WO2019206076A1 - 控制装置、摄像装置、移动体、控制方法以及程序 - Google Patents

控制装置、摄像装置、移动体、控制方法以及程序 Download PDF

Info

Publication number
WO2019206076A1
WO2019206076A1 PCT/CN2019/083679 CN2019083679W WO2019206076A1 WO 2019206076 A1 WO2019206076 A1 WO 2019206076A1 CN 2019083679 W CN2019083679 W CN 2019083679W WO 2019206076 A1 WO2019206076 A1 WO 2019206076A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
imaging device
images
control
trajectory
Prior art date
Application number
PCT/CN2019/083679
Other languages
English (en)
French (fr)
Inventor
本庄谦一
邵明
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980003166.XA priority Critical patent/CN110809746A/zh
Publication of WO2019206076A1 publication Critical patent/WO2019206076A1/zh
Priority to US17/033,869 priority patent/US20210014427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums

Definitions

  • the present invention relates to a control device, an imaging device, a moving body, a control method, and a program.
  • an image pickup apparatus that causes an image processing unit to generate moving image data while moving a focus position of an optical system, and extracts a still image focused on a designated area from a plurality of frame images included in the moving image data.
  • Patent Document 1 International Publication No. 2017/006538
  • a control device may include a first control unit that causes the image pickup device to capture a plurality of images during a change in an imaging direction of the imaging device.
  • the control device may include a specifying portion that specifies an imaging direction of the imaging device that satisfies the predetermined condition based on the plurality of images.
  • the control device may include a second control portion that causes the imaging device per unit angle shooting ratio not to be specified by the second angle range including the imaging direction of the imaging device specified by the specifying portion during the imaging direction change of the imaging device
  • the image of the first angle range of the imaging direction of the specified imaging device is more images.
  • the specifying section may specify an imaging direction of the imaging apparatus that satisfies the predetermined condition based on the evaluation value of the contrast derived from the plurality of images.
  • the first control unit may cause the imaging device to capture a plurality of images during the first rotation of the imaging device, that is, during the imaging device changing the imaging direction of the imaging device while rotating around the first point.
  • the second control portion may cause the imaging device to capture the first number of units per unit angle in the first angular range during the second rotation of the first rotation of the imaging device, that is, during the rotation of the imaging device around the first point An image and causing the camera to capture a second number of second images more than the first number per unit angle over a second range of angles.
  • the image pickup device may include a focus lens and a lens control portion that controls a lens position of the focus lens.
  • the first control portion may cause the imaging device to capture a plurality of images while the imaging direction of the imaging device is changed while changing the lens position of the focus lens within a range of a predetermined lens position via the lens control portion.
  • the specifying unit may specify an imaging direction of the imaging device that satisfies the predetermined condition and a distance to reach the object existing in the imaging direction of the imaging device that satisfies the predetermined condition, based on the evaluation value of the contrast derived from the plurality of images.
  • the second control unit may control the lens position of the focus lens to a predetermined lens position via the lens control portion during the first angle range during the change of the imaging direction of the imaging device, and cause the imaging device to capture the first number per unit angle a first image, in a second angular range, controlling a lens position of the focus lens to a lens position based on a distance to the object via the lens control portion, and causing the imaging device to capture a second number more than the first number per unit angle Second image.
  • the second control portion can control the number of images captured by the image pickup device per unit angle by controlling the frame rate of the image pickup device or the rotation speed of the image pickup device.
  • the second control unit may cause the imaging device to perform imaging within the second angle range without performing imaging during the first angular range while the imaging direction of the imaging device is changed.
  • a control device may include a first control portion that causes the image pickup device to capture a plurality of images during movement of the image pickup device along the first trajectory.
  • the control device may include a specifying portion that specifies a position of the image pickup device that satisfies the predetermined condition based on the plurality of images.
  • the control device may include a second control portion that causes the imaging device to shoot per unit moving distance within a second range within the first trajectory including the position of the imaging device specified by the specifying portion during movement of the imaging device along the first trajectory More images than the first range within the first trajectory that does not include the position of the camera device specified by the designation portion.
  • the specifying section may specify an imaging direction of the imaging apparatus that satisfies the predetermined condition based on the evaluation value of the contrast derived from the plurality of images.
  • the second control unit may cause the imaging device to capture the first number of first images per unit moving distance within the first range within the first trajectory during the movement of the imaging device along the first trajectory, and cause the imaging device to be in the first trajectory Within the second range, a second number of second images are captured per unit moving distance than the first number.
  • the control device may include a generating portion that generates a composite image based on the first image and the second image.
  • the second control portion can control the number of images captured by the image pickup device per unit moving distance by controlling the frame rate of the image pickup device or the moving speed of the image pickup device.
  • the control device may include a first control portion that causes the measuring device to measure a plurality of measured values during a measurement direction change of a measuring device for measuring an object existing in an imaging direction of the imaging device.
  • the control device may include a designation portion that specifies a measurement direction of the measurement device that satisfies the predetermined condition based on the plurality of measurement values.
  • the control device may include a second control portion that enables imaging during a second angular range including the measurement direction of the measurement device specified by the designation portion while the imaging direction of the imaging device is changed corresponding to the change of the measurement direction of the measurement device The device captures more images per unit angle than the first range within the first trajectory that does not include the position of the camera device specified by the designation portion.
  • a control device may include a first control portion that causes the measuring device to measure a plurality of measured values during movement of the measuring device along the first trajectory.
  • the control device may include a specifying portion that specifies a position of the measuring device that satisfies the predetermined condition based on the plurality of measured values.
  • the control device may include a second control portion that causes the imaging device to shoot per unit moving distance within a second range within the first trajectory including the position of the measuring device specified by the specifying portion during movement of the imaging device along the first trajectory More images than the first range within the first trajectory that does not include the location of the measurement device specified by the designation.
  • An image pickup apparatus may include the above control apparatus.
  • the camera device may include an image sensor that is controlled by the control device.
  • the imaging device and the support mechanism that supports the imaging device in a posture that can control the imaging device can be mounted and moved.
  • the control method may include a stage of causing the imaging apparatus to capture a plurality of images during a change in an imaging direction of the imaging apparatus.
  • the control method may include specifying a phase of an imaging direction of the imaging device that satisfies a predetermined condition based on the plurality of images.
  • the control method may include, during a change in the imaging direction of the imaging device, causing the imaging device to capture a unit angle per unit angle that does not include the position of the measuring device specified by the specifying portion within a second angular range including the imaging direction of the specified imaging device.
  • the first range within the first trajectory is the stage of more images.
  • a control method may include a stage of causing an image pickup apparatus to capture a plurality of images during movement of the image pickup apparatus along the first trajectory.
  • the control method may include specifying a stage of a position of the image pickup apparatus that satisfies a predetermined condition based on the plurality of images.
  • the control method may include, during a second range within the first trajectory including the position of the specified imaging device during the movement of the imaging device along the first trajectory, causing the imaging device to record the distance per unit of the moving distance not including the designation by the specifying portion Measuring the position of the device within the first trajectory within the first range of more images.
  • the control method may include a stage in which the measuring device measures a plurality of measured values during a measurement direction change of a measuring device for measuring an object existing in an imaging direction of the imaging device.
  • the control method may include specifying a phase of a measurement direction of the measurement device that satisfies the predetermined condition based on the plurality of measurement values.
  • the control method may include, during a second angle range including a measurement direction of the specified measurement device during a change in the imaging direction of the imaging device corresponding to the measurement direction of the measurement device, the imaging device per unit angle shooting ratio is not included A stage of the first range of more images within the first trajectory of the position of the measuring device specified by the specifying portion.
  • a control method may include a stage in which a measuring device measures a plurality of measured values during movement of the measuring device along the first trajectory.
  • the control method may include a stage of specifying a position of the measuring device that satisfies the predetermined condition based on the plurality of measured values.
  • the control method may include, during a second range within the first trajectory including the position of the designated measuring device during the movement of the imaging device along the first trajectory, causing the imaging device to take a distance per unit moving distance ratio not including the designation by the specifying portion Measuring the position of the device within the first trajectory within the first range of more images.
  • a program according to an aspect of the present invention may be a program for causing a computer to function as the control device.
  • FIG. 1 is a diagram showing an example of the appearance of an unmanned aerial vehicle (UAV) and a remote operation device.
  • UAV unmanned aerial vehicle
  • FIG. 2 is a diagram showing one example of functional blocks of a UAV.
  • FIG. 3 is a view for explaining a photographing method of a panoramic moving image photograph mode.
  • FIG. 4 is a view for explaining a photographing method of a panoramic moving image photograph mode.
  • FIG. 5A is a diagram showing an example of the relationship between the evaluation value of the contrast in the specific imaging direction and the lens position of the focus lens.
  • FIG. 5B is a diagram showing an example of the relationship between the evaluation value of the contrast in the specific imaging direction and the lens position of the focus lens.
  • FIG. 5C is a diagram showing an example of the relationship between the evaluation value of the contrast in the specific imaging direction and the lens position of the focus lens.
  • FIG. 6 is a diagram showing an example of a relationship between a rotation speed and a rotation angle in a panoramic moving image photograph mode.
  • FIG. 7 is a view for explaining an image taken by an imaging device.
  • FIG. 8 is a diagram showing an example of a relationship between a rotation speed and a rotation angle in a panoramic moving image photograph mode.
  • FIG. 9 is a diagram showing an example of a relationship between a frame rate and a rotation angle in a panoramic moving image photograph mode.
  • FIG. 10 is a diagram showing one example of a measurement result of a subject distance measured in association with a rotation angle.
  • FIG. 11 is a flowchart showing one example of a photographing program in the panoramic moving image photograph mode.
  • FIG. 12 is a flowchart showing one example of a photographing program in the panoramic moving image photograph mode.
  • FIG. 13 is a view for explaining an image taken by an image pickup apparatus.
  • Fig. 14 is a diagram showing an example of a hardware configuration.
  • FIG. 1 may represent (1) a stage of a process of performing an operation or (2) a "part" of a device having an effect of performing an operation.
  • Specific stages and “parts” can be implemented by programmable circuitry and/or processors.
  • Dedicated circuits may include digital and/or analog hardware circuits.
  • An integrated circuit (IC) and/or a discrete circuit can be included.
  • the programmable circuit can include a reconfigurable hardware circuit.
  • Reconfigurable hardware circuits may include logical AND, logical OR, logical exclusive OR, logical AND, logical OR, and other logic operations, flip-flops, registers, field programmable gate arrays (FPGAs), programmable logic arrays (PLA) ) such as memory elements.
  • FPGAs field programmable gate arrays
  • PDA programmable logic arrays
  • Computer readable media can include any tangible device that can store instructions for execution by a suitable device.
  • a computer readable medium having instructions stored thereon includes a product including instructions that can be executed to create means for performing the operations specified by the flowchart or block diagram.
  • an electronic storage medium a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, or the like can be included.
  • a floppy disk registered trademark
  • a floppy disk a hard disk, a random access memory (RAM), a read only memory (ROM), an erasable programmable read only memory (EPROM or flash memory
  • EEPROM electrically erasable programmable read only memory
  • SRAM compact disk read only memory
  • DVD digital versatile disc
  • RTM blue
  • the computer readable instructions may comprise any one of source code or object code recited in any combination of one or more programming languages.
  • Source code or object code includes traditional procedural programming languages.
  • Traditional programming languages can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or Smalltalk, JAVA (registered trademark), C++, etc.
  • the computer readable instructions may be provided locally or via a wide area network (WAN), such as a local area network (LAN), the Internet, to a processor or programmable circuit of a general purpose computer, special purpose computer or other programmable data processing apparatus.
  • WAN wide area network
  • LAN local area network
  • the Internet to a processor or programmable circuit of a general purpose computer, special purpose computer or other programmable data processing apparatus.
  • the processor or programmable circuitry can execute computer readable instructions to create a means for performing the operations specified by the flowchart or block diagram.
  • Examples of the processor include a computer processor, a processing unit, a microprocessor, a digital signal processor, a controller, a microcontroller, and the like.
  • FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 10 and a remote operation device 300.
  • the UAV 10 includes a UAV main body 20, a gimbal 50, a plurality of imaging devices 60, and an imaging device 100.
  • the gimbal 50 and the imaging device 100 are an example of an imaging system.
  • UAV10 is an example of a moving body.
  • the moving body refers to a concept including a flying body moving in the air, a vehicle moving on the ground, a ship moving on the water, and the like.
  • a flying body moving in the air refers to a concept including not only a UAV but also other aircraft, an airship, a helicopter, and the like that move in the air.
  • the UAV body 20 includes a plurality of rotors.
  • a plurality of rotors are an example of a propulsion section.
  • the UAV body 20 causes the UAV 10 to fly by controlling the rotation of a plurality of rotors.
  • the UAV body 20 uses, for example, four rotors to fly the UAV 10.
  • the number of rotors is not limited to four.
  • the UAV 10 can also be a fixed wing aircraft without a rotor.
  • the imaging device 100 is an imaging camera that captures an object included in a desired imaging range.
  • the gimbal 50 rotatably supports the image pickup apparatus 100.
  • the gimbal 50 is an example of a support mechanism.
  • the gimbal 50 rotatably supports the image pickup apparatus 100 with a pitch axis using an actuator.
  • the gimbal 50 further rotatably supports the image pickup apparatus 100 centering on the roll axis and the yaw axis, respectively, using an actuator.
  • the gimbal 50 can change the posture of the imaging apparatus 100 by rotating the imaging apparatus 100 around at least one of the yaw axis, the pitch axis, and the roll axis.
  • the plurality of imaging devices 60 are sensing cameras that image the surroundings of the UAV 10 in order to control the flight of the UAV 10 .
  • the two camera units 60 may be disposed on the front of the UAV 10, that is, on the front side. Further, the other two imaging devices 60 may be disposed on the bottom surface of the UAV 10.
  • the two camera units 60 on the front side can be paired to function as a so-called stereo camera.
  • the two imaging devices 60 on the bottom side may also be paired to function as a stereo camera.
  • the imaging device 60 can measure the presence of an object included in the imaging range of the imaging device 60 and the distance to the object.
  • the imaging device 60 is an example of a measurement device for measuring an object existing in the imaging direction of the imaging device 100.
  • the measuring device may be other sensors such as an infrared sensor, an ultrasonic sensor, or the like for measuring an object existing in the imaging direction of the imaging device 100.
  • the three-dimensional spatial data around the UAV 10 can be generated based on images taken by the plurality of imaging devices 60.
  • the number of image pickup devices 60 included in the UAV 10 is not limited to four.
  • the UAV 10 only needs to include at least one imaging device 60.
  • the UAV 10 may also include at least one camera unit 60 on the nose, the tail, the side, the bottom surface, and the top surface of the UAV 10, respectively.
  • the angle of view that can be set in the imaging device 60 can be larger than the angle of view that can be set in the imaging device 100.
  • the camera device 60 can also have a single focus lens or a fisheye lens.
  • the remote operating device 300 communicates with the UAV 10 to remotely operate the UAV 10.
  • the remote operating device 300 can communicate wirelessly with the UAV 10.
  • the remote operation device 300 transmits, to the UAV 10, instruction information indicating various commands related to the movement of the UAV 10 such as ascending, descending, accelerating, decelerating, advancing, retreating, and rotating.
  • the indication information includes, for example, indication information that causes the UAV 10 to rise in height.
  • the indication information may show the height at which the UAV 10 should be located.
  • the UAV 10 moves at a height indicated by the indication information received from the remote operation device 300.
  • the indication information may include a rising instruction that causes the UAV 10 to rise.
  • the UAV 10 rises while receiving the rising command. When the height of the UAV 10 has reached the upper limit height, the UAV 10 can limit the rise even if the rising command is received.
  • FIG. 2 shows an example of functional blocks of the UAV 10.
  • the UAV 10 includes a UAV control unit 30, a memory 32, a communication interface 36, a propulsion unit 40, a GPS receiver 41, an inertial measurement device 42, a magnetic compass 43, a barometric altimeter 44, a temperature sensor 45, a humidity sensor 46, a gimbal 50, and a camera.
  • Device 60 and imaging device 100 are examples of functional blocks of the UAV 10.
  • the UAV 10 includes a UAV control unit 30, a memory 32, a communication interface 36, a propulsion unit 40, a GPS receiver 41, an inertial measurement device 42, a magnetic compass 43, a barometric altimeter 44, a temperature sensor 45, a humidity sensor 46, a gimbal 50, and a camera.
  • Device 60 and imaging device 100 are examples of imaging device 100.
  • Communication interface 36 is in communication with other devices, such as remote operating device 300.
  • the communication interface 36 can receive indication information including various instructions to the UAV control section 30 from the remote operation device 300.
  • the memory 32 controls the UAV control unit 30 to control the propulsion unit 40, the GPS receiver 41, the inertial measurement unit (IMU) 42, the magnetic compass 43, the barometric altimeter 44, the temperature sensor 45, the humidity sensor 46, the gimbal 50, and the imaging device 60.
  • a program or the like required for the imaging apparatus 100 is stored.
  • the memory 32 may be a computer readable recording medium, and may include at least one of flash memories such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 32 can be disposed inside the UAV main body 20. It can be configured to be detachable from the UAV body 20.
  • the UAV control unit 30 controls the flight and imaging of the UAV 10 in accordance with a program stored in the memory 32.
  • the UAV control unit 30 can be constituted by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the UAV control unit 30 controls the flight and imaging of the UAV 10 in accordance with an instruction received from the remote operation device 300 via the communication interface 36.
  • the propulsion unit 40 advances the UAV 10.
  • the propulsion unit 40 has a plurality of rotors and a plurality of drive motors that rotate the plurality of rotors.
  • the propulsion unit 40 rotates the plurality of rotors via a plurality of drive motors in accordance with an instruction from the UAV control unit 30 to cause the UAV 10 to fly.
  • the GPS receiver 41 receives a plurality of signals indicating times transmitted from a plurality of GPS satellites.
  • the GPS receiver 41 calculates the position (latitude and longitude) of the GPS receiver 41, that is, the position (latitude and longitude) of the UAV 10 based on the received plurality of signals.
  • the IMU 42 detects the posture of the UAV 10.
  • the IMU 42 detects the acceleration in the three-axis direction of the front, rear, left and right, and up and down of the UAV 10 and the angular velocity in the three-axis direction of the pitch axis, the roll axis, and the yaw axis as the posture of the UAV 10.
  • the magnetic compass 43 detects the orientation of the hand of the UAV 10.
  • the barometric altimeter 44 detects the flying height of the UAV 10.
  • the barometric altimeter 44 detects the air pressure around the UAV 10 and converts the detected barometric pressure into a height to detect the altitude.
  • the temperature sensor 45 detects the temperature around the UAV 10.
  • the humidity sensor 46 detects the humidity around the UAV 10.
  • the imaging device 100 includes an imaging unit 102 and a lens unit 200.
  • the lens portion 200 is an example of a lens device.
  • the imaging unit 102 includes an image sensor 120, an imaging control unit 110, and a memory 130.
  • the image sensor 120 may be composed of a CCD or a CMOS.
  • the image sensor 120 captures an optical image imaged through the plurality of lenses 210 and outputs the captured image data to the imaging control section 110.
  • the imaging control unit 110 can be configured by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the imaging control unit 110 can control the imaging device 100 based on an operation command from the imaging device 100 of the UAV control unit 30.
  • the memory 130 may be a computer readable recording medium, and may include at least one of flash memories such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 130 stores a program and the like necessary for the imaging control unit 110 to control the image sensor 120 and the like.
  • the memory 130 may be disposed inside the casing of the image pickup apparatus 100.
  • the memory 130 may be disposed to be detachable from the housing of the image pickup apparatus 100.
  • the lens unit 200 has a plurality of lenses 210, a plurality of lens driving units 212, and a lens control unit 220.
  • the plurality of lenses 210 can function as a zoom lens, a varifocal lens, and a focus lens. At least a portion or all of the plurality of lenses 210 are configured to be movable along the optical axis.
  • the lens unit 200 may be an interchangeable lens that is provided to be detachable from the imaging unit 102.
  • the lens driving unit 212 moves at least a part or all of the plurality of lenses 210 along the optical axis via a mechanism member such as a cam ring.
  • the lens driving portion 212 may include an actuator.
  • the actuator can include a stepper motor.
  • the lens control unit 220 drives the lens driving unit 212 in accordance with a lens control command from the imaging unit 102 to move one or more lenses 210 in the optical axis direction via the mechanism member.
  • the lens control commands are, for example, a zoom control command and a focus control command.
  • the lens portion 200 also has a memory 222 and a position sensor 214.
  • the lens control unit 220 controls the movement of the lens 210 in the optical axis direction via the lens driving unit 212 in accordance with the lens operation command from the imaging unit 102.
  • the lens control unit 220 controls the movement of the lens 210 in the optical axis direction via the lens driving unit 212 in accordance with the lens operation command from the imaging unit 102.
  • Part or all of the lens 210 moves along the optical axis.
  • the lens control section 220 performs at least one of a zooming motion and a focusing motion by moving at least one of the lenses 210 along the optical axis.
  • the position sensor 214 detects the position of the lens 210.
  • the position sensor 214 can detect the current zoom position or focus position.
  • the lens driving section 212 may include a shake correction mechanism.
  • the lens control section 220 can perform the shake correction by moving the lens 210 in the direction along the optical axis or in the direction perpendicular to the optical axis via the shake correction mechanism.
  • the lens driving portion 212 can drive the shake correction mechanism by a stepping motor to perform shake correction.
  • the shake correction mechanism may be driven by a stepping motor to move the image sensor 120 in a direction along the optical axis or a direction perpendicular to the optical axis to perform shake correction.
  • the memory 222 stores control values of the plurality of lenses 210 that are moved via the lens driving unit 212.
  • the memory 222 may include at least one of flash memories such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the imaging apparatus 100 mounted on the UAV 10 configured as described above it is possible to more reliably capture a desired image while suppressing the amount of data of the image captured by the imaging apparatus 100.
  • the imaging control unit 110 includes a designation unit 112 and a generation unit 114.
  • the imaging control unit 110 can cause the imaging device 100 to capture a plurality of images while the imaging direction of the imaging device 100 is changed.
  • the imaging control unit 110 can cause the imaging apparatus 100 to capture a plurality of images while the imaging direction of the imaging apparatus 100 is changed while changing the lens position of the focus lens within the range of the predetermined lens position via the lens control unit 220.
  • the imaging control unit 110 can cause the imaging apparatus 100 to capture a plurality of images while changing the imaging direction of the imaging apparatus 100 while changing the lens position of the focus lens from the infinite end side to the nearest end side via the lens control section 220.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a plurality of images while the imaging apparatus 100 rotates around the first point to change the imaging direction of the imaging apparatus 100.
  • the imaging control unit 110 can cause the imaging apparatus 100 to capture a plurality of images while the UAV 10 is hovering while rotating.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a plurality of images while the imaging device 100 is rotated relative to the UAV 10 via the gimbal 50 while the UAV 10 is hovering at the first point.
  • the first point may be a point on a predetermined coordinate space.
  • the first point can be defined by latitude and longitude.
  • the first point can be defined by latitude, longitude and altitude.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a plurality of images while the imaging apparatus 100 is moving along the first trajectory.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a plurality of images while the UAV 10 is flying along the first trajectory.
  • the first trajectory may be a trajectory on a predetermined coordinate space.
  • the first trajectory can be defined by a set of points defined by latitude and longitude.
  • the first trajectory can be defined by a set of points defined by latitude, longitude, and altitude.
  • the specifying unit 112 specifies the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition.
  • the specifying unit 112 can specify the imaging direction of the imaging apparatus 100, in which the imaging apparatus 100 can capture an object that satisfies a predetermined condition.
  • the specifying unit 112 can specify the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition based on the plurality of images captured by the imaging apparatus 100 when the UAV 10 is hovering.
  • the designated portion can specify the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition based on the plurality of images captured by the imaging apparatus 100 during the rotation with respect to the UAV 10.
  • the specifying section 112 can specify the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition based on the evaluation value of the contrast derived from the plurality of images.
  • the specifying unit 112 can specify the imaging direction in which the evaluation value of the contrast is equal to or higher than the threshold value as the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition.
  • the specifying unit 112 can specify an imaging direction in which the evaluation value of the contrast of the predetermined region in the image is equal to or higher than the threshold value as the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition.
  • the specifying section 112 divides each of the plurality of images into a plurality of regions, and derives a contrast evaluation value for each of the regions.
  • the specifying unit 112 derives the distribution of the evaluation values of the contrast of the object existing in the specific direction while moving the area (ROI) from one side in the horizontal direction of the image to the other side.
  • the specifying unit 112 specifies the specific direction as the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition.
  • the specifying section 112 can specify the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition and the distance to the object that exists in the imaging direction of the imaging apparatus that satisfies the predetermined condition, based on the evaluation value of the contrast derived from the plurality of images.
  • the specifying portion 112 can specify the lens position of the focus lens when the image having the highest evaluation value of the contrast ratio is photographed based on the evaluation value of the contrast derived from the plurality of images, and can reach the object that is in focus at the lens position of the designated focus lens
  • the distance is specified as the distance to reach the object existing in the imaging direction of the imaging device that satisfies the predetermined condition.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a ratio per unit angle within a second angle range including the imaging direction of the imaging apparatus 100 specified by the specifying unit 112 during the imaging direction change of the imaging apparatus 100.
  • 112 specifies a larger range of images in the first angular range of the imaging direction of the imaging apparatus 100.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a plurality of images while the imaging apparatus 100 rotates around the first point to change the imaging direction of the imaging apparatus 100 during the first rotation of the imaging apparatus.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture the first number per unit angle in the first angular range when the imaging apparatus 100 rotates around the first point in the second rotation after the first rotation of the imaging apparatus.
  • the first image causes the imaging apparatus 100 to capture a second number of second images more than the first number per unit angle in the second angular range.
  • the imaging control unit 110 can control the lens position of the focus lens to a predetermined lens position via the lens control unit 220 during the first angle range while the imaging direction of the imaging device 100 is changed, and cause the imaging device 100 to shoot the image per unit angle.
  • a number of first images The imaging control unit 110 can control the lens position of the focus lens to infinity via the lens control unit 220 during the first angle range while the imaging direction of the imaging apparatus 100 is changed, and cause the imaging apparatus 100 to capture the first number per unit angle.
  • the first image can also control the lens position of the focus lens to the lens position based on the distance of the object to be reached via the lens control unit 220 within the second angle range, and cause the imaging apparatus 100 to shoot more than the first number per unit angle.
  • the second number of second images The second number of second images.
  • the imaging control unit 110 may cause the imaging device to perform imaging within the second angle range while the imaging device is not changing the imaging process.
  • the imaging control section 110 can control the number of images captured by the imaging apparatus 100 per unit angle by controlling the frame rate of the imaging apparatus 100 or the rotational speed of the imaging apparatus 100.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a ratio per unit moving distance within a second range within the first trajectory including the position of the imaging apparatus 100 specified by the specifying unit 112 during the movement of the imaging apparatus 100 along the first trajectory. More images of the first range within the first trajectory of the position of the image pickup apparatus 100 specified by the designation section 112 are not included.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a first number of first images per unit time during the first range within the first trajectory while the imaging apparatus 100 is moving along the first trajectory, and cause the imaging apparatus 100 to be in the first Within a second range within a track, a second number of second images more than the first number are taken per unit time.
  • the imaging control unit 110 can control the number of images captured by the imaging apparatus 100 per unit moving distance by controlling the frame rate of the imaging apparatus 100 or the moving speed of the imaging apparatus 100.
  • the imaging control section 110 may cause the measurement apparatus to measure a plurality of measurement values during a measurement direction change of the measurement apparatus for measuring an object existing in the imaging direction of the imaging apparatus 100.
  • the imaging control unit 110 may cause the imaging device 60 to capture a plurality of images as a plurality of measurement values while the imaging direction of the imaging device 60 functioning as the stereo camera included in the UAV 10 is changed.
  • the imaging control unit 110 may cause the distance sensor to measure a plurality of measured values during a change in the measurement direction of the distance sensor including the infrared sensor or the ultrasonic sensor included in the UAV 10 and capable of measuring the distance from the UAV 10 to the object.
  • the specifying portion 112 can specify the measuring direction of the measuring device that satisfies the predetermined condition based on the plurality of measured values measured by the measuring device.
  • the specifying unit 112 can specify the imaging direction of the imaging device 60 that satisfies the predetermined condition or the position of the imaging device 60 that satisfies the predetermined condition based on the plurality of images captured by the imaging device 60 that functions as a stereo camera.
  • the designation unit 112 can specify the imaging direction of the imaging device 100 that can capture the target that satisfies the predetermined condition by the imaging device 100 based on the plurality of images captured by the imaging device 60 that functions as a stereo camera, and designate the imaging device 60 that satisfies the predetermined condition. The direction of the camera.
  • the specifying unit 112 can designate the position of the UAV 10 on the first trajectory of the object that satisfies the predetermined condition by the imaging apparatus 100 based on the plurality of images captured by the imaging device 60 as the position of the imaging device 60 that satisfies the predetermined condition.
  • the specifying unit 112 can specify the imaging direction of the imaging device 60 in which the predetermined object exists or the position within the first trajectory based on the plurality of images captured by the imaging device 60.
  • the specifying unit 112 can specify the imaging direction of the imaging device 60 in which the object exists within a predetermined distance from the UAV 10 or the position within the first trajectory as the imaging device 60 that satisfies the predetermined condition, based on the plurality of images captured by the imaging device 60.
  • the imaging direction, or the position of the imaging device 60 that satisfies the predetermined condition can specify the imaging direction of the imaging device 60 in which the predetermined object exists or the position within the first trajectory based on the plurality of images captured by the imaging device 60.
  • the imaging control unit 110 may cause the imaging apparatus 100 to perform each of the second angular range including the measurement direction of the measurement apparatus specified by the specifying unit 112 while the imaging direction of the imaging apparatus 100 is changed corresponding to the change of the measurement direction of the measurement apparatus.
  • the unit angle shooting is more than an image that does not include the first angle range of the measurement direction of the measuring device specified by the specifying portion 112.
  • the imaging control section 110 may cause the imaging apparatus 100 to capture the first number of first images per unit angle within a first angular range that does not include the measurement direction of the measurement apparatus specified by the specifying section 112.
  • the imaging control section 110 may cause the imaging apparatus 100 to capture a second number of second images larger than the first number per unit angle within a second angular range including the measurement direction of the measurement apparatus specified by the specifying section 112.
  • the UAV control unit 30 can control the posture of the imaging apparatus 100 via the gimbal 50 so as not to change the imaging direction of the imaging apparatus 100 within a predetermined time after the UAV 10 and the imaging apparatus 60 start rotating. Then, the gimbal 50 can control the posture of the imaging apparatus 100 so as not to change the imaging direction of the imaging apparatus 100.
  • the UAV control unit 30 can control the UAV 10 and the gimbal 50 to maintain the angle between the imaging direction of the imaging device 60 and the imaging direction of the imaging device 100 at a predetermined angle.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a ratio per unit moving distance within a second range within the first trajectory including the position of the measuring device specified by the specifying unit 112 during the movement of the imaging apparatus 100 along the first trajectory.
  • a first range of images within the first trajectory including the position of the measuring device specified by the specifying portion 112 is included.
  • the imaging control unit 110 may cause the imaging apparatus 100 to capture a first number of first images within a first range within the first trajectory while the imaging apparatus 100 is moving along the first trajectory.
  • the imaging control section 110 may cause the imaging apparatus 100 to capture a second number of second images that are larger than the first number in the second range within the second trajectory.
  • the imaging control unit 110 may cause the imaging device 100 to perform imaging within a first range within the first trajectory while the imaging device 100 is moving along the first trajectory without performing imaging within the first range within the first trajectory.
  • the generating unit 114 generates a composite image based on the plurality of images captured by the imaging device 100.
  • the specifying unit 112 can generate a composite image based on the first image captured by the imaging apparatus 100 in the first angular range and the second image captured by the imaging apparatus 100 in the second angular range.
  • the specifying section 112 can generate a composite image based on the first image captured by the imaging apparatus 100 in the first range of the first trajectory and the second image captured by the imaging apparatus 100 in the second range of the first trajectory.
  • the generating unit 114 may generate a panoramic moving image photograph as a composite image, wherein the first image is a still image and the second image is a moving image.
  • the generating unit 114 may generate a panoramic moving image photograph as a composite image, wherein the first image is a background and the second image is a dynamic image.
  • the generating section 114 may extract a second image specified by the user from the plurality of second images to generate one still image.
  • the generating unit 114 may include, for example, the remote operation device 300 and other personal computers or the like in addition to the imaging unit 102.
  • the image pickup apparatus 100 together with the UAV 10, for example, while rotating in the clockwise direction 500, the image pickup apparatus 100 continuously captures an image.
  • the first object 301 exists in the imaging direction of the imaging apparatus 100 when the imaging apparatus 100 is rotated by 60 degrees.
  • the second object 302 exists in the imaging direction of the imaging apparatus 100 when the imaging apparatus 100 is rotated by 180 degrees.
  • the third object 303 exists in the imaging direction of the imaging apparatus 100 when the imaging apparatus 100 rotates 240 degrees.
  • the specifying unit 112 can specify the imaging directions of the imaging apparatus 100 in which the first object 301, the second object 302, and the third object 303 exist based on the plurality of images captured while the imaging apparatus 100 is rotating.
  • the designation unit 112 can specify that the contrast ratio above the threshold can be obtained by the respective contrast evaluation values of the plurality of images captured by the imaging apparatus 100 when the imaging apparatus 100 rotates while changing the lens position of the focus lens of the imaging apparatus 100.
  • the image of the evaluation value specifies the imaging direction of the imaging apparatus 100 in which the first object 301, the second object 302, and the third object 303 exist.
  • the lens position of the focus lens of the image pickup apparatus 100 is changed from the near end side to the infinity side, and the infinity side is changed to the near end side, and the image pickup apparatus 100 rotates every 20 degrees.
  • the image pickup apparatus 100 captures images I1 to I18.
  • the angle of view set in the image pickup apparatus 100 is, for example, 130 degrees or 135 degrees.
  • the specifying section 112 can divide the images I1 to I18 captured by the imaging apparatus 100 into a plurality of regions, and derive an evaluation value of the contrast for each region (ROI).
  • the specifying unit 112 moves the region (ROI) of the estimated value of the derived contrast of the images I1 to I18 from the right side to the left side of the image while deriving the evaluation values for the contrast of the object existing in the specific direction, respectively.
  • the specifying unit 112 derives the distribution of the evaluation values of the contrasts of the objects existing in the respective imaging directions.
  • the specifying section 112 specifies, from each of the distributions, the distribution of the focus position where the evaluation value of the contrast is equal to or higher than the predetermined threshold, and specifies the specific direction corresponding to the specified distribution as the imaging direction in which the object satisfying the predetermined condition exists.
  • the distribution as shown in FIG. 5A is obtained as an evaluation value of the contrast of the object 301 with respect to the imaging direction existing when the imaging apparatus 100 is rotated by 60 degrees.
  • the distribution as shown in FIG. 5B is obtained as an evaluation value of the contrast of the object 302 with respect to the imaging direction existing when the imaging apparatus 100 is rotated by 180 degrees.
  • the distribution shown in FIG. 5C is obtained as an evaluation value of the contrast of the object 303 with respect to the imaging direction existing when the imaging apparatus 100 rotates 240 degrees.
  • the specifying section 112 can specify the distance to the object by specifying the focus position having the highest evaluation value of the contrast from each of the distributions.
  • FIG. 6 is a diagram showing an example of the relationship between the rotational speed of the imaging apparatus 100 and the rotation angle of the imaging apparatus 100.
  • the image pickup apparatus 100 rotates at a certain rotation speed V1 in the first rotation while changing the lens position of the focus lens to take an image at each predetermined angle.
  • the specifying unit 112 specifies the imaging direction of the imaging apparatus 100 of the subject whose imaging value of the contrast is equal to or greater than the threshold value based on the evaluation value of the contrast of these images.
  • the imaging apparatus 100 rotates at the rotation speed V1 within a range 600 that does not include the imaging direction specified by the designation unit 112, and simultaneously captures a moving image at a predetermined first frame rate.
  • the imaging apparatus 100 rotates at the rotation speed V1 within a range 600 that does not include the imaging direction specified by the designation unit 112, and simultaneously captures a still image at a predetermined first interval.
  • the imaging apparatus 100 rotates at a rotation speed V2 that is slower than the rotation speed V1 in the ranges 601, 602, and 603 including the imaging direction specified by the designation unit 112, and simultaneously captures a moving image at the first frame rate.
  • FIG. 7 is a diagram for explaining an image taken by the imaging apparatus 100.
  • the imaging apparatus 100 captures an image having a larger range than the range 600 of the imaging direction specified by the specifying unit 112 per unit time in the range 601, 602, and 603 including the imaging direction specified by the specifying unit 112.
  • the imaging apparatus 100 captures a first number of first images 700 per unit time within a range 600 including an imaging direction specified by the specifying section 112, and within a range 601, 602, 603 including an imaging direction specified by the specifying section 112
  • a second number of second images 701, 702, 703 are taken per unit time more than the first number.
  • the generating unit 114 creates a moving image based on the regions of the image generating objects 301, 302, and 303, and the other regions are the panoramic moving image 710 of the still image.
  • FIG. 8 shows another example of the relationship between the rotational speed of the imaging apparatus 100 and the rotation angle of the imaging apparatus 100.
  • the UAV control section 30 can change the rotational speed of the imaging apparatus 100 by controlling the UAV 10 or the gimbal 50 according to the distance to the object that satisfies the predetermined condition.
  • the UAV control unit 30 can change the rotational speed of the imaging apparatus 100 by controlling the UAV 10 or the gimbal 50 such that the shorter the distance to the object is, the slower the rotational speed of the imaging apparatus 100 is.
  • FIG. 9 is a diagram showing an example of the relationship between the frame rate of the image pickup apparatus 100 and the rotation angle of the image pickup apparatus 100.
  • the image pickup apparatus 100 rotates at a certain rotation speed V1 during the first rotation, while changing the lens position of the focus lens to take a moving image at the first frame rate.
  • the specifying unit 112 specifies an imaging direction of the imaging apparatus 100 of the target that can capture an imaging value whose contrast value is equal to or greater than the threshold value based on the evaluation value of the contrast of the moving image.
  • the imaging apparatus 100 rotates at the rotation speed V1 in the range 600 excluding the imaging direction specified by the designation unit 112, and simultaneously captures a moving image at the first frame rate.
  • the imaging apparatus 100 rotates at a rotation speed V1 in a range 601, 602, 603 including an imaging direction specified by the specifying section 112 while capturing a moving image at a second frame rate higher than the first frame rate. Thereby, the imaging apparatus 100 captures an image having a larger range than the range 600 of the imaging direction specified by the specifying unit 112 per unit time in the range 601, 602, and 603 including the imaging direction specified by the specifying unit 112.
  • the specifying unit 112 can specify the direction in which the object exists from the predetermined distance range from the UAV 10 to the predetermined condition, based on the measurement result of the sensor that measures the distance to the target of the imaging device 60 or the like that functions as a stereo camera.
  • the imaging direction of the imaging device 100 FIG. 10 shows the result of the distance to the object measured by the imaging device 60 while rotating the image pickup apparatus 100.
  • the designation unit 112 can specify the imaging direction when the imaging apparatus 100 is rotated by 60 degrees, the imaging direction when the imaging apparatus 100 is rotated by 180 degrees, and the imaging direction when the imaging apparatus 100 is rotated by 240 degrees, respectively, based on the result shown in FIG. 10 .
  • the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition.
  • FIG. 11 is a flowchart showing one example of a procedure when the UAV 10 operates in the panoramic moving image photograph mode.
  • the UAV 10 starts flying (S100).
  • the user sets the imaging mode of the imaging apparatus 100 to the panoramic moving image photo mode via the remote operation device 300 (S102).
  • the imaging mode of the imaging apparatus 100 may be set to the panoramic moving image photo mode via the UAV 10 or the operation unit of the imaging apparatus 100.
  • the imaging direction of the imaging apparatus 100 may be a direction intersecting the yaw axis.
  • the angle between the imaging direction of the imaging apparatus 100 and the direction along the yaw axis may be, for example, 30 degrees, 60 degrees, or 90 degrees or the like.
  • a turn refers to the concept of rotation that starts from a specific place and then does not return to that particular place.
  • the image pickup apparatus 100 moves the focus lens from the closest end side to the infinite end side while sequentially capturing an image, and derives a contrast evaluation value in the imaging direction of each imaging apparatus 100 (S106).
  • the specifying section 112 can specify the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition based on the evaluation value of the contrast (S108).
  • the UAV 10 starts the rotation of the second rotation around the yaw axis at the same position as the rotation of the first lap while hovering (S110).
  • the imaging apparatus 100 rotates at a first rotational speed within a first angular range that does not include the imaging direction specified by the specifying portion 112, and is in a second angular range including the imaging direction specified by the specifying portion 112, in comparison with the first
  • the second rotation speed of the rotation speed is rotated, and a moving image is simultaneously captured (S112).
  • the imaging apparatus 100 stores the moving image captured by it in the memory 32 (S114).
  • the generating unit 114 generates a composite image as a moving image with the second angular range based on the moving image stored in the memory 32 with the image of the first angular range as a background (S116).
  • the imaging apparatus 100 can capture a relatively large number of images around the imaging direction of an image in which the evaluation value of the contrast is likely to be high. It is possible to more reliably capture a desired image while suppressing the amount of data of the image captured by the imaging apparatus 100.
  • the generating unit 114 can generate an image of the imaging direction having a higher contrast value as a moving image, and an image of the imaging direction having a lower evaluation value of the contrast as a still image, and generate a panoramic moving image that suppresses the amount of data.
  • FIG. 12 is a flowchart showing one example of a procedure when the UAV 10 operates in the panoramic moving image photograph mode.
  • the UAV 10 starts flying (S200).
  • the user sets the imaging mode of the imaging apparatus 100 to the panoramic moving image photo mode via the remote operation device 300.
  • the imaging mode of the imaging apparatus 100 may be set to the panoramic moving image photo mode via the UAV 10 or the operation unit of the imaging apparatus 100.
  • the imaging device 60 which is a stereo camera mounted on the UAV 10, detects an object that satisfies a predetermined condition (S206).
  • the image pickup device 60 can detect an object existing in a predetermined distance range from the UAV 10 as an object satisfying the condition.
  • the specifying unit 112 specifies the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition based on the object detection result of the imaging device 60 (S208).
  • the specifying unit 112 can designate the imaging direction of the imaging apparatus 100 in which the object exists within a predetermined distance range from the UAV 10 as the imaging direction of the imaging apparatus 100 that satisfies the predetermined condition.
  • the imaging apparatus 100 captures a moving image at a first frame rate in a first angular range that does not include the imaging direction specified by the specifying unit 112 while rotating slowly than the UAV 10 and the imaging apparatus 60, and is specified by the specifying unit 12 Within the second angular range of the imaging direction, the moving image is captured at a second frame rate higher than the first frame rate (S210).
  • the imaging apparatus 100 stores the moving image captured by it in the memory 32 (S212).
  • the generating unit 114 may generate a composite image as a moving image with the second angular range based on the moving image stored in the memory 32 with the image of the first angular range as a background (S214).
  • the imaging apparatus 100 specifies the imaging direction in which the object satisfying the condition predetermined by the imaging device 60 exists, and at the same time, captures an image larger than the other angular range in the angular range including the specified imaging direction. Thereby, it is possible to obtain a moving image including an image which is more likely to include a desired object than an image which is less likely to include a desired object. Therefore, it is possible to more reliably capture a desired image while suppressing the amount of data of the image captured by the imaging apparatus 100. It is also possible to perform imaging by the method in which the imaging device 100 first rotates and then the UAV 10 rotates more slowly than the rotation of the imaging device 100.
  • the imaging control section 110 may adjust the lens position of the focus lens to the distance from the object included in the imaging direction to This distance is used to focus.
  • the imaging control section 110 can adjust the lens position of the focus lens to infinity to perform focusing, without being limited to the distance from the object included in the imaging direction.
  • the imaging control section 110 may adjust a lens position of the focus lens to a predetermined lens position, for example, a focus lens Adjust the lens position to infinity for focusing.
  • the image pickup apparatus 100 can perform the shooting in the range of the angular range or the trajectory that does not include the imaging direction that satisfies the predetermined condition, and only in the range of the angular range or the trajectory including the imaging direction that satisfies the predetermined condition.
  • the generating section 114 may cause the user to select from among the images 701, 702, and 703 constituting the moving image photographed by the image pickup apparatus 100 within the range of the angular range or the trajectory including the imaging direction satisfying the predetermined condition.
  • the image in the desired shooting state is cut into a still image.
  • FIG. 14 illustrates one example of a computer 1200 that may embody, in whole or in part, aspects of the present invention.
  • the program installed on computer 1200 can cause computer 1200 to function as an operation associated with the device in accordance with embodiments of the present invention or as one or more "portions" of the device. Alternatively, the program can cause the computer 1200 to perform the operation or the one or more "parts.”
  • the program enables computer 1200 to perform the processes involved in embodiments of the present invention or the stages of the process.
  • Such a program may be executed by CPU 1212 to cause computer 1200 to perform particular operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212 and a RAM 1214 which are mutually connected by a host controller 1210.
  • the computer 1200 also includes a communication interface 1222, an input/output unit that is coupled to the host controller 1210 via an input/output controller 1220.
  • Computer 1200 also includes a ROM 1230.
  • the CPU 1212 operates in accordance with programs stored in the ROM 1230 and the RAM 1214 to control the respective units.
  • Communication interface 1222 communicates with other electronic devices over a network.
  • the hard disk drive can store programs and data used by the CPU 1212 within the computer 1200.
  • the ROM 1230 stores therein a boot program or the like executed by the computer 1200 at runtime, and/or a program dependent on the hardware of the computer 1200.
  • the program is provided by a computer readable recording medium such as a CR-ROM, a USB memory or an IC card or a network.
  • the program is installed in the RAM 1214 or the ROM 1230 which is also an example of a computer-readable recording medium, and is executed by the CPU 1212.
  • the information processing described in these programs is read by the computer 1200 and causes cooperation between the program and various types of hardware resources described above.
  • the apparatus or method may be constructed by operations or processes that implement information in accordance with the use of the computer 1200.
  • the CPU 1212 can execute a communication program loaded in the RAM 1214, and instructs the communication interface 1222 to perform communication processing based on the processing described in the communication program.
  • the communication interface 1222 reads the transmission data stored in the transmission buffer provided in the recording medium such as the RAM 1214 or the USB memory under the control of the CPU 1212, and transmits the read transmission data to the network, or the slave network.
  • the received reception data is written in a reception buffer or the like provided in the recording medium.
  • the CPU 1212 can cause the RAM 1214 to read all or a necessary portion of a file or a database stored in an external recording medium such as a USB memory, and perform various types of processing on the data on the RAM 1214. Next, the CPU 1212 can write the processed data back to the external recording medium.
  • an external recording medium such as a USB memory
  • CPU 1212 may perform various types of operations, information processing, conditional decisions, conditional transfers, unconditional transfers, information, as described throughout the disclosure, including sequences of instructions of the program. Various types of processing such as retrieval/replacement are performed, and the result is written back to the RAM 1214. Further, the CPU 1212 can retrieve information in a file, a database, and the like within the recording medium. For example, when a plurality of entries having attribute values of the first attribute associated with the attribute values of the second attribute are respectively stored in the recording medium, the CPU 1212 may retrieve the attribute values of the first attribute from the plurality of items. The condition matches the entry, and reads the attribute value of the second attribute stored in the entry, thereby obtaining the attribute value of the second attribute associated with the first attribute satisfying the predetermined condition.
  • the above described programs or software modules may be stored on computer 1200 or on a computer readable storage medium in the vicinity of computer 1200.
  • a recording medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer readable storage medium to provide a program to the computer 1200 through a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

需要一种能够在抑制由摄像装置拍摄的图像的数据量的同时,更可靠地拍摄期望的图像的方法。控制装置可以包括第一控制部,其在摄像装置的摄像方向改变期间,使摄像装置拍摄多个图像,包括指定部,其基于多个图像来指定满足预定条件的摄像装置的摄像方向,第二控制部,其在摄像装置的摄像方向改变期间,在包括由指定部指定的摄像装置的摄像方向的第二角度范围内,使摄像装置每单位角度拍摄比不包括由指定部指定的摄像装置的摄像方向的第一角度范围更多的图像。

Description

控制装置、摄像装置、移动体、控制方法以及程序 【技术领域】
本发明涉及一种控制装置、摄像装置、移动体、控制方法以及程序。
【背景技术】
公开了一种摄像装置,其在移动光学系统的聚焦位置的同时,使图像处理单元生成动态图像数据,并从动态图像数据中包含的多个帧图像中提取对焦在指定区域的静止图像。
专利文献1国际公开第2017/006538号公报
【发明内容】
【发明所要解决的技术问题】
需要一种能够在抑制由摄像装置拍摄的图像的数据量的同时,更可靠地拍摄期望的图像的方法。
【用于解决课题的手段】
本发明的一个方面所涉及的控制装置可以包括第一控制部,其在摄像装置的摄像方向改变期间,使摄像装置拍摄多个图像。控制装置可以包括指定部,其基于多个图像来指定满足预定条件的摄像装置的摄像方向。控制装置可以包括第二控制部,其在摄像装置的摄像方向改变期间,在包括由指定部指定的摄像装置的摄像方向的第二角度范围内,使摄像装置每单位角度拍摄比不包括由指定部指定的摄像装置的摄像方向的第一角度范围更多的图像。
指定部可以基于从多个图像导出的对比度的评估值来指定满足预定条件的摄像装置的摄像方向。
第一控制部可以在摄像装置的第一圈旋转中,即在摄像装置围绕第一点旋转来改 变摄像装置的摄像方向期间,使摄像装置拍摄多个图像。第二控制部可以在摄像装置的第一圈旋转之后的第二圈旋转中,即在摄像装置围绕第一点旋转期间,使摄像装置在第一角度范围内每单位角度拍摄第一数量的第一图像,并使摄像装置在第二角度范围内每单位角度拍摄比第一数量多的第二数量的第二图像。
摄像装置可以包括聚焦镜头及控制聚焦镜头的镜头位置的镜头控制部。第一控制部可以经由镜头控制部在预定的镜头位置的范围内改变聚焦镜头的镜头位置的同时,在摄像装置的摄像方向改变期间使摄像装置拍摄多个图像。指定部可以基于从多个图像导出的对比度的评估值,来指定满足预定条件的摄像装置的摄像方向、以及到达存在于满足预定条件的摄像装置的摄像方向的对象的距离。第二控制部可以在摄像装置的摄像方向改变期间,在第一角度范围内,经由镜头控制部将聚焦镜头的镜头位置控制在预定的镜头位置,并使摄像装置每单位角度拍摄第一数量的第一图像,在第二角度范围内,经由镜头控制部将聚焦镜头的镜头位置控制在基于到达对象的距离的镜头位置,并使摄像装置每单位角度拍摄比第一数量多的第二数量的第二图像。
第二控制部可以通过控制摄像装置的帧速率或摄像装置的旋转速度,来控制每单位角度由摄像装置拍摄的图像的数量。
第二控制部可以在摄像装置的摄像方向改变期间,使摄像装置在第一角度范围内不进行拍摄,而在第二角度范围内进行拍摄。
本发明的一个方面所涉及的控制装置可以包括第一控制部,其在摄像装置沿第一轨迹移动期间,使摄像装置拍摄多个图像。控制装置可以包括指定部,其基于多个图像来指定满足预定条件的摄像装置的位置。控制装置可以包括第二控制部,其在摄像装置沿第一轨迹移动期间,在包括由指定部指定的摄像装置的位置的第一轨迹内的第二范围内,使摄像装置每单位移动距离拍摄比不包括由指定部指定的摄像装置的位置的第一轨迹内的第一范围更多的图像。
指定部可以基于从多个图像导出的对比度的评估值来指定满足预定条件的摄像装置的摄像方向。
第二控制部可以在摄像装置沿第一轨迹移动期间,使摄像装置在第一轨迹内的第一范围内,每单位移动距离拍摄第一数量的第一图像,并使摄像装置在第一轨迹内的第二范围内,每单位移动距离拍摄比第一数量多的第二数量的第二图像。
控制装置可包括生成部,其基于第一图像和第二图像生成合成图像。
第二控制部可以通过控制摄像装置的帧速率或摄像装置的移动速度,来控制每单位移动距离由摄像装置拍摄的图像的数量。
本发明的一个方面所涉及的控制装置可以包括第一控制部,其在用于测量存在于摄像装置的摄像方向的对象的测量装置的测量方向改变期间,使测量装置测量多个测量值。控制装置可以包括指定部,其基于多个测量值来指定满足预定条件的测量装置的测量方向。控制装置可以包括第二控制部,其在摄像装置的摄像方向对应于测量装置的测量方向的改变而改变期间,在包括由指定部指定的测量装置的测量方向的第二角度范围内,使摄像装置每单位角度拍摄比不包括由指定部指定的摄像装置的位置的第一轨迹内的第一范围更多的图像。
本发明的一个方面所涉及的控制装置可以包括第一控制部,其在测量装置沿第一轨迹移动期间,使测量装置测量多个测量值。控制装置可以包括指定部,其基于多个测量值来指定满足预定条件的测量装置的位置。控制装置可以包括第二控制部,其在摄像装置沿第一轨迹移动期间,在包括由指定部指定的测量装置的位置的第一轨迹内的第二范围内,使摄像装置每单位移动距离拍摄比不包括由指定部指定的测量装置的位置的第一轨迹内的第一范围更多的图像。
本发明的一个方面所涉及的摄像装置可以包括上述控制装置。摄像装置可以包括图像传感器,其由控制装置控制。
本发明的一个方面所涉及的移动体,可以搭载上述摄像装置及可控制摄像装置的姿势地支撑摄像装置的支撑机构,并进行移动。
本发明的一个方面所涉及的控制方法可以包括,在摄像装置的摄像方向改变期间,使摄像装置拍摄多个图像的阶段。控制方法可以包括,基于多个图像来指定满足 预定条件的摄像装置的摄像方向的阶段。控制方法可以包括,在摄像装置的摄像方向改变期间,在包括指定的摄像装置的摄像方向的第二角度范围内,使摄像装置每单位角度拍摄比不包括由指定部指定的测量装置的位置的第一轨迹内的第一范围更多的图像的阶段。
本发明的一个方面所涉及的控制方法可以包括,在摄像装置沿第一轨迹移动期间,使摄像装置拍摄多个图像的阶段。控制方法可以包括,基于多个图像来指定满足预定条件的摄像装置的位置的阶段。控制方法可以包括,在摄像装置沿第一轨迹移动期间,在包括指定的摄像装置的位置的第一轨迹内的第二范围内,使摄像装置每单位移动距离拍摄比不包括由指定部指定的测量装置的位置的第一轨迹内的第一范围更多的图像的阶段。
本发明的一个方面所涉及的控制方法可以包括,在用于测量存在于摄像装置的摄像方向的对象的测量装置的测量方向改变期间,使测量装置测量多个测量值的阶段。控制方法可以包括,基于多个测量值来指定满足预定条件的测量装置的测量方向的阶段。控制方法可以包括,在摄像装置的摄像方向对应于测量装置的测量方向的改变而改变期间,在包括指定的测量装置的测量方向的第二角度范围内,使摄像装置每单位角度拍摄比不包括由指定部指定的测量装置的位置的第一轨迹内的第一范围更多的图像的阶段。
本发明的一个方面所涉及的控制方法可以包括,在测量装置沿第一轨迹移动期间,使测量装置测量多个测量值的阶段。控制方法可以包括,基于多个测量值来指定满足预定条件的测量装置的位置的阶段。控制方法可以包括,在摄像装置沿第一轨迹移动期间,在包括指定的测量装置的位置的第一轨迹内的第二范围内,使摄像装置每单位移动距离拍摄比不包括由指定部指定的测量装置的位置的第一轨迹内的第一范围更多的图像的阶段。
本发明的一个方面所涉及的程序,可以是一种用于使计算机作为上述控制装置而起作用的程序。
根据本发明的一个方面,能够在抑制由摄像装置拍摄的图像的数据量的同时,更可靠地拍摄期望的图像。
另外,上述的发明内容中没有穷举本发明的所有必要特征。此外,这些特征组的子组合也可以构成发明。附图说明
图1是示出无人驾驶航空器(UAV)及远程操作装置的外观的一个示例的图。
图2是示出UAV的功能块的一个示例的图。
图3是用于说明全景动态图像照片模式的拍摄方法的图。
图4是用于说明全景动态图像照片模式的拍摄方法的图。
图5A是示出特定摄像方向上的对比度的评估值与聚焦镜头的镜头位置的关系的一个示例的图。
图5B是示出特定摄像方向上的对比度的评估值与聚焦镜头的镜头位置的关系的一个示例的图。
图5C是示出特定摄像方向上的对比度的评估值与聚焦镜头的镜头位置的关系的一个示例的图。
图6是示出全景动态图像照片模式下的旋转速度与旋转角度的关系的一个示例的图。
图7是用于说明由摄像装置拍摄的图像的图。
图8是示出全景动态图像照片模式下的旋转速度与旋转角度的关系的一个示例的图。
图9是示出全景动态图像照片模式下的帧速率与旋转角度的关系的一个示例的图。
图10是示出与旋转角度相关联地测量的被摄体距离的测量结果的一个示例的图。
图11是示出全景动态图像照片模式下的拍摄程序的一个示例的流程图。
图12是示出全景动态图像照片模式下的拍摄程序的一个示例的流程图。
图13是用于说明由摄像装置拍摄的图像的图。
图14是示出硬件构成的一个示例的图。
【具体实施方式】
以下,通过发明的实施方式来对本发明进行说明,但是以下实施方式并非限制权利要求书所涉及的发明。此外,实施方式中说明的特征的所有组合未必是发明的解决方案所必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书、附图以及摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人就无法异议。但是,在除此以外的情况下,保留一切的著作权。
本发明的各种实施方式可参照流程图及框图来描述,这里,方框可表示(1)执行操作的过程的阶段或者(2)具有执行操作的作用的装置的“部”。特定的阶段和“部”可以通过可编程电路和/或处理器来实现。专用电路可以包括数字和/或模拟硬件电路。可以包括集成电路(IC)和/或分立电路。可编程电路可以包括可重构硬件电路。可重构硬件电路可以包括逻辑与、逻辑或、逻辑异或、逻辑与非、逻辑或非、及其它逻辑操作、触发器、寄存器、现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)等存储器元件等。
计算机可读介质可以包括可以对由适宜的设备执行的指令进行存储的任意有形设备。其结果是,其上存储有指令的计算机可读介质包括一种包括指令的产品,该指令可被执行以创建用于执行流程图或框图所指定的操作的手段。作为计算机可读介质的示例,可以包括电子存储介质、磁存储介质、光学存储介质、电磁存储介质、半导体存储介质等。作为计算机可读介质的更具体的示例,可以包括软盘(注册商标)、软磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读 存储器(EPROM或者闪存)、电可擦可编程只读存储器(EEPROM)、静态随机存取存储器(SRAM)、光盘只读存储器(CD-ROM)、数字多用途光盘(DVD)、蓝光(RTM)光盘、记忆棒、集成电路卡等。
计算机可读指令可以包括由一种或多种编程语言的任意组合记述的源代码或者目标代码中的任意一个。源代码或者目标代码包括传统的程序式编程语言。传统的程序式编程语言可以为汇编指令、指令集架构(ISA)指令、机器指令、与机器相关的指令、微代码、固件指令、状态设置数据、或者Smalltalk、JAVA(注册商标)、C++等面向对象编程语言以及“C”编程语言或者类似的编程语言。计算机可读指令可以在本地或者经由局域网(LAN)、互联网等广域网(WAN)提供给通用计算机、专用计算机或者其它可编程数据处理装置的处理器或可编程电路。处理器或可编程电路可以执行计算机可读指令,以创建用于执行流程图或框图所指定操作的手段。作为处理器的示例,包括计算机处理器、处理单元、微处理器、数字信号处理器、控制器、微控制器等。
图1表示无人驾驶航空器(UAV)10及远程操作装置300的外观的一个示例。UAV10包括UAV主体20、万向支架50、多个摄像装置60、以及摄像装置100。万向支架50及摄像装置100为摄像系统的一个示例。UAV10为移动体的一个示例。移动体是指,包括在空中移动的飞行体、在地面上移动的车辆、在水上移动的船舶等的概念。在空中移动的飞行体是指不仅包括UAV、还包括在空中移动的其它的飞行器、飞艇、直升机等的概念。
UAV主体20包括多个旋翼。多个旋翼为推进部的一个示例。UAV主体20通过控制多个旋翼的旋转而使UAV10飞行。UAV主体20使用例如四个旋翼来使UAV10飞行。旋翼的数量不限于四个。此外,UAV10也可以是没有旋翼的固定翼机。
摄像装置100为对包含在期望的摄像范围内的对象进行拍摄的摄像用相机。万向支架50可旋转地支撑摄像装置100。万向支架50为支撑机构的一个示例。例如,万向支架50使用致动器以俯仰轴可旋转地支撑摄像装置100。万向支架50使用致动器 进一步分别以翻滚轴和偏航轴为中心可旋转地支撑摄像装置100。万向支架50可通过使摄像装置100以偏航轴、俯仰轴以及翻滚轴中的至少一个为中心旋转,来变更摄像装置100的姿势。
多个摄像装置60是为了控制UAV10的飞行而对UAV10的周围进行摄像的传感用相机。两个摄像装置60可以设置于UAV10的机头、即正面。并且,其它两个摄像装置60可以设置于UAV10的底面。正面侧的两个摄像装置60可以成对,起到所谓的立体相机的作用。底面侧的两个摄像装置60也可以成对,起到立体相机的作用。摄像装置60可以测量包含在摄像装置60的摄像范围内的对象的存在、以及到对象的距离。摄像装置60为用于测量存在于摄像装置100的摄像方向的对象的测量装置的一个示例。测量装置也可以为其他传感器,例如用于测量存在于摄像装置100的摄像方向的对象的红外传感器、超声波传感器等。可以基于由多个摄像装置60拍摄的图像来生成UAV10周围的三维空间数据。UAV10所包括的摄像装置60的数量不限于四个。UAV10只要包括至少一个摄像装置60即可。UAV10也可以在UAV10的机头、机尾、侧面、底面及顶面分别包括至少一个摄像装置60。摄像装置60中可设定的视角可大于摄像装置100中可设定的视角。摄像装置60也可以具有单焦点镜头或鱼眼镜头。
远程操作装置300与UAV10通信,以远程操作UAV10。远程操作装置300可以与UAV10进行无线通信。远程操作装置300向UAV10发送表示上升、下降、加速、减速、前进、后退、旋转等与UAV10的移动有关的各种指令的指示信息。指示信息包括例如使UAV10高度上升的指示信息。指示信息可以示出UAV10应该位于的高度。UAV10移动以位于从远程操作装置300接收的指示信息所表示的高度。指示信息可以包括使UAV10上升的上升指令。UAV10在接收上升指令的期间上升。UAV10的高度已达到上限高度时,即使接收上升指令,UAV10也可以限制上升。
图2示出了UAV10的功能块的一个示例。UAV10包括UAV控制部30、存储器32、通信接口36、推进部40、GPS接收器41、惯性测量装置42、磁罗盘43、气压 高度计44、温度传感器45、湿度传感器46、万向支架50、摄像装置60及摄像装置100。
通信接口36与远程操作装置300等其它装置通信。通信接口36可以从远程操作装置300接收包括对UAV控制部30的各种指令的指示信息。存储器32对UAV控制部30控制推进部40、GPS接收器41、惯性测量装置(IMU)42、磁罗盘43、气压高度计44、温度传感器45、湿度传感器46、万向支架50、摄像装置60及摄像装置100所需的程序等进行存储。存储器32可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。存储器32可以设置于UAV主体20的内部。其可以设置成可从UAV主体20中拆卸下来。
UAV控制部30按照存储在存储器32中的程序来控制UAV10的飞行及摄像。UAV控制部30可以由CPU或MPU等微处理器、MCU等微控制器等构成。UAV控制部30按照经由通信接口36从远程操作装置300接收到的指令来控制UAV10的飞行及摄像。推进部40推进UAV10。推进部40具有多个旋翼及使多个旋翼旋转的多个驱动马达。推进部40按照来自UAV控制部30的指令,经由多个驱动马达使多个旋翼旋转,以使UAV10飞行。
GPS接收器41接收表示从多个GPS卫星发送的时间的多个信号。GPS接收器41基于所接收的多个信号来计算出GPS接收器41的位置(纬度及经度)、即UAV10的位置(纬度及经度)。IMU42检测UAV10的姿势。IMU42检测UAV10的前后、左右以及上下的三轴方向的加速度和俯仰轴、翻滚轴以及偏航轴的三轴方向的角速度,作为UAV10的姿势。磁罗盘43检测UAV10的机头的方位。气压高度计44检测UAV10的飞行高度。气压高度计44检测UAV10周围的气压,并将检测到的气压换算为高度,以检测高度。温度传感器45检测UAV10周围的温度。湿度传感器46检测UAV10周围的湿度。
摄像装置100包括摄像部102及镜头部200。镜头部200为镜头装置的一个示例。摄像部102具有图像传感器120、摄像控制部110及存储器130。图像传感器120可 以由CCD或CMOS构成。图像传感器120拍摄经由多个镜头210成像的光学图像,并将所拍摄的图像数据输出至摄像控制部110。摄像控制部110可以由CPU或MPU等微处理器、MCU等微控制器等构成。摄像控制部110可以根据来自UAV控制部30的摄像装置100的动作指令来控制摄像装置100。存储器130可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。存储器130存储摄像控制部110对图像传感器120等进行控制所需的程序等。存储器130可以设置于摄像装置100的壳体内部。存储器130可以设置成可从摄像设备100的壳体中拆卸下来。
镜头部200具有多个镜头210、多个镜头驱动部212、以及镜头控制部220。多个镜头210可以起到变焦镜头(zoom lens)、可变焦距镜头(varifocal lens)及聚焦镜头的作用。多个镜头210中的至少一部分或全部被配置为能够沿着光轴移动。镜头部200可以是被设置成能够相对摄像部102拆装的更换镜头。镜头驱动部212经由凸轮环等机构构件使多个镜头210中的至少一部分或全部沿着光轴移动。镜头驱动部212可以包括致动器。致动器可以包括步进马达。镜头控制部220按照来自摄像部102的镜头控制指令来驱动镜头驱动部212,以经由机构构件使一个或多个镜头210沿着光轴方向移动。镜头控制指令例如为变焦控制指令及聚焦控制指令。
镜头部200还具有存储器222和位置传感器214。镜头控制部220按照来自摄像部102的镜头动作指令,经由镜头驱动部212来控制镜头210向光轴方向的移动。镜头控制部220按照来自摄像部102的镜头动作指令,经由镜头驱动部212来控制镜头210向光轴方向的移动。镜头210的部分或全部沿着光轴移动。镜头控制部220通过使镜头210中的至少一个沿着光轴移动,来执行变焦动作和聚焦动作中的至少一个。位置传感器214检测镜头210的位置。位置传感器214可以检测当前的变焦位置或聚焦位置。
镜头驱动部212可以包括抖动校正机构。镜头控制部220可以经由抖动校正机构使镜头210在沿着光轴的方向或垂直于光轴的方向上移动,来执行抖动校正。镜头驱 动部212可以由步进马达驱动抖动校正机构,以执行抖动校正。另外,抖动校正机构可以由步进马达驱动,以使图像传感器120在沿着光轴的方向或垂直于光轴的方向上移动,来执行抖动校正。
存储器222存储经由镜头驱动部212而移动的多个镜头210的控制值。存储器222可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。
使得在搭载于以上述方式构成的UAV10的摄像装置100中,能够在抑制由摄像装置100拍摄的图像的数据量的同时,更可靠地拍摄期望的图像。
摄像控制部110包括指定部112和生成部114。摄像控制部110可以在摄像装置100的摄像方向改变期间,使摄像装置100拍摄多个图像。摄像控制部110可以经由镜头控制部220在预定的镜头位置的范围内,改变聚焦镜头的镜头位置的同时,在摄像装置100的摄像方向改变期间使摄像装置100拍摄多个图像。摄像控制部110可以经由镜头控制部220在从无限远端侧到最近端侧的改变聚焦镜头的镜头位置的同时,在摄像装置100的摄像方向改变期间使摄像装置100拍摄多个图像。
摄像控制部110可以在摄像装置100围绕第一点旋转来改变摄像装置100的摄像方向期间,使摄像装置100拍摄多个图像。摄像控制部110可以在UAV10边悬停边旋转期间,使摄像装置100拍摄多个图像。摄像控制部110可以在UAV10在第一点悬停的同时而摄像装置100经由万向支架50相对于UAV10旋转期间,使摄像装置100拍摄多个图像。第一点可以是预定坐标空间上的点。第一点可以由纬度和经度来定义。第一点可以由纬度、经度和高度来定义。
摄像控制部110可以在摄像装置100沿第一轨迹移动期间,使摄像装置100拍摄多个图像。摄像控制部110可以在UAV10沿第一轨迹飞行期间,使摄像装置100拍摄多个图像。第一轨迹可以是预定坐标空间上的轨迹。第一轨迹可以是由纬度和经度定义的一组点来定义的。第一轨迹可以是由纬度、经度和高度定义的一组点来定义的。通过经由万向支架50对摄像装置100相对于UAV10的摄像方向进行控制,在UAV10 沿第一轨迹飞行期间,可以将摄像装置100的摄像方向保持在相对于UAV10的行进方向预定的角度。
指定部112指定满足预定条件的摄像装置100的摄像方向。指定部112可以指定摄像装置100的摄像方向,在该摄像方向上,摄像装置100能够拍摄到满足预定条件的对象。指定部112可以在UAV10边悬停边旋转时,基于由摄像装置100拍摄的多个图像,指定满足预定条件的摄像装置100的摄像方向。指定部在相对于UAV10旋转期间,可以基于由摄像装置100拍摄的多个图像,指定满足预定条件的摄像装置100的摄像方向。
指定部112可以基于从多个图像导出的对比度的评估值来指定满足预定条件的摄像装置100的摄像方向。指定部112可以将对比度的评估值在阈值以上的摄像方向指定为满足预定条件的摄像装置100的摄像方向。指定部112可以将图像内预定区域的对比度的评估值在阈值以上的摄像方向指定为满足预定条件的摄像装置100的摄像方向。
例如,指定部112将多个图像中的每一个划分为多个区域,并对每一个区域导出对比度评估值。指定部112在将区域(ROI)从图像的水平方向的一侧移动到另一侧的同时,导出存在于特定方向的对象的对比度的评估值的分布。若在存在于指定方向的对象的对比度的评估值的分布中指定的最高对比度的评估值在阈值以上,则指定部112将该特定方向指定为满足预定条件的摄像装置100的摄像方向。
指定部112可以基于从多个图像导出的对比度的评估值,来指定满足预定条件的摄像装置100的摄像方向、以及到达存在于满足预定条件的摄像装置的摄像方向的对象的距离。指定部112可以基于从多个图像导出的对比度的评估值,来指定拍摄对比度的评估值最高的图像时的聚焦镜头的镜头位置,并可以将到达在指定的聚焦镜头的镜头位置对焦的对象的距离指定为到达存在于满足预定条件的摄像装置的摄像方向的对象的距离。
摄像控制部110可以在摄像装置100的摄像方向改变期间,在包括由指定部112 指定的摄像装置100的摄像方向的第二角度范围内,使摄像装置100每单位角度拍摄比不包括由指定部112指定的摄像装置100的摄像方向的第一角度范围更多的图像。
摄像控制部110可以在摄像装置的第一圈旋转中,在摄像装置100围绕第一点旋转来改变摄像装置100的摄像方向期间,使摄像装置100拍摄多个图像。摄像控制部110可以在摄像装置的第一圈旋转之后的第二圈旋转中,在摄像装置100围绕第一点旋转时,使摄像装置100在第一角度范围内每单位角度拍摄第一数量的第一图像,并使摄像装置100在第二角度范围内每单位角度拍摄比第一数量多的第二数量的第二图像。
摄像控制部110可以在摄像装置100的摄像方向改变期间,在第一角度范围内,经由镜头控制部220将聚焦镜头的镜头位置控制在预定的镜头位置,并使摄像装置100每单位角度拍摄第一数量的第一图像。摄像控制部110可以在摄像装置100的摄像方向改变期间,在第一角度范围内,经由镜头控制部220将聚焦镜头的镜头位置控制为无限远,并使摄像装置100每单位角度拍摄第一数量的第一图像。摄像控制部110还可以在第二角度范围内,经由镜头控制部220将聚焦镜头的镜头位置控制在基于到达对象的距离的镜头位置,并使摄像装置100每单位角度拍摄比第一数量多的第二数量的第二图像。
摄像控制部110可以在摄像装置100的摄像方向改变期间,使摄像装置在第一角度范围内不进行拍摄,而在第二角度范围内进行拍摄。摄像控制部110可以通过控制摄像装置100的帧速率或摄像装置100的旋转速度,来控制每单位角度由摄像装置100拍摄的图像的数量。
摄像控制部110可以在摄像装置100沿第一轨迹移动期间,在包括由指定部112指定的摄像装置100的位置的第一轨迹内的第二范围内,使摄像装置100每单位移动距离拍摄比不包括由指定部112指定的摄像装置100的位置的第一轨迹内的第一范围更多的图像。摄像控制部110可以在摄像装置100沿第一轨迹移动期间,使摄像装置100在第一轨迹内的第一范围内,每单位时间拍摄第一数量的第一图像,并使摄像装 置100在第一轨迹内的第二范围内,每单位时间拍摄比第一数量多的第二数量的第二图像。
摄像控制部110可以通过控制摄像装置100的帧速率或摄像装置100的移动速度,来控制每单位移动距离由摄像装置100拍摄的图像的数量。
摄像控制部110可以在用于测量存在于摄像装置100的摄像方向的对象的测量装置的测量方向改变期间,使测量装置测量多个测量值。摄像控制部110可以在作为UAV10包括的立体相机而发挥作用的摄像装置60的摄像方向改变期间,使摄像装置60拍摄多个图像作为多个测量值。摄像控制部110可以在UAV10所包括的、并能够测量从UAV10到对象的距离的红外传感器或者超声波传感器等的距离传感器的测量方向改变期间,使距离传感器测量多个测量值。
指定部112,可以基于由测量装置测量的多个测量值来指定满足预定条件的测量装置的测量方向。指定部112可以基于由作为立体相机而发挥作用的摄像装置60拍摄的多个图像,来指定满足预定条件的摄像装置60的摄像方向,或者满足预定条件的摄像装置60的位置。指定部112可以基于由作为立体相机而发挥作用的摄像装置60拍摄的多个图像,将摄像装置100能够拍摄到满足预定条件的对象的摄像装置100的摄像方向指定为满足预定条件的摄像装置60的摄像方向。指定部112可以基于由摄像装置60拍摄的多个图像,将摄像装置100能够拍摄到满足预定条件的对象的第一轨迹上的UAV10的位置指定为满足预定条件的摄像装置60的位置。
指定部112可以基于由摄像装置60拍摄的多个图像,来指定预定对象存在的摄像装置60的摄像方向,或者第一轨迹内的位置。指定部112可以基于由摄像装置60拍摄的多个图像,将对象存在于距UAV10预定距离的范围内的摄像装置60的摄像方向,或者第一轨迹内的位置指定为满足预定条件的摄像装置60的摄像方向,或者满足预定条件的摄像装置60的位置。
摄像控制部110可以在摄像装置100的摄像方向对应于测量装置的测量方向的改变而改变期间,在包括由指定部112指定的测量装置的测量方向的第二角度范围内, 使摄像装置100每单位角度拍摄比不包括由指定部112指定的测量装置的测量方向的第一角度范围更多的图像。
摄像控制部110可以在不包括由指定部112指定的测量装置的测量方向的第一角度范围内,使摄像装置100每单位角度拍摄第一数量的第一图像。摄像控制部110可以在包括由指定部112指定的测量装置的测量方向的第二角度范围内,使摄像装置100每单位角度拍摄比第一数量多的第二数量的第二图像。
UAV10悬停,同时开始旋转,可以开始改变摄像装置60的摄像方向。在UAV10及摄像装置60开始旋转后的预定时间内,UAV控制部30可以经由万向支架50控制摄像装置100的姿势以便不改变摄像装置100的摄像方向。然后,万向支架50可以控制摄像装置100的姿势以便不改变摄像装置100的摄像方向。UAV控制部30可以控制UAV10及万向支架50以将摄像装置60的摄像方向与摄像装置100的摄像方向之间的角度保持在预定角度。
摄像控制部110可以在摄像装置100沿第一轨迹移动期间,在包括由指定部112指定的测量装置的位置的第一轨迹内的第二范围内,使摄像装置100每单位移动距离拍摄比不包括由指定部112指定的测量装置的位置的第一轨迹内的第一范围更多的图像。
摄像控制部110可以在摄像装置100沿第一轨迹移动期间,使摄像装置100在第一轨迹内的第一范围内拍摄第一数量的第一图像。摄像控制部110可以使摄像装置100在第二轨迹内的第二范围内拍摄比第一数量多的第二数量的第二图像。摄像控制部110可以在摄像装置100沿第一轨迹移动期间,使摄像装置100在第一轨迹内的第一范围内不进行拍摄,而在第一轨迹内的第二范围内进行拍摄。
生成部114根据由摄像装置100拍摄的多个图像生成合成图像。指定部112可以根据由摄像装置100在第一角度范围内拍摄的第一图像、以及由摄像装置100在第二角度范围内拍摄的第二图像生成合成图像。指定部112可以根据由摄像装置100在第一轨迹的第一范围内拍摄的第一图像、以及由摄像装置100在第一轨迹的第二范围内 拍摄的第二图像生成合成图像。
生成部114可以生成全景动态图像照片作为合成图像,其中,第一图像为静止图像,第二图像为动态图像。生成部114可以生成全景动态图像照片作为合成图像,其中,第一图像为背景,第二图像为动态图像。生成部114可以提取由用户从多个第二图像中指定的一个第二图像,来生成一个静止图像。除了摄像部102以外,生成部114可以包括例如,远程操作装置300以及其他个人计算机等。
如图3所示,摄像装置100与UAV10一起,例如,在沿顺时针方向500旋转的同时,摄像装置100连续地拍摄图像。在图3所示的示例中,第一对象301存在于摄像装置100旋转60度时的摄像装置100的摄像方向。第二对象302存在于摄像装置100旋转180度时的摄像装置100的摄像方向。第三对象303存在于摄像装置100旋转240度时的摄像装置100的摄像方向。指定部112可以基于摄像装置100边旋转边拍摄的多个图像,来指定第一对象301、第二对象302以及第三对象303所存在的摄像装置100的摄像方向。指定部112可以在摄像装置100边改变摄像装置100的聚焦镜头的镜头位置边旋转时,通过从由摄像装置100拍摄的多个图像的各自的对比度评估值来指定可以获得在阈值以上的对比度的评估值的图像,来指定第一对象301、第二对象302以及第三对象303所存在的摄像装置100的摄像方向。
例如,如图四所示,将摄像装置100的聚焦镜头的镜头位置从最近端侧改变到无限远侧,又从无限远侧改变到最近端侧的同时,摄像装置100每旋转20度就使摄像装置100拍摄图像I1至I18。摄像装置100中设定的视角例如为130度或135度。指定部112可以将由摄像装置100拍摄的图像I1至I18划分为多个区域,并对每个区域(ROI)导出对比度的评估值。
指定部112例如,将图像I1至I18的导出对比度的评估值的区域(ROI)从图像的右侧移动到左侧,同时分别导出对于存在于特定方向的对象的对比度的评估值。指定部112导出存在于各个摄像方向的对象的对比度的评估值的分布。指定部112从各个分布中指定存在对比度的评估值在预定阈值以上的聚焦位置的分布,并将对应于指 定的分布的特定方向指定为满足预定条件的对象存在的摄像方向。
例如,获得如图5A所示的分布作为相对于存在于摄像装置100旋转60度时的摄像方向的对象301的对比度的评估值。获得如图5B所示的分布作为相对于存在于摄像装置100旋转180度时的摄像方向的对象302的对比度的评估值。获得如图5C所示的分布作为相对于存在于摄像装置100旋转240度时的摄像方向的对象303的对比度的评估值。指定部112可以通过从各个分布中指定对比度的评估值最高的聚焦位置来指定到对象的距离。
图6是示出了摄像装置100的旋转速度与摄像装置100的旋转角度的关系的一个示例。摄像装置100在第一圈旋转中,以一定的旋转速度V1旋转,同时改变聚焦镜头的镜头位置来以每个预定角度拍摄图像。指定部112基于这些图像的对比度的评估值,指定能够拍摄到对比度的评估值在阈值以上的对象的摄像装置100的摄像方向。接着,摄像装置100在第二圈旋转中,在不包括由指定部112指定的摄像方向的范围600内,以旋转速度V1旋转,同时以预定的第一帧速率拍摄动态图像。或者,摄像装置100在第二圈旋转中,在不包括由指定部112指定的摄像方向的范围600内,以旋转速度V1旋转,同时以预定的第一间隔拍摄静止图像。摄像装置100在包括由指定部112指定的摄像方向的范围601、602、603内,以比旋转速度V1慢的旋转速度V2旋转,同时以第一帧速率拍摄动态图像。
图7是用于说明由摄像装置100拍摄的图像的图。摄像装置100在包括由指定部112指定的摄像方向的范围601、602、603内,每单位时间拍摄比不包括由指定部112指定的摄像方向的范围600更多的图像。摄像装置100在包括由指定部112指定的摄像方向的范围600内,每单位时间拍摄第一数量的第一图像700,并在包括由指定部112指定的摄像方向的范围601、602、603内,每单位时间拍摄比第一数量多的第二数量的第二图像701、702、703。生成部114根据这些图像生成对象301、302、303的区域为动态图像,而其他区域为静止图像的全景动态图像710。
图8示出了摄像装置100的旋转速度与摄像装置100的旋转角度的关系的另一个 示例。UAV控制部30可以通过根据到达满足预定条件的对象的距离控制UAV10或者万向支架50来改变摄像装置100的旋转速度。UAV控制部30可以通过控制UAV10或者万向支架50来改变摄像装置100的旋转速度,以使到达对象的距离越短,摄像装置100的旋转速度越慢。
图9是示出了摄像装置100的帧速率与摄像装置100的旋转角度的关系的一个示例的图。摄像装置100在第一圈旋转中,以一定的旋转速度V1旋转,同时改变聚焦镜头的镜头位置来以第一帧速率拍摄动态图像。指定部112基于动态图像的对比度的评估值,指定能够拍摄到对比度的评估值在阈值以上的对象的摄像装置100的摄像方向。接着,摄像装置100在第二圈旋转中,在不包括由指定部112指定的摄像方向的范围600内,以旋转速度V1旋转,同时以第一帧速率拍摄动态图像。摄像装置100在包括由指定部112指定的摄像方向的范围601、602、603内,以旋转速度V1旋转,同时以高于第一帧速率的第二帧速率拍摄动态图像。由此,摄像装置100在包括由指定部112指定的摄像方向的范围601、602、603内,每单位时间拍摄比不包括由指定部112指定的摄像方向的范围600更多的图像。
指定部112可以基于测量到达作为立体相机而发挥作用的摄像装置60等的对象的距离的传感器的测量结果,从距UAV10的预定的距离范围内,将对象所存在的方向指定为满足预定条件的摄像装置100的摄像方向。图10示出了在旋转摄像装置100的同时由摄像装置60测量的到达对象的距离的结果。指定部112可以基于如图10所示的结果,将摄像装置100旋转60度时的摄像方向、摄像装置100旋转180度时的摄像方向、以及摄像装置100旋转240度时的摄像方向分别指定为满足预定条件的摄像装置100的摄像方向。
图11是示出了UAV10在全景动态图像照片模式下动作时的程序的一个示例的流程图。
UAV10开始飞行(S100)。用户经由远程操作装置300将摄像装置100的摄像模式设置为全景动态图像照片模式(S102)。在UAV10开始飞行之前,也可以经由UAV10 或者摄像装置100的操作部将摄像装置100的摄像模式设置为全景动态图像照片模式。
当UAV10到达期望的地点时,UAV10在悬停的同时,开始围绕偏航轴的第一圈旋转(S104)。摄像装置100的摄像方向可以是与偏航轴相交的方向。摄像装置100的摄像方向与沿偏航轴的方向之间的角度可以为,例如,30度、60度或者90度等。转一圈是指,也包括从特定的地方开始旋转然后不再回到该特定的地方的旋转的概念。
在UAV10旋转期间,摄像装置100将聚焦镜头从最近端侧移动到无限远端侧,同时依次拍摄图像,并在每个摄像装置100的摄像方向导出对比度评估值(S106)。指定部112可以基于对比度的评估值来指定满足预定条件的摄像装置100的摄像方向(S108)。
UAV10在悬停的同时,在与第一圈旋转相同的地方开始围绕偏航轴的第二圈的旋转(S110)。摄像装置100在不包括由指定部112指定的摄像方向的第一角度范围内,以第一旋转速度旋转,且在包括由指定部112指定的摄像方向的第二角度范围内,以比第一旋转速度慢的第二旋转速度旋转,同时拍摄动态图像(S112)。摄像装置100将其拍摄的动态图像保存在存储器32中(S114)。生成部114根据保存在存储器32中的动态图像,以第一角度范围的图像为背景,以第二角度范围为动态图像生成合成图像(S116)。
通过以上的程序,摄像装置100可以在很可能会获得对比度的评估值较高的图像的摄像方向的周边,拍摄到比较多的图像。能够在抑制由摄像装置100拍摄的图像的数据量的同时,更可靠地拍摄期望的图像。生成部114能够以对比度的评估值较高的摄像方向的图像为动态图像,以对比度的评估值较低的摄像方向的图像为静止图像,生成抑制数据量的全景动态图像照片。
图12是示出了UAV10在全景动态图像照片模式下动作时的程序的一个示例的流程图。
UAV10开始飞行(S200)。用户经由远程操作装置300将摄像装置100的摄像模式设置为全景动态图像照片模式。在UAV10开始飞行之前,也可以经由UAV10或者摄像装置100的操作部将摄像装置100的摄像模式设置为全景动态图像照片模式。
当UAV10到达期望的地点时,悬停的同时,开始围绕偏航轴的旋转,摄像装置100经由万向支架50开始比UAV10慢的旋转(S204)。
使用搭载在UAV10上的立体相机即摄像装置60,检测满足预定条件的对象(S206)。摄像装置60可以检测存在于距UAV10预定距离范围的对象作为满足条件的对象。指定部112基于摄像装置60的对象检测结果,指定满足预定条件的摄像装置100的摄像方向(S208)。指定部112可以将对象存在于距UAV10的预定的距离范围内的摄像装置100的摄像方向指定为满足预定条件的摄像装置100的摄像方向。
摄像装置100在比UAV10以及摄像装置60慢地旋转的同时,在不包括由指定部112指定的摄像方向的第一角度范围内,以第一帧速率拍摄动态图像,在包括由指定部12指定的摄像方向的第二角度范围内,以高于第一帧速率的第二帧速率拍摄动态图像(S210)。摄像装置100将其拍摄的动态图像保存在存储器32中(S212)。生成部114可以根据保存在存储器32中的动态图像,以第一角度范围的图像为背景,以第二角度范围为动态图像生成合成图像(S214)。
通过以上程序,在UAV10旋转时,摄像装置100指定满足由摄像装置60预定的条件的对象存在的摄像方向,同时,在包含指定的摄像方向的角度范围拍摄比其他角度范围更多的图像。由此,能够获得包括比包括期望的对象的可能性较小的图像更多的包括期望的对象的可能性较大的图像的动态图像。因此,能够在抑制由摄像装置100拍摄的图像的数据量的同时,更可靠地拍摄期望的图像。也可以通过摄像装置100先旋转,然后UAV10比摄像装置100的旋转慢地旋转的方法进行拍摄。
当摄像装置100在包括满足预定条件的摄像方向的角度范围,或者轨迹的范围进行拍摄时,摄像控制部110可以根据距包含在该摄像方向上的对象的距离,将聚焦镜头的镜头位置调整到该距离以进行对焦。摄像控制部110可以将聚焦镜头的镜头位置 调整到无限远处以进行对焦,而不限于距包含在该摄像方向上的对象的距离。当摄像装置100在不包括满足预定条件的摄像方向的角度范围,或者轨迹的范围内进行拍摄时,摄像控制部110可以将聚焦镜头的镜头位置调整到预定的镜头位置,例如,将聚焦镜头的镜头位置调整到无限远处以进行对焦。
如图13所示,摄像装置100可以在不包括满足预定条件的摄像方向的角度范围或者轨迹的范围,不进行拍摄,而只在包括满足预定条件的摄像方向的角度范围或者轨迹的范围内进行拍摄。在这种情况下,例如,生成部114可以在包括满足预定条件的摄像方向的角度范围或者轨迹的范围内,使用户从构成由摄像装置100拍摄的动态图像的图像701、702以及703中选择期望的拍摄状态下的图像,剪切成静止图像。
图14示出了可全部或部分地体现本发明的多个方面的计算机1200的一个示例。安装在计算机1200上的程序能够使计算机1200作为与本发明的实施方式所涉及的装置相关联的操作或者该装置的一个或多个“部”而起作用。或者,该程序能够使计算机1200执行该操作或者该一个或多个“部”。该程序能够使计算机1200执行本发明的实施方式所涉及的过程或者该过程的阶段。这种程序可以由CPU 1212执行,以使计算机1200执行与本说明书所述的流程图及框图中的一些或者全部方框相关联的特定操作。
根据本实施方式的计算机1200包括CPU 1212及RAM 1214,它们通过主机控制器1210相互连接。计算机1200还包括通信接口1222、输入/输出单元,它们通过输入/输出控制器1220与主机控制器1210连接。计算机1200还包括ROM 1230。CPU 1212按照ROM 1230及RAM 1214内存储的程序而动作,从而控制各单元。
通信接口1222通过网络与其它电子设备通信。硬盘驱动器可以存储计算机1200内的CPU 1212所使用的程序及数据。ROM 1230在其中存储运行时由计算机1200执行的引导程序等、和/或依赖于计算机1200的硬件的程序。程序通过CR-ROM、USB存储器或IC卡之类的计算机可读记录介质或者网络来提供。程序安装在也作为计算机可读记录介质的示例的RAM 1214或ROM 1230中,并通过CPU 1212执行。这些 程序中记述的信息处理由计算机1200读取,并引起程序与上述各种类型的硬件资源之间的协作。可以通过根据可随着计算机1200的使用而实现信息的操作或者处理来构成装置或方法。
例如,在计算机1200与外部设备之间执行通信时,CPU 1212可以执行加载在RAM 1214中的通信程序,并基于通信程序所记述的处理,指令通信接口1222进行通信处理。通信接口1222在CPU 1212的控制下,读取存储在RAM 1214或USB存储器之类的记录介质内提供的发送缓冲区中的发送数据,并将读取的发送数据发送到网络,或者将从网络接收的接收数据写入记录介质内提供的接收缓冲区等中。
此外,CPU 1212可以使RAM 1214读取USB存储器等外部记录介质所存储的文件或数据库的全部或者需要的部分,并对RAM 1214上的数据执行各种类型的处理。接着,CPU 1212可以将处理过的数据写回到外部记录介质中。
可以将各种类型的程序、数据、表格及数据库之类的各种类型的信息存储在记录介质中,并接收信息处理。对于从RAM 1214读取的数据,CPU 1212可执行在本公开的各处描述的、包括由程序的指令序列指定的各种类型的操作、信息处理、条件判断、条件转移、无条件转移、信息的检索/替换等各种类型的处理,并将结果写回到RAM 1214中。此外,CPU 1212可以检索记录介质内的文件、数据库等中的信息。例如,在记录介质中存储具有分别与第二属性的属性值相关联的第一属性的属性值的多个条目时,CPU 1212可以从该多个条目中检索出与指定第一属性的属性值的条件相匹配的条目,并读取该条目内存储的第二属性的属性值,从而获取与满足预定条件的第一属性相关联的第二属性的属性值。
以上描述的程序或者软件模块可以存储在计算机1200上或者计算机1200附近的计算机可读存储介质上。此外,与专用通信网络或者互联网连接的服务器系统内提供的硬盘或RAM之类的记录介质可以用作计算机可读存储介质,从而通过网络将程序提供给计算机1200。
应该注意的是,权利要求书、说明书以及说明书附图中所示的装置、系统、程序 以及方法中的动作、顺序、步骤以及阶段等各项处理的执行顺序,只要没有特别明示“在...之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,则可以任意顺序实现。关于权利要求书、说明书以及说明书附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。
以上使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所描述的范围。对本领域普通技术人员来说,显然可对上述实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
【符号说明】
10   UAV
20   UAV主体
30   UAV控制部
32   存储器
36   通信接口
40   推进部
41   GPS接收器
42   惯性测量装置
43   磁罗盘
44   气压高度计
45   温度传感器
46   湿度传感器
50   万向支架
60   摄像装置
100  摄像装置
102  摄像部
110  摄像控制部
112  指定部
114  生成部
120  图像传感器
130  存储器
200  镜头部
210  镜头
212  镜头驱动部
214  位置传感器
220  镜头控制部
222  存储器
300  远程操作装置
1200 计算机
1210 主机控制器
1212 CPU
1214 RAM
1220 输入/输出控制器
1222 通信接口
1230 ROM

Claims (20)

  1. 一种控制装置,其特征在于,包括:第一控制部,其在摄像装置的摄像方向改变期间,使所述摄像装置拍摄多个图像;
    指定部,其基于所述多个图像来指定满足预定条件的所述摄像装置的摄像方向;以及
    第二控制部,其在所述摄像装置的摄像方向改变期间,在包括由所述指定部指定的所述摄像装置的摄像方向的第二角度范围内,使所述摄像装置每单位角度拍摄比不包括由所述指定部指定的所述摄像装置的摄像方向的第一角度范围更多的图像。
  2. 如权利要求1所述的控制装置,其中,所述指定部基于从所述多个图像导出的对比度的评估值来指定满足所述预定条件的所述摄像装置的摄像方向。
  3. 如权利要求1所述的控制装置,其中,所述第一控制部在摄像装置的第一圈旋转中,即在所述摄像装置围绕第一点旋转来改变所述摄像装置的摄像方向期间,
    所述第二控制部在摄像装置的所述第一圈旋转之后的第二圈旋转中,即在所述摄像装置围绕所述第一点旋转期间,使所述摄像装置在所述第一角度范围内每单位角度拍摄第一数量的第一图像,并使所述摄像装置在所述第二角度范围内每单位角度拍摄比所述第一数量多的第二数量的第二图像。
  4. 如权利要求1所述的控制装置,其中,所述摄像装置包括聚焦镜头及控制所述聚焦镜头的镜头位置的镜头控制部;
    所述第一控制部经由所述镜头控制部在预定的镜头位置的范围内,改变所述聚焦镜头的镜头位置的同时,在所述摄像装置的摄像方向改变期间,使所述摄像装置拍摄所述多个图像;
    所述指定部基于从所述多个图像导出的对比度的评估值,来指定满足所述预定条 件的所述摄像装置的摄像方向、以及到达存在于满足所述预定条件的所述摄像装置的摄像方向的对象的距离;
    所述第二控制部在所述摄像装置的摄像方向改变期间,在所述第一角度范围内,经由所述镜头控制部将所述聚焦镜头的镜头位置控制在预定的镜头位置,并使所述摄像装置每单位角度拍摄第一数量的第一图像,在所述第二角度范围内,经由所述镜头控制部将所述聚焦镜头的镜头位置控制在基于到达所述对象的距离的镜头位置,并使所述摄像装置每单位角度拍摄比所述第一数量多的第二数量的第二图像。
  5. 如权利要求1所述的控制装置,其中,所述第二控制部通过控制所述摄像装置的帧速率或所述摄像装置的旋转速度,来控制每单位角度由所述摄像装置拍摄的图像的数量。
  6. 如权利要求1所述的控制装置,其中,所述第二控制部在所述摄像装置的摄像方向改变期间,使所述摄像装置在所述第一角度范围内不进行拍摄,而在所述第二角度范围内进行拍摄。
  7. 一种控制装置,其特征在于,包括:第一控制部,其在摄像装置沿第一轨迹移动期间,使所述摄像装置拍摄多个图像;
    指定部,其基于所述多个图像来指定满足预定条件的所述摄像装置的位置;以及
    第二控制部,其在所述摄像装置沿所述第一轨迹移动期间,在包括由所述指定部指定的所述摄像装置的位置的所述第一轨迹内的第二范围内,使所述摄像装置每单位移动距离拍摄比不包括由所述指定部指定的所述摄像装置的位置的所述第一轨迹内的第一范围更多的图像。
  8. 如权利要求7所述的控制装置,其中,所述指定部基于从所述多个图像导出 的对比度的评估值来指定满足所述预定条件的所述摄像装置的摄像方向。
  9. 如权利要求7所述的控制装置,其中,所述第二控制部在所述摄像装置沿所述第一轨迹移动时,使所述摄像装置在所述第一轨迹内的所述第一范围内,每单位移动距离拍摄第一数量的第一图像,并使所述摄像装置在所述第一轨迹内的所述第二范围内,每单位移动距离拍摄比所述第一数量多的第二数量的第二图像。
  10. 如权利要求3,4和9中的任一项所述的控制装置,其还包括生成部,其基于所述第一图像和所述第二图像生成合成图像。
  11. 如权利要求7所述的控制装置,其中,所述第二控制部通过控制所述摄像装置的帧速率或所述摄像装置的移动速度,来控制每单位移动距离由所述摄像装置拍摄的图像的数量。
  12. 一种控制装置,其特征在于,包括:第一控制部,其在用于测量存在于摄像装置的摄像方向的对象的测量装置的测量方向改变期间,使所述测量装置测量多个测量值;
    指定部,其基于所述多个测量值来指定满足预定条件的所述测量装置的测量方向;以及
    第二控制部,其在摄像装置的摄像方向对应于所述测量装置的测量方向的改变而改变期间,在包括由所述指定部指定的所述测量装置的测量方向的第二角度范围内,使所述摄像装置每单位角度拍摄比不包括由所述指定部指定的所述测量装置的测量方向的第一角度范围更多的图像。
  13. 一种控制装置,其特征在于,包括:第一控制部,其在测量装置沿第一轨迹 移动期间,使所述测量装置测量多个测量值;
    指定部,其基于所述多个测量值来指定满足预定条件的所述测量装置的位置;以及
    第二控制部,其在摄像装置沿所述第一轨迹移动时,在包括由所述指定部指定的所述测量装置的位置的所述第一轨迹内的第二范围内,使所述摄像装置每单位移动距离拍摄比不包括由所述指定部指定的所述测量装置的位置的所述第一轨迹内的第一范围更多的图像。
  14. 一种摄像装置,其特征在于,包括:如权利要求1至3中任一项所述的控制装置;以及
    由所述控制装置控制的图像传感器。
  15. 一种移动体,其特征在于,其搭载如权利要求14所述的摄像装置及可控制所述摄像装置的姿势地支撑所述摄像装置的支撑机构,并进行移动。
  16. 一种控制方法,其特征在于,包括:
    在摄像装置的摄像方向改变期间,使所述摄像装置拍摄多个图像的阶段;
    基于所述多个图像来指定满足预定条件的所述摄像装置的摄像方向的阶段;以及
    在所述摄像装置的摄像方向改变期间,在包括指定的所述摄像装置的摄像方向的第二角度范围内,使所述摄像装置每单位角度拍摄比不包括指定的所述摄像装置的摄像方向的第一角度范围更多的图像的阶段。
  17. 一种控制方法,其特征在于,包括:
    在摄像装置沿第一轨迹移动期间,使所述摄像装置拍摄多个图像的阶段;
    基于所述多个图像来指定满足预定条件的所述摄像装置的位置的阶段;以及
    在所述摄像装置沿所述第一轨迹移动时,在包括指定的所述摄像装置的位置的所述第一轨迹内的第二范围内,使所述摄像装置每单位移动距离拍摄比不包括指定的所述摄像装置的位置的所述第一轨迹内的第一范围更多的图像的阶段。
  18. 一种控制方法,其特征在于,包括:
    在用于测量存在于摄像装置的摄像方向的对象的测量装置的测量方向改变期间,使所述测量装置测量多个测量值的阶段;
    基于所述多个测量值来指定满足预定条件的所述测量装置的测量方向的阶段;以及
    在摄像装置的摄像方向对应于所述测量装置的测量方向的改变而改变期间,在包括指定的所述测量装置的测量方向的第二角度范围内,使所述摄像装置每单位角度拍摄比不包括指定的所述测量装置的测量方向的第一角度范围更多的图像的阶段。
  19. 一种控制方法,其特征在于,包括:
    在测量装置沿第一轨迹移动期间,使所述测量装置测量多个测量值的阶段;
    基于所述多个测量值来指定满足预定条件的所述测量装置的位置的阶段;以及
    在摄像装置沿所述第一轨迹移动时,在包括指定的所述测量装置的位置的所述第一轨迹内的第二范围内,使所述摄像装置每单位距离移动拍摄比不包括指定的所述测量装置的位置的所述第一轨迹内的第一范围更多的图像的阶段。
  20. 一种程序,其特征在于,其是用于使计算机作为如权利要求1至13中的任一项所述的控制装置而起作用的程序。
PCT/CN2019/083679 2018-04-26 2019-04-22 控制装置、摄像装置、移动体、控制方法以及程序 WO2019206076A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980003166.XA CN110809746A (zh) 2018-04-26 2019-04-22 控制装置、摄像装置、移动体、控制方法以及程序
US17/033,869 US20210014427A1 (en) 2018-04-26 2020-09-27 Control device, imaging device, mobile object, control method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018085848A JP6630939B2 (ja) 2018-04-26 2018-04-26 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP2018-085848 2018-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/033,869 Continuation US20210014427A1 (en) 2018-04-26 2020-09-27 Control device, imaging device, mobile object, control method and program

Publications (1)

Publication Number Publication Date
WO2019206076A1 true WO2019206076A1 (zh) 2019-10-31

Family

ID=68294876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083679 WO2019206076A1 (zh) 2018-04-26 2019-04-22 控制装置、摄像装置、移动体、控制方法以及程序

Country Status (4)

Country Link
US (1) US20210014427A1 (zh)
JP (1) JP6630939B2 (zh)
CN (1) CN110809746A (zh)
WO (1) WO2019206076A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111226154B (zh) * 2018-09-26 2023-02-21 深圳市大疆创新科技有限公司 自动对焦相机和系统
JP2022032206A (ja) * 2020-08-11 2022-02-25 コベルコ建機株式会社 作業支援装置
JP7468391B2 (ja) * 2021-02-09 2024-04-16 株式会社Jvcケンウッド 撮像装置および撮像処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192314A (zh) * 2014-09-24 2014-12-10 深圳市创新智慧港有限公司 一种带图形自处理的多角度任意航拍器
CN106708050A (zh) * 2016-12-30 2017-05-24 四川九洲电器集团有限责任公司 一种图像采集方法及能够自主移动的设备
WO2018036285A1 (zh) * 2016-08-22 2018-03-01 亿航智能设备(广州)有限公司 基于飞行器实现自拍的方法及装置
CN107800959A (zh) * 2016-09-07 2018-03-13 三星电子株式会社 电子设备及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4717840B2 (ja) * 2007-02-15 2011-07-06 富士フイルム株式会社 撮像装置およびその制御方法
EP3782912A1 (en) * 2014-12-23 2021-02-24 SZ DJI Osmo Technology Co., Ltd. Uav panoramic imaging
JP2017134363A (ja) * 2016-01-29 2017-08-03 キヤノン株式会社 レンズ制御装置、レンズ制御方法、プログラム
US10277824B2 (en) * 2016-03-10 2019-04-30 Visbit Inc. Time multiplexing programmable field of view imaging
CN107172361B (zh) * 2017-07-12 2019-11-15 维沃移动通信有限公司 一种全景拍摄的方法及移动终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192314A (zh) * 2014-09-24 2014-12-10 深圳市创新智慧港有限公司 一种带图形自处理的多角度任意航拍器
WO2018036285A1 (zh) * 2016-08-22 2018-03-01 亿航智能设备(广州)有限公司 基于飞行器实现自拍的方法及装置
CN107800959A (zh) * 2016-09-07 2018-03-13 三星电子株式会社 电子设备及其控制方法
CN106708050A (zh) * 2016-12-30 2017-05-24 四川九洲电器集团有限责任公司 一种图像采集方法及能够自主移动的设备

Also Published As

Publication number Publication date
CN110809746A (zh) 2020-02-18
JP2019191428A (ja) 2019-10-31
US20210014427A1 (en) 2021-01-14
JP6630939B2 (ja) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2019120082A1 (zh) 控制装置、系统、控制方法以及程序
US20210014427A1 (en) Control device, imaging device, mobile object, control method and program
WO2019238044A1 (zh) 确定装置、移动体、确定方法以及程序
US20200092455A1 (en) Control device, photographing device, photographing system, and movable object
WO2020011230A1 (zh) 控制装置、移动体、控制方法以及程序
WO2019174343A1 (zh) 活动体检测装置、控制装置、移动体、活动体检测方法及程序
WO2019085771A1 (zh) 控制装置、镜头装置、摄像装置、飞行体以及控制方法
WO2019242616A1 (zh) 确定装置、摄像系统、移动体、合成系统、确定方法以及程序
WO2020098603A1 (zh) 确定装置、摄像装置、摄像系统、移动体、确定方法以及程序
JP6481228B1 (ja) 決定装置、制御装置、撮像システム、飛行体、決定方法、及びプログラム
WO2019061887A1 (zh) 控制装置、摄像装置、飞行体、控制方法以及程序
WO2019223614A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
WO2020020042A1 (zh) 控制装置、移动体、控制方法以及程序
WO2020108284A1 (zh) 确定装置、移动体、确定方法以及程序
WO2019242611A1 (zh) 控制装置、移动体、控制方法以及程序
WO2020011198A1 (zh) 控制装置、移动体、控制方法以及程序
US20200130862A1 (en) Control apparatus, camera apparatus, flying object, control method and program
JP6878738B1 (ja) 制御装置、撮像システム、移動体、制御方法、及びプログラム
WO2021143425A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
WO2019085794A1 (zh) 控制装置、摄像装置、飞行体、控制方法以及程序
JP6569157B1 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
CN111213369B (zh) 控制装置、方法、摄像装置、移动体以及计算机可读存储介质
JP7003357B2 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
WO2020125414A1 (zh) 控制装置、摄像装置、摄像系统、移动体、控制方法以及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793427

Country of ref document: EP

Kind code of ref document: A1