WO2020098505A1 - 一种氮氧化物吸收剂浆液及其制备和使用方法 - Google Patents

一种氮氧化物吸收剂浆液及其制备和使用方法 Download PDF

Info

Publication number
WO2020098505A1
WO2020098505A1 PCT/CN2019/114737 CN2019114737W WO2020098505A1 WO 2020098505 A1 WO2020098505 A1 WO 2020098505A1 CN 2019114737 W CN2019114737 W CN 2019114737W WO 2020098505 A1 WO2020098505 A1 WO 2020098505A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
ferric chloride
absorbent
gas
absorbent slurry
Prior art date
Application number
PCT/CN2019/114737
Other languages
English (en)
French (fr)
Inventor
黄立维
Original Assignee
黄立维
黄华丽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄立维, 黄华丽 filed Critical 黄立维
Priority to NZ774661A priority Critical patent/NZ774661A/en
Priority to AU2019381947A priority patent/AU2019381947B2/en
Priority to US17/270,401 priority patent/US11298654B2/en
Priority to EP19883348.5A priority patent/EP3984623A4/en
Priority to JP2021522433A priority patent/JP7197223B2/ja
Priority to KR1020217011154A priority patent/KR102525003B1/ko
Priority to CA3113375A priority patent/CA3113375C/en
Publication of WO2020098505A1 publication Critical patent/WO2020098505A1/zh
Priority to IL288955A priority patent/IL288955A/en
Priority to US17/689,331 priority patent/US11642626B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1431Pretreatment by other processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/50Inorganic acids
    • B01D2251/502Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to a slurry of nitrogen oxide absorbent and its preparation and use method, which is used for absorbing and removing nitric oxide gas in the airflow, and belongs to the technical field of air pollution control and related environmental protection.
  • Nitrogen oxides (NO x ) produced by human activities mainly include nitric oxide (NO) and nitrogen dioxide (NO 2 ).
  • NO nitric oxide
  • NO 2 nitrogen dioxide
  • NO generally accounts for more than 95%, and the concentration is generally tens of mg / m 3 to thousands of mg / m 3 .
  • Other industrial processes such as nitric acid production, building materials metallurgy, chemical pharmaceuticals, metal surface treatment, and semiconductor production also generate and emit nitrogen oxide-containing exhaust gas, and some gases have higher emission concentrations.
  • NOx is toxic to humans, and large amounts of nitrogen oxide emissions are also one of the main causes of atmospheric photochemical fog and acid rain.
  • the inventor of the present invention has disclosed a method (CN105032163A) for removing nitrogen oxides in a gas stream by using a solid ferric chloride as a denitration agent through a chemical adsorption reaction between ferric chloride and nitric oxide (CN105032163A)
  • a solid ferric chloride as a denitration agent through a chemical adsorption reaction between ferric chloride and nitric oxide
  • the present invention proposes a nitrogen oxide absorbent slurry and its preparation and use method to overcome the technical problems encountered.
  • the technical scheme adopted by the present invention is: a slurry of nitrogen oxide absorbent (absorbent for short), which is used to absorb and remove nitric oxide gas in the gas stream, characterized in that the moisture of the absorbent slurry and the ferric chloride
  • the mass ratio is 0.005 to 0.55, and contains any one or two or more compounds of anhydrous ferric chloride, ferric chloride monohydrate, ferric chloride dihydrate, or a complex of ferric chloride and hydrochloric acid.
  • the mass ratio of moisture to ferric chloride is about 0.01-0.11, but the moisture content is less At the same temperature, the fluidity of the material is poor, and a higher preparation and working temperature are required to ensure the fluidity of the absorbent.
  • the mass ratio of moisture to ferric chloride is less than 0.005, the absorbent slurry cannot be obtained within the temperature range of the present invention.
  • the slurry does not contain anhydrous ferric chloride or chlorine monohydrate Any one or two or more compounds of ferric chloride, ferric chloride dihydrate, or a complex of ferric chloride and hydrochloric acid has no absorption effect on nitrogen oxides.
  • the preparation method of the absorbent of the present invention is to mix the materials anhydrous ferric chloride and water, or anhydrous ferric chloride with monohydrate, dihydrate, ferric chloride hexahydrate or other ferric chloride containing crystal water as described
  • the ratio and certain steps are added to the mixing reactor (generally closed), and the reaction is fully mixed under a certain temperature and atmosphere, and the resulting molten slurry is the nitrogen oxide absorbent.
  • the resulting absorbent slurry can be used directly as a nitric oxide absorbent, or it can be cooled, solidified, and stored for use (reheated and melted during use).
  • the materials ferric chloride and water of the present invention can be prepared by mixing the ferric chloride solution after dehydration and concentration in addition to the ratio, and the dehydration can be carried out by heating or other chemical physical methods.
  • the preparation temperature range is generally above 35 ° C.
  • the higher the preparation temperature the less moisture in the prepared absorbent in the molten state and the higher the content of effective ferric chloride, but When the temperature is too high, ferric chloride may be hydrolyzed to release hydrogen chloride gas, which is not conducive to the preparation of the absorbent. Therefore, when preparing the absorbent at a higher temperature, it can be carried out in a protective atmosphere of hydrogen chloride and in a closed environment to prevent Ferric chloride decomposes during the preparation process.
  • the preparation temperature is usually 200 ° C or lower, but it is not limited, and preferably 65 to 130 ° C.
  • anhydrous ferric chloride powder and clean water respectively according to a predetermined ratio, preferably the mass ratio of ferric chloride to water is 9: 1 ⁇ 25: 1, generally all the clean water is added to the closed mixing reactor (the same below) , In the presence of inert gas such as air or nitrogen, or the presence of hydrogen chloride protective gas (generally, the preparation temperature is above 60 °C, hydrogen chloride protective gas can be used, the same below), gradually add anhydrous ferric chloride powder, stirring and mixing and heating to a predetermined temperature, After all the solid ferric chloride and water are completely mixed to form a molten slurry, the preparation of the nitrogen oxide absorbent is completed, and it can be used directly as a nitric oxide absorbent or stored after cooling and solidification.
  • inert gas such as air or nitrogen
  • hydrogen chloride protective gas generally, gradually add anhydrous ferric chloride powder, stirring and mixing and heating to a predetermined temperature
  • the mass ratio of anhydrous ferric chloride to ferric chloride hexahydrate is about 3.5: 1 ⁇ 12: 1.
  • All ferric chloride in water is added to the mixing reactor.
  • inert gas such as air or nitrogen or the protective gas of hydrogen chloride
  • the temperature is raised to a predetermined temperature to dissolve all the solid ferric chloride hexahydrate.
  • the powder is stirred at the same time to fully mix the materials. After all the materials are completely mixed to form a melted slurry, the preparation of the nitrogen oxide absorbent is completed.
  • the preparation steps of other ferric chloride hydrates such as monohydrate or ferric chloride dihydrate are the same.
  • the mass ratio of ferric chloride and each material can be converted according to the corresponding proportion.
  • a hydrochloric acid solution can also be used to replace the material water to improve the content of anhydrous ferric chloride in the slurry and the fluidity of the slurry. This is because the chloride ion in the hydrochloric acid solution has a coordination property. In addition to the free ferric chloride crystals in the slurry form, it can also form a complex with the chloride ion in the hydrochloric acid solution, thereby improving the ferric chloride in The content of the slurry.
  • the preparation of the slurry may be a mixture of solid ferric chloride and hydrochloric acid, or it may be prepared by acidifying and dehydrating the ferric chloride solution with hydrogen chloride gas or hydrochloric acid.
  • the content of hydrochloric acid in the absorbent slurry of the present invention has no special requirements, and depending on the actual needs, commercially available concentrated hydrochloric acid of 30 to 38% can be used as a material ratio.
  • the higher the concentration of the hydrochloric acid material the better the fluidity of the absorbent slurry prepared at the same temperature, and the more the content of ferric chloride, the better the nitrogen removal effect.
  • the content of ferric chloride (including related complexes) in the absorbent slurry obtained by using hydrochloric acid solution under the same moisture condition can be at least doubled, and is proportional to the concentration of hydrochloric acid.
  • the chlorine in the absorbent slurry The mass ratio of iron and water can also reach more than 0.99.
  • the higher the preparation temperature the higher the content of ferric chloride in the prepared absorbent.
  • the working temperature of the absorbent slurry (the reaction temperature of the absorbent and nitrogen oxides) has also been increased, which is beneficial to the removal of nitric oxide gas in the gas stream at higher temperatures.
  • the concentration of hydrochloric acid has a greater effect on increasing the content of ferric chloride in the slurry.
  • the method for preparing the absorbent by using hydrochloric acid solution instead of clean water is roughly the same.
  • the following steps can be carried out: first weigh the iron chloride powder according to a predetermined ratio With a predetermined concentration of hydrochloric acid solution, the mass ratio of ferric chloride to hydrochloric acid solution (taking 30% hydrochloric acid as an example, the same below) is generally more than 3, and the dosage of ferric chloride can be selected according to the concentration of hydrochloric acid, referring to the content of the water . As the concentration of hydrochloric acid increases, the proportion of ferric chloride increases.
  • the mass ratio of ferric chloride to hydrochloric acid solution is 10 to 100, which can be determined according to the concentration of hydrochloric acid.
  • the hydrochloric acid solution can be added to a closed mixing reactor, and in the presence of inert gas such as air or nitrogen or a protective gas of hydrogen chloride, anhydrous ferric chloride powder can be gradually added, mixed and stirred and heated to a predetermined temperature, waiting for all After the solid ferric chloride and the hydrochloric acid solution are completely mixed to form a molten slurry, the preparation of the nitrogen oxide absorbent is completed.
  • the following steps can be taken: first weigh the solid ferric chloride hexahydrate and Hydrochloric acid solution of a predetermined concentration, then dissolve ferric chloride hexahydrate in the hydrochloric acid solution in the mixing reactor, and heat and dehydrate in the presence of a hydrogen chloride protective gas (hydrogen chloride gas or related mixed gas can be passed into the solution) After the material reaches a predetermined required ratio of slurry, the preparation of the nitrogen oxide absorbent is completed.
  • the heating and dehydration temperature is above 65 ° C, and the heating temperature is high and the dehydration is fast, preferably 110 to 200 ° C, but there is no limitation.
  • the clear water material can also be replaced with a salt solution solution having a salt effect or chloride ion coordination property to increase the content of anhydrous ferric chloride in the slurry and the slurry Liquidity.
  • the salt solution is mainly hydrochloric acid and sulfate of alkali metal, alkaline earth metal or transition metal and their acid salts, including sodium chloride, potassium chloride, lithium chloride, calcium chloride, magnesium chloride, zinc chloride, chlorine Hydrochloride salts such as manganese chloride, cobalt chloride, copper chloride, nickel chloride, aluminum chloride, and the corresponding sulfate salts of the metal, the effects of the salts are generally equivalent, and stronger acids and weaker alkaline salts are better.
  • most of the salt solutions are high-boiling salts, which can increase the working temperature of the absorbent slurry to a certain extent, and the working temperature of the absorbent can be increased by about 10 ° C.
  • the relevant salt solution can be prepared first.
  • the concentration of the salt solution has no special requirements. It is adopted according to actual needs.
  • the maximum concentration is generally a saturated solution at the corresponding working temperature.
  • the preparation method using hydrochloric acid is basically the same.
  • the hydrochloric acid and saline solution can also be used together, the effect is better than single.
  • the method of using the nitrogen oxide absorbent slurry prepared by the present invention is to introduce the absorbent slurry into a nitrogen oxide absorption reactor, and the nitric oxide gas in the gas stream is in the reactor and the chlorine in the absorbent slurry
  • the iron oxide undergoes a chemical reaction and is absorbed, thereby achieving the purpose of gas purification.
  • the slurry prepared by mixing fresh water with ferric chloride generally has a working temperature for absorbing nitrogen oxides of 35 ° C to 110 ° C, preferably 65 ° C to 100 ° C.
  • the working temperature of the absorbent slurry prepared by using hydrochloric acid or salt solution instead of clear water is generally 35 °C ⁇ 130 °C, preferably 70 °C ⁇ 115 °C, the concentration of hydrochloric acid or salt in the slurry is high, the content of ferric chloride is high, the working temperature can be Higher.
  • the working temperature is roughly equivalent to the temperature of the air flow to be treated. Part of the hydrogen chloride gas will escape when the working temperature is high, and subsequent water or lye absorption treatment can be used.
  • the nitrogen oxide absorbent slurry described in the present invention absorbs nitric oxide to play an important role in the presence of anhydrous ferric chloride crystals, ferric chloride crystals in monohydrate and dihydrate and related ferric chloride hydrochloric acid complexes. It also has a certain absorption effect.
  • the reaction product is a complex or salt of nitric oxide and ferric chloride. Possible reactions are:
  • n + n ⁇ 6 (generally ⁇ 3, depending on the reaction conditions).
  • the ratio between the dosage of the absorbent slurry and the mass of nitric oxide absorbed depends mainly on the content of anhydrous ferric chloride in the slurry.
  • the theoretical molar ratio of the reaction is about 0.5 to 1 (iron-nitrogen ratio), specific It can be determined according to the moisture content of the absorbent slurry, the reaction temperature, the actual removal rate requirements and the regeneration cycle. There are no special requirements, and generally 10 to 1000.
  • the nitrogen oxide absorption reactor adopting the absorbent of the present invention can adopt gas-liquid (solid) contact reactors such as rotary type, spray type, bubbling type and moving bed type which are commonly used in chemical unit operations, and can use downstream flow , Counter-current and cross-flow and other forms, the effect is roughly the same, the specific design parameters can refer to the relevant chemical equipment design manual.
  • a rotary reactor structure for nitrogen oxide absorption includes a horizontally placed reactor cylinder, one end of the reactor cylinder is a gas inlet, and the other end is a gas outlet, and the upper part of the reactor cylinder is provided with materials
  • the inlet is equipped with a material outlet at the bottom, and the reactor cylinder is driven to rotate by the transmission system.
  • the treatment process is to add a certain temperature of nitrogen oxide absorbent slurry into the reactor barrel through the material inlet, and introduce the nitrogen monoxide-containing gas stream to be treated into the reactor through the gas inlet, and at the same time drive the reaction through the transmission system
  • the cylinder of the reactor rotates, so that the absorbent slurry in the reactor flows along the inner wall of the reactor cylinder and is in full contact with the gas. Nitric oxide in the gas stream is absorbed by the absorbent slurry, and the purified gas stream comes from the gas at the other end of the reactor
  • the outlet is discharged, and the melted product after absorption saturation can be discharged from the material outlet.
  • a counter-current spray absorption tower for nitrogen oxide absorption includes an absorption tower body, a gas inlet at the lower end and a gas outlet at the upper end, and an absorbent slurry material inlet and a slurry sprayer at the upper part of the absorption tower.
  • the lower part is provided with a material circulation tank.
  • the material circulation tank is connected to the material inlet of the absorption tower through an absorbent slurry circulation pump and a connecting pipeline.
  • the saturated slurry can be sent to the regeneration processing unit through the bypass port for recycling.
  • the product obtained by reacting the absorbent slurry of the present invention with nitric oxide is in a slurry state at the working temperature, and is generally solid after cooling to normal temperature, and should be sealed and stored, and easily deliquescent when exposed to air and release the absorbed nitric oxide Nitrogen gas.
  • the absorbed nitric oxide gas can be removed by heating and / or humidifying the product, the heating temperature is generally above 65 °C, preferably 110 °C-180 °C, the heating temperature under negative pressure or vacuum can be lower, and the desorption is also faster .
  • moisture and hydrogen chloride gas will also be generated, and nitric oxide gas can be recovered or further by-products such as nitric acid can be prepared.
  • the absorbent after the removal of nitric oxide can be regenerated after dehydration and chlorination (acidification with hydrogen chloride or hydrochloric acid, the same below), and the regeneration process is approximately the same as the preparation process of the above-mentioned absorbent slurry.
  • the regeneration of the absorbent can also deliquesce the product in wet air or water vapor or dissolve in solvents such as clean water or hydrochloric acid, and then release the absorbed nitric oxide gas, and then perform dehydration and chlorination process regeneration.
  • the dehydration and chlorination can be carried out by heating the product under the protection of hydrogen chloride gas flow, which is roughly the same as the preparation process.
  • the heating temperature is generally above 65 ° C, specifically 110-200 ° C, but is not limited, and can be set as needed.
  • the heating process can also be based on the change of iron salt concentration, using a segmented heating method. The higher the concentration, the higher the heating temperature.
  • the absorbent slurry can also be dehydrated and chlorinated by adding dehydrating agents such as sulfoxide chloride. When chlorinated sulfoxide is used as the dehydrating agent, hydrogen chloride gas is generated, which can simultaneously achieve the effect of chlorination.
  • dehydrating agents such as sulfoxide chloride.
  • the removal of the nitric oxide gas and the regeneration of the absorbent can also be performed at the same time, similar to the preparation process of the foregoing absorbent, that is, the absorbent is heated and desorbed under the protection of hydrogen chloride gas, or the addition of sulfoxide chloride
  • the dehydrating agent removes the absorbed nitric oxide and water while chlorinating to prevent the decomposition of iron salts.
  • the present invention has the advantage that the absorbent slurry is used instead of solid ferric chloride particles to absorb and remove the nitric oxide gas in the gas stream, and the ferric chloride in the slurry that has the ability to chemically react with nitric oxide can be extremely
  • the existence of tiny crystal forms overcomes the shortcomings of low gas-solid reaction efficiency and low utilization rate of adsorbent.
  • the absorbent slurry prepared by mixing hydrochloric acid or salt solution with ferric chloride further improves the content and working temperature of ferric chloride in the slurry and the continuous absorption capacity of nitric oxide, the absorbent is recycled after regeneration.
  • the system is simple and easy to operate.
  • FIG. 1 is a schematic structural diagram of a rotary nitrogen oxide absorption reactor.
  • FIG. 2 is a schematic structural diagram of a reactor for spraying absorption towers of nitrogen oxides.
  • Embodiment 1 A method for preparing the nitrogen oxide absorbent slurry: Weigh anhydrous ferric chloride powder (industrial grade, net content ⁇ 97%, the same below), clean water or chlorine hexahydrate according to a predetermined mass ratio Iron oxide and other materials containing crystalline water, and then add the clean water or ferric chloride hexahydrate to the closed mixing reactor and raise the temperature to a predetermined temperature (to dissolve ferric chloride hexahydrate etc.) in air or nitrogen or in the presence of In the presence of hydrogen chloride protective gas (approximately 10-30%, volume, the same below), gradually add anhydrous ferric chloride powder, stir and mix, after all materials are uniformly mixed to form a molten slurry, the preparation of the absorbent is completed.
  • the specific material ratio and operating parameters are shown in Table 1 below.
  • Example 2 The reactor shown in Fig. 1 is used.
  • the reactor mainly includes a reactor cylinder 2 placed horizontally.
  • One end of the reactor cylinder 2 is a gas inlet 1 and the other end is a gas outlet 4.
  • the upper part of the reactor cylinder is provided with a material inlet 3 and the lower part is The material discharge port 5 and the reactor cylinder 2 are driven to rotate by the transmission system.
  • the diameter of the reactor barrel is ⁇ 300mm, the length is about 1500mm, the two ends are cones, the diameter of the inlet and outlet is 150mm, and the material is Hastelloy.
  • the flow rate of the treated gas is about 120m 3 / h, the temperature of the gas flow in the reactor is about 35 ⁇ 110 °C, the residence time of the gas in the reactor is about 3s, and the rotating speed of the cylinder is about 45 ⁇ 60 rpm.
  • the NO concentration in the gas inlet stream is about 500 ppm, the sulfur dioxide concentration is about 300 ppm, the oxygen is about 8% (volume, the same below), the moisture content is about 10%, the carbon dioxide content is about 10%, and the rest is nitrogen.
  • the amount of absorbent added is about 30kg.
  • the treatment process flow is to add a slurry of nitrogen oxide absorbent at a certain temperature into the reactor barrel through the material inlet 3, and introduce the gas stream containing nitric oxide to be treated from the gas inlet 1 into the reactor, and at the same time drive the reaction through the transmission system
  • the cylinder 2 rotates, so that the absorbent material added into the reactor flows along the inner wall of the reactor cylinder, making it fully contact with the gas.
  • the nitric oxide in the gas stream reacts with the absorbent slurry and is absorbed, after purification
  • the gas flow is discharged from the gas outlet 4 at the other end of the reactor, and the products after absorption and saturation can be regularly discharged from the material discharge outlet 5.
  • Table 2 The maximum average removal rate of nitrogen oxides for one hour is shown in Table 2 below.
  • Example 3 A nitrogen oxide spray absorption tower reactor as shown in FIG. 2 is used.
  • the reactor mainly includes an absorption tower body 13, a gas outlet 4 at the upper part of the tower, a slurry inlet 11 and a slurry sprayer 12 at the absorption tower, a gas inlet 1 at the lower side, a slurry circulation tank 8 at the lower part of the tower, and a slurry circulation
  • the lower part of the tank is provided with a material discharge port 5, the upper part is provided with an absorbent slurry material inlet 3, and the lower part is communicated with the absorbent slurry pump 6 through a connecting pipe 7, the slurry pump is connected with the slurry inlet 11 of the absorption tower through the slurry delivery pipe 10, and the slurry is transported
  • the pipe 10 is also provided with a bypass port 9 for recovery and regeneration of the absorbent slurry.
  • the absorption tower is an empty tower, the material is Hastelloy, the diameter of the tower is ⁇ 300mm, the total height of the tower is about 3500mm, the effective spray height is about 2000mm, countercurrent absorption, and the whole pipeline is insulated.
  • the treatment process is to transport the nitrogen oxide absorbent slurry at a certain temperature (which is roughly the same as the temperature of the gas stream to be treated) through the slurry pump to the upper part of the absorption tower, and spray it from the top to the bottom through the slurry sprayer to spray the
  • the gas flow of nitric oxide is introduced into the absorption tower from the gas inlet in the lower part of the absorption tower. From bottom to top, it makes full contact with the slurry droplets in the tower.
  • the nitric oxide in the gas flow reacts with the iron chloride in the absorbent slurry While being absorbed, the purified air flow is discharged from the upper part of the absorption tower.
  • the absorbent slurry circulates, and the saturated slurry can be sent to regeneration through the bypass port.
  • the experimental conditions are: the flow rate of the treated gas is about 150m 3 / h, the gas composition is the same as in Example 2, the temperature of the gas flow in the absorption tower changes between 80-90 ° C, the temperature of the slurry and the temperature of the gas flow are roughly the same, and the gas stays in the reactor The time is about 2s.
  • An absorbent with an absorbent number of 3 is used. The absorbent is added in an amount of about 50 kg, the slurry pump circulation is about 350 kg / h, and the maximum average removal rate of nitrogen oxides lasting one hour is about 75%.
  • Embodiment 4 A preparation method of the nitrogen oxide absorbent: using anhydrous ferric chloride powder and mixing hydrochloric acid solutions of different concentrations, the preparation process is to first add the hydrochloric acid solution to the closed mixing reactor, and then gradually add chlorine Iron powder, stirring and mixing, the reactor temperature is set at room temperature to 120 °C, respectively, when the temperature is greater than 60 °C, the reactor can be filled with nitrogen and hydrogen chloride mixed protective gas (hydrogen chloride about 10 ⁇ 30%), waiting for chlorine After the ferric chloride and hydrochloric acid solution are thoroughly mixed to form a slurry, the preparation of the absorbent is completed.
  • the specific material ratio and operating parameters are shown in Table 3 below.
  • Example 5 The reactor shown in Figure 2 is used.
  • the temperature of the gas flow in the absorption tower ranges from about 65 to 120 ° C, and other conditions are the same as in Example 3.
  • the maximum average removal rate of nitrogen oxides for one hour is shown in Table 4 below.
  • Example 6 Weigh about 30 parts of solid ferric chloride hexahydrate and 1 part of 36-38% hydrochloric acid solution according to the mass ratio.
  • the preparation process is to first add hydrochloric acid solution to the closed mixing reactor, and then put the chlorine hexahydrate
  • the ferric chloride is added to the mixing reactor, stirred and heated to about 50-60 ° C to dissolve all the solid ferric chloride hexahydrate, and then a mixed gas of nitrogen and hydrogen chloride (hydrogen chloride about 30-50 %, The same below), and then heated to about 150 ⁇ 180 °C for dehydration, when the water content in the liquid phase is about 4 ⁇ 5%, the preparation of the nitrogen oxide absorbent is completed.
  • Embodiment 7 A method for preparing the nitrogen oxide absorbent: using iron chloride-free powder and different concentrations of salt solutions, the preparation process is to first add a predetermined quality of clean water and solid salt to the closed mixing reactor, The temperature of the reactor is set to be different from room temperature to 130 ° C. After stirring and mixing to completely dissolve the salt, then gradually add a predetermined amount of ferric chloride.
  • the preparation method is the same as the previous embodiment. After the ferric chloride and the salt solution are fully mixed to form a slurry After that, the preparation of the absorbent is completed.
  • Table 5 The specific material ratio and operating parameters are shown in Table 5 below.
  • Example 8 The nitrogen oxide spray absorption tower reactor shown in FIG. 2 is used.
  • the temperature of the gas flow in the absorption tower ranges from 65 to 130 ° C, and the other conditions are the same as in Example 3.
  • the maximum average removal rate of nitrogen oxides for one hour is shown in Table 6 below.
  • Example 9 A method for regenerating the absorbent: add the reacted absorbent slurry with the serial number 4 used in Example 2 to the regeneration reactor (same as the mixing reactor, the same below) and add after removing air Hydrochloric acid solution with a concentration of about 20% is added in an amount of about 0.1 to 0.3 of the volume of the absorbent, stirred and mixed, and heated to about 90 to 110 ° C for a period of time, then the released nitric oxide gas is extracted and recycled for monoxide After the nitrogen release is completed, a mixed gas of nitrogen and hydrogen chloride is passed under the liquid surface of the reactor, and the temperature is raised to about 120-150 ° C for dehydration. When the moisture in the liquid phase drops to about 5-7%, the The regeneration of the nitrogen oxide absorbent is completed.
  • Example 10 A method for regenerating the absorbent: Add the reacted absorbent slurry with the serial number 10 used in Example 5 to the regeneration reactor, and after removing air, raise the temperature to about 150-160 ° C. After the release of nitric oxide is completed, the nitric oxide gas is drawn out for recycling, and then a mixed gas of nitrogen and hydrogen chloride is passed into the liquid surface of the reactor for dehydration and chlorination. When the moisture in the liquid phase is about 3 to 5%, The temperature is reduced to 100-110 ° C, and chlorination is continued for a period of time, and regeneration of the nitrogen oxide absorbent is completed.
  • Example 11 A method for regenerating the absorbent: Add the reacted absorbent with the serial number 17 used in Example 8 to the regeneration reactor, and after removing the air, add a hydrochloric acid solution with a concentration of about 20%. It is 0.1-0.3 of the absorbent volume, stir and mix, and raise the temperature to about 100-110 °C. After the release of nitric oxide is completed, the nitric oxide gas is drawn out for recycling, and then nitrogen and hydrogen chloride are introduced into the reactor under the liquid surface The temperature of the mixed gas is further increased to about 160-180 ° C for further dehydration. When the water content in the liquid phase is about 3-5%, the regeneration of the nitrogen oxide absorbent is completed.
  • Example 12 A method for regenerating the absorbent: Add the reacted absorbent slurry with the serial number 11 used in Example 5 to the regeneration reactor, and after removing air, maintain the temperature at 95-100 ° C, and then The sulfoxide chloride liquid was slowly added dropwise to the reactor for dehydration and chlorination. Stirring allowed the slurry in the reactor to fully mix and contact with the sulfoxide chloride liquid. The sulfoxide chloride gas volatilized during the reaction was returned to the reaction through the condensing refluxer In the reactor, the water vapor, nitrogen oxides, hydrogen chloride and sulfur dioxide gas generated during the reaction process are discharged through the non-condensable gas discharge port of the condensing refluxer and then treated separately. The total dosage of thionyl chloride is about 6-10 times of the water removed. When the water in the absorbent slurry drops to about 2 to 3%, the regeneration of the nitrogen oxide absorbent is completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种氮氧化物吸收剂浆液及其制备和使用方法,用于去除气流中的一氧化氮气体,属于大气污染控制和相关环境保护技术领域,其特征在于所述的吸收剂浆液含有无水氯化铁、一水氯化铁、二水氯化铁和氯化铁与氯离子的络合物的一种或任意两种及以上的化合物,所述的吸收剂浆液在一定温度下与气流中的一氧化氮气体发生化学反应,使气流中的一氧化氮被浆液吸收而得到去除,从而达到气体净化目的,吸收剂经再生后可循环利用。

Description

一种氮氧化物吸收剂浆液及其制备和使用方法 技术领域
本发明涉及一种氮氧化物吸收剂浆液及其制备和使用方法,用于吸收去除气流中一氧化氮气体,属于大气污染控制和相关环境保护技术领域。
背景技术
人类活动产生的氮氧化物(NO x)主要包括一氧化氮(NO)和二氧化氮(NO 2),其中燃料燃烧产生的氮氧化物中NO一般占95%以上,浓度一般为数十mg/m 3到数千mg/m 3。其它如硝酸生产、建材冶金、化工制药、金属表面处理和半导体生产等工业过程也会产生和排放含氮氧化物废气,有些气体的排放浓度还要高。NOx对人有致毒作用,大量的氮氧化物排放还是引起大气光化学雾和酸雨的主要原因之一。
本发明的发明人已公开了采用固体氯化铁作为脱硝剂,通过氯化铁与一氧化氮之间的化学吸附反应去除气流中的氮氧化物的方法(CN105032163A),由于在脱氮反应器中直接投放固体氯化铁颗粒或粉剂时,吸收剂利用效率低,且易被气流带走,导致吸收剂的流失和随后二次处理困难。本发明针对上述问题,提出了一种氮氧化物吸收剂浆液及其制备和使用方法,以克服所碰到的技术问题。
发明内容
本发明所采用的技术方案为:一种氮氧化物吸收剂浆液(简称吸收剂),用于吸收去除气流中的一氧化氮气体,其特征在于所述吸收剂浆液中水分与氯化铁的质量比为0.005~0.55,且含有无水氯化铁、一水氯化铁、二水氯化铁、或氯化铁与盐酸的络合物的任意一种或两种及以上的化合物。其中所述吸收剂浆液中水分含量越小,无水氯化铁晶体越多,吸收剂对NO的吸收效果越好,优选水分与氯化铁的质量比约为0.01-0.11,但水分含量少,同温度下物料的流动性就差,需要较高的制备和工作温度来保证吸收剂的流动性。当水分与氯化铁的质量比小于0.005时,在本发明的温度范围内得不到所述的吸收剂浆液,大于0.55时,所述的浆液中不含有无水氯化铁、一水氯化铁、二水氯化铁、或氯化铁与盐酸的络合物的任意一种或两种及以上的化合物,对氮氧化物无吸收效果。
本发明所述的吸收剂的制备方法是把物料无水氯化铁和水,或无水氯化铁与一水、二水、六水氯化铁或其他含结晶水氯化铁按所述比例和一定步骤加入混合反应器(一般密闭),在一 定温度和气氛下充分混合反应,最终得到的溶融状态浆液,即为所述的氮氧化物吸收剂。所得到的吸收剂浆液可以直接作为一氧化氮吸收剂使用,也可冷却凝固储存待用(使用时再加热融化)。
本发明所述的物料氯化铁和水除按所述比例配比混合制备外,也可以通过对氯化铁溶液经脱水浓缩后制备得到,脱水可通过加热或其他化学物理等方法进行,最终得到的所述配比含量的氮氧化物吸收剂浆液。
本发明所述的吸收剂的制备过程中,制备温度范围一般为35℃以上,制备温度越高,制备得到的溶融状态吸收剂中的水分就可少,有效氯化铁的含量就高,但温度过高时,氯化铁可能会发生水解而释放出氯化氢气体,不利于吸收剂的制备,因此在较高温度制备所述吸收剂时,可在氯化氢保护气氛以及密闭环境中进行,以防止氯化铁在制备过程中分解。通常制备温度为200℃以下,但无限制,优选65~130℃。
采用无水氯化铁和水混合制备所述的吸收剂时可按如下步骤进行:
先按预定比例分别称取无水氯化铁粉剂和清水,优选氯化铁和水质量比为9:1~25:1,一般先把所述清水全部加入密闭混合反应器(下同)中,在空气或氮气等惰性气体或有氯化氢保护气体存在下(一般制备温度在60℃以上可采用氯化氢保护气体,下同),逐步加入无水氯化铁粉剂,搅拌混合和升温到预定温度,待所有固体氯化铁与水完全混合均匀形成溶融态浆液后,所述的氮氧化物吸收剂的制备完成,可以直接作为一氧化氮吸收剂使用或冷却凝固后储存待用。
采用无水氯化铁与六水氯化铁混合制备所述氮氧化物吸收剂时可按如下步骤:
先按预定比例分别称取无水氯化铁粉剂和六水氯化铁固体,优选无水氯化铁与六水氯化铁质量比约为3.5:1~12:1,先把所述六水氯化铁全部加入混合反应釜中,在空气或氮气等惰性气体或有氯化氢保护气体存在下,升温到预定温度,使固体六水氯化铁全部得到溶解,然后逐步加入无水氯化铁粉剂,同时搅拌使物料充分混合,待所有物料完全混合均匀形成溶融浆液后,所述氮氧化物吸收剂的制备完成。采用其他氯化铁水合物如一水或二水氯化铁等为物料制备时步骤相同,氯化铁和各物料质量比按可相应比例换算。
本发明所述的吸收剂浆液制备时,也可用盐酸溶液代替所述的物料水,以提高浆液中无水氯化铁的含量和浆液的流动性。这是因为盐酸溶液中的氯离子具有配位性,在浆液中无水氯化铁晶体除了以游离态形式存在,还可与盐酸溶液中的氯离子形成络合物,从而提高了氯化铁在浆液中的含量。吸收剂工作时随着浆液中与氯化铁络合的氯以氯化氢形式挥发,增加了浆液中无水氯化铁晶体的含量,从而提高了浆液对一氧化氮的持续吸收能力。所述浆液的制备可以是固体氯化铁与盐酸混合配比,也可以是氯化铁溶液经氯化氢气体或盐酸酸化和脱水后制得。
本发明所述的吸收剂浆液中的盐酸的含量无特殊要求,视实际需要而定,可采用市售30~38%的浓盐酸作为物料配比。采用盐酸物料的浓度越高,在相同温度下,制得的吸收剂浆液流动性越好,氯化铁的含量也越多,脱氮效果就好。与采用清水相比,相同水分条件下采用盐酸溶液得到的吸收剂浆液中氯化铁含量(含相关络合物)可至少提高1倍以上,并与盐酸的浓度成正比,吸收剂浆液中氯化铁与水分的质量比也可达0.99以上。同样,制备温度越高,制得的吸收剂中氯化铁的含量也越高。同时,吸收剂浆液的工作温度(吸收剂与氮氧化物的反应温度)也得到了提高,有利于在较高温度下脱除气流中的一氧化氮气体。与温度相比,盐酸浓度对提高氯化铁在浆液中含量的影响更大一些。
采用盐酸溶液代替清水制备吸收剂的方法大致相同,采用无水氯化铁和盐酸溶液混合制备所述的氮氧化物吸收剂时可按如下步骤进行:先按预定比例分别称取氯化铁粉剂和预定浓度的盐酸溶液,氯化铁与盐酸溶液(以30%盐酸为例,下同)的质量比一般为3以上,具体可根据盐酸浓度,参考所述水的含量选择氯化铁的剂量。随着盐酸浓度的提高,氯化铁的配比量增加,优选氯化铁与盐酸溶液的质量比为10~100,具体可根据盐酸浓度确定。具体制备过程可把所述盐酸溶液加入密闭混合反应器中,在空气或氮气等惰性气体或有氯化氢保护气体存在下,逐步加入无水氯化铁粉剂,混合搅拌和升温到预定温度,待所有固体氯化铁与盐酸溶液完全混合均匀后形成溶融态浆液后,所述氮氧化物吸收剂的制备完成。
采用含结晶水氯化铁(以六水氯化铁为例)与盐酸溶液混合制备所述的氮氧化物吸收剂时可按如下步骤:先按一定比例分别称取六水氯化铁固体和预定浓度的盐酸溶液,然后在混合反应器中把六水氯化铁溶于盐酸溶液中,在有氯化氢保护气体存在下(可向溶液中通入氯化氢气体或相关混合气体)进行加热脱水,待物料达到预定所需配比的浆液后,所述氮氧化物吸收剂的制备完成。一般加热脱水温度为65℃以上,加热温度高脱水快,优选110~200℃,但无限制。
本发明所述的氮氧化物吸收剂浆液制备时,也可以用具有盐效应或氯离子配位性的盐溶液溶液代替所述的清水物料,以提高浆液中无水氯化铁的含量和浆液的流动性。所述的盐溶液主要为碱金属、碱土金属或过渡金属的盐酸和硫酸盐及其酸式盐,包括氯化钠、氯化钾、氯化锂、氯化钙、氯化镁、氯化锌、氯化锰、氯化钴、氯化铜、氯化镍、氯化铝等盐酸盐和所述金属相应的硫酸盐,所述盐的效果大体相当,以强酸弱碱盐好些。同时所述盐溶液大多为高沸点盐,能在一定程度上提高吸收剂浆液的工作温度,吸收剂的工作温度可提高约10℃左右。采用盐溶液的制备所述吸收剂浆液时可先制备相关的盐溶液,所述盐溶液的浓度无特殊要求,视实际需要采用,最大浓度一般为相应工作温度下的饱和溶液,其他制备过程与采用盐酸的制备方法大体相同。所述的盐酸和盐溶液也可一并使用,效果比单一更好。
本发明制备得到的氮氧化物吸收剂浆液的使用方法,是把所述吸收剂浆液导入氮氧化物 吸收反应器,气流中的一氧化氮气体在反应器内与所述吸收剂浆液中的氯化铁发生化学反应而被吸收,从而达到气体净化目的。采用清水与氯化铁混合制备的浆液,吸收氮氧化物的工作温度一般为35℃~110℃,优选65℃~100℃。采用盐酸或盐溶液替代清水制备得到的吸收剂浆液的工作温度一般为35℃~130℃,优选70℃~115℃,浆液中的盐酸或盐浓度高,氯化铁含量高,工作温度就可以高些。所述的工作温度大致与被处理的气流温度相当。在工作温度较高时将有部分氯化氢气体逸出,可采用后续水或碱液吸收处理。
本发明所述的氮氧化物吸收剂浆液,吸收一氧化氮起主要作用的为浆液中存在的无水氯化铁晶体,一水、二水氯化铁晶体以及相关氯化铁盐酸络合物等也有一定的吸收效果,反应产物为一氧化氮与氯化铁相关的络合物或盐类。可能的反应有:
FeCl 3+mNO+nH 2O→Fe(H 2O)n(NO)mCl 3     (1)
FeCl 3+H 2O+mNO Fe(NO)m(OH)Cl 2+HCl     (2)
Fe(H 2O)nCl 3+mNO+→Fe(H 2O)n(NO)mCl 3     (3)
其中,m+n≤6(一般≤3,具体取决于反应条件)。
所述吸收剂浆液的投加量与被吸收的一氧化氮的质量比,主要取决于浆液中的无水氯化铁的含量,反应理论摩尔比约为0.5~1(铁氮比),具体可根据吸收剂浆液的含水率、反应温度、以及实际去除率要求和再生周期等因素确定,无特殊要求,一般可取10~1000。
采用本发明所述吸收剂的氮氧化物吸收反应器可采用化工单元操作通用的回转式、喷淋式、鼓泡式和移动床式等气-液(固)接触反应器,可采用顺流、逆流和错流等多种形式,效果大体相当,具体设计参数可参看相关化工设备设计手册。
一种用于氮氧化物吸收的回转式反应器结构包括卧式放置的反应器筒体,反应器筒体的一端为气体进口,另一端为气体出口,所述反应器筒体上部设置有物料加入口,下部设置有物料排出口,反应器筒体由传动系统带动回转。其处理工艺流程是把一定温度的氮氧化物吸收剂浆液通过所述物料加入口加入反应器筒体内,把需处理的含一氧化氮的气流由气体进口导入反应器,同时通过传动系统带动反应器筒体回转,使反应器内的吸收剂浆液沿反应器筒体内壁面流动,并与气体充分接触,气流中的一氧化氮被吸收剂浆液吸收,净化后的气流从反应器另一端的气体出口排出,吸收饱和后的溶融态产物可由物料排出口排出。
一种用于氮氧化物吸收的逆流喷淋吸收塔,包括吸收塔塔体,塔体的下端为气体进口,上端为气体出口,吸收塔上部设置有吸收剂浆液物料入口和浆液喷淋器,下部设置有物料循环槽,物料循环槽通过吸收剂浆液循环泵和连接管路与吸收塔物料入口连通,吸收饱和后的浆液可经旁通口送再生处理单元处理后循环利用。
本发明所述的吸收剂浆液与一氧化氮反应后得到的产物在工作温度下是浆液状态,冷却到常温后一般是固体,应密封保存,与空气接触易潮解并释放出被吸收的一氧化氮气体。对 产物可通过加热和/或加湿脱除被吸收的一氧化氮气体,加热温度在一般为65℃以上,优选110℃-180℃,负压或真空下加热温度可低一些,解吸也快些。产物加热过程中也会有水分和氯化氢气体产生,可回收一氧化氮气体或进一步制备硝酸等副产品。脱除一氧化氮后的吸收剂可经过脱水和氯化(氯化氢或盐酸酸化,下同)后再生,再生过程与上述吸收剂浆液的制备过程大致相同。所述吸收剂的再生也可把所述产物在湿空气或水汽中潮解或溶解于清水或盐酸等溶剂后放出被吸收的一氧化氮气体后,再进行脱水和氯化过程再生。所述的脱水和氯化可在氯化氢气流保护下加热产物进行,与制备过程大致相同,加热温度一般为65℃以上,具体优选110~200℃,但无限制,具体视需要设定。加热过程也可根据铁盐的浓度变化采用分段加热的方法,浓度高,加热温度就高些。此外,吸收剂浆液也可通过加入氯化亚砜等脱水剂进行脱水和氯化再生。采用氯化亚砜作为脱水剂时,有氯化氢气体产生,可同时起到氯化的效果,其反应式为:
SOCl 2+H 2O→2HCl+SO 2     (4)
所述产物脱除一氧化氮气体和吸收剂的再生也可同时进行,与前述吸收剂的制备过程类似,即在有氯化氢气体保护下对吸收剂进行加热脱吸,或加入氯化亚砜等脱水剂,在脱除被吸收的一氧化氮和水分的同时氯化,以防止铁盐的分解。
与现有技术相比,本发明的优点在于:采用吸收剂浆液替代固体氯化铁颗粒吸收去除气流中的一氧化氮气体,浆液中具有与一氧化氮发生化学反应能力的氯化铁可以极微小晶体形式存在,克服了气-固反应效率低、吸附剂利用率低等缺点。采用盐酸或盐溶液与氯化铁混合制备得到的吸收剂浆液后,进一步提高了氯化铁在浆液中的含量和工作温度和对一氧化氮的持续吸收能力,吸收剂经再生后循环利用。系统简单、操作容易。
附图说明
图1为一种回转式氮氧化物吸收反应器的结构示意图。
图2为一种氮氧化物喷淋吸收塔反应器的结构示意图。
图中:1气体进口;2回转式反应器;3物料加入口;4气体出口;5物料排出口;6浆液泵;7连接管;8浆液循环槽;9旁通口;10浆液输送管;11吸收塔浆液进口;12喷淋器;13吸收塔塔体。
具体实施方式
以下结合附图和实施例对本发明作进一步详细描述。
实施例1:一种所述氮氧化物吸收剂浆液的制备方法:按预定质量比分别称取无水氯化 铁粉剂(工业级,净含量≥97%,下同)、清水或六水氯化铁等含结晶水物料,然后把所述清水或六水氯化铁等物料加入密闭混合反应器,并升温到预定温度(使六水氯化铁等溶化),在空气或氮气或在有氯化氢保护气体(约10~30%,体积,下同)存在下,逐步加入无水氯化铁粉剂,搅拌混合,待所有物料混合均匀形成溶融态浆液后,所述吸收剂的制备完成。具体物料配比和操作参数见下表1。
表1氮氧化物吸收剂制备物料配比和操作参数
Figure PCTCN2019114737-appb-000001
实施例2:采用图1所示反应器。反应器主要包括卧式放置的反应器筒体2,反应器筒体2的一端为气体进口1,另一端为气体出口4,所述反应器筒体上部设置有物料加入口3,下部设置有物料排出口5,反应器筒体2由传动系统带动回转。
反应器筒体直径为Φ300mm,长约为1500mm,两端为圆锥体,进出气口直径为150mm,材料为哈氏合金。被处理气体流量约120m 3/h,反应器内气流温度约为35~110℃之间,气体在反应器内停留时间约为3s,筒体回转速度约为45~60转/min。气体进口气流中NO浓度约为500ppm,二氧化硫浓度约为300ppm,氧气为约8%(体积,下同),水分含量约为10%,二氧化碳含量约为10%,其余为氮气。吸收剂加入量约30kg。
其处理工艺流程是把一定温度的氮氧化物吸收剂浆液通过物料加入口3加入反应器筒体内,把需处理的含一氧化氮的气流由气体进口1导入反应器,同时通过传动系统带动反应器筒体2回转,使加入反应器内的吸收剂物料沿反应器筒体内壁面回转流动,使其与气体充分接触,气流中的一氧化氮与吸收剂浆液发生化学反应而被吸收,净化后的气流从反应器另一端的气体出口4排出,吸收饱和后的产物可定期由物料排出口5排出。持续一个小时氮氧化物的最大平均去除率见下表2所示。
表2不同吸收剂对一氧化氮的去除效果
Figure PCTCN2019114737-appb-000002
实施例3:采用图2所示氮氧化物喷淋吸收塔反应器。反应器主要包括吸收塔塔体13,塔体上部设置有气体出口4,吸收塔浆液进口11和浆液喷淋器12,侧下部设置有气体进口1,塔体下部为浆液循环槽8,浆液循环槽下部设置有物料排出口5,上部设置有吸收剂浆液物料加入口3,下部通过连接管7与吸收剂浆液泵6连通,浆液泵通过浆液输送管10与吸收塔浆液进口11连通,浆液输送管10上还设置有旁通口9用于吸收剂浆液的回收和再生。
所述吸收塔为空塔,材质为哈氏合金,塔径为Φ300mm,塔总高度约3500mm,有效喷淋高度约2000mm,逆流吸收,管路全系统保温。
其处理工艺流程是把一定温度(与被处理气流温度大体相当)的氮氧化物吸收剂浆液通过浆液泵输送到吸收塔上部,经浆液喷淋器由上而下喷淋,把需处理的含一氧化氮的气流由吸收塔体下部气体进口导入吸收塔,自下而上使其在塔内与浆液液滴充分接触,气流中的一氧化氮与吸收剂浆液中的氯化铁发生化学反应而被吸收,净化后的气流从吸收塔上部排出。吸收剂浆液循环,吸收饱和后的浆液可通过旁通口送去再生。
实验条件为:被处理气体流量约150m 3/h,气体组成同实施例2,吸收塔内气流温度约为80—90℃之间变化,浆液温度与气流温度大体一致,气体在反应器内停留时间约为2s。采用吸收剂序号为3的吸收剂,吸收剂加入量约50kg,浆液泵循环量约350kg/h,持续一个小时的氮氧化物最大平均去除率约为75%。
实施例4:一种所述氮氧化物吸收剂的制备方法:采用无水氯化铁粉剂与不同浓度的盐 酸溶液混合,制备过程是先向密闭混合反应器中加入盐酸溶液,然后逐步加入氯化铁粉剂,搅拌混合,反应器温度分别设为室温至120℃不等,当温度大于60℃时可向反应器内通入氮气和氯化氢混合保护气体(氯化氢约10~30%),待氯化铁与盐酸溶液充分混合形成浆液后,所述吸收剂的制备完成。具体物料配比和操作参数见下表3。
表3氮氧化物吸收剂制备物料配比和操作参数
Figure PCTCN2019114737-appb-000003
实施例5:采用图2所示的反应器。吸收塔内气流温度约为65~120℃不等,其他条件同实施例3。持续一个小时氮氧化物的最大平均去除率见下表4所示。
表4不同吸收剂对一氧化氮的去除效果
Figure PCTCN2019114737-appb-000004
实施例6:按质量比分别称取固体六水氯化铁约30份,36~38%盐酸溶液1份,制备过程是先向密闭混合反应器中加入盐酸溶液,然后把所述六水氯化铁加入混合反应器中,搅拌混合并升温到约50~60℃,使固体六水氯化铁全部溶解,然后向反应器内液面下通入氮气和氯化氢混合气体(氯化氢约30~50%,下同),再升温到约150~180℃进行脱水,当液相中水分为约4~5%时,所述氮氧化物吸收剂的制备完成。
实施例7:一种所述氮氧化物吸收剂的制备方法:采用无氯化铁粉剂与不同浓度盐溶液混合制备,制备过程是先向密闭混合反应器中加入预定质量的清水和固体盐,反应器温度分别设为室温至130℃不等,搅拌混合使盐完全溶解后,然后逐步加入预定质量的氯化铁,制备方式与前述实施例相同,待氯化铁与盐溶液充分混合形成浆液后,所述吸收剂的制备完成。具体物料配比和操作参数见下表5。
表5氮氧化物吸收剂制备物料配比和操作参数
Figure PCTCN2019114737-appb-000005
实施例8:采用图2所示的氮氧化物喷淋吸收塔反应器。吸收塔内气流温度约为65~130℃不等,其他条件同实施例3。持续一个小时氮氧化物的最大平均去除率见下表6所示。
表6不同吸收剂对一氧化氮的去除效果
Figure PCTCN2019114737-appb-000006
实施例9:一种所述吸收剂的再生方法:把实施例2采用的序号为4的反应后的吸收剂浆液加入再生反应器(与混合反应器相同,下同),抽去空气后加入浓度约20%的盐酸溶液,加入量约为吸收剂体积的0.1~0.3,搅拌混合,并升温到约90~110℃后保持一段时间,然后抽出释放的一氧化氮气体回收利用,待一氧化氮释放完毕后,再向反应器内液面下通入氮气和氯化氢的混合气体,再升温到约120~150℃进行脱水,当液相中的水分降到约5~7%时,所述氮氧化物吸收剂的再生完成。
实施例10:一种所述吸收剂的再生方法:把实施例5采用的序号为10的反应后的吸收剂浆液加入再生反应器,抽去空气后,升温到约150~160℃,待一氧化氮释放完毕后,抽出一氧化氮气体回收利用,然后再向反应器内液面下通入氮气和氯化氢的混合气体进行脱水和氯化,当液相中水分为约3~5%时,降温到100~110℃,继续氯化一段时间,所述氮氧化物吸收剂的再生完成。
实施例11:一种所述吸收剂的再生方法:把实施例8采用的序号为17的反应后的吸收剂加入再生反应器,抽去空气后加入浓度约20%的盐酸溶液,加入量约为吸收剂体积的0.1~0.3, 搅拌混合,并升温到约100~110℃,待一氧化氮释放完毕后,抽出一氧化氮气体回收利用,再向反应器内液面下通入氮气和氯化氢的混合气体,再升温到约160~180℃进一步脱水,当液相中水分约为3~5%时,所述氮氧化物吸收剂的再生完成。
实施例12:一种所述吸收剂的再生方法:把实施例5采用的序号为11的反应后的吸收剂浆液加入再生反应器,抽去空气后,保持温度为95~100℃,然后向反应器内缓慢滴加氯化亚砜液体进行脱水和氯化,搅拌使反应器内浆液与氯化亚砜液体充分混合接触,反应过程挥发出来的氯化亚砜气体通过冷凝回流器回流到反应器内,反应过程产生的水汽、氮氧化物、氯化氢和二氧化硫气体通过冷凝回流器的不凝气体排出口排出后另行处理。氯化亚砜总投加量约为所去除水分的6-10倍,当吸收剂浆液中水分降到约2~3%时,所述氮氧化物吸收剂的再生完成。
应该说明的是,以上实施例仅用于说明本发明的技术方案,本发明的保护范围不限于此。凡在本发明的精神和原则之内,对各实施例所记载的技术方案进行修改,或者对其中的部分技术特征进行任何等同替换、修改、变化和改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种氮氧化物吸收剂浆液,用于吸收去除气流中的一氧化氮气体,其特征在于所述的吸收剂浆液中水分与氯化铁的质量比为0.005~0.55,其中含有无水氯化铁、一水氯化铁、二水氯化铁或氯化铁与氯离子的络合物的一种或任意两种及以上的化合物。
  2. 根据权利要求1所述的吸收剂浆液的制备方法,其特征在于把无水氯化铁和水,或无水氯化铁和盐酸,或无水氯化铁和一水氯化铁,或无水氯化铁和二水氯化铁,或无水氯化铁和六水氯化铁,或无水氯化铁和一水氯化铁和盐酸,或无水氯化特和二水氯化铁和盐酸,或无水氯化铁和六水氯化铁和盐酸按所述质量比,在一定温度和气氛下充分混合反应后制得。
  3. 根据权利要求2所述的吸收剂浆液的制备方法,其特征在于所述的制备温度范围为35℃以上,所述的气氛为惰性气体或有氯化氢保护气体存在。
  4. 根据权利要求1所述的吸收剂浆液的制备方法,其特征在于把氯化铁溶液,或氯化铁与盐酸的混合溶液,在一定温度和气氛下经过脱水后制得。
  5. 根据权利要求4所述的吸收剂浆液的制备方法,其特征在于所述的制备温度范围为65℃以上,所述的气氛为惰性气体或有氯化氢保护气体存在。
  6. 根据权利要求2所述的吸收剂浆液的制备方法,其特征在于所述的物料水可以盐溶液或盐与盐酸混合溶液替代,所述的盐可为碱金属、碱土金属或过渡金属的盐酸和硫酸盐及其酸式盐,包括氯化钠、氯化钾、氯化锂、氯化钙、氯化镁、氯化锌、氯化锰、氯化钴、氯化铜、氯化镍、氯化铝和所述金属相应的硫酸盐。
  7. 根据权利要求1所述的吸收剂浆液的使用方法,其特征在于把所述吸收剂浆液导入氮氧化物吸收反应器,气流中的一氧化氮在一定温度下与所述吸收剂浆液发生反应而被吸收,从而达到气体净化目的。
  8. 根据权利要求7所述的吸收剂浆液的使用方法,其特征在于所述的氮氧化物吸收反应器可采用化工单元操作通用的回转式、喷淋式、鼓泡式和移动床式等气-液(固)接触反应器,可采用顺流、逆流和错流等多种形式。
  9. 根据权利要求7所述的吸收剂浆液的使用方法,其特征在于采用水与氯化铁混合制备的浆液,所述的反应温度为35℃~110℃,采用盐酸或/和盐溶液替代水制备的吸收剂浆液的反应温度为35℃~130℃。
  10. 根据权利要求1所述的吸收剂浆液的再生方法,其特征在于所述吸收饱和后的吸收剂可通过加热或潮解或溶解于水或盐酸溶液后释放出被吸收的一氧化氮气体后,再进行脱水和氯化后再生,所述的吸收剂脱吸和脱水氯化也可同时进行,所述加热温度为65℃以上。
  11. 根据权利要求10所述的吸收剂浆液的再生方法,其特征在于所述的脱水和氯化是在 有氯化氢气体存在下进行,脱水温度在为65℃以上。
  12. 根据权利要求10所述的吸收剂浆液的再生方法,其特征在于所述的脱水和氯化后可采用滴加氯化亚砜溶液的方式进行。
PCT/CN2019/114737 2018-11-13 2019-10-31 一种氮氧化物吸收剂浆液及其制备和使用方法 WO2020098505A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NZ774661A NZ774661A (en) 2018-11-13 2019-10-31 Nitrogen oxide absorption slurry and its preparation and use method thereof
AU2019381947A AU2019381947B2 (en) 2018-11-13 2019-10-31 Nitrogen oxide absorbent slurry, preparation method therefor and use method thereof
US17/270,401 US11298654B2 (en) 2018-11-13 2019-10-31 Nitrogen oxide absorption slurry and a preparation and use method thereof
EP19883348.5A EP3984623A4 (en) 2019-06-13 2019-10-31 NITRIC OXIDE ABSORBING SLURRY, MANUFACTURING METHOD THEREOF AND USE THEREOF
JP2021522433A JP7197223B2 (ja) 2019-06-13 2019-10-31 窒素酸化物吸収剤スラリーとその調製、使用および再生方法
KR1020217011154A KR102525003B1 (ko) 2018-11-13 2019-10-31 질소 산화물 흡수제 슬러리 및 이의 제조와 사용 방법
CA3113375A CA3113375C (en) 2018-11-13 2019-10-31 Nitrogen oxide absorption slurry and its preparation and use method thereof
IL288955A IL288955A (en) 2019-06-13 2021-12-13 Sludge for absorbing nitrogen monoxide, a method for its preparation and use
US17/689,331 US11642626B2 (en) 2018-11-13 2022-03-08 Nitrogen oxide absorption slurry and a preparation and use method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201811412637.6 2018-11-13
CN201811412637 2018-11-13
CN201910563992.1 2019-06-13
CN201910563992 2019-06-13
CN201910889947.5A CN111167263B (zh) 2018-11-13 2019-09-09 一种氮氧化物吸收剂浆液及其制备和使用方法
CN201910889947.5 2019-09-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/270,401 A-371-Of-International US11298654B2 (en) 2018-11-13 2019-10-31 Nitrogen oxide absorption slurry and a preparation and use method thereof
US17/689,331 Continuation US11642626B2 (en) 2018-11-13 2022-03-08 Nitrogen oxide absorption slurry and a preparation and use method thereof

Publications (1)

Publication Number Publication Date
WO2020098505A1 true WO2020098505A1 (zh) 2020-05-22

Family

ID=70650042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114737 WO2020098505A1 (zh) 2018-11-13 2019-10-31 一种氮氧化物吸收剂浆液及其制备和使用方法

Country Status (8)

Country Link
US (2) US11298654B2 (zh)
KR (1) KR102525003B1 (zh)
CN (1) CN111167263B (zh)
AU (1) AU2019381947B2 (zh)
CA (1) CA3113375C (zh)
NZ (1) NZ774661A (zh)
TW (1) TWI740458B (zh)
WO (1) WO2020098505A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578030B (zh) * 2020-04-30 2024-01-26 黄华丽 一种脱除烟气中汞的吸收剂浆液及其制备和脱除方法
CN114146555A (zh) * 2020-09-05 2022-03-08 黄华丽 一氧化碳吸收剂浆液及其制备和使用方法
WO2022135223A1 (zh) * 2020-12-26 2022-06-30 黄立维 一种气流中一氧化氮的去除装置和工艺
CN114074929B (zh) * 2021-03-31 2023-03-31 浙江工业大学 一种一氧化氮的制备方法与装置
CN114074930B (zh) * 2021-03-31 2023-03-31 浙江工业大学 一种制备硝酸的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183214A2 (de) * 1984-11-30 1986-06-04 Bayer Ag Organisch-chemische Verbindung, mikrobiologische Verfahren zu ihrer Herstellung sowie ihre Verwendung
CN102527198A (zh) * 2012-03-08 2012-07-04 昆明理工大学 液相催化氧化-碱液吸收净化含氮氧化物烟气的方法
CN102794098A (zh) * 2012-09-12 2012-11-28 河南绿典环保节能科技有限公司 烟气湿式氧化脱硝及资源化利用方法
CN102989301A (zh) * 2012-09-12 2013-03-27 河南绿典环保节能科技有限公司 烟气湿式还原一体化脱硫脱硝及无害处理和资源利用方法
CN105032163A (zh) 2015-07-02 2015-11-11 黄立维 一种从气流中去除氮氧化物和二氧化硫的方法及其装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6912935A (zh) * 1968-08-31 1970-03-03
GB1446973A (en) * 1973-09-24 1976-08-18 Asahi Chemical Ind Method of removing nitrogen monoxide from a nitrogen mono xide-containing gas
GB1501702A (en) * 1974-01-21 1978-02-22 Kureha Chemical Ind Co Ltd Method of removing nitrogen oxides from a gas containing them
JPS5175667A (ja) * 1974-12-27 1976-06-30 Asahi Glass Co Ltd Chitsusosankabutsunoshorihoho
US4708854A (en) * 1986-03-10 1987-11-24 The Dow Chemical Company Process for the removal of NO from fluid streams using a water-soluble polymeric chelate of a polyvalent metal
US20080044333A1 (en) * 2004-07-30 2008-02-21 Hakka Leo E Method and apparatus for NOx and Hg removal
JP2008264702A (ja) * 2007-04-20 2008-11-06 Toyota Motor Corp NOx吸着材の製造方法及びNOx吸着材
US7754169B2 (en) * 2007-12-28 2010-07-13 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
CN101891258B (zh) * 2009-05-20 2012-08-29 北京紫光英力化工技术有限公司 聚合氯化铁生产工艺
CN101785966B (zh) * 2010-03-02 2012-09-19 浙江菲达环保科技股份有限公司 一种烟气中no的高级氧化方法及装置
CN102824836A (zh) * 2012-09-12 2012-12-19 河南绿典环保节能科技有限公司 烟气湿式氧化一体化脱硫脱硝及资源化利用方法
CN103495338B (zh) * 2013-08-29 2016-06-01 广州绿华环保科技有限公司 一种处理工业废气中氮氧化物的方法
CN105536501A (zh) * 2016-01-06 2016-05-04 黄立维 一种脱硝用氯化铁的再生方法
CN109499326A (zh) * 2018-12-13 2019-03-22 江苏菲达环保科技有限公司 一种烟气脱硫脱硝的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0183214A2 (de) * 1984-11-30 1986-06-04 Bayer Ag Organisch-chemische Verbindung, mikrobiologische Verfahren zu ihrer Herstellung sowie ihre Verwendung
CN102527198A (zh) * 2012-03-08 2012-07-04 昆明理工大学 液相催化氧化-碱液吸收净化含氮氧化物烟气的方法
CN102794098A (zh) * 2012-09-12 2012-11-28 河南绿典环保节能科技有限公司 烟气湿式氧化脱硝及资源化利用方法
CN102989301A (zh) * 2012-09-12 2013-03-27 河南绿典环保节能科技有限公司 烟气湿式还原一体化脱硫脱硝及无害处理和资源利用方法
CN105032163A (zh) 2015-07-02 2015-11-11 黄立维 一种从气流中去除氮氧化物和二氧化硫的方法及其装置

Also Published As

Publication number Publication date
US20220250004A1 (en) 2022-08-11
CN111167263A (zh) 2020-05-19
CA3113375A1 (en) 2020-05-22
KR20210089142A (ko) 2021-07-15
CA3113375C (en) 2022-11-22
US11642626B2 (en) 2023-05-09
CN111167263B (zh) 2021-04-13
AU2019381947B2 (en) 2022-02-10
AU2019381947A1 (en) 2021-05-06
KR102525003B1 (ko) 2023-04-25
US11298654B2 (en) 2022-04-12
US20210245097A1 (en) 2021-08-12
TWI740458B (zh) 2021-09-21
TW202110526A (zh) 2021-03-16
NZ774661A (en) 2024-07-26

Similar Documents

Publication Publication Date Title
WO2020098505A1 (zh) 一种氮氧化物吸收剂浆液及其制备和使用方法
CN101455974B (zh) 综合利用氯化汞触媒生产中尾气的方法
JPH07308538A (ja) 有害ガスの浄化剤
CN102516022A (zh) 一种综合处理氯乙烯合成气的方法
CN113578030B (zh) 一种脱除烟气中汞的吸收剂浆液及其制备和脱除方法
CN105562108A (zh) 一种疏水型空气净化复合催化剂及其制备方法
JPS62275001A (ja) 塩素の工業的製造方法
CN105645514B (zh) 一种烟气脱硫剂再生过程中硫酸铵与硫酸钠混合溶液的分离纯化方法
CN102179234B (zh) 一种脱除氯化汞的专用活性炭的生产方法
JP7197223B2 (ja) 窒素酸化物吸収剤スラリーとその調製、使用および再生方法
CN206823509U (zh) 一种含氰有机废气的处理系统
CN102188966B (zh) 回收乙炔法生产聚氯乙烯工艺中排放的含盐酸废水中的氯化汞并循环生产氯化汞触媒的工艺
CN104324598A (zh) 一种净化在合成汞催化剂中产生的尾气的方法
OA20300A (en) Nitrogen oxide absorbent slurry, preparation method therefor and use method thereof.
CN114146555A (zh) 一氧化碳吸收剂浆液及其制备和使用方法
JPH04362005A (ja) 塩素の工業的製造方法
CN111346486A (zh) 一种氧碘化学激光器尾气处理方法和系统
CN113511634B (zh) 钢铁行业酸洗回收废料硫酸铁粗盐制备硫酸的系统及方法
CN109173602B (zh) 一种二氯喹啉酸合成中产生的氮氧化物废气的循环利用方法
CN212119535U (zh) 一种氧碘化学激光器尾气处理系统
JP7363991B2 (ja) 硫化水素の精製方法、硫化リチウムの製造方法、硫化水素精製装置および硫化リチウム製造装置
CN108579408A (zh) 一种低温催化烟气脱硝方法
CN117654461A (zh) 一种二氧化碳吸附剂的再生方法
CN118179230A (zh) 一种硫化染料硫化尾气处理系统及方法
CN116637465A (zh) 一种处理硫酸法提锂酸化尾气的方法及系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3113375

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021522433

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019381947

Country of ref document: AU

Date of ref document: 20191031

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 201811412637.6

Country of ref document: CN

Date of ref document: 20210429

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019883348

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019883348

Country of ref document: EP

Effective date: 20220113