WO2020098258A1 - 一种采用双金刚石层实现GaN原始衬底转移的方法及应用 - Google Patents

一种采用双金刚石层实现GaN原始衬底转移的方法及应用 Download PDF

Info

Publication number
WO2020098258A1
WO2020098258A1 PCT/CN2019/089431 CN2019089431W WO2020098258A1 WO 2020098258 A1 WO2020098258 A1 WO 2020098258A1 CN 2019089431 W CN2019089431 W CN 2019089431W WO 2020098258 A1 WO2020098258 A1 WO 2020098258A1
Authority
WO
WIPO (PCT)
Prior art keywords
gan
transition layer
diamond
substrate
diamond film
Prior art date
Application number
PCT/CN2019/089431
Other languages
English (en)
French (fr)
Inventor
魏俊俊
贾鑫
李成明
陈良贤
刘金龙
张建军
高旭辉
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2020098258A1 publication Critical patent/WO2020098258A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Definitions

  • the invention belongs to the field of semiconductor manufacturing, and particularly provides a substrate transfer method for realizing a diamond-based GaN semiconductor structure, and more specifically, a method and application for transferring a GaN thin film substrate using a double diamond layer.
  • Gallium nitride is the most promising semiconductor material in recent years. With the development of microwave power devices based on gallium nitride (GaN) materials towards smaller sizes, greater output power, and higher frequencies, the problem of "heat” is becoming more and more prominent, and it has gradually become a constraint to this device. One of the bottlenecks for performance improvement.
  • the thermal conductivity of diamond film can reach 2000W / (m ⁇ k) (the thermal conductivity of silver and copper at room temperature are 420W / (m ⁇ k) and 395W / (m ⁇ k) respectively), which is a very ideal thermal conductivity lining Bottom material.
  • the US patent US005650639A first proposed an integrated circuit design using diamond as the substrate, mainly involving the Si-On-diamond structure, which was later further developed into GaN-On-diamond structure by Francis et al. Of Group4 (Chinese patent CN104285001A, US patent US9359693B2). Similarly, Chinese patent CN104157744A also mentions a method for achieving diamond-based GaN based on epitaxial layer transfer. The general idea of the above method is to protect the GaN by bonding the Si wafer on the surface of the GaN first, then remove the original substrate, and then transfer the diamond film on the back of the GaN. In this idea, wafer bonding technology is used.
  • the present invention proposes a method and application of transferring a GaN original substrate using a double diamond layer, using a grown CVD diamond film as a temporary carrier to realize the removal of the original substrate, and then re-growing another layer of CVD diamond The film is used as a thermally conductive substrate, and finally a method of assisting selective etching to realize a complete diamond-based GaN structure.
  • a method for transferring a GaN original substrate using a double diamond layer the method using a double diamond layer, using both a CVD diamond film as a temporary carrier and a CVD diamond film as a transfer liner
  • the method includes:
  • the first transition layer is selectively etched, and the second transition layer is retained, so that the first CVD diamond film as a temporary carrier is peeled off, and the second CVD diamond film as a thermally conductive substrate remains, so that the diamond film can replace the original liner bottom.
  • the original substrate is Si-based, sapphire-based or SiC-based.
  • first transition layer and the second transition layer are grown on the surface of the growth surface and the nucleation surface of the GaN wafer by vacuum coating technology.
  • the thickness of the first transition layer is greater than or equal to 1 ⁇ m, and a uniform and dense effect is required, and the material of the transition layer is Si, Ti, Mo, W elemental elements, or SiO 2 , TiC compounds , Or a combination of the foregoing.
  • the thickness of the second transition layer is less than or equal to 50 nm.
  • a plasma chemical vapor deposition system is used to deposit the first diamond film and the second diamond film, and the thickness of the first diamond film and the second diamond film are both 100-300 microns.
  • the first transition layer is selectively etched using chemical etching or electrochemical assisted etching technology.
  • a method for preparing a diamond-based GaN semiconductor material including the following steps:
  • a GaN original substrate transfer method is used for substrate transfer to form a diamond-based GaN semiconductor material.
  • the original substrate is Si-based, sapphire-based or SiC-based.
  • a diamond-based GaN semiconductor material obtained by using the method for preparing a diamond-based GaN semiconductor material according to any one of the above aspects.
  • the invention adopts a design scheme of double diamond layers, which not only uses the CVD diamond film as a temporary carrier, but also uses the diamond film as a transfer substrate.
  • the invention reduces the introduction of the Si wafer bonding process, and since both the front and back sides are diamond films, it can effectively alleviate the problem of GaN film deformation and cracking, and can effectively improve the quality and efficiency of the diamond film to replace the original GaN substrate.
  • FIG. 1 shows a flowchart of a method for transferring a GaN thin film substrate using dual diamond layers according to the present invention
  • Figure 2A shows a GaN film with an original substrate
  • 2B shows the growth of the first transition layer on the surface of the GaN film
  • 2C shows the growth of a first CVD diamond film on the surface of the transition layer as a temporary carrier
  • Figure 2D shows the removal of the original GaN substrate
  • 2E shows the plating of the second transition layer on the GaN-shaped nucleus surface
  • 2F shows the growth of a second CVD diamond film on the surface of the transition layer as a thermally conductive substrate
  • FIG. 2G shows selective etching to remove the first CVD diamond film as a temporary carrier.
  • Diamond-based GaN semiconductor materials have very significant performance advantages, and the way to achieve this structure is mainly substrate transfer replacement.
  • Conventional transfer generally uses bonded Si wafers as temporary carriers. This method requires extremely high bonding technology and equipment, and is prone to bond detachment during subsequent diamond film growth. This bonding technique firstly requires very high surface treatment and the bonding rate is not ideal. Secondly, this bonding technique is difficult to resist the subsequent CVD diamond film growth environment, causing the bonding to fall off and damaging the GaN growth surface.
  • the vacuum bonding transfer process is abandoned, and the CVD diamond film is directly grown on the front surface of GaN as a temporary carrier, then the original GaN substrate is removed, and then another CVD diamond film is grown on the back surface of GaN under the protection of the dielectric layer ; Then, by electrochemical selective etching technology, the first layer of CVD diamond film is removed to obtain a complete diamond-based GaN structure.
  • the specific implementation steps of the method for transferring a GaN thin film substrate using a double diamond layer of the present invention are as follows:
  • step 101 a GaN wafer with a substrate is selected, and the structure is shown in FIG. 2A. It is washed with acetone, alcohol and deionized water in sequence, and air-dried.
  • the original substrate can be Si-based, sapphire-based or SiC-based.
  • the first transition layer 1 is plated on the surface of the GaN wafer growth surface using vacuum coating technology, as shown in FIG. 2B.
  • the transition layer not only plays a role in resisting plasma bombardment and protecting GaN, but also facilitates the growth of CVD diamond film.
  • Vacuum coating technologies include vacuum coating technologies such as magnetron sputtering, low-pressure chemical vapor deposition, and laser pulse deposition technology.
  • the first transition layer may be made of materials such as Si, Ti, W and Mo, or compounds such as SiO 2 and TiC, or a combination thereof.
  • the thickness of the transition layer is 1-3 ⁇ m.
  • a chemical vapor deposition technique is used to grow a first CVD diamond film with a certain thickness on the GaN surface with the first transition layer as a temporary carrier, as shown in FIG. 2C.
  • Chemical vapor deposition methods include microwave CVD, hot wire CVD, and other CVD diamond coating technologies.
  • the thickness of the diamond film is 100-300 microns, and the deposition temperature is 600-800 ° C.
  • step 104 a chemical etching or laser lift-off technique is used to remove the original GaN substrate, leaving a GaN film with a temporary diamond carrier, and the back surface (nucleation surface) of GaN is exposed, as shown in FIG. 2D.
  • Chemical methods include wet etching stripping and KrF laser stripping.
  • the second transition layer 2 is plated on the back surface of GaN using vacuum coating technology, and the structure is shown in FIG. 2E.
  • the transition layer also has the function of protecting the GaN film and facilitating the growth of the CVD diamond film.
  • Vacuum coating technologies include vacuum coating technologies such as magnetron sputtering, low-pressure chemical vapor deposition, and laser pulse deposition technology.
  • the material of the transition layer is SiN, AlN, SiC and other materials, or a combination thereof.
  • the thickness of the transition layer is ⁇ 50nm.
  • a second CVD diamond film is grown on the back surface of the GaN plated with the second transition layer by chemical vapor deposition to form a double diamond layer structure as shown in FIG. 2F.
  • the chemical vapor deposition technology includes microwave CVD, hot wire CVD and other CVD diamond coating technologies, the diamond film thickness is 100-300 microns, and the deposition temperature is 700-800 ° C.
  • the first transition layer is selectively etched by wet etching or electrochemically assisted, without affecting the second transition layer, and the diamond film as a temporary carrier is peeled off to obtain a diamond-based GaN structure, as shown in FIG. 2G As shown.
  • Wet etching includes etching with HF acid, sulfuric acid, nitric acid and other solutions, or using chromic acid solution to selectively etch the first transition layer under electrochemical action.
  • the invention also provides a method for preparing a diamond-based GaN semiconductor material, including the following steps:
  • the original substrate is Si-based, sapphire-based or SiC-based;
  • a GaN original substrate transfer method is used for substrate transfer to form a diamond-based GaN semiconductor material.
  • the present invention also provides a diamond-based GaN semiconductor material, which is obtained by using the preparation method of the diamond-based GaN semiconductor material according to any one of the above aspects.
  • a magnetron coating system to plate a SiN transition layer (ie, a dielectric layer) on the back of GaN.
  • the sputtering atmosphere is Ar, N 2 , the ratio of the two is 1: 3, the sputtering power is 150 W, the sputtering chamber pressure is 5.0 ⁇ 10 -1 Pa, and the sputtering time is 20 minutes.
  • the thickness of the SiN transition layer is about 50nm;
  • the method and application of the double diamond layer to realize the GaN film substrate transfer of the present invention reduce the introduction of the Si wafer bonding process, and because both the front and back sides are diamond films, it can effectively alleviate the deformation of the GaN film As a result, the cracking problem can effectively improve the quality and efficiency of the diamond film to replace the original GaN substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本发明公开了一种采用双金刚石层实现GaN薄膜衬底转移的方法及应用。方法包括:选择一种GaN晶圆,GaN晶圆具有原始衬底;在GaN晶圆生长面表面生长第一过渡层;在第一过渡层表面沉积第一CVD金刚石膜,作为临时载体;采用化学腐蚀或者激光剥离技术,将GaN原始衬底去除,GaN露出形核面;在GaN晶圆形核面表面生长第二过渡层,作为介电层;在第二过渡层表面沉积第二CVD金刚石膜,作为GaN的导热衬底;选择性刻蚀第一过渡层,保留第二过渡层。本发明减少了Si晶圆键合工艺的引入,同时由于正反两面都是金刚石膜,能有效缓解GaN薄膜变形从而发生开裂的问题,可有效提升金刚石膜替代GaN原始衬底的质量和效率。

Description

一种采用双金刚石层实现GaN原始衬底转移的方法及应用 技术领域
本发明属于半导体制造领域,特别提供了一种实现金刚石基GaN半导体结构的衬底转移方法,更具体地,提供了一种采用双金刚石层实现GaN薄膜衬底转移的方法及应用。
背景技术
氮化镓是近年来最具发展潜力的半导体材料。随着基于氮化镓(GaN)材料的微波功率器件向更小尺寸、更大输出功率和更高频率的方向发展,“热”的问题越来越突出,逐渐成为制约这种器件向更高性能提升的瓶颈之一。金刚石薄膜热导率可达2000W/(m·k)(银和铜常温下热导率分别为420W/(m·k)和395W/(m·k)),是一种非常理想的导热衬底材料。采用高热导率金刚石膜作为高频、大功率氮化镓(GaN)基器件的衬底或热沉,可以显著降低氮化镓(GaN)基大功率器件的自加热效应,并有望解决随总功率增加、频率提高出现的功率密度迅速下降的问题。但是要实现金刚石基GaN薄膜结构,目前最可行的方式是采用金刚石膜替代GaN已有的原始衬底。
美国专利US005650639A最早提出了一种采用金刚石作为基底的集成电路设计,主要涉及Si-On-diamond结构,后来由Group4公司的Francis等人进一步发展为GaN-On-diamond结构(中国专利CN104285001A,美国专利US9359693B2)。同样的,中国专利CN104157744A也提到了一种基于外延层转移实现金刚石基GaN的方法。上述方法普遍的思路是先在GaN表面通过键和Si晶圆的方式,将GaN保护起来,然后去除原始衬底,再在GaN背面进行金刚石膜的转移。在这种思路中,均用到了晶圆键合技术。这种技术对表面状态及键合设备要求较高,要实现高质量的键合难度很大。此外,如果在后续金刚石转移过程中,如果采用生长CVD金刚石膜的技术路线(该路线实现的金刚石膜导热能力更佳),则大多数键合工艺将无法承受CVD金刚石膜生长环境。因此,需要发展优化或取消键合工艺的方法。
发明内容
为了解决以上问题,本发明提出一种采用双金刚石层实现GaN原始衬底转移的方法及应用,以生长的CVD金刚石膜作为临时载体,实现原始衬底的去除,然后再生长另一层CVD金刚石膜作为导热衬底,最后辅助选择性刻蚀的技术实 现完整的金刚石基GaN结构的方法。
根据本发明的第一方面,提供一种采用双金刚石层实现GaN原始衬底转移的方法,所述方法采用双金刚石层,既利用CVD金刚石膜作为临时载体,同时又利用CVD金刚石膜作为转移衬底,由于正反两面都是金刚石膜,有效缓解GaN薄膜变形从而发生开裂的问题,所述方法包括:
1.选择一种GaN晶圆,所述GaN晶圆具有原始衬底;
2.在GaN晶圆生长面表面生长第一过渡层;
3.在所述第一过渡层表面沉积第一CVD金刚石膜,作为临时载体;
4.采用化学腐蚀或者激光剥离技术,将GaN原始衬底去除,GaN露出形核面;
5.在GaN晶圆形核面表面生长第二过渡层,作为介电层;
6.在所述第二过渡层表面沉积第二CVD金刚石膜,作为GaN的导热衬底;
7.选择性刻蚀所述第一过渡层,保留第二过渡层,使得作为临时载体的第一CVD金刚石膜剥离,作为导热衬底的第二CVD金刚石膜保留,从而实现金刚石膜替代原始衬底。
进一步的,在步骤1中,所述原始衬底为Si基、蓝宝石基或者SiC基。
进一步的,采用真空镀膜技术在GaN晶圆生长面表面和形核面表面生长第一过渡层和第二过渡层。
进一步的,在步骤2中,所述第一过渡层厚度大于等于1μm,需达到均匀致密的效果,且所述过渡层的材质为Si、Ti、Mo、W单质元素,或者SiO 2、TiC化合物,或者前述各项的复合。
进一步的,所述第二过渡层的厚度小于等于50nm。
进一步的,采用等离子体化学气相沉积系统沉积第一金刚石膜和第二金刚石膜,且所述第一金刚石膜和第二金刚石膜的厚度均为100-300微米。
进一步的,采用化学腐蚀或者电化学辅助刻蚀技术来选择性刻蚀所述第一过渡层。
根据本发明的第二方面,提供一种金刚石基GaN半导体材料的制备方法,包括以下步骤:
1.在原始衬底上沉积GaN层;
2.采用根据以上任一方面所述的GaN原始衬底转移方法进行衬底转移,形成金刚石基GaN半导体材料。
进一步的,在步骤1中,所述原始衬底为Si基、蓝宝石基或者SiC基。
根据本发明的第三方面,提供一种金刚石基GaN半导体材料,所述金刚石基GaN半导体材料采用根据以上任一方面所述的金刚石基GaN半导体材料的制 备方法获得。
本发明的有益效果:
本发明采用双金刚石层的设计方案,既利用CVD金刚石膜作为临时载体,同时又利用金刚石膜作为转移衬底。本发明减少了Si晶圆键合工艺的引入,同时由于正反两面都是金刚石膜,能有效缓解GaN薄膜变形从而发生开裂的问题,可有效提升金刚石膜替代GaN原始衬底的质量和效率。
附图说明:
图1示出根据本发明的采用双金刚石层实现GaN薄膜衬底转移的方法流程图;
图2A示出带有原始衬底的GaN薄膜;
图2B示出在GaN薄膜表面生长第一过渡层;
图2C示出在过渡层表面生长第一CVD金刚石膜作为临时载体;
图2D示出去除GaN原始衬底;
图2E示出在GaN形核面镀制第二过渡层;
图2F示出在过渡层表面生长第二CVD金刚石膜作为导热衬底;
图2G示出选择性刻蚀去除作为临时载体的第一CVD金刚石膜。
具体实施方式
以下结合附图和实施例对本发明的技术方案做进一步的说明。
金刚石基GaN半导体材料具有非常显著的性能优势,实现该结构的方式主要是衬底转移替换。常规转移普遍用到键合Si晶圆作为临时载体,该方法既对键合工艺及设备要求极高,且在后续金刚石膜生长过程中易出现键合脱离的问题。这种键合技术一是对于表面处理要求非常高,键合率不够理想,二是这种键合技术很难抵御后续的CVD金刚石膜生长环境,造成键合脱落,损坏GaN生长面。本方案中,摈弃真空键合转移工艺,直接在GaN正面生长CVD金刚石膜作为临时载体,然后将GaN原始衬底去除,随后在介电层的保护下再在GaN背面生长另一层CVD金刚石膜;随后,通过电化学选择性刻蚀技术,将第一层CVD金刚石膜去除,获得完整的金刚石基GaN结构。
参照图1以及图2A至2G,本发明的采用双金刚石层实现GaN薄膜衬底转移的方法具体实施步骤如下:
在步骤101中,选择带有衬底的GaN晶圆,结构如图2A所示。依次采用丙酮、酒精及去离子水清洗,风干,原始衬底可以是Si基、蓝宝石基或SiC基。
在步骤102中,采用真空镀膜技术在GaN晶圆生长面表面镀制第一过渡层1,如图2B所示。该过渡层既起到抵御等离子体轰击、保护GaN的作用,同时 又有利于CVD金刚石膜的生长。真空镀膜技术包括磁控溅射、低压化学气相沉积、激光脉冲沉积技术等真空镀膜技术。该第一过渡层可为Si、Ti、W、Mo等材质,或者SiO 2,TiC等化合物,或者其中的复合。过渡层厚度1-3μm。
在步骤103中,采用化学气相沉积技术,在带有第一过渡层的GaN表面生长一定厚度的第一CVD金刚石膜,作为临时载体,如图2C所示。化学气相沉积方法包括微波CVD,热丝CVD,以及其它CVD金刚石镀膜技术。金刚石膜厚度100-300微米,沉积温度600-800℃。
在步骤104中,采用化学腐蚀或者激光剥离技术,将GaN原始衬底去除,留下带有金刚石临时载体的GaN薄膜,GaN背面(形核面)露出,如图2D所示。化学方法包括采用湿法腐蚀剥离,采用KrF激光剥离等技术。
在步骤105中,再次清洗样品后,采用真空镀膜技术在GaN背面镀制第二过渡层2,结构示意如图2E所示。该过渡层作为介电材料同样具有保护GaN薄膜,并有利于CVD金刚石膜生长的作用。真空镀膜技术包括磁控溅射、低压化学气相沉积、激光脉冲沉积技术等真空镀膜技术。该过渡层材料为SiN,AlN以及SiC等材料,或者其组合体系。过渡层厚度≤50nm。
在步骤106中,采用化学气相沉积在镀有第二过渡层的GaN背面生长第二CVD金刚石膜,形成如图2F所示双金刚石层结构。该化学气相沉积技术包括微波CVD,热丝CVD以及其它CVD金刚石镀膜技术,金刚石膜厚度100-300微米,沉积温度700-800℃。
在步骤107中,采用湿法刻蚀或者电化学辅助选择性刻蚀第一过渡层,同时不影响第二过渡层,实现作为临时载体的金刚石膜的剥离,获得金刚石基GaN结构,如图2G所示。湿法刻蚀包括采用HF酸、硫酸、硝酸等溶液腐蚀,或者采用铬酸溶液在电化学作用下选择性刻蚀第一层过渡层。
本发明还提供一种金刚石基GaN半导体材料的制备方法,包括以下步骤:
1.在原始衬底上沉积GaN层,原始衬底为Si基、蓝宝石基或者SiC基;
2.采用根据以上任一方面所述的GaN原始衬底转移方法进行衬底转移,形成金刚石基GaN半导体材料。
本发明还提供一种金刚石基GaN半导体材料,金刚石基GaN半导体材料采用根据以上任一方面所述的金刚石基GaN半导体材料的制备方法获得。
实施例
1.选择10×10mmSi基GaN晶圆,Si基片厚度0.5mm。依次采用丙酮、酒精及去离子水超声清洗,吹风机风干;
2.将衬底放置于磁控溅射镀膜系统中,抽真空至5×10 -4Pa以下真空度。在Ar溅射气氛下,以Ti材料为靶材开始在GaN表面溅射纯Ti过渡层。溅射功率 400W,溅射腔压3.0×10 -1Pa,自偏压700V,溅射时长3h,溅射后Ti过渡层厚度为2μm;
3.取出上述样品,将其放置于微波等离子体化学气相沉积系统中,抽真空至0.1Pa以下,开启微波等离子体CVD系统,在Ti过渡层表面镀制CVD金刚石膜。微波功率3kw,衬底温度700℃,甲烷浓度3%,沉积时间40h,金刚石膜厚度200微米;
4.取出上述样品,先采用机械研磨的方式将原始Si衬底研磨一部分至50-100微米厚度,然后将剩余Si腐蚀掉,使得GaN的背面露出;
5.再次清洗样品后,采用磁控镀膜系统,在GaN背面镀制SiN过渡层(即介电层)。溅射气氛为Ar,N 2,两者比例1:3,溅射功率150W,溅射腔压5.0×10 -1Pa,溅射时长20min。SiN过渡层厚度约50nm;
6.将上述样品置于微波等离子体CVD系统中,SiN面朝上,镀制第二层CVD金刚石膜。微波功率3kW,甲烷浓度2.5%,衬底温度750℃,沉积时间50h。金刚石膜厚度约200微米;
7.将样品取出放置于盛有HCl酸的烧杯中密封,水浴加热至60摄氏度,直至镀有Ti过渡层的金刚石层发生脱离,从而留下带有金刚石基的GaN结构。
综上所述,本发明的采用双金刚石层实现GaN薄膜衬底转移的方法及应用,减少了Si晶圆键合工艺的引入,同时由于正反两面都是金刚石膜,能有效缓解GaN薄膜变形从而发生开裂的问题,可有效提升金刚石膜替代GaN原始衬底的质量和效率。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

  1. 一种采用双金刚石层实现GaN原始衬底转移的方法,其特征在于,所述方法采用双金刚石层,既利用CVD金刚石膜作为临时载体,同时又利用CVD金刚石膜作为转移衬底,由于正反两面都是金刚石膜,有效缓解GaN薄膜变形从而发生开裂的问题,所述方法包括:
    步骤1,选择一种GaN晶圆,所述GaN晶圆具有原始衬底;
    步骤2,在GaN晶圆生长面表面生长第一过渡层;
    步骤3,在所述第一过渡层表面沉积第一CVD金刚石膜,作为临时载体;
    步骤4,采用化学腐蚀或者激光剥离技术,将GaN原始衬底去除,GaN露出形核面;
    步骤5,在GaN晶圆形核面表面生长第二过渡层,作为介电层;
    步骤6.在所述第二过渡层表面沉积第二CVD金刚石膜,作为GaN的导热衬底;
    步骤7,选择性刻蚀所述第一过渡层,保留第二过渡层,使得作为临时载体的第一CVD金刚石膜剥离,作为导热衬底的第二CVD金刚石膜保留,从而实现金刚石膜替代原始衬底。
  2. 根据权利要求1所述的方法,其特征在于,在步骤1中,所述原始衬底为Si基、蓝宝石基或者SiC基。
  3. 根据权利要求1所述的方法,其特征在于,采用真空镀膜技术在GaN晶圆生长面表面和形核面表面生长第一过渡层和第二过渡层。
  4. 根据权利要求1所述的方法,其特征在于,在步骤2中,所述第一过渡层厚度大于等于1μm,需达到均匀致密的效果,且所述过渡层的材质为Si、Ti、Mo、W单质元素,或者SiO 2、TiC化合物,或者前述各项的复合。
  5. 根据权利要求1所述的方法,其特征在于,所述第二过渡层的厚度小于等于50nm。
  6. 根据权利要求1所述的方法,其特征在于,采用等离子体化学气相沉积系统沉积第一金刚石膜和第二金刚石膜,且所述第一金刚石膜和第二金刚石膜的厚度均为100-300微米。
  7. 根据权利要求1所述的方法,其特征在于,采用化学腐蚀或者电化学辅助刻蚀技术来选择性刻蚀所述第一过渡层。
  8. 一种金刚石基GaN半导体材料的制备方法,其特征在于,包括以下步骤:
    步骤1,在原始衬底上沉积GaN层;
    步骤2,采用根据权利要求1至7中任一项所述的GaN原始衬底转移方法进行衬底转移,形成金刚石基GaN半导体材料。
  9. 根据权利要求8所述的制备方法,其特征在于,在步骤1中,所述原始 衬底为Si基、蓝宝石基或者SiC基。
  10. 一种金刚石基GaN半导体材料,其特征在于,所述金刚石基GaN半导体材料采用根据权利要求8或9所述的金刚石基GaN半导体材料的制备方法获得。
PCT/CN2019/089431 2018-11-12 2019-05-31 一种采用双金刚石层实现GaN原始衬底转移的方法及应用 WO2020098258A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811340254.2 2018-11-12
CN201811340254.2A CN109637965B (zh) 2018-11-12 2018-11-12 一种采用双金刚石层实现GaN原始衬底转移的方法及应用

Publications (1)

Publication Number Publication Date
WO2020098258A1 true WO2020098258A1 (zh) 2020-05-22

Family

ID=66067765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089431 WO2020098258A1 (zh) 2018-11-12 2019-05-31 一种采用双金刚石层实现GaN原始衬底转移的方法及应用

Country Status (2)

Country Link
CN (1) CN109637965B (zh)
WO (1) WO2020098258A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210175388A1 (en) * 2018-06-19 2021-06-10 Nantong China Railway Huayu Electric Co., Ltd Patterned epitaxial structure laser lift-off device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109637965B (zh) * 2018-11-12 2020-01-07 北京科技大学 一种采用双金刚石层实现GaN原始衬底转移的方法及应用
CN112376034B (zh) * 2020-10-26 2021-09-07 北京科技大学 一种带光学增透膜的金刚石制备方法
CN116705594B (zh) * 2023-08-02 2023-10-20 中国科学院微电子研究所 一种薄膜半导体与金刚石复合衬底及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756245A (zh) * 2012-10-26 2015-07-01 六号元素技术美国公司 具有提高的可靠性和工作寿命的半导体器件及其制造方法
US20170133295A1 (en) * 2015-11-11 2017-05-11 Qorvo Us, Inc. Semiconductor device with high thermal conductivity substrate and process for making the same
CN106783998A (zh) * 2016-12-16 2017-05-31 中国电子科技集团公司第五十五研究所 一种基于金刚石衬底的氮化镓高电子迁移率晶体管及其制备方法
CN109637965A (zh) * 2018-11-12 2019-04-16 北京科技大学 一种采用双金刚石层实现GaN原始衬底转移的方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756245A (zh) * 2012-10-26 2015-07-01 六号元素技术美国公司 具有提高的可靠性和工作寿命的半导体器件及其制造方法
US20170133295A1 (en) * 2015-11-11 2017-05-11 Qorvo Us, Inc. Semiconductor device with high thermal conductivity substrate and process for making the same
CN106783998A (zh) * 2016-12-16 2017-05-31 中国电子科技集团公司第五十五研究所 一种基于金刚石衬底的氮化镓高电子迁移率晶体管及其制备方法
CN109637965A (zh) * 2018-11-12 2019-04-16 北京科技大学 一种采用双金刚石层实现GaN原始衬底转移的方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210175388A1 (en) * 2018-06-19 2021-06-10 Nantong China Railway Huayu Electric Co., Ltd Patterned epitaxial structure laser lift-off device
US11870003B2 (en) * 2018-06-19 2024-01-09 Nantong China Railway Huayu Electric Co., Ltd Patterned epitaxial structure laser lift-off device

Also Published As

Publication number Publication date
CN109637965B (zh) 2020-01-07
CN109637965A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020098258A1 (zh) 一种采用双金刚石层实现GaN原始衬底转移的方法及应用
EP3349237B1 (en) Method for manufacturing sic composite substrate, and method for manufacturing semiconductor substrate
CN106504988B (zh) 一种金刚石热沉衬底GaN HEMTs制备方法
TWI736554B (zh) SiC複合基板之製造方法
CN110690105B (zh) 基于六方氮化硼和氮化铝在金刚石衬底上生长氮化镓的方法
TWI738665B (zh) SiC複合基板之製造方法
US11139176B2 (en) Direct growth methods for preparing diamond-assisted heat-dissipation silicon carbide substrates of GaN-HEMTs
JP2020508276A (ja) Iii族窒化物層及びダイヤモンド層を有するウエハ
CN111900200A (zh) 一种金刚石基氮化镓复合晶片及其键合制备方法
CN110211880B (zh) 金刚石基氮化镓hemt结构制造方法
CN113571410B (zh) 一种低界面热阻金刚石基氮化镓晶片材料的制备方法
CN113889411B (zh) 一种带金刚石微柱阵列的金刚石基GaN材料制备方法
CN114420563A (zh) 一种金刚石基氮化物半导体器件及其制备方法
GB2561730A (en) Semiconductor substrate
CN111540710B (zh) 一种高导热氮化镓高功率hemt器件的制备方法
CN210805810U (zh) 一种硅基氮化镓外延结构
CN117080183A (zh) 一种金刚石-单晶AlN-GaNAlGaN复合晶圆及其制备方法和应用
CN116856051A (zh) 降低外延层破碎几率的金刚石基氮化镓晶圆的制备方法
WO2023284170A1 (zh) 一种制作GaN芯片的方法及GaN芯片
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法
CN106876250A (zh) 氮化镓薄膜材料外延生长的方法
CN111226314B (zh) 多层复合基板结构及其制备方法
CN113571416B (zh) 一种金刚石基氮化镓高电子迁移率晶体管及其制备方法
KR101748584B1 (ko) 초박형 실리콘-금속 이종 접합 기판 제조 방법
CN116598386A (zh) 基于蓝宝石衬底的金刚石基GaN异质结晶圆制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885295

Country of ref document: EP

Kind code of ref document: A1