示の多官能ビニル化合物の含有量1質量部に対して、水の存在する量を2質量部以下とすることが好ましく、1質量部以下とすることがより好ましく、0.5質量部以下とすることが好ましい。上記接触する際の水の存在量は、0質量部以上であってよい。
 本開示の架橋体の製造方法は、本開示の樹脂組成物と塩基とを接触させる工程(以下、「接触工程」ともいう)を含むことが好ましい。上記接触工程において、塩基と本開示の樹脂組成物とを接触させる方法としては、例えば、塩基を本開示の樹脂組成物に添加して混合する、表面に塩基を含む基材上に本開示の樹脂組成物を塗布する、本開示の樹脂組成物を基材上に塗布した後その上に塩基を塗布するなどが挙げられるが、これらに限定されるものではない。
 塩基を本開示の樹脂組成物に添加して混合する場合、その添加量は塩基の種類、本開示のアクリル系樹脂の構造等に応じて適宜選択すればよい。また添加する塩基がカルボキシ基と反応してカルボン酸塩を形成する低分子化合物であれば、架橋システムの効率性の観点で好ましい。そのような塩基を添加して混合する形態は、本開示のアクリル系樹脂と本開示の多官能ビニル化合物との混合物を調製する形態とも言える。
 本開示の架橋体の製造方法で使用できる塩基としては、塩基として作用するものであれば特に制限されず、アルカリ金属、塩基性の低分子化合物から高分子化合物、塩基性表面を有する固体状物質まで種々のものを適用できる。塩基性の低分子化合物としては、入手性や取扱い性の観点から、金属酸化物、水酸化物塩、アルコキシド化合物、カルボン酸塩、アミン類などが好ましく挙げられる。
 金属酸化物としては塩基性の金属酸化物が挙げられ、例えば、酸化ナトリウム(NaO)、酸化カリウム(KO)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化銅(CuO)、酸化亜鉛(ZnO)などが挙げられる。
 水酸化物塩としては例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化銅、水酸化亜鉛などの金属水酸化物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどのアンモニウムヒドロキシド類;が挙げられる。
 アルコキシド化合物としては式(RO)m1Mで表される化合物が挙げられ(式中、Rは、置換基を有していてもよいアルキル基又はアリール基であり、より具体的には、1~10個の炭素原子を有するアルキル基又はアリール基であってよく、Mは、m1価のカチオンを表し、m1は1~4の整数である)、例えば、ナトリウムメトキシド、ナトリムエトキシド、アルミニウムイソプロポキシド、チタンテトライソプロポキシドなどの金属アルコキシド類が挙げられる。
 カルボン酸塩としては、モノカルボン酸、又はジカルボン酸の塩が挙げられ、脂肪族カルボン酸及び芳香族カルボン酸の塩のいずれであってもよい。当該カルボン酸の炭素数は、1~10個であってよく、1~6個であってもよい。カルボン酸塩としては、より具体的には、例えば、ギ酸ナトリウム、酢酸ナトリウム、酢酸亜鉛、安息香酸ナトリウム、シュウ酸ナトリウム、酢酸アンモニウム、酢酸とトリエチルアミンからなる塩などのカルボン酸塩類が挙げられる。
 アミン類はRN(R、R、Rは、それぞれ独立して、水素、または置換基を有していてもよいアルキル基、または置換基を有していてもよいアリール基であり、それぞれ結合して環状構造を形成していてもよい)と表すことができ、例えばアンモニア、ブチルアミン、ジブチルアミン、トリエチルアミン、ピペリジン、1-メチルピペリジン、モルホリン、4-メチルモルホリン、ピリジン、イミダゾール、1-メチルイミダゾール、テトラメチルグアニジンなどが具体的に挙げられる。
 塩基性の高分子化合物としては上述した塩基性の低分子化合物と同等の構造を有する高分子化合物を挙げることができ、具体的には例えば、(メタ)アクリル酸共重合体のナトリウム塩、(メタ)アクリル酸共重合体のアミン塩、(メタ)アクリル酸系共重合体以外のカルボン酸塩を有する重合体、ビニルピリジン共重合体、ポリエチレンイミンなどが挙げられる。
 これらの塩基性化合物は、何らかの材料でカプセル化され、外部刺激によって放出されるものであってもよい。
 使用する塩基の使用量は、用途によって要求される硬化条件を満たすように選択すればよい。例えば、可使時間の確保を重視する場合は、本開示のアクリル系樹脂に含まれるカルボキシ基の内、中和度は50mol%以下が好ましく、より好ましくは20mol%以下、更により好ましくは10mol%以下である。また例えば、硬化の迅速性を重視する場合は、中和度は50mol%以上が好ましく、より好ましくは80mol%以上、更により好ましくは90mol%以上である。
 なお、塩基性化合物のモル数は、塩基性化合物を化学量論的に完全に中和するのに必要な一価の強酸のモル数とする。
 また、塩基性表面を有する固体状物質としては上記の塩基性の低分子化合物と同等の構造を表面に有する固体状物質を挙げることができ、具体的には例えば、塩基性アルミナ、ソーダライムガラス、モルタル、コンクリートなどが挙げられる。
 本開示の樹脂組成物を架橋させる際の温度条件としては、使用する塩基との接触方法、塩基の種類、塩基の添加量、本発明の架橋性組成物の用途などに応じて適宜選択すればよいが、架橋プロセスで使用するエネルギーを抑制できる観点から、120℃以下が好ましく、より好ましくは100℃以下、さらに好ましくは80℃以下である。また周囲環境温度以上で架橋させることが好ましく、具体的には-20℃以上、より好ましくは-10℃以上、さらに好ましくは0℃以上である。
 <樹脂組成物の用途>
 本開示の樹脂組成物およびその架橋体は温和な温度条件での架橋を必要とする種々の用途に好適に用いることができる。したがって本発明の架橋性樹脂組成物およびその架橋体は、接着剤、粘着剤、インク、プライマー、保護コーティング剤、シーリング剤、建築塗料、自動車塗料など、種々の用途・分野において幅広く使用できる。
 以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。
<合成例1>
 WO2018/031101号公報の例4に従ってペンタンジオールとジエチルメチレンマロネートのエステル交換反応を行った後、反応液を高真空下(1torr)でジエチルメチレンマロネートを留去して1%未満とし、ペンタンジオールとジエチルメチレンマロネートのエステル交換で得られる多官能メチレンマロネート(PD-PES)を得た。H-NMRによりメチレンマロネート基の含有量を測定したところ、3.6mmol/gであった。
<実施例1>
 表2に示すような共重合組成を有するカルボキシ基(COOH)含有量1.78mmol/g、重量平均分子量が8000のアクリル系ポリカルボン酸(主剤樹脂)の40%プロピレングリコールモノメチルエーテルアセテート溶液、合成例1で得たPD-PESの50%プロピレングリコールモノメチルエーテルアセテート溶液、ジメチルベンジルアミンの10%プロピレングリコールモノメチルエーテルアセテート溶液を用意した。
 主剤樹脂の溶液2.00gを10mlスクリュー管に秤量した後、ジメチルベンジルアミンの溶液0.19gを添加し、スパチュラでよく掻き混ぜた。そこへPD-PESの溶液0.80gを添加し、スパチュラでよく掻き混ぜた後、蓋を閉め室温で静置した。
 内容液は徐々に増粘しPD-PESの溶液を添加してから55分後には流動性がなくなった。この時間をゲル化時間とした。なお、架橋密度が一定以上に高くならないと流動性がなくならないことから、ゲル化時間を架橋効率の指標とする。
 また、PD-PESの溶液を添加してから8時間後の外観を観察したところ均一透明であった。なお、活性水素基とメチレンマロネート基の結合が効率よく生成せずメチレンマロネート基どうしの結合が多く生成すると、十分に架橋に組み込まれていない主剤樹脂が凝集、分離し透明性や均一性が低下する傾向があるため、外観の透明性や均一性は架橋効率を評価するうえで指標となる。
 表1には化合物名の略号と化合物名を、表2には結果をまとめた。
<比較例1>
 主剤樹脂として、表2に組成を示すように、水酸基(OH)含有量1.67mmol/g、COOH含有量0.11mmol/g(活性水素基の合計含有量が実施例1で用いた樹脂と同量)で、活性水素基以外の共重合組成が実施例1で用いた樹脂と類似であり、重量平均分子量が33000のアクリル系樹脂を使用したこと以外は、実施例1と同様の条件で架橋性樹脂組成物を調製し、室温で静置した。
 ゲル化時間は110分であり、8時間後の外観は白濁していた。
 表1には化合物名の略号と化合物名を、表2には結果をまとめた。
<実施例2>
 主剤樹脂として表2に示したものを使用したこと以外は、実施例1と同様の条件で架橋性樹脂組成物を調製し、室温で静置した。
 ゲル化時間は40分であり、8時間後の外観は均一透明であった。
 表1には化合物名の略号と化合物名を、表2には結果をまとめた。
<実施例3>
 塩基の溶液として10%水酸化ナトリウム水溶液を用い、塩基の溶液の添加量を0.06gとしたこと以外は実施例2と同様の条件で架橋性樹脂組成物を調製し、室温で静置した。
 ゲル化時間は13分であり、8時間後の外観は均一透明であった。
 表1には化合物名の略号と化合物名を、表2には結果をまとめた。
<実施例4>
 主剤樹脂として表2に示したものを用い樹脂濃度を35%とし、樹脂溶液の添加量を2.29g、PD-PESの溶液の添加量を1.19gとしたこと以外は、実施例1と同様の条件で架橋性樹脂組成物を調製し、室温で静置した。
 ゲル化時間は36分であり、8時間後の外観は均一透明であった。
<実施例5>
 主剤樹脂として表2に示したものを用い、樹脂溶液の添加量を1.97g、PD-PESの溶液の添加量を0.40gとしたこと以外は、実施例1と同様にして架橋性樹脂組成物を調製し、室温で静置した。
 ゲル化時間は43分であり、8時間後の外観は均一透明であった。
 表2に結果をまとめた。
 表1には化合物名の略号と化合物名を、表2には結果をまとめた。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例1と比較例1を対比すると、実施例1で用いた主剤樹脂は、分子量が低く架橋効率の点で不利であるにもかかわらず比較例1よりも短時間でゲル化し8時間後の外観も均一透明であった。それに対し比較例1で用いた主剤樹脂は、実施例1で用いた樹脂よりはるかに高分子量で架橋効率が良いはずのところ、実施例1より長いゲル化時間を要し、8時間後の外観が白濁していた。したがって、カルボキシ基は水酸基より連鎖移動効率が高く、ポリカルボン酸を主剤樹脂として用いると温和な温度条件のもと多価メチレンマロネートで効率的に架橋できることが分かる。
 以上より、本開示の樹脂組成物は、設計した樹脂の特性を架橋硬化物の要求される物性に反映させやすく、かつ温和な温度条件でも効率よく架橋することが可能であることが明らかとなった。
 

Claims (3)

  1.  カルボキシ基を有するアクリル系樹脂と、多官能ビニル化合物とを含み、
     該アクリル系樹脂は、カルボキシ基を0.6mmol/g以上含み、
     該多官能ビニル化合物は、下記式(1)で表される構造単位を1分子あたり2以上含む、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式における*印は、それぞれ独立に、式(1)で表される構造単位が結合する、該多官能ビニル化合物に含まれる他の構造単位に含まれる原子を表し、式(1)で表される構造単位には含まれない。式(1)において、RおよびRは、それぞれ独立に、水素原子、または1~15個の炭素原子を有する炭化水素基である。)
  2.  カルボキシ基を有するアクリル系樹脂と、多官能ビニル化合物と、塩基とを接触させて得られる架橋体であって、
     該アクリル系樹脂は、カルボキシ基を0.6mmol/g以上含み、
     該多官能ビニル化合物は、下記式(1)で表される構造単位を1分子あたり2以上含む、架橋体。
    Figure JPOXMLDOC01-appb-C000002
     (式における*印は、それぞれ独立に、式(1)で表される構造単位が結合する、該多官能ビニル化合物に含まれる他の構造単位に含まれる原子を表し、式(1)で表される構造単位には含まれない。式(1)において、RおよびRは、それぞれ独立に、水素原子、または1~15個の炭素原子を有する炭化水素基である。)
  3.  カルボキシ基を有するアクリル系樹脂と、多官能ビニル化合物と、塩基とを接触させる工程を含み、
     該アクリル系樹脂は、カルボキシ基を0.6mmol/g以上含み、
     該多官能ビニル化合物は、下記式(1)で表される構造単位を1分子あたり2以上含む、架橋体の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     (式における*印は、それぞれ独立に、式(1)で表される構造単位が結合する、該多官能ビニル化合物に含まれる他の構造単位に含まれる原子を表し、式(1)で表される構造単位には含まれない。式(1)において、RおよびRは、それぞれ独立に、水素原子、または1~15個の炭素原子を有する炭化水素基である。)
PCT/JP2019/041185 2018-11-15 2019-10-18 アクリル系樹脂組成物、架橋体および架橋体の製造方法 WO2020100531A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980073723.5A CN112969756A (zh) 2018-11-15 2019-10-18 丙烯酸类树脂组合物、交联体和交联体的制造方法
EP19883755.1A EP3882310A4 (en) 2018-11-15 2019-10-18 ACRYLIC RESIN COMPOSITION, CROSSLINKED PRODUCT AND METHOD OF MAKING A CROSSLINKED PRODUCT
US17/293,542 US20220002534A1 (en) 2018-11-15 2019-10-18 Acrylic Resin Composition, Crosslinked Product and Method for Producing Crosslinked Product
JP2020556737A JP7191979B2 (ja) 2018-11-15 2019-10-18 アクリル系樹脂組成物、架橋体および架橋体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-214427 2018-11-15
JP2018214427 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020100531A1 true WO2020100531A1 (ja) 2020-05-22

Family

ID=70732034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041185 WO2020100531A1 (ja) 2018-11-15 2019-10-18 アクリル系樹脂組成物、架橋体および架橋体の製造方法

Country Status (5)

Country Link
US (1) US20220002534A1 (ja)
EP (1) EP3882310A4 (ja)
JP (1) JP7191979B2 (ja)
CN (1) CN112969756A (ja)
WO (1) WO2020100531A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083921A (ja) * 2018-11-15 2020-06-04 株式会社日本触媒 粘着剤組成物、硬化性組成物及びそれらを含む物品並びに粘着製品の製造方法
WO2023149445A1 (ja) * 2022-02-07 2023-08-10 ナミックス株式会社 液状重合性組成物及びそれを用いる硬化性樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517973A (ja) 2011-10-19 2015-06-25 シラス・インコーポレイテッド 多官能性モノマー、多官能性モノマーを製造する方法、これらから形成された重合性組成物および製品
WO2017210415A1 (en) 2016-06-03 2017-12-07 Sirrus, Inc. Coatings containing polyester macromers containing 1,1-dicarbonyl-substituted 1 alkenes
WO2018022780A1 (en) * 2016-07-26 2018-02-01 Ppg Industries Ohio, Inc. Polyurethane coating compositions containing 1,1-di-activated vinyl compounds and related coatings and processes
WO2018022810A1 (en) * 2016-07-26 2018-02-01 Ppg Industries Ohio, Inc. Curable compositions containing 1,1-di-activated vinyl compounds and related coatings and processes
JP2018502852A (ja) 2015-02-04 2018-02-01 シラス・インコーポレイテッド エステル交換反応条件下で反応性の基を備えたエステル化合物の触媒エステル交換反応
WO2018031101A1 (en) 2016-06-03 2018-02-15 Sirrus, Inc. Polyester macromers containing 1, 1-dicarbonyl-substituted 1 alkenes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767980B2 (en) * 2002-04-19 2004-07-27 Nippon Shokubai Co., Ltd. Reactive diluent and curable resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517973A (ja) 2011-10-19 2015-06-25 シラス・インコーポレイテッド 多官能性モノマー、多官能性モノマーを製造する方法、これらから形成された重合性組成物および製品
JP2018502852A (ja) 2015-02-04 2018-02-01 シラス・インコーポレイテッド エステル交換反応条件下で反応性の基を備えたエステル化合物の触媒エステル交換反応
WO2017210415A1 (en) 2016-06-03 2017-12-07 Sirrus, Inc. Coatings containing polyester macromers containing 1,1-dicarbonyl-substituted 1 alkenes
WO2018031101A1 (en) 2016-06-03 2018-02-15 Sirrus, Inc. Polyester macromers containing 1, 1-dicarbonyl-substituted 1 alkenes
WO2018022780A1 (en) * 2016-07-26 2018-02-01 Ppg Industries Ohio, Inc. Polyurethane coating compositions containing 1,1-di-activated vinyl compounds and related coatings and processes
WO2018022810A1 (en) * 2016-07-26 2018-02-01 Ppg Industries Ohio, Inc. Curable compositions containing 1,1-di-activated vinyl compounds and related coatings and processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3882310A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020083921A (ja) * 2018-11-15 2020-06-04 株式会社日本触媒 粘着剤組成物、硬化性組成物及びそれらを含む物品並びに粘着製品の製造方法
JP7219594B2 (ja) 2018-11-15 2023-02-08 株式会社日本触媒 粘着剤組成物、及びそれを含む物品並びに粘着製品の製造方法
WO2023149445A1 (ja) * 2022-02-07 2023-08-10 ナミックス株式会社 液状重合性組成物及びそれを用いる硬化性樹脂組成物

Also Published As

Publication number Publication date
EP3882310A1 (en) 2021-09-22
JPWO2020100531A1 (ja) 2021-10-07
CN112969756A (zh) 2021-06-15
EP3882310A4 (en) 2022-08-24
JP7191979B2 (ja) 2022-12-19
US20220002534A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
KR101528737B1 (ko) 경화성 수지 조성물
EP0122457B1 (en) Curable composition
KR101521044B1 (ko) 경화성 수지 조성물
WO2013181030A1 (en) Liquid optical adhesive compositions
KR101728652B1 (ko) 액체 광학 접착제 조성물
KR910008792B1 (ko) 가교결합된 조성물 및 이의 제조방법
JP7191979B2 (ja) アクリル系樹脂組成物、架橋体および架橋体の製造方法
KR20140133446A (ko) 저온 경화성 코팅제 조성물 및 그의 경화 피막을 갖는 물품
JP7219594B2 (ja) 粘着剤組成物、及びそれを含む物品並びに粘着製品の製造方法
AU2013273313A1 (en) Resins bearing cyclic carbonate groups and cross-linkable compositions of said resins having a low VOC level
TW201739883A (zh) 紫外線硬化型丙烯酸系聚合物及其製造方法以及紫外線硬化型熱熔接著劑
JP6461927B2 (ja) 粘着フィルム用光硬化性樹脂組成物および粘着フィルム
US11466105B2 (en) Photocurable acrylic resin, adhesive composition including the same, and adhesive film formed using the adhesive composition
JP6347341B1 (ja) 紫外線硬化型アクリル系ポリマー及びその製造方法並びに紫外線硬化型ホットメルト接着剤
EP3822260A1 (en) Epoxy modified acrylic resin and preparation method therefor, and energy-curable composition containing epoxy modified acrylic resin and application
CN116635452A (zh) 可自由基聚合的交联剂、可固化组合物和由其得到的粘合剂
CN116507680A (zh) 可自由基聚合的交联剂、可固化组合物和由其得到的粘合剂
TW201725233A (zh) 固化性樹脂組合物
US3711451A (en) Hydroxyl containing liquid mercaptan-terminated acrylate polymers
JP6928732B1 (ja) 硬化性組成物及びそれを用いた硬化物
JP2011178863A (ja) 活性エネルギー線硬化性組成物、硬化性樹脂組成物及び硬化物
JP2022098576A (ja) 硬化性組成物
JP2022098577A (ja) 硬化性組成物
JP7375502B2 (ja) (メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物及び物品
JP2001310916A (ja) 重合性樹脂組成物、その製造方法及びその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556737

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019883755

Country of ref document: EP

Effective date: 20210615