WO2020097937A1 - 雾化制粉设备及雾化制粉方法 - Google Patents

雾化制粉设备及雾化制粉方法 Download PDF

Info

Publication number
WO2020097937A1
WO2020097937A1 PCT/CN2018/116033 CN2018116033W WO2020097937A1 WO 2020097937 A1 WO2020097937 A1 WO 2020097937A1 CN 2018116033 W CN2018116033 W CN 2018116033W WO 2020097937 A1 WO2020097937 A1 WO 2020097937A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
spray
tundish
chamber
vacuum
Prior art date
Application number
PCT/CN2018/116033
Other languages
English (en)
French (fr)
Inventor
李晓雨
庞靖
张雪松
费晶
魏文喜
Original Assignee
青岛云路先进材料技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛云路先进材料技术股份有限公司 filed Critical 青岛云路先进材料技术股份有限公司
Priority to KR1020207019735A priority Critical patent/KR102398040B1/ko
Priority to JP2020533097A priority patent/JP7002656B2/ja
Priority to PCT/CN2018/116033 priority patent/WO2020097937A1/zh
Priority to CN201880002384.7A priority patent/CN109641276B/zh
Publication of WO2020097937A1 publication Critical patent/WO2020097937A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the embodiments of the present invention relate to the technical field of metal powder making, and in particular to an atomized powder making device and an atomized powder making method.
  • Atomized powdering refers to a powder preparation method that breaks a metal or alloy liquid into fine droplets by the impact of a fast-moving fluid (atomizing medium), and then condenses into a solid powder. Atomized powdering is the best method for producing fully alloyed powders, and its products are called pre-alloyed powders. Each particle of this powder not only has the same uniform chemical composition as the intended molten alloy, but also refines the crystal structure due to rapid solidification, eliminating the macrosegregation of the second phase.
  • Vacuum gas atomization pulverizing method is a new process developed in the metal powder manufacturing industry in recent years. It has the advantages of not easy to oxidize materials, rapid quenching of metal powder, and high degree of automation.
  • the specific process is that after the metal and alloy materials are melted and refined in the induction furnace, the molten metal liquid is poured into the heat preservation crucible and enters the diversion tube. At this time, the melt flow is atomized by the high-pressure gas flow sprayed from the nozzle. The atomized metal droplets are solidified and settled in the atomization tower and fall into the powder collection tank.
  • FIG. 1 shows an existing atomizing equipment, which is equipped with a smelting furnace 120 in the smelting chamber 110.
  • the configured raw materials are put into the smelting furnace 120, and then the smelting chamber 110 is evacuated, in a vacuum environment
  • the smelting furnace 120 is used to melt raw materials (such as scrap steel and silicon, which can be selected and mixed according to the type of powder to be produced) into molten steel, and then the molten steel is poured into the spray bag 130, which includes thermal insulation Crucible, diversion tube and nozzle, molten steel flows into the diversion tube from the thermal insulation crucible, and then flows out of the diversion tube by the high-pressure gas jet sprayed from the nozzle into the atomization chamber 140 and solidifies in the atomization chamber , Settling and falling into the powder collection device.
  • raw materials such as scrap steel and silicon, which can be selected and mixed according to the type of powder to be produced
  • the atomization chamber 140 shown in FIG. 1 is only a part of the atomization chamber (or atomization tower) connected to the spray bag 130, and the complete atomization chamber is not shown in the figure.
  • the powder collection device connected to the spray chamber is not shown.
  • smelting furnace for example, a smelting furnace that can contain molten steel with a mass of 200-500kg, from melting raw materials to molten steel
  • the preparation time is 90-100min; the milling time is 15-30min; 24h continuous production milling time is only 3-4h.
  • refractory material ie, refractory material
  • point 2 the inside of the thermal insulation chamber and the diversion pipe in the spray bag is covered with refractory material, usually a crucible, and the service life of the refractory material is limited, for example, in pouring
  • refractory material usually a crucible
  • the service life of the refractory material is limited, for example, in pouring
  • the refractory material can resist the high temperature of the molten steel without softening and melting, assuming the quality of molten steel that can be accommodated in the smelting furnace 120 If it is 300kg, the spray package 130 can actually support the pouring of 6 batches of molten steel at a time.
  • the smelting furnace needs to prepare a new molten steel.
  • the spray ladle 130 receives one heat, that is, 300kg of molten steel, because of There is no heating device around the diversion tube, so the molten steel flowing through the diversion tube will gradually cool down, which will cause the molten steel to hang on the inner wall of the diversion tube or block the diversion tube. If a new furnace molten steel is prepared in the smelting furnace 120 In the future, continued pouring of the spray ladle 130 will seriously affect the atomization effect. Therefore, even if the service life of the refractory is not exhausted, the refractory must be replaced.
  • the embodiments of the present specification provide an atomized pulverizing equipment, which is designed with an open smelting furnace for melting molten steel and a tundish for receiving molten steel.
  • the content of molten steel in the open melting furnace is kept sufficient so that the tundish can quickly Undertake molten steel and then pour the spray ladle.
  • multiple tundishes such as two, can be designed so that the two tundishes can alternately accept molten steel from the open smelting furnace, and the continuous pouring of the same spraying ladle for multiple times; on the other hand , Multiple spray bags can be designed to save time spent replacing spray bags.
  • an atomized powder milling device including: an open smelting furnace for melting raw materials into molten steel; a tundish for receiving molten steel from the open melting furnace and receiving molten steel The temperature is maintained within a predetermined range, and molten steel is poured into the spray ladle; the spray ladle is used to atomize the molten steel poured into it into the atomization chamber in the first state, the first state includes heating to The preset temperature is connected to the atomizing chamber; the atomizing chamber is used to condense the droplets of molten steel into the metal powder.
  • it further includes: a vacuum smelting chamber for accommodating the tundish and the spray bag; a sealed deflector device, which is connected to the side wall of the vacuum smelting chamber for In order to guide the molten steel in the open melting furnace into the tundish.
  • the sealed flow guiding device is composed of an inner layer and an outer layer, wherein the inner layer material is a refractory material and the outer layer material is a metal material.
  • it further includes a compartment, which is arranged based on the side wall of the vacuum smelting cabin toward the inside or outside of the vacuum smelting cabin, and the compartment includes The movable first baffle of the side wall and the movable second baffle vertically opposed to the first baffle, the compartment is used for the spraying bag to enter and exit the vacuum melting chamber, and for combining
  • the vacuum pumping device keeps the inside of the vacuum smelting cabin in a low oxygen state during the process of the spray bag entering and leaving the vacuum smelting cabin.
  • the tundish is an induction furnace with a heating function.
  • the volume of the open melting furnace is greater than the volume of the tundish.
  • an atomized powdering method based on the equipment provided in the first aspect, including: determining that the quality of molten steel in an open smelting furnace reaches a preset standard; using a tundish, from the open smelting furnace Accept the molten steel in the middle; determine that the spray ladle is in the first state, use the tundish after receiving the molten steel to pour molten steel into the spray ladle, and control the spray ladle to atomize the molten steel poured into it into the spray chamber; determine the intermediate ladle The amount of molten steel is lower than the corresponding preset threshold, use the tundish to accept the molten steel from the open smelting furnace again, and replace the refractory of the spray ladle; determine that the spray ladle after replacing the refractory is in the first state, Use the tundish after the molten steel is poured to pour molten steel into the spray bag after the refractory replacement, and
  • raw materials for smelting molten steel are added to the open smelting furnace.
  • the equipment further includes a vacuum smelting chamber and a sealed diversion device, the vacuum smelting chamber contains the tundish and the spray bag, the sealed diversion device and the vacuum smelting chamber
  • the side walls are connected; the use of the tundish to receive molten steel from the open smelting furnace includes: diluting the molten steel in the open smelting furnace to the tundish through the sealed diversion device.
  • the raw materials used for smelting molten steel include easily oxidizable materials
  • determining that the quality of molten steel smelted in the open smelting furnace reaches a preset standard includes: determining that the open smelting furnace is based on The quality of molten steel smelted by raw materials other than the easily oxidizable materials reaches the corresponding preset standard; before the use of the tundish and the acceptance of molten steel from the open smelting furnace, the method further includes: placing the molten steel into the tundish The easily oxidizable material, so that the tundish melts the easily oxidizable material into the molten steel it receives in the vacuum melting chamber.
  • the replacing the refractory material of the spray package includes: controlling the spray package out of the vacuum smelting chamber; outside the vacuum smelting chamber, replacing the refractory material of the spray package .
  • the equipment further includes: a compartment, the compartment is provided based on a side wall of the vacuum melting cabin toward the outside of the vacuum melting cabin, the compartment includes the A movable first baffle on the side wall and a movable second baffle vertically opposed to the first baffle;
  • the controlling the spraying out of the vacuum melting chamber includes: controlling the first block The board moves to the open state and controls the spray bag to move into the compartment; controls the first baffle to move to the closed state; controls the second baffle to move to the open state and controls the spray bag Move outside the vacuum melting chamber.
  • the method further includes: determining that the second baffle is in an open state, and controlling the movement of the spray bag to the compartment Inside; control the second baffle to move to a closed state, and use a vacuuming device to evacuate the first compartment; determine that the compartment is in a low oxygen state, and control the spray bag to move to Inside the vacuum melting chamber.
  • an atomized pulverizing equipment including: an open smelting furnace for smelting raw materials into molten steel; a plurality of tundishes for alternately receiving molten steel from the open smelting furnace and continuous alternating Pouring molten steel into the spray ladle; the spray ladle is used to atomize the molten steel continuously poured into the atomizing chamber in the first state.
  • the first state includes heating to a preset temperature and the atomizing chamber. Connection; the atomization chamber is used to condense the droplets of molten steel into metal powder.
  • it further includes: a vacuum melting chamber for accommodating the plurality of tundish and the spray bag; a sealed flow guiding device, the sealed flow guiding device is connected to the side wall of the vacuum melting chamber , Used to guide the molten steel in the open smelting furnace into the multiple tundish.
  • an atomized powdering method based on the equipment provided in the third aspect, the plurality of tundishes in the equipment includes a first tundish and a second tundish, the method includes: determining an open smelting The quality of the molten steel in the furnace reaches a preset standard; use the first tundish to accept molten steel from the open smelting furnace; determine that the spray ladle is in the first state, use the first tundish after receiving molten steel Pouring molten steel in the spray ladle, and controlling the spray ladle to atomize the molten steel poured into it into the atomization chamber; wherein in the process of pouring molten steel into the spray ladle using the first tundish after receiving molten steel, Use the second tundish to accept molten steel from the open smelting furnace; determine that the amount of molten steel in the first tundish is below a corresponding preset threshold, and use the second tund
  • the method further includes: after the spray bag atomizes a predetermined number of molten steel, replacing the refractory material of the spray bag; determining that the spray bag after replacing the refractory material is in the first state, using the molten steel The first tundish or the second tundish pours molten steel into the spray bag after the refractory replacement, and controls the spray bag after the refractory replacement to atomize the molten steel poured into it into the atomization chamber.
  • an atomized pulverizing equipment including: an open smelting furnace for melting raw materials into molten steel; a tundish for receiving molten steel from the open melting furnace and receiving the molten steel The temperature is kept within a predetermined range, and molten steel is poured into the spray bag; a plurality of spray bags including the first spray bag and the second spray bag, the first spray bag is used in the first state Next, the molten steel poured into it is atomized into the atomizing chamber.
  • the first state includes heating to a preset temperature and connecting with the atomizing chamber.
  • the second spray bag is used to After the pouring of the first spray ladle is completed, the first spray ladle is replaced so that the tundish is continuously connected with molten steel from the open smelting furnace to pour the second spray ladle; the atomizing chamber is used In order to condense the droplets of molten steel into the metal powder.
  • it further includes: a vacuum melting chamber for accommodating the tundish and the plurality of spraying bags; a sealed flow guiding device, the sealed flow guiding device is connected to the side wall of the vacuum melting chamber , Used to guide the molten steel in the open smelting furnace into the tundish.
  • it further includes: a plurality of compartments, the plurality of compartments having the same number as the plurality of spray packages, wherein each compartment is respectively based on the side of the vacuum melting chamber
  • the wall is provided, including a movable first baffle belonging to the side wall and a movable second baffle vertically opposed to the first baffle, wherein each compartment is used to enter and exit each corresponding spray bag
  • the vacuum smelting chamber and the vacuum evacuation equipment are used to maintain a low oxygen state in the vacuum smelting chamber during the process of entering and exiting the vacuum smelting chamber by each spray bag.
  • it further includes: an annular track, the plurality of spray packages are fixedly arranged at equal intervals based on the annular track, and the annular track is used to make each spray package of the plurality of spray packages one by one Move to the pouring position to accept the pouring of the tundish.
  • it further includes: an annular track, the plurality of spray packages are detachably arranged at equal intervals based on the annular track, and the annular track is used to make each spray package of the plurality of spray packages Rotate to the pouring position to accept the pouring of the tundish, and rotate each spray ladle to the exit position to exit the vacuum melting chamber through the compartment; the compartment is based on the side of the vacuum melting chamber
  • the wall is provided, including a movable first baffle belonging to the side wall and a movable second baffle vertically opposed to the first baffle, and the compartment is used for the inflow and outflow of each spray bag
  • the vacuum smelting chamber and the vacuum evacuation equipment are used to keep the vacuum smelting chamber in a low-oxygen state during the process of entering and exiting the vacuum smelting chamber.
  • an atomized pulverizing method based on the equipment provided in the fifth aspect includes: determining that the quality of molten steel in an open smelting furnace reaches a preset standard; using a tundish, from the open smelting furnace Accepting molten steel; determining that the first spray ladle is in the first state, pouring molten steel into the first spray ladle using the tundish after receiving the molten steel, and controlling the first spray ladle to atomize molten steel poured into it into mist Laboratory; determine that the amount of molten steel in the tundish is lower than the corresponding preset threshold, use the tundish to accept molten steel from the open smelting furnace again, and use a second spray bag to spray the first Replace the ladle; determine that the second spray ladle is in the first state, use the tundish after the molten steel is poured into the second spray ladle, and control the second spray ladle to pour molten steel into
  • the equipment further includes a vacuum smelting chamber and a sealed diversion device, the vacuum smelting chamber contains the tundish and at least one spray bag, the sealed diversion device and the vacuum smelting chamber
  • the side walls are connected; the use of the tundish to receive molten steel from the open smelting furnace includes: diluting the molten steel in the open smelting furnace to the tundish through the sealed diversion device.
  • the method further includes: controlling the first spray ladle out of the vacuum melting Cabin; outside the vacuum smelting cabin, replace the refractory of the first spray bag.
  • the equipment further includes a plurality of compartments, the plurality of compartments having the same number as the plurality of spray packages, wherein each compartment is based on the side of the vacuum melting chamber
  • the wall is disposed toward the outside of the vacuum smelting chamber, and each compartment includes a movable first baffle belonging to the side wall and a movable second baffle vertically opposed to the first baffle Baffle;
  • said controlling the first spray bag out of the vacuum melting chamber includes: controlling the first baffle to move to an open state, and controlling the spray bag to move into the compartment; controlling the The first baffle moves to a closed state; the second baffle is controlled to move to an open state, and the spray bag is controlled to move outside the vacuum melting chamber.
  • the equipment further includes a ring-shaped track, the ring-shaped track is located in the vacuum smelting chamber, and the plurality of spray packages are fixedly arranged at equal intervals based on the ring-shaped track;
  • Replacing the first spray bag with a second spray bag includes: controlling the rotation of the annular track to move the second spray bag to the pouring position.
  • it further includes: after controlling the multiple spraying bags to receive pouring in sequence, opening the vacuum melting chamber to replace the refractory materials of the multiple spraying bags.
  • the equipment further includes an annular track and a compartment, the annular track is located in the vacuum smelting chamber, and the plurality of spray packages are detachable at equal intervals based on the annular track
  • the compartment is arranged based on the side wall of the vacuum smelting compartment facing the outside of the vacuum smelting compartment, including a movable first baffle belonging to the side wall and vertically opposed to the first baffle
  • the use of the second spray bag to replace the first spray bag includes: controlling the rotation of the annular track to move the second spray bag to the pouring position and the The first spray bag moves to the exit cabin; after the first spray bag moves to the exit cabin, it also includes: controlling the first baffle to move to the open state, and controlling the first spray bag to move to the compartment Control the movement of the first baffle to the closed state; control the movement of the second baffle to the open state, and control the movement of the first spray bag to the outside of the vacuum melting chamber to replace the first
  • the second baffle after replacing the refractory of the first spray bag, it further includes: determining that the second baffle is in an open state, and controlling the movement of the first spray bag to the compartment Inside; control the second baffle to move to a closed state, and use a vacuuming device to evacuate the first compartment; determine that the compartment is in a low oxygen state, and control the first spray bag Move to the circular track.
  • the use of the atomized powdering equipment and the atomized powdering method provided in the embodiments of the present specification has the following beneficial effects: 1.
  • the open-type smelting furnace outside the cabin assumes the role of molten steel, and at the same time can also ensure the molten steel Purity (for example, static treatment, etc.), the molten steel and the overall milling process do not conflict; 2.
  • the induction furnace in the cabin does not need to be smelted, and can undertake pure molten steel at any time, from the pouring of molten steel to the preparation of the next molten steel, It only takes about 10min, which greatly saves the preparation time of powder milling; 3.
  • Figure 1 is a schematic diagram of an existing atomizing device
  • Figure 2 shows an atomized pulverizing device according to an embodiment
  • FIG. 3 shows an atomized powder milling device according to another embodiment
  • FIG. 4 shows an atomized powder milling device according to yet another embodiment
  • FIG. 5 shows a flow chart of an atomizing and pulverizing method based on the device in FIG. 2 according to an embodiment
  • Fig. 6 shows an atomized pulverizing apparatus according to an embodiment
  • FIG. 7 shows a flow chart of an atomizing and pulverizing method based on the device in FIG. 6 according to an embodiment
  • FIG. 8 shows an atomized powder milling device according to an embodiment
  • FIG. 10 shows an atomized powder milling device according to yet another embodiment
  • FIG. 11 shows an atomized powder milling device according to yet another embodiment
  • FIG. 12 shows a flow chart of an atomizing and pulverizing method based on the device in FIG. 8 according to an embodiment
  • FIG. 13 shows an atomized powder milling device according to an embodiment
  • Fig. 14 shows an atomized pulverizing apparatus according to another embodiment.
  • the embodiment of the present specification proposes an atomized pulverizing equipment with an open smelting furnace and a tundish, which is different from the smelting furnace 120 shown in FIG. 1, in an embodiment, as shown in FIG. 2, the open type
  • the melting furnace 210 pours the molten steel into the tundish 221, and then the molten steel is poured into the spray ladle 231 from the tundish 221.
  • the raw materials can be continuously added to the open smelting furnace to ensure that the molten steel therein is sufficient, after all the molten steel in the tundish 221 is poured into the spray ladle 231, the molten steel can be directly connected from the open smelting furnace 210, The process of continuation of molten steel can be controlled within 10 minutes. Compared with the smelting furnace 120 in FIG. 1, molten steel needs to be prepared in batches, and each batch takes 90-100 minutes, which greatly reduces the preparation time of molten steel. It should be noted that the atomization powdering equipment provided in this specification can be used for both gas atomization and water atomization, that is, the atomization medium is not limited.
  • FIG. 2 shows an atomizing and pulverizing apparatus according to an embodiment, which may include an open melting furnace 210, a tundish 221, a spray bag 231, and an atomizing chamber 240.
  • an open melting furnace 210 a tundish 221, a spray bag 231, and an atomizing chamber 240.
  • the supporting devices of the open smelting furnace 210 and the tundish 221 are not shown in FIG. 2, and only the relative positions of the open smelting furnace 210, the tundish 221, the spray bag 231 and the atomizing chamber 240 are shown by way of example. position.
  • the open smelting furnace 210 is used to melt raw materials into molten steel
  • the tundish 221 is used to receive molten steel from the open melting furnace 210, and maintain the temperature of the received molten steel within a predetermined range, and spray into the ladle Pouring molten steel.
  • the spray bag 231 is used to atomize the molten steel poured into the atomizing chamber in the first state, wherein the first state of the spray bag refers to heating to a preset temperature and connecting with the atomizing chamber.
  • the atomizing chamber 240 is used for condensing the molten steel atomized therein, that is, molten steel droplets, into a metal powder.
  • the capacity V1 of the open smelting furnace 210 for molten steel is greater than the capacity V2 of the tundish for molten steel.
  • the ratio of V1 to V2 is greater than or equal to 2.
  • the open melting furnace 210 can be used to melt 1000 kg of molten steel, and the tundish 221 can be used to receive 400 kg of molten steel.
  • the tundish 221 may be an induction furnace with a heating effect.
  • the atomized pulverizing equipment may further include a vacuum melting chamber 250 for accommodating the tundish 221 and spray bag 231, and the open melting furnace 210 is provided in the vacuum melting chamber 250 Besides.
  • the purpose of setting the vacuum melting chamber is to create a low-oxygen atmosphere to prevent the molten steel from oxidizing during pouring, especially for the highly active metals contained in the molten steel, such as Al, etc.
  • the vacuum smelting chamber may not be provided, or the already installed smelting chamber may not be evacuated.
  • the atomized pulverizing equipment may further include a sealed flow guiding device, which is connected to the side wall of the vacuum melting chamber 250 and used for guiding the molten steel in the open melting furnace 210 into the tundish 221.
  • the sealed diversion device is composed of two layers of materials, the inner layer of which is a refractory material, such as boron nitride and zirconia, and the outer layer of material is a metallic material such as steel.
  • the sealed diversion device may be a sealed diversion groove or a sealed diversion tube.
  • the atomizing and pulverizing equipment is provided with a compartment, which is provided based on the side wall of the vacuum smelting cabin toward the inside or outside of the vacuum smelting cabin for spraying the bag in and out of the vacuum
  • the smelting chamber and the vacuum pumping equipment are used to keep the vacuum smelting chamber in a low oxygen state during the process of spraying the bag in and out of the vacuum smelting chamber.
  • the compartment 270 is disposed toward the outside of the vacuum smelting cabin, and includes a first baffle 271 belonging to the side wall of the vacuum smelting cabin and a movable first baffle vertically opposed to the first baffle Two baffles 272.
  • FIG. 5 shows a flow chart of an atomization pulverizing method based on the equipment in FIG. 2 according to an embodiment. As shown in FIG.
  • Step S510 determining the molten steel melted in the open smelting furnace The quality reaches the preset standard
  • Step S520 use the tundish to accept molten steel from the open smelting furnace
  • Step S530 determine that the spray ladle is in the first state, use the tundish after receiving the molten steel to pour molten steel into the spray ladle, and, control The spray ladle atomizes the molten steel poured into it into the atomization chamber
  • step S540 it is determined that the amount of molten steel in the tundish is lower than the corresponding preset threshold, and the molten steel is again taken over from the open smelting furnace using the tundish, and, Replacing the refractory of the spray bag
  • Step S550 determining that the spray bag after replacing the refractory is in the first state, pouring molten steel into the spray bag after replacing the refractory by using the tundish after the molten steel is
  • step S510 it is determined that the quality of molten steel in the open melting furnace reaches a preset standard.
  • the raw materials corresponding to the metal powder to be prepared are put into the open smelting furnace 210 shown in FIG. 2, and according to the monitoring system for the composition and temperature of the molten steel, it is determined whether the molten steel meets the preset standard .
  • step S520 is executed, and the molten steel is received from the open smelting furnace using the tundish.
  • the tundish 221 can be controlled to accept molten steel from the open smelting furnace 210 until it is detected that the molten steel in the tundish 221 reaches a predetermined liquid level, which can be understood as that the tundish 221 is full of molten steel.
  • step S530 it is determined that the spray ladle is in the first state, molten steel is poured into the spray ladle using the tundish after receiving the molten steel, and the spray ladle is controlled to atomize the molten steel poured into it into the atomization chamber.
  • the first state means that the spray ladle is connected to the atomizing chamber, that is, it is located at the position where the pouring is received (hereinafter, the position where the pouring is received is simply referred to as the pouring position), and the spray ladle is preheated to a predetermined temperature.
  • the tundish 221 filled with molten steel can be used to pour molten steel into the spray ladle 231, and at the same time, the spray ladle 231 is controlled to atomize the molten steel poured into it into the atomization chamber, so that the atomized molten steel droplets in the atomization chamber 240 Condensed into metal powder.
  • step S540 it is determined that the amount of molten steel in the tundish is lower than the corresponding preset threshold, and the molten steel is taken from the open smelting furnace again with the tundish, and the sprayed refractory is replaced.
  • the purpose is to determine that the molten steel in the tundish has been dumped, where the amount of molten steel may refer to the quality or volume of molten steel, and the corresponding predetermined threshold may be The set mass threshold or the preset volume threshold.
  • the judging condition for judging whether the molten steel has been dumped may also be whether the inclination angle of the tundish with respect to the horizontal plane reaches a corresponding preset angle, for example, 5 ° or 0 °.
  • the molten steel in the open smelting furnace 210 is taken over again using the tundish 221, and the refractory material in the spray ladle 231 is replaced.
  • step S550 it is determined that the spray package after the refractory replacement is in the first state, and molten steel is poured into the spray package after the refractory replacement using the tundish after the molten steel is continued, and the spray package after the refractory replacement is controlled
  • the molten steel poured into it is atomized into the atomization chamber.
  • the pouring time is usually about 25 minutes, and the time to fill the molten steel is usually about 10 minutes.
  • the time after the refractory material is in the first state is usually about 35min. Therefore, the continuous production of powder for 24h can be increased to 10h.
  • the molten steel in the tundish 221 can be immediately connected to the molten steel from the open smelting furnace 210 after pouring , which greatly reduces the preparation time of molten steel, and thus improves the milling operation rate, the milling time can be increased to about 10h.
  • the atomized pulverizing equipment may further include a vacuum melting chamber 250 and a sealed diversion device.
  • a vacuum melting chamber 250 it is considered that when smelting molten steel having a high active metal composition, if high-active materials (including raw materials of easily oxidizable metal elements) such as Al, Ti, etc. are added to the open smelting tank 210, it may be possible It will cause the oxidation of this component. Therefore, raw materials other than high active materials can be smelted in the open smelting furnace 210, and the high active materials can be placed in the tundish 221 located in the hollow smelting tank 250.
  • high-active materials including raw materials of easily oxidizable metal elements
  • the tundish 221 can be used from The molten steel received in the open smelting furnace 210 melts the highly active material and realizes further adjustment of the molten steel composition. Accordingly, the foregoing step S510 includes: determining that the quality of molten steel smelted based on raw materials other than the easily oxidizable material in the open smelting furnace 210 reaches a corresponding preset standard; and, before step S520, including: dropping into a tundish The easily oxidizable material, as such, in the process of the molten steel being received by the tundish 221 in step S520, the easily oxidizable material will be melted in the molten steel.
  • the molten steel in the open smelting furnace 210 can be diverted into the tundish 221 by the sealed diversion device.
  • the sealed diversion device may include a sealed interface 261 and a sealed diversion tube 262 shown in FIG. 3.
  • the open smelting furnace 210 inserts its steel outlet 211 into the sealed interface 261, and then the molten steel is diverted into the tundish 221 by the sealed diversion tube 262.
  • the atomized powder milling device may further include a compartment, wherein the compartment is provided based on the side wall of the vacuum smelting cabin toward the inside or outside of the vacuum smelting cabin, used for spraying the bag in and out of the vacuum smelting cabin, and used for combined pumping
  • the vacuum equipment keeps the inside of the cabin low in oxygen during the process of the spray bag entering and leaving the vacuum smelting cabin.
  • controlling the spray package 231 to exit the vacuum melting chamber 250 may include the steps of: first controlling the first baffle 271 to move to the open state, and controlling the spray package 231 to move into the compartment 270; then controlling the first baffle 271 to move to Closed state; then control the second baffle 272 to move to the open state, and control the spray bag 231 to move outside the vacuum melting chamber 250.
  • controlling the spray bag 231 to enter the vacuum melting chamber 250 may include the steps of: first determining that the second baffle 272 is in an open state, and controlling the spray bag 231 Move to the compartment 270; then control the second baffle 272 to move to the closed state, and use the vacuum equipment to vacuum the compartment 270; then confirm that the compartment 270 is in a low oxygen state, and control the movement of the spray bag 231 Into the vacuum melting chamber 250.
  • the process of spraying the bag into and out of the cabin body will not affect the oxygen content in the vacuum smelting cabin, that is, maintain a low oxygen state, so that the molten steel in the cabin will not be oxidized.
  • a tundish may also be added.
  • Fig. 6 shows an atomized pulverizing equipment according to one embodiment, which may include an open melting furnace 210, a plurality of tundishes, such as tundish 221 and tundish 222, and spray bag 231.
  • the open smelting furnace 210 is used to melt raw materials into molten steel; a plurality of tundishes are used to alternately take molten steel from the open smelting furnace, and the molten steel is continuously poured into the spray ladle; the spray ladle 231 is used to In the first state, the molten steel continuously poured into it is atomized into the atomizing chamber, wherein the first state includes heating to a preset temperature and connecting with the atomizing chamber; the atomizing chamber 240 is used to atomize the molten steel into it The drops condense into metal powder.
  • the atomized pulverizing equipment may further include a vacuum melting chamber 250 and a sealed flow guiding device.
  • the vacuum melting chamber 250 is used to accommodate the tundish 221, tundish 222 and spray bag 231, and the sealed diversion device is connected to the side wall of the vacuum melting chamber 250 to guide the molten steel in the open melting furnace 210 up to In a tundish.
  • the sealed diversion device may include a sealed interface 261 and a sealed diversion tube 262.
  • FIG. 7 shows a flow chart of an atomization pulverizing method based on the apparatus in FIG. 6 according to an embodiment. As shown in FIG.
  • Step S710 determining the molten steel melted in the open smelting furnace The quality reaches the preset standard
  • Step S720 use the first tundish to accept molten steel from the open smelting furnace
  • Step S730 determine that the spray ladle is in the first state, and use the first tundish after receiving molten steel to pour molten steel into the spray ladle , And, control the spray ladle to atomize the molten steel poured into it into the atomization chamber; in the process of pouring the molten steel into the spray ladle using the first tundish after receiving the molten steel, the second tundish is used from the open smelting furnace To accept molten steel; step S740, it is determined that the amount of molten steel in the first tundish is lower than the corresponding preset threshold, and the second tundish after receiving the molten steel is used to continue pouring molten steel into the spray ladle; While the following steps: Step S720, use the
  • step S710 it is determined that the quality of molten steel in the open melting furnace reaches a preset standard.
  • step S710 reference may be made to the foregoing description of step S510, and details are not described herein.
  • Step S720 using the first tundish to accept molten steel from the open smelting furnace.
  • step S720 reference may be made to the foregoing description of step S520, and details are not described herein.
  • Step S730 it is determined that the spray ladle is in the first state, the molten steel is poured into the spray ladle using the first tundish after receiving the molten steel, and the spray ladle is controlled to atomize the molten steel poured into it into the atomization chamber;
  • the second tundish is used to receive molten steel from the open smelting furnace.
  • the tundish 222 in the process of pouring molten steel from the tundish 221 to the spray ladle 231, the tundish 222 is used to accept molten steel from the open smelting furnace 210, because the time for the pouring of all the molten steel in a tundish is usually less than The time for filling the molten steel is such that the molten steel in the tundish 222 can be filled before the molten steel in the tundish 221 is poured.
  • step S730 reference may also be made to the foregoing description of step S530, and details are not described herein.
  • step S740 it is determined that the amount of molten steel in the first tundish is lower than the corresponding preset threshold, and the second tundish after receiving the molten steel is used to continue pouring molten steel into the spray ladle; wherein the second tundish after receiving the molten steel continues to flow
  • the first tundish is used again to accept molten steel from the open smelting furnace.
  • the tundish 222 that has been filled with molten steel is used to replace the tundish 221, and the molten steel is continuously poured into the spray ladle 231, while using the tundish 221 from the open melting furnace The molten steel continues in 210.
  • the tundish 221 and the tundish 222 alternately accept molten steel from the open smelting furnace 250 and continuously pour molten steel into the spray ladle 231 to ensure the continuous flow of molten steel in the spray ladle 231 until the spray ladle 231
  • the refractory reaches its service life, that is, after receiving the predetermined number of molten steel in the tundish, the spray bag 231 is replaced, which not only improves the time and operation rate of powder milling, but also saves the refractory material in the spray bag.
  • the time for any one of the pouring is usually about 25 minutes, and the time for filling the molten steel is usually about 10 minutes.
  • One spray can usually accept 5-6 continuously
  • the amount of molten steel in a tundish, and the time to replace the refractory material in the spray bag and to make the spray bag after the replacement of the refractory material in the first state is usually about 35min, thus, the continuous production of 24 hours of milling time can be increased to 18- 20h.
  • the tundish 221 and the tundish 222 can alternately accept molten steel from the open smelting furnace 210, and maintain the right
  • the continuous pouring of the spray ladle 231 greatly reduces the preparation time of molten steel, and after continuously pouring a predetermined number of molten steel into the spray ladle 231, the refractory materials in the spray ladle 231 are replaced to improve the powder making At the same time of time and operating rate, it saves spraying refractory.
  • FIG. 8 shows an atomizing and pulverizing equipment according to an embodiment, which may include an open smelting furnace 210, a tundish 221, a plurality of spray bags, such as a spray bag 231 and a spray bag 232, and an atomizing chamber (not shown in the figure). show).
  • the open smelting furnace 210 is used to melt raw materials into molten steel; the tundish 221 is used to receive molten steel from the open smelting furnace 210, and maintain the temperature of the molten steel it receives within a predetermined range, and spray into the ladle Casting molten steel; spray bag 231 is used to atomize the molten steel poured into the atomizing chamber in the first state, wherein the first state includes heating to a preset temperature and connecting with the atomizing chamber, spray bag 232 is used to After the pouring of the tundish 221 to the spray ladle 231 is completed, the spray ladle 231 is replaced so that the tundish 221 is continuously connected with molten steel from the open melting furnace 210 to pour the second spray ladle 210; the atomizing chamber is used to atomize The molten steel droplets condense into metal powder.
  • the atomized pulverizing equipment may further include a vacuum melting chamber 250 and a sealed diversion device.
  • the vacuum melting chamber 250 is used for accommodating the tundish 221, spray bag 231 and spray bag 232, and the sealed diversion device is connected to the side wall of the vacuum melting chamber 250 for guiding the molten steel in the open melting furnace 210 to Tundish 221.
  • the atomized powdering equipment is also provided with a plurality of compartments, wherein each compartment is respectively set based on the side wall of the vacuum melting chamber, including a movable first block belonging to the side wall Plate and a movable second baffle vertically opposed to the first baffle, wherein each compartment is used to enter and exit the vacuum smelting chamber of each spray bag corresponding to it, and to be combined with a vacuum pumping device.
  • the vacuum smelting chamber is kept in a low oxygen state. In one example, as shown in FIG.
  • a compartment 270 and a compartment 275 may be provided for the spray package 231 and the spray package 232 to enter the vacuum melting chamber 250, respectively.
  • each spray bag in the multiple spray bags has its own moving track and compartment, which can speed up the replacement speed of the refractory in the spray bag, so that the spray bag in the pouring position can be used immediately after receiving the pouring. Spray bag to replace it.
  • the atomizing powdering device is further provided with an annular track, and a plurality of spray packets are fixedly arranged at equal intervals based on the circular track, wherein the circular track is used to move each of the multiple spray packets to one by one Pouring position to accept pouring of the tundish.
  • the circular track is used to move each of the multiple spray packets to one by one Pouring position to accept pouring of the tundish.
  • it includes an annular rail 290, and a spray package 231, a spray package 232, a spray package 233, and a spray package 234 that are fixed on the circular rail 290 at equal intervals.
  • the atomized pulverizing equipment is provided with an annular track and a compartment.
  • a plurality of spray bags are detachably arranged at equal intervals based on a circular track.
  • the circular track is used to rotate each spray bag in the multiple spray bags to the pouring position to accept the pouring of the tundish, and rotate each spray bag to the exit position.
  • the compartment is provided based on the side wall of the vacuum melting chamber and includes a movable first baffle belonging to the side wall and a movable second baffle vertically opposed to the first baffle.
  • the compartment is used for each The spray bag enters and exits the vacuum smelting chamber, and is used in combination with the vacuuming equipment to keep the vacuum smelting chamber in a low oxygen state during the process of entering and exiting the vacuum smelting chamber.
  • it includes a compartment 278, an annular track 295, and a spray bag 231, a spray bag 232, a spray bag 233, and a spray bag 234 that are detachably disposed on the circular track 290 at equal intervals .
  • FIG. 12 shows a flow chart of an atomization pulverizing method based on the equipment in FIG. 8 according to an embodiment. As shown in FIG.
  • Step S1210 determining the molten steel melted in the open smelting furnace The quality reaches the preset standard
  • Step S1220 use the tundish to accept molten steel from the open smelting furnace
  • Step S1230 determine that the first spray ladle is in the first state, and use the tundish after receiving the molten steel to pour molten steel into the first spray ladle And, control a spray ladle to atomize the molten steel poured into it into the atomizing chamber
  • step S1240 determine that the amount of molten steel in the tundish is lower than the corresponding preset threshold, and use the tundish to accept molten steel from the open smelting furnace again And, the first spray ladle is replaced with the second spray ladle
  • Step S1250 it is determined that the second spray ladle is in the first state, the molten steel is poured into the second spray ladle using the tundish after the molten steel is
  • step S1210 it is determined that the quality of molten steel in the open smelting furnace reaches a preset standard. And, in step S1220, the tundish is used to accept molten steel from the open smelting furnace.
  • step S1230 it is determined that the first spray ladle is in the first state, molten steel is poured into the first spray ladle using the tundish after receiving molten steel, and a spray ladle is controlled to atomize the molten steel poured into it into the atomization chamber .
  • step S1210 for the description of step S1210, step S1220, and step S1230, reference may be made to the foregoing description of step S510, step S520, and step S530, respectively, and details are not described herein.
  • step S1240 it is determined that the amount of molten steel in the tundish is lower than the corresponding preset threshold, the molten steel is taken over from the open smelting furnace again using the tundish, and the first sprayed ladle is replaced with the second sprayed ladle.
  • step S1250 it is determined that the second spray ladle is in the first state, molten steel is poured into the second spray ladle using the tundish after the molten steel is continued, and the second spray ladle is controlled to atomize the molten steel poured into it into mist Indoor.
  • the pouring time is usually about 25 minutes, and the time to fill the molten steel is usually about 10 minutes. Remove the first spray ladle at the pouring position and replace it.
  • the time for the second spray bag is usually about 15 minutes. Therefore, in the case of using two spray bags, the continuous production of 24 hours of milling time can be increased to about 15 hours. Further, in order to fully ensure the continuity of spray bag replacement, You can also set three or more spray bags.
  • the atomized pulverizing equipment may further include a vacuum melting chamber 250 and a sealed flow guiding device.
  • the vacuum melting chamber 250 is used for accommodating the tundish 221, spray bag 231 and spray bag 232, and the sealed diversion device is connected to the side wall of the vacuum melting chamber 250 for guiding the molten steel in the open melting furnace 210 to Tundish 221.
  • the atomizing and pulverizing equipment is also provided with multiple compartments.
  • a compartment 270 and a compartment 275 may be provided for the spray bag 231 and the spray bag 232 to enter the vacuum melting chamber 250 respectively.
  • Each spray bag here has its own moving track and a track for access to the vacuum smelting chamber, which can ensure that their respective movements and the replacement of refractory materials do not interfere with each other, thereby speeding up the preparation speed of the spray bag to ensure the continuity of the replacement of the spray bag.
  • the spray packet entering and exiting the compartment please refer to the related description in the foregoing embodiment, which will not be repeated here.
  • the atomizing powdering device is further provided with an annular track, and a plurality of spray packets are fixedly arranged at equal intervals based on the circular track, wherein the circular track is used to move each of the multiple spray packets to one by one Pouring position to accept pouring of the tundish.
  • replacing the first spray bag with the second spray bag may include: controlling the rotation of the circular rail to move the second spray bag to the pouring position.
  • the circular rail 290 can be controlled to rotate clockwise to move the spray bag 232 to the pouring position.
  • the atomized pulverizing equipment is provided with an annular track and a compartment.
  • a plurality of spray bags are detachably arranged at equal intervals based on a circular track.
  • the circular track is used to rotate each spray bag in the multiple spray bags to the pouring position to accept the pouring of the tundish, and rotate each spray bag to the exit position. Take out the vacuum melting chamber through the compartment.
  • replacing the first spray bag with the second spray bag may include: controlling the rotation of the circular rail to move the second spray bag to the pouring position and the first spray bag to the exit position. Further, after the first spray bag is moved to the exit space, the method further includes: controlling the first spray bag out of the vacuum smelting chamber for replacement of refractory materials, and subsequently controlling the first spray bag to enter the vacuum smelting chamber. In one example, as shown in FIG.
  • the circular rail 290 can be controlled to rotate clockwise to move the spray bag 233 to the pouring position, while moving the spray bag 231 to the exit position, also That is, the spray bag 233 and the spray bag 231 are exchanged, and then, while the spray bag 233 receives the pouring, the spray bag 231 is controlled to move to the outside of the cabin through the compartment 278 to replace the refractory material of the spray bag 231 and replace the refractory material Then return to the cabin.
  • a plurality of compartments may also be provided to facilitate the replacement of the refractory materials from the spraying cabin.
  • the continuous replacement of the spray bag can be ensured, and because the compartment is provided, it is not necessary to open the vacuum melting chamber to uniformly replace the refractory and clean the tundish lining, so the powdering operation rate can be further increased to more than 17h.
  • the preparation time of the spraying bags can be reduced, and furthermore, by setting the ring-shaped track, the replacement speed of the spraying bags can be accelerated to ensure the continuity of the replacement of the spraying bags, thereby improving the pulverizing operation rate.
  • the atomized pulverizing equipment including an open smelting furnace, a tundish and a spray bag is shown in FIGS. 2-4, and the open smelting furnace and a plurality of intermediates are shown in FIG. 6
  • the atomized powdering equipment for the ladle and a spraying bag is shown in FIGS. 8-11, which includes an open melting furnace, a tundish and multiple spraying bags.
  • the embodiment of the present specification also provides an atomized powdering device including an open smelting furnace, a plurality of tundishes and a plurality of spraying ladles. The following is an exemplary description with reference to FIGS. 13 and 14.
  • FIG. 13 it includes an open smelting furnace 210, a tundish 221 and a tundish 222, a spray bag 231, a spray bag 232, a spray bag 233 and a spray bag 234, a vacuum melting chamber 250, and an annular track 290. Based on the equipment shown in FIG. 13, it includes an open smelting furnace 210, a tundish 221 and a tundish 222, a spray bag 231, a spray bag 232, a spray bag 233 and a spray bag 234, a vacuum melting chamber 250, and an annular track 290. Based on the equipment shown in FIG.
  • the atomized powder milling may include the following steps: First, the tundish 221 is used to accept molten steel from the open smelting furnace 210; Then, the tundish 221 is used to pour molten steel into the spray ladle 231 At the same time, the tundish 222 is used to accept molten steel from the open smelting furnace 210; then, when the amount of molten steel in the tundish 221 is below a preset threshold, the tundish 222 is used to continue pouring molten steel into the spray ladle 231.
  • the tundish 221 and the tundish 222 are used to alternately pour molten steel into the spray bag 231, so as to increase the time for continuous pulverization, while saving the refractory material of the spray bag.
  • the ring rail 290 is controlled to rotate clockwise, so that the spray bag 232 continues to receive the pouring of the tundish 221 or the tundish 222, and so on until the spray bag 231, the spray bag 232, the spray ladle 233 and the spray ladle 234 all accept the molten steel pouring of the predetermined number of tundish, open the vacuum smelting chamber, uniformly replace the refractory and clean the tundish lining, so that the preparation of molten steel and spray ladle is greatly reduced Time, so that the milling operation rate can be as high as 20h / 24h or more.
  • FIG. 14 it includes an open smelting furnace 210, tundish 221 and tundish 222, spray bag 231, spray bag 232, spray bag 233 and spray bag 234, vacuum melting chamber 250, annular track 290, and compartments 278. Based on the equipment shown in FIG. 14, it includes an open smelting furnace 210, tundish 221 and tundish 222, spray bag 231, spray bag 232, spray bag 233 and spray bag 234, vacuum melting chamber 250, annular track 290, and compartments 278. Based on the equipment shown in FIG.
  • the atomized powder milling may include the following steps: First, the tundish 221 is used to accept molten steel from the open smelting furnace 210; Then, the tundish 221 is used to pour molten steel into the spray ladle 231 At the same time, the tundish 222 is used to accept molten steel from the open smelting furnace 210; then, when the amount of molten steel in the tundish 221 is below a preset threshold, the tundish 222 is used to continue pouring molten steel into the spray ladle 231.
  • the tundish 221 and the tundish 222 are used to alternately pour molten steel into the spray bag 231, so as to increase the time for continuous pulverization, while saving the refractory material of the spray bag.
  • the ring rail 290 is controlled to rotate counterclockwise by 180 °, so that the spray ladle 233 continues to receive the pouring of the tundish 221 or tundish 222, and at the same time, the spray ladle 231
  • the vacuum melting chamber 250 is exited through the compartment 278 to replace the refractory, and returns to the vacuum melting chamber 250 after the refractory is replaced.
  • the spray ladle 231, the spray ladle 232, the spray ladle 233 and the spray ladle 234 can all accept the pouring of molten steel with a predetermined number of tundish, and at the same time can complete the replacement of other spray ladle refractory materials in the process of receiving the pouring of a certain spray ladle , And then realize the uninterrupted milling, so that the milling operation rate can almost reach 24h / 24h.
  • the use of the atomized powder milling equipment and the atomized powder milling method provided in the embodiments of the present specification has the following beneficial effects: 1.
  • the open smelting furnace outside the cabin is responsible for smelting molten steel, and at the same time, the molten steel can also be guaranteed during the smelting process Purity (for example, static treatment, etc.), the molten steel and the overall milling process do not conflict;
  • the induction furnace in the cabin does not need to be smelted, and can undertake pure molten steel at any time, from the pouring of molten steel to the preparation of the next molten steel, It only takes about 10min, which greatly saves the preparation time of powder milling; 3.
  • one of the other spray bags has been preheated to temperature and is ready to be prepared after the molten steel is packaged in the cabin Powder; 4.
  • Each spray bag enters and exits the cabin, the sealing method is reliable, which can ensure that the oxygen content is not affected when the spray bag enters and exits the cabin; 5.
  • one spray pack can be used continuously 5 -6 times of milling are even more, which improves the continuity of milling, and greatly saves the use cost of refractory materials; 6.
  • the preparation time of milling is reduced, and even seamless connection can be achieved, thereby making The operation rate of flour milling has increased to above 15h / 24h, and even reached 24h / 24h.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

一种雾化制粉设备,包括用于熔炼钢水的开放式熔炼炉(210)、承接钢水的中间包(221)、喷包(231)和雾化室(240),其中喷包用于将钢水雾化至雾化室,雾化室用于将钢水液滴冷凝成金属粉末。开放式熔炼炉中的钢水含量保持充足,以使中间包可快速承接钢水,进而对喷包进行浇注。进一步地,一方面可以设计多个中间包如两个,使两个中间包交替地从开放式熔炼炉中承接钢水,并对同一个喷包进行连续多包次的浇注;另一方面,可以设计多个喷包,以节省更换喷包的时间。该雾化制粉设备提高了制粉的时间和作业率,并可节省喷包中的耐材。

Description

雾化制粉设备及雾化制粉方法 技术领域
本发明实施例涉及金属制粉技术领域,尤其涉及一种雾化制粉设备及雾化制粉方法。
背景技术
雾化制粉,是指凭借快速运动的流体(雾化介质)的冲击,将金属或合金液体破碎为细小液滴,继之冷凝为固体粉末的粉末制取方法。雾化制粉是生产完全合金化粉末的最好方法,其产品称为预合金粉。这种粉的每个颗粒不仅具有与既定熔融合金完全相同的均匀化学成分,而且由于快速凝固作用而细化了结晶结构,消除了第二相的宏观偏析。
真空气雾化制粉方法是近年来在金属粉末制造行业中发展起来的一种新型工艺。它具有材料不易氧化、金属粉末快淬火、自动化程度较高等优点。具体工艺是金属、合金材料在感应炉中熔化、精炼后,熔化的金属液体倒入保温坩埚中,并进入导流管,此时溶体流被喷嘴喷出的高压气体流所雾化。雾化后的金属液滴在雾化塔中进行凝固、沉降,落入收粉罐中。
图1示出现有的一种雾化设备,在熔炼舱110中配备一台冶炼炉120,首先将配置好的原材料投入冶炼炉120中,接着对熔炼舱110进行抽真空处理,在真空环境中,冶炼炉120用于将原材料(如,废钢、硅,具体可以根据所需生产粉末的种类而进行选择、配比)熔炼成钢水,然后将钢水倒入喷包130中,喷包130包括保温坩埚,导流管和喷嘴,钢水从保温坩埚中流入导流管,然后在流出导流管时被喷嘴喷出的高压气体流雾化至雾化室140中,并在雾化室中进行凝固、沉降,落入粉末收集装置中。需要说明的是,图1中示出的雾化室140仅为雾化室(或称为雾化塔)中与喷包130连接的一部分,图 中并未示出完整的雾化室,此外,与雾化室连接的粉末收集装置等也未示出。
基于图1示出的雾化设备进行雾化制粉,存在以下缺陷:1)制粉作业率低:熔炼炉,例如,可容纳钢水的质量为200-500kg的熔炼炉,从熔化原材料到钢水到温,准备时间90-100min;制粉时间15-30min;24h连续生产制粉时间只有3-4h。2)耐材(即,耐火材料)成本高,每浇注一炉次的钢水即需更换耐材。为了辅助理解,在此对第2)点进行简略的说明:喷包中保温室和导流管的内侧覆盖有耐火材料,通常为坩埚,而耐火材料的使用寿命是有限的,例如,在浇注过程中,对于某种耐火材料,当流经喷包的钢水质量在1800kg以内时,该耐火材料可以起到抵抗钢水的高温而不软化熔倒的作用,假定冶炼炉120中可容纳的钢水质量为300kg,则喷包130实际可以一次性支持6炉次钢水的浇注。但是,在实际制粉过程中,冶炼炉在对喷包130浇注1炉次钢水以后,需要重新准备一炉新的钢水,而当喷包130接收一炉次,也就是300kg钢水以后,因其中导流管的四周不存在加热装置,因此最后流经导流管的钢水会逐渐冷却,而造成钢水挂在导流管的内壁或者堵住导流管,如果在冶炼炉120准备新一炉钢水以后,继续对喷包130浇注,则会严重影响雾化效果,因此,即使耐材的使用寿命未耗尽,也必须对耐材进行更换。
由上可知,需要提供一种合理的方案,可以提高单位时长内的有效制粉时间,进而增加粉末产量。
发明内容
本说明书实施例提供了雾化制粉设备,设计有分别用于熔炼钢水的开放式熔炼炉和承接钢水的中间包,开放式熔炼炉中的钢水含量保持充足,以使中间包可以从其中快速承接钢水,进而对喷包进行浇注。进一步地,一方面,可以设计多个中间包,如两个,使两个中间包可以交替从开放式熔炼炉中承接钢水,并对同一个喷包进行连续多包次的浇注;另一方面,可以设计多个喷包,以节省更换喷包所消耗的时间。
第一方面,提供一种雾化制粉设备,包括:开放式熔炼炉,用于将原材料熔炼为钢水;中间包,用于从所述开放式熔炼炉中承接钢水,并将其所承接钢水的温度保持在预定范围内,以及向喷包中浇注钢水;所述喷包,用于在第一状态下,将浇注至其中的钢水雾化至雾化室内,所述第一状态包括加热至预设温度以及与雾化室连接;所述雾化室,用于将雾化至其中的钢水液滴冷凝成金属粉末。
在一个实施例中,还包括:真空熔炼舱,用于容纳所述中间包和所述喷包;密封导流装置,所述密封导流装置与所述真空熔炼舱的侧壁相连接,用于将所述开放式熔炼炉中的钢水导流至所述中间包中。
进一步地,在一个具体的实施例中,其中所述密封导流装置由内、外两层材料组成,其中内层材料为耐火材料,外层材料为金属材料。
在另一个具体的实施例中,还包括:隔间,所述隔间基于所述真空熔炼舱的侧壁朝向所述真空熔炼舱的舱内或舱外而设置,所述隔间包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板,所述隔间用于所述喷包进出所述真空熔炼舱,以及用于结合抽真空设备,在所述喷包在进出所述真空熔炼舱的过程中,使所述真空熔炼舱内保持低氧状态。
在一个实施例中,所述中间包为具有加热功能的感应炉。
在一个实施例中,所述开放式熔炼炉的容积大于所述中间包的容积。
第二方面,提供一种基于第一方面所提供设备的雾化制粉方法,包括:确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;利用中间包,从所述开放式熔炼炉中承接钢水;确定喷包处于第一状态,利用承接钢水后的中间包向喷包中浇注钢水,以及,控制所述喷包将浇注至其中的钢水雾化至雾化室内;确定中间包中的钢水量低于对应的预设阈值,利用中间包再次从所述开放式熔炼炉中承接钢水,以及,更换所述喷包的耐材;确定更换耐材后的喷包处于第一状态,利用续接钢水后的中间包向所述更换耐材后的喷包中浇注钢水,以及,控制所述更换耐材后的喷包将浇注至其中的钢水雾化至雾化 室内。
在一个实施例中,在所述开放式熔炼炉中钢水量低于对应的预设阈值时,向所述开放式熔炼炉中添加用于熔炼钢水的原材料。
在一个实施例中,所述设备还包括真空熔炼舱和密封导流装置,所述真空熔炼舱容纳有所述中间包和所述喷包,所述密封导流装置与所述真空熔炼舱的侧壁相连接;所述利用中间包,从所述开放式熔炼炉中承接钢水,包括:通过所述密封导流装置,将所述开放式熔炼炉中的钢水导流至所述中间包。
进一步地,在一个具体的实施例中,用于熔炼钢水的原材料包括易氧化材料,所述确定开放式熔炼炉中熔炼的钢水的品质达到预设标准,包括:确定开放式熔炼炉中基于所述易氧化材料以外的原材料所熔炼的钢水的品质达到对应的预设标准;在所述利用中间包,从所述开放式熔炼炉中承接钢水之前,还包括:向所述中间包中投放所述易氧化材料,以使所述中间包在所述真空熔炼舱中将易氧化材料熔化至其承接的钢水中。
在另一个具体的实施例中,所述更换所述喷包的耐材,包括:控制所述喷包出所述真空熔炼舱;在所述真空熔炼舱外,更换所述喷包的耐材。
进一步地,在一个例子中,所述设备还包括:隔间,所述隔间基于所述真空熔炼舱的侧壁朝向所述真空熔炼舱的舱外而设置,所述隔间包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板;所述控制所述喷包出所述真空熔炼舱,包括:控制所述第一挡板移动至开启状态,并控制所述喷包移动至所述隔间内;控制所述第一挡板移动至闭合状态;控制所述第二挡板移动至开启状态,并控制所述喷包移动至所述真空熔炼舱外。
再进一步地,在一个具体的例子中,在所述更换所述喷包的耐材以后,还包括:确定所述第二挡板处于开启状态,并控制所述喷包移动至所述隔间内;控制所述第二挡板移动至闭合状态,并利用抽真空设备对所述第一隔间进行抽真空处理;确定所述隔间内处于低氧状态,并控制所述喷包移动至所 述真空熔炼舱内。
第三方面,提供一种雾化制粉设备,包括:开放式熔炼炉,用于将原材料熔炼为钢水;多个中间包,用于交替从所述开放式熔炼炉中承接钢水,以及持续交替向喷包中浇注钢水;所述喷包,用于在第一状态下,将持续浇注至其中的钢水雾化至雾化室内,所述第一状态包括加热至预设温度以及与雾化室连接;所述雾化室,用于将雾化至其中的钢水液滴冷凝成金属粉末。
在一个实施例中,还包括:真空熔炼舱,用于容纳所述多个中间包和所述喷包;密封导流装置,所述密封导流装置与所述真空熔炼舱的侧壁相连接,用于将所述开放式熔炼炉中的钢水导流至所述多个中间包中。
第四方面,提供一种基于第三方面所提供设备的雾化制粉方法,所述设备中的多个中间包包括第一中间包和第二中间包,所述方法包括:确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;利用所述第一中间包,从所述开放式熔炼炉中承接钢水;确定喷包处于第一状态,利用承接钢水后的第一中间包向所述喷包中浇注钢水,以及,控制所述喷包将浇注至其中的钢水雾化至雾化室内;其中在利用承接钢水后的第一中间包向所述喷包中浇注钢水的过程中,利用所述第二中间包从所述开放式熔炼炉中承接钢水;确定所述第一中间包中的钢水量低于对应的预设阈值,利用承接钢水后的第二中间包继续向所述第一喷包浇注钢水;其中在利用承接钢水后的第二中间包继续向所述第一喷包浇注钢水的过程中,再次利用第一中间包从所述开放式熔炼炉中承接钢水。
在一个实施例中,还包括:在所述喷包雾化预定中间包数的钢水以后,更换所述喷包的耐材;确定更换耐材后的喷包处于第一状态,利用承接有钢水的第一中间包或第二中间包向所述更换耐材后的喷包中浇注钢水,以及,控制所述更换耐材后的喷包将浇注至其中的钢水雾化至雾化室内。
第五方面,提供一种雾化制粉设备,包括:开放式熔炼炉,用于将原材料熔炼为钢水;中间包,用于从所述开放式熔炼炉中承接钢水,并将其所承 接钢水的温度保持在预定范围内,以及向喷包中浇注钢水;多个喷包,所述多个喷包包括第一喷包和第二喷包,所述第一喷包用于在第一状态下,将浇注至其中的钢水雾化至雾化室内,所述第一状态包括加热至预设温度以及与雾化室连接,所述第二喷包用于在所述中间包对所述第一喷包浇注完成后,替换所述第一喷包,以使所述中间包从所述开放式熔炼炉中续接钢水后对所述第二喷包进行浇注;所述雾化室,用于将雾化至其中的钢水液滴冷凝成金属粉末。
在一个实施例中,还包括:真空熔炼舱,用于容纳所述中间包和所述多个喷包;密封导流装置,所述密封导流装置与所述真空熔炼舱的侧壁相连接,用于将所述开放式熔炼炉中的钢水导流至所述中间包中。
进一步地,在一个具体的实施例中,还包括:多个隔间,所述多个隔间具有与所述多个喷包相同的数量,其中各个隔间分别基于所述真空熔炼舱的侧壁而设置,包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板,其中各个隔间分别用于与其对应的各个喷包进出所述真空熔炼舱,以及用于结合抽真空设备,在所述各个喷包在进出所述真空熔炼舱的过程中,使所述真空熔炼舱内保持低氧状态。
在另一个具体的实施例中,还包括:环形轨道,所述多个喷包基于所述环形轨道等间距固定设置,所述环形轨道用于使所述多个喷包中的各个喷包逐个移动至浇注位,以接受所述中间包的浇注。
在又一个具体的实施例中,还包括:环形轨道,所述多个喷包基于所述环形轨道等间距可拆卸设置,所述环形轨道用于使所述多个喷包中的各个喷包旋转至浇注位,以接受所述中间包的浇注,以及使所述各个喷包旋转至出舱位,以通过隔间出所述真空熔炼舱;所述隔间,基于所述真空熔炼舱的侧壁而设置,包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板,所述隔间用于所述各个喷包进出所述真空熔炼舱,以及用于结合抽真空设备,在所述各个喷包在进出所述真空熔炼舱的过程中,使 所述真空熔炼舱内保持低氧状态。
第六方面,一种基于第五方面所提供设备的雾化制粉方法,包括:确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;利用中间包,从所述开放式熔炼炉中承接钢水;确定第一喷包处于第一状态,利用承接钢水后的中间包向所述第一喷包中浇注钢水,以及,控制所述第一喷包将浇注至其中的钢水雾化至雾化室内;确定所述中间包中的钢水量低于对应的预设阈值,利用所述中间包再次从所述开放式熔炼炉中承接钢水,以及,利用第二喷包对所述第一喷包进行替换;确定第二喷包处于第一状态,利用续接钢水后的中间包向第二喷包中浇注钢水,以及,控制所述第二喷包将浇注至其中的钢水雾化至雾化室内。
在一个实施例中,所述设备还包括真空熔炼舱和密封导流装置,所述真空熔炼舱容纳有所述中间包和至少一个喷包,所述密封导流装置与所述真空熔炼舱的侧壁相连接;所述利用中间包,从所述开放式熔炼炉中承接钢水,包括:通过所述密封导流装置,将所述开放式熔炼炉中的钢水导流至所述中间包。
进一步地,一方面,在一个具体的实施例中,在所述确定所述中间包中的钢水量低于对应的预设阈值之后,还包括:控制所述第一喷包出所述真空熔炼舱;在所述真空熔炼舱外,更换所述第一喷包的耐材。
更进一步地,在一个例子中,所述设备还包括多个隔间,所述多个隔间具有与所述多个喷包相同的数量,其中各个隔间分别基于所述真空熔炼舱的侧壁而朝向所述真空熔炼舱的舱外而设置,所述各个隔间包括属于所述侧壁的可移动的第一挡板和与所述第一挡板竖直相对的可移动的第二挡板;所述控制所述第一喷包出所述真空熔炼舱,包括:控制所述第一挡板移动至开启状态,并控制所述喷包移动至所述隔间内;控制所述第一挡板移动至闭合状态;控制所述第二挡板移动至开启状态,并控制所述喷包移动至所述真空熔炼舱外。
另一方面,在一个具体的实施例中,所述设备还包括环形轨道,所述环形轨道位于所述真空熔炼舱内,所述多个喷包基于所述环形轨道等间距固定设置;所述利用第二喷包对所述第一喷包进行替换,包括:控制所述环形轨道旋转,以使所述第二喷包移动至浇注位。
更进一步地,在一个例子中,还包括:在控制多个喷包依次接受浇注以后,开启所述真空熔炼舱,以对所述多个喷包的耐材进行更换。
又一方面,在一个具体的实施例中,所述设备还包括环形轨道和隔间,所述环形轨道位于所述真空熔炼舱内,所述多个喷包基于所述环形轨道等间距可拆卸设置,所述隔间基于所述真空熔炼舱的侧壁朝向所述真空熔炼舱的舱外而设置,包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板;所述利用第二喷包对所述第一喷包进行替换,包括:控制所述环形轨道旋转,以使所述第二喷包移动至浇注位以及所述第一喷包移动至出舱位;在所述第一喷包移动至出舱位以后,还包括:控制所述第一挡板移动至开启状态,并控制所述第一喷包移动至所述隔间内;控制所述第一挡板移动至闭合状态;控制所述第二挡板移动至开启状态,并控制所述第一喷包移动至所述真空熔炼舱外,以更换所述第一喷包的耐材。
更进一步地,在一个例子中,在更换所述第一喷包的耐材以后,还包括:确定所述第二挡板处于开启状态,并控制所述第一喷包移动至所述隔间内;控制所述第二挡板移动至闭合状态,并利用抽真空设备对所述第一隔间进行抽真空处理;确定所述隔间内处于低氧状态,并控制所述第一喷包移动至所述环形轨道上。
由上可知,采用本说明书实施例提供的雾化制粉设备和雾化制粉方法,具有以下有益效果:1.舱外开放式熔炼炉承担熔炼钢水作用,同时在熔炼过程中还可保证钢水纯净度(如,进行静置处理等),熔炼钢水和整体制粉流程不冲突;2.舱内感应炉不用冶炼,并且随时可以承接纯净钢水,从钢水浇注完到下一炉钢水准备好,只用10min左右,由此大大节约制粉准备时间; 3.当前喷包制粉结束后,其他喷包中有一个已经预热到温准备好,舱内中包接完钢水后即可进行制粉;4.每个喷包进出舱体,密封方式可靠,能保证在喷包进出舱体不影响其氧含量;5.当舱内使用两个中包时,同时一个喷包能连续使用5-6炉次的制粉甚至更多,如此提高了制粉的连续性,且大大节约了耐材的使用成本;6.制粉的准备时间减少,甚至可以做到无缝衔接,由此使制粉的作业率提升到15h/24h以上,甚至达到24h/24h。
附图说明
图1为现有的雾化设备的示意图;
图2示出根据一个实施例的雾化制粉设备;
图3示出根据另一个实施例的雾化制粉设备;
图4示出根据又一个实施例的雾化制粉设备;
图5示出根据一个实施例的基于图2中设备的雾化制粉方法流程图;
图6示出根据一个实施例的雾化制粉设备;
图7示出根据一个实施例的基于图6中设备的雾化制粉方法流程图;
图8示出根据一个实施例的雾化制粉设备;
图9示出根据另一个实施例的雾化制粉设备;
图10示出根据又一个实施例的雾化制粉设备;
图11示出根据再一个实施例的雾化制粉设备;
图12示出根据一个实施例的基于图8中设备的雾化制粉方法流程图;
图13示出根据一个实施例的雾化制粉设备;
图14示出根据另一个实施例的雾化制粉设备。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本说明书实施例提出一种雾化制粉设备,设计开放式熔炼炉和至中间包,不同于图1中示出的冶炼炉120,在一种实施例中,如图2所示,开放式熔炼炉210在熔炼钢水以后,将钢水倒入中间包221中,再由中间包221将钢水浇注至喷包231中。因可以向开放式熔炼炉中不断的加入原材料以保证其中的钢水充足,如此,在中间包221中的钢水全部倾倒至喷包231中以后,可以直接从开放式熔炼炉210中续接钢水,续接钢水的过程可以控制在10min以内完成,相比于图1中冶炼炉120需要按炉次准备钢水,且每炉次耗时90-100min而言,大幅度降低了钢水的准备时间。需要说明的是,本说明书提供的雾化制粉设备,既可以用于气雾化制粉,也可以用于水雾化制粉,也就是说,对雾化介质不作限定。
下面,对本说明书实施例提供的雾化制粉设备和基于雾化制粉设备进行雾化制粉的方法进行详细介绍。具体如下:
图2示出根据一个实施例的雾化制粉设备,其中可以包括开放式熔炼炉210、中间包221、喷包231和雾化室240。需要说明的是,图2中未示出开放式熔炼炉210和中间包221的支撑装置,仅示例性地展示出开放式熔炼炉210、中间包221、喷包231和雾化室240的相对位置。
具体地,其中开放式熔炼炉210用于将原材料熔炼为钢水,中间包221用于从开放式熔炼炉210中承接钢水,并将所承接钢水的温度保持在预定范围内,以及向喷包中浇注钢水。进一步地,喷包231用于在第一状态下,将浇注至其中的钢水雾化至雾化室内,其中喷包的第一状态是指加热至预设温度以及与雾化室连接。且雾化室240用于将雾化至其中的钢水,也就是钢水液滴,冷凝成金属粉末。
在一个实施例中,其中开放式熔炼炉210对钢水的容量V1大于中间包对钢水的容量V2。在一个具体的实施例中,V1与V2的比值大于等于2。在一个例子中,开放式熔炼炉210可以用于熔炼1000kg的钢水,而中间包221可以用于承接400kg的钢水。
在一个实施例中,其中中间包221可以为具有加热作用的感应炉。
在一个实施例中,如图3所示,雾化制粉设备中还可以包括真空熔炼舱250,用于容纳中间包221和喷包231,且开放式熔炼炉210是设置在真空熔炼舱250以外的。需要说明的是,设置真空熔炼舱的目的在于营造低氧气氛,以防止钢水在浇注的过程中发生氧化,尤其是对于钢水中含有的高活性金属,如Al等,而当熔炼的钢水中不包括高活性金属时,也就是不需要考虑钢水被氧化的问题时,则可以不设置真空熔炼舱,或者说,不对已设置的熔炼舱进行抽真空处理。进一步地,雾化制粉设备中还可以包括密封导流装置,其与真空熔炼舱250的侧壁相连接,用于将开放式熔炼炉210中的钢水导流至中间包221中。在一个具体的实施例中,密封导流装置由内、外两层材料组成,其中内层材料为耐火材料,如氮化硼和氧化锆等,外层材料为金属材料如钢材等。在另一个具体的实施例中,密封导流装置可以为密封导流槽或密封导流管。
进一步地,在一个具体的实施例中,雾化制粉设备设置有隔间,此隔间基于真空熔炼舱的侧壁朝向真空熔炼舱的舱内或舱外而设置,用于喷包进出真空熔炼舱,以及用于结合抽真空设备,在喷包在进出真空熔炼舱的过程中,使真空熔炼舱内保持低氧状态。在一个例子中,如图4所示,隔间270朝向真空熔炼舱外而设置,其包括属于真空熔炼舱侧壁的第一挡板271和与第一挡板竖直相对的可移动的第二挡板272。
基于以上实施例提供的雾化制粉设备,本说明书还提供一种雾化制粉方法。图5示出根据一个实施例的基于图2中设备的雾化制粉方法流程图,如图5所示,所述方法具体包括以下步骤:步骤S510,确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;步骤S520,利用中间包,从开放式熔炼炉中承接钢水;步骤S530,确定喷包处于第一状态,利用承接钢水后的中间包向喷包中浇注钢水,以及,控制喷包将浇注至其中的钢水雾化至雾化室内;步骤S540,确定中间包中的钢水量低于对应的预设阈值,利用中间包再次从所 述开放式熔炼炉中承接钢水,以及,更换所述喷包的耐材;步骤S550,确定更换耐材后的喷包处于第一状态,利用续接钢水后的中间包向更换耐材后的喷包中浇注钢水,以及,控制更换耐材后的喷包将浇注至其中的钢水雾化至雾化室内。
首先,在步骤S510,确定开放式熔炼炉中所熔炼钢水的品质达到预设标准。
基于生产工艺,将需要制备的金属粉末所对应的原材料投放至图2中示出的开放式熔炼炉210中,根据针对钢水的成分、温度等监测体系,确定其中熔炼的钢水是否达到预设标准。
在以上确定出钢水的品质达到预设标准的情况下,执行步骤S520,利用中间包,从开放式熔炼炉中承接钢水。
在一个实施例中,可以控制中间包221从开放式熔炼炉210中承接钢水,直至检测到中间包221中的钢水达到预定液位,可以理解为中间包221中接满钢水。
接着,步骤S530,确定喷包处于第一状态,利用承接钢水后的中间包向喷包中浇注钢水,以及,控制喷包将浇注至其中的钢水雾化至雾化室内。
其中,第一状态是指,喷包与雾化室连接,也就是位于接受浇注的位置(以下将接受浇注的位置简称为浇注位),且喷包预热至预定温度。可以利用接满钢水的中间包221向喷包231中浇注钢水,同时,控制喷包231将浇注至其中的钢水雾化至雾化室内,以使雾化后的钢水液滴在雾化室240中冷凝成金属粉末。
然后,在步骤S540,确定中间包中的钢水量低于对应的预设阈值,利用中间包再次从开放式熔炼炉中承接钢水,以及,更换喷包的耐材。
其中,确定中间包中的钢水量低于对应的预设阈值,目的在于确定中间包中的钢水已经倾倒完毕,其中钢水量可以是指钢水的质量或体积,对应的而预设阈值可以为预设的质量阈值或预设的体积阈值。此外,判别钢水是否 已经倾倒完毕的判别条件还可以为,中间包相对于水平面的倾斜角度是否达到对应的预设角度,如,5°或0°等。
进一步地,在确定中间包221中的钢水已经倾倒完毕后,利用中间包221再次从开放式熔炼炉210中承接钢水,以及,更换喷包231中的耐材。
接着,在步骤S550,确定更换耐材后的喷包处于第一状态,利用续接钢水后的中间包向更换耐材后的喷包中浇注钢水,以及,控制更换耐材后的喷包将浇注至其中的钢水雾化至雾化室内。
根据一个例子,对于一个可容纳钢水的质量为300kg的中间包,其浇注完毕的时间通常为25min左右,其接满钢水的时间通常为10min左右,而更换喷包中的耐材、以及使更换耐材后的喷包处于第一状态的时间通常为35min左右,由此,24h连续生产制粉时间可以提高至10h。
以上,通过设计开放式熔炼炉210和中间包221,且保持开放式熔炼炉210中的钢水充足,使中间包221中的钢水在倾倒完毕以后,可以立即从开放式熔炼炉210中续接钢水,从而大幅度降低了钢水的准备时间,进而提高了制粉作业率,制粉时间可以提高至10h左右。
进一步地,在一个实施例中,如图3所示,雾化制粉设备还可以包括真空熔炼舱250和密封导流装置。关于真空熔炼舱250的设置,考虑到当熔炼具有高活性金属成分的钢水时,如果在开放式熔炼舱210中加入高活性材料(包括易氧化金属元素的原材料),如Al,Ti等,可能会导致该成分的氧化,因此,可以在开放式熔炼炉210中熔炼除高活性材料以外的原材料,并在位于中空熔炼舱250内的中间包221中投放高活性材料,中间包221可以利用从开放式熔炼炉210中承接的钢水,熔化高活性材料,实现对钢水成分的进一步调整。相应地,前述步骤S510包括:确定开放式熔炼炉210中基于所述易氧化材料以外的原材料所熔炼的钢水的品质达到对应的预设标准;以及,在步骤S520之前包括:向中间包中投放易氧化材料,如此,在步骤S520中 中间包221承接钢水的过程中,易氧化材料将熔化在承接的钢水中。
另一方面,在步骤S520中,可以通过密封导流装置,将开放式熔炼炉210中的钢水导流至中间包221中。在一个具体的实施例中,密封导流装置可以包括图3中示出的密封接口261和密封导流管262。相应地,在以上步骤S520中,开放式熔炼炉210将其出钢口211插接至密封接口261中,然后由密封导流管262将钢水导流至中间包221中。
更进一步地,雾化制粉设备还可以包括隔间,其中隔间基于真空熔炼舱的侧壁朝向真空熔炼舱内或舱外而设置,用于喷包进出真空熔炼舱,以及用于结合抽真空设备,在所述喷包在进出真空熔炼舱的过程中,使舱内保持低氧状态。下面结合图4示出的隔间270,对喷包231出真空熔炼舱以更换耐火材料,以及更换耐材以后进入真空熔炼舱以接受浇注的过程进行说明。
首先,控制喷包231出真空熔炼舱250可以包括步骤:先控制所述第一挡板271移动至开启状态,并控制喷包231移动至隔间270内;然后控制第一挡板271移动至闭合状态;再控制第二挡板272移动至开启状态,并控制喷包231移动至真空熔炼舱250外。
再者,在喷包231在真空熔炼舱250外完成耐材的更换以后,控制喷包231进入真空熔炼舱250,可以包括步骤:先确定第二挡板272处于开启状态,并控制喷包231移动至隔间270内;接着控制第二挡板272移动至闭合状态,并利用抽真空设备对隔间270进行抽真空处理;再确定隔间270内处于低氧状态,并控制喷包231移动至真空熔炼舱250内。
由上,通过设置隔间,可以使喷包进出舱体的过程中,不影响真空熔炼舱中的氧含量,也就是保持低氧状态,进而使舱内的钢水不被氧化。
根据本说明书提供的另一方面的实施例,在图2示出的雾化设备的基础上,还可以增设中间包。图6示出根据一个实施例的雾化制粉设备,其中可以包括开放式熔炼炉210,多个中间包,如中间包221和中间包222,以及喷 包231。具体地,开放式熔炼炉210用于将原材料熔炼为钢水;多个中间包用于交替从所述开放式熔炼炉中承接钢水,以及持续交替向喷包中浇注钢水;喷包231用于在第一状态下,将持续浇注至其中的钢水雾化至雾化室内,其中第一状态包括加热至预设温度以及与雾化室连接;雾化室240用于将雾化至其中的钢水液滴冷凝成金属粉末。
在一个实施例中,如图6所示,雾化制粉设备还可以包括真空熔炼舱250和密封导流装置。其中,真空熔炼舱250用于容纳中间包221、中间包222和喷包231,密封导流装置与真空熔炼舱250的侧壁相连接,用于将开放式熔炼炉210中的钢水导流至多个中间包中。在一个例子中,密封导流装置可以包括密封接口261和密封导流管262。
基于以上实施例提供的雾化制粉设备,本说明书还提供一种雾化制粉方法。图7示出根据一个实施例的基于图6中设备的雾化制粉方法流程图,如图7所示,所述方法具体包括以下步骤:步骤S710,确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;步骤S720,利用第一中间包,从开放式熔炼炉中承接钢水;步骤S730,确定喷包处于第一状态,利用承接钢水后的第一中间包向喷包中浇注钢水,以及,控制喷包将浇注至其中的钢水雾化至雾化室内;其中在利用承接钢水后的第一中间包向喷包中浇注钢水的过程中,利用第二中间包从开放式熔炼炉中承接钢水;步骤S740,确定第一中间包中的钢水量低于对应的预设阈值,利用承接钢水后的第二中间包继续向喷包浇注钢水;其中在利用承接钢水后的第二中间包继续向喷包浇注钢水的过程中,再次利用第一中间包从开放式熔炼炉中承接钢水。具体如下:
在步骤S710,确定开放式熔炼炉中所熔炼钢水的品质达到预设标准。
需要说明的是,对步骤S710的描述可以参见前述对步骤S510的描述,在此不作赘述。
步骤S720,利用第一中间包,从开放式熔炼炉中承接钢水。
需要说明的是,对步骤S720的描述可以参见前述对步骤S520的描述, 在此不作赘述。
步骤S730,确定喷包处于第一状态,利用承接钢水后的第一中间包向喷包中浇注钢水,以及,控制喷包将浇注至其中的钢水雾化至雾化室内;其中在利用承接钢水后的第一中间包向喷包中浇注钢水的过程中,利用第二中间包从开放式熔炼炉中承接钢水。
在一个实施例中,在利用中间包221向喷包231浇注钢水的过程中,利用中间包222从开放式熔炼炉210中承接钢水,因一个中间包将其中的钢水全部浇注完毕的时间通常小于其接满钢水的时间,如此,可以在中间包221中的钢水倾倒完毕之前,使中间包222中接满钢水。
此外,需要说明的是,对步骤S730的描述还可以参见前述对步骤S530的描述,在此不作赘述。
在步骤S740,确定第一中间包中的钢水量低于对应的预设阈值,利用承接钢水后的第二中间包继续向喷包浇注钢水;其中在利用承接钢水后的第二中间包继续向喷包浇注钢水的过程中,再次利用第一中间包从开放式熔炼炉中承接钢水。
在一个实施例中,在中间包221中的钢水倾倒完毕后,利用已接满钢水的中间包222接替中间包221,向喷包231中继续浇注钢水,同时利用中间包221从开放式熔炼炉210中续接钢水。如此,由中间包221和中间包222交替从开放式熔炼炉250中承接钢水,并持续交替地向喷包231中浇注钢水,可以保证喷包231中的钢水不断流,直到喷包231中的耐材达到使用寿命,即接受预定中间包数钢水的浇注以后,再对喷包231进行更换,进而既提高了制粉的时间和作业率,又节省了喷包中的耐材。
根据一个例子,对于两个可容纳钢水的质量为300kg的中间包,其中任一个浇注完毕的时间通常为25min左右,接满钢水的时间通常为10min左右,一个喷包通常可以连续接受5-6个中间包数的钢水,而更换喷包中的耐材、以及使更换耐材后的喷包处于第一状态的时间通常为35min左右,由此,24h 连续生产制粉时间可以提高至18-20h。
以上,通过设计开放式熔炼炉210和中间包221,且保持开放式熔炼炉210中的钢水充足,使中间包221和中间包222可以交替从开放式熔炼炉210中的承接钢水,并保持对喷包231的连续浇注,从而大幅度降低了钢水的准备时间,并在对喷包231连续浇注预定中间包数的钢水以后再对喷包231中的耐材进行更换,进而在提高制粉的时间和作业率的同时,节省了喷包耐材。
根据本说明书提供的又一方面的实施例,在图2示出的雾化设备的基础上,还可以增设喷包。图8示出根据一个实施例的雾化制粉设备,其中可以包括开放式熔炼炉210,中间包221,多个喷包,如喷包231和喷包232,和雾化室(图中未示出)。具体地,开放式熔炼炉210用于将原材料熔炼为钢水;中间包221用于从开放式熔炼炉210中承接钢水,并将其所承接钢水的温度保持在预定范围内,以及向喷包中浇注钢水;喷包231用于在第一状态下,将浇注至其中的钢水雾化至雾化室内,其中第一状态包括加热至预设温度以及与雾化室连接,喷包232用于在中间包221对喷包231浇注完成后,替换喷包231,以使中间包221从开放式熔炼炉210中续接钢水后对第二喷包210进行浇注;雾化室用于将雾化至其中的钢水液滴冷凝成金属粉末。
在一个实施例中,如图8所示,雾化制粉设备还可以包括真空熔炼舱250和密封导流装置。其中,真空熔炼舱250用于容纳中间包221、喷包231和喷包232,密封导流装置与真空熔炼舱250的侧壁相连接,用于将开放式熔炼炉210中的钢水导流至中间包221中。
进一步地,在一个具体的实施例中,雾化制粉设备还设置有多个隔间,其中各个隔间分别基于真空熔炼舱的侧壁而设置,包括属于侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板,其中各个隔间分别用于与其对应的各个喷包进出真空熔炼舱,以及用于结合抽真空设备,在各个喷包在进出真空熔炼舱的过程中,使真空熔炼舱内保持低氧状态。在一个例 子中,如图9所示,可以设置隔间270和隔间275,分别用于喷包231和喷包232进入真空熔炼舱250。如此,多个喷包中的各个喷包具有各自的移动轨道和隔间,可以加快对喷包中耐材的更换速度,进而使处于浇注位的喷包接受浇注完毕以后,马上可以使用其它的喷包对其进行替换。
在另一个具体的实施例中,雾化制粉设备还设置有环形轨道,多个喷包基于环形轨道等间距固定设置,其中环形轨道用于使多个喷包中的各个喷包逐个移动至浇注位,以接受所述中间包的浇注。在一个例子中,如图10所示,其中包括环形轨道290,以及被等间距固定在环形轨道290上的喷包231、喷包232、喷包233和喷包234。
在还一个具体的实施例中,雾化制粉设备设置有环形轨道和隔间。其中多个喷包基于环形轨道等间距可拆卸设置,环形轨道用于使多个喷包中的各个喷包旋转至浇注位,以接受中间包的浇注,以及使各个喷包旋转至出舱位,以通过隔间出真空熔炼舱。而隔间基于真空熔炼舱的侧壁而设置,包括属于侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板,所述隔间用于各个喷包进出真空熔炼舱,以及用于结合抽真空设备,在各个喷包在进出真空熔炼舱的过程中,使真空熔炼舱内保持低氧状态。在一个例子中,如图11所示,其中包括隔间278,环形轨道295,以及被等间距可拆卸地设置在环形轨道290上的喷包231、喷包232、喷包233和喷包234。
基于以上实施例提供的雾化制粉设备,本说明书还提供一种雾化制粉方法。图12示出根据一个实施例的基于图8中设备的雾化制粉方法流程图,如图7所示,所述方法具体包括以下步骤:步骤S1210,确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;步骤S1220,利用中间包,从开放式熔炼炉中承接钢水;步骤S1230,确定第一喷包处于第一状态,利用承接钢水后的中间包向第一喷包中浇注钢水,以及,控制一喷包将浇注至其中的钢水雾化至雾化室内;步骤S1240,确定中间包中的钢水量低于对应的预设阈值,利用中间包再次从开放式熔炼炉中承接钢水,以及,利用第二喷包对第一喷包进行替 换;步骤S1250,确定第二喷包处于第一状态,利用续接钢水后的中间包向第二喷包中浇注钢水,以及,控制第二喷包将浇注至其中的钢水雾化至雾化室内。
首先,在步骤S1210,确定开放式熔炼炉中所熔炼钢水的品质达到预设标准。以及,在步骤S1220,利用中间包,从开放式熔炼炉中承接钢水。接着,在步骤S1230,确定第一喷包处于第一状态,利用承接钢水后的中间包向第一喷包中浇注钢水,以及,控制一喷包将浇注至其中的钢水雾化至雾化室内。
需要说明的是,对步骤S1210、步骤S1220和步骤S1230的描述可以分别参见前述对步骤S510、步骤S520和步骤S530的描述的描述,在此不作赘述。
然后,在步骤S1240,确定中间包中的钢水量低于对应的预设阈值,利用中间包再次从开放式熔炼炉中承接钢水,以及,利用第二喷包对第一喷包进行替换。接着,在步骤S1250,确定第二喷包处于第一状态,利用续接钢水后的中间包向第二喷包中浇注钢水,以及,控制第二喷包将浇注至其中的钢水雾化至雾化室内。
由此可知,不同于只有一个喷包时需要等待喷包更换耐材以及重新预热至预定温度,在本步骤中,在第一喷包被浇注完毕以后,可以马上被替换为第二喷包,进而缩短了喷包的准备时间。进一步地,在第一喷包被替换以后,可以更换第一喷包的耐材并对第一喷包进行加热,以在第二喷包被浇注完毕以后,用更换耐材后的第一喷包及时替换第二喷包。
根据一个例子,对于一个可容纳钢水的质量为300kg的中间包,其浇注完毕的时间通常为25min左右,接满钢水的时间通常为10min左右,将位于浇注位的第一喷包拆卸下来,替换为第二喷包的时间通常为15min左右,由此,在使用两个喷包的情况下,24h连续生产制粉时间可以提高至15h左右,进一步地,为了充分保证喷包更换的连续性,还可以设置三个或三个以上的喷包。
进一步地,在一个实施例中,如图12所示,雾化制粉设备还可以包括真空熔炼舱250和密封导流装置。其中,真空熔炼舱250用于容纳中间包221、喷包231和喷包232,密封导流装置与真空熔炼舱250的侧壁相连接,用于将开放式熔炼炉210中的钢水导流至中间包221中。
更进一步地,在一个具体的实施例中,雾化制粉设备还设置有多个隔间。如图9所示,可以设置隔间270和隔间275,分别用于喷包231和喷包232进入真空熔炼舱250。此处各个喷包具有各自的移动轨道和用于出入真空熔炼舱的轨道,可以保证各自的移动、耐材的更换互不干扰,进而加快喷包的准备速度,以保证喷包更换的连续性,此外,关于喷包进出隔间的描述,可以参见前述实施例中的相关描述,在此不作赘述。
在另一个具体的实施例中,雾化制粉设备还设置有环形轨道,多个喷包基于环形轨道等间距固定设置,其中环形轨道用于使多个喷包中的各个喷包逐个移动至浇注位,以接受所述中间包的浇注。
相应地,在步骤S1240中,利用第二喷包对第一喷包进行替换可以包括:控制环形轨道旋转,以使第二喷包移动至浇注位。在一个例子中,如图10所示,在喷包231接受浇注完毕以后,可以控制环形轨道290顺时针旋转,以使喷包232移动至浇注位。如此,第一,因喷包使固定设置在轨道上的,不用拆卸,故而可以延长喷包的使用寿命;第二,多个喷包旋转操作,占用空间小,机动性好,操作方便;第三,如果喷包不具备制粉顺行条件,可以立即更换下一个,更换使劲按可以控制在1min以内;第四,多个喷包都固定在舱体内,在多个喷包制粉过程中,可以保证在舱内密封,由此可降低舱体的氧含量;第五,多个喷包可以沿着环形轨道依次旋转至浇注位,以接受中间包的浇注,直到多个喷包全部喷完,再打开真空熔炼舱,统一进行耐材的更换和中间包炉衬的清理,如此,大幅度降低了喷包的准备时间,在多个喷包的数量为4个时,制粉作业率可以达到16h/24h以上。
在又一个具体的实施例中,雾化制粉设备设置有环形轨道和隔间。其中 多个喷包基于环形轨道等间距可拆卸设置,环形轨道用于使多个喷包中的各个喷包旋转至浇注位,以接受中间包的浇注,以及使各个喷包旋转至出舱位,以通过隔间出真空熔炼舱。
相应地,在步骤S1240中,利用第二喷包对第一喷包进行替换可以包括:控制环形轨道旋转,以使第二喷包移动至浇注位以及使第一喷包移动至出舱位。进一步地,在第一喷包移动至出舱位以后,还包括:控制第一喷包出真空熔炼舱,以进行耐材的更换,以及后续控制第一喷包进入真空熔炼舱内。在一个例子中,如图11所示,在喷包231接受浇注完毕以后,可以控制环形轨道290顺时针旋转,以使喷包233移动至浇注位,同时使喷包231移动至出舱位,也就是使喷包233和喷包231交换位置,然后,在喷包233接受浇注的同时,控制喷包231通过隔间278移动至舱外,以更换喷包231的耐材,并在更换耐材后回到舱内。需要说明的是,本实施例中还可以设置多个隔间,以便于喷包出舱进行耐材的更换。如此,可以保证喷包的连续更换,且因设置有隔间,不需要打开真空熔炼舱以统一进行耐材的更换和中间包炉衬的清理,故而可以进一步将制粉作业率提高到17h以上。
以上,通过设置多个喷包,可以减少喷包的准备时长,进一步地,通过设置环形轨道,可以加快喷包的更换速度,以保证喷包更换的连续性,进而提高制粉作业率。
以上,在图2-图4中示出了包括一个开放式熔炼炉,一个中间包和一个喷包的雾化制粉设备,在图6中示出了包括一个开放式熔炼炉、多个中间包和一个喷包的雾化制粉设备,在图8-图11中示出了包括一个开放式熔炼炉、一个中间包和多个喷包的雾化制粉设备。需要说明的是,本说明书实施例还提供包括一个开放式熔炼炉,多个中间包和多个喷包的雾化制粉设备,下面结合图13和图14进行示例性说明。
如图13所示,其中包括开放式熔炼炉210,中间包221和中间包222, 喷包231、喷包232、喷包233和喷包234,真空熔炼舱250,以及环形轨道290。基于图13示出的设备,在一个例子中,雾化制粉可以包括如下步骤:首先,利用中间包221从开放式熔炼炉210中承接钢水;接着,利用中间包221向喷包231浇注钢水,同时,利用中间包222从开放式熔炼炉210中承接钢水;然后,在中间包221中钢水量低于预设的阈值时,使用中间包222继续向喷包231浇注钢水。如此,使用中间包221和中间包222交替向喷包231中浇注钢水,以增加持续制粉的时间,同时节省喷包的耐材。进一步地,在喷包231喷完预定中间包数的钢水以后,控制环形轨道290顺时针旋转,以使喷包232继续接受中间包221或中间包222的浇注,如此直到喷包231、喷包232、喷包233和喷包234均接受预定中间包数的钢水浇注以后,打开真空熔炼舱,统一进行耐材的更换和中间包炉衬的清理,如此,大幅度降低了钢水和喷包的准备时间,使制粉作业率可以高达20h/24h以上。
如图14所示,其中包括开放式熔炼炉210,中间包221和中间包222,喷包231、喷包232、喷包233和喷包234,真空熔炼舱250,环形轨道290,以及隔间278。基于图13示出的设备,在一个例子中,雾化制粉可以包括如下步骤:首先,利用中间包221从开放式熔炼炉210中承接钢水;接着,利用中间包221向喷包231浇注钢水,同时,利用中间包222从开放式熔炼炉210中承接钢水;然后,在中间包221中钢水量低于预设的阈值时,使用中间包222继续向喷包231浇注钢水。如此,使用中间包221和中间包222交替向喷包231中浇注钢水,以增加持续制粉的时间,同时节省喷包的耐材。进一步地,在喷包231喷完预定中间包数的钢水以后,控制环形轨道290逆时针旋转180°,以使喷包233继续接受中间包221或中间包222的浇注,同时,控制喷包231通过隔间278出真空熔炼舱250以更换耐材,并在更换耐材以后返回真空熔炼舱250。如此,喷包231、喷包232、喷包233和喷包234均可以接受预定中间包数的钢水浇注,同时可以在某个喷包接受浇注的过程中,完成对其他喷包耐材的更换,进而实现了不间断的制粉,使制粉作业率几乎 可以达到24h/24h。
综上可知,采用本说明书实施例提供的雾化制粉设备和雾化制粉方法,具有以下有益效果:1.舱外开放式熔炼炉承担熔炼钢水作用,同时在熔炼过程中还可保证钢水纯净度(如,进行静置处理等),熔炼钢水和整体制粉流程不冲突;2.舱内感应炉不用冶炼,并且随时可以承接纯净钢水,从钢水浇注完到下一炉钢水准备好,只用10min左右,由此大大节约制粉准备时间;3.当前喷包制粉结束后,其他喷包中有一个已经预热到温准备好,舱内中包接完钢水后即可进行制粉;4.每个喷包进出舱体,密封方式可靠,能保证在喷包进出舱体不影响其氧含量;5.当舱内使用两个中包时,同时一个喷包能连续使用5-6炉次的制粉甚至更多,如此提高了制粉的连续性,且大大节约了耐材的使用成本;6.制粉的准备时间减少,甚至可以做到无缝衔接,由此使制粉的作业率提升到15h/24h以上,甚至达到24h/24h。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (32)

  1. 一种雾化制粉设备,包括:
    开放式熔炼炉,用于将原材料熔炼为钢水;
    中间包,用于从所述开放式熔炼炉中承接钢水,并将其所承接钢水的温度保持在预定范围内,以及向喷包中浇注钢水;
    所述喷包,用于在第一状态下,将浇注至其中的钢水雾化至雾化室内,所述第一状态包括加热至预设温度以及与雾化室连接;
    所述雾化室,用于将雾化至其中的钢水液滴冷凝成金属粉末。
  2. 根据权利要求1所述的设备,还包括:
    真空熔炼舱,用于容纳所述中间包和所述喷包;
    密封导流装置,所述密封导流装置与所述真空熔炼舱的侧壁相连接,用于将所述开放式熔炼炉中的钢水导流至所述中间包中。
  3. 根据权利要求2所述的设备,其中所述密封导流装置至少包括内层材料和外层材料,其中内层材料为耐火材料,外层材料为金属材料。
  4. 根据权利要求2所述的设备,还包括:
    隔间,所述隔间基于所述真空熔炼舱的侧壁朝向所述真空熔炼舱的舱内或舱外而设置,所述隔间包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板,所述隔间用于所述喷包进出所述真空熔炼舱,以及用于结合抽真空设备,在所述喷包在进出所述真空熔炼舱的过程中,使所述真空熔炼舱内保持低氧状态。
  5. 根据权利要求1所述的设备,其中,所述中间包为具有加热功能的感应炉。
  6. 根据权利要求1所述的设备,其中,所述开放式熔炼炉的容积大于所述中间包的容积。
  7. 一种基于如权利要求1所述设备的雾化制粉方法,包括:
    确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;
    利用中间包,从所述开放式熔炼炉中承接钢水;
    确定喷包处于第一状态,利用承接钢水后的中间包向喷包中浇注钢水,以及,控制所述喷包将浇注至其中的钢水雾化至雾化室内。
  8. 根据权利要求7所述的方法,在所述控制所述喷包将浇注至其中的钢水雾化至雾化室内之后,还包括:
    确定中间包中的钢水量低于对应的预设阈值,利用中间包再次从所述开放式熔炼炉中承接钢水,以及,更换所述喷包的耐材;
    确定更换耐材后的喷包处于第一状态,利用续接钢水后的中间包向所述更换耐材后的喷包中浇注钢水,以及,控制所述更换耐材后的喷包将浇注至其中的钢水雾化至雾化室内。
  9. 根据权利要求7所述的方法,还包括,在所述开放式熔炼炉中钢水量低于对应的预设阈值时,向所述开放式熔炼炉中添加用于熔炼钢水的原材料。
  10. 根据权利要求7所述的方法,其中,所述设备还包括真空熔炼舱和密封导流装置,所述真空熔炼舱用于容纳所述中间包和所述喷包,所述密封导流装置与所述真空熔炼舱的侧壁相连接;
    所述利用中间包,从所述开放式熔炼炉中承接钢水,包括:
    通过所述密封导流装置,将所述开放式熔炼炉中的钢水导流至所述中间包。
  11. 根据权利要求10所述的方法,其中,用于熔炼钢水的原材料包括易氧化材料,所述确定开放式熔炼炉中熔炼的钢水的品质达到预设标准,包括:
    确定开放式熔炼炉中基于所述易氧化材料以外的原材料所熔炼的钢水的品质达到对应的预设标准;
    在所述利用中间包,从所述开放式熔炼炉中承接钢水之前,还包括:
    向所述中间包中投放所述易氧化材料,以使所述中间包在所述真空熔炼舱中将易氧化材料熔化至其承接的钢水中。
  12. 根据权利要求10所述的方法,其中,所述更换所述喷包的耐材,包括:控制所述喷包出所述真空熔炼舱;
    在所述真空熔炼舱外,更换所述喷包的耐材。
  13. 根据权利要求12所述的方法,其中,所述设备还包括:隔间,所述隔间基于所述真空熔炼舱的侧壁朝向所述真空熔炼舱的舱外而设置,所述隔间包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板;
    所述控制所述喷包出所述真空熔炼舱,包括:
    控制所述第一挡板移动至开启状态,并控制所述喷包移动至所述隔间内;
    控制所述第一挡板移动至闭合状态;
    控制所述第二挡板移动至开启状态,并控制所述喷包移动至所述真空熔炼舱外。
  14. 根据权利要求13所述的方法,其中,在所述更换所述喷包的耐材以后,还包括:
    确定所述第二挡板处于开启状态,并控制所述喷包移动至所述隔间内;
    控制所述第二挡板移动至闭合状态,并利用抽真空设备对所述第一隔间进行抽真空处理;
    确定所述隔间内处于低氧状态,并控制所述喷包移动至所述真空熔炼舱内。
  15. 一种雾化制粉设备,包括:
    开放式熔炼炉,用于将原材料熔炼为钢水;
    多个中间包,用于交替从所述开放式熔炼炉中承接钢水,以及持续交替向喷包中浇注钢水;
    所述喷包,用于在第一状态下,将持续浇注至其中的钢水雾化至雾化室内,所述第一状态包括加热至预设温度以及与雾化室连接;
    所述雾化室,用于将雾化至其中的钢水液滴冷凝成金属粉末。
  16. 根据权利要求15所述的设备,还包括:
    真空熔炼舱,用于容纳所述多个中间包和所述喷包;
    密封导流装置,所述密封导流装置与所述真空熔炼舱的侧壁相连接,用于将所述开放式熔炼炉中的钢水导流至所述多个中间包中。
  17. 一种基于如权利要求15所述设备的雾化制粉方法,所述设备中的多个中间包包括第一中间包和第二中间包,所述方法包括:
    确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;
    利用所述第一中间包,从所述开放式熔炼炉中承接钢水;
    确定喷包处于第一状态,利用承接钢水后的第一中间包向所述喷包中浇注钢水,以及,控制所述喷包将浇注至其中的钢水雾化至雾化室内;其中在利用承接钢水后的第一中间包向所述喷包中浇注钢水的过程中,利用所述第二中间包从所述开放式熔炼炉中承接钢水;
    确定所述第一中间包中的钢水量低于对应的预设阈值,利用承接钢水后的第二中间包继续向所述喷包浇注钢水,控制所述喷包将浇注至其中的钢水雾化至雾化室内。
  18. 根据权利要求17所述的方法,还包括:
    在所述喷包雾化预定中间包数的钢水以后,更换所述喷包的耐材;
    确定更换耐材后的喷包处于第一状态,利用承接有钢水的第一中间包或第二中间包向所述更换耐材后的喷包中浇注钢水,以及,控制所述更换耐材后的喷包将浇注至其中的钢水雾化至雾化室内。
  19. 一种雾化制粉设备,包括:
    开放式熔炼炉,用于将原材料熔炼为钢水;
    中间包,用于从所述开放式熔炼炉中承接钢水,并将其所承接钢水的温 度保持在预定范围内,以及向喷包中浇注钢水;
    多个喷包,所述多个喷包包括第一喷包和第二喷包,所述第一喷包用于在第一状态下,将浇注至其中的钢水雾化至雾化室内,所述第一状态包括加热至预设温度以及与雾化室连接,所述第二喷包用于在所述中间包对所述第一喷包浇注后,替换所述第一喷包,以使所述中间包对所述第二喷包进行浇注;
    所述雾化室,用于将雾化至其中的钢水液滴冷凝成金属粉末。
  20. 根据权利要求19所述的设备,还包括:
    真空熔炼舱,用于容纳所述中间包和所述多个喷包;
    密封导流装置,所述密封导流装置与所述真空熔炼舱的侧壁相连接,用于将所述开放式熔炼炉中的钢水导流至所述中间包中。
  21. 根据权利要求20所述的设备,还包括:
    多个隔间,所述多个隔间具有与所述多个喷包相同的数量,其中各个隔间分别基于所述真空熔炼舱的侧壁而设置,包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板,其中各个隔间分别用于与其对应的各个喷包进出所述真空熔炼舱,以及用于结合抽真空设备,在所述各个喷包在进出所述真空熔炼舱的过程中,使所述真空熔炼舱内保持低氧状态。
  22. 根据权利要求20所述的设备,还包括:
    环形轨道,所述多个喷包基于所述环形轨道等间距固定设置,所述环形轨道用于使所述多个喷包中的各个喷包逐个移动至浇注位,以接受所述中间包的浇注。
  23. 根据权利要求20所述的设备,还包括:
    环形轨道,所述多个喷包基于所述环形轨道等间距可拆卸设置,所述环形轨道用于使所述多个喷包中的各个喷包旋转至浇注位,以接受所述中间包的浇注,以及使所述各个喷包旋转至出舱位,以通过隔间出所述真空熔炼舱;
    所述隔间,基于所述真空熔炼舱的侧壁而设置,包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板,所述隔间用于所述各个喷包进出所述真空熔炼舱,以及用于结合抽真空设备,在所述各个喷包在进出所述真空熔炼舱的过程中,使所述真空熔炼舱内保持低氧状态。
  24. 一种基于如权利要求19所述设备的雾化制粉方法,包括:
    确定开放式熔炼炉中所熔炼钢水的品质达到预设标准;
    利用中间包,从所述开放式熔炼炉中承接钢水;
    确定第一喷包处于第一状态,利用承接钢水后的中间包向所述第一喷包中浇注钢水,以及,控制所述第一喷包将浇注至其中的钢水雾化至雾化室内;
    利用第二喷包对所述第一喷包进行替换;
    确定第二喷包处于第一状态,利用所述中间包向第二喷包中浇注钢水,以及,控制所述第二喷包将浇注至其中的钢水雾化至雾化室内。
  25. 根据权利要求24所述的方法,其中,所述利用第二喷包对所述第一喷包进行替换,包括:
    确定所述中间包中的钢水的含量低于对应的预设阈值,利用所述中间包再次从所述开放式熔炼炉中承接钢水,以及,利用第二喷包对所述第一喷包进行替换。
  26. 根据权利要求24所述的方法,其中,所述设备还包括真空熔炼舱和密封导流装置,所述真空熔炼舱用于容纳所述中间包和所述多个喷包,所述密封导流装置与所述真空熔炼舱的侧壁相连接;
    所述利用中间包,从所述开放式熔炼炉中承接钢水,包括:
    通过所述密封导流装置,将所述开放式熔炼炉中的钢水导流至所述中间包。
  27. 根据权利要求26所述的方法,其中,在所述确定所述中间包中的钢水量低于对应的预设阈值之后,还包括:
    控制所述第一喷包出所述真空熔炼舱;
    在所述真空熔炼舱外,更换所述第一喷包的耐材。
  28. 根据权利要求27所述的方法,其中,所述设备还包括多个隔间,所述多个隔间具有与所述多个喷包相同的数量,其中各个隔间分别基于所述真空熔炼舱的侧壁而朝向所述真空熔炼舱的舱外而设置,所述各个隔间包括属于所述侧壁的可移动的第一挡板和与所述第一挡板竖直相对的可移动的第二挡板;
    所述控制所述第一喷包出所述真空熔炼舱,包括:
    控制所述第一挡板移动至开启状态,并控制所述喷包移动至所述隔间内;
    控制所述第一挡板移动至闭合状态;
    控制所述第二挡板移动至开启状态,并控制所述喷包移动至所述真空熔炼舱外。
  29. 根据权利要求26所述的方法,其中,所述设备还包括环形轨道,所述环形轨道位于所述真空熔炼舱内,所述多个喷包基于所述环形轨道等间距固定设置;所述利用第二喷包对所述第一喷包进行替换,包括:
    控制所述环形轨道旋转,以使所述第二喷包移动至浇注位。
  30. 根据权利要求29所述的方法,还包括:
    在控制多个喷包依次接受浇注以后,开启所述真空熔炼舱,以对所述多个喷包的耐材进行更换。
  31. 根据权利要求26所述的方法,其中,所述设备还包括环形轨道和隔间,所述环形轨道位于所述真空熔炼舱内,所述多个喷包基于所述环形轨道等间距可拆卸设置,所述隔间基于所述真空熔炼舱的侧壁朝向所述真空熔炼舱的舱外而设置,包括属于所述侧壁的可移动的第一挡板和与第一挡板竖直相对的可移动的第二挡板;
    所述利用第二喷包对所述第一喷包进行替换,包括:
    控制所述环形轨道旋转,以使所述第二喷包移动至浇注位以及所述第一 喷包移动至出舱位;
    在所述第一喷包移动至出舱位以后,还包括:
    控制所述第一挡板移动至开启状态,并控制所述第一喷包移动至所述隔间内;
    控制所述第一挡板移动至闭合状态;
    控制所述第二挡板移动至开启状态,并控制所述第一喷包移动至所述真空熔炼舱外,以更换所述第一喷包的耐材。
  32. 根据权利要求31所述的方法,其中,在更换所述第一喷包的耐材以后,还包括:
    确定所述第二挡板处于开启状态,并控制所述第一喷包移动至所述隔间内;
    控制所述第二挡板移动至闭合状态,并利用抽真空设备对所述第一隔间进行抽真空处理;
    确定所述隔间内处于低氧状态,并控制所述第一喷包移动至所述环形轨道上。
PCT/CN2018/116033 2018-11-16 2018-11-16 雾化制粉设备及雾化制粉方法 WO2020097937A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207019735A KR102398040B1 (ko) 2018-11-16 2018-11-16 미립화 세분 장치 및 미립화 세분 방법
JP2020533097A JP7002656B2 (ja) 2018-11-16 2018-11-16 粉末微粒化装置および粉末微粒化方法
PCT/CN2018/116033 WO2020097937A1 (zh) 2018-11-16 2018-11-16 雾化制粉设备及雾化制粉方法
CN201880002384.7A CN109641276B (zh) 2018-11-16 2018-11-16 雾化制粉设备及雾化制粉方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/116033 WO2020097937A1 (zh) 2018-11-16 2018-11-16 雾化制粉设备及雾化制粉方法

Publications (1)

Publication Number Publication Date
WO2020097937A1 true WO2020097937A1 (zh) 2020-05-22

Family

ID=66060240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116033 WO2020097937A1 (zh) 2018-11-16 2018-11-16 雾化制粉设备及雾化制粉方法

Country Status (4)

Country Link
JP (1) JP7002656B2 (zh)
KR (1) KR102398040B1 (zh)
CN (1) CN109641276B (zh)
WO (1) WO2020097937A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020097937A1 (zh) * 2018-11-16 2020-05-22 青岛云路先进材料技术股份有限公司 雾化制粉设备及雾化制粉方法
CN110125422A (zh) * 2019-05-27 2019-08-16 鞍钢重型机械有限责任公司 一种双水口同时雾化的水雾化钢铁粉末生产工艺
CN110538998A (zh) * 2019-08-07 2019-12-06 佛山市岁之博新材料科技有限公司 一种能够自动更换雾化漏包的方法及装置
CN112548108A (zh) * 2020-12-14 2021-03-26 青岛云路先进材料技术股份有限公司 高效出粉的集粉机构、气雾化制粉装置及制粉方法
DE102021208605A1 (de) 2021-08-06 2023-02-09 Sms Group Gmbh Wechselsystem für eine Tundish-Einheit, Tundish-Einheit für ein Wechselsystem, Verdüsungsanlage sowie Verfahren zum Verdüsen von Metallschmelze
CN113751717B (zh) * 2021-08-30 2023-05-26 中天上材增材制造有限公司 气雾化装置及其方法
CN114433854B (zh) * 2022-02-11 2023-12-01 青岛云路先进材料技术股份有限公司 气雾化制粉设备、雾化制粉方法及非晶粉末

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246167B2 (en) * 2013-01-10 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Method for forming zinc alloy powder for use in alkaline battery
CN105728676A (zh) * 2016-04-05 2016-07-06 江苏国能合金科技有限公司 非晶薄带设备铁水全程气体保护系统
CN105750516A (zh) * 2016-04-05 2016-07-13 江苏国能合金科技有限公司 非晶薄带中间包铁水计量及控制系统
CN206356586U (zh) * 2017-01-06 2017-07-28 河北敬业增材制造科技有限公司 一种合金雾化制粉设备
CN107008911A (zh) * 2017-04-26 2017-08-04 江苏浙宏科技股份有限公司 一种合成金刚石用触媒粉末制备装置
CN107150126A (zh) * 2017-06-19 2017-09-12 湖南久泰冶金科技有限公司 一种金属雾化制粉设备用双中间包装置及其组成的雾化制粉设备
CN107414093A (zh) * 2016-12-30 2017-12-01 西安交通大学青岛研究院 一种TiAl粉的连续供液雾化制备装置
CN108500280A (zh) * 2018-05-16 2018-09-07 广东先导稀材股份有限公司 铜铟镓合金粉末制备装置及方法
CN109641276A (zh) * 2018-11-16 2019-04-16 青岛云路先进材料技术股份有限公司 雾化制粉设备及雾化制粉方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139869A (en) * 1978-04-21 1979-10-30 Kobe Steel Ltd Manufacture of atomized iron powder
JPS5858403B2 (ja) * 1981-11-16 1983-12-24 株式会社神戸製鋼所 雰囲気アトマイズ用タンデイツシユ装置
JPH02150688A (ja) * 1988-12-01 1990-06-08 Aisin Takaoka Ltd 溶解炉
JP3576578B2 (ja) * 1993-10-18 2004-10-13 Jfeスチール株式会社 焼結鍛造材用アトマイズ鉄粉及びその製造方法
KR100287568B1 (ko) * 1995-11-17 2001-04-16 마리오 파텍 스틸 용융체를 탈탄하기 위한 방법 및 장치
JP4232880B2 (ja) * 1999-11-08 2009-03-04 株式会社アルバック 真空溶解鋳造装置
KR100370862B1 (ko) * 2000-06-30 2003-02-05 에드호텍(주) 금속용탕 미립화 장치
CN203679275U (zh) * 2014-02-07 2014-07-02 常州轻工职业技术学院 一种双喷嘴雾化超细铝粉生产系统
CN104232898B (zh) * 2014-07-21 2016-10-05 湖南久泰冶金科技有限公司 一种连续化生产的真空或气体保护冶炼浇注设备
CN105397100B (zh) * 2014-08-25 2018-01-12 中国科学院宁波材料技术与工程研究所 一种微细金属粉末的制备方法及实现该方法的设备
CN106077685B (zh) 2016-08-25 2018-06-01 湖南久泰冶金科技有限公司 一种真空熔炼气雾化制粉设备
CN106887322B (zh) * 2017-03-03 2018-03-30 北京科技大学 一种高效制备纳米晶稀土永磁粉的方法
IT201700041618A1 (it) * 2017-04-13 2018-10-13 Tenova Spa Metodo di produzione di polveri metalliche mediante atomizzazione a gas e impianto di produzione di polveri metalliche secondo tale metodo.
CN107144129A (zh) * 2017-05-16 2017-09-08 深圳微纳增材技术有限公司 真空熔炼炉及其熔炼方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246167B2 (en) * 2013-01-10 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Method for forming zinc alloy powder for use in alkaline battery
CN105728676A (zh) * 2016-04-05 2016-07-06 江苏国能合金科技有限公司 非晶薄带设备铁水全程气体保护系统
CN105750516A (zh) * 2016-04-05 2016-07-13 江苏国能合金科技有限公司 非晶薄带中间包铁水计量及控制系统
CN107414093A (zh) * 2016-12-30 2017-12-01 西安交通大学青岛研究院 一种TiAl粉的连续供液雾化制备装置
CN206356586U (zh) * 2017-01-06 2017-07-28 河北敬业增材制造科技有限公司 一种合金雾化制粉设备
CN107008911A (zh) * 2017-04-26 2017-08-04 江苏浙宏科技股份有限公司 一种合成金刚石用触媒粉末制备装置
CN107150126A (zh) * 2017-06-19 2017-09-12 湖南久泰冶金科技有限公司 一种金属雾化制粉设备用双中间包装置及其组成的雾化制粉设备
CN108500280A (zh) * 2018-05-16 2018-09-07 广东先导稀材股份有限公司 铜铟镓合金粉末制备装置及方法
CN109641276A (zh) * 2018-11-16 2019-04-16 青岛云路先进材料技术股份有限公司 雾化制粉设备及雾化制粉方法

Also Published As

Publication number Publication date
KR20200099165A (ko) 2020-08-21
JP2021515094A (ja) 2021-06-17
JP7002656B2 (ja) 2022-01-20
CN109641276A (zh) 2019-04-16
CN109641276B (zh) 2022-08-26
KR102398040B1 (ko) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2020097937A1 (zh) 雾化制粉设备及雾化制粉方法
RU2751161C2 (ru) Способ производства металлических порошков посредством газового распыления и установка для производства металлических порошков в соответствии с таким способом
CN104084596B (zh) 非晶态粉末的制备方法及装置
JP2015513613A (ja) 金属噴霧粉末化システムおよび金属粉末を噴霧製造する方法
US4078873A (en) Apparatus for producing metal powder
JP2004523359A (ja) 精製及び鋳造装置及び方法
CN109877299A (zh) 一种甩铸装置及甩铸离心盘
CN113059169A (zh) 一种采用转盘离心雾化法生产高温金属粉末的装置
CN109822098A (zh) 一种摆动式雾化器及摆动式喷射沉积制坯方法
CN108213383B (zh) 一种半固态浆料制备方法及装置
CN110508768A (zh) 一种高性能铜合金铸锭的制备方法
CN109848429A (zh) 一种利用气雾化法制备球形金属粉末的组合装置
JPH09111314A (ja) 配向凝固した鋳造体から粒子を製造する方法
US4365944A (en) Plant with a tundish for producing metal powder
CN201744661U (zh) 首饰合金粒化熔铸室
CN201569292U (zh) 一种可以翻转的双炉合体式密闭熔炼炉
WO1982003809A1 (en) Apparatus for spraying metal or other material
JPS5820369A (ja) 吸引鋳造法
JPS648041B2 (zh)
JPH0829402B2 (ja) 連続鋳造方法
CN113134580A (zh) 金属半固态非枝晶浆料的制备方法以及制备装置
KR20240021273A (ko) 분무기 저장소
CN110819831B (zh) 一种光敏催化的节能合金材料的制备装置
JPH05125434A (ja) 金属浴の処理方法およびその装置
CN114951669A (zh) 金属雾化导流中间包装置及其操作方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020533097

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207019735

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940478

Country of ref document: EP

Kind code of ref document: A1