WO2019238044A1 - 确定装置、移动体、确定方法以及程序 - Google Patents

确定装置、移动体、确定方法以及程序 Download PDF

Info

Publication number
WO2019238044A1
WO2019238044A1 PCT/CN2019/090725 CN2019090725W WO2019238044A1 WO 2019238044 A1 WO2019238044 A1 WO 2019238044A1 CN 2019090725 W CN2019090725 W CN 2019090725W WO 2019238044 A1 WO2019238044 A1 WO 2019238044A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
time point
zoom
focus
setting value
Prior art date
Application number
PCT/CN2019/090725
Other languages
English (en)
French (fr)
Inventor
安田知长
本庄谦一
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005641.7A priority Critical patent/CN111567032B/zh
Publication of WO2019238044A1 publication Critical patent/WO2019238044A1/zh
Priority to US17/115,654 priority patent/US20210120171A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light
    • G01P3/38Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light using photographic means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/18Focusing aids
    • G03B13/30Focusing aids indicating depth of field
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/006Apparatus mounted on flying objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the present invention relates to a determination device, a moving body, a determination method, and a program.
  • Patent Document 1 describes that in order to provide a sliding zoom effect, image analysis is used to automatically adjust the zoom function in accordance with the movement of the camera.
  • Patent Document 1 Japanese Patent Publication No. 2016-517639
  • an imaging device mounted on a moving body can easily capture an image that provides effects such as sliding zoom.
  • the determination device may include a determination unit based on the time required to change the zoom magnification of the imaging device from the first zoom magnification to the second zoom magnification, the first zoom magnification, and the second zoom magnification.
  • the focus setting value of the imaging device, the zoom setting value of the imaging device, and the moving speed of the moving body equipped with the imaging device are determined at each time point from the first time point to the second time point.
  • the determining unit may further determine each of the first time point to the second time point based on the information indicating the first focus distance of the imaging device at the first time point and the information indicating the second focus distance of the imaging device at the second time point The focus setting value of the imaging device at the time point, the zoom setting value of the imaging device, and the moving speed of the moving body.
  • the imaging device may include a zoom lens and a focus lens.
  • the determining unit may further determine the image pickup device's Focus setting value and zoom setting value of the camera.
  • the first focusing distance may correspond to a distance from the imaging device to a first focusing position at which the first focusing point should be focused.
  • the second focusing distance may correspond to a distance from the imaging device to a second focusing position at which the second focusing point should be focused.
  • the first focus position may be the same as the second focus position.
  • the first focus position may be different from the second focus position.
  • the first focusing distance may be longer than the second focusing distance.
  • the determination unit may determine the focus setting value of the imaging device, the zoom setting value of the imaging device, and the moving speed of the moving body at each time point from the first time point to the second time point, so that the imaging device shoots at the first time point
  • the size of the subject at the first focus position on the image plane and the size of the subject at the second focus position captured by the imaging device at the second time point on the image plane satisfy predetermined conditions.
  • the predetermined condition may be that the size of the subject on the image plane at the first focus position captured by the imaging device at the first point in time and the subject at the second focus position captured by the imaging device at the second point in time are The condition that the dimensions on the image surface are consistent.
  • the first focus position may be the same as the second focus position.
  • the first focus position may be different from the second focus position.
  • the first focus position may be different from the second focus position.
  • the determination unit may determine the focus setting value of the imaging device, the zoom setting value of the imaging device, and the moving speed of the moving body at each time point from the first time point to the second time point, so that the imaging device shoots at the first time point.
  • the size of the subject on the image plane at the first in-focus position and the size of the subject on the image plane at the position corresponding to the first in-focus position captured by the imaging device at the second point in time satisfy predetermined conditions.
  • the first focus position may be different from the second focus position.
  • the determination unit may determine the focus setting value of the imaging device, the zoom setting value of the imaging device, and the moving speed of the moving body at each time point from the first time point to the second time point, so that the imaging device shoots at the first time point.
  • the size of the subject at the position corresponding to the second in-focus position on the image plane and the size of the subject at the second in-focus position captured by the imaging device at the second time point on the image plane satisfy predetermined conditions.
  • the imaging device includes a zoom lens.
  • the determination device may include a determination unit that determines whether the zoom ratio of the imaging device can be changed from the first time to the first time based on at least one of time, the first zoom magnification, the second zoom magnification, the minimum speed and the maximum speed of the zoom lens.
  • the zoom magnification is changed to a second zoom magnification.
  • the determination unit may determine the time at each time point from the first time point to the second time point.
  • the focus setting value of the imaging device, the zoom setting value of the imaging device, and the moving speed of the moving body may be determined.
  • the determining device may include a judging unit that judges whether the mobile body can move the first focus distance and the second focus distance within the time based on the time, the difference between the first focus distance and the second focus distance, and the maximum speed of the moving body. Difference.
  • the determination unit may determine the imaging device at each time point from the first time point to the second time point.
  • the focus setting value of the camera, the zoom setting value of the imaging device, and the moving speed of the moving body may be determined.
  • the determination device may include a determination unit that determines whether an obstacle exists on a path that moves the moving body by a difference between the first focus distance and the second focus distance.
  • the determination section may determine the focus setting value of the imaging device, the zoom setting value of the imaging device, and the Moving speed.
  • the zoom of the imaging device may include an optical zoom and an electronic zoom.
  • the determination unit may determine the respective control values of the optical zoom and the electronic zoom as the zoom settings of the imaging device at each time point from the first time point to the second time point based on the time, the first zoom magnification, and the second zoom magnification. value.
  • the moving body may be a moving body that is mounted on the determination device and the imaging device and moves.
  • a determination method includes the following steps: determining the slave zoom factor based on the time required to change the zoom magnification of the imaging device from the first zoom magnification to the second zoom magnification, the first zoom magnification, and the second zoom magnification.
  • the focus setting value of the imaging device, the zoom setting value of the imaging device, and the moving speed of the moving body equipped with the imaging device at the respective time points from the first time point to the second time point.
  • the program according to one aspect of the present invention may be a program for causing a computer to function as the above-mentioned determination device.
  • an image pickup device mounted on a moving body can easily capture an image that provides effects such as slide zoom.
  • FIG. 1 is a diagram showing an example of the appearance of an unmanned aircraft and a remote operation device.
  • FIG. 2 is a diagram showing an example of functional blocks of an unmanned aircraft.
  • FIG. 3 is a diagram showing an example of a positional relationship between an unmanned aircraft and a subject.
  • FIG. 4 is a diagram showing an example of a relationship between a focus lens position and a zoom lens position.
  • FIG. 5A is a diagram illustrating an example of an image captured by the imaging device on the telephoto side.
  • FIG. 5B is a diagram illustrating an example of an image captured by the imaging device on the wide-angle side.
  • FIG. 6A is a diagram illustrating an example of an image captured by the imaging device on the telephoto side.
  • FIG. 6B is a diagram illustrating an example of an image captured by the imaging device on the wide-angle side.
  • FIG. 7A is a diagram illustrating an example of an image captured by the imaging device on the telephoto side.
  • FIG. 7B is a diagram showing an example of an image captured by the imaging device on the wide-angle side.
  • FIG. 8 is a flowchart showing an example of an imaging process of the imaging device.
  • FIG. 9 is a diagram showing an example of a hardware configuration.
  • the blocks may represent (1) a stage of a process of performing an operation or (2) a "part" of a device having a role of performing an operation.
  • Certain stages and "parts" may be implemented by programmable circuits and / or processors.
  • the dedicated circuits may include digital and / or analog hardware circuits. It may include integrated circuits (ICs) and / or discrete circuits.
  • Programmable circuits may include reconfigurable hardware circuits.
  • Reconfigurable hardware circuits can include logical AND, logical OR, logical XOR, logical NAND, logical NOR, and other logical operations, flip-flops, registers, field programmable gate arrays (FPGAs), and programmable logic arrays (PLAs) ) And other memory elements.
  • the computer-readable medium may include any tangible device that can store instructions executed by a suitable device.
  • a computer-readable medium having instructions stored thereon includes a product including instructions that can be executed to create a means for performing the operations specified by the flowchart or block diagram.
  • an electronic storage medium, a magnetic storage medium, an optical storage medium, an electromagnetic storage medium, a semiconductor storage medium, and the like may be included.
  • a computer-readable medium a floppy (registered trademark) disk, a floppy disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), electrically erasable programmable read-only memory (EEPROM), static random access memory (SRAM), compact disc read-only memory (CD-ROM), digital versatile disc (DVD), Blu-ray (RTM) disc, memory stick , Integrated circuit cards, etc.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • SRAM static random access memory
  • CD-ROM compact disc read-only memory
  • DVD digital versatile disc
  • RTM Blu-ray
  • Computer-readable instructions may include any of source code or object code described by any combination of one or more programming languages.
  • the source or object code includes traditional procedural programming languages.
  • Traditional programming languages can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or Smalltalk, JAVA (registered trademark), C + 4 And other object-oriented programming languages and "C" programming languages or similar programming languages.
  • the computer-readable instructions may be provided to a processor or a programmable circuit of a general-purpose computer, a special-purpose computer, or other programmable data processing device locally or via a wide area network (WAN) such as a local area network (LAN) or the Internet.
  • WAN wide area network
  • LAN local area network
  • a processor or programmable circuit can execute computer-readable instructions to create a means for performing the operations specified in the flowchart or block diagram.
  • Examples of the processor include a computer processor, a processing unit, a microprocessor, a digital signal processor, a controller, a microcontroller, and the like.
  • FIG. 1 shows an example of the appearance of an unmanned aerial vehicle (UAV) 10 and a remote operation device 300.
  • the UAV 10 includes a UAV body 20, a universal joint 50, a plurality of imaging devices 60, and an imaging device 100.
  • the gimbal 50 and the imaging device 100 are examples of an imaging system.
  • UAV 10, or moving body is a concept that includes flying bodies moving in the air, vehicles moving on the ground, ships moving on the water, and so on.
  • a flying object moving in the air refers to a concept that includes not only UAVs, but also other aircraft, airships, and helicopters that move in the air.
  • the UAV body 20 includes a plurality of rotors. Multiple rotors are an example of a propulsion part.
  • the UAV body 20 controls the rotation of a plurality of rotors to fly the UAV 10.
  • the UAV body 20 uses, for example, four rotors to fly the UAV 10.
  • the number of rotors is not limited to four.
  • UAV 10 can also be a fixed-wing aircraft without rotors.
  • the imaging device 100 is an imaging camera that images an object included in a desired imaging range.
  • the gimbal 50 rotatably supports the imaging device 100.
  • the universal joint 50 is an example of a support mechanism.
  • the gimbal 50 uses an actuator to rotatably support the imaging device 100 about a pitch axis.
  • the gimbal 50 uses an actuator to further rotatably support the imaging device 100 around a roll axis and a yaw axis, respectively.
  • the gimbal 50 may change the posture of the imaging device 100 by rotating the imaging device 100 around at least one of a yaw axis, a pitch axis, and a roll axis.
  • the plurality of imaging devices 60 are sensing cameras that capture the surroundings of the UAV 10 in order to control the flight of the UAV 10.
  • the two camera devices 60 may be installed on the nose of the UAV 10, that is, on the front side.
  • the other two camera devices 60 may be disposed on the bottom surface of the UAV 10.
  • the two image pickup devices 60 on the front side may be paired and function as a so-called stereo camera.
  • the two imaging devices 60 on the bottom surface side may be paired to function as a stereo camera.
  • the three-dimensional space data around the UAV 10 can be generated from the images captured by the plurality of imaging devices 60.
  • the number of the imaging devices 60 included in the UAV 10 is not limited to four.
  • the UAV 10 only needs to include at least one imaging device 60.
  • the UAV 10 may also include at least one camera device 60 on the nose, tail, side, bottom, and top surfaces of the UAV 10.
  • the angle of view settable in the imaging device 60 may be greater than the angle of view settable in the imaging device 100.
  • the imaging device 60 may include a single focus lens or a fisheye lens.
  • the remote operation device 300 communicates with the UAV 10 to remotely operate the UAV 10.
  • the remote operation device 300 can perform wireless communication with the UAV 10.
  • the remote operation device 300 transmits to the UAV 10 instruction information indicating various instructions related to the movement of the UAV 10 such as ascent, descent, acceleration, deceleration, forward, backward, and rotation.
  • the instruction information includes, for example, instruction information for raising the UAV 10 height.
  • the instruction information may show the height at which the UAV 10 should be located.
  • the UAV 10 moves to a height indicated by the instruction information received from the remote operation device 300.
  • the instruction information may include a rising instruction for causing the UAV 10 to rise. UAV10 rises while receiving the rising command. When the height of UAV 10 reaches the upper limit, UAV 10 can limit the ascent even if it receives an ascent command.
  • FIG. 2 shows an example of the functional blocks of the UAV 10.
  • UAV 10 includes UAV control unit 30, memory 37, communication interface 36, propulsion unit 40, GPS receiver 41, inertial measurement device 42, magnetic compass 43, barometric altimeter 44, temperature sensor 45, humidity sensor 46, universal joint 50, The imaging device 60 and the imaging device 100.
  • the communication interface 36 communicates with other devices such as the remote operation device 300.
  • the communication interface 36 may receive instruction information including various instructions to the UAV control section 30 from the remote operation device 300.
  • the memory 37 stores the UAV control unit 30 pair of the propulsion unit 40, the GPS receiver 41, the inertial measurement unit (IMU) 42, the magnetic compass 43, the barometric altimeter 44, the temperature sensor 45, the humidity sensor 46, the universal joint 50, the camera 60, and Programs and the like necessary for the imaging device 100 are stored.
  • the memory 37 may be a computer-readable recording medium, and may include at least one of SRAM, DRAM, EPROM, EEPROM, USB memory, and flash memory such as a solid state drive (SSD).
  • the memory 37 may be provided inside the UAV body 20. It may be provided to be detachable from the UAV body 20.
  • the UAV control unit 30 controls the flight and shooting of the UAV 10 in accordance with a program stored in the memory 37.
  • the UAV control unit 30 may be composed of a microprocessor such as a CPU or an MPU, and a microcontroller such as an MCU.
  • the UAV control unit 30 controls the flight and shooting of the UAV 10 in accordance with instructions received from the remote operation device 300 via the communication interface 36.
  • the advancing unit 40 advances the UAV 10.
  • the propulsion unit 40 includes a plurality of rotors and a plurality of drive motors that rotate the plurality of rotors.
  • the propulsion unit 40 rotates a plurality of rotors through a plurality of drive motors in accordance with a command from the UAV control unit 30 to fly the UAV 10.
  • the GPS receiver 41 receives a plurality of signals indicating the time transmitted from a plurality of GPS satellites.
  • the GPS receiver 41 calculates the position (latitude and longitude) of the GPS receiver 41, that is, the position (latitude and longitude) of the UAV 10 based on the received multiple signals.
  • IMU 42 detects UAV 10's posture.
  • IMU42 detects the three-axis acceleration of the front-rear, left-right, and up-down UAV 10, and the three-axis angular velocity of the pitch axis, roll axis, and yaw axis, as the posture of UAV 10.
  • the magnetic compass 43 detects the orientation of the nose of the UAV 10.
  • the barometric altimeter 44 detects the flying altitude of the UAV 10.
  • the barometric altimeter 44 detects the air pressure around the UAV 10 and converts the detected air pressure into an altitude to detect the altitude.
  • the temperature sensor 45 detects the temperature around the UAV 10.
  • the imaging device 100 includes an imaging section 102 and a lens section 200.
  • the imaging apparatus 100 may have an electronic zoom function.
  • the imaging apparatus 100 may have at least one of an optical zoom function and an electronic zoom function.
  • the lens unit 200 is an example of a lens device.
  • the imaging unit 102 includes an image sensor 120, an imaging control unit 110, and a memory 130.
  • the image sensor 120 may be composed of a CCD or a CMOS.
  • the image sensor 120 captures an optical image formed through the lens section 200 and outputs the captured image to the imaging control section 110.
  • the imaging control unit 110 may be composed of a microprocessor such as a CPU or an MPU, and a microcontroller such as an MCU.
  • the imaging control unit 110 may control the imaging apparatus 100 based on an operation instruction of the imaging apparatus 100 from the UAV control unit 30.
  • the imaging control section 110 can enlarge an image output from the image sensor 120 and cut out a part of the image, thereby achieving electronic zoom.
  • the memory 130 may be a computer-readable recording medium, and may include at least one of SRAM, DRAM, EPROM, EEPROM, USB memory, and flash memory such as a solid state drive (SSD).
  • the memory 130 stores programs and the like necessary for the imaging control unit 110 to control the image sensor 120 and the like.
  • the memory 130 may be disposed inside a casing of the imaging device 100.
  • the memory 130 may be provided so as to be detachable from a casing of the imaging apparatus 100.
  • the lens section 200 includes a focus lens 210, a zoom lens 211, a lens driving section 212, a lens driving section 213, and a lens control section 220.
  • the focus lens 210 and the zoom lens 211 may include at least one lens. At least a part or all of the focus lens 210 and the zoom lens 211 are configured to be movable along the optical axis.
  • the lens unit 200 may be an interchangeable lens provided to be detachable from the imaging unit 102.
  • the lens driving unit 212 moves at least a part or all of the focus lens 210 along an optical axis via a mechanism member such as a cam ring and a guide shaft.
  • the lens driving unit 213 moves at least a part or all of the zoom lens 211 along an optical axis via a mechanism member such as a cam ring and a guide shaft.
  • the lens control section 220 drives at least one of the lens driving section 212 and the lens driving section 213 in accordance with a lens control instruction from the imaging section 102, and causes at least one of the focus lens 210 and the zoom lens 211 to pass along the optical axis direction via a mechanism member Move to perform at least one of a zoom action and a focus action.
  • the lens control command is, for example, a zoom control command and a focus control command.
  • the lens unit 200 further includes a memory 222, a position sensor 214, and a position sensor 215.
  • the memory 222 stores control values of the focus lens 210 and the zoom lens 211 that are moved via the lens driving section 212 and the lens driving section 213.
  • the memory 222 may include at least one of flash memories such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the position sensor 214 detects a lens position of the focus lens 210.
  • the position sensor 214 can detect a current focus position.
  • the position sensor 215 detects a lens position of the zoom lens 211.
  • the position sensor 215 can detect the current zoom position of the zoom lens 211.
  • the zoom function of the camera device 100 is used to provide dynamic images with, for example, changing the size of the background on the image surface while maintaining attention.
  • a sliding zoom effect such as the size of the subject on the image surface.
  • the UAV control section 30 includes an acquisition section 31, a determination section 32, and a determination section 33.
  • the acquisition section 31 acquires the time T, the first zoom magnification, and the second zoom magnification required to change the zoom magnification of the imaging apparatus 100 from the first zoom magnification to the second zoom magnification.
  • the acquisition section 31 can acquire the time, the first zoom magnification, and the second zoom magnification stored in advance in the memory 130, the memory 37, or the like.
  • the acquisition section 31 may acquire the time T, the first zoom magnification, and the second zoom magnification specified by the user via the remote operation device 300.
  • the zoom magnification may be an optical zoom magnification, an electronic zoom magnification, or a combination of an optical zoom magnification and an electronic zoom magnification.
  • Optical zoom magnification refers to the magnification from the wide-angle end.
  • the electronic zoom magnification refers to a magnification of an image output from the image sensor 120.
  • the determination section 32 determines the focus setting value of the imaging device 100, the zoom setting value of the imaging device 100, and the UAV 10 moving speed.
  • the determining unit 32 may further determine from the first time point to the second time point based on the information indicating the first focus distance of the imaging device 100 at the first time point and the information indicating the second focus distance thereof at the second time point.
  • the focus setting value of the imaging device 100, the zoom setting value of the imaging device, and the moving speed of the UAV 10 at various time points of the.
  • the information indicating the first focusing distance includes the distance from the imaging device 100 to a subject that has entered the in-focus state at the first point in time, and the focus lens 210 that brought the subject into the in-focus state at the first point in time. At least one of the positions.
  • the information indicating the second focusing distance includes at least one of the distance from the imaging device 100 to the subject in the in-focus state at the second time point, and the position of the focusing lens 210 that brought the subject into the in-focus state at the second time point.
  • the in-focus state refers to, for example, a state in which the evaluation value of the contrast of the subject in the image is equal to or greater than a predetermined value.
  • the first zoom magnification is 2 times
  • the second zoom magnification is 1 times.
  • the zoom magnification of the imaging device 100 at the first time point is 2 times
  • the distance (first focusing distance) from the imaging device 100 to the subject 500 is L1.
  • the UAV 10 is moved in the imaging direction so that the size of the subject 500 on the image plane at 2 times and the size of the subject 500 on the image plane at 1 time are the same.
  • the imaging device 100 moves the zoom lens 211 from a first time point to a second time point to change the zoom magnification from 2 times to 1 time.
  • the imaging device 100 changes the focus distance of the focus lens 210 from the first focus distance to the second focus distance from the first time point to the second time point.
  • the first focusing distance corresponds to a distance from the imaging apparatus 100 to a first focusing position at which the first focusing point should be focused.
  • the second focusing distance corresponds to a distance from the imaging device 100 to a second focusing position at which the second focusing point should be focused.
  • the imaging device 100 may be moved away from the subject 500 from the first time point to the second time point.
  • the first zoom magnification is 1 ⁇
  • the second zoom magnification is 2 ⁇ .
  • the imaging device 100 can perform shooting in such a manner that the in-focus state of a single subject remains still from the first time point to the second time point.
  • the first focus position is the same as the second focus position.
  • the imaging device 100 can shoot in such a manner that it focuses on the first subject at a first time point and focuses on a second subject at a distance from the imaging device 100 at a second time point different from the first subject. In this case, the first focus position is different from the second focus position.
  • the determining unit 32 determines a moving speed of the UAV 10 required to move the UAV 10 to a difference between the second focusing distance and the first focusing distance within the time period T.
  • the determining unit 32 may determine the first position based on the first information indicating the relationship between the zoom lens position and the focus lens position in the first focus distance and the second information indicating the relationship between the zoom lens position and the focus lens position in the second focus distance.
  • the determination section 32 may determine the focus setting value of the imaging device 100 and the zoom setting value of the imaging device 100 at various time points from the first time point to the second time point based on a so-called zoom tracking curve. For example, as shown in FIG. 4, the determination unit 32 may be based on the zoom tracking curve 602 corresponding to the infinity-side focusing distance corresponding to the first focusing distance and the zoom tracking curve 601 corresponding to the closest-side focusing distance to the second focusing distance.
  • a movement tracking curve 603 is determined, and the movement tracking curve 603 represents a focus setting value of the imaging device 100 and a zoom setting value of the imaging device 100 at various time points from the first time point to the second time point.
  • the imaging control unit 110 outputs a zoom action instruction and a focus action instruction to the lens control unit 220 to control the zoom lens position and the focus lens position from the first time point to the second time point according to the movement tracking curve 603 shown in FIG. 4 .
  • the determining section 32 may acquire data of a zoom tracking curve of each focus distance stored in the memory 222 of the lens section 200, and determine a movement tracking curve based on the acquired data, the movement tracking curve representing the time from the first time point to the third The focus setting value of the imaging device 100 and the zoom setting value of the imaging device 100 at each time point at two points in time.
  • the determining section 32 may determine the focus setting value of the imaging device 100, the zoom setting value of the imaging device 100, and the moving speed of the UAV 10 at each time point from the first time point to the second time point, so that the The size of the subject on the image plane at the first focus position captured at a point in time and the size of the subject on the image plane at the second focus position captured by the imaging device 100 at the second point in time meet predetermined conditions.
  • the predetermined condition may be the size of the subject on the image plane at the first in-focus position captured by the imaging device 100 at the first point in time and the subject at the second in-focus position captured by the imaging device 100 at the second point in time. The condition that the size of the volume on the image plane is consistent.
  • the imaging device 100 can perform shooting in such a manner that it approaches the subject from the first time point to the second time point.
  • the imaging device 100 can perform shooting while moving relative to the subject, so that the first focus distance is longer than the second focus distance.
  • the imaging device 100 captures an image 700 shown in FIG. 5A at a first focus distance and a first zoom magnification at a first time point, and at a second focus distance and a smaller zoom distance than the first zoom at a second time point.
  • the second zoom magnification of the magnification captures an image 701 as shown in FIG. 5B.
  • the moving image captured from the first time point to the second time point includes the expression that the size of the background object 500 on the image surface is maintained while the size of the background on the image surface is changed.
  • the determination section 32 may determine the focus setting value of the imaging device 100 and the zoom setting value of the imaging device 100 at various time points from the first time point to the second time point. And the moving speed of UAV 10 so that the size of the subject on the image plane at the first in-focus position captured by the imaging device 100 at the first point in time and the second focus captured by the imaging device 100 at the second point in time The size of the subject at the position on the image plane satisfies a predetermined condition. Under this condition, a moving image captured from the first time point to the second time includes a background size change on the image surface while focusing from the first time point to the first existing at the first focus position. A state of a subject of interest becomes a manifestation of a state of focusing on a second subject of interest existing at a second focusing position at a second time point.
  • the first subject of interest may be the same as the second subject of interest. That is, the subject of interest existing at the first focus position at the first time point may also be moved to the second focus position at the second time point.
  • the image capture apparatus 100 captures an image 710 including the subject 500 in a focus state as shown in FIG. 6A at a first focus distance and a first zoom magnification at a first time point.
  • An image 711 including the subject 500 in the in-focus state as shown in FIG. 6B is captured at a second focusing point and at a second zoom magnification smaller than the first zoom magnification at a second time point.
  • the moving image captured from the first time point to the second time point includes a subject 500 that moves between the first time point and the second time point while maintaining the size of the background on the image surface. Performance like size on the surface.
  • the determination section 32 may determine the focus setting value of the imaging device 100 and the zoom setting value of the imaging device 100 at various time points from the first time point to the second time point. And UAV 10's moving speed so that the size of the subject on the image plane at the first in-focus position captured by the imaging device 100 at the first point in time and the size of the subject captured by the imaging device 100 at the second point in time with the first The size of the subject on the image plane at the position corresponding to the in-focus position satisfies a predetermined condition.
  • the predetermined condition in this case may be the size of the subject on the image plane at the first in-focus position captured by the imaging device 100 at the first time point and the size of the subject captured by the imaging device 100 at the second time point and the first The condition that the size of the subject at the position corresponding to the in-focus position on the image plane is consistent.
  • the moving image captured from the first time point to the second time point includes the size of the background on the image plane being changed while maintaining the subject of interest existing at the first focus position on the image plane. The performance of this size.
  • the moving image includes that the subject of interest at the first focus position enters the focus state at the first time point, and at the second time point, another subject of interest existing at the second focus position enters the focus state Performance.
  • the imaging device 100 captures, for example, an image 720 including the subject 500 in the in-focus state and the subject 501 in the in-focus state as shown in FIG. 7A at the first focusing distance and the first zoom magnification at a first time point. Further, shooting at the second time point with the second focusing distance and the second zoom magnification smaller than the first zoom magnification includes the subject 500 in the in-focus state and the subject 501 not in the focus state as shown in FIG. 7B. Image 721.
  • the determination section 32 may determine the focus setting value of the imaging device 100 and the zoom setting value of the imaging device 100 at various time points from the first time point to the second time point. And the moving speed of UAV 10 so that the size of the subject on the image plane at the position corresponding to the second in-focus position captured by the imaging device 100 at the first time point and captured by the imaging device 100 at the second time point The size of the subject at the second focus position on the image plane satisfies a predetermined condition.
  • the predetermined condition in this case may be the size of the subject on the image plane at the position corresponding to the second in-focus position captured by the imaging device 100 at the first time point and the imaging by the imaging device 100 at the second time point
  • the condition that the size of the subject at the second focus position on the image plane is the same.
  • the moving image captured from the first time point to the second time point includes the change in the size of the background on the image plane while maintaining the subject of interest existing at the second focus position on the image plane.
  • the performance of this size includes the subject of interest existing at a position corresponding to the second focus position at the first time point, and the subject of interest existing at the second focus position at the second time point The performance of the body in focus.
  • the case of zooming to the telephoto side is more difficult to obtain an in-focus state.
  • the first focusing distance at the first time point is longer than the second focusing distance at the second time point. That is, it is preferable that, from the first time point to the second time point, the UAV 10 moves in a manner close to the subject of interest, and is captured by the imaging device 100. Therefore, it is easy to maintain the in-focus state of the subject of interest from the first time point to the second time point.
  • the imaging device 100 is actually moved relative to the subject, and the acquisition unit 31 acquires a focusing distance from a first time point to a second time point. Subsequently, the imaging device 100 may be moved relative to the subject again, so that the imaging device 100 captures a moving image with a sliding zoom effect. In this case, while the imaging device 100 is moving close to the subject, the zoom ratio is changed from the telephoto side to the wide-angle side, and the acquisition unit 31 can acquire the focus distance. Thus, the imaging device 100 can more easily obtain a focusing distance for focusing on the subject from the first time point to the second time point.
  • the focusing lens and the zoom lens may be controlled according to a previously acquired focusing distance, and Change the zoom ratio from the wide-angle side to the telephoto side for shooting.
  • the determination section 32 may determine the respective control values of the optical zoom and the electronic zoom based on the time T, the first zoom magnification, and the second zoom magnification as the values of the imaging device 100 at each time point from the first time point to the second time point. Zoom setting value.
  • the determination section 32 may determine respective control values of the optical zoom and the electronic zoom as the zoom setting values of the imaging apparatus 100 to switch from the optical zoom to the electronic zoom.
  • the determination section 32 may determine respective control values of the optical zoom and the electronic zoom as the zoom setting values of the imaging apparatus 100 to switch from the electronic zoom to the optical zoom.
  • UAV 10 the maximum speed that UAV 10 can move is limited. Therefore, depending on the length of time T or the moving distance of UAV 10 from the first time point to the second time point, UAV 10 may not be able to move the moving distance during time T.
  • the maximum speed at which the zoom lens 211 can move is limited. Depending on the length of time T, the zoom lens 211 may not be able to move from the first zoom magnification to the second zoom magnification during the time T.
  • the minimum speed at which the zoom lens 211 can move is also limited.
  • the zoom lens 211 may not be able to move from the first zoom magnification to the second zoom magnification within time T. That is, in order to move the zoom lens 211 within the time T, the speed of the zoom lens 211 may be slow.
  • UAV 10 may not be able to move on the route.
  • the imaging device 100 may not be able to capture a moving image that obtains a sliding zoom effect.
  • the determination unit 33 can determine whether the imaging device 100 can capture a moving image with a sliding zoom effect based on the time T, the first zoom magnification, the second zoom magnification, the first focus distance, and the second focus distance.
  • the determination unit 33 may determine whether the zoom magnification of the imaging device 100 can be changed from the first zoom within the time T based on at least one of time T, the first zoom magnification, the second zoom magnification, and the minimum speed and the maximum speed of the zoom lens 211. The magnification is changed to the second zoom magnification. In the case where the determination unit 33 determines that the zoom magnification of the imaging device 100 can be changed from the first zoom magnification to the second zoom magnification within the time T, the determination unit 32 may determine each of the first time point to the second time point. The focus setting value of the imaging device 100 at the time point, the zoom setting value of the imaging device 100, and the moving speed of the UAV 10.
  • the determination unit 33 may determine whether the UAV 10 can move the difference between the first focus distance and the second focus distance within the time T based on the time T, the difference between the first focus distance and the second focus distance, and the maximum speed of the UAV 10.
  • the determining section 32 may determine the time at each time point from the first time point to the second time point. The focus setting value of the imaging device 100, the zoom setting value of the imaging device 100, and the moving speed of the UAV 10.
  • the determination unit 33 may determine whether an obstacle exists on a path that moves the UAV 10 by a difference between the first focus distance and the second focus distance. In the case where the determination section 33 determines that there are no obstacles on the path, the focus setting value of the imaging device 100, the zoom setting value of the imaging device, and the UAV 10 of each time point from the first time point to the second time point may be determined. Moving speed. The determination unit 33 may determine whether there is an obstacle on the path where the UAV 10 is moved by the difference between the first focus distance and the second focus distance based on the three-dimensional map stored in the memory 37 and the position information of the UAV 10. The determination unit 33 may determine whether there is an obstacle on the path where the UAV 10 is moved by the difference between the first focus distance and the second focus distance based on the image captured by the imaging device 100 or the imaging device 60 as a stereo camera.
  • FIG. 8 is a flowchart showing an example of an imaging process of the imaging device 100 mounted on the UAV 10.
  • the UAV 10 begins to fly (S100).
  • the UAV control unit 30 receives a mode setting instruction from the remote operation device 300 and sets the imaging mode of the imaging device 100 to a slide zoom mode (S102).
  • the UAV control unit 30 receives the selection of the subject of interest via the live view of the imaging device 100 displayed on the display portion of the remote operation device 300 (S104).
  • the UAV control unit 30 may include a receiving unit that receives a subject of interest from an image captured by the imaging device 100.
  • the receiving unit may receive selection of a plurality of interested subjects from the image.
  • the receiving unit may receive selection of a subject of interest at a slide zoom start time point and a subject of interest at a slide zoom end time point.
  • the receiving unit may receive the selection of the subject of interest at various time points from the slide zoom start time point to the slide zoom end time point.
  • the UAV control unit 30 receives a first zoom magnification at a first time point (sliding zoom start time point), a second zoom magnification at a second time point (sliding zoom end time point), and a slide zoom camera via the remote operation device 300.
  • the time T is set (S106).
  • the UAV control section 30 may set the first zoom magnification, the second zoom magnification, and the time T in accordance with the setting information stored in the memory 37 and the like in advance.
  • the UAV control unit 30 may only receive whether to change from the telephoto side to the wide-angle side or from the wide-angle side to the telephoto side.
  • the UAV control section 30 may set the predetermined zoom magnification on the telephoto side and the zoom magnification on the wide angle side to the first time point and the first based on whether the telephoto side is changed to the wide-angle side or the wide-angle side is changed to the telephoto side. Zoom factor at two points in time.
  • the UAV control section 30 may receive the time T from a predetermined plurality of candidate times.
  • the UAV control unit 30 can set the time T by receiving a desired time mode from the long time mode, the medium time mode, and the short time mode, for example.
  • the acquisition unit 31 acquires information indicating a focusing distance, which is the distance from the imaging device 100 to the subject of interest (108).
  • the acquiring section 31 may acquire information indicating a first focusing distance from the subject of interest at a first time point.
  • the acquisition unit 31 may derive a second focusing distance based on the first zoom magnification, the second zoom magnification, and the first focusing distance.
  • the acquisition unit 31 may derive the second focus distance by multiplying the first focus distance by the ratio of the first zoom magnification and the second zoom magnification.
  • the determination unit 33 determines whether the imaging device 100 can capture a moving image with a sliding zoom effect based on the time T, the first zoom magnification, the second zoom magnification, the first focus distance, and the second focus distance (S110). The determination unit 33 may determine whether the imaging device 100 can capture a moving image that obtains a sliding zoom effect based on the time T, the first zoom magnification, the second zoom magnification, the first focus distance, and the second focus distance.
  • the determination unit 33 may determine whether the zoom magnification of the imaging device 100 can be changed from the first zoom within the time T based on at least one of time T, the first zoom magnification, the second zoom magnification, and the minimum and maximum speeds of the zoom lens 211 The magnification is changed to the second zoom magnification.
  • the judging unit 33 may determine whether the UAV 10 can move the difference between the first focus distance and the second focus distance within the time T based on the time T, the difference between the first focus distance and the second focus distance, and the maximum speed of the UAV 10.
  • the determination unit 33 may determine whether an obstacle exists on a path that moves the UAV 10 by a difference between the first focus distance and the second focus distance.
  • the determination unit 33 determines that the imaging device 100 cannot capture a moving image with a sliding zoom effect, the user is notified of a setting change request via the remote operation device 300.
  • the determination section 33 may notify the user of the time T during which the slide zoom can be taken, the first focus distance, or the zoom magnification.
  • the determination unit 33 receives a setting change request from the user (S118)
  • the UAV control unit 30 resets the zoom magnification and time in accordance with the setting change request (S106).
  • the UAV control unit 30 moves the UAV 10 relative to the subject when receiving a movement instruction of the UAV 10 from the user to adjust the distance from the subject.
  • the determination unit 33 When no change request is set, the determination unit 33 notifies the user via the remote operation device 300 of an error indicating that the slide zoom cannot be captured (S120).
  • the determination section 32 determines the focus setting value of the imaging device 100, the zoom setting value of the imaging device 100, and the moving speed of the UAV 10 at each time point from the first time point to the second time point. S112).
  • the determining unit 32 may determine the time-series from the first time point to the second time point based on the movement tracking curve at the first focal length at the first time point and the movement tracking curve at the second focal length at the second time point. The focus setting value of the imaging device 100, the zoom setting value of the imaging device 100, and the moving speed of the UAV 10.
  • the UAV control unit 30 controls the position of the zoom lens 211, The position of the focus lens 210 and the movement of the UAV 10 (S114).
  • the imaging device 100 changes the zoom magnification and the focal length while changing the distance from the subject from the first time point to the second time point.
  • the imaging device 100 captures images while moving from the first point in time to the second point in time while maintaining the size of the subject of interest on the image plane.
  • the imaging device 100 can capture a moving image that maintains the size and focus state of the subject of interest on the image plane while changing the background size or the amount of blur.
  • the UAV 10 can also be moved through the subject, and the orientation of the imaging device 100 is controlled by the universal joint 50 so that the imaging direction of the imaging device 100 faces the subject side.
  • the UAV 10 may be moved while passing through the subject, and the orientation of the UAV 10 may be controlled so that the imaging direction of the imaging device 100 is directed to the subject side.
  • the UAV 10 can also move the object while controlling the orientation of the UAV 10 and control the posture of the imaging device 100 via the universal joint 50 so that the imaging direction of the imaging device 100 faces the object side.
  • the UAV 10 can control at least one of the posture of the imaging device 100 adjusted through the universal joint 50 and the orientation of the UAV 10 while raising or lowering so that the imaging direction of the imaging device 100 faces the subject side.
  • the range of the movable tracking is, for example, between the zoom tracking curve 601 and the zoom tracking curve 602. Therefore, it can be set that UAV 10 can move within the range of movable tracking.
  • This movable range can be set to a three-dimensional space area. That is, by using the motion tracking mode, the movable area of UAV 10 can be controlled.
  • the movable area of UAV 10 can be set as a hollow sphere in a three-dimensional space or a hollow hemisphere in a three-dimensional space with the subject as the center.
  • the movable area of the UAV 10 may be set based on at least one of the time T, the first zoom magnification, the second zoom magnification, the minimum speed of the zoom lens 211, the maximum speed of the zoom lens 211, and the maximum speed of the UAV 10.
  • the imaging device 100 may adjust the aperture from the first time point to the second time point.
  • the determination unit 32 may determine the aperture of the imaging device 100 at each time point from the first time point to the second time point based on the time T, the first zoom magnification, the second zoom magnification, the first focus distance, and the second focus distance. value.
  • the determination unit 32 may determine the control value of the aperture of the imaging device 100 at each time point from the first time point to the second time point so that the blur degree of the background from the first time point to the second time point does not change .
  • the determining unit 32 may determine the aperture as the first control value at the first zoom magnification (telephoto side) at the first time point, and at the second magnification (wide-angle side) smaller than the first zoom magnification at the second time point. , Determining the aperture as a second control value smaller than the first control value.
  • the imaging device 100 may adjust the F value from the first time point to the second time point.
  • the determination unit 32 may determine F of the imaging device 100 at each time point from the first time point to the second time point based on the time T, the first zoom magnification, the second zoom magnification, the first focus distance, and the second focus distance. value.
  • the determination unit 32 may determine the F value of the imaging device 100 at each time point from the first time point to the second time point so that the brightness in the image of the subject of interest from the first time point to the second time point (Brightness value) does not change.
  • the determining unit 32 may determine the F value as the first control value at the first zoom magnification (telephoto side) at the first time point, and the second magnification (wide-angle side) smaller than the first zoom magnification at the second time point. At that time, the F value is determined to be a second control value greater than the first control value.
  • the imaging apparatus 100 can adjust the ISO sensitivity (gain) from the first time point to the second time point.
  • the determination unit 32 may determine the ISO of the imaging device 100 at each time point from the first time point to the second time point based on the time T, the first zoom magnification, the second zoom magnification, the first focus distance, and the second focus distance. Sensitivity.
  • the determination unit 32 may determine the ISO of the imaging device 100 at each time point from the first time point to the second time point based on the time T, the first zoom magnification, the second zoom magnification, the first focus distance, and the second focus distance. Sensitivity and shutter speed.
  • the determination unit 32 may determine the ISO of the imaging device 100 at each time point from the first time point to the second time point based on the time T, the first zoom magnification, the second zoom magnification, the first focus distance, and the second focus distance. Sensitivity and shutter speed to keep the exposure constant.
  • the image capturing apparatus 100 may disable the automatic exposure function and the automatic white balance function while operating in the slide zoom mode.
  • the UAV 10 can move in such a manner that the selected subject of interest is contained in the center region of an image captured by the imaging device 100.
  • the UAV 10 may move in such a manner that any point other than the subject of interest in the image captured by the imaging device 100 at the first point of time is included in the central region of the image.
  • electronic zoom can be performed after optical zoom.
  • optical zoom can be performed after electronic zoom. In this way, the movable distance of the UAV 10 can be extended. Thereby, the sliding zoom effect can be better expressed.
  • FIG. 9 illustrates an example of a computer 1200 that may fully or partially embody aspects of the present invention.
  • the program installed on the computer 1200 enables the computer 1200 to function as an operation associated with a device according to an embodiment of the present invention or one or more “parts” of the device. Alternatively, the program can cause the computer 1200 to perform the operation or the one or more "parts".
  • This program enables the computer 1200 to execute a process or a stage of the process according to an embodiment of the present invention.
  • Such a program may be executed by the CPU 1212 to cause the computer 1200 to perform specific operations associated with some or all of the flowcharts and block diagrams described in this specification.
  • the computer 1200 of this embodiment includes a CPU 1212 and a RAM 1214, which are connected to each other through a host controller 1210.
  • the computer 1200 also includes a communication interface 1222, an input / output unit, and they are connected to the host controller 1210 through an input / output controller 1220.
  • the computer 1200 also includes a ROM 1230.
  • the CPU 1212 operates in accordance with programs stored in the ROM 1230 and the RAM 1214 to control each unit.
  • the communication interface 1222 communicates with other electronic devices through a network.
  • the hard disk drive can store programs and data used by the CPU 1212 in the computer 1200.
  • the ROM 1230 stores therein a boot program and the like executed by the computer 1200 at the time of operation, and / or a program that depends on the hardware of the computer 1200.
  • the program is provided through a computer-readable recording medium such as a CR-ROM, a USB memory, or an IC card, or a network.
  • the program is installed in a RAM 1214 or a ROM 1230 which is also an example of a computer-readable recording medium, and is executed by the CPU 1212.
  • the information processing described in these programs is read by the computer 1200, and cooperation between the programs and the above-mentioned various types of hardware resources is achieved.
  • the apparatus or method can be configured by operations or processes that can realize information as the computer 1200 is used.
  • the CPU 1212 may execute a communication program loaded in the RAM 1214 and instruct the communication interface 1222 to perform communication processing based on the processing described in the communication program.
  • the communication interface 1222 reads the transmission data stored in a transmission buffer provided in a recording medium such as a RAM 1214 or a USB memory, and sends the read transmission data to the network, or from the network.
  • the received reception data is written in a reception buffer or the like provided in the recording medium.
  • the CPU 1212 can cause the RAM 1214 to read all or required parts of a file or database stored in an external recording medium such as a USB memory, and perform various types of processing on the data on the RAM 1214. The CPU 1212 can then write the processed data back to the external recording medium.
  • an external recording medium such as a USB memory
  • the CPU 1212 can perform various types of operations, including information specified by the program's instruction sequence, described throughout the disclosure, information processing, conditional judgment, conditional transfer, unconditional transfer, information Retrieve / replace various types of processing, and write the results back to RAM 1214.
  • the CPU 1212 can retrieve information in files, databases, etc. in the recording medium. For example, when a plurality of entries having the attribute value of the first attribute respectively associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 may retrieve the attribute value corresponding to the designated first attribute from the plurality of entries. An entry with a matching condition, and read the attribute value of the second attribute stored in the entry, thereby obtaining the attribute value of the second attribute associated with the first attribute that meets the predetermined condition.
  • the programs or software modules described above may be stored on the computer 1200 or a computer-readable storage medium near the computer 1200.
  • a recording medium such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, thereby providing the program to the computer 1200 through the network.

Abstract

搭载在移动体(10)上的摄像装置(100)可以较容易地拍摄出具有滑动变焦等效果的图像。一种确定装置,其包含确定部(32),其基于使摄像装置(100)的变焦倍率从第一变焦倍率改变为第二变焦倍率所需的时间、第一变焦倍率和第二变焦倍率,来确定从第一时间点到第二时间点的各个时间点的摄像装置(100)的聚焦设置值、摄像装置的变焦设置值和搭载有摄像装置(100)的移动体(10)的移动速度。

Description

确定装置、移动体、确定方法以及程序 【技术领域】
本发明涉及一种确定装置、移动体、确定方法以及程序。
【背景技术】
专利文献1描述了为了提供滑动变焦效果,而与相机的运动一致地使用图像分析来自动调节变焦功能。
专利文献1:日本特表2016-517639号公报
【发明内容】
【发明所要解决的技术问题】
期望搭载在移动体上的摄像装置可以容易地拍摄提供滑动变焦等效果的图像。
【用于解决问题的技术手段】
本发明的一个方面所涉及的确定装置可以包含确定部,其基于使摄像装置的变焦倍率从第一变焦倍率改变为第二变焦倍率所需的时间、第一变焦倍率和第二变焦倍率,来确定从第一时间点到第二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和搭载有摄像装置的移动体的移动速度。
确定部可以进一步基于表示摄像装置在第一时间点的第一对焦距离的信息和表示其在第二时间点的第二对焦距离的信息,来确定从第一时间点到第二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和移动体的移动速度。
摄像装置可以包括变焦镜头和聚焦镜头。确定部可以进一步基于表示第一对焦距离中变焦镜头位置与聚焦镜头位置的关系的第一信息和表示第二对焦距离中变焦镜头位置与聚焦镜头位置的关系的第二信息,来确定摄像装置的聚焦设置值和摄像装置的变焦设置值。
第一对焦距离可以对应于从摄像装置到应在第一时间点对焦的第一对焦位置的距离。第二对焦距离可以对应于从摄像装置到应在第二时间点对焦的第二对焦位置的距离。
第一对焦位置可以与第二对焦位置相同。
第一对焦位置可以与第二对焦位置不同。
第一对焦距离可以比第二对焦距离更长。
确定部可以确定从第一时间点到第二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和移动体的移动速度,以使由摄像装置在第一时间点拍 摄的第一对焦位置处的被摄体在像面上的尺寸和由摄像装置在第二时间点拍摄的第二对焦位置处的被摄体在像面上的尺寸满足预定条件。
预定条件可以是由摄像装置在第一时间点拍摄的第一对焦位置处的被摄体在像面上的尺寸与由摄像装置在第二时间点拍摄的第二对焦位置处的被摄体在像面上的尺寸一致这一条件。
第一对焦位置可以与第二对焦位置相同。
第一对焦位置可以与第二对焦位置不同。
第一对焦位置可以与第二对焦位置不同。确定部可以确定从第一时间点到第二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和移动体的移动速度,以使由摄像装置在第一时间点拍摄的第一对焦位置处的被摄体在像面上的尺寸和由摄像装置在第二时间点拍摄的与第一对焦位置对应的位置处的被摄体在像面上的尺寸满足预定条件。
第一对焦位置可以与第二对焦位置不同。确定部可以确定从第一时间点到第二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和移动体的移动速度,以使由摄像装置在第一时间点拍摄的与第二对焦位置对应的位置处的被摄体在像面上的尺寸和由摄像装置在第二时间点拍摄的第二对焦位置处的被摄体在像面上的尺寸满足预定条件。
摄像装置包括变焦镜头。确定装置可以包含判断部,其基于时间、第一变焦倍率、第二变焦倍率、变焦镜头的最小速度和最大速度中的至少一个,判断是否可以在该时间内使摄像装置的变焦倍率从第一变焦倍率改变为第二变焦倍率。在判断部判断出能够在该时间内使摄像装置的变焦倍率从第一变焦倍率改变为第二变焦倍率的情况下,确定部可以确定从第一时间点到第二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和移动体的移动速度。
确定装置可以包含判断部,其基于时间、第一对焦距离与第二对焦距离的差值和移动体的最大速度,判断移动体是否能够在该时间内移动第一对焦距离与第二对焦距离的差值。
在判断部判断出移动体能够在该时间内移动第一对焦距离与第二对焦距离的差值的情况下,确定部可以确定从第一时间点到第二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和移动体的移动速度。
确定装置可以包含判断部,其判断在使移动体以第一对焦距离与第二对焦距离的差值移动的路径上是否存在障碍物。
在判断部判断出路径上没有障碍物的情况下,确定部可以确定从第一时间点到第 二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和移动体的移动速度。
摄像装置的变焦可以包括光学变焦和电子变焦。确定部可以基于时间、第一变焦倍率和第二变焦倍率,来将光学变焦和电子变焦的各自的控制值确定为从第一时间点到第二时间点的各个时间点的摄像装置的变焦设置值。
移动体可以是搭载上述确定装置和摄像装置并进行移动的移动体。
本发明的一个方面所涉及的确定方法包含以下步骤:基于使摄像装置的变焦倍率从第一变焦倍率改变为第二变焦倍率所需的时间、第一变焦倍率和第二变焦倍率,来确定从第一时间点到第二时间点的各个时间点的摄像装置的聚焦设置值、摄像装置的变焦设置值和搭载有摄像装置的移动体的移动速度。
本发明的一个方面所涉及的程序可以是一种用于使计算机作为上述确定装置而发挥功能的程序。
根据本发明的一个方面,搭载在移动体上的摄像装置可以容易地拍摄提供滑动变焦等效果的图像。
另外,上述的发明内容中没有穷举本发明的所有必要特征。此外,这些特征组的子组合也可以构成发明。
【附图说明】
图1是示出无人驾驶航空器和远程操作装置的外观的一个示例的图。
图2是示出无人驾驶航空器的功能块的一个示例的图。
图3是示出无人驾驶航空器与被摄体的位置关系的一个示例的图。
图4是示出聚焦镜头位置与变焦镜头位置的关系的一个示例的图。
图5A是示出由摄像装置在远摄侧拍摄的图像的一个示例的图。
图5B是示出由摄像装置在广角侧拍摄的图像的一个示例的图。
图6A是示出由摄像装置在远摄侧拍摄的图像的一个示例的图。
图6B是示出由摄像装置在广角侧拍摄的图像的一个示例的图。
图7A是示出由摄像装置在远摄侧拍摄的图像的一个示例的图。
图7B是示出由摄像装置在广角侧拍摄的图像的一个示例的图。
图8是示出摄像装置的摄像过程的一个示例的流程图。
图9是示出硬件构成的一个示例的图。
【具体实施方式】
以下,通过发明的实施方式来对本发明进行说明,但是以下实施方式并非限制权 利要求书所涉及的发明。此外,实施方式中说明的特征的所有组合未必是发明的解决方案所必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人就无法异议。但是,在除此以外的情况下,保留一切的著作权。
本发明的各种实施方式可参照流程图及框图来描述,这里,方框可表示(1)执行操作的过程的阶段或者(2)具有执行操作的作用的装置的“部”。特定的阶段和“部”可以通过可编程电路和/或处理器来实现。专用电路可以包括数字和/或模拟硬件电路。可以包括集成电路(IC)和/或分立电路。可编程电路可以包括可重构硬件电路。可重构硬件电路可以包括逻辑与、逻辑或、逻辑异或、逻辑与非、逻辑或非、及其它逻辑操作、触发器、寄存器、现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)等存储器元件等。
计算机可读介质可以包括可以对由适宜的设备执行的指令进行储存的任意有形设备。其结果是,其上存储有指令的计算机可读介质包含一种包括指令的产品,该指令可被执行以创建用于执行流程图或框图所指定的操作的手段。作为计算机可读介质的示例,可以包括电子存储介质、磁存储介质、光学存储介质、电磁存储介质、半导体存储介质等。作为计算机可读介质的更具体的示例,可以包括floppy(注册商标)disk、软磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者闪存)、电可擦可编程只读存储器(EEPROM)、静态随机存取存储器(SRAM)、光盘只读存储器(CD-ROM)、数字多用途光盘(DVD)、蓝光(RTM)光盘、记忆棒、集成电路卡等。
计算机可读指令可以包括由一种或多种编程语言的任意组合描述的源代码或者目标代码中的任意一个。源代码或者目标代码包括传统的程序式编程语言。传统的程序式编程语言可以为汇编指令、指令集架构(ISA)指令、机器指令、与机器相关的指令、微代码、固件指令、状态设置数据、或者Smalltalk、JAVA(注册商标)、C+4等面向对象编程语言以及“C”编程语言或者类似的编程语言。计算机可读指令可以在本地或者经由局域网(LAN)、互联网等广域网(WAN)提供给通用计算机、专用计算机或者其它可编程数据处理装置的处理器或可编程电路。处理器或可编程电路可以执行计算机可读指令,以创建用于执行流程图或框图所指定操作的手段。作为处理器的示例,包括计算机处理器、处理单元、微处理器、数字信号处理器、控制器、微 控制器等。
图1表示无人驾驶航空器(UAV)10及远程操作装置300的外观的一个示例。UAV 10包含UAV主体20、万向节50、多个摄像装置60、以及摄像装置100。万向节50及摄像装置100为摄像系统的一个示例。UAV 10,即移动体,是包括在空中移动的飞行体、在地面上移动的车辆、在水上移动的船舶等的概念。在空中移动的飞行体是指不仅包括UAV、还包括在空中移动的其它的飞行器、飞艇、直升机等的概念。
UAV主体20包含多个旋翼。多个旋翼为推进部的一个示例。UAV主体20通过控制多个旋翼的旋转而使UAV 10飞行。UAV主体20使用例如四个旋翼来使UAV 10飞行。旋翼的数量不限于四个。另外,UAV 10也可以是没有旋翼的固定翼机。
摄像装置100为对包含在所期望的摄像范围内的被摄体进行摄像的摄像用相机。万向节50可旋转地支撑摄像装置100。万向节50为支撑机构的一个示例。例如,万向节50使用致动器围绕俯仰轴可旋转地支撑摄像装置100。万向节50使用致动器进一步分别以滚转轴和偏航轴为中心可旋转地支撑摄像装置100。万向节50可以通过围绕偏航轴、俯仰轴以及滚转轴中的至少一个旋转摄像装置100,来改变摄像装置100的姿势。
多个摄像装置60是为了控制UAV 10的飞行而对UAV 10的周围进行拍摄的传感用相机。两个摄像装置60可以设置于UAV 10的机头、即正面。并且,其它两个摄像装置60可以设置于UAV 10的底面。正面侧的两个摄像装置60可以成对,起到所谓的立体相机的作用。底面侧的两个摄像装置60也可以成对,起到立体相机的作用。可以根据由多个摄像装置60所拍摄的图像来生成UAV 10周围的三维空间数据。UAV 10所包含的摄像装置60的数量不限于四个。UAV 10只要包含至少一个摄像装置60即可。UAV 10也可以在UAV 10的机头、机尾、侧面、底面及顶面分别包含至少一个摄像装置60。摄像装置60中可设定的视角可大于摄像装置100中可设定的视角。摄像装置60也可以具有单焦点镜头或鱼眼镜头。
远程操作装置300与UAV 10通信,以远程操作UAV 10。远程操作装置300可以与UAV 10进行无线通信。远程操作装置300向UAV 10发送表示上升、下降、加速、减速、前进、后退、旋转等与UAV 10的移动有关的各种指令的指示信息。指示信息包括例如使UAV 10高度上升的指示信息。指示信息可以示出UAV 10应该位于的高度。UAV 10移动以位于从远程操作装置300接收的指示信息所表示的高度。指示信息可以包括使UAV 10上升的上升指令。UAV 10在接收上升指令的期间上升。UAV 10的高度已达到上限高度时,即使接收到上升指令,UAV 10也可以限制上升。
图2示出了UAV 10的功能块的一个示例。UAV 10包含UAV控制部30、存储器 37、通信接口36、推进部40、GPS接收器41、惯性测量装置42、磁罗盘43、气压高度计44、温度传感器45、湿度传感器46、万向节50、摄像装置60及摄像装置100。
通信接口36与远程操作装置300等其它装置通信。通信接口36可以从远程操作装置300接收包括对UAV控制部30的各种指令的指示信息。存储器37存储UAV控制部30对推进部40、GPS接收器41、惯性测量装置(IMU)42、磁罗盘43、气压高度计44、温度传感器45、湿度传感器46、万向节50、摄像装置60及摄像装置100所需的程序等进行储存。存储器37可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM、USB存储器及固态硬盘(SSD)等闪存中的至少一个。存储器37可以设置于UAV主体20的内部。其可以设置成可从UAV主体20中拆卸下来。
UAV控制部30按照储存在存储器37中的程序来控制UAV 10的飞行及拍摄。UAV控制部30可以由CPU或MPU等微处理器、MCU等微控制器等构成。UAV控制部30按照经由通信接口36从远程操作装置300接收到的指令来控制UAV 10的飞行及拍摄。推进部40推进UAV 10。推进部40具有多个旋翼和使多个旋翼旋转的多个驱动电机。推进部40按照来自UAV控制部30的指令,经由多个驱动电机使多个旋翼旋转,以使UAV 10飞行。
GPS接收器41接收表示从多个GPS卫星发送的时间的多个信号。GPS接收器41根据所接收的多个信号来计算出GPS接收器41的位置(纬度及经度)、即UAV 10的位置(纬度及经度)。IMU 42检测UAV 10的姿势。IMU 42检测UAV 10的前后、左右以及上下的三轴方向的加速度和俯仰轴、滚转轴以及偏航轴的三轴方向的角速度,作为UAV 10的姿势。磁罗盘43检测UAV 10的机头的方位。气压高度计44检测UAV 10的飞行高度。气压高度计44检测UAV 10周围的气压,并将检测到的气压换算为高度,以检测高度。温度传感器45检测UAV 10周围的温度。湿度传感器46检测UAV 10周围的湿度。
摄像装置100包含摄像部102及镜头部200。除了光学变焦之外,摄像装置100还可以具有电子变焦功能。摄像装置100可以具有光学变焦功能和电子变焦功能中的至少一个。镜头部200为镜头装置的一个示例。摄像部102具有图像传感器120、摄像控制部110及存储器130。图像传感器120可以由CCD或CMOS构成。图像传感器120拍摄经由镜头部200成像的光学图像,并将所拍摄的图像输出至摄像控制部110。摄像控制部110可以由CPU或MPU等微处理器、MCU等微控制器等构成。摄像控制部110可以根据来自UAV控制部30的摄像装置100的动作指令来控制摄像装置100。摄像控制部110可以放大从图像传感器120输出的图像并剪切出图像的一部 分,从而实现电子变焦。
存储器130可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM、USB存储器及固态硬盘(SSD)等闪存中的至少一个。存储器130储存摄像控制部110对图像传感器120等进行控制所需的程序等。存储器130可以设置于摄像装置100的壳体内部。存储器130可以设置成可从摄像设备100的壳体中拆卸下来。
镜头部200具有聚焦镜头210、变焦镜头211、镜头驱动部212、镜头驱动部213和镜头控制部220。聚焦镜头210和变焦镜头211可以包括至少一个镜头。聚焦镜头210和变焦镜头211的至少一部分或全部被配置为能够沿着光轴移动。镜头部200可以是被设置成能够相对摄像部102拆装的更换镜头。镜头驱动部212经由凸轮环、引导轴等机构构件使聚焦镜头210的至少一部分或全部沿着光轴移动。镜头驱动部213经由凸轮环、引导轴等机构构件使变焦镜头211的至少一部分或全部沿着光轴移动。镜头控制部220按照来自摄像部102的镜头控制指令来驱动镜头驱动部212和镜头驱动部213中的至少一个,并经由机构构件使聚焦镜头210和变焦镜头211中的至少一个沿着光轴方向移动,以执行变焦动作和聚焦动作中的至少一个。镜头控制指令例如为变焦控制指令及聚焦控制指令。
镜头部200还具有存储器222、位置传感器214和位置传感器215。存储器222存储经由镜头驱动部212和镜头驱动部213而移动的聚焦镜头210和变焦镜头211的控制值。存储器222可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。位置传感器214检测聚焦镜头210的镜头位置。位置传感器214可以检测当前的聚焦位置。位置传感器215检测变焦镜头211的镜头位置。位置传感器215可以检测变焦镜头211的当前的变焦位置。
在如上所述的搭载在UAV 10上的摄像装置100中,在UAV 10移动期间,使用摄像装置100的变焦功能,对动态图像提供例如在改变背景在像面上的尺寸的同时保持受关注被摄体在像面上的尺寸之类的滑动变焦效果。
UAV控制部30包含获取部31、确定部32和判断部33。获取部31获取使摄像装置100的变焦倍率从第一变焦倍率改变为第二变焦倍率所需的时间T、第一变焦倍率和第二变焦倍率。获取部31可以获取预先存储在存储器130或存储器37等中的时间、第一变焦倍率和第二变焦倍率。获取部31可以经由远程操作装置300获取用户指定的时间T、第一变焦倍率和第二变焦倍率。
变焦倍率可以是光学变焦倍率、电子变焦倍率、或组合了光学变焦倍率与电子变焦倍率的倍率。光学变焦倍率是指从广角端开始的倍率。电子变焦倍率是指从图像传感器120输出的图像的放大率。
确定部32基于时间T、第一变焦倍率和第二变焦倍率,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设置值和UAV 10的移动速度。确定部32可以进一步基于表示摄像装置100在第一时间点的第一对焦距离的信息和表示其在第二时间点的第二对焦距离的信息,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置的变焦设置值和UAV 10的移动速度。在此,表示第一对焦距离的信息包括摄像装置100中到在第一时间点进入对焦状态的被摄体的距离、和在第一时间点使该被摄体进入对焦状态的聚焦镜头210的位置中的至少一个。表示第二对焦距离的信息包括摄像装置100到在第二时间点进入对焦状态的被摄体的距离、和在第二时间点使该被摄体进入对焦状态的聚焦镜头210的位置中的至少一个。对焦状态例如是指图像中的被摄体的对比度的评估值在大于等于预定值的状态。
例如,第一变焦倍率为2倍,第二变焦倍率为1倍。如图3所示,设摄像装置100在第一时间点的变焦倍率为2倍,从摄像装置100到被摄体500的距离(第一对焦距离)为L1。而且,使UAV 10沿着摄像方向移动,以使2倍时的被摄体500在像面上的尺寸与1倍时的被摄体500在像面上的尺寸一致。这种情况下,由于摄像装置100在第二时间点的变焦倍率为1倍,故在第二时间点从摄像装置100到被摄体500的距离(第二对焦距离)为L2(=L1/2)。也就是说,UAV 10沿着摄像方向移动第一对焦距离与第二对焦距离的差值(L1-L2=L1)即可。
摄像装置100使变焦镜头211从第一时间点移动到第二时间点,来将变焦倍率从2倍改变为1倍。另外,摄像装置100从第一时间点到第二时间点使聚焦镜头210的对焦距离从第一对焦距离改变为第二对焦距离。第一对焦距离对应于从摄像装置100到应在第一时间点对焦的第一对焦位置的距离。第二对焦距离对应于从摄像装置100到应在第二时间点对焦的第二对焦位置的距离。另外,摄像装置100也可以以从第一时间点到第二时间点远离被摄体500的方式进行移动。这种情况下,例如第一变焦倍率为1倍,第二变焦倍率为2倍。
摄像装置100可以以从第一时间点到第二时间点维持静止的单个被摄体的对焦状态的方式进行拍摄。这种情况下,第一对焦位置与第二对焦位置相同。摄像装置100可以以在第一时间点对焦于第一被摄体、并在第二时间点对焦于距摄像装置100的距离与第一被摄体不同的第二被摄体的方式进行拍摄。这种情况下,第一对焦位置与第二对焦位置不同。
确定部32确定使UAV 10在时间T期间内移动第二对焦距离与第一对焦距离的差值所需的UAV 10的移动速度。
确定部32可以基于表示第一对焦距离中变焦镜头位置与聚焦镜头位置的关系的第一信息和表示第二对焦距离中变焦镜头位置与聚焦镜头位置的关系的第二信息,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值和摄像装置100的变焦设置值。
确定部32可以基于所谓的变焦跟踪曲线,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值和摄像装置100的变焦设置值。例如,如图4所示,确定部32可以基于对应于第一对焦距离的无限远侧对焦距离的变焦跟踪曲线602和对应于第二对焦距离的最近端侧对焦距离的变焦跟踪曲线601,来确定移动跟踪曲线603,该移动跟踪曲线603表示从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值和摄像装置100的变焦设置值。摄像控制部110向镜头控制部220输出变焦动作指令和聚焦动作指令,以从第一时间点到第二时间点,按照如图4所示的移动跟踪曲线603来控制变焦镜头位置和聚焦镜头位置。
确定部32可以获取存储在镜头部200的存储器222中的每个对焦距离的变焦跟踪曲线的数据,并基于所获取的数据来确定移动跟踪曲线,该移动跟踪曲线表示从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值和摄像装置100的变焦设置值。
确定部32可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设置值和UAV 10的移动速度,以使由摄像装置100在第一时间点拍摄的第一对焦位置处的被摄体在像面上的尺寸和由摄像装置100在第二时间点拍摄的第二对焦位置处的被摄体在像面上的尺寸满足预定条件。预定条件可以是由摄像装置100在第一时间点拍摄的第一对焦位置处的被摄体在像面上的尺寸与由摄像装置100在第二时间点拍摄的第二对焦位置处的被摄体在像面上的尺寸一致这一条件。
摄像装置100可以以从第一时间点到第二时间点接近被摄体的方式进行拍摄。在第一对焦位置与第二对焦位置相同的情况下,摄像装置100可以在相对于被摄体移动的同时进行拍摄,以使第一对焦距离比第二对焦距离更长。这种情况下,摄像装置100例如在第一时间点以第一对焦距离和第一变焦倍率拍摄如图5A所示的图像700,并在第二时间点以第二对焦距离和小于第一变焦倍率的第二变焦倍率拍摄如图5B所示的图像701。由此,从第一时间点到第二时间点拍摄的动态图像包括背景在像面上的尺寸发生改变的同时维持所关注的被摄体500在像面上的尺寸这样的表现。
在第一对焦位置不同于第二对焦位置的情况下,确定部32可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设 置值和UAV 10的移动速度,以使由摄像装置100在第一时间点拍摄的第一对焦位置处的被摄体在像面上的尺寸和由摄像装置100在第二时间点拍摄的第二对焦位置处的被摄体在像面上的尺寸满足预定条件。在这种条件下,从第一个时间点到第二个时间拍摄的动态图像包括背景在像面上的尺寸发生改变的同时从在第一时间点对焦到存在于第一对焦位置处的第一受关注被摄体的状态变为在第二时间点对焦到存在于第二对焦位置处的第二受关注被摄体的状态的表现。
第一受关注被摄体也可以与第二受关注被摄体相同。也就是说,在第一时间点存在于第一对焦位置处的受关注被摄体也可以在第二时间点移动到第二对焦位置。例如,摄像装置100在第一时间点以第一对焦距离和第一变焦倍率拍摄包括如图6A所示的处于对焦状态的被摄体500的图像710。在第二时间点以第二对焦距离和小于第一变焦倍率的第二变焦倍率拍摄包括如图6B所示的处于对焦状态的被摄体500的图像711。由此,从第一时间点到第二时间点拍摄的动态图像包括背景在像面上的尺寸发生改变的同时维持在第一时间点到第二时间点的期间内移动的被摄体500在像面上的尺寸这样的表现。
在第一对焦位置不同于第二对焦位置的情况下,确定部32可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设置值和UAV 10的移动速度,以使由摄像装置100在第一时间点拍摄的第一对焦位置处的被摄体在像面上的尺寸和由摄像装置100在第二时间点拍摄的与第一对焦位置对应的位置处的被摄体在像面上的尺寸满足预定条件。
这种情况下的预定条件可以是由摄像装置100在第一时间点拍摄的第一对焦位置处的被摄体在像面上的尺寸与由摄像装置100在第二时间点拍摄的与第一对焦位置对应的位置处的被摄体在像面上的尺寸一致这一条件。在这种条件下,从第一时间点到第二时间点拍摄的动态图像包括背景在像面上的尺寸发生改变的同时维持存在于第一对焦位置处的受关注被摄体在像面上的尺寸这样的表现。该动态图像包括在第一时间点,第一对焦位置处的受关注被摄体进入对焦状态,而在第二时间点,存在于第二对焦位置处的另一受关注被摄体进入对焦状态的表现。摄像装置100例如在第一时间点以第一对焦距离和第一变焦倍率拍摄包括如图7A所示的进入对焦状态的被摄体500和处于对焦状态的被摄体501的图像720。进一步地,在第二时间点以第二对焦距离和小于第一变焦倍率的第二变焦倍率拍摄包括如图7B所示的处于对焦状态的被摄体500和未处于对焦状态的被摄体501的图像721。
在第一对焦位置不同于第二对焦位置的情况下,确定部32可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设 置值和UAV 10的移动速度,以使由摄像装置100在第一时间点拍摄的与第二对焦位置对应的位置处的被摄体在像面上的尺寸和由摄像装置100在第二时间点拍摄的第二对焦位置处的被摄体在像面上的尺寸满足预定条件。
这种情况下的预定条件可以是由摄像装置100在第一时间点拍摄的与第二对焦位置对应的位置处的被摄体在像面上的尺寸与由摄像装置100在第二时间点拍摄的第二对焦位置处的被摄体在像面上的尺寸一致这一条件。在这种条件下,从第一时间点到第二时间点拍摄的动态图像包括背景在像面上的尺寸发生改变的同时维持存在于第二对焦位置处的受关注被摄体在像面上的尺寸这样的表现。该动态图像包括在第一时间点,存在于与第二对焦位置对应的位置处的受关注被摄体未处于对焦状态,而在第二时间点存在于第二对焦位置处的受关注被摄体进入对焦状态的表现。
与向广角侧变焦的情况相比,向远摄侧变焦的情况更难获得对焦状态。其中一个原因是,在向远摄侧变焦的情况下,开始滑动变焦时,难以找到待对焦的被摄体。因此,优选地,第一时间点的第一对焦距离比第二时间点的第二对焦距离更长。也就是说,优选得,从第一时间点到第二时间点,UAV 10以接近受关注被摄体的方式进行移动,并由摄像装置100进行拍摄。由此,从第一时间点到第二时间点,易于维持受关注被摄体的对焦状态。
例如,使摄像装置100实际上相对于被摄体移动,由获取部31获取从第一时间点到第二时间点的对焦距离。随后,还可以使摄像装置100再次相对于被摄体移动,使摄像装置100拍摄产生滑动变焦效果的动态图像。在这种情况下,当摄像装置100以接近被摄体的方式进行移动的期间,从远摄侧到广角侧改变变焦倍率,获取部31可以获取对焦距离。由此,摄像装置100更容易获取用于从第一时间点到第二时间点对焦于被摄体的对焦距离。另外,在摄像装置100拍摄获得滑动变焦效果的动态图像的情况下,在摄像装置100以远离被摄体的方式进行移动的期间,可以根据预先获取的对焦距离,控制聚焦镜头和变焦镜头,并从广角侧到远摄侧改变变焦倍率来进行拍摄。
确定部32可以基于时间T、第一变焦倍率和第二变焦倍率,来将光学变焦和电子变焦的各个控制值确定为从第一时间点到第二时间点的各个时间点的摄像装置100的变焦设置值。确定部32可以将光学变焦和电子变焦的各个控制值确定为摄像装置100的变焦设置值,以从光学变焦切换到电子变焦。确定部32可以将光学变焦和电子变焦的各个控制值确定为摄像装置100的变焦设置值,以从电子变焦切换到光学变焦。
在此,UAV 10可以移动的最大速度是有限制的。因此,根据时间T的长度、或 从第一时间点到第二时间点的UAV 10的移动距离,UAV 10在时间T期间内可能无法移动该移动距离。
变焦镜头211可以移动的最大速度是有限制的。根据时间T的长度,变焦镜头211在时间T期间内可能无法从第一变焦倍率移动到第二变焦倍率。
变焦镜头211可以移动的最小速度也是有限制的。变焦镜头211在时间T内可能无法从第一变焦倍率移动到第二变焦倍率。也就是说,为了在时间T内使变焦镜头211移动,变焦镜头211的速度可能会很慢。
在使UAV 10从第一时间点到第二时间点移动的路线上存在障碍物的情况下,UAV 10可能无法在路线上移动。
这样,根据时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,摄像装置100可能无法拍摄获得滑动变焦效果的动态图像。
因此,判断部33可以基于时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,来判断摄像装置100是否能够拍摄获得滑动变焦效果的动态图像。
判断部33可以基于时间T、第一变焦倍率、第二变焦倍率、变焦镜头211的最小速度和最大速度中的至少一个,判断是否可以在时间T内使摄像装置100的变焦倍率从第一变焦倍率改变为第二变焦倍率。在判断部33判断出能够在时间T内使摄像装置100的变焦倍率从第一变焦倍率改变为第二变焦倍率的情况下,确定部32可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设置值和UAV 10的移动速度。
判断部33可以基于时间T、第一对焦距离与第二对焦距离的差值和UAV 10的最大速度,判断UAV 10是否能够在时间T内移动第一对焦距离与第二对焦距离的差值。在判断部33判断出UAV 10能够在时间T内移动第一对焦距离与第二对焦距离的差值的情况下,确定部32可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设置值和UAV 10的移动速度。
判断部33可以判断在使UAV 10移动第一对焦距离与第二对焦距离的差值的路径上是否存在障碍物。在判断部33判断出路径上没有障碍物的情况下,可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置的变焦设置值和UAV 10的移动速度。判断部33可以基于存储在存储器37中的三维地图和UAV 10的位置信息,来判断使UAV 10移动第一对焦距离与第二对焦距离的差值的路径上是否存在障碍物。判断部33可以基于摄像装置100或由作为立体相机的摄像装置60拍摄的图像,来判断使UAV 10移动第一对焦距离与第二对焦距离的差值 的路径上是否存在障碍物。
图8是示出搭载在UAV 10上的摄像装置100的摄像过程的一个示例的流程图。
UAV 10开始飞行(S100)。UAV控制部30接收来自远程操作装置300的模式设置指令,将摄像装置100的摄像模式设置为滑动变焦模式(S102)。UAV控制部30经由在远程操作装置300的显示部上显示的摄像装置100的实时取景来接收对受关注被摄体的选择(S104)。UAV控制部30可以具有接收部,其从由摄像装置100拍摄的图像中接收受关注被摄体。接收部也可以从图像中接收多个受关注被摄体的选择。接收部可以接收滑动变焦开始时间点的受关注被摄体、和滑动变焦结束时间点的受关注被摄体的选择。接收部可以接收从滑动变焦开始时间点到滑动变焦结束时间点的各个时间点的受关注被摄体的选择。
UAV控制部30经由远程操作装置300,接收第一时间点(滑动变焦开始时间点)的第一变焦倍率、第二时间点(滑动变焦结束时间点)的第二变焦倍率、和作为滑动变焦摄像时间的时间T并进行设置(S106)。UAV控制部30可以按照预先存储在存储器37等中的设置信息,来设置第一变焦倍率、第二变焦倍率和时间T。UAV控制部30可以仅接收是从远摄侧改变为广角侧或是从广角侧改变为远摄侧。UAV控制部30可以基于是从远摄侧变为广角侧,还是从广角侧变为远摄侧,来将预定的远摄侧的变焦倍率和广角侧的变焦倍率设置为第一时间点和第二时间点的变焦倍率。UAV控制部30可以从预定的多个候选时间中接收时间T。UAV控制部30例如可以通过从长时间模式、中等时间模式和短时间模式中接收期望的时间模式,来设置时间T。
获取部31获取表示对焦距离的信息,该对焦距离为从摄像装置100到受关注被摄体的距离(108)。获取部31可以获取表示距第一时间点的受关注被摄体的第一对焦距离的信息。获取部31可以基于第一变焦倍率、第二变焦倍率和第一对焦距离,来导出第二对焦距离。获取部31可以通过将第一对焦距离乘以第一变焦倍率和第二变焦倍率的比,来导出第二对焦距离。
判断部33基于时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,来判断摄像装置100是否能够拍摄获得滑动变焦效果的动态图像(S110)。判断部33可以基于时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,来判断摄像装置100是否能够拍摄获得滑动变焦效果的动态图像。
判断部33可以基于时间T、第一变焦倍率、第二变焦倍率、变焦镜头211的最小速度和最大速度中的至少一个,判断是否可以在时间T内使摄像装置100的变焦倍率从第一变焦倍率改变为第二变焦倍率。判断部33可以基于时间T、第一对焦距离与第二对焦距离的差值和UAV 10的最大速度,判断UAV 10是否能够在时间T内移 动第一对焦距离与第二对焦距离的差值。判断部33可以判断在使UAV 10移动第一对焦距离与第二对焦距离的差值的路径上是否存在障碍物。
在判断部33判断出摄像装置100不能拍摄获得滑动变焦效果的动态图像的情况下,经由远程操作装置300向用户通知设置变更请求。判断部33可以向用户通知能够拍摄滑动变焦的时间T、第一对焦距离或变焦倍率。在判断部33接收来自用户的设置变更请求(S118)的情况下,UAV控制部30按照设置变更请求,重新设置变焦倍率和时间(S106)。UAV控制部30在接收到来自用户的UAV 10的移动指令时,使UAV10相对于被摄体移动,以调整距被摄体的距离。
在没有设置变更请求的情况下,判断部33经由远程操作装置300,向用户通知表示不能拍摄滑动变焦的错误(S120)。
在能够拍摄滑动变焦的情况下,确定部32确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设置值和UAV 10的移动速度(S112)。确定部32可以基于第一时间点的第一焦距下的移动跟踪曲线和第二时间点的第二焦距下的移动跟踪曲线,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设置值和UAV 10的移动速度。
UAV控制部30基于从第一时间点到第二时间点的各个时间点的摄像装置100的聚焦设置值、摄像装置100的变焦设置值和UAV 10的移动速度,来控制变焦镜头211的位置、聚焦镜头210的位置和UAV 10的移动(S114)。由此,摄像装置100在从第一时间点到第二时间点变更距被摄体的距离的期间,变更变焦倍率和焦距。例如,摄像装置100以从第一时间点第二时间点移动的同时维持受关注被摄体在像面上的尺寸的方式进行拍摄。由此,摄像装置100能够在改变背景尺寸或模糊量的同时拍摄维持了受关注被摄体在像面上的尺寸和对焦状态的动态图像。
需要说明的是,上述示例中,已经描述了UAV 10沿着摄像装置100的摄像方向移动的示例。然而,UAV 10也可以以穿过被摄体的方式进行移动,并由万向节50控制摄像装置100的姿势以使摄像装置100的摄像方向朝向被摄体侧。UAV 10也可以在以穿过被摄体的方式进行移动的同时,控制UAV 10的朝向以使摄像装置100的摄像方向朝向被摄体侧。UAV 10也可以在以穿过被摄体的方式进行移动的同时,控制UAV 10的朝向并经由万向节50控制摄像装置100的姿势以使摄像装置100的摄像方向朝向被摄体侧。UAV 10可以在上升或下降的同时,控制经由万向节50调节的摄像装置100的姿势和UAV 10的朝向中的至少一个以使摄像装置100的摄像方向朝向被摄体侧。从图4可以理解,可移动跟踪的范围例如在变焦跟踪曲线601与变焦跟踪曲线602之间。由此,可设置为UAV 10能够在可移动跟踪的范围内移动。可将该可移 动范围设置为三维空间区域。也就是说,通过使用移动跟踪模式,可以控制UAV 10的可移动区域。可以将UAV 10的可移动区域设置为以被摄体为中心的三维空间上的空心球体或三维空间上的空心半球。可以基于时间T、第一变焦倍率、第二变焦倍率、变焦镜头211的最低速度、变焦镜头211的最大速度和UAV 10的最大速度中的至少一个来设置UAV 10的可移动区域。
摄像装置100也可以从第一时间点到第二时间点调整光圈。确定部32可以基于时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的光圈值。确定部32可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的光圈的控制值,以使从第一时间点到第二时间点的背景的模糊程度不会发生改变。确定部32可以在第一时间点的第一变焦倍率(远摄侧)时,将光圈确定为第一控制值,在第二时间点的小于第一变焦倍率的第二倍率(广角侧)时,将光圈确定为小于第一控制值的第二控制值。
摄像装置100也可以从第一时间点到第二时间点调整F值。确定部32可以基于时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的F值。确定部32可以确定从第一时间点到第二时间点的各个时间点的摄像装置100的F值,以使从第一时间点到第二时间点的受关注被摄体的图像中的亮度(亮度值)不会发生改变。确定部32可以在第一时间点的第一变焦倍率(远摄侧)时,将F值确定为第一控制值,在第二时间点的小于第一变焦倍率的第二倍率(广角侧)时,将F值确定为大于第一控制值的第二控制值。
摄像装置100可以从第一时间点到第二时间点调整ISO灵敏度(增益)。确定部32可以基于时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的ISO灵敏度。确定部32可以基于时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的ISO灵敏度和快门速度。确定部32可以基于时间T、第一变焦倍率、第二变焦倍率、第一对焦距离和第二对焦距离,来确定从第一时间点到第二时间点的各个时间点的摄像装置100的ISO灵敏度和快门速度,以保持曝光不变。
为减少图像的闪烁,摄像装置100可以在以滑动变焦模式动作的情况下禁用自动曝光功能和自动白平衡功能。
UAV 10可以以使所选择的受关注被摄体包含于由摄像装置100拍摄的图像的中心区域中的方式进行移动。或者,UAV 10可以以使由摄像装置100在第一时间点拍 摄的图像中的除受关注被摄体之外的任意点包含于图像的中央区域中的方式进行移动。在进行滑动变焦的情况下,能够在光学变焦之后进行电子变焦。在进行滑动变焦的情况下,能够在电子变焦之后进行光学变焦。这样,能够延长UAV 10的可移动距离。由此,能够更好的表现滑动变焦效果。
图9示出了可全部或部分地体现本发明的多个方面的计算机1200的一个示例。安装在计算机1200上的程序能够使计算机1200作为与本发明的实施方式所涉及的装置相关联的操作或者该装置的一个或多个“部”而起作用。或者,该程序能够使计算机1200执行该操作或者该一个或多个“部”。该程序能够使计算机1200执行本发明的实施方式所涉及的过程或者该过程的阶段。这种程序可以由CPU 1212执行,以使计算机1200执行与本说明书所述的流程图及框图中的一些或者全部方框相关联的特定操作。
本实施方式的计算机1200包括CPU 1212及RAM 1214,它们通过主机控制器1210相互连接。计算机1200还包括通信接口1222、输入/输出单元,它们通过输入/输出控制器1220与主机控制器1210连接。计算机1200还包括ROM 1230。CPU 1212按照ROM 1230及RAM 1214内储存的程序而动作,从而控制各单元。
通信接口1222通过网络与其它电子设备通信。硬盘驱动器可以储存计算机1200内的CPU 1212所使用的程序及数据。ROM 1230在其中储存运行时由计算机1200执行的引导程序等、和/或依赖于计算机1200的硬件的程序。程序通过CR-ROM、USB存储器或IC卡之类的计算机可读记录介质或者网络来提供。程序安装在也作为计算机可读记录介质的示例的RAM 1214或ROM 1230中,并通过CPU 1212执行。这些程序中记述的信息处理由计算机1200读取,并达成程序与上述各种类型的硬件资源之间的协作。可以通过根据可随着计算机1200的使用而实现信息的操作或者处理来构成装置或方法。
例如,在计算机1200与外部设备之间执行通信时,CPU 1212可以执行加载在RAM 1214中的通信程序,并基于通信程序所记述的处理,指令通信接口1222进行通信处理。通信接口1222在CPU 1212的控制下,读取储存在RAM 1214或USB存储器之类的记录介质内提供的发送缓冲区中的发送数据,并将读取的发送数据发送到网络,或者将从网络接收的接收数据写入记录介质内提供的接收缓冲区等中。
此外,CPU 1212可以使RAM 1214读取USB存储器等外部记录介质所储存的文件或数据库的全部或者需要的部分,并对RAM 1214上的数据执行各种类型的处理。接着,CPU 1212可以将处理过的数据写回到外部记录介质中。
可以将各种类型的程序、数据、表格及数据库之类的各种类型的信息储存在记录 介质中,并接受信息处理。对于从RAM 1214读取的数据,CPU 1212可执行在本公开的各处描述的、包括由程序的指令序列指定的各种类型的操作、信息处理、条件判断、条件转移、无条件转移、信息的检索/替换等各种类型的处理,并将结果写回到RAM 1214中。此外,CPU 1212可以检索记录介质内的文件、数据库等中的信息。例如,在记录介质中储存具有分别与第二属性的属性值相关联的第一属性的属性值的多个条目时,CPU 1212可以从该多个条目中检索出与指定第一属性的属性值的条件相匹配的条目,并读取该条目内储存的第二属性的属性值,从而获取与满足预定条件的第一属性相关联的第二属性的属性值。
以上描述的程序或者软件模块可以储存在计算机1200上或者计算机1200附近的计算机可读存储介质上。此外,与专用通信网络或者互联网连接的服务器系统内提供的硬盘或RAM之类的记录介质可以用作计算机可读存储介质,从而通过网络将程序提供给计算机1200。
应该注意的是,权利要求书、说明书以及说明书附图中所示的装置、系统、程序以及方法中的动作、顺序、步骤以及阶段等各项处理的执行顺序,只要没有特别明示“在...之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,则可以任意顺序实现。关于权利要求书、说明书以及说明书附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。
以上使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所描述的范围。对本领域普通技术人员来说,显然可以对上述实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
【符号说明】
10 UAV
20 UAV主体
30 UAV控制部
31 获取部
32 确定部
33 判断部
36 通信接口
37 存储器
40 推进部
41 GPS接收器
42 惯性测量装置
43 磁罗盘
44 气压高度计
45 温度传感器
46 湿度传感器
50 万向节
60 摄像装置
100 摄像装置
102 摄像部
110 摄像控制部
120 图像传感器
130 存储器
200 镜头部
210 聚焦镜头
211 变焦镜头
212,213 镜头驱动部
214,215 位置传感器
220 镜头控制部
222 存储器
300 远程操作装置
1200 计算机
1210 主机控制器
1212 CPU
1214 RAM
1220 输入/输出控制器
1222 通信接口
1230 ROM

Claims (20)

  1. 一种确定装置,其特征在于,包含:确定部,其基于使摄像装置的变焦倍率从第一变焦倍率改变为第二变焦倍率所需的时间、所述第一变焦倍率和所述第二变焦倍率,来确定从第一时间点到第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和搭载有所述摄像装置的移动体的移动速度。
  2. 根据权利要求1所述的确定装置,其特征在于,所述确定部进一步基于表示所述摄像装置在所述第一时间点的第一对焦距离的信息和表示其在所述第二时间点的所述第二对焦距离的信息,来确定从所述第一时间点到所述第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和所述移动体的移动速度。
  3. 根据权利要求2所述的确定装置,其特征在于,所述摄像装置包括变焦镜头和聚焦镜头,
    所述确定部进一步基于表示所述第一对焦距离中所述变焦镜头位置与所述聚焦镜头位置的关系的第一信息和表示所述第二对焦距离中所述变焦镜头位置与所述聚焦镜头位置的关系的第二信息,来确定所述摄像装置的聚焦设置值和所述摄像装置的变焦设置值。
  4. 根据权利要求2所述的确定装置,其特征在于,所述第一对焦距离对应于从所述摄像装置到应在所述第一时间点对焦的第一对焦位置的距离,
    所述第二对焦距离对应于从所述摄像装置到应在所述第二时间点对焦的第二对焦位置的距离。
  5. 根据权利要求4所述的确定装置,其特征在于,所述第一对焦位置与所述第二对焦位置相同。
  6. 根据权利要求4所述的确定装置,其特征在于,所述第一对焦位置与所述第二对焦位置不同。
  7. 根据权利要求4所述的确定装置,其特征在于,所述第一对焦距离比所述第二对焦距离更长。
  8. 根据权利要求4所述的确定装置,其特征在于,所述确定部确定从所述第一 时间点到所述第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和所述移动体的移动速度,以使由所述摄像装置在所述第一时间点拍摄的所述第一对焦位置处的被摄体在像面上的尺寸和由所述摄像装置在所述第二时间点拍摄的所述第二对焦位置处的被摄体在像面上的尺寸满足预定条件。
  9. 根据权利要求8所述的确定装置,其特征在于,所述预定条件是由所述摄像装置在所述第一时间点拍摄的所述第一对焦位置处的被摄体在像面上的尺寸与由所述摄像装置在所述第二时间点拍摄的所述第二对焦位置处的被摄体在像面上的尺寸一致这一条件。
  10. 根据权利要求8所述的确定装置,其特征在于,所述第一对焦位置与所述第二对焦位置相同。
  11. 根据权利要求8所述的确定装置,其特征在于,所述第一对焦位置与所述第二对焦位置不同。
  12. 根据权利要求4所述的确定装置,其特征在于,所述第一对焦位置与所述第二对焦位置不同,
    所述确定部确定从所述第一时间点到所述第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和所述移动体的移动速度,以使由所述摄像装置在所述第一时间点拍摄的所述第一对焦位置处的被摄体在像面上的尺寸和由所述摄像装置在所述第二时间点拍摄的与所述第一对焦位置对应的位置处的被摄体在像面上的尺寸满足预定条件。
  13. 根据权利要求4所述的确定装置,其特征在于,所述第一对焦位置与所述第二对焦位置不同,
    所述确定部确定从所述第一时间点到所述第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和所述移动体的移动速度,以使由所述摄像装置在所述第一时间点拍摄的与所述第二对焦位置对应的位置处的被摄体在像面上的尺寸和由所述摄像装置在所述第二时间点拍摄的所述第二对焦位置处的被摄体在像面上的尺寸满足预定条件。
  14. 根据权利要求1所述的确定装置,其特征在于,所述摄像装置包括变焦镜头,
    所述确定装置还包含判断部,其基于所述时间、所述第一变焦倍率、所述第二变 焦倍率、所述变焦镜头的最小速度和最大速度中的至少一个,判断是否可以在所述时间内使所述摄像装置的变焦倍率从所述第一变焦倍率改变为所述第二变焦倍率,
    在所述判断部判断出能够在所述时间内使所述摄像装置的变焦倍率从所述第一变焦倍率改变为所述第二变焦倍率的情况下,所述确定部确定从所述第一时间点到所述第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和所述移动体的移动速度。
  15. 根据权利要求2所述的确定装置,其特征在于,还包含判断部,其基于所述时间、所述第一对焦距离与所述第二对焦距离的差值和所述移动体的最大速度,判断所述移动体是否能够在所述时间内移动所述第一对焦距离与所述第二对焦距离的差值,
    在所述判断部判断出所述移动体能够在所述时间内移动所述第一对焦距离与所述第二对焦距离的差值的情况下,所述确定部确定从所述第一时间点到所述第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和所述移动体的移动速度。
  16. 根据权利要求2所述的确定装置,其特征在于,还包含判断部,其判断在使所述移动体移动所述第一对焦距离与所述第二对焦距离的差值的路径上是否存在障碍物,
    在所述判断部判断出所述路径上没有障碍物的情况下,所述确定部确定从所述第一时间点到所述第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和所述移动体的移动速度。
  17. 根据权利要求1所述的确定装置,其特征在于,所述摄像装置的变焦包括光学变焦和电子变焦,
    所述确定部基于所述时间、所述第一变焦倍率和所述第二变焦倍率,来将所述光学变焦和所述电子变焦的各个控制值确定为从所述第一时间点到所述第二时间点的各个时间点的所述摄像装置的变焦设置值。
  18. 一种移动体,其特征在于,其搭载根据权利要求1至17中任一项所述的确定装置和所述摄像装置,并进行移动。
  19. 一种确定方法,其特征在于,包含以下步骤:基于使摄像装置的变焦倍率从第一变焦倍率改变为第二变焦倍率所需的时间、所述第一变焦倍率和所述第二变焦倍 率,来确定从第一时间点到第二时间点的各个时间点的所述摄像装置的聚焦设置值、所述摄像装置的变焦设置值和搭载有所述摄像装置的移动体的移动速度。
  20. 一种程序,其特征在于,其用于使计算机作为根据权利要求1至17中任一项所述的确定装置发挥功能。
PCT/CN2019/090725 2018-06-12 2019-06-11 确定装置、移动体、确定方法以及程序 WO2019238044A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980005641.7A CN111567032B (zh) 2018-06-12 2019-06-11 确定装置、移动体、确定方法以及计算机可读记录介质
US17/115,654 US20210120171A1 (en) 2018-06-12 2020-12-08 Determination device, movable body, determination method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-112100 2018-06-12
JP2018112100A JP6733106B2 (ja) 2018-06-12 2018-06-12 決定装置、移動体、決定方法、及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/115,654 Continuation US20210120171A1 (en) 2018-06-12 2020-12-08 Determination device, movable body, determination method, and program

Publications (1)

Publication Number Publication Date
WO2019238044A1 true WO2019238044A1 (zh) 2019-12-19

Family

ID=68842753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090725 WO2019238044A1 (zh) 2018-06-12 2019-06-11 确定装置、移动体、确定方法以及程序

Country Status (4)

Country Link
US (1) US20210120171A1 (zh)
JP (1) JP6733106B2 (zh)
CN (1) CN111567032B (zh)
WO (1) WO2019238044A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678427A (zh) * 2020-09-22 2021-11-19 深圳市大疆创新科技有限公司 拍摄控制方法、装置、云台、跟焦器电机及存储介质
WO2022161267A1 (zh) * 2021-01-28 2022-08-04 维沃移动通信有限公司 视频录制方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114820296A (zh) * 2021-01-27 2022-07-29 北京小米移动软件有限公司 图像处理方法及装置、电子设备、存储介质
KR20220168742A (ko) * 2021-06-17 2022-12-26 삼성전자주식회사 인터럽트 제어를 수행하는 이미지 신호 프로세서 및 이미지 처리 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263933A (zh) * 2010-05-25 2011-11-30 杭州华三通信技术有限公司 智能监控的实现方法和装置
CN103546692A (zh) * 2013-11-04 2014-01-29 苏州科达科技股份有限公司 一种实现一体化摄像机自动聚焦的方法及系统
CN105744163A (zh) * 2016-02-23 2016-07-06 湖南拓视觉信息技术有限公司 一种基于深度信息跟踪对焦的摄像机及摄像方法
JP5966262B2 (ja) * 2011-06-30 2016-08-10 株式会社ニコン 撮像装置
CN106657779A (zh) * 2016-12-13 2017-05-10 重庆零度智控智能科技有限公司 环绕拍摄方法、装置及无人机
WO2018014254A1 (en) * 2016-07-20 2018-01-25 SZ DJI Technology Co., Ltd. Method and apparatus for zooming relative to an object copyright notice

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086269A (ja) * 2005-09-21 2007-04-05 Hitachi Kokusai Electric Inc カメラ装置およびカメラ装置のズームレンズ光学系の焦点距離調節方法
JP5539045B2 (ja) * 2010-06-10 2014-07-02 キヤノン株式会社 撮像装置およびその制御方法、記憶媒体
JP2013034167A (ja) * 2011-06-28 2013-02-14 Sony Corp 情報処理装置、情報処理方法およびプログラム
JP6296801B2 (ja) * 2013-07-24 2018-03-20 キヤノン株式会社 撮像装置、撮像装置の制御方法、および撮像装置の制御プログラム
JP2015195569A (ja) * 2014-03-25 2015-11-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 移動体用撮影装置
CN108027492B (zh) * 2015-10-23 2021-02-09 深圳市大疆创新科技有限公司 成像系统
WO2017113150A1 (zh) * 2015-12-30 2017-07-06 深圳市大疆创新科技有限公司 变焦控制方法、系统、装置以及存储器、飞行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263933A (zh) * 2010-05-25 2011-11-30 杭州华三通信技术有限公司 智能监控的实现方法和装置
JP5966262B2 (ja) * 2011-06-30 2016-08-10 株式会社ニコン 撮像装置
CN103546692A (zh) * 2013-11-04 2014-01-29 苏州科达科技股份有限公司 一种实现一体化摄像机自动聚焦的方法及系统
CN105744163A (zh) * 2016-02-23 2016-07-06 湖南拓视觉信息技术有限公司 一种基于深度信息跟踪对焦的摄像机及摄像方法
WO2018014254A1 (en) * 2016-07-20 2018-01-25 SZ DJI Technology Co., Ltd. Method and apparatus for zooming relative to an object copyright notice
CN106657779A (zh) * 2016-12-13 2017-05-10 重庆零度智控智能科技有限公司 环绕拍摄方法、装置及无人机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113678427A (zh) * 2020-09-22 2021-11-19 深圳市大疆创新科技有限公司 拍摄控制方法、装置、云台、跟焦器电机及存储介质
WO2022061534A1 (zh) * 2020-09-22 2022-03-31 深圳市大疆创新科技有限公司 拍摄控制方法、装置、云台、跟焦器电机及存储介质
WO2022161267A1 (zh) * 2021-01-28 2022-08-04 维沃移动通信有限公司 视频录制方法及装置

Also Published As

Publication number Publication date
CN111567032B (zh) 2021-08-24
US20210120171A1 (en) 2021-04-22
CN111567032A (zh) 2020-08-21
JP6733106B2 (ja) 2020-07-29
JP2019216343A (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2019238044A1 (zh) 确定装置、移动体、确定方法以及程序
WO2020011230A1 (zh) 控制装置、移动体、控制方法以及程序
JP6496955B1 (ja) 制御装置、システム、制御方法、及びプログラム
US20210014427A1 (en) Control device, imaging device, mobile object, control method and program
WO2019242616A1 (zh) 确定装置、摄像系统、移动体、合成系统、确定方法以及程序
WO2020098603A1 (zh) 确定装置、摄像装置、摄像系统、移动体、确定方法以及程序
WO2019174343A1 (zh) 活动体检测装置、控制装置、移动体、活动体检测方法及程序
WO2020011198A1 (zh) 控制装置、移动体、控制方法以及程序
CN111602385B (zh) 确定装置、移动体、确定方法以及计算机可读记录介质
US11066182B2 (en) Control apparatus, camera apparatus, flying object, control method and program
WO2018123013A1 (ja) 制御装置、移動体、制御方法、及びプログラム
WO2019242611A1 (zh) 控制装置、移动体、控制方法以及程序
WO2019223614A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
WO2020020042A1 (zh) 控制装置、移动体、控制方法以及程序
WO2021143425A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
JP6569157B1 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP6413170B1 (ja) 決定装置、撮像装置、撮像システム、移動体、決定方法、及びプログラム
WO2020216057A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
WO2019085794A1 (zh) 控制装置、摄像装置、飞行体、控制方法以及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818689

Country of ref document: EP

Kind code of ref document: A1