WO2020098185A1 - 频分器 - Google Patents

频分器 Download PDF

Info

Publication number
WO2020098185A1
WO2020098185A1 PCT/CN2019/077494 CN2019077494W WO2020098185A1 WO 2020098185 A1 WO2020098185 A1 WO 2020098185A1 CN 2019077494 W CN2019077494 W CN 2019077494W WO 2020098185 A1 WO2020098185 A1 WO 2020098185A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral coil
frequency divider
coil structure
planar spiral
inductance element
Prior art date
Application number
PCT/CN2019/077494
Other languages
English (en)
French (fr)
Inventor
王晓东
左成杰
何军
Original Assignee
安徽安努奇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821907531.9U external-priority patent/CN208904193U/zh
Priority claimed from CN201811367716.XA external-priority patent/CN109361042B/zh
Application filed by 安徽安努奇科技有限公司 filed Critical 安徽安努奇科技有限公司
Priority to JP2020525902A priority Critical patent/JP2021508167A/ja
Priority to US16/764,279 priority patent/US11190160B2/en
Publication of WO2020098185A1 publication Critical patent/WO2020098185A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H7/463Duplexers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/0026Multilayer LC-filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the embodiments of the present application relate to the technical field of microwave communication electronic devices, for example, to a frequency divider.
  • the frequency divider is an important part of the antenna and communication electronic equipment, which plays an important role in determining the performance of the system.
  • the frequency divider usually sorts the received signal to the corresponding channel according to the frequency, that is, its working principle is to input
  • the wideband signal is divided into the required signals output in a variety of different frequency bands, so as to realize receiving signals and suppressing interference.
  • the present application provides a frequency divider, which is conducive to realizing the miniaturization of the first inductance element and thus the miniaturization of the frequency divider, and is beneficial to the precise control of the size of the first inductance element and improving the inductance of the first inductance element
  • the value accuracy is beneficial to increase the conductivity of the first inductance element, reduce the resistance value of the first inductance element, increase the Q value (quality factor) of the first inductance element in the frequency divider, and reduce the loss of the frequency divider.
  • the frequency divider includes:
  • a stacked structure including at least one insulating layer and multiple metal layers alternately arranged in the order of one metal layer to one insulating layer along the stacking direction, the stacked structure forming at least one first inductance element and at least one A capacitive element;
  • a first patterned metal structure is provided in at least two of the metal layers, and the first patterned metal structure in the at least two of the metal layers is electrically connected to form a first multilayer planar spiral coil structure,
  • the first multilayer planar spiral coil structure constitutes the first inductance element.
  • the first multilayer planar spiral coil structure includes a plurality of first single-layer planar spiral coil structures, two adjacent The thickness of the first dielectric structure between the first single-layer planar spiral coil structure is greater than the thickness of the first single-layer planar spiral coil structure.
  • the stacked structure further forms at least one second inductance element
  • a second patterned metal structure is provided in at least two of the metal layers, and the second patterned metal structure in the at least two of the metal layers is electrically connected to form a second spiral coil structure, the second The spiral coil structure constitutes the second inductance element;
  • the axial direction of the first multilayer planar spiral coil structure intersects the axial direction of the second spiral coil structure.
  • the axial direction of the first multilayer planar spiral coil structure and the axial direction of the second spiral coil structure are perpendicular to each other.
  • the first inductive element is arranged in the first branch of the frequency divider, and the second inductive element is arranged in the second branch of the frequency divider.
  • the second spiral coil structure is a multilayer spiral coil structure.
  • the second spiral coil structure along the axial direction of the second spiral coil structure, includes a plurality of second single-layer planar spiral coil structures, two adjacent second single layers The thickness of the second dielectric structure between the planar spiral coil structures is greater than the thickness of the second single-layer planar spiral coil structure.
  • the stacked structure further forms at least one third inductance element, and the third patterned metal structure in one layer of the metal layer forms a third single-layer planar spiral coil structure, the third single The layer plane spiral coil structure constitutes the third inductance element.
  • the overlapping portion of the fourth patterned metal structure in the two adjacent metal layers forms the capacitor element in a direction perpendicular to the plane where the stacked structure is located.
  • the first multilayer planar spiral coil structure includes a plurality of first single-layer planar spiral coil structures, the first The single-layer planar spiral coil structure forms at least one coil structure.
  • An embodiment of the present application provides a frequency divider, and the setting of the frequency divider includes a stacked structure, and the stacked structure includes at least one insulating layer and multiple layers of metal alternately arranged in the order of one metal layer to one insulating layer along the stacking direction
  • the layers and the stacked structure form at least one first inductance element and at least one first capacitance element.
  • a first patterned metal structure is provided in at least two metal layers, the first pattern-for-metal structure is electrically connected to form a first multilayer planar spiral coil structure, and the first multilayer planar spiral coil structure constitutes a first inductance element.
  • the first multi-layer planar spiral coil structure is formed by using insulating layers and metal layers spaced apart in the stacking direction in the stacked structure, that is, forming at least one first inductance element in the frequency divider, which is advantageous in a smaller size Obtaining a larger inductance value is conducive to miniaturization of the first inductance element and thus miniaturization of the frequency divider.
  • a semiconductor process can be used to make the first inductance element in the frequency divider, which is beneficial to the first
  • the precise control of the size of the inductance element improves the accuracy of the inductance value of the first inductance element, and at the same time helps to increase the conductivity of the first inductance element, reduce the resistance value of the first inductance element, and increase the Q of the first inductance element in the frequency divider Value to reduce the loss of the frequency divider.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a first inductance element in a frequency divider provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a second inductance element in a frequency divider provided by an embodiment of the present application.
  • FIG. 3 is a schematic perspective view of a second inductance element in another frequency divider provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a third inductance element in a frequency divider provided by an embodiment of the present application.
  • FIG. 5 is a schematic perspective view of a third inductance element in another frequency divider provided by an embodiment of the present application.
  • An embodiment of the present application provides a frequency divider.
  • the frequency divider includes a stacked structure, and the stacked structure includes at least one insulating layer and multiple metal layers alternately arranged in the order of one metal layer to one insulating layer along the stacking direction
  • the stacked structure forms at least one first inductance element and at least one capacitance element.
  • a first patterned metal structure is provided in at least two metal layers, the first patterned metal structure in the at least two metal layers is electrically connected to form a first multilayer planar spiral coil structure, and the first multilayer planar spiral structure
  • the coil structure constitutes the first inductance element.
  • the frequency divider is an important part of the antenna and communication electronic equipment, which plays an important role in determining the performance of the system.
  • the frequency divider usually sorts the received signal to the corresponding channel according to the frequency, that is, its working principle is to input
  • the wide-band signal is divided into required signals output in a variety of different frequency bands, so as to realize receiving signals and suppressing interference.
  • the integration of electronic products has gradually increased, which puts forward higher requirements for the size of electronic components contained in electronic products. How do electronic components take into account miniaturization and electronics The electrical performance of the component itself has become an urgent problem to be solved.
  • the size and electrical performance of the inductance element directly affect the size and performance of the frequency divider. This makes how the inductance element in the frequency divider takes into account miniaturization and its own electrical performance important.
  • the frequency divider provided by the embodiment of the present application includes a stacked structure including an insulating layer and a metal layer spaced apart along a stacking direction, and the stacked structure forms at least one first inductance element and at least one first capacitance element.
  • a first patterned metal structure is provided in at least two metal layers, the first pattern-for-metal structure is electrically connected to form a first multilayer planar spiral coil structure, and the first multilayer planar spiral coil structure constitutes a first inductance element.
  • the first multi-layer planar spiral coil structure is formed by using insulating layers and metal layers spaced apart in the stacking direction in the stacked structure, that is, forming at least one first inductance element in the frequency divider, which is advantageous in a smaller size Obtaining a larger inductance value is conducive to miniaturization of the first inductance element and thus miniaturization of the frequency divider.
  • a semiconductor process can be used to make the first inductance element in the frequency divider, which is beneficial to the first
  • the precise control of the size of the inductance element improves the accuracy of the inductance value of the first inductance element, and at the same time helps to increase the conductivity of the first inductance element, reduce the resistance value of the first inductance element, and increase the Q of the first inductance element in the frequency divider Value to reduce the loss of the frequency divider.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a first inductance element in a frequency divider provided by an embodiment of the present application.
  • the frequency divider includes a stacked structure
  • the stacked structure includes at least one insulating layer 1 and at least two metal layers 2 arranged alternately in the order of one metal layer to one insulating layer along the stacking direction XX ′
  • the stacked structure forms at least one first inductance element 31 and at least one capacitive element
  • FIG. 1 only exemplarily shows one first inductance element 31 formed by the stacked structure.
  • At least two metal layers 2 are each provided with a first patterned metal structure 21.
  • FIG. 1 exemplarily shows the first patterned metal structure 21 in the two metal layers 2, and the first A patterned metal structure 21 is electrically connected to form a first multilayer planar spiral coil structure 41, and the first multilayer planar spiral coil structure 41 constitutes the first inductance element 31.
  • the stacked structure includes a metal layer 2 and an insulating layer 1 arranged in sequence along the stacking direction XX ′.
  • the insulating layer 1 is used to realize the electrical connection of the first patterned metal structure 21 in the adjacent metal layer 2 without the need for an electrical connection portion.
  • Insulation, a through hole structure 11 is provided in the insulating layer 1 between the two metal layers 2 provided with the first patterned metal structure 21, and the first patterned metal structure 21 located in the upper and lower metal layers 2 of the insulating layer 1 passes through The hole structure 11 realizes electrical connection.
  • the first patterned metal structure 21 may be formed by an electroplating process, a sputtering process, or a process of depositing a metal layer 2 and then etching.
  • the electroplating process may be used to form the first patterned metal structure 21.
  • the formation of a thick metal film layer is beneficial to increase the Q value of the first inductance element 31.
  • the material constituting the insulating layer 1 may include PI or polyimide, and an insulating layer 1 may be deposited first, and then a dry etching process or a laser etching process may be used to form a pass through the insulating layer 1 at a set position. ⁇ ⁇ 11. 11. Hole structure 11.
  • the inductance element commonly used in frequency dividers is Multilayer Co-fired Ceramics (MLCC), which is composed of ceramic materials, has low electrical conductivity, and the manufacturing process is rough, making the Q value of the inductance element low It is impossible to accurately control the size of the inductance element.
  • MLCC Multilayer Co-fired Ceramics
  • the inductance element has low accuracy, which affects the performance of the frequency divider. It is difficult to achieve the miniaturization of the inductance element and the miniaturization of the frequency divider.
  • the frequency divider provided in the embodiment of the present application forms the first multilayer planar spiral coil structure 41 by using the insulating layer 1 and the metal layer 2 spaced apart along the lamination direction XX ′ in the laminated structure, that is, at least one of the frequency dividers is formed
  • the first inductance element 31 is beneficial to obtain a larger inductance value in a smaller size, that is, it is advantageous to realize the miniaturization of the first inductance element 31 and thus the miniaturization of the frequency divider, and can be made by a semiconductor process
  • the first inductance element 31 in the frequency divider is conducive to the precise control of the size of the first inductance element 31, improving the precision of the inductance value of the first inductance element 31 to improve the performance of the frequency divider, and also conducive to improving the first inductance element
  • the conductivity of 31 reduces the resistance value of the first inductance element 31, increases the Q value of the first inductance element 31 in the frequency divider, and reduces the loss of the frequency
  • the first multilayer planar spiral coil structure may include a plurality of first single-layer planar spiral coil structures, and two adjacent second The thickness of the first dielectric structure between a single-layer planar spiral coil structure is greater than the thickness of the first single-layer planar spiral coil structure. As shown in FIG. 1, along the axial direction XX ′ of the first multilayer planar spiral coil structure 41, the thickness of the first dielectric structure is the thickness of the insulating layer 1, and in FIG.
  • the thickness of the first dielectric structure between two adjacent first single-layer planar spiral coil structures 401 is greater than the thickness of the first single-layer planar spiral coil structure 401, and the first unit is provided with respect to the inductor element of the same thickness
  • the thickness of the layer planar spiral coil structure is equal to the thickness of the first dielectric structure, which increases the distance between adjacent first single layer planar spiral coil structures 401 and improves the adjacent first single layer planar spiral coil structure 401 Along the axial distance XX 'of the first multi-layer planar spiral coil structure 41 due to the too small distance between them, the coupling between adjacent first single-layer planar spiral coil structures 401 is too strong, affecting the first inductance element
  • the problem of the resonance frequency of 31 increases the resonance frequency of the first inductance element 31.
  • the material constituting the first dielectric structure may be polyimide (PI), that is, the material constituting the insulating layer 1 is PI.
  • the first multilayer planar spiral coil structure 41 includes a plurality of first single-layer planar spiral coil structures 401, the first single The layered planar spiral coil structure 401 forms a one-turn coil structure, or a first single-layer planar spiral coil structure 401 may be provided to form a multi-turn coil structure, so that a first inductance element with a larger inductance value in the same size can be obtained 31, which is also beneficial to realize the miniaturization of the first inductance element 31, and further the miniaturization of the frequency divider.
  • FIG. 2 is a schematic diagram of a three-dimensional structure of a second inductance element in a frequency divider provided by an embodiment of the present application.
  • a stacked structure may also be formed to form at least one second inductance element 32, and at least two metal layers 2 are provided with second
  • the patterned metal structure 22 is exemplarily provided in FIG. 2.
  • the two patterned metal structures 22 are provided in the two metal layers 2.
  • the second patterned metal structures 22 in the two metal layers 2 are electrically connected to form a second spiral shape.
  • the coil structure 42 and the second spiral coil structure 42 are the second inductance elements 32.
  • the second patterned metal structure 22 can be formed by a plating process, a sputtering process, or first depositing a metal layer 2 and then etching, etc., an insulating layer 1 can be deposited first, and then a dry etching process or The laser etching process forms a via structure 11 at a set position of the insulating layer 1.
  • the axial direction XX 'of the first multilayer planar spiral coil structure 41 intersects the axial direction YY' of the second spiral coil structure 42. If the axial directions of the two inductance elements are parallel, the coupling effect between the two inductance elements is obvious, which will seriously affect the out-of-band suppression characteristics of the frequency divider, and the axial direction of the first multilayer planar spiral coil structure 41 and the second spiral
  • the axial intersection of the coil structure 42 effectively reduces the coupling effect between the first multi-layer planar spiral coil structure 41 and the second spiral coil structure 42, which is beneficial to improve the first inductance element 31 and the second inductance element
  • the precision of the inductance value of 32 is to improve the performance of the frequency divider, increase the Q values of the first inductance element 31 and the second inductance element 32 in the frequency divider to reduce the loss of the frequency divider, and optimize the out-of-band suppression characteristics of the frequency divider.
  • the axial direction XX ′ of the first multilayer planar spiral coil structure 41 and the axial direction YY ′ of the second spiral coil structure 42 may be perpendicular to each other, so that the first inductance element 31 and the second inductance The coupling between components 32 is minimized, further optimizing the out-of-band rejection characteristics of the frequency divider.
  • the first inductance element 31 may be disposed in the first branch of the frequency divider, and the second inductance element 32 may be disposed in the second branch of the frequency divider in.
  • the first branch and the second branch of the frequency divider may be any two different branches in the low-pass branch, the high-pass branch, or the band-pass branch, that is, the first inductance element 31 and the second branch
  • the inductance elements 32 are arranged in different branches, and by setting the axial XX ′ of the first multilayer planar spiral coil structure 41 to intersect the axial YY ′ of the second spiral coil structure 42, the first multilayer planar spiral is effectively reduced
  • the coupling effect between the coil structure 41 and the second planar spiral coil structure avoids the mutual influence between different branches in the frequency divider, the frequency divider cannot accurately process the signal to be processed, and optimizes the out-of-band suppression of the frequency divider characteristic.
  • the second helical coil structure 42 may be provided as a multi-layer helical coil structure, which is beneficial to improve the inductance accuracy of the first inductance element and the second inductance element to increase the frequency Splitter performance, improve the Q value of the first inductance element and the second inductance element in the frequency divider to reduce the frequency divider loss, optimize the out-of-band rejection characteristics of the frequency divider, and help to obtain a larger inductance in a smaller size
  • the value of the first inductance element and the second inductance element is beneficial to realize the miniaturization of the first inductance element and the second inductance element, further reducing the size of the frequency divider, and realizing the miniaturization of the frequency divider.
  • FIG. 3 is a schematic perspective view of a second inductance element in another frequency divider provided by an embodiment of the present application.
  • the second helical coil structure 42 includes a plurality of second single-layer planar helical coil structures 402, which can be provided with phases
  • the thickness of the second dielectric structure between two adjacent second single-layer planar spiral coil structures 402 is greater than the thickness of the second single-layer planar spiral coil structure 402, and the thickness of the adjacent second single-layer planar spiral coil structure 402
  • the thickness of the second dielectric structure in between is the distance d between two vertical second single-layer planar spiral coil structures 402.
  • the thickness of the second dielectric structure between the two adjacent second single-layer planar spiral coil structures 402 is greater than the thickness of the second single-layer planar spiral coil structure 402, which is set relative to the inductor element of the same thickness
  • the thickness of the second single-layer planar spiral coil structure is equal to the thickness of the second dielectric structure, which increases the distance between adjacent second single-layer planar spiral coil structures 402 and improves the adjacent second single-layer planar spiral coil structure
  • the distance between the coil structures 402 is too small, the coupling effect between the adjacent second single-layer planar spiral coil structures 402 is too strong, which affects the second inductive element
  • the problem of the resonance frequency of 32 increases the resonance frequency of the second inductance element 32.
  • FIG. 2 and FIG. 3 are examples showing two types of second inductance elements.
  • the embodiment of the present application does not limit the specific shape and winding method of the second inductance element, so as to ensure the first multilayer plane
  • the axial direction XX ′ of the spiral coil structure 41 and the axial direction YY ′ of the second spiral coil structure 42 may be intersected.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a third inductance element in a frequency divider provided by an embodiment of the present application.
  • the stacked structure may also form at least one third inductance element 33, and the third patterned metal structure 23 located in one layer of metal layer 2 forms a third single-layer planar spiral coil structure 43, the third single layer The planar spiral coil structure 43 is the third inductance element 33.
  • the third inductance element 33 composed of a single-layer planar spiral coil structure can achieve a smaller inductance value compared to the inductance elements of the structures shown in FIGS. 1 to 3, and the arrangement of the third inductance element 33 can satisfy different frequency divider pairs The inductance value of the inductance value.
  • the embodiment of the present application does not limit the specific shape of the third single-layer planar spiral coil structure 43, and may be as shown in FIG. 4 or FIG. 5.
  • a coil structure may be formed.
  • the bending angle of the metal trace is 135 °.
  • the axial direction VV ′ of the third single-layer planar spiral coil structure 43 and the axial direction ZZ ′ of the second spiral coil structure 42 may be intersected, and may be perpendicular to each other to reduce the The coupling effect between the three inductive elements 33 and the second inductive element 32 further optimizes the out-of-band suppression characteristics of the frequency divider.
  • the overlapping portion of the fourth patterned metal structures in the two adjacent metal layers may form a capacitor element, located between the two fourth patterned metal structures
  • the insulating layer can serve as a dielectric layer of the capacitor structure, so that the stacked structure provided with the metal layer and the insulating layer can simultaneously form the inductance element and the capacitance element, and the corresponding inductance element and the corresponding capacitance element can be realized by corresponding vias in the insulation layer
  • the first inductor element 31 of the structure shown in FIG. 1 and the third inductor element 33 of the structure shown in FIG. 5 are provided in the high-pass branch of the frequency divider, and the FIG. 2 or In the second inductance element 32 of the structure shown in FIG. 3 and the third inductance element 33 of the structure shown in FIG. 4, each inductance element is electrically connected to a corresponding capacitance element.
  • the embodiment of the present application does not limit the specific number of the inductive element and the capacitive element in the frequency divider and the specific connection relationship between the inductive element and the capacitive element, and those skilled in the art can set the number of the inductive element and the capacitive element according to requirements And the connection between the two.
  • the frequency divider provided by the embodiment of the present application includes a stacked structure, the stacked structure includes at least one insulating layer 1 and multiple metal layers 2 spaced apart along the stacking direction XX ′, and the stacked structure forms at least one first inductance element 31 and at least one The first capacitive element. At least two metal layers 2 are provided with a first patterned metal structure 21, the first pattern-for-metal structure is electrically connected to form a first multilayer planar spiral coil structure 41, and the first multilayer planar spiral coil structure 41 constitutes the first One inductive element 31.
  • the first multi-layer planar spiral coil structure 41 is formed by the insulating layer 1 and the metal layer 2 spaced along the stacking direction XX ′ in the stacked structure, that is, at least one first inductance element 31 in the frequency divider is formed, and there is It is beneficial to obtain a larger inductance value in a smaller size, that is, it is advantageous to realize the miniaturization of the first inductance element 31 and thus the miniaturization of the frequency divider, and the first inductance in the frequency divider can be made by a semiconductor process
  • the element 31 facilitates accurate control of the size of the first inductance element 31, improves the accuracy of the inductance value of the first inductance element 31, and at the same time improves the electrical conductivity of the first inductance element 31 and reduces the resistance value of the first inductance element 31 To increase the Q value of the first inductive element 31 in the frequency divider and reduce the loss of the frequency divider.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Filters And Equalizers (AREA)

Abstract

一种频分器,频分器包括层叠结构,层叠结构包括沿层叠方向间隔设置的绝缘层和金属层,层叠结构形成至少一个第一电感元件和至少一个电容元件;至少两层金属层中均设置有第一图案化金属结构,上述至少两层金属层中的第一图案化金属结构电连接形成第一多层平面螺旋状线圈结构,第一多层平面螺旋状线圈结构构成第一电感元件。

Description

频分器
本申请要求在2018年11月16日提交中国专利局、申请号为201811367716.X和201821907531.9的中国专利申请的优先权,上述申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及微波通讯电子器件技术领域,例如涉及一种频分器。
背景技术
频分器是天线和通信电子设备的重要组成部分,对系统的性能有着举足轻重的决定作用,频分器通常将接收到的信号按照频率分选至相应的通道,即其工作原理为将输入的宽频信号分成需要的多种不同频段的信号输出,从而实现接收信号和抑制干扰。
另外,随着用户对电子产品小型化要求的提高,电子产品的集成度逐渐提高,这就对电子产品中所包含的电子元件的尺寸提出了更高的要求,电子元件如何兼顾小型化以及电子元件本身的电学性能成为亟待解决的问题。电感元件作为判断频分器损耗的决定性因素,其尺寸与电学性能直接影响频分器的尺寸与性能,这就使得频分器中的电感元件如何兼顾小型化以及本身的电学性能变得至关重要。
发明内容
本申请提供一种频分器,在有利于实现第一电感元件的小型化进而实现频分器的小型化的同时,有利于对第一电感元件尺寸的精确控制,提高第一电感元件的电感值精度,有利于提高第一电感元件的电导率,降低第一电感元件的电阻值,提高频分器中第一电感元件的Q值(品质因数),降低频分器的损耗。
本申请实施例提供了一种频分器,频分器包括:
层叠结构,所述层叠结构包括沿层叠方向按一层金属层-一层绝缘层的顺序交替设置的至少一层绝缘层和多层金属层,所述层叠结构形成至少一个第一电感元件和至少一个电容元件;
至少两层所述金属层中均设置有第一图案化金属结构,所述至少两层所述金属层中的所述第一图案化金属结构电连接形成第一多层平面螺旋状线圈结构,所述第一多层平面螺旋状线圈结构构成所述第一电感元件。
在一实施例中,沿所述第一多层平面螺旋状线圈结构的轴向,所述第一多层平面螺旋状线圈结构包括多个第一单层平面螺旋状线圈结构,相邻两个所述第一单层平面螺旋状线圈结构之间的第一介电结构的厚度大于所述第一单层平面螺旋状线圈结构的厚度。
在一实施例中,所述层叠结构还形成至少一个第二电感元件;
至少两层所述金属层中设置有第二图案化金属结构,所述至少两层所述金属层中的所述第二图案化金属结构电连接形成第二螺旋状线圈结构,所述第二螺旋状线圈结构构成所述第二电感元件;
所述第一多层平面螺旋状线圈结构的轴向与所述第二螺旋状线圈结构的轴向相交。
在一实施例中,所述第一多层平面螺旋状线圈结构的轴向与所述第二螺旋状线圈结构的轴向相互垂直。
在一实施例中,所述第一电感元件设置在所述频分器的第一支路中,所述第二电感元件设置在所述频分器的第二支路中。
在一实施例中,所述第二螺旋状线圈结构为多层螺旋状线圈结构。
在一实施例中,沿所述第二螺旋状线圈结构的轴向,所述第二螺旋状线圈结构包括多个第二单层平面螺旋状线圈结构,相邻两个所述第二单层平面螺旋状线圈结构之间的第二介电结构的厚度大于所述第二单层平面螺旋状线圈结构的厚度。
在一实施例中,所述层叠结构还形成至少一个第三电感元件,位于一层所述金属层中的第三图案化金属结构形成第三单层平面螺旋状线圈结构,所述第三单层平面螺旋状线圈结构构成所述第三电感元件。
在一实施例中,沿垂直于所述层叠结构所在平面的方向,相邻两层所述金属层中的第四图案化金属结构的交叠部分形成所述电容元件。
在一实施例中,沿所述第一多层平面螺旋状线圈结构的轴向,所述第一多层平面螺旋状线圈结构包括多个第一单层平面螺旋状线圈结构,所述第一单层平面螺旋状线圈结构形成至少一圈线圈结构。
本申请实施例提供了一种频分器,设置频分器包括层叠结构,层叠结构包 括沿层叠方向按一层金属层-一层绝缘层的顺序交替设置的至少一层绝缘层和多层金属层,层叠结构形成至少一个第一电感元件和至少一个第一电容元件。至少两层金属层中均设置有第一图案化金属结构,第一图案换金属结构电连接形成第一多层平面螺旋状线圈结构,第一多层平面螺旋状线圈结构构成第一电感元件。这样,利用层叠结构中沿层叠方向间隔设置的绝缘层和金属层形成第一多层平面螺旋状线圈结构,即形成频分器中的至少一个第一电感元件,在有利于在较小尺寸内获取较大的电感值,即有利于实现第一电感元件的小型化进而实现频分器的小型化的同时,可以采用半导体工艺制成频分器中的第一电感元件,有利于对第一电感元件尺寸的精确控制,提高第一电感元件的电感值精度,同时也有利于提高第一电感元件的电导率,降低第一电感元件的电阻值,提高频分器中第一电感元件的Q值,降低频分器的损耗。
附图说明
图1为本申请一实施例提供的一种频分器中第一电感元件的立体结构示意图。
图2为本申请一实施例提供的一种频分器中第二电感元件的立体结构示意图。
图3为本申请一实施例提供的另一种频分器中第二电感元件的立体结构示意图。
图4为本申请一实施例提供的一种频分器中第三电感元件的立体结构示意图。
图5为本申请一实施例提供的另一种频分器中第三电感元件的立体结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。贯穿本说明书中,相同或相似的附图标号代表相同或相似的结构、元件或流程。 需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本申请实施例提供了一种频分器,频分器包括层叠结构,层叠结构包括沿层叠方向按一层金属层-一层绝缘层的顺序交替设置的至少一层绝缘层和多层金属层,层叠结构形成至少一个第一电感元件和至少一个电容元件。至少两层金属层中均设置有第一图案化金属结构,上述至少两层金属层中的第一图案化金属结构电连接形成第一多层平面螺旋状线圈结构,第一多层平面螺旋状线圈结构构成第一电感元件。
频分器是天线和通信电子设备的重要组成部分,对系统的性能有着举足轻重的决定作用,频分器通常将接收到的信号按照频率分选至相应的通道,即其工作原理为将输入的宽频信号分成需要的多种不同频段的信号输出,从实现接收信号和抑制干扰。另外,随着用户对电子产品小型化要求的提高,电子产品的集成度逐渐提高,这就对电子产品中所包含的电子元件的尺寸提出了更高的要求,电子元件如何兼顾小型化以及电子元件本身的电学性能成为亟待解决的问题。电感元件作为判断频分器损耗的决定性因素,其尺寸与电学性能直接影响频分器的尺寸与性能,这就使得频分器中的电感元件如何兼顾小型化以及本身的电学性能变得至关重要。
本申请实施例提供的频分器包括层叠结构,层叠结构包括沿层叠方向间隔设置的绝缘层和金属层,层叠结构形成至少一个第一电感元件和至少一个第一电容元件。至少两层金属层中均设置有第一图案化金属结构,第一图案换金属结构电连接形成第一多层平面螺旋状线圈结构,第一多层平面螺旋状线圈结构构成第一电感元件。这样,利用层叠结构中沿层叠方向间隔设置的绝缘层和金属层形成第一多层平面螺旋状线圈结构,即形成频分器中的至少一个第一电感元件,在有利于在较小尺寸内获取较大的电感值,即有利于实现第一电感元件的小型化进而实现频分器的小型化的同时,可以采用半导体工艺制成频分器中的第一电感元件,有利于对第一电感元件尺寸的精确控制,提高第一电感元件的电感值精度,同时也有利于提高第一电感元件的电导率,降低第一电感元件 的电阻值,提高频分器中第一电感元件的Q值,降低频分器的损耗。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
图1为本申请一实施例提供的一种频分器中第一电感元件的立体结构示意图。如图1所示,频分器包括层叠结构,层叠结构包括沿层叠方向XX’按一层金属层-一层绝缘层的顺序交替设置的至少一层绝缘层1和至少两层金属层2,层叠结构形成至少一个第一电感元件31和至少一个电容元件,图1仅示例性地示出了层叠结构形成的一个第一电感元件31。至少两层金属层2均中设置有第一图案化金属结构21,图1示例性地示出了两层金属层2中的第一图案化金属结构21,上述两层金属层2中的第一图案化金属结构21电连接形成第一多层平面螺旋状线圈结构41,第一多层平面螺旋状线圈结构41即构成第一电感元件31。
如图1所示,层叠结构包括沿层叠方向XX’依次设置的金属层2和绝缘层1,绝缘层1用于实现相邻金属层2中第一图案化金属结构21无需电连接部分的电绝缘,设置有第一图案化金属结构21的两金属层2之间的绝缘层1中设置有通孔结构11,位于该绝缘层1上下金属层2中的第一图案化金属结构21通过通孔结构11实现电连接。示例性地,可以利用电镀工艺、溅射工艺或先沉积一层金属层2再刻蚀等工艺形成第一图案化金属结构21,可以采用电镀工艺形成第一图案化金属结构21,电镀工艺能形成厚度较大的金属膜层,有利于提高第一电感元件31的Q值。另外,可以设置构成绝缘层1的材料包括PI即聚酰亚胺,可以先沉积一层绝缘层1,再通过干法刻蚀工艺或激光刻蚀工艺在绝缘层1的设定位置上形成通孔结构11。
频分器中普遍采用的电感元件为多层共烧陶瓷(Multilayer Co-fired Ceramics,MLCC),其采用陶瓷材料构成,电导率较低,且制作工艺较粗糙,使得电感元件的Q值较低,无法精确控制电感元件的尺寸,电感元件精度较低,影响频分器的性能,很难实现电感元件的小型化以及频分器的小型化。本申请实施例提供的频分器,利用层叠结构中沿层叠方向XX’间隔设置的绝缘层1和 金属层2形成第一多层平面螺旋状线圈结构41,即形成频分器中的至少一个第一电感元件31,在有利于在较小尺寸内获取较大的电感值,即有利于实现第一电感元件31的小型化进而实现频分器的小型化的同时,可以采用半导体工艺制成频分器中的第一电感元件31,有利于对第一电感元件31尺寸的精确控制,提高第一电感元件31的电感值精度以提高频分器性能,同时也有利于提高第一电感元件31的电导率,降低第一电感元件31的电阻值,提高频分器中第一电感元件31的Q值,降低频分器的损耗。
在一实施例中,沿第一多层平面螺旋状线圈结构的轴向,第一多层平面螺旋状线圈结构可以包括多个第一单层平面螺旋状线圈结构,可以设置相邻两个第一单层平面螺旋状线圈结构之间的第一介电结构的厚度大于第一单层平面螺旋状线圈结构的厚度。如图1所示,沿第一多层平面螺旋状线圈结构41的轴向XX’,第一介电结构的厚度即为绝缘层1的厚度,图1中即为通孔结构11的高度,设置相邻两个第一单层平面螺旋状线圈结构401之间的第一介电结构的厚度大于第一单层平面螺旋状线圈结构401的厚度,相对于同样厚度的电感元件设置第一单层平面螺旋状线圈结构的厚度等于第一介电结构的厚度,增加了相邻第一单层平面螺旋状线圈结构401之间的距离,改善了相邻第一单层平面螺旋状线圈结构401之间距离过小导致的沿第一多层平面螺旋状线圈结构41的轴向XX’,相邻的第一单层平面螺旋状线圈结构401之间的耦合作用过强,影响第一电感元件31的谐振频率的问题,提高了第一电感元件31的谐振频率。示例性地,构成第一介电结构的材料可以是聚酰亚胺(Polyimide,PI),也即构成绝缘层1的材料为PI。
如图1所示,沿第一多层平面螺旋状线圈结构41的轴向XX’,第一多层平面螺旋状线圈结构41包括多个第一单层平面螺旋状线圈结构401,第一单层平面螺旋状线圈结构401形成了一圈线圈结构,也可以设置第一单层平面螺旋状线圈结构401形成多圈线圈结构,这样能够在相同尺寸内获取更大的电感值的第一电感元件31,同样有利于实现第一电感元件31的小型化,进而实现频分器的小型化。
图2为本申请一实施例提供的一种频分器中第二电感元件的立体结构示意图。如图2所示,在图1所示结构的频分器中第一电感元件的基础上,设置层叠结构还可以形成至少一个第二电感元件32,至少两层金属层2中设置有第二图案化金属结构22,图2示例性地设置两层金属层2中均设置有第二图案化金属结构22,两层金属层2中的第二图案化金属结构22电连接形成第二螺旋状线圈结构42,第二螺旋状线圈结构42即为第二电感元件32。同样的,可以利用电镀工艺、溅射工艺或先沉积一层金属层2再刻蚀等工艺形成第二图案化金属结构22,可以先沉积一层绝缘层1,再通过干法刻蚀工艺或激光刻蚀工艺在绝缘层1的设定位置上形成通孔结构11。
结合图1和图2,可以设置第一多层平面螺旋状线圈结构41的轴向XX’与第二螺旋状线圈结构42的轴向YY’相交。若两个电感元件的轴向平行,两电感元件之间的耦合作用明显,会严重影响频分器的带外抑制特性,设置第一多层平面螺旋状线圈结构41的轴向与第二螺旋状线圈结构42的轴向相交,有效降低了第一多层平面螺旋状线圈结构41和第二螺旋状线圈结构42之间的耦合作用,在有利于提高第一电感元件31和第二电感元件32的电感值精度以提高频分器性能,提高频分器中第一电感元件31和第二电感元件32的Q值以降低频分器损耗的同时,优化了频分器的带外抑制特性。在一实施例中,可以设置第一多层平面螺旋状线圈结构41的轴向XX’与第二螺旋状线圈结构42的轴向YY’相互垂直,以使得第一电感元件31与第二电感元件32之间的耦合作用降到最低,进一步优化频分器的带外抑制特性。
在一实施例中,结合图1和图2,可以将第一电感元31件设置在频分器的第一支路中,并将第二电感元件32设置在频分器的第二支路中。示例性的,频分器的第一支路以及第二支路可以是低通支路、高通支路或者带通支路中的任意两不同支路,过即将第一电感元件31和第二电感元件32设置在不同支路中,通过设置第一多层平面螺旋状线圈结构41的轴向XX’与第二螺旋状线圈结构42的轴向YY’相交,有效降低第一多层平面螺旋状线圈结构41和第二平面螺旋状线圈结构之间的耦合作用,避免频分器中不同支路之间相互影响,频分器 无法对待处理信号进行准确处理,优化频分器的带外抑制特性。
在一实施例中,如图2所示,可以设置第二螺旋状线圈结构42为多层螺旋状线圈结构,这样在有利于提高第一电感元件和第二电感元件的电感值精度以提高频分器性能,提高频分器中第一电感元件和第二电感元件的Q值以降低频分器损耗,优化频分器的带外抑制特性的同时,有利于在较小尺寸内获得较大电感值的第一电感元件和第二电感元件,即有利于实现第一电感元件和第二电感元件的小型化,进一步减小频分器的尺寸,实现频分器的小型化。
图3为本申请一实施例提供的另一种频分器中第二电感元件的立体结构示意图。在一实施例中,如图3所示,沿第二螺旋状线圈结构42的轴向ZZ’,第二螺旋状线圈结构42包括多个第二单层平面螺旋状线圈结构402,可以设置相邻两个第二单层平面螺旋状线圈结构402之间的第二介电结构的厚度大于第二单层平面螺旋状线圈结构402的厚度,相邻第二单层平面螺旋状线圈结构402之间的第二介电结构的厚度即为竖直的两第二单层平面螺旋状线圈结构402之间的距离d。同样的,设置相邻两个第二单层平面螺旋状线圈结构402之间的第二介电结构的厚度大于第二单层平面螺旋状线圈结构402的厚度,相对于同样厚度的电感元件设置第二单层平面螺旋状线圈结构的厚度等于第二介电结构的厚度,增加了相邻第二单层平面螺旋状线圈结构402之间的距离,改善了相邻第二单层平面螺旋状线圈结构402之间距离过小导致的沿第二螺旋状线圈结构42的轴向ZZ’,相邻的第二单层平面螺旋状线圈结构402之间的耦合作用过强,影响第二电感元件32的谐振频率的问题,提高了第二电感元件32的谐振频率。
需要说明的是,图2和图3是指示例性地示出了两种第二电感元件,本申请实施例对第二电感元件的具体形状和绕线方式不作限定,确保第一多层平面螺旋状线圈结构41的轴向XX’与第二螺旋状线圈结构42的轴向YY’相交即可。
图4为本申请实施例提供的一种频分器中第三电感元件的立体结构示意图。如图4所示,层叠结构还可以形成至少一个第三电感元件33,位于一层金属层2中的第三图案化金属结构23形成第三单层平面螺旋状线圈结构43,第三单层平面螺旋状线圈结构43即为第三电感元件33。单层平面螺旋状线圈结构构成的 第三电感元件33相对于图1至图3所示的结构的电感元件能够实现更小的电感值,第三电感元件33的设置能够满足频分器对不同电感值大小的电感的需求。需要说明的是,本申请实施例对第三单层平面螺旋状线圈结构43的具体形状不作限定,可以如图4或图5所示,出于半导体制作工艺的考虑,可以设置形成线圈结构的金属走线的弯折内角为135°。另外,结合图3至图5,同样可以设置第三单层平面螺旋状线圈结构43的轴向VV’与第二螺旋状线圈结构42的轴向ZZ’相交,可以是相互垂直,以降低第三电感元件33与第二电感元件32之间的耦合作用,进一步优化频分器的带外抑制特性。
在一实施例中,沿垂直于层叠结构所在平面的方向,相邻两层金属层中的第四图案化金属结构的交叠部分可以形成电容元件,位于两第四图案化金属结构之间的绝缘层可以充当电容结构的介电层,这样利用层叠设置有金属层和绝缘层的层叠结构能够同时形成电感元件和电容元件,通过对应绝缘层中的过孔可以实现电感元件与相应电容元件之间的对应关系。示例性地,可以设置频分器的高通支路中设置有图1所示结构的第一电感元件31和图5所示结构的第三电感元件33,低通支路中设置有图2或图3所示结构的第二电感元件32和图4所示结构的第三电感元件33,每个电感元件与对应的电容元件电连接。
需要说明的是,本申请实施例对频分器中电感元件与电容元件的具体数量以及电感元件与电容元件的具体连接关系不作限定,本领域技术人员可以根据需求设置电感元件和电容元件的数量以及二者的连接关系。
本申请实施例提供的频分器包括层叠结构,层叠结构包括沿层叠方向XX’间隔设置的至少一层绝缘层1和多层金属层2,层叠结构形成至少一个第一电感元件31和至少一个第一电容元件。至少两层金属层2中均设置有第一图案化金属结构21,第一图案换金属结构电连接形成第一多层平面螺旋状线圈结构41,第一多层平面螺旋状线圈结构41构成第一电感元件31。这样,利用层叠结构中沿层叠方向XX’间隔设置的绝缘层1和金属层2形成第一多层平面螺旋状线圈结构41,即形成频分器中的至少一个第一电感元件31,在有利于在较小尺寸内获取较大的电感值,即有利于实现第一电感元件31的小型化进而实现频分器的 小型化的同时,可以采用半导体工艺制成频分器中的第一电感元件31,有利于对第一电感元件31尺寸的精确控制,提高第一电感元件31的电感值精度,同时也有利于提高第一电感元件31的电导率,降低第一电感元件31的电阻值,提高频分器中第一电感元件31的Q值,降低频分器的损耗。

Claims (10)

  1. 一种频分器,包括:
    层叠结构,所述层叠结构包括沿层叠方向按一层金属层-一层绝缘层的顺序交替设置的至少一层绝缘层和多层金属层,所述层叠结构形成至少一个第一电感元件和至少一个电容元件;
    至少两层所述金属层中均设置有第一图案化金属结构,所述至少两层所述金属层中的第一图案化金属结构电连接形成第一多层平面螺旋状线圈结构,所述第一多层平面螺旋状线圈结构构成所述第一电感元件。
  2. 根据权利要求1所述的频分器,其中,沿所述第一多层平面螺旋状线圈结构的轴向,所述第一多层平面螺旋状线圈结构包括多个第一单层平面螺旋状线圈结构,相邻两个所述第一单层平面螺旋状线圈结构之间的第一介电结构的厚度大于所述第一单层平面螺旋状线圈结构的厚度。
  3. 根据权利要求1所述的频分器,所述层叠结构还形成至少一个第二电感元件;
    至少两层所述金属层中均设置有第二图案化金属结构,所述至少两层所述金属层中的第二图案化金属结构电连接形成第二螺旋状线圈结构,所述第二螺旋状线圈结构构成所述第二电感元件;
    所述第一多层平面螺旋状线圈结构的轴向与所述第二螺旋状线圈结构的轴向相交。
  4. 根据权利要求3所述的频分器,其中,所述第一多层平面螺旋状线圈结构的轴向与所述第二螺旋状线圈结构的轴向相互垂直。
  5. 根据权利要求3所述的频分器,其中,所述第一电感元件设置在所述频分器的第一支路中,所述第二电感元件设置在所述频分器的第二支路中。
  6. 根据权利要求3所述的频分器,其中,所述第二螺旋状线圈结构为多层螺旋状线圈结构。
  7. 根据权利要求6所述的频分器,其中,沿所述第二螺旋状线圈结构的轴向,所述第二螺旋状线圈结构包括多个第二单层平面螺旋状线圈结构,相邻两个所述第二单层平面螺旋状线圈结构之间的第二介电结构的厚度大于所述第二单层平面螺旋状线圈结构的厚度。
  8. 根据权利要求1或3所述的频分器,所述层叠结构还形成至少一个第三电感元件,位于一层所述金属层中的第三图案化金属结构形成第三单层平面螺旋状线圈结构,所述第三单层平面螺旋状线圈结构构成所述第三电感元件。
  9. 根据权利要求1所述的频分器,其中,沿垂直于所述层叠结构所在平面的方向,相邻两层所述金属层中的第四图案化金属结构的交叠部分形成所述电容元件。
  10. 根据权利要求1所述的频分器,其中,沿所述第一多层平面螺旋状线圈结构的轴向,所述第一多层平面螺旋状线圈结构包括多个第一单层平面螺旋状线圈结构,所述第一单层平面螺旋状线圈结构形成至少一圈线圈结构。
PCT/CN2019/077494 2018-11-16 2019-03-08 频分器 WO2020098185A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020525902A JP2021508167A (ja) 2018-11-16 2019-03-08 マルチプレクサ
US16/764,279 US11190160B2 (en) 2018-11-16 2019-03-08 Frequency multiplexer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821907531.9 2018-11-16
CN201811367716.X 2018-11-16
CN201821907531.9U CN208904193U (zh) 2018-11-16 2018-11-16 一种频分器
CN201811367716.XA CN109361042B (zh) 2018-11-16 2018-11-16 一种频分器

Publications (1)

Publication Number Publication Date
WO2020098185A1 true WO2020098185A1 (zh) 2020-05-22

Family

ID=70730287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077494 WO2020098185A1 (zh) 2018-11-16 2019-03-08 频分器

Country Status (3)

Country Link
US (1) US11190160B2 (zh)
JP (1) JP2021508167A (zh)
WO (1) WO2020098185A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798474A (zh) * 2004-12-30 2006-07-05 三星电机株式会社 具有三维螺旋电感器的印刷电路板及其制造方法
CN201430202Y (zh) * 2009-01-20 2010-03-24 深圳市麦捷微电子科技股份有限公司 一种叠层片式巴伦带通滤波器
CN102087996A (zh) * 2009-12-08 2011-06-08 上海华虹Nec电子有限公司 顶层和次顶层金属均加厚的集成电路制作方法及叠层电感
CN202102827U (zh) * 2011-03-03 2012-01-04 番禺得意精密电子工业有限公司 滤波器
CN109361042A (zh) * 2018-11-16 2019-02-19 安徽安努奇科技有限公司 一种频分器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250333A (ja) * 1995-03-14 1996-09-27 Taiyo Yuden Co Ltd インダクタアレイ
JPWO2002052724A1 (ja) 2000-12-22 2004-04-30 宇部興産株式会社 マルチプレクサ
JP2004281847A (ja) 2003-03-18 2004-10-07 Tdk Corp 積層複合電子部品
US9954267B2 (en) * 2015-12-28 2018-04-24 Qualcomm Incorporated Multiplexer design using a 2D passive on glass filter integrated with a 3D through glass via filter
WO2020052724A1 (en) 2018-09-11 2020-03-19 Aalborg Universitet A reconfigurable compliant revolute joint mechanism with nonlinear stiffness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798474A (zh) * 2004-12-30 2006-07-05 三星电机株式会社 具有三维螺旋电感器的印刷电路板及其制造方法
CN201430202Y (zh) * 2009-01-20 2010-03-24 深圳市麦捷微电子科技股份有限公司 一种叠层片式巴伦带通滤波器
CN102087996A (zh) * 2009-12-08 2011-06-08 上海华虹Nec电子有限公司 顶层和次顶层金属均加厚的集成电路制作方法及叠层电感
CN202102827U (zh) * 2011-03-03 2012-01-04 番禺得意精密电子工业有限公司 滤波器
CN109361042A (zh) * 2018-11-16 2019-02-19 安徽安努奇科技有限公司 一种频分器

Also Published As

Publication number Publication date
US11190160B2 (en) 2021-11-30
JP2021508167A (ja) 2021-02-25
US20210226601A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
JP4506903B2 (ja) 積層型共振器および積層型フィルタ
TWI449329B (zh) 用於高性能濾波器之小型線圈
US20120313729A1 (en) Lc composite component and structure for mounting lc composite component
US8169288B2 (en) Electronic component and method for making the same
US10637429B2 (en) Electronic component
CN107799269B (zh) 电子部件
JP2022514606A (ja) 少なくとも2つのビアと接続されたコンデンサを備える多層フィルタ
JP2007180183A (ja) コンデンサブロック及び積層基板
US9787276B2 (en) Electronic component
JP2022515141A (ja) 精密に制御された容量性エリアを有するコンデンサを備える多層電子デバイス
JP2022515143A (ja) 高精度インダクタを含む多層電子デバイス
JP6418135B2 (ja) 電子部品
CN109361042B (zh) 一种频分器
TW201347290A (zh) 堆疊電感諧振器及使用此諧振器的帶通濾波器結構
US9634633B2 (en) Electronic component
WO2020098185A1 (zh) 频分器
US8018305B2 (en) Electronic component
US10382000B2 (en) Circuit board, filter circuit using the same, and capacitance element
US8400236B2 (en) Electronic component
JP2001185972A (ja) 積層フィルタ
CN208904193U (zh) 一种频分器
WO2021246077A1 (ja) 多層配線基板および多層配線基板を有するモジュール
JP4659369B2 (ja) フィルタ素子及び電子モジュール
WO2020077928A1 (zh) 贴片式电感及其制作方法
KR20210133049A (ko) 수평 어레이 일체형 구조를 갖는 전자부품 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020525902

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19885508

Country of ref document: EP

Kind code of ref document: A1