WO2020098603A1 - 确定装置、摄像装置、摄像系统、移动体、确定方法以及程序 - Google Patents

确定装置、摄像装置、摄像系统、移动体、确定方法以及程序 Download PDF

Info

Publication number
WO2020098603A1
WO2020098603A1 PCT/CN2019/117156 CN2019117156W WO2020098603A1 WO 2020098603 A1 WO2020098603 A1 WO 2020098603A1 CN 2019117156 W CN2019117156 W CN 2019117156W WO 2020098603 A1 WO2020098603 A1 WO 2020098603A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
camera
imaging device
determination
imaging
Prior art date
Application number
PCT/CN2019/117156
Other languages
English (en)
French (fr)
Inventor
高宫诚
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980008727.5A priority Critical patent/CN111630838B/zh
Publication of WO2020098603A1 publication Critical patent/WO2020098603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • G03B3/12Power-operated focusing adapted for remote control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the invention relates to a determination device, an imaging device, an imaging system, a moving body, a determination method and a program.
  • Patent Document 1 discloses that whenever the count of the number of steps reaches a predetermined number of steps, a notification is performed to prompt the imaging device to take a picture.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-5737
  • the camera device When the camera device performs a specific motion, for example, when the user walks while using the camera device to take images, it may not be able to autofocus correctly.
  • the determination device may include an acquisition unit that acquires information indicating the movement of the camera device.
  • the determination device may include a determination section that determines the focusable range based on the information, that is, the range of the distance between the subject as the autofocusing target of the imaging device and the imaging device.
  • the determination section may determine the first range as the focusable range.
  • the determination section may determine the second range smaller than the first range as the focusable range.
  • the determination unit may determine the second range as the focusable range.
  • the determination unit may determine the first range as the focusable range.
  • the determining section The range is determined as the focusable range.
  • the determination unit may determine the second range as the focusable range.
  • the determination section may determine the first range as the focusable range, and the second angle includes the direction displayed by the display section connected to the imaging device.
  • the determination section may determine the first range as the focusable range.
  • the acquisition unit may acquire information from a sensor that detects the vibration of the camera.
  • the first range may include the second range.
  • the first range may be a range from the first distance to the infinite distance between the subject and the imaging device.
  • the second range may be a range from the second distance farther than the first distance to the infinite distance between the subject and the imaging device.
  • the second range may be smaller than when the camera moves at the first speed.
  • An imaging device may include the above-mentioned determining device.
  • the image pickup apparatus may include a control section that performs auto focusing based on the focusable range.
  • An imaging system may include the above-mentioned imaging device.
  • the camera system may include a support mechanism that rotatably supports the camera device.
  • the mobile body according to one aspect of the present invention may be a mobile body that includes the above-described camera system and moves.
  • the determination method may include a stage of acquiring information indicating the movement of the camera device.
  • the determination method may include a stage of determining a focusable range based on the information, the focusable range being a range of distances between the subject as the autofocusing object of the camera and the camera.
  • the program according to one aspect of the present invention may be a program for causing a computer to function as the above-mentioned determining device.
  • FIG. 1 is an external perspective view showing an example of a stabilizer.
  • FIG. 2 is a diagram showing an example of a stabilizer function block.
  • FIG. 3 is a diagram showing an example of the relationship between the distance between the subject as the autofocusing target of the imaging device and the imaging device and the defocus amount of the imaging device.
  • FIG. 4 is a flowchart showing an example of steps when the imaging apparatus performs auto focus.
  • FIG. 5 is a diagram showing an example of the appearance of an unmanned aircraft and a remote control device.
  • FIG. 6 is a diagram for explaining an example of a hardware configuration.
  • the blocks may represent (1) the stage of the process of performing the operation or (2) the "part" of the device having the function of performing the operation.
  • the designated stages and “departments” can be realized by programmable circuits and / or processors.
  • the dedicated circuits may include digital and / or analog hardware circuits.
  • ICs integrated circuits
  • / or discrete circuits may be included.
  • the programmable circuit may include a reconfigurable hardware circuit.
  • Reconfigurable hardware circuits can include logical AND, logical OR, logical XOR, logical NAND, logical NOR, and other logic operations, flip-flops, registers, field programmable gate array (FPGA), programmable logic array (PLA) ) And other memory elements.
  • the computer-readable medium may include any tangible device capable of storing instructions executed by a suitable device.
  • the computer-readable medium having instructions stored thereon includes a product that includes instructions that can be executed to create a means for performing the operations specified by the flowchart or block diagram.
  • electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, etc. may be included.
  • floopy registered trademark
  • floppy disk floppy disk
  • hard disk random access memory
  • RAM random access memory
  • ROM read only memory
  • EPROM or Flash memory erasable programmable read only memory
  • EEPROM electrically erasable programmable read-only memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • RTM Blu-ray
  • the computer-readable instructions may include any one of source code or object code described by any combination of one or more programming languages.
  • Source code or object code includes traditional procedural programming languages.
  • Traditional programming languages can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or Smalltalk, Object-oriented programming languages such as C ++ and "C" programming languages or similar programming languages.
  • the computer readable instructions may be provided locally or via a wide area network (WAN) such as a local area network (LAN), the Internet, or the like to a processor or programmable circuit of a general-purpose computer, a dedicated computer, or other programmable data processing device.
  • WAN wide area network
  • LAN local area network
  • the Internet or the like to a processor or programmable circuit of a general-purpose computer, a dedicated computer, or other programmable data processing device.
  • a processor or programmable circuit can execute computer readable instructions to create means for performing the operations specified by the flowchart or block diagram.
  • Examples of the processor include a computer processor, a processing unit, a microprocessor, a digital signal processor, a controller, a microcontroller, and so on.
  • FIG. 1 is an external perspective view showing an example of the stabilizer 500.
  • the stabilizer 500 includes an imaging device 100, a universal joint 50, and a handle portion 503.
  • the stabilizer 500 is an example of a camera system.
  • the universal joint 50 rotatably supports the camera device 100.
  • the gimbal 50 has a yaw axis rotation mechanism 509, a pitch axis rotation mechanism 510, and a roll axis rotation mechanism 511.
  • the gimbal 50 may rotatably support the imaging device 100 with the yaw axis, pitch axis, and roll axis as the centers.
  • the universal joint 50 is the position of the support mechanism.
  • the imaging device 100 has a slot 101 for inserting a memory.
  • the universal joint 50 is fixed to the handle portion 503 via the bracket 507.
  • the handle portion 503 has various buttons for operating the universal joint 50 and the imaging device 100.
  • the handle portion 503 includes a shutter button 504, a recording button 505, and an operation button 506. By pressing the shutter button 504, a still image can be recorded by the imaging device 100. By pressing the record button 505, the camera 100 can record a moving image.
  • the stabilizer 500 also includes an equipment support 501.
  • the equipment holder 501 is fixed to the handle portion 503.
  • the device support 501 supports mobile devices 502 such as smartphones.
  • the mobile device 502 can be communicatively connected to the stabilizer 500 via a wireless network such as WiFi. Thereby, the image captured by the camera 100 can be displayed on the screen of the mobile device 502.
  • the stabilizer 500 may include an equipment holder 501.
  • FIG. 2 shows an example of a functional block diagram of the stabilizer 500.
  • the stabilizer 500 includes an imaging device 100 and a universal joint 50.
  • the imaging device 100 includes an imaging unit 102 and a lens unit 200.
  • the imaging device 100 is an example of a determination device.
  • the lens unit 200 is an example of a lens device.
  • the imaging unit 102 includes an image sensor 120, an imaging control unit 110, a memory 130, an acceleration sensor 140, and a GPS receiver 150.
  • the image sensor 120 may be composed of CCD or CMOS.
  • the image sensor 120 captures an optical image imaged through a plurality of lenses 210, and outputs the captured image to the imaging control section 110.
  • the imaging control unit 110 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the memory 130 may be a computer-readable recording medium, and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, USB memory, and solid state drive (SSD).
  • the memory 130 stores programs and the like necessary for the imaging control unit 110 to control the image sensor 120 and the like.
  • the memory 130 may be provided inside the casing of the camera 100.
  • the memory 130 may be configured to be detachable from the casing of the camera device 100.
  • the acceleration sensor 140 detects acceleration in the three-axis direction (pan axis (ie, yaw axis: yaw axis), tilt axis (ie, pitch axis: pitch axis), and roll axis (ie, roll axis)).
  • the GPS receiver 150 receives multiple signals indicating the time transmitted from multiple GPS satellites.
  • the GPS receiver 150 calculates the position (latitude and longitude) of the GPS receiver 150, that is, the position (latitude and longitude) of the imaging device 100 based on the received multiple signals.
  • the lens unit 200 includes a plurality of lenses 210, a plurality of lens driving units 212, and a lens control unit 220.
  • the multiple lenses 210 can function as a zoom lens (zoom lens), a variable focal length lens (varifocal lens), and a focusing lens. At least a part or all of the plurality of lenses 210 are configured to be movable along the optical axis.
  • the lens unit 200 may be an interchangeable lens provided to be detachable from the imaging unit 102.
  • the lens driving section 212 moves at least a part or all of the plurality of lenses 210 along the optical axis via a mechanism member such as a cam ring.
  • the lens driving part 212 may include an actuator.
  • the actuator may include a stepper motor.
  • the lens control unit 220 drives the lens driving unit 212 in accordance with the lens control command from the imaging unit 102, and moves one or more lenses 210 along the optical axis direction via a mechanism member.
  • the lens control commands are, for example, zoom control commands and focus control commands.
  • the lens unit 200 also has a memory 222 and a position sensor 214.
  • the lens control unit 220 controls the movement of the lens 210 in the optical axis direction via the lens driving unit 212 according to the lens operation instruction from the imaging unit 102.
  • the lens control unit 220 controls the movement of the lens 210 in the optical axis direction via the lens driving unit 212 according to the lens operation instruction from the imaging unit 102. Part or all of the lens 210 moves along the optical axis.
  • the lens control section 220 performs at least one of a zoom operation and a focus operation by moving at least one of the lenses 210 along the optical axis.
  • the position sensor 214 detects the position of the lens 210.
  • the position sensor 214 may detect the current zoom position or focus position.
  • the memory 222 stores the control values of the plurality of lenses 210 moved via the lens driving unit 212.
  • the memory 222 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the gimbal 50 includes a yaw axis rotation mechanism 509, a pitch axis rotation mechanism 510, a roll axis rotation mechanism 511, a gimbal control unit 520, a memory 530, and an inertial measurement device 540.
  • the yaw axis rotation mechanism 509 rotates the imaging device 100 about the yaw axis.
  • the tilt axis rotation mechanism 510 rotates the imaging device 100 about the tilt axis.
  • the roll axis rotation mechanism 511 rotates the imaging device 100 about the roll axis.
  • the gimbal control unit 520 controls the driving of the yaw axis rotation mechanism 509, the pitch axis rotation mechanism 510, and the roll axis rotation mechanism 511.
  • the gimbal control unit 520 may be constituted by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the memory 530 may be a computer-readable recording medium, and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, USB memory, and solid state drive (SSD).
  • the memory 530 stores programs and the like necessary for the gimbal control unit 520 to control the yaw axis rotation mechanism 509, the pitch axis rotation mechanism 510, the roll axis rotation mechanism 511, and the like.
  • the memory 530 may be provided inside the housing of the universal joint 50.
  • the memory 530 may be configured to be detachable from the housing of the universal joint 50.
  • the inertial measurement device 540 detects the posture of the imaging device 100.
  • the inertial measurement device 540 can detect the acceleration in the three axis directions of the camera device 100 in the front, back, left, right, and up and down directions and the angular velocity in the three axis directions of pitch, roll, and yaw as the posture of the camera device 100.
  • the autofocus of the imaging device 100 may not be correctly performed due to the movement of the imaging device 100.
  • the user holds the stabilizer 500 at night and takes a moving image of the user's traveling direction while walking.
  • the imaging device 100 executes autofocus (AF).
  • AF autofocus
  • the imaging apparatus 100 performs contrast AF, it moves the focus lens from infinity to the closest end, and searches for the position of the focus lens where the contrast value reaches the peak. That is, by performing autofocus, the focus lens moves from infinity to the closest end, and therefore the image captured by the camera 100 is blurred.
  • the imaging device 100 is more likely to be able to search for the position of the focus lens that can obtain the focus state for the target subject without moving the focus lens to the nearest end.
  • the imaging device 100 adjusts the focusable range according to the movement of the imaging device 100, that is, the range of the distance between the subject as the autofocus target and the imaging device 100.
  • the imaging control unit 110 includes an acquisition unit 112, a determination unit 114, and a focus control unit 116.
  • the acquisition unit 112 acquires information indicating the movement of the imaging device 100.
  • the acquisition unit 112 may acquire, from the acceleration sensor 140, information indicating the acceleration in the three axis directions generated in the imaging device 100 as information indicating the movement of the imaging device 100.
  • the acquiring unit 112 can acquire information representing the acceleration in the three axis directions generated in the camera 100 from the inertial measurement device 540 as information representing the motion of the camera 100; it can acquire information representing the vibration of the camera 100 as the image Information of the movement of the device 100, which represents the vibration of the imaging device 100, is derived from the acceleration generated in the imaging device 100 detected by the acceleration sensor 140 or the inertial measurement device 540.
  • the determination unit 114 determines the focusable range based on the information indicating the movement of the imaging device, which is the range of the distance between the subject that is the autofocusing target of the imaging device 100 and the imaging device 100.
  • the focus control section 116 performs auto focusing based on the focusable range.
  • the focus control unit 116 moves the focus lens within the drive range corresponding to the focusable range to search for the position of the focus lens that can obtain the focus state for the subject that is the subject of autofocus.
  • the focus control unit 116 moves the focus lens within the driving range corresponding to the focusable range, causes the imaging device 100 to capture multiple images during this period, and determines the position of the focus lens whose contrast value peaks based on the multiple images.
  • the determining section 114 may determine the first range as the focusable range.
  • the determination unit 114 may determine the second range smaller than the first range as the focusable range.
  • the determining unit 114 may determine the second range as the focusable range.
  • the determination unit 114 may determine that the information indicating the motion of the camera 100 shows the predetermined motion.
  • the change pattern of the acceleration generated in the camera 100 matches the predetermined change pattern indicating the movement of the user while walking, the determining unit 114 may determine that the information indicating the motion of the camera 100 shows the predetermined motion.
  • the determining unit 114 may determine the first range as the focusable range. The first range may be the range from the first distance to the infinite distance between the subject and the imaging apparatus 100.
  • the second range may be a range from the second distance farther than the first distance to the infinite distance between the subject and the imaging device 100.
  • the first range may include the second range.
  • the walking state is, for example, at least one of the case where a certain vibration occurs in the vertical direction and the position of the imaging device moves.
  • the vibration may be detected by at least one of the acceleration sensor 140 and the inertial measurement device 540.
  • the movement of the position may be detected by at least one of the acceleration sensor 140, the inertial measurement device 540, and the GPS receiver 150.
  • the walking state is, for example, the number of steps per unit time. The number of steps is measured by a pedometer.
  • the imaging device 100 When the imaging device 100 is moving, for example, when a user holding the imaging device 100 is walking, the imaging device 100 is unlikely to focus on a subject in close proximity and shoot. Therefore, when the imaging device 100 is performing a predetermined movement, the focusable range when performing autofocus is limited.
  • the self-timer state means, for example, that the imaging direction of the imaging device 100 exists at an angle (second angle) including the direction displayed by a display (display unit) connected to the imaging device 100.
  • the angle including the display direction of the display unit refers to, for example, a range that the user who operates the imaging device 100 can see through the display unit.
  • the display direction of the display unit refers to, for example, a direction intersecting the display surface of the display unit.
  • the display portion may be provided at a position where the handle portion 503 or the shutter button 504, the recording button 505, or the operation button 506 of the handle portion 503 is disposed.
  • the mobile device 502 may additionally have an imaging device (not shown) on the same surface on which the mobile device screen is installed. With this separately provided camera device, a self-timer can be taken, and the captured image can be displayed on the display section provided on the handle section 503.
  • the determining section 114 may determine the second range as the focusable range.
  • the information indicating the motion of the camera 100 indicates a predetermined motion, that is, a motion corresponding to a state where the user holding the camera 100 is walking, and the angle formed by the camera direction of the camera 100 and the moving direction of the camera 100 satisfies
  • the determining section 114 may determine the second range as the focusable range.
  • the information indicating the motion of the camera 100 indicates a predetermined motion, that is, a motion corresponding to a state in which the user holding the camera 100 is walking, and the angle formed by the camera direction of the camera 100 and the direction of movement of the camera satisfies the first
  • the determination unit 114 may determine the first range as the focusable range.
  • the information indicating the motion of the camera 100 indicates a predetermined motion, that is, a motion corresponding to a state in which the user holding the camera 100 is walking, and the angle formed by the camera direction of the camera 100 and the moving direction of the camera 100
  • the determining section 114 may determine the second range as the focusable range.
  • the information indicating the motion of the camera 100 indicates a predetermined motion, that is, a motion corresponding to a state in which the user holding the camera 100 is walking, and the angle formed by the camera direction of the camera 100 and the camera moving direction satisfies 45 degrees
  • the determination unit 114 may determine the first range as the focusable range.
  • the determination unit 114 may determine the first range as the focusable range, and the second angle includes the direction displayed by the display unit connected to the imaging device 100.
  • the user may stay at this position and take pictures while rotating the imaging device 100 to the left or right. That is, the user may perform photography while panning the imaging device 100.
  • the camera 100 may need to adjust the position of the focusing lens to focus on the closest object.
  • the information indicating the motion of the camera 100 indicates a predetermined motion, that is, when the relationship between the imaging direction of the camera 100 and the moving direction of the camera 100 satisfies the translation condition, the determining unit 114 may determine the first range as the focusable range.
  • the translation condition may be, for example, a case where the angle formed by the imaging direction of the imaging device 100 and the moving direction of the imaging device 100 satisfies 45 degrees.
  • the translation condition may be, for example, when the angle formed by the imaging direction of the imaging device 100 and the moving direction of the imaging device 100 satisfies the range of 40 to 50 degrees.
  • the determining unit 114 may determine that the relationship between the imaging direction of the imaging device 100 and the movement direction of the imaging device 100 satisfies the translation condition when the imaging mode of the imaging device 100 is set to the panoramic imaging mode.
  • the translation is, for example, a state where the imaging device 100 moves in one direction within a predetermined time. The state in which the camera device 100 is operating in one direction can be detected by at least one of the acceleration sensor 140, the inertial measurement device 540, and the GPS receiver 150.
  • the second range may be smaller than when the camera 100 moves at the first speed. That is, the faster the speed of the imaging device 100, the smaller the second range may be.
  • FIG. 3 shows the relationship between the distance (cm) between the subject as the autofocusing target of the imaging device 100 and the imaging device 100 and the defocus amount (F ⁇ ) of the imaging device 100.
  • F is the F value of the imaging device 100
  • represents the permissible diameter of the circle of confusion.
  • the defocus amount at infinity is shown as zero.
  • the defocus amount is an index indicating how far the focus is deviated.
  • the focusable range when there is no limit is a range W1 in which the distance between the subject and the imaging device 100 is from infinity to 20 cm.
  • the distance indicating the intermediate value of the defocus amount is 40 cm.
  • the focusable range is the range W2 of the distance between the subject and the imaging device 100 from infinity to 50 cm.
  • the determination unit 114 determines the focusable range indicating that the imaging device 100 has made a predetermined movement as the range W2. After changing the focusable range from range W1 to W2, the defocus amount can be controlled to less than half.
  • the amount of defocus differs according to the optical characteristics of the imaging device 100. Therefore, based on the change amount of the defocus amount of the imaging device 100, the focusable range indicating that the imaging device 100 has performed a predetermined movement can be appropriately set according to the optical characteristics of the imaging device 100.
  • FIG. 4 is a flowchart showing an example of steps when the imaging apparatus 100 performs autofocus.
  • the acquisition section 112 acquires information representing the motion of the imaging device 100 from various sensors such as the acceleration sensor 140, the GPS receiver 150, or the inertial measurement device 540 (S100).
  • the determining section 114 determines whether the motion of the camera 100 is a predetermined motion (S102). For example, when the motion of the camera 100 matches the motion of the user who is holding the camera 100 and the shooting direction of the camera 100 and the moving direction of the camera 100 are the same, the determining unit 114 may determine that the motion of the camera 100 Scheduled exercise.
  • the determining unit 114 determines the focusable range of autofocus as the first range, for example, the range from infinity to 20 cm (S104).
  • the determination unit 114 determines the focusable range of the autofocus to be a second range smaller than the first range, for example, a range from infinity to 50 cm (S106) .
  • the image capturing apparatus 100 determines whether to end the auto focus (S108), and when it is necessary to continue the auto focus, the processing after step S100 is continued.
  • the imaging device 100 indicates a predetermined movement with a low possibility of focusing on the closest object
  • the focusable range of the autofocus is limited.
  • searching for the position of the focus lens that can obtain the in-focus state it is no longer necessary to move the focus lens to the nearest side meaninglessly.
  • the defocus amount of auto focus can be suppressed.
  • a user uses the camera 100 to take a moving image while walking, there is a large change in contrast, and even if autofocus is started, blurring of the moving image can be suppressed.
  • the imaging device 100 described above may be mounted on a mobile body.
  • the imaging device 100 can also be mounted on an unmanned aerial vehicle (UAV) as shown in FIG. 5.
  • UAV 10 may include a UAV body 20, a universal joint 50, a plurality of imaging devices 60, and an imaging device 100.
  • the universal joint 50 and the imaging device 100 are an example of an imaging system.
  • UAV10 is an example of a mobile body propelled by a propulsion unit.
  • the concept of a moving body means that in addition to UAVs, it includes flying bodies such as airplanes moving in the air, vehicles moving on the ground, and ships moving on the water.
  • the movement information of the moving object is used instead of the walking state of the user.
  • the movement state is detected using at least one of the GPS, acceleration sensor, and altitude sensor mounted on the UAV10.
  • the focusable range of the imaging device 100 is controlled.
  • the determination unit 114 may determine the focusable range of autofocus as a second range smaller than the first range.
  • the UAV body 20 includes a plurality of rotors. Multiple rotors are an example of a propulsion unit.
  • the UAV main body 20 makes the UAV 10 fly by controlling the rotation of a plurality of rotors.
  • the UAV body 20 uses, for example, four rotors to make the UAV 10 fly.
  • the number of rotors is not limited to four.
  • UAV10 can also be a fixed-wing aircraft without a rotor.
  • the imaging device 100 is an imaging camera that captures an object included in a desired imaging range.
  • the universal joint 50 rotatably supports the camera device 100.
  • the universal joint 50 is an example of a support mechanism.
  • the gimbal 50 uses an actuator to rotatably support the camera 100 with a pitch axis.
  • the universal joint 50 uses an actuator to further rotatably support the imaging device 100 about the roll axis and the yaw axis, respectively.
  • the gimbal 50 can change the posture of the imaging device 100 by rotating the imaging device 100 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the plurality of imaging devices 60 are sensing cameras that capture the surroundings of the UAV 10 in order to control the UAV 10's flight.
  • the two camera devices 60 may be installed on the front of the head of the UAV10.
  • the other two camera devices 60 may be installed on the bottom surface of the UAV 10.
  • the two camera devices 60 on the front side may be paired and function as a so-called stereo camera.
  • the two imaging devices 60 on the bottom surface side may also be paired to function as a stereo camera.
  • the three-dimensional space data around the UAV 10 can be generated from the images captured by the plurality of camera devices 60.
  • the number of imaging devices 60 included in the UAV 10 is not limited to four.
  • the UAV 10 only needs to have at least one camera 60.
  • UAV10 may include at least one camera 60 on the nose, tail, side, bottom, and top of UAV10, respectively.
  • the angle of view that can be set in the camera 60 can be larger than the angle of view that can be set in the camera 100.
  • the imaging device 60 may have a single focus lens or a fisheye lens.
  • the remote operation device 300 communicates with the UAV10 to remotely operate the UAV10.
  • the remote operation device 300 can perform wireless communication with the UAV 10.
  • the remote operation device 300 transmits to the UAV 10 instruction information indicating various commands related to the movement of the UAV 10 such as ascent, descent, acceleration, deceleration, forward, backward, and rotation.
  • the instruction information includes, for example, instruction information for increasing the height of the UAV 10.
  • the indication information may indicate the height at which UAV10 should be located.
  • the UAV 10 moves to be at the height indicated by the instruction information received from the remote operation device 300.
  • the instruction information may include an ascending instruction to ascend UAV10. UAV10 rises while receiving the rise command. When the height of UAV10 has reached the upper limit, even if the ascending command is accepted, UAV10 can be restricted from ascending.
  • FIG. 6 shows an example of a computer 1200 that can embody various embodiments of the present invention in whole or in part.
  • the program installed on the computer 1200 can cause the computer 1200 to function as an operation associated with the device according to the embodiment of the present invention or one or more "parts" of the device.
  • the program can cause the computer 1200 to perform the operation or the one or more "parts”.
  • This program enables the computer 1200 to execute the process according to the embodiment of the present invention or the stage of the process.
  • Such a program may be executed by the CPU 1212 to cause the computer 1200 to perform specified operations associated with some or all of the blocks in the flowchart and block diagrams described in this specification.
  • the computer 1200 includes a CPU 1212 and a RAM 1214, which are connected to each other through a host controller 1210.
  • the computer 1200 also includes a communication interface 1222 and an input / output unit, which are connected to the host controller 1210 through the input / output controller 1220.
  • the computer 1200 also includes a ROM 1230.
  • the CPU 1212 operates according to programs stored in the ROM 1230 and RAM 1214, thereby controlling each unit.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • the hard disk drive can store programs and data used by the CPU 1212 in the computer 1200.
  • the ROM 1230 stores therein a boot program and the like executed by the computer 1200 during operation, and / or a program dependent on the hardware of the computer 1200.
  • the program is provided through a computer-readable recording medium such as a CR-ROM, USB memory, or IC card, or a network.
  • the program is installed in the RAM 1214 or ROM 1230 which is also an example of a computer-readable recording medium, and is executed by the CPU 1212.
  • the information processing described in these programs is read by the computer 1200 and causes cooperation between the programs and the various types of hardware resources described above.
  • the operation or processing of information may be implemented as the computer 1200 is used, thereby constituting an apparatus or method.
  • the CPU 1212 may execute the communication program loaded in the RAM 1214, and based on the processing described in the communication program, instruct the communication interface 1222 to perform communication processing.
  • the communication interface 1222 reads the transmission data stored in the transmission buffer provided in the recording medium such as RAM 1214 or USB memory, and transmits the read transmission data to the network, or receives it from the network The received data is written into the receive buffer provided on the recording medium, etc.
  • the CPU 1212 may cause the RAM 1214 to read all or necessary parts of files or databases stored in an external recording medium such as a USB memory, and perform various types of processing on the data on the RAM 1214. Then, the CPU 1212 can write the processed data back to the external recording medium.
  • an external recording medium such as a USB memory
  • Various types of information such as various types of programs, data, tables, and databases can be stored in the recording medium and subjected to information processing.
  • the CPU 1212 can perform various types of operations, information processing, condition judgment, conditional transfer, unconditional transfer, and information retrieval described in various places of the present disclosure, including specified by the instruction sequence of the program Replacement and other types of processing, and write the results back to RAM1214.
  • the CPU 1212 can retrieve information in files, databases, etc. in the recording medium.
  • the CPU 1212 can retrieve the attribute values of the specified first attribute from the multiple entries An entry that matches the condition of, and reads the attribute value of the second attribute stored in the entry, thereby obtaining the attribute value of the second attribute associated with the first attribute that meets the predetermined condition.
  • the above program or software module may be stored on the computer 1200 or on a computer-readable storage medium near the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, so that the program can be provided to the computer 1200 via the network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

在摄像装置进行特定运动时,例如用户一边行走一边使用摄像装置摄像时,有时无法正确地进行自动对焦。确定装置可以包括获取部,其获取表示摄像装置运动的信息。确定装置可以包括确定部,其基于信息确定可对焦范围,即作为摄像装置自动对焦对象的被摄体和摄像装置之间距离的范围。在该信息未指示为预定的运动时,确定部可以将第一范围确定为可对焦范围。在该信息指示为预定的运动时,确定部可以将比第一范围小的第二范围确定为可对焦范围。

Description

确定装置、摄像装置、摄像系统、移动体、确定方法以及程序 技术领域
本发明涉及一种确定装置、摄像装置、摄像系统、移动体、确定方法以及程序。
背景技术
专利文献1中公开了每当步数的计数达到规定步数单位时,执行通知以提示摄像装置进行拍摄。
专利文献1日本特开2006-5737号公报
发明内容
【发明要解决的问题】
当摄像装置进行特定运动时,例如用户一边行走一边使用摄像装置摄像时,有时无法正确自动对焦。
本发明的一个方面所涉及的确定装置可以包括获取部,其获取表示摄像装置运动的信息。确定装置可以包括确定部,其基于信息确定可对焦范围,即作为摄像装置自动对焦对象的被摄体和摄像装置之间距离的范围。
当该信息未指示为预定的运动时,确定部可以将第一范围确定为可对焦范围。当该信息指示为预定的运动时,确定部可以将比第一范围小的第二范围确定为可对焦范围。
该信息指示为预定的运动,即相当于持有摄像装置的用户正在行走的状态的运动时,确定部可以将第二范围确定为可对焦范围。
当在该信息指示摄像装置静止时,确定部可以将第一范围确定为可对焦范围。
当该信息指示为预定的运动,即相当于持有摄像装置的用户正在行走的状态的运动,且摄像装置的摄像方向和摄像装置的移动方向的关系满足预定条件时,确定部可以将第二范围确定为可对焦范围。
当该信息指示为预定的运动,即相当于持有摄像装置的用户正在行走的状态的运动,且摄像装置的摄像方向和摄像装置移动方向所形成的角度满足0到180度之间的第一角度范围时,确定部可以将第二范围确定为可对焦范围。
在摄像装置的摄像方向面向满足第二角度范围的方向时,确定部可以将第一范围确定为可对焦范围,所述第二角度包括与摄像装置连接的显示部所显示的方向。
当该信息指示为预定的运动,即摄像装置的摄像方向和摄像装置的移动方向的关系满足 平移条件时,确定部可以将第一范围确定为可对焦范围。
获取部可以从检测摄像装置振动的传感器获取信息。
第一范围可以包含第二范围。
第一范围可以为被摄体与摄像装置之间的距离从第一距离到无限远的范围。第二范围可以为被摄体与摄像装置之间的距离从比第一距离远的第二距离到无限远的范围。
当摄像装置以比第一速度快的第二速度移动时,第二范围可以比摄像装置以第一速度移动时小。
本发明的一个方面所涉及的摄像装置可以包括上述确定装置。摄像装置可以包括控制部,其基于可对焦范围执行自动对焦。
本发明的一个方面所涉及的摄像系统可以包括上述摄像装置。摄像系统可以包括可旋转地支撑摄像装置的支撑机构。
本发明的一个方面所涉及的移动体可以是包括上述摄像系统并进行移动的移动体。
本发明的一个方面所涉及的确定方法可以包括获取信息的阶段,该信息表示摄像装置的运动。确定方法可以包括基于信息确定可对焦范围的阶段,该可对焦范围是作为摄像装置自动对焦对象的被摄体和摄像装置之间距离的范围。
本发明的一个方面所涉及的程序,可以是一种用于使计算机作为上述确定装置发挥功能的程序。
根据本发明的一个方面,可以抑制摄像装置进行特定运动时,摄像装置无法正确自动对焦的情况。
此外,上述发明内容未列举本发明的必要的全部特征。此外,这些特征组的子组合也可以构成发明。
附图说明
图1是示出稳定器的一个示例的外观立体图。
图2是示出稳定器功能块的一个示例的图。
图3是示出作为摄像装置自动对焦对象的被摄体和摄像装置之间距离与摄像装置的散焦量的关系的一个示例的图。
图4是示出摄像装置执行自动对焦时的步骤的一个示例的流程图。
图5是示出无人驾驶航空器及远程操作装置的外观的一个示例的图。
图6是用于说明硬件配置的一个示例的图。
具体实施方式
以下,通过发明的实施方式来对本发明进行说明,但是以下的实施方式并不限定权利要求书所涉及的发明。此外,实施方式中所说明的所有特征组合对于发明的解决方案未必是必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人就无法提出异议。但是,在除此以外的情况下,保留一切的著作权。
本发明的各种实施方式可参照流程图及框图来描述,这里,框可表示(1)执行操作的过程的阶段或者(2)具有执行操作的作用的装置的“部”。指定的阶段和“部”可以通过可编程电路和/或处理器来实现。专用电路可以包括数字和/或模拟硬件电路。可以包括集成电路(IC)和/或分立电路。可编程电路可以包括可重构硬件电路。可重构硬件电路可以包括逻辑与、逻辑或、逻辑异或、逻辑与非、逻辑或非、及其它逻辑操作、触发器、寄存器、现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)等存储器元件等。
计算机可读介质可以包括能够存储由合适设备执行的指令的任何有形设备。其结果是,其上存储有指令的计算机可读介质包括一种包括指令的产品,该指令可被执行以创建用于执行流程图或框图所指定的操作的手段。作为计算机可读介质的示例,可以包括电子存储介质、磁存储介质、光学存储介质、电磁存储介质、半导体存储介质等。作为计算机可读介质的更具体的示例,可以包括floopy(注册商标)disk、软磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者闪存)、电可擦可编程只读存储器(EEPROM)、静态随机存取存储器(SRAM)、光盘只读存储器(CD-ROM)、数字多用途光盘(DVD)、蓝光(RTM)光盘、记忆棒、集成电路卡等。
计算机可读指令可以包括由一种或多种编程语言的任意组合描述的源代码或者目标代码中的任意一个。源代码或者目标代码包括传统的程序式编程语言。传统的程序式编程语言可以为汇编指令、指令集架构(ISA)指令、机器指令、与机器相关的指令、微代码、固件指令、状态设置数据、或者Smalltalk、
Figure PCTCN2019117156-appb-000001
C++等面向对象编程语言以及“C”编程语言或者类似的编程语言。计算机可读指令可以在本地或者经由局域网(LAN)、互联网等广域网(WAN)提供给通用计算机、专用计算机或者其它可编程数据处理装置的处理器或可编程电路。处理器或可编程电路可以执行计算机可读指令,以创建用于执行流程图或框图所指定操作的手段。作为处理器的示例,包括计算机处理器、处理单元、微处理器、数字信号处理器、控制器、 微控制器等。
图1是示出稳定器500的一个示例的外观立体图。稳定器500包括摄像装置100、万向节50以及手柄部503。稳定器500是摄像系统的一个示例。万向节50可旋转地支撑摄像装置100。万向节50具有偏航轴旋转机构509、俯仰轴旋转机构510、以及滚转轴旋转机构511。万向节50可以以偏航轴、俯仰轴以及滚转轴为中心,可旋转地支持摄像装置100。万向节50为支撑机构的位置。摄像装置100具有用于插入存储器的槽101。万向节50经由支架507固定到手柄部503。
手柄部503具有用于操作万向节50和摄像装置100的各种按钮。手柄部503包括快门按钮504、录像按钮505和操作按钮506。通过按下快门按钮504,可以由摄像装置100记录静态图像。通过按下录像按钮505,可以由摄像装置100记录动态图像。
稳定器500还包括设备支架501。设备支架501被固定于手柄部503。设备支架501支撑智能手机等移动设备502。移动设备502可经由WiFi等无线网络与稳定器500可通信地连接。由此,可以将摄像装置100拍摄的图像显示在移动设备502的屏幕中。另外,稳定器500可以包括设备支架501。
图2示出了稳定器500的功能框图的一个示例。稳定器500包括摄像装置100以及万向节50。
摄像装置100包括摄像部102及镜头部200。摄像装置100是确定装置的一个示例。镜头部200为镜头装置的一个示例。摄像部102具有图像传感器120、摄像控制部110、存储器130、加速度传感器140以及GPS接收器150。图像传感器120可以由CCD或CMOS构成。图像传感器120拍摄经由多个镜头210成像的光学图像,并将所拍摄的图像输出至摄像控制部110。摄像控制部110可以由CPU或MPU等微处理器、MCU等微控制器等构成。存储器130可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM、USB存储器及固态硬盘(SSD)等闪存中的至少一个。存储器130存储摄像控制部110对图像传感器120等进行控制所需的程序等。存储器130可以设置于摄像装置100的壳体内部。存储器130可以设置成可从摄像装置100的壳体上拆卸下来。
加速度传感器140检测3轴方向(pan轴(即yaw轴:偏航轴),tilt轴(即pitch轴:俯仰轴)和roll轴(即滚转轴))的加速度。GPS接收器150接收表示从多个GPS卫星发送的时间的多个信号。GPS接收器150根据所接收的多个信号来计算出GPS接收器150的位置(纬度及经度)、即摄像装置100的位置(纬度及经度)。
镜头部200具有多个镜头210、多个镜头驱动部212以及镜头控制部220。多个镜头210可以起到变焦镜头(zoom lens)、可变焦距镜头(varifocal lens)及聚焦镜头的作用。多个镜 头210中的至少一部分或全部被配置为能够沿着光轴移动。镜头部200可以是被设置成能够相对摄像部102拆装的可更换镜头。镜头驱动部212经由凸轮环等机构构件使多个镜头210中的至少一部分或全部沿着光轴移动。镜头驱动部212可以包括致动器。致动器可以包括步进电机。镜头控制部220按照来自摄像部102的镜头控制指令来驱动镜头驱动部212,经由机构构件使一个或多个镜头210沿着光轴方向移动。镜头控制指令例如为变焦控制指令及聚焦控制指令。
镜头部200还具有存储器222和位置传感器214。镜头控制部220按照来自摄像部102的镜头操作指令,经由镜头驱动部212来控制镜头210向光轴方向移动。镜头控制部220按照来自摄像部102的镜头操作指令,经由镜头驱动部212来控制镜头210向光轴方向移动。镜头210的一部分或者全部沿光轴移动。镜头控制部220通过使镜头210中的至少一个沿着光轴移动,来执行变焦操作和聚焦操作中的至少一个。位置传感器214检测镜头210的位置。位置传感器214可以检测当前的变焦位置或聚焦位置。
存储器222存储经由镜头驱动部212而移动的多个镜头210的控制值。存储器222可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。
万向节50包括偏航轴旋转机构509、俯仰轴旋转机构510、滚转轴旋转机构511、万向节控制部520、存储器530以及惯性测量装置540。偏航轴旋转机构509使摄像装置100以偏航轴为中心旋转。俯仰轴旋转机构510使摄像装置100以俯仰轴为中心旋转。滚转轴旋转机构511使摄像装置100以滚转轴为中心旋转。万向节控制部520控制偏航轴旋转机构509、俯仰轴旋转机构510、以及滚转轴旋转机构511的驱动。万向节控制部520可以由CPU或MPU等微处理器、MCU等微控制器等构成。存储器530可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM、USB存储器及固态硬盘(SSD)等闪存中的至少一个。存储器530存储万向节控制部520为控制偏航轴旋转机构509、俯仰轴旋转机构510、以及滚转轴旋转机构511等所需要的程序等。存储器530可以设置在万向节50的壳体内部。存储器530可以设置成可从万向节50的壳体上拆卸下来。
惯性测量装置540检测摄像装置100的姿势。惯性测量装置540可以检测摄像装置100的前后、左右以及上下的三轴方向的加速度和俯仰、滚转以及偏航的三轴方向的角速度,作为摄像装置100的姿势。
在如上所述构成的稳定器500中,有时会因摄像装置100的运动,而无法正确执行摄像装置100的自动对焦。例如,用户在夜间握住稳定器500并在行走时拍摄用户行进方向的动态图像。这种情况下,当路灯等的光源进入摄像装置100的视角内时,由摄像装置100拍摄的图像的对比度的变化变大,摄像装置100执行自动对焦(AF)。例如,当摄像装置100执 行对比度AF时,会将聚焦镜头从无限远移动到最近端,搜索对比度值达到峰值的聚焦镜头的位置。即,通过执行自动对焦,聚焦镜头从无限远移动到最近端,因此由摄像装置100拍摄的图像会模糊。
此处,当用户边行走边用摄像装置100进行摄像时,不太可能将焦点聚焦到相距摄像装置100较近的被摄体进行拍摄。即,摄像装置100较有可能在不将聚焦镜头移动到最近端的情况下也能够搜索到针对目标被摄体能够获得对焦状态的聚焦镜头的位置。
因此,本实施方式所涉及的摄像装置100会根据摄像装置100的运动来调整可对焦范围,即作为自动对焦对象的被摄体与摄像装置100之间的距离的范围。
摄像控制部110具有获取部112、确定部114、以及对焦控制部116。获取部112获取表示摄像装置100的运动的信息。获取部112可以从加速度传感器140获取表示在摄像装置100中产生的3个轴方向的加速度的信息作为表示摄像装置100的运动的信息。获取部112可以从惯性测量装置540获取表示在摄像装置100中产生的三个轴方向的加速度的信息作为表示摄像装置100的运动的信息;可以获取表示摄像装置100的振动的信息,作为表示摄像装置100的运动的信息,该表示摄像装置100的振动的信息由加速度传感器140或惯性测量装置540检测到的在摄像装置100中产生的加速度导出。
确定部114基于表示摄像装置的运动的信息,确定可对焦范围,该可对焦范围是作为摄像装置100自动对焦对象的被摄体和摄像装置100之间距离的范围。对焦控制部116基于可对焦范围执行自动对焦。对焦控制部116使聚焦镜头在与可对焦范围相对应的驱动范围内移动来搜索针对作为自动对焦对象的被摄体能够获得对焦状态的聚焦镜头的位置。对焦控制部116使聚焦镜头在与可对焦范围对应的驱动范围内移动,使摄像装置100在该期间捕获多个图像,并且基于多个图像确定对比度值达到峰值的聚焦镜头的位置。
在表示摄像装置100的运动的信息未指示为预定的运动时,确定部114可以将第一范围确定为可对焦范围。在表示摄像装置100的运动的信息指示为预定的运动时,确定部114可以将比第一范围小的第二范围确定为可对焦范围。表示摄像装置100的运动的信息指示为预定的运动,即相当于持有摄像装置100的用户正在行走的状态的运动时,确定部114可以将第二范围确定为可对焦范围。由加速度传感器140或惯性测量装置540检测到的在摄像装置100中产生的加速度的变化模式符合预定变化模式时,确定部114可以判断表示摄像装置100的运动的信息所显示的是预定的运动。在摄像装置100中产生的加速度的变化模式符合表示用户正在行走时的移动的预定变化模式时,确定部114可以判断表示摄像装置100的运动的信息所显示的是预定的运动。在表示摄像装置100的运动的信息指示为摄像装置100静止时,确定部114可以将第一范围确定为可对焦范围。第一范围可以为被摄体与摄像装置100之间 的距离从第一距离到无限远的范围。第二范围可以为被摄体与摄像装置100之间的距离从比第一距离远的第二距离到无限远的范围。第一范围可以包含第二范围。行走状态为例如在竖直方向上发生一定的振动的情况和摄像装置的位置移动的情况中的至少一种状态。该振动可以由加速度传感器140和惯性测量装置540中的至少一个检测到。该位置的移动可以由加速度传感器140、惯性测量装置540以及GPS接收器150中的至少一个检测到。行走状态例如是每单位时间的步数。步数由记步器测量。
当摄像设备100正在移动时,例如当持有摄像设备100的用户正在行走时,摄像设备100对焦在极近处被摄体上并拍摄的可能性不高。因此,当摄像装置100正在进行预定移动时,要限制执行自动对焦时的可对焦范围。
此处,可能用户边使用摄像装置100拍摄自己边行走。即,用户可能边使用摄像装置100自拍一边行走。在这种情况下,摄像装置100需要调整聚焦镜头的位置以便聚焦在最近侧物体上。所谓自拍的状态,是指例如摄像装置100的摄像方向存在于包括连接到摄像装置100的显示器(显示部)所显示方向的角度(第二角度)中的情况。所谓包括显示部的显示方向的角度,是指例如操作摄像装置100的用户可以通过显示部看到的范围。显示部的显示方向是指例如与显示部的显示面相交的方向。可以将显示部(未图示)设置于配设手柄部503或手柄部503的快门按钮504、录像按钮505或操作按钮506的位置。在这种情况下,移动设备502上也可以在设置移动设备屏幕的相同面上另外设置摄像装置(未图示)。通过该另外设置的摄像装置能够进行自拍,并且可以在设置于手柄部503的显示部上显示拍摄的图像。
因此,作为预定的运动,表示摄像装置100的运动的信息所指示的运动相当于持有摄像装置100的用户正在行走的状态的运动,且摄像装置100的摄像方向和摄像装置100移动方向的关系满足预定条件时,确定部114可以将第二范围确定为可对焦范围。
表示摄像装置100的运动的信息指示为预定的运动,即相当于持有摄像装置100的用户正在行走的状态的运动,且摄像装置100的摄像方向和摄像装置100的移动方向所形成的角度满足0到180度之间的第一角度范围时,确定部114可以将第二范围确定为可对焦范围。表示摄像装置100的运动的信息指示为预定的运动,即相当于持有摄像装置100的用户正在行走的状态的运动,且摄像装置100的摄像方向和摄像装置移动方向所形成的角度满足第一角度到180度之间的范围时,确定部114可以将第一范围确定为可对焦范围。
例如,表示摄像装置100的运动的信息指示为预定的运动,即相当于持有摄像装置100的用户正在行走的状态的运动,且摄像装置100的摄像方向和摄像装置100移动方向所形成的角度满足0度到45度之间的范围时,确定部114可以将第二范围确定为可对焦范围。表示摄像装置100的运动的信息指示为预定的运动,即相当于持有摄像装置100的用户正在行走 的状态的运动,且摄像装置100的摄像方向和摄像装置移动方向所形成的角度满足45度到180度之间的范围时,确定部114可以将第一范围确定为可对焦范围。在摄像装置100的摄像方向面向满足第二角度范围的方向时,确定部114可以将第一范围确定为可对焦范围,该第二角度包括与摄像装置100连接的显示部所显示的方向。
另外,可能用户停留在该位置,在使摄像装置100左右旋转的同时进行摄影。即,用户可能在使摄像装置100平移的同时进行摄影。在这种情况下,摄像装置100可能需要调整聚焦镜头的位置以便聚焦在最近侧物体上。表示摄像装置100的运动的信息指示为预定的运动,即摄像装置100的摄像方向和摄像装置100移动方向的关系满足平移条件时,确定部114可以将第一范围确定为可对焦范围。平移条件可以是例如由摄像装置100的摄像方向和摄像装置100的移动方向形成的角度满足45度的情况。平移条件可以是例如由摄像装置100的摄像方向和摄像装置100的移动方向形成的角度满足40~50度范围的情况。确定部114在当摄像装置100的拍摄模式被设置为全景拍摄模式时,可以判断摄像装置100的摄像方向和摄像装置100移动方向的关系满足平移条件的移动。平移是例如摄像装置100在规定时间内在一个方向上动作的状态。摄像装置100在一个方向上操作的状态,可以由加速度传感器140、惯性测量装置540以及GPS接收器150中的至少一个检测到。
当摄像装置100以比第一速度快的第二速度移动时,第二范围可以比摄像装置100以第一速度移动时要小。即,摄像装置100的速度越快,第二范围可以越小。
图3示出了作为摄像装置100自动对焦对象的被摄体和摄像装置100之间距离(cm)与摄像装置100的散焦量(Fδ)的关系。F是摄像装置100的F值,δ表示容许弥散圆直径。另外,在图3中,无限远的散焦量表示为零。散焦量是表示焦点偏差多远的指标。
例如,没有限制时的可对焦范围是被摄体和摄像装置100之间距离从无限远到20cm的范围W1。此时,表示散焦量中间值的距离是40cm。然后,例如将两倍40cm的80cm时的散焦量作为中间值,可对焦范围就是被摄体和摄像装置100之间的距离从无限远到50cm的范围W2。本实施方式中,确定部114将表示摄像装置100进行了预定移动时的可对焦范围确定为范围W2。将可对焦范围从范围W1变更至W2后,可以将散焦量控制在一半以下。
散焦量根据摄像装置100的光学特性而不同。因此,可以基于摄像装置100的散焦量的变化量,根据摄像装置100的光学特性适当设置在表示摄像装置100进行了预定移动时的可对焦范围。
图4是示出摄像装置100执行自动对焦时的步骤的一个示例的流程图。摄像装置100开始自动对焦后,获取部112从诸如加速度传感器140、GPS接收器150或惯性测量装置540等的各种传感器获取表示摄像装置100的运动的信息(S100)。确定部114确定摄像装置100 的运动是否是预定的运动(S102)。例如,摄像装置100的运动符合持有摄像装置100的用户正在行走的状态的运动,并且摄像装置100的摄影方向和摄像装置100的移动方向相同时,确定部114可以判断摄像装置100的运动是预定的运动。
判断摄像装置100的运动并非预定的运动时,确定部114将自动对焦的可对焦范围确定为第一范围,例如,从无限远到20cm的范围(S104)。另一方面,判断摄像装置100的运动为预定的运动时,确定部114将自动对焦的可对焦范围确定为比第一范围小的第二范围,例如,从无限远到50cm的范围(S106)。
摄像装置100判断是否结束自动对焦(S108),需要继续自动对焦时,继续步骤S100以后的处理。
如上所述,在摄像装置100表示为聚焦在最近侧物体上的可能性很低的预定移动时,自动对焦的可对焦范围受到限制。由此,在搜索可以获得对焦状态的聚焦镜头的位置时,不再需要将聚焦镜头无意义地移动到最近侧。由此,可以抑制自动对焦的散焦量。例如,当用户在行走时利用摄像装置100拍摄动态图像时,对比度存在较大变化,并且即使开始自动对焦也可以抑制动态图像的模糊。
上述摄像装置100可以搭载于移动体上。摄像装置100还可以搭载于如图5所示的无人驾驶航空器(UAV)上。UAV10可以包括UAV主体20、万向节50、多个摄像装置60、及摄像装置100。万向节50及摄像装置100为摄像系统的一个示例。UAV10为由推进部推进的移动体的一个示例。移动体的概念是指除UAV之外,包括在空中移动的飞机等飞行体、在地面上移动的车辆、在水上移动的船舶等。当摄像装置100安装在移动物体上时,使用移动物体的移动信息代替用户的行走状态。移动状态使用搭载在UAV10上的GPS、加速度传感器和高度传感器中的至少一个来检测。当移动状态是预定模式时,控制摄像装置100的可对焦范围。例如,判断UAV10的移动状态为预定模式时,确定部114可以将自动对焦的可对焦范围确定为比第一范围小的第二范围。
UAV主体20包括多个旋翼。多个旋翼为推进部的一个示例。UAV主体20通过控制多个旋翼的旋转而使UAV10飞行。UAV主体20使用例如四个旋翼来使UAV10飞行。旋翼的数量不限于四个。另外,UAV10也可以是没有旋翼的固定翼机。
摄像装置100为对包含在所期望的摄像范围内的被摄体进行拍摄的摄像用相机。万向节50可旋转地支撑摄像装置100。万向节50为支撑机构的一个示例。例如,万向节50使用致动器以俯仰轴可旋转地支撑摄像装置100。万向节50使用致动器进一步分别以滚转轴和偏航轴为中心可旋转地支撑摄像装置100。万向节50可通过使摄像装置100以偏航轴、俯仰轴以及滚转轴中的至少一个为中心旋转,来变更摄像装置100的姿势。
多个摄像装置60是为了控制UAV10的飞行而对UAV10的周围进行拍摄的传感用相机。两个摄像装置60可以设置于UAV10的机头、即正面。并且,其它两个摄像装置60可以设置于UAV10的底面。正面侧的两个摄像装置60可以成对,起到所谓的立体相机的作用。底面侧的两个摄像装置60也可以成对,起到立体相机的作用。可以根据由多个摄像装置60所拍摄的图像来生成UAV10周围的三维空间数据。UAV10所具备的摄像装置60的数量不限于四个。UAV10具备至少一个摄像装置60即可。UAV10也可以在UAV10的机头、机尾、侧面、底面及顶面分别具备至少一个摄像装置60。摄像装置60中可设定的视角可大于摄像装置100中可设定的视角。摄像装置60也可以具有单焦点镜头或鱼眼镜头。
远程操作装置300与UAV10通信,以远程操作UAV10。远程操作装置300可以与UAV10进行无线通信。远程操作装置300向UAV10发送表示上升、下降、加速、减速、前进、后退、旋转等与UAV10的移动有关的各种指令的指示信息。指示信息包括例如使UAV10的高度上升的指示信息。指示信息可以表示UAV10应该位于的高度。UAV10进行移动,以位于从远程操作装置300接收的指示信息所表示的高度。指示信息可以包括使UAV10上升的上升指令。UAV10在接受上升指令的期间上升。在UAV10的高度已达到上限高度时,即使接受上升指令,也可以限制UAV10上升。
图6表示可整体或部分地体现本发明的多个实施形态的计算机1200的一个示例。安装在计算机1200上的程序能够使计算机1200作为与本发明的实施方式所涉及的装置相关联的操作或者该装置的一个或多个“部”而起作用。或者,该程序能够使计算机1200执行该操作或者该一个或多个“部”。该程序能够使计算机1200执行本发明的实施方式所涉及的过程或者该过程的阶段。这种程序可以由CPU1212执行,以使计算机1200执行与本说明书所述的流程图及框图中的一些或者全部方框相关联的指定操作。
根据本实施方式的计算机1200包括CPU1212和RAM1214,它们通过主机控制器1210相互连接。计算机1200还包括通信接口1222、输入/输出单元,它们通过输入/输出控制器1220与主机控制器1210连接。计算机1200还包括ROM1230。CPU1212根据存储在ROM1230和RAM1214中的程序进行操作,从而控制各单元。
通信接口1222经由网络与其他电子设备通信。硬盘驱动器可以存储计算机1200内的CPU1212所使用的程序及数据。ROM1230在其中存储运行时由计算机1200执行的引导程序等、和/或依赖于计算机1200的硬件的程序。程序通过CR-ROM、USB存储器或IC卡之类的计算机可读记录介质或者网络来提供。程序安装在也作为计算机可读记录介质的示例的RAM1214或ROM1230中,并通过CPU1212执行。这些程序中记述的信息处理由计算机1200读取,并引起程序与上述各种类型的硬件资源之间的协作。可以随着计算机1200的使用而实 现信息的操作或者处理,从而构成装置或方法。
例如,当在计算机1200和外部设备之间执行通信时,CPU1212可以执行加载在RAM1214中的通信程序,并且基于通信程序中描述的处理,命令通信接口1222进行通信处理。在CPU1212的控制下,通信接口1222读取存储在诸如RAM1214或USB存储器之类的记录介质中提供的发送缓冲区中的发送数据,并将读取的发送数据发送到网络,或者将从网络接收的接收数据写入记录介质上提供的接收缓冲区等。
另外,CPU1212可以使RAM1214读取存储在诸如USB存储器等外部记录介质中的文件或数据库的全部或必要部分,并对RAM1214上的数据执行各种类型的处理。接着,CPU1212可以将处理过的数据写回到外部记录介质中。
诸如各种类型的程序、数据、表格和数据库的各种类型的信息可以存储在记录介质中并且接受信息处理。对于从RAM1214读取的数据,CPU1212可执行在本公开的各处描述的、包括由程序的指令序列指定的各种类型的操作、信息处理、条件判断、条件转移、无条件转移、信息的检索/替换等各种类型的处理,并将结果写回到RAM1214中。此外,CPU1212可以检索记录介质内的文件、数据库等中的信息。例如,在记录介质中存储具有分别与第二属性的属性值建立了关联的第一属性的属性值的多个条目时,CPU1212可以从该多个条目中检索出与指定第一属性的属性值的条件相匹配的条目,并读取该条目内存储的第二属性的属性值,从而获取与满足预定条件的第一属性相关联的第二属性的属性值。
上述程序或软件模块可以存储在计算机1200上或计算机1200附近的计算机可读存储介质上。此外,连接到专用通信网络或因特网的服务器系统中提供的诸如硬盘或RAM之类的记录介质可以用作计算机可读存储介质,从而可以经由网络将程序提供到计算机1200。
以上使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所描述的范围。对本领域普通技术人员来说,显然可对上述实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
应该注意的是,权利要求书、说明书以及说明书附图中所示的装置、系统、程序以及方法中的动作、顺序、步骤以及阶段等各项处理的执行顺序,只要没有特别明示“在…之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,则可以任意顺序实现。关于权利要求书、说明书以及说明书附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。
【符号的说明】
10 UAV
20 UAV主体
50 万向节
60 摄像装置
100 摄像装置
101 槽
102 摄像部
110 摄像控制部
112 获取部
114 确定部
116 对焦控制部
120 图像传感器
130 存储器
140 加速度传感器
150 GPS接收器
200 镜头部
210 镜头
212 镜头驱动部
214 位置传感器
220 镜头控制部
222 存储器
300 远程操作装置
500 稳定器
501 设备支架
502 移动设备
503 手柄部
504 快门按钮
505 录像按钮
506 操作按钮
507 支架
509 偏航轴旋转机构
510 俯仰轴旋转机构
511 滚转轴旋转机构
520 万向节控制部
530 存储器
540 惯性测量装置
1200 计算机
1210 主机控制器
1212 CPU
1214 RAM
1220 输入/输出控制器
1222 通信接口
1230 ROM

Claims (17)

  1. 一种确定装置,其特征在于,包括:
    获取部,其获取表示摄像装置的运动的信息;
    确定部,其基于所述信息确定可对焦范围,即作为所述摄像装置自动对焦对象的被摄体和摄像装置之间距离的范围。
  2. 如权利要求1所述的确定装置,其特征在于,当所述信息未指示预定的运动时,所述确定部将第一范围确定为所述可对焦范围,当所述信息指示为预定的运动时,将比所述第一范围小的第二范围确定为所述可对焦范围。
  3. 如权利要求2所述的确定装置,其特征在于,当所述信息指示为所述预定的运动,即相当于持有所述摄像装置的用户正在行走的状态的运动时,所述确定部将所述第二范围确定为所述可对焦范围。
  4. 如权利要求2所述的确定装置,其特征在于,当所述信息指示为所述预定的运动,即所述摄像装置静止时,所述确定部将所述第一范围确定为所述可对焦范围。
  5. 如权利要求2所述的确定装置,其特征在于,当所述信息指示为所述预定的运动,即相当于持有所述摄像装置的用户正在行走的状态的运动,且所述摄像装置的摄像方向和所述摄像装置的移动方向的关系满足预定条件时,所述确定部将所述第二范围确定为所述可对焦范围。
  6. 如权利要求2所述的确定装置,其特征在于,当所述信息指示为所述预定的运动,即相当于持有所述摄像装置的用户正在行走的状态的运动,且所述摄像装置的摄像方向和所述摄像装置的移动方向的角度满足0到180度之间的第一角度范围时,所述确定部将所述第二范围确定为所述可对焦范围。
  7. 如权利要求6所述的确定装置,其特征在于,当所述摄像装置的摄像方向面向满足第二角度的范围的方向时,所述确定部将所述第一范围确定为所述可对焦范围,所述第二角度包括与所述摄像装置连接的显示部所显示的方向。
  8. 如权利要求2所述的确定装置,其特征在于,当所述信息指示为所述预定的运动,即所述摄像装置的摄像方向和所述摄像装置的移动方向的关系满足平移条件时,所述确定部将所述第一范围确定为所述可对焦范围。
  9. 如权利要求1所述的确定装置,其特征在于,所述获取部从检测所述摄像装置振动的传感器获取所述信息。
  10. 如权利要求2所述的确定装置,其特征在于,所述第一范围包含所述第二范围。
  11. 如权利要求2所述的确定装置,其特征在于,所述第一范围为被摄体与所述摄像装置之间的距离从第一距离到无限远的范围,
    所述第二范围为被摄体与所述摄像装置之间的距离从比所述第一距离远的第二距离到无限远的范围。
  12. 如权利要求2所述的确定装置,其特征在于,当所述摄像装置以比第一速度快的第二速度移动时,所述第二范围比所述摄像装置以所述第一速度移动时要小。
  13. 一种摄像装置,其特征在于,包括:如权利要求1至12中任一项所述的确定装置;以及
    控制部,其基于所述可对焦范围执行自动对焦。
  14. 一种摄像系统,其特征在于,包括:如权利要求13所述的摄像装置;以及
    支撑机构,其可旋转地支撑所述摄像装置。
  15. 一种移动体,其特征在于,包括如权利要求14所述的摄像系统并进行移动。
  16. 一种确定方法,其特征在于,包括以下阶段:获取表示摄像装置的运动的信息;以及
    基于所述信息确定可对焦范围,所述可对焦范围为作为所述摄像装置自动对焦对象的被摄体和摄像装置之间距离的范围。
  17. 一种程序,其特征在于,其用于使计算机作为如权利要求1至12中任一项所述的确定装置发挥功能。
PCT/CN2019/117156 2018-11-15 2019-11-11 确定装置、摄像装置、摄像系统、移动体、确定方法以及程序 WO2020098603A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980008727.5A CN111630838B (zh) 2018-11-15 2019-11-11 确定装置、摄像装置、摄像系统、移动体、确定方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018214308A JP6641573B1 (ja) 2018-11-15 2018-11-15 決定装置、撮像装置、撮像システム、移動体、決定方法、及びプログラム
JP2018-214308 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020098603A1 true WO2020098603A1 (zh) 2020-05-22

Family

ID=69320986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117156 WO2020098603A1 (zh) 2018-11-15 2019-11-11 确定装置、摄像装置、摄像系统、移动体、确定方法以及程序

Country Status (3)

Country Link
JP (1) JP6641573B1 (zh)
CN (1) CN111630838B (zh)
WO (1) WO2020098603A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630555A (zh) * 2021-08-20 2021-11-09 RealMe重庆移动通信有限公司 拍摄方法、拍摄装置、终端及可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230179892A1 (en) * 2020-06-05 2023-06-08 Sony Group Corporation Solid-state imaging device, method of controlling solid-state imaging device, and mobile body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220729A (ja) * 2005-02-08 2006-08-24 Canon Inc 撮像装置
CN103167141A (zh) * 2012-09-14 2013-06-19 深圳市金立通信设备有限公司 一种手机相机连续对焦系统及方法
CN105227810A (zh) * 2015-06-01 2016-01-06 西北大学 一种基于bibavr算法的自动聚焦头盔摄像机
CN107302661A (zh) * 2017-06-26 2017-10-27 维沃移动通信有限公司 一种摄像头控制方法及移动终端
CN108632596A (zh) * 2017-03-22 2018-10-09 宏达国际电子股份有限公司 摄影装置及摄影装置的操作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136799A (ja) * 1994-11-08 1996-05-31 Fuji Photo Optical Co Ltd オートフォーカス装置
JP4552974B2 (ja) * 2007-06-22 2010-09-29 カシオ計算機株式会社 カメラ装置、フォーカス制御方法及びプログラム
JP2009015147A (ja) * 2007-07-06 2009-01-22 Sigma Corp フォーカスリミッタを有するレンズ装置
JP4974812B2 (ja) * 2007-08-27 2012-07-11 三洋電機株式会社 電子カメラ
JP5894440B2 (ja) * 2012-01-05 2016-03-30 キヤノン株式会社 焦点調節装置
JP6168827B2 (ja) * 2013-04-15 2017-07-26 キヤノン株式会社 像振れ補正装置および光学機器
US9967451B2 (en) * 2014-09-30 2018-05-08 Canon Kabushiki Kaisha Imaging apparatus and imaging method that determine whether an object exists in a refocusable range on the basis of distance information and pupil division of photoelectric converters
JP2017083491A (ja) * 2015-10-23 2017-05-18 キヤノン株式会社 光学機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220729A (ja) * 2005-02-08 2006-08-24 Canon Inc 撮像装置
CN103167141A (zh) * 2012-09-14 2013-06-19 深圳市金立通信设备有限公司 一种手机相机连续对焦系统及方法
CN105227810A (zh) * 2015-06-01 2016-01-06 西北大学 一种基于bibavr算法的自动聚焦头盔摄像机
CN108632596A (zh) * 2017-03-22 2018-10-09 宏达国际电子股份有限公司 摄影装置及摄影装置的操作方法
CN107302661A (zh) * 2017-06-26 2017-10-27 维沃移动通信有限公司 一种摄像头控制方法及移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630555A (zh) * 2021-08-20 2021-11-09 RealMe重庆移动通信有限公司 拍摄方法、拍摄装置、终端及可读存储介质

Also Published As

Publication number Publication date
JP6641573B1 (ja) 2020-02-05
JP2020085918A (ja) 2020-06-04
CN111630838B (zh) 2022-03-25
CN111630838A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN111356954B (zh) 控制装置、移动体、控制方法以及程序
CN111567032B (zh) 确定装置、移动体、确定方法以及计算机可读记录介质
WO2019120082A1 (zh) 控制装置、系统、控制方法以及程序
WO2020098603A1 (zh) 确定装置、摄像装置、摄像系统、移动体、确定方法以及程序
WO2019206076A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
JP6790318B2 (ja) 無人航空機、制御方法、及びプログラム
WO2019174343A1 (zh) 活动体检测装置、控制装置、移动体、活动体检测方法及程序
WO2019085771A1 (zh) 控制装置、镜头装置、摄像装置、飞行体以及控制方法
CN111357271B (zh) 控制装置、移动体、控制方法
WO2019061887A1 (zh) 控制装置、摄像装置、飞行体、控制方法以及程序
CN111602385B (zh) 确定装置、移动体、确定方法以及计算机可读记录介质
US11066182B2 (en) Control apparatus, camera apparatus, flying object, control method and program
WO2020020042A1 (zh) 控制装置、移动体、控制方法以及程序
WO2019223614A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
WO2021143425A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
JP7003357B2 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP6569157B1 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
WO2021249245A1 (zh) 装置、摄像装置、摄像系统及移动体
WO2020125414A1 (zh) 控制装置、摄像装置、摄像系统、移动体、控制方法以及程序
JP2019008060A (ja) 決定装置、撮像装置、撮像システム、移動体、決定方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885863

Country of ref document: EP

Kind code of ref document: A1