WO2020096411A1 - 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2020096411A1
WO2020096411A1 PCT/KR2019/015159 KR2019015159W WO2020096411A1 WO 2020096411 A1 WO2020096411 A1 WO 2020096411A1 KR 2019015159 W KR2019015159 W KR 2019015159W WO 2020096411 A1 WO2020096411 A1 WO 2020096411A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
aqueous electrolyte
additive
lithium
Prior art date
Application number
PCT/KR2019/015159
Other languages
English (en)
French (fr)
Inventor
김현승
이철행
안유하
오정우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190141681A external-priority patent/KR102434070B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP19883102.6A priority Critical patent/EP3855549A4/en
Priority to US17/289,465 priority patent/US20220006121A1/en
Priority to CN201980070874.5A priority patent/CN113614974B/zh
Publication of WO2020096411A1 publication Critical patent/WO2020096411A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same.
  • the most suitable technology for various uses is a secondary battery-based technology.
  • the secondary battery it is possible to be miniaturized to be applicable to a personal IT device, etc., and it can be applied to an electric vehicle, a power storage device, etc.
  • lithium ion batteries which are theoretically the most energy-dense battery systems, are in the spotlight and are currently applied to various devices.
  • silicon-based materials having a large capacity per weight while having a small loss of operating voltage of the finished battery are applied because a negative electrode material for a lithium secondary battery is not significantly higher than graphite. Is becoming.
  • the operating potential of silicon has a slightly higher potential than graphite, but since it exists outside the potential window of the carbonate-based electrolyte, which is a common lithium-ion battery electrolyte, the silicon-based anode active material also has solid electrolyte interphase (SEI) on the cathode surface like graphite. A film is formed.
  • SEI solid electrolyte interphase
  • the present invention is to provide a non-aqueous electrolyte solution for a lithium secondary battery containing an additive capable of forming a stable film on the surface of the negative electrode.
  • the present invention is to provide a lithium secondary battery having improved high temperature storage characteristics and cycle life characteristics by including the non-aqueous electrolyte for the lithium secondary battery.
  • Lithium salt an organic solvent, a first additive and a second additive
  • the first additive is lithium 4,5-dicyano-2- (trifluoromethyl) imidazolide (lithium 4,5-dicyano-2- (trifluoromethyl) imidazolide, LiTDI),
  • the second additive provides a non-aqueous electrolyte solution for lithium secondary batteries, which is tetravinylsilane.
  • an embodiment of the present invention provides a lithium secondary battery comprising a non-aqueous electrolyte for the lithium secondary battery of the present invention, a positive electrode, a negative electrode and a separator.
  • the negative electrode may include a silicon-based negative electrode active material and a carbon-based negative electrode active material.
  • the non-aqueous electrolyte solution for a lithium secondary battery of the present invention includes two additives capable of forming a stable SEI film on the surface of a negative electrode, thereby providing a non-aqueous electrolyte solution for a lithium secondary battery capable of suppressing side reactions between the negative electrode and the electrolyte during high temperature storage. Can be. In addition, by including this, it is possible to manufacture a lithium secondary battery having improved high temperature storage characteristics and cycle life characteristics.
  • Example 1 is a graph showing the evaluation results of cycle life characteristics of Example 1 and Comparative Example 1 according to Experimental Example 1 of the present invention.
  • Example 2 is a graph showing the discharge capacity retention rate and resistance characteristic evaluation results of Example 1 and Comparative Example 1 according to Experimental Example 1 of the present invention.
  • Example 3 is a graph showing the evaluation results of cycle life characteristics of Example 2 and Comparative Example 1 according to Experimental Example 2 of the present invention.
  • FIG. 5 is a graph showing the result of measuring gas content generated after high temperature storage according to Experimental Example 3 of the present invention.
  • FIG. 6 is a graph showing the discharge capacity retention rate and resistance characteristic evaluation results after high temperature storage according to Experimental Example 4 of the present invention.
  • Figure 7 It is a graph showing the results of the initial resistance evaluation according to Experimental Example 5 of the present invention.
  • Lithium salt an organic solvent, a first additive and a second additive
  • the first additive is lithium 4,5-dicyano-2- (trifluoromethyl) imidazolide
  • the second additive provides a non-aqueous electrolyte solution for lithium secondary batteries, which is tetravinylsilane.
  • the ionizable lithium salt can be used without limitation those commonly used in the lithium secondary battery electrolyte, for example, Li + as a cation of the lithium salt includes, and the anion is F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, B 10 Cl 10 -, BF 2 C 2 O 4 -, BC 4 O 8 -, PF 4 C 2 O 4 -, PF 2 C 4 O 8 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CH 3 CO 2 -, C 4 F 9 SO 3 -, CF 3 CO 2 -, SbF 6 P -, CF 3 SO 3 -, CH 3 CO 2 -, C 4 F 9 SO 3
  • the lithium salt is LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiPF 6 , LiB 10 Cl 10 , LiCF 3 SO 3 , LiCH 3 SO 3 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 and LiAlO 4 may include a single material selected from the group consisting of or a mixture of two or more, in addition to these lithium fluorosulfonyl imide, LiFSI (Li 2 (SO 2 F) 2 ) commonly used in electrolytes of lithium secondary batteries ), LiTFSI (lithium (bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 ) and LiBETI (lithium bisperfluoroethanesulfonimide, LiN (SO 2 CF 2 CF 3 ) 2 )
  • the electrolyte salt may include a single substance or a mixture of
  • the lithium salt may be appropriately changed within a range that can be normally used, but may be specifically included in the electrolyte in 0.1M to 3M, specifically 0.8M to 2.5M. If the concentration of the electrolyte salt exceeds 3M, the film forming effect may be reduced.
  • the organic solvent may minimize decomposition by an oxidation reaction or the like during charging and discharging of the secondary battery, and may exhibit desired characteristics together with additives. If there is, there is no limit to the type.
  • a carbonate-based organic solvent, an ether-based organic solvent, an ester-based organic solvent, or an amide-based organic solvent may be used alone or in combination of two or more.
  • the carbonate-based organic solvent may include at least one selected from the group consisting of a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent.
  • the cyclic carbonate-based organic solvent is a high-viscosity organic solvent, and has a high dielectric constant and is known as a solvent that dissociates lithium salts in the electrolyte well.
  • Specific examples of the cyclic carbonate-based organic solvent include ethylene carbonate (EC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, and 2,3-pentylene carbonate.
  • FEC fluoroethylene carbonate
  • linear carbonate-based organic solvent examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Any one selected from the group consisting of or a mixture of two or more of them may be typically used, and more specifically, any one or selected from the group consisting of dimethyl carbonate, diethyl carbonate and dipropyl carbonate, ethylmethyl carbonate And mixtures of two or more.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more of them may be used. It is not limited.
  • ester-based organic solvent may include at least one organic solvent selected from the group consisting of linear ester compounds and cyclic ester compounds.
  • the linear ester compound is a specific example selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate, or two of them.
  • the above mixture may be used as a representative, but is not limited thereto.
  • the cyclic ester compound may be any one selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone, or a mixture of two or more thereof. It can be used, but is not limited thereto.
  • the organic solvent may be used by mixing a cyclic carbonate-based organic solvent and a linear carbonate-based organic solvent, and the weight ratio of the cyclic carbonate-based organic solvent: linear carbonate-based organic solvent in the organic solvent may be 10:90 to 70:30. .
  • the non-aqueous electrolyte solution for a lithium secondary battery of the present invention may include lithium 4,5-dicyano-2- (trifluoromethyl) imidazolide represented by Formula 1 below as a first additive.
  • the lithium 4,5-dicyano-2- (trifluoromethyl) imidazolide forms a stable SEI film on the surface of the negative electrode through a reduction reaction that occurs during initial charging of the negative electrode, thereby improving battery durability and high temperature storage characteristics. Improve it.
  • the first additive may be included in 0.05% to 0.9% by weight, specifically 0.1% to 0.9% by weight based on the total weight of the non-aqueous electrolyte.
  • the content of the additive in the non-aqueous electrolyte for a lithium secondary battery may be determined by the reaction specific surface area of the positive electrode and the negative electrode. As described above, when the content of the first additive is 0.05% by weight or more, it is possible to form a stable SEI film on the negative electrode surface. In addition, it is possible to satisfy the expected effect of the additives, such as suppressing the decomposition of the electrolytic solution by the reaction between the electrolyte and the cathode to implement a gas generation reduction effect. In addition, when the content of the additive is 0.9% by weight or less, it is possible to not only improve the gas generation effect, but also prevent side reactions and increase in resistance due to excessive use of the additive, while forming a stable SEI film on the electrode surface.
  • the gas generation effect may be further improved according to the excess additive, but an excessively thick film may be formed to increase initial resistance and output deterioration.
  • the non-aqueous electrolyte solution for a lithium secondary battery of the present invention may further include a second additive that can assist in forming a positive electrode film together with the first additive. That is, the non-aqueous electrolyte solution for a lithium secondary battery of the present invention can form a more stable and robust SEI film on the positive and negative electrode surfaces by mixing the first additive and the second additive together, thereby allowing high temperature storage characteristics of the lithium secondary battery and Overall performance improvement such as life characteristics can be achieved.
  • the non-aqueous electrolyte solution for a lithium secondary battery of the present invention may include tetravinylsilane (TVS) represented by the following Chemical Formula 2 as a second additive.
  • TVS tetravinylsilane
  • the tetravinylsilane (TVS) can form a solid SEI film through physical adsorption and electrochemical reactions on the anode and cathode surfaces. Therefore, since exposure of the positive electrode and the negative electrode to the non-aqueous electrolyte can be prevented, side reactions of the non-aqueous electrolyte and the electrode at high temperatures are suppressed, and resistance increase is prevented, so that the high temperature storage stability of the lithium secondary battery can be improved. .
  • the first additive and the second additive can be used by appropriately adjusting the mixing ratio in order to improve the SEI film forming effect, low-temperature high-rate discharge characteristics, high temperature stability, overcharge prevention, high temperature swelling improvement effect, etc. : 0.1 to 1: 1, more specifically 1: 0.2 to 1: 1 may be used by mixing in a weight ratio.
  • the weight ratio of the second additive to the weight of the first additive exceeds 1 weight ratio, a thick film is formed by the excess second additive to increase battery resistance and degrade cycle life characteristics.
  • the weight ratio of the second additive is less than 0.1, the gas generation reduction effect and the SEI film formation effect may be insignificant.
  • a solid electrolyte interphase (SEI) film is formed on the negative electrode surface as graphite during initial charge / discharge, but the SEI film is destroyed by the volume change of the silicon-based negative electrode active material during continuous charge / discharge. This collapse of the SEI film exposes the negative electrode surface, and the exposed negative electrode surface reacts with the electrolyte solution, causing continuous side reactions.
  • SEI solid electrolyte interphase
  • the side reactions continuously generate gas.
  • the main gases generated are CO, CO 2 , CH 4 , C 2 H 6, etc., depending on the type of the negative electrode active material, and regardless of the type
  • the occurrence of the base causes the pressure inside the battery of the lithium ion battery to increase, thereby expanding the battery thickness.
  • the present invention by mixing the first additive and the second additive in the same ratio as described above during the production of the non-aqueous electrolyte solution, it is intended to form a more robust and stable SEI film on the cathode surface.
  • the thus formed stable SEI film can control the deterioration of the battery that may occur due to unstable SEI film formation, thereby suppressing the deterioration behavior of the battery.
  • the non-aqueous electrolyte of the present invention is used together with the mixed additive to form a stable film on the surface of the cathode and anode, without significantly increasing the initial resistance along with the effect of the mixed additive, or a solvent in the non-aqueous electrolyte.
  • the non-aqueous electrolyte of the present invention is used together with the mixed additive to form a stable film on the surface of the cathode and anode, without significantly increasing the initial resistance along with the effect of the mixed additive, or a solvent in the non-aqueous electrolyte.
  • additional additives that can serve as a supplement to improve the mobility of lithium ions.
  • the additive is not particularly limited as long as it is an additive capable of forming a stable film on the anode and cathode surfaces.
  • additional additives include phosphate-based compounds, sulfite-based compounds, sulfone-based compounds, sulfate-based compounds, sulfone-based compounds, halogen-substituted carbonate-based compounds, nitrile-based compounds, borate-based compounds, and lithium salt-based compounds. It may include at least one selected from the group.
  • the phosphate-based compound is a component that is electrochemically decomposed on the positive electrode and the negative electrode surface to help form an SEI film, and thus can improve the long-term cycle life characteristics of the secondary battery.
  • Representative examples of such a phosphate-based compound include lithium difluoro (bisoxalato) phosphate, lithium difluorophosphate, tetramethyl trimethyl silyl phosphate, trimethyl silylphosphite, and tris (2,2,2-trifluoroethyl) ) Phosphate and tris (2,2,2-trifluoroethyl) phosphite.
  • One or more compounds selected from the group consisting of phosphite may be mentioned, and specifically, may include lithium difluorophosphate.
  • the phosphate-based compound the first additive may be included in a weight ratio of 2: 1 to 5: 1.
  • the cycle life characteristics are reduced because the internal resistance of the battery is increased due to excessive use of the additive, and if it is less than 2, the stabilizing effect is small when forming the SEI film, high temperature storage characteristics and cycle Life characteristics may be degraded.
  • the sulfite-based compounds include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, and 4,5-dimethyl propylene At least one selected from the group consisting of sulfite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, and 1,3-butylene glycol sulfite Compounds may be included, and may be included in 3% by weight or less based on the total weight of the non-aqueous electrolyte.
  • the sulfone-based compound may include at least one compound selected from the group consisting of divinyl sulfone, dimethyl sulfone, diethyl sulfone, methylethyl sulfone, and methylvinyl sulfone, and 3% by weight based on the total weight of the non-aqueous electrolyte. It can be included below.
  • the sulfate-based compound may include ethylene sulfate (Esa), trimethylene sulfate (TMS), or methyl trimethylene sulfate (MTMS), based on the total weight of the non-aqueous electrolyte 3 It may be included in weight% or less.
  • Esa ethylene sulfate
  • TMS trimethylene sulfate
  • MTMS methyl trimethylene sulfate
  • the sultone-based compounds are 1,3-propane sultone (PS), 1,4-butane sultone, ethene sultone, 1,3-propene sultone (PRS), 1,4-butene sultone and 1-methyl-1,3 -At least one compound selected from the group consisting of propene sultone, which may be included in an amount of 0.3% to 5% by weight, specifically 1% to 5% by weight based on the total weight of the non-aqueous electrolyte.
  • PS 1,3-propane sultone
  • PRS 1,3-propene sultone
  • 1-methyl-1,3 -At least one compound selected from the group consisting of propene sultone which may be included in an amount of 0.3% to 5% by weight, specifically 1% to 5% by weight based on the total weight of the non-aqueous electrolyte.
  • the halogen-substituted carbonate-based compound may include fluoroethylene carbonate (FEC), and may contain 5% by weight or less based on the total weight of the non-aqueous electrolyte.
  • FEC fluoroethylene carbonate
  • the halogen-substituted carbonate-based compound in the non-aqueous electrolyte exceeds 5% by weight, cell swelling performance may be deteriorated.
  • the nitrile-based compound is succinonitrile (SN), adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentane carbonitrile, cyclohexane With carbonitrile, 2-fluorobenzonitrile, 4-fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile And at least one compound selected from the group consisting of.
  • the borate-based compound may include lithium oxalyl difluoroborate, and may be included in an amount of 3% by weight or less based on the total weight of the non-aqueous electrolyte.
  • the lithium salt-based compound is a compound different from the lithium salt contained in the non-aqueous electrolyte, from the group consisting of LiPO 2 F 2 , LiODFB, LiBOB (lithium bisoxalate borate (LiB (C 2 O 4 ) 2 ) and LiBF 4 And one or more selected compounds, and may contain 3% by weight or less based on the total weight of the non-aqueous electrolyte.
  • the additives may be included in a mixture of two or more, and the total content of the additives may be 20% by weight or less, specifically 10% by weight or less based on the total weight of the non-aqueous electrolyte.
  • the content of the additives exceeds 20% by weight, there is a possibility that side reactions in the non-aqueous electrolyte are excessively generated during charging and discharging of the battery, and it is not sufficiently decomposed at high temperatures, and unreacted or precipitated in the non-aqueous electrolyte at room temperature. May exist, and thus the life or resistance characteristics of the secondary battery may deteriorate.
  • the present invention can provide a lithium secondary battery comprising the non-aqueous electrolyte solution described above.
  • the lithium secondary battery includes a positive electrode comprising a positive electrode active material, a negative electrode comprising a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, and the non-aqueous electrolyte described above.
  • the lithium secondary battery of the present invention can be prepared by injecting the non-aqueous electrolyte solution of the present invention into an electrode assembly made of a positive electrode, a negative electrode, and a separator selectively interposed between the positive electrode and the negative electrode sequentially stacked.
  • the positive electrode, the negative electrode, and the separator forming the electrode assembly may be all those commonly used in manufacturing lithium secondary batteries.
  • the positive and negative electrodes constituting the lithium secondary battery of the present invention can be prepared and used in a conventional manner.
  • the positive electrode may be prepared by forming a positive electrode mixture layer on a positive electrode current collector.
  • the positive electrode material mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material, and a solvent on a positive electrode current collector, followed by drying and rolling.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , Surface treatment with nickel, titanium, silver, and the like can be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel or aluminum. have. More specifically, the lithium composite metal oxide is lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt-based oxide (eg, LiCoO 2, etc.), lithium-nickel-based oxide (For example, LiNiO 2, etc.), lithium-nickel-manganese oxide (for example, LiNi 1-Y Mn Y O 2 (here, 0 ⁇ Y ⁇ 1) or LiMn 2-z Ni z O 4 ( Here, 0 ⁇ Z ⁇ 2), etc.), lithium-nickel-cobalt oxide (for example, LiNi 1-Y1 Co Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), etc.), lithium-manganese-cobalt
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li (Ni 1/3 Mn 1/3 Co 1) in that the capacity and stability of the battery can also be improved. / 3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2 , Li (Ni 0.7 Mn 0.15 Co 0.15 ) O 2 and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2, etc.), or lithium nickel cobalt aluminum oxide (e.g., Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.).
  • the positive electrode active material may be included in 80% to 99.5% by weight, specifically 85% to 95% by weight based on the total weight of solids in the positive electrode slurry. At this time, when the content of the positive electrode active material is 80% by weight or less, the energy density may be lowered and the capacity may be lowered.
  • the binder is a component that assists in bonding the active material and the conductive material and the like to the current collector, and is usually added at 1 to 30% by weight based on the total weight of solids in the positive electrode slurry. If the binder is less than 1% by weight, the adhesion between the electrode active material and the current collector may be insufficient, and if it exceeds 30% by weight, the adhesion is improved, but the content of the electrode active material decreases, so that the battery capacity may decrease.
  • binders examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro Roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-diene polymer
  • EPDM ethylene-propylene-diene polymer
  • sulfonated EPDM styrene-butadiene rubber
  • fluorine rubber fluorine rubber
  • the conductive material may be added in an amount of 1 to 20% by weight based on the total weight of solids in the positive electrode slurry.
  • the conductive material is not particularly limited as long as it does not cause chemical changes in the battery and has conductivity, for example, carbon black, acetylene black (or denka black), ketjen black, channel black, furnace black, lamp black, Or carbon powder such as thermal black; Graphite powder such as natural graphite, artificial graphite, or graphite, which has a very developed crystal structure; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the solvent is NMP (N-methyl-2-pyrrolidone), dimethyl sulfoxide (dimethyl sulfoxide, DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water, etc. It can be used alone or in combination.
  • the amount of the solvent may be appropriately adjusted in consideration of the coating thickness of the slurry, production yield, viscosity, etc., for example, the solid content concentration in the slurry containing a positive electrode active material, and optionally a binder and a conductive material is 10% by weight To 70% by weight, preferably from 20% to 60% by weight.
  • the negative electrode may be manufactured by forming a negative electrode mixture layer on a negative electrode current collector.
  • the negative electrode mixture layer may be formed by coating a slurry containing a negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, followed by drying and rolling.
  • the negative electrode current collector generally has a thickness of 3 to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, etc. on the surface, aluminum-cadmium alloy, or the like can be used.
  • it is also possible to form fine irregularities on the surface to enhance the bonding force of the negative electrode active material and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative electrode active material may include a silicon-based negative electrode active material capable of doping and de-doping lithium and a carbon-based negative electrode active material capable of reversibly intercalating / deintercalating lithium ions.
  • Si, SiO x (0 ⁇ x ⁇ 2) and Si-Y alloys (Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition) as a silicon-based negative active material capable of doping and de-doping the lithium. At least one selected from the group consisting of metals, rare earth elements, and combinations thereof, and not Si).
  • a carbon-based negative electrode active material generally used in lithium-ion secondary batteries can be used without particular limitation.
  • Crystalline carbon, amorphous carbon, or a combination of these may be used.
  • the crystalline carbon include amorphous, plate-like, flake-like, spherical or fibrous natural graphite, artificial graphite, or graphite-based graphite such as graphite, and examples of the amorphous carbon include soft carbon: Low-temperature fired carbon) or hard carbon, mesophase pitch carbide, fired coke, and the like.
  • the silicon-based negative electrode active material: carbon-based negative electrode active material may be included in a weight ratio of 5:95 to 50:50, specifically 20:80 to 40:60 weight ratio, and more specifically 30:70 weight ratio.
  • the negative electrode active material satisfying the above content range can secure excellent capacity characteristics, and at the same time, ensure room temperature life characteristics and high temperature life characteristics.
  • the negative electrode active material is a group consisting of a silicon-based negative electrode active material and a carbon-based negative electrode active material, a tin-based material capable of doping and de-doping lithium, lithium metal, metal or an alloy of these metals and lithium, a metal composite oxide and a transition metal oxide It may further include at least one selected from.
  • the tin-based material is a representative example of Sn, SnO 2 , Sn-Y (The Y is an element selected from the group consisting of alkali metals, alkaline earth metals, group 13 elements, group 14 elements, transition metals, rare earth elements, and combinations thereof. , And not Sn), and SiO 2 may be mixed with at least one of them.
  • the elements Y are Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
  • Examples of the metal or an alloy of these metals and lithium include Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al And a metal selected from the group consisting of Sn or an alloy of these metals and lithium.
  • the metal composite oxide includes PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 , Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), and Sn x Me 1-x Me ' y O z (Me: Mn, Fe , Pb, Ge; Me ': Al, B, P, Si, Group 1, 2, 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Any one selected from the group can be used.
  • transition metal oxide examples include lithium-containing titanium composite oxide (LTO), vanadium oxide, and lithium vanadium oxide.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of solids in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of solids in the negative electrode slurry.
  • a binder polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, poly (sodium acrylate)-polyvinyl alcohol (poly (acrylic acid sodium) / polyvinyl alcohol mixed use , NaPAA-PVA), hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene -Butadiene rubber, fluorine rubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and may be added at 1 to 20% by weight based on the total weight of solids in the negative electrode slurry.
  • the conductive material is not particularly limited as long as it does not cause chemical changes in the battery and has conductivity, for example, carbon black, acetylene black (or denka black), ketjen black, channel black, furnace black, lamp black, Or carbon powder such as thermal black; Graphite powder such as natural graphite, artificial graphite, or graphite, which has a very developed crystal structure; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride, aluminum, and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include water or an organic solvent such as NMP and alcohol, and may be used in an amount that becomes a desirable viscosity when the negative active material and optionally a binder and a conductive material are included.
  • the solid content concentration in the slurry containing the negative electrode active material, and optionally the binder and the conductive material may be included to be 50% to 75% by weight, preferably 50% to 65% by weight.
  • the separator serves to block the internal short circuit of both electrodes and impregnate the electrolyte.
  • a separator composition is prepared by mixing a polymer resin, a filler, and a solvent, and then the coated separator composition is directly coated on the electrode and dried. After forming a separator film or casting and drying the separator composition on a support, the separator film peeled from the support may be formed by lamination on the electrode.
  • the separator is a porous polymer film that is commonly used, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, and ethylene / methacrylate copolymer.
  • the polymer film may be used alone or by laminating them, or a conventional porous non-woven fabric, for example, a high-melting-point glass fiber, a polyethylene terephthalate fiber, or the like, may be used, but is not limited thereto.
  • the pore diameter of the porous separator is generally 0.01 to 50 ⁇ m, porosity may be 5 to 95%.
  • the thickness of the porous separator may generally range from 5 to 300 ⁇ m.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape or a coin shape using a can.
  • a non-aqueous organic solvent was prepared by mixing ethylene carbonate (EC): ethylmethyl carbonate (EMC) in a volume ratio of 30:70, and then dissolving LiPF 6 to 0.7 M and LiFSI to 0.3 M.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • LiPF 6 LiPF 6
  • LiFSI LiFSI
  • 0.5 g of the first additive lithium 4,5-dicyano-2- (trifluoromethyl) imidazolide manufactured by Aldrich, CAS: 761441-54-7) in 90.7 g of the non-aqueous organic solvent
  • second Non-aqueous for lithium secondary batteries by adding 0.1 g of tetravinylsilane as an additive, 1.0 g of lithium difluoro phosphate as an additive, 1.0 g of ethylene sulfonate, 0.5 g of 1,3-propane sultone and 0.2 g of LiBF 4, and 6.0
  • a positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 ; NCM
  • carbon black as a conductive material
  • PVDF polyvinylidene fluoride
  • -A positive electrode mixture slurry solid content: 50% by weight
  • NMP pyrrolidone
  • the positive electrode mixture slurry was coated and dried on a thin film of aluminum (Al) as a positive electrode current collector having a thickness of 12 ⁇ m, followed by roll press to prepare a positive electrode.
  • the negative electrode mixture slurry was coated and dried on a copper (Cu) thin film as a negative electrode current collector having a thickness of 6 ⁇ m, and then roll press was performed to prepare a negative electrode.
  • Cu copper
  • the positive electrode, a polyolefin-based porous separator coated with inorganic particles (Al 2 O 3 ) and a negative electrode were sequentially stacked to prepare an electrode assembly.
  • the assembled electrode assembly was housed in a battery case, and the non-aqueous electrolyte was injected to prepare a pouch-type lithium secondary battery.
  • a non-aqueous electrolyte solution for a lithium secondary battery was prepared by adding 1.0 g of fluorine phosphate.
  • the negative electrode mixture slurry was coated and dried on a copper (Cu) thin film having a thickness of 6 ⁇ m as a negative electrode current collector, and then roll press was performed to prepare a negative electrode.
  • An electrode assembly was prepared by sequentially stacking the prepared anode and the polyolefin-based porous separator coated with inorganic particles (Al 2 O 3 ) and the anode prepared in Example 1.
  • the assembled electrode assembly was housed in a battery case, and the non-aqueous electrolyte was injected to prepare a pouch-type lithium secondary battery.
  • Non-aqueous electrolyte solution for lithium secondary batteries in the same manner as in Example 1 except that 1.0 g of fluorine phosphate 1.0 g of ethylene sulfonate 1.0 g, 0.5 g of 1,3-propane sultone and 0.2 g of LiBF 4 and 6.0 g of fluorine benzene were added. And a pouch type lithium secondary battery including the same.
  • non-aqueous organic solvent does not contain the first additive, 0.1 g of tetravinylsilane as the second additive and 1.0 g of lithium difluoro phosphate as an additive, 1.0 g of ethylene sulfonate, 0.5 g of 1,3-propane sulfone, and
  • a non-aqueous electrolyte solution for a lithium secondary battery and a pouch-type lithium secondary battery including the same were prepared in the same manner as in Example 1, except that 0.2 g of LiBF 4 and 6.0 g of fluorine benzene were added.
  • Non-aqueous electrolyte solution for lithium secondary batteries was prepared by adding 0.5 g of, 3-propane sultone and 0.2 g of LiBF 4 and 6.0 g of fluorine benzene.
  • a pouch-type lithium secondary battery was manufactured in the same manner as in Example 1, except that the non-aqueous electrolyte was used.
  • Lithium bis (oxalato) borate (LiBOB) 0.5g
  • additional additive lithium difluorophosphate 1.0g ethylene sulfo in 90.7g of non-aqueous organic solvent
  • a non-aqueous electrolyte solution for a lithium secondary battery was prepared by adding 1.0 g of nate, 0.5 g of 1,3-propane sultone, 0.2 g of LiBF 4, and 6.0 g of fluorine benzene.
  • a pouch-type lithium secondary battery was manufactured in the same manner as in Example 1, except that the non-aqueous electrolyte was used.
  • a negative electrode mixture slurry was prepared by adding negative electrode active material (graphite), SBR-CMC as a binder, and carbon black as a conductive material to water as a solvent in a weight ratio of 95: 3.5: 1.5.
  • the negative electrode mixture slurry was coated and dried on a copper (Cu) thin film having a thickness of 6 ⁇ m as a negative electrode current collector, and then roll press was performed to prepare a negative electrode.
  • Cu copper
  • a pouch type lithium secondary battery was manufactured in the same manner as in Example 3, except that the prepared negative electrode was used.
  • Capacity retention rate (%) (capacity every 100 cycles / capacity after 1 cycle) x 100
  • Discharge capacity retention rate (%) (discharge capacity every 100 cycles / discharge capacity after 1 cycle) x 100
  • DC-iR direct current internal resistance
  • the secondary battery of Example 1 with the non-aqueous electrolyte of the present invention is irreversible lithium by additional electrolyte decomposition even after 400 cycles at a high temperature (45 ° C) compared to the secondary battery of Comparative Example 1 It is confirmed that the capacity loss rate of the battery is improved due to the small loss of.
  • the capacity retention rate is improved compared to the secondary battery of Comparative Example 1 even after 400 cycles at a high temperature (45 ° C.).
  • the increase rate of resistance was about 27%, which was significantly reduced compared to the secondary battery of Comparative Example 1.
  • the lithium secondary battery prepared in Example 2 and the secondary battery prepared in Comparative Example 1 were activated at CC conditions at 0.1 C rate, respectively, and then degassed.
  • CC-CV constant current-constant voltage
  • CC-CV constant current-constant voltage
  • the secondary battery of Example 2 of the present invention is a stable film is formed on the positive electrode / negative electrode surface, and even after continuous charging and discharging at high temperature, continuous electrolyte decomposition reaction due to breakage and regeneration of the film is suppressed. , Compared to the secondary battery of Comparative Example 1, it can be confirmed that the capacity retention rate was improved.
  • Example 1 Each secondary battery prepared in Example 1 and Comparative Example 1 was activated under CC conditions at a rate of 0.1 C, and then degassed.
  • CC-CV constant current-constant voltage
  • DC-iR was calculated through a voltage drop occurring in a state where a discharge pulse was applied for 10 seconds at 2.5C at a SOC of 50%, and the increase in resistance (%) was calculated by substituting it into Equation (3) above. Next, it is shown in FIG. 4. At this time, the voltage drop was measured using a PNE-0506 charging / discharging device (manufacturer: PNE solution, 5 V, 6 A).
  • Example 1 when 12 weeks elapsed after high temperature storage, the secondary batteries of Example 1 and Comparative Example 1 were partially opened and degassed, and the amount of gas generated inside the battery and the extracted components were compared and shown in FIG. 5.
  • the secondary battery of Example 1 with the non-aqueous electrolyte of the present invention was found to be significantly reduced compared to the secondary battery of Comparative Example 1 with an increase in resistance of about 6% after 12 weeks storage at high temperature. Can be.
  • the secondary battery of Example 1 had an improved capacity retention rate of about 84% after 8 weeks of storage at high temperature, compared to the secondary battery of Comparative Example 1.
  • the secondary battery of Example 1 provided with the non-aqueous electrolyte of the present invention forms a more stable SEI film on the negative electrode surface, prevents film destruction at high temperatures, and thus adds electrolyte. By suppressing the decomposition, the rate of increase in resistance decreased, and the capacity retention rate appeared to increase.
  • the secondary battery of Example 1 provided with the non-aqueous electrolyte of the present invention is a stable film formed on the positive electrode / negative electrode surface, because the electrolyte decomposition during high temperature storage is reduced, to decompose the electrolyte inside the battery It can be seen that the CO 2 and CH 4 contents generated by 650 ⁇ l and 550 ⁇ l, respectively, and the CO 2 and CH 4 contents decreased compared to the secondary battery of Comparative Example 1 in which 870 ⁇ l and 690 ⁇ l were generated, respectively.
  • DC-iR was calculated through a voltage drop occurring in a state where a discharge pulse was applied for 10 seconds at 2.5C at a SOC of 50%, and the increase in resistance (%) was calculated by substituting it into Equation (3) above. Next, it is shown in FIG. 6. At this time, the voltage drop was measured using a PNE-0506 charging / discharging device (manufacturer: PNE solution, 5 V, 6 A).
  • the secondary battery of Example 4 had a resistance increase rate of about 3% or less after 8 weeks of storage at a high temperature, and was significantly reduced compared to the secondary battery of Comparative Example 1.
  • the secondary battery of Example 4 had an improved capacity retention rate after 8 weeks of storage at high temperature compared to the secondary battery of Comparative Example 1.
  • the secondary battery of Example 4 provided with the non-aqueous electrolyte of the present invention forms a more stable SEI film on the negative electrode surface, prevents film destruction at high temperatures, and further decomposes electrolyte accordingly By suppressing, the rate of increase in resistance decreases, and the capacity retention rate seems to increase.
  • the initial resistance is calculated through a voltage drop occurring in a state where a discharge pulse (pulse) is applied for 10 seconds under a CC condition at a rate of 2.5C at a SOC of 50% and calculates the initial resistance. It is shown in.
  • the voltage drop was measured using a PNE-0506 charging / discharging device (manufacturer: PNE solution, 5 V, 6 A).
  • the secondary battery of Example 3 having a negative electrode containing a silicon (SiO) component, about 1.00 V to 1.25 V
  • a decomposition peak was found showing that the additives contained in the non-aqueous electrolyte solution decomposed on the surface of the cathode to reduce.
  • the non-aqueous electrolyte of the present invention can form a stable SEI film in addition to the cathode in which the silicon cathode is mixed.
  • the lithium secondary batteries prepared in Example 1 and Comparative Examples 1 to 3 were activated under CC conditions at 0.1 C rate, respectively, and then degassed.
  • the secondary battery of Comparative Example 1 which contains a different borate-based compound than the first additive, and the secondary battery of Comparative Example 1 without the first additive, the secondary battery of Example 1 It can be seen that the resistance increased after 300 cycles at a high temperature.

Abstract

본 발명은 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지에 관한 것으로, 구체적으로 리튬염; 유기 용매; 제1 첨가제 및 제2 첨가제를 포함하며, 상기 제1 첨가제는 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드이고, 상기 제2 첨가제는 테트라비닐실란인 것인 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2018년 11월 09일자 한국 특허 출원 제2018-0137594호 및 2019년 11월 07일자 한국 특허 출원 제2019-0141681호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
이를 위해 개발된 기술 중 여러 용도에 가장 적합한 기술이 이차전지 기반 기술이다. 이차전지의 경우 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능하며, 전기자동차, 전력 저장 장치 등에 적용될 수도 있기 때문에 이에 대한 관심이 대두하고 있다. 이차전지 기술 중에서도 이론적으로 에너지 밀도가 가장 높은 전지 시스템인 리튬 이온 전지가 각광을 받고 있으며, 현재 여러 디바이스에 적용되고 있다.
최근 높은 에너지 밀도, 즉 고용량의 리튬 이차전지를 개발하기 위한 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
그 하나의 방법으로 리튬 이온 전지의 무게당 에너지를 개선하기 위하여 리튬 이차전지용 음극재를 흑연에 비하여 반응 전위가 크게 높지 않아 완성 전지의 작동 전압의 손실은 적으면서도 무게 당 용량은 큰 실리콘계 소재들이 적용되고 있다.
그러나 실리콘계 소재의 경우 충방전시에 리튬과 실리콘이 합금화 반응을 할 때에, 활물질 자체의 부피 변화가 크고, 이러한 큰 부피 변화에 의해 실리콘 자체의 균열과 전기적으로 단락된 입자의 생성뿐만 아니라 전극 자체의 물리적 변화로 인하여 음극의 퇴화가 야기된다는 단점이 있다.
즉, 실리콘의 작동 전위는 흑연에 비하여 약간 높은 전위를 가지기는 하나, 일반적인 리튬 이온 전지용 전해액인 카보네이트계 전해액의 전위창 밖에 존재하기 때문에, 실리콘계 음극 활물질 또한 흑연과 같이 음극 표면에 SEI (solid electrolyte interphase) 막이 형성된다. 하지만, 충방전을 거치면서도 SEI 막이 비교적 안정적으로 유지되는 흑연계 음극 활물질과 달리 실리콘의 표면에 형성된 SEI 막은 활물질의 큰 부피 변화에 의한 SEI의 물리적 변화로 인하여 파괴되고, 이로 인하여 실리콘계 활물질에서는, 충방전시에 파괴되는 SEI 막으로 인하여 노출된 활물질 표면에서 전해질 분해가 지속적으로 발생하는 문제가 있다.
따라서, 실리콘계 음극재의 경우 음극 표면에 적합한 피막을 형성시켜 추가적인 전해질 분해 반응을 제어하는 것이 매우 중요한바, 전해질 조성물의 개발이 이를 달성할 수 있는 하나의 방안이 될 것이다.
선행기술문헌
한국 특허공개공보 제2017-0128238호
본 발명은 음극 표면 상에 안정한 피막을 형성할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수성 전해액을 제공하고자 한다.
또한, 본 발명은 상기 리튬 이차전지용 비수성 전해액을 포함함으로써 고온 저장 특성 및 사이클 수명 특성이 향상된 리튬 이차전지를 제공하는 것이다.
상기의 목적을 달성하기 위한 일실시예에서,
리튬염, 유기 용매, 제1 첨가제 및 제2 첨가제를 포함하며,
상기 제1 첨가제는 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드 (lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide, LiTDI)이고,
상기 제2 첨가제는 테트라비닐실란인 리튬 이차전지용 비수성 전해액을 제공한다.
또한, 본 발명의 일 실시예에서는 본 발명의 리튬 이차전지용 비수성 전해액, 양극, 음극 및 분리막을 포함하는 리튬 이차전지를 제공한다.
상기 음극은 실리콘계 음극활물질 및 탄소계 음극활물질을 포함할 수 있다.
본 발명의 리튬 이차전지용 비수성 전해액은 음극 표면에 안정한 SEI 막을 형성할 수 있는 2종의 첨가제를 포함함으로써, 고온 저장 시 음극과 전해액의 부반응을 억제할 수 있는 리튬 이차전지용 비수성 전해액을 제공할 수 있다. 또한, 이를 포함함으로써, 고온 저장 특성 및 사이클 수명 특성이 향상된 리튬 이차전지를 제조할 수 있다.
도 1은 본 발명의 실험예 1에 따른 실시예 1 및 비교예 1의 사이클 수명 특성 평가 결과를 나타낸 그래프이다.
도 2는 본 발명의 실험예 1에 따른 실시예 1 및 비교예 1의 방전 용량 유지율 및 저항 특성 평가 결과를 나타낸 그래프이다.
도 3은 본 발명의 실험예 2에 따른 실시예 2 및 비교예 1의 사이클 수명 특성 평가 결과를 나타낸 그래프이다.
도 4는 본 발명의 실험예 3에 따른 고온 저장 후 방전 용량 유지율 및 저항 특성 평가 결과를 나타낸 그래프이다.
도 5는 본 발명의 실험예 3에 따른 고온 저장 후 발생된 가스 함량 측정 결과를 나타낸 그래프이다.
도 6은 본 발명의 실험예 4에 따른 고온 저장 후 방전 용량 유지율 및 저항 특성 평가 결과를 나타낸 그래프이다.
도 7은 본 발명의 실험예 5에 따른 초기 저항 평가 결과를 나타낸 그래프이다.
도 8은 본 발명의 실험예 6에 따른 음극 표면의 SEI 막 형성 효과를 나타낸 그래프이다.
도 9는 본 발명의 실험예 7에 따른 이차전지의 저항 평가 결과를 나타낸 그래프이다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
리튬 이차전지용 비수성 전해액
구체적으로, 본 발명의 일 실시예에서는
리튬염, 유기 용매, 제1 첨가제 및 제2 첨가제를 포함하며,
상기 제1 첨가제는 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드이고;
상기 제2 첨가제는 테트라비닐실란인 것인 리튬 이차전지용 비수성 전해액을 제공한다.
(1) 리튬염
본 발명의 일 실시예에 따른 리튬 이차전지용 비수성 전해액에 있어서, 상기 이온화 가능한 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, B10Cl10 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CH3CO2 -, C4F9SO3 -, CF3CO2 -, SbF6 -, AsF6 -, AlCl4 -, AlO4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, CH3SO3 -, CF3(CF2)7SO3 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiPF6, LiB10Cl10, LiCF3SO3, LiCH3SO3, LiCH3CO2, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4 및 LiAlO4으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있고, 이들 외에도 리튬 이차전지의 전해액에 통상적으로 사용되는 LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2), LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2) 및 LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2로 나타내는 리튬 이미드염과 같은 전해질염을 제한 없이 추가하여 사용할 수 있다. 구체적으로 전해질염은 LiPF6, LiBF4, LiCH3CO2, LiCF3CO2, LiCH3SO3, LiFSI, LiTFSI 및 LiBETI로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 다만, 상기 리튬염으로 혼합 첨가제로서 포함되는 LiDFP는 포함하지 않는다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 구체적으로 전해액 내에 0.1M 내지 3M, 구체적으로 0.8M 내지 2.5M로 포함될 수 있다. 만약, 상기 전해질염의 농도가 3M을 초과하는 경우 피막 형성 효과가 감소할 수 있다.
(2) 유기용매
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수성 전해액에 있어서, 상기 유기용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 그 종류에 제한이 없다. 예를 들면 카보네이트계 유기용매, 에테르계 유기용매, 에스테르계 유기용매, 또는 아미드계 유기용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 유기용매 중 카보네이트계 유기용매는 환형 카보네이트계 유기용매 및 선형 카보네이트계 유기용매로 이루어진 군으로부터 선택되는 적어도 하나 이상을 들 수 있다.
상기 환형 카보네이트계 유기용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키는 용매로 알려져 있다. 이러한 환형 카보네이트계 유기용매는 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있고, 보다 구체적으로 에틸렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트 (FEC)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다.
또한, 상기 선형 카보네이트계 유기용매의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으며, 보다 구체적으로 디메틸 카보네이트, 디에틸 카보네이트 및 디프로필 카보네이트, 에틸메틸 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 들 수 있다.
상기 에테르계 유기용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 에스테르계 유기용매는 선형 에스테르 화합물 및 환형 에스테르 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 유기용매를 들 수 있다.
상기 선형 에스테르 화합물은 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 에스테르 화합물은 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 환형 카보네이트계 유기용매와 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 유기용매 및/또는 상기 환형 카보네이트계 유기용매와 선형 에스테르계 화합물을 적당한 비율로 혼합하여 사용하는 경우, 보다 높은 전기 전도율을 갖는 비수성 전해액을 제조할 수 있다.
상기 유기용매는 환형 카보네이트계 유기용매와 선형 카보네이트계 유기용매를 혼합하여 사용할 수 있으며, 상기 유기용매 중 환형 카보네이트계 유기용매:선형 카보네이트계 유기용매의 중량비는 10:90 내지 70:30일 수 있다.
(3) 제1 첨가제
본 발명의 리튬 이차전지용 비수성 전해액은 제1 첨가제로 하기 화학식 1로 표시되는 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드를 포함할 수 있다.
[화학식 1]
Figure PCTKR2019015159-appb-I000001
상기 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드는 음극의 초기 충전시에 발생하는 환원 반응을 통해 음극 표면에 안정한 SEI 막을 형성시켜, 전지의 내구성 향상 및 고온 저장 특성을 향상시킬 수 있다.
상기 제1 첨가제는 비수성 전해액 전체 중량을 기준으로 0.05 중량% 내지 0.9 중량%, 구체적으로 0.1 중량% 내지 0.9 중량%로 포함될 수 있다.
리튬 이차전지용 비수성 전해액 중 첨가제의 함량은 양극, 음극의 반응 비표면적에 의해 결정될 수 있는데, 상기와 같이 제1 첨가제의 함량이 0.05 중량% 이상인 경우, 음극 표면에 안정한 SEI 막을 형성할 수 있을 뿐만 아니라, 전해액과 음극과의 반응에 의한 전해액의 분해를 억제하여 가스 발생 저감 효과를 구현할 수 있는 등 첨가제에 따른 기대 효과를 충족할 수 있다. 또한, 첨가제의 함량이 0.9 중량% 이하인 경우, 가스 발생 효과를 개선할 수 있을 뿐만 아니라, 첨가제 과량 사용에 따른 부반응 및 이에 따른 저항 증가를 방지하면서, 전극 표면에 안정한 SEI 막을 형성할 수 있다.
만약, 첨가제의 함량이 0.9 중량%를 초과하는 경우, 과량의 첨가제에 따라 가스 발생 효과는 보다 향상될 수 있으나, 지나치게 두꺼운 피막이 형성되어 초기 저항이 증가하고, 출력 열화가 발생할 수 있다.
전술한 바와 같이 상기 제1 첨가제는 음극 표면에 안정한 SEI 막 형성에 작용하여 다른 물질과 양극의 반응을 저감시킴으로써, 전지의 내구성을 향상시킬 수 있다. 이에, 본 발명의 리튬 이차전지용 비수성 전해액은 상기 제1 첨가제와 함께 양극 피막 형성에 도움을 줄 수 있는 제2 첨가제를 더 포함할 수 있다. 즉, 본 발명의 리튬 이차전지용 비수성 전해액은 상기 제1 첨가제와 제2 첨가제를 함께 혼용함으로써, 양극 및 음극 표면에 보다 안정적이고 견고한 SEI 피막을 형성할 수 있어, 리튬 이차전지의 고온 저장 특성 및 수명 특성과 같은 전반적인 성능 향상을 도모할 수 있다
(4) 제2 첨가제
본 발명의 리튬 이차전지용 비수성 전해액은 제2 첨가제로 하기 화학식 2로 표시되는 테트라비닐실란 (TVS)을 포함할 수 있다.
상기 테트라비닐실란 (TVS)은 양극과 음극 표면에 물리적 흡착 및 전기화학적 반응을 통하여 견고한 SEI 막을 형성할 수 있다. 따라서, 비수성 전해액에 대한 양극 및 음극의 노출을 방지할 수 있으므로, 고온에서의 비수성 전해액과 전극의 부반응을 억제하고, 저항 증가를 방지하므로, 리튬 이차전지의 고온 저장 안정성을 향상시킬 수 있다.
[화학식 2]
Figure PCTKR2019015159-appb-I000002
한편, 상기 1 첨가제 및 제2 첨가제는 SEI 막 형성 효과 개선과, 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온 부풀음 개선 효과 등을 구현하기 위하여 그 혼합비를 적절히 조절하여 사용할 수 있는데, 구체적으로 1:0.1 내지 1:1, 보다 구체적으로 1:0.2 내지 1:1의 중량비로 혼합하여 사용할 수 있다.
이때, 상기 제1 첨가제 1 중량에 대한 상기 제2 첨가제의 중량비가 1 중량비를 초과하는 경우, 과량의 제2 첨가제에 의해 두꺼운 피막이 형성되어 전지 저항이 증가하고, 사이클 수명 특성이 저하될 수 있다. 또한, 제2 첨가제의 중량비가 0.1 미만인 경우, 가스 발생 저감 효과 및 SEI 막 형성 효과가 미미할 수 있다.
일반적으로 음극 활물질로 실리콘계 활물질을 사용하는 경우, 초기 충방전 시 흑연과 같이 음극 표면에 SEI (solid electrolyte interphase) 막이 형성하지만, 계속 적인 충방전 동안 실리콘계 음극 활물질의 부피 변화에 의해 SEI 막이 파괴된다. 이러한 SEI 막 붕괴는 음극 표면을 노출시키고, 노출된 음극 표면은 전해액과 반응하면서 지속적인 부반응을 야기한다.
더욱이, 이러한 부반응은 계속적으로 기체를 발생시키게 되는데, 이때 생성되는 주요 기체들은 CO, CO2, CH4, C2H6 등으로서, 음극활물질의 종류에 따라 달라지며, 그 종류에 관계없이 계속적인 기제 발생은 리튬 이온전지의 전지 내부 압력을 상승시켜 전지 두께를 팽창시키는 원인이 된다.
따라서, 본 발명에서는 비수성 전해액 제조 시에 제1 첨가제와 제2 첨가제를 상술한 바와 같은 비율로 혼합하여 사용함으로써, 음극 표면에 보다 견고하고 안정한 SEI 막을 형성하고자 한다.
이렇게 형성된 안정한 SEI 막은 불안정한 SEI 막 형성으로 인하여 발생할 수 있는 전지의 열화를 제어하여, 전지의 열화 거동을 억제할 수 있다.
(5) 부가적 첨가제
한편, 본 발명의 비수성 전해액은 상기 혼합 첨가제와 함께 사용되어 상기 혼합 첨가제가 발현하는 효과와 더불어 초기저항을 크게 증가시키지 않으면서, 음극 및 양극 표면에 안정한 피막을 형성하거나, 비수성 전해액 내 용매의 분해를 억제하고, 리튬 이온의 이동성을 향상시키는 보완제 역할을 할 수 있는 부가적 첨가제를 추가로 포함할 수 있다.
이러한 첨가제는 양극 및 음극 표면에 안정한 피막을 형성할 수 있는 첨가제라면 특별히 제한하지 않는다.
이러한 부가적 첨가제는 그 대표적인 예로 포스페이트계 화합물, 설파이트계 화합물, 설폰계 화합물, 설페이트계 화합물, 설톤계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 보레이트계 화합물, 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 포스페이트계 화합물은 양극과 음극 표면에서 전기 화학적으로 분해되어 SEI 막 형성에 도움을 주는 성분으로, 이를 통하여 이차전지의 장기적인 사이클 수명 특성 향상 효과를 구현할 수 있다. 이러한 포스페이트계 화합물로는 그 대표적인 예로 리튬 디플루오로(비스옥살라토)포스페이트, 리튬 디플루오로포스페이트, 테트라메틸 트리메틸 실릴 포스페이트, 트리메틸 실릴포스파이트, 트리스(2,2,2-트리플루오로에틸) 포스페이트 및 트리스(2,2,2-트리플루오로에틸) 포스파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 구체적으로 리튬 디플루오로포스페이트를 포함할 수 있다.
상기 포스페이트계 화합물:제1 첨가제는 2:1 내지 5:1의 중량비로 포함될 수 있다.
만약, 상기 포스페이트계 화합물의 함량비가 5를 초과하면 첨가제 과다 사용으로 인한 전지 내부 저항이 증가하기 때문에 사이클 수명 특성이 저하되고, 2 미만인 경우, SEI 막 형성 시 안정화 효과가 미미하여, 고온 저장 특성 및 사이클 수명 특성이 저하될 수 있다.
상기 설파이트계 화합물로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 및 1,3-부틸렌 글리콜 설파이트로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 설폰계 화합물로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 및 메틸비닐 설폰으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 설페이트계 화합물은 에틸렌 설페이트(Ethylene Sulfate; Esa), 트리메틸렌설페이트 (Trimethylene sulfate; TMS), 또는 메틸트리메틸렌설페이트 (Methyl trimethylene sulfate; MTMS)을 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 설톤계 화합물은 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 들 수 있으며, 이는 비수성 전해액 전체 중량을 기준으로 0.3중량% 내지 5중량%, 구체적으로 1 중량% 내지 5 중량%로 포함될 수 있다. 상기 비수성 전해액 중에 설톤계 화합물의 함량이 5중량%를 초과하는 경우, 전극 표면에 지나치게 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있고, 비수성 전해액 중 과량의 첨가제의 의한 저항이 증가되어, 출력 특성이 열화될 수 있다.
상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC))를 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 5중량% 이하로 포함할 수 있다. 상기 비수성 전해액 중에 할로겐 치환된 카보네이트계 화합물의 함량이 5중량%를 초과하는 경우, 셀 팽윤 성능이 열화될 수 있다.
또한, 상기 니트릴계 화합물은 숙시노니트릴(SN), 아디포니트릴(Adn), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 사이클로펜탄 카보니트릴, 사이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있다.
상기 보레이트계 화합물은 리튬 옥살릴디플루오로보레이트를 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 3중량% 이하로 포함될 수 있다.
상기 리튬염계 화합물은 상기 비수성 전해액에 포함되는 리튬염과 상이한 화합물로서, LiPO2F2, LiODFB, LiBOB(리튬 비스옥살레이토보레이트(LiB(C2O4)2) 및 LiBF4로 이루어진 군으로부터 선택된 1종 이상의 화합물을 들 수 있으며, 비수성 전해액 전체 중량을 기준으로 3중량% 이하로 포함할 수 있다.
상기 첨가제들은 2 종 이상이 혼합되어 포함될 수 있으며, 첨가제들의 전체 함량은 비수성 전해액 전체 중량을 기준으로 20중량% 이하, 구체적으로 10 중량% 이하로 포함될 수 있다. 상기 첨가제들의 함량이 20중량%를 초과하면 전지의 충방전시 비수성 전해액 내의 부반응이 과도하게 발생할 가능성이 있을 뿐만 아니라, 고온에서 충분히 분해되지 못하여, 상온에서 비수성 전해액 내에서 미반응물 또는 석출된 채로 존재하고 있을 수 있으며, 이에 따라 이차전지의 수명 또는 저항특성이 저하될 수 있다.
리튬 이차전지
또한, 본 발명에서는 전술한 비수성 전해액을 포함하는 리튬 이차전지를 제공할 수 있다.
상기 리튬 이차전지는 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 상기 양극 및 음극 사이에 게재된 분리막 및 전술한 비수성 전해액을 포함한다.
구체적으로, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 선택적으로 개재된 분리막이 순차적으로 적층되어 이루어진 전극조립체에 본 발명의 비수성 전해액을 주입하여 제조할 수 있다. 이때, 전극조립체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
상기 본 발명의 리튬 이차전지를 구성하는 양극 및 음극은 통상적인 방법으로 제조되어 사용될 수 있다.
(1) 양극
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1) 또는 LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1) 또는 LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 자립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99.5 중량%, 구체적으로 85 중량% 내지 95 중량%로 포함될 수 있다. 이때, 상기 양극 활물질의 함량이 80 중량% 이하인 경우 에너지 밀도가 낮아져 용량이 저하될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 상기 바인더가 1 중량% 미만이면 전극활물질과 집전체와의 접착력이 불충분해질 수 있으며, 30 중량부% 초과하면 접착력은 향상되지만 그만큼 전극활물질의 함량이 감소하여 전지 용량이 낮아질 수 있다.
이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
또한, 상기 도전재는 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone), 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 단독 또는 이들을 혼합하여 사용할 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율, 점도 등을 고려하여 적절하게 조절될 수 있으며, 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 10 중량% 내지 70 중량%, 바람직하게 20 중량% 내지 60 중량%가 되도록 포함될 수 있다.
(2) 음극
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질은 리튬을 도프 및 탈도프할 수 있는 실리콘계 음극활물질과 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소계 음극활물질을 포함할 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 실리콘계 음극 활물질로는 Si, SiOx(0<x≤2) 및 Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님)으로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
또한 상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 탄소계 음극활물질로는, 리튬 이온 이차전지에서 일반적으로 사용되는 탄소계 음극 활물질이라면 특별히 제한 없이 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연, 인조 흑연 또는 그라파이트 등의 흑연계 탄소를 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
이때, 상기 실리콘계 음극활물질:탄소계 음극활물질은 5:95 내지 50:50 중량비,구체적으로 20:80 내지 40:60 중량비, 더욱 구체적으로 30:70 중량비로 포함될 수 있다.
상기 함량 범위를 만족하는 음극 활물질은 우수한 용량 특성을 확보하는 동시에, 상온 수명 특성 및 고온 수명특성을 확보할 수 있다.
또한, 상기 음극 활물질은 실리콘계 음극활물질 및 탄소계 음극 활물질 외에도 리튬을 도프 및 탈도프할 수 있는 주석계 물질, 리튬 금속, 금속 또는 이들 금속과 리튬의 합금, 금속 복합 산화물 및 전이 금속 산화물로 이루어진 군으로부터 선택된 적어도 하나 이상을 추가로 포함할 수도 있다.
상기 주석계 물질은 그 대표적인 예로 Sn, SnO2, Sn-Y(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다. 이때, 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다.
상기 금속 또는 이들 금속과 리튬의 합금으로는 Cu, Ni, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속 또는 이들 금속과 리튬의 합금이 사용될 수 있다.
상기 금속 복합 산화물로는 PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), 및 SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 로 이루어진 군에서 선택되는 것이 사용될 수 있다.
상기 전이 금속 산화물로는 리튬 함유 티타늄 복합 산화물(LTO), 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 폴리(아크릴산 나트륨)-폴리비닐알코올(poly (acrylic acid sodium)/polyvinyl alcohol 혼용, NaPAA-PVA), 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 카본블랙, 아세틸렌 블랙(또는 덴카 블랙), 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 또는 서멀 블랙 등의 탄소 분말; 결정구조가 매우 발달된 천연 흑연, 인조흑연, 또는 그라파이트 등의 흑연 분말; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.
(3) 분리막
또한, 상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다.
상기 분리막은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01 내지 50㎛이고, 기공도는 5 내지 95%일 수 있다. 또한, 상기 다공성 분리막의 두께는 일반적으로 5 내지 300㎛ 범위일 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1.
(비수성 전해액 제조)
에틸렌 카보네이트(EC):에틸메틸 카보네이트(EMC)를 30:70 부피비로 혼합한 다음, LiPF6가 0.7 M 및 LiFSI 가 0.3 M가 되도록 용해시켜 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 90.7g에 제1 첨가제인 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드(Aldrich 사 제조, CAS: 761441-54-7) 0.5 g, 제2 첨가제인 테트라비닐실란 0.1 g, 부가적 첨가제인 리튬 디플루오르 포스페이트 1.0 g 에틸렌 설포네이트 1.0 g, 1,3-프로판 설톤 0.5 g 및 LiBF4 0.2 g, 플루오르 벤젠 6.0 g을 첨가하여 리튬 이차전지용 비수성 전해액을 제조하였다.
(전극조립체 제조)
양극 활물질로 (LiNi0.8Co0.1Mn0.1O2; NCM) 도전재로 카본 블랙(carbon black) 및 바인더로 폴리비닐리덴플루오라이드(PVDF)를 97.5:1:1.5 중량비로 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리(고형분 함량: 50 중량%)를 제조하였다. 상기 양극 혼합물 슬러리를 12㎛ 두께의 양극 집전체인 알루미늄(Al) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질 (SiO:그라파이트 = 5:95 중량비), 바인더인 SBR-CMC, 도전재인 카본 블랙(carbon black)을 95:3.5:1.5 중량비로 용매인 물에 첨가하여 음극 혼합물 슬러리(고형분 함량: 60 중량%)를 제조하였다. 상기 음극 혼합물 슬러리를 6㎛ 두께의 음극 집전체인 구리(Cu) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 분리막 및 음극을 순차적으로 적층하여 전극조립체를 제조하였다.
(이차전지 제조)
전지 케이스 내에 상기 조립된 전극조립체를 수납하고, 상기 비수성 전해액을 주액하여 파우치형 리튬 이차전지를 제조하였다.
실시예 2.
비수성 유기용매 91.0g에 제1 첨가제인 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드 0.2g, 제2 첨가제인 테트라비닐실란 0.1g 및 부가적 첨가제인 리튬 디플루오르 포스페이트 1.0 g 에틸렌 설포네이트 1.0 g, 1,3-프로판 설톤 0.5 g 및 LiBF4 0.2 g, 플루오르 벤젠 6.0 g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 비수성 전해액 및 이를 포함하는 파우치형 리튬 이차전지를 제조하였다.
실시예 3.
(비수성 전해액 제조)
비수성 유기용매 98.4 g에 제1 첨가제인 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드 0.5 g, 제2 첨가제인 테트라비닐실란 0.1 g 및 부가적 첨가제인 리튬 디플루오르 포스페이트 1.0 g을 첨가하여 리튬 이차전지용 비수성 전해액을 제조하였다.
(음극 제조)
음극 활물질 (SiO:그라파이트 = 30:70 중량비), 바인더인 폴리(아크릴산 나트륨)-폴리비닐알코올, 도전재인 카본 블랙(carbon black)을 95:3.5:1.5 중량비로 용매인 물에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 6㎛의 음극 집전체인 구리(Cu) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
(전극조립체 제조)
상기 제조된 음극과 무기물 입자(Al2O3)가 도포된 폴리올레핀계 다공성 분리막 및 상기 실시예 1에서 제조된 양극을 순차적으로 적층하여 전극조립체를 제조하였다.
(이차전지 제조)
전지 케이스 내에 상기 조립된 전극조립체를 수납하고, 상기 비수성 전해액을 주액하여 파우치형 리튬 이차전지를 제조하였다.
실시예 4.
비수성 유기용매 90.1g에 제1 첨가제인 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드 1.0g, 제2 첨가제인 테트라비닐실란 0.2g 및 부가적 첨가제인 리튬 디플루오르 포스페이트 1.0 g 에틸렌 설포네이트 1.0 g, 1,3-프로판 설톤 0.5 g 및 LiBF4 0.2 g, 플루오르 벤젠 6.0 g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수성 전해액 및 이를 포함하는 파우치형 리튬 이차전지를 제조하였다.
비교예 1.
비수성 유기용매 91.2g에 제1 첨가제는 포함하지 않고, 제2 첨가제인 테트라비닐실란 0.1g 및 부가적 첨가제인 리튬 디플루오르 포스페이트 1.0 g 에틸렌 설포네이트 1.0 g, 1,3-프로판 설톤 0.5 g 및 LiBF4 0.2 g, 플루오르 벤젠 6.0 g을 첨가하는 것을 제외하고는 상기 실시예 1과 마찬가지의 방법으로 리튬 이차전지용 비수성 전해액 및 이를 포함하는 파우치형 리튬 이차전지를 제조하였다.
비교예 2
(비수성 전해액 제조)
비수성 유기용매 90.7g에 리튬 옥사릴디플루로오로보레이트 (lithium oxalyldifluoroborate, LiODFB) 0.5 g, 제2 첨가제인 테트라비닐실란 0.1 g, 부가적 첨가제인 리튬 디플루오르 포스페이트 1.0 g 에틸렌 설포네이트 1.0 g, 1,3-프로판 설톤 0.5 g 및 LiBF4 0.2 g, 플루오르 벤젠 6.0 g을 첨가하여 리튬 이차전지용 비수성 전해액을 제조하였다.
(이차전지 제조)
상기 비수성 전해액을 사용하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 파우치형 리튬 이차전지를 제조하였다.
비교예 3
(비수성 전해액 제조)
비수성 유기용매 90.7g에 리튬 비스(옥살라토)보레이트 (lithium bis(oxalato)borate, LiBOB) 0.5 g, 제2 첨가제인 테트라비닐실란 0.1 g, 부가적 첨가제인 리튬 디플루오르 포스페이트 1.0 g 에틸렌 설포네이트 1.0 g, 1,3-프로판 설톤 0.5 g 및 LiBF4 0.2 g, 플루오르 벤젠 6.0 g을 첨가하여 리튬 이차전지용 비수성 전해액을 제조하였다.
(이차전지 제조)
상기 비수성 전해액을 사용하는 것을 제외하고는 실시예 1과 마찬가지의 방법으로 파우치형 리튬 이차전지를 제조하였다.
참고예.
(음극 제조)
음극 활물질 (그라파이트), 바인더인 SBR-CMC, 도전재인 카본 블랙(carbon black)을 95:3.5:1.5 중량비로 용매인 물에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 6㎛의 음극 집전체인 구리(Cu) 박막에 도포 및 건조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
(이차전지 제조)
상기 제조된 음극을 사용하는 것을 제외하고는 상기 실시예 3과 마찬가지의 방법으로 파우치형 리튬 이차전지를 제조하였다.
실험예
실험예 1. 사이클 수명 특성 실험(1)
상기 실시예 1에서 제조된 리튬 이차전지와 비교예 1에서 제조된 이차전지를 각각 0.1C rate로 정정류(CC) 조건에서 활성화한 후, 디가스를 진행하였다.
이어서, 25℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33C rate로 CC 조건에서 충전한 다음 0.05C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33C rate로 방전을 하였다. 상기 충방전을 1 사이클로 하여 3 사이클을 진행하였다.
그 다음, 45℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33 C rate로 CC 조건에서 충전한 다음 0.05 C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33 C으로 방전하였다. 상기 충방전을 1 사이클로 하여, 고온(45℃)에서 400 사이클 충방전을 실시하였다.
이때, 100 사이클 마다 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 용량을 측정하고, 이를 하기 식 (1)에 대입하여 용량 유지율(capacity retention)을 산출한 후, 그 결과를 도 1에 나타내었다.
식 (1): 용량 유지율(%)=(100 사이클마다의 용량/1 사이클 후 용량)×100
또한, 100 사이클 마다 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 방전 용량을 측정하고, 이를 하기 식 (2)에 대입하여 방전 용량 유지율(discharge capacity retention)을 측정하고, 그 결과를 도 2에 나타내었다.
식 (2): 방전 용량 유지율(%)=(100 사이클마다의 방전 용량/1 사이클 후 방전 용량)×100
또한, SOC 50% 상태에서 2.5C로 10초간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하를 통하여 직류 내부 저항 (Direct Current Internal Resistance; 이하 "DC-iR"이라 칭함)을 계산하고, 이를 하기 식 (3)에 대입하여 저항 증가율(%)을 계산한 다음, 이를 도 2에 나타내었다. 이때, 상기 전압 강하는 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 측정하였다.
식 (3): 저항 증가율 (%)={(매 100 사이클 후의 저항-초기 저항)/초기 저항}×100
도 1을 참조하면, 본 발명의 비수성 전해액을 구비한 실시예 1의 이차전지는 비교예 1의 이차전지에 비하여 고온 (45℃)에서 400 사이클을 진행한 후에도 추가적인 전해질 분해에 의한 비가역적인 리튬의 손실이 적어, 전지의 용량 유지율이 개선된 것을 확인할 수 있다.
또한, 도 2를 참조하면, 실시예 1의 이차전지는 양극/음극 표면에 안정한 피막이 형성되므로, 고온 (45℃)에서 400 사이클을 진행한 후에도 용량 유지율은 비교예 1의 이차전지에 비해 개선되고, 저항 증가율은 약 27%로 비교예 1의 이차전지에 비해 현저히 저감된 것을 확인할 수 있다.
실험예 2. 사이클 수명 특성 실험(2)
상기 실시예 2에서 제조된 리튬 이차전지와 비교예 1에서 제조된 이차전지를 각각 0.1C rate로 CC 조건에서 활성화한 후, 디가스를 진행하였다.
이어서, 25℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33C rate 로 CC 조건에서 충전한 다음 0.05C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33C으로 방전을 하였다. 상기 충방전을 1 사이클로 하여 3 사이클을 진행하였다.
그 다음, 45℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33 C rate로 CC 조건에서 충전한 다음 0.05 C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33 C으로 방전하였다. 상기 충방전을 1 사이클로 하여, 고온(45℃)에서 50 사이클 충방전을 실시하였다.
이때, 10 사이클 마다 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5V, 6A)를 사용하여 용량을 측정하고, 이를 상기 식 (1)에 대입하여 용량 유지율을 산출하고, 그 결과를 도 3에 나타내었다
도 3을 참고하면, 본 발명의 실시예 2의 이차전지는 양극/음극 표면에 안정한 피막이 형성되어, 고온에서의 지속적인 충방전을 실시하여도 피막의 파괴와 재생성에 의한 지속적인 전해질 분해 반응이 억제되므로, 비교예 1의 이차전지에 비하여, 용량 유지율이 개선된 것을 확인할 수 있다
실험예 3. 고온 저장 특성 실험
상기 실시예 1과 비교예 1에서 제조된 각각의 이차전지를 0.1C rate 로 CC 조건에서 활성화한 후, 디가스를 진행하였다.
이어서, 25℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33C rate로 CC 조건에서 충전한 다음 0.05C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33C으로 방전하였다. 상기 충방전을 1 사이클로 하여, 3 사이클 진행하였다.
그 다음, SOC 100%까지 0.33C rete로 CC 조건에서 재충전한 후, 60℃ 고온에서 12주 동안 저장하였다.
2주 마다 0.33C rate로 CC-CV 충방전을 진행한 후, PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 방전 용량을 측정하고, 이를 상기 식 (2)에 대입하여 방전 용량 유지율(discharge capacity retention)을 측정하고, 그 결과를 도 4에 나타내었다.
또한, SOC 50% 상태에서 2.5C로 10초간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하를 통하여 DC-iR를 계산하고, 이를 상기 식 (3)에 대입하여 저항 증가율(%)을 계산한 다음, 도 4에 나타내었다. 이때, 상기 전압 강하는 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 측정하였다.
또한, 고온 저장 후 12주가 경과하였을 때, 실시예 1 및 비교예 1의 이차전지를 일부 개봉하여 탈기한 후, 전지 내부에서 발생한 기체의 양과 추출된 성분을 비교하여 도 5에 나타내었다.
먼저, 도 4를 참고하면, 본 발명의 비수성 전해액을 구비한 실시예 1의 이차전지는 고온에서 12주 저장 후 저항 증가율이 약 6%로 비교예 1의 이차전지에 비해 현저히 저감된 것을 알 수 있다. 또한, 실시예 1의 이차전지는 고온에서 8주 저장 후 용량 유지율이 약 84%로 비교예 1의 이차전지에 비해 개선된 것을 확인할 수 있다. 이는 비교예 1의 이차전지에 비하여, 본 발명의 비수성 전해액을 구비한 실시예 1의 이차전지가 음극 표면에 보다 안정한 SEI 막을 형성하여, 고온에서의 피막 파괴를 방지하고, 이에 따른 전해질의 추가적인 분해를 억제하여, 저항 증가율이 감소하고, 용량 유지율이 증가한 것으로 보인다.
또한, 도 5를 참고하면, 본 발명의 비수성 전해액을 구비한 실시예 1의 이차전지는 양극/음극 표면에 안정한 피막이 형성되어 고온 저장 시의 전해질 분해가 저감되었기 때문에, 전지 내부에서 전해액 분해에 의하여 발생하는 CO2 및 CH4 함량이 각각 650 ㎕ 및 550 ㎕으로, CO2 및 CH4 함량이 각각 870 ㎕ 및 690 ㎕가 발생된 비교예 1의 이차전지에 비하여 감소한 것을 알 수 있다.
실험예 4. 고온 저장 특성 실험
상기 실시예 4와 비교예 1에서 제조된 각각의 이차전지를 0.1C CC로 활성화한 후, 디가스를 진행하였다.
이어서, 25℃ 에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33C CC으로 충전한 다음 0.05C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33C으로 방전하였다. 상기 충방전을 1 사이클로 하여, 3 사이클 진행하였다.
그 다음, SOC 100%까지 0.33C CC 조건으로 재충전 한 후, 60℃ 고온에서 8주 동안 저장하였다.
2주 마다 0.33C rate 로 CC-CV 충방전을 진행한 후, PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 방전 용량을 측정하고, 이를 상기 식 (2)에 대입하여 방전 용량 유지율(discharge capacity retention)을 측정하고, 그 결과를 도 6에 나타내었다.
또한, SOC 50% 상태에서 2.5C로 10초간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하를 통하여 DC-iR를 계산하고, 이를 상기 식 (3)에 대입하여 저항 증가율(%)을 계산한 다음, 도 6에 나타내었다. 이때, 상기 전압 강하는 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 측정하였다.
도 6을 참고하면, 실시예 4의 이차전지는 고온에서 8주 저장 후 저항 증가율이 약 3% 이하로, 비교예 1의 이차전지에 비해 현저히 저감된 것을 알 수 있다. 또한, 실시예 4의 이차전지는 고온에서 8주 저장 후 용량 유지율이 비교예 1의 이차전지에 비해 개선된 것을 알 수 있다. 이는 비교예 1의 이차전지에 비하여, 본 발명의 비수성 전해액을 구비한 실시예 4의 이차전지가 음극 표면에 보다 안정한 SEI 막을 형성하여, 고온에서의 피막 파괴를 방지하고, 이에 따른 전해질 추가적인 분해를 억제하여, 저항 증가율이 감소하고, 용량 유지율이 증가한 것으로 보인다.
실험예 5. 초기 저항 측정 실험
상기 실시예 1과 실시예 4에서 제조된 이차전지를 각각 0.1C rate 로 CC 조건에서 활성화한 후, 45℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33C rate 로 CC 조건에서 충전한 다음 0.05C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33C으로 방전하였다.
상기 충방전을 1 사이클로 하여 3 사이클을 진행한 후, SOC 50% 상태에서 2.5C rate 로 CC 조건에서 10초간 방전 펄스 (pulse)를 준 상태에서 나타나는 전압 강하를 통하여 초기 저항을 산출하고 이를 도 7에 나타내었다. 이때, 상기 전압 강하는 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 측정하였다.
도 7을 살펴보면, 제1 첨가제의 함량이 높은 비수성 전해액을 구비한 실시예 4의 이차전지의 경우, 초기 저항이 증가한 것을 확인할 수 있다.
실험예 6. 음극 표면의 SEI 막 형성 효과 평가
상기 실시예 3과 참고예에서 제조된 이차전지를 각각 0.1C CC-CV로 4.2V까지 충전하여 0.05C cut-off로 활성화한 후, 디가스를 진행하였다.
이어서, PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 용량을 측정하고, 이렇게 얻어진 용량-전압 곡선을 1차 미분하여 얻어진 미분 용량 곡선을 도 8에 나타내었다.
도 8을 살펴보면, 그라파이트 성분을 단독으로 포함하는 음극을 구비한 참고예의 이차전지에 비하여, 실리콘(SiO) 성분을 포함하는 음극을 구비한 실시예 3의 이차전지의 경우, 약 1.00 V 내지 1.25 V 사이에서 음극 표면에서 비수성 전해액에 포함된 첨가제들이 분해되어 환원이 일어나는 것을 보여주는 분해 피크가 확인되었다. 이를 통하여 본 발명의 비수성 전해액은 실리콘 음극이 혼합되어 있는 음극에 추가적으로 안정한 SEI 막을 형성할 수 있음을 확인할 수 있다.
실험예 7. 고온 사이클 후 저항 평가 실험
실시예 1 및 비교예 1 내지 3에서 제조된 리튬 이차전지를 각각 0.1C rate 로 CC 조건에서 활성화한 후, 디가스를 진행하였다.
이어서, 25℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33C rate 로 CC 조건에서 충전한 다음 0.05C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33C으로 방전을 하였다. 상기 충방전을 1 사이클로 하여 3 사이클을 진행하였다.
그 다음, 45℃에서 정전류-정전압(CC-CV) 충전 조건으로 4.20V까지 0.33 C rate 로 CC 조건에서 충전한 다음 0.05 C current cut을 진행하였고, CC 조건으로 2.5V까지 0.33 C으로 방전하였다. 상기 충방전을 1 사이클로 하여, 고온(45℃)에서 300 사이클 충방전을 실시하였다.
이어서, 25℃에서 SOC 50% 상태에서 2.5C로 10초간 방전 펄스(pulse)를 준 상태에서 나타나는 전압 강하를 통하여 직류 내부 저항 (Direct Current Internal Resistance; 이하 "DC-iR"이라 칭함)을 계산하고, 이를 상기 식 (3)에 대입하여 저항 증가율(%)을 계산한 다음, 그 결과를 도 9에 나타내었다. 이때, 상기 전압 강하는 PNE-0506 충방전기(제조사: (주)PNE 솔루션, 5 V, 6 A)를 사용하여 측정하였다.
도 9를 살펴보면, 제1 첨가제를 포함하지 않은 비교예 1의 이차전지와, 제1 첨가제와 상이한 보레이트계 화합물을 포함하는 비교예 2 및 비교예 3의 이차전지의 경우, 실시예 1의 이차전지에 비하여 고온에서 300 사이클 후 저항이 증가한 것을 확인할 수 있다.

Claims (10)

  1. 리튬염; 유기 용매; 제1 첨가제 및 제2 첨가제를 포함하며,
    상기 제1 첨가제는 리튬 4,5-디시아노-2-(트리플루오로메틸)이미다졸리드이고, 상기 제2 첨가제는 테트라비닐실란인 것인 리튬 이차전지용 비수성 전해액.
  2. 청구항 1에 있어서,
    상기 제1 첨가제는 리튬 이차전지용 비수성 전해액 전체 중량을 기준으로 0.05 중량% 내지 0.9 중량%로 포함되는 것인 리튬 이차전지용 비수성 전해액.
  3. 청구항 1에 있어서,
    상기 제1 첨가제는 리튬 이차전지용 비수성 전해액 전체 중량을 기준으로 0.1 중량% 내지 0.9 중량%로 포함되는 것인 리튬 이차전지용 비수성 전해액.
  4. 청구항 1에 있어서,
    상기 제1 첨가제:제2 첨가제의 중량비는 1:0.1 내지 1:1인 것인 리튬 이차전지용 비수성 전해액.
  5. 청구항 1에 있어서,
    상기 제1 첨가제:제2 첨가제의 중량비는 1:0.2 내지 1:1인 것인 리튬 이차전지용 비수성 전해액.
  6. 청구항 1에 있어서,
    상기 리튬 이차전지용 비수성 전해액은 포스페이트계 화합물, 설파이트계 화합물, 설폰계 화합물, 설페이트계 화합물, 설톤계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 보레이트계 화합물 및 리튬염계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 부가적 첨가제를 추가로 포함하는 것인 리튬 이차전지용 비수성 전해액.
  7. 청구항 1의 리튬 이차전지용 비수성 전해액, 양극, 음극 및 분리막을 포함하는 리튬 이차전지.
  8. 청구항 7에 있어서,
    상기 음극은 실리콘계 음극활물질 및 탄소계 음극활물질을 포함하는 것인 리튬 이차전지.
  9. 청구항 8에 있어서,
    상기 실리콘계 음극활물질:탄소계 음극활물질은 5:95 내지 50:50 중량비로 포함되는 것인 리튬 이차전지.
  10. 청구항 9에 있어서,
    상기 실리콘계 음극활물질:탄소계 음극활물질은 20:80 내지 40:60 중량비로 포함되는 것인 리튬 이차전지.
PCT/KR2019/015159 2018-11-09 2019-11-08 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지 WO2020096411A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19883102.6A EP3855549A4 (en) 2018-11-09 2019-11-08 NON-AQUEOUS ELECTROLYTE FOR SECONDARY LITHIUM BATTERY, AND SECONDARY LITHIUM BATTERY CONTAINING IT
US17/289,465 US20220006121A1 (en) 2018-11-09 2019-11-08 Non-Aqueous Electrolyte Solution For Lithium Secondary Battery And Lithium Secondary Battery Including The Same
CN201980070874.5A CN113614974B (zh) 2018-11-09 2019-11-08 锂二次电池用非水性电解质溶液和包含其的锂二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180137594 2018-11-09
KR10-2018-0137594 2018-11-09
KR10-2019-0141681 2019-11-07
KR1020190141681A KR102434070B1 (ko) 2018-11-09 2019-11-07 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지

Publications (1)

Publication Number Publication Date
WO2020096411A1 true WO2020096411A1 (ko) 2020-05-14

Family

ID=70611604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015159 WO2020096411A1 (ko) 2018-11-09 2019-11-08 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지

Country Status (2)

Country Link
US (1) US20220006121A1 (ko)
WO (1) WO2020096411A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451652A (zh) * 2021-07-28 2021-09-28 中节能万润股份有限公司 一种锂离子电池非水电解液添加剂及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150028769A (ko) * 2012-06-04 2015-03-16 아르끄마 프랑스 Li-이온 전지용 2환 방향족 음이온염
KR20170128238A (ko) 2015-03-16 2017-11-22 아르끄마 프랑스 리튬 이온 배터리용 전해질 제형
WO2018163127A1 (fr) * 2017-03-10 2018-09-13 HYDRO-QUéBEC Composition d'électrolyte et son utilisation dans des batteries lithium-ion
KR20180105631A (ko) * 2015-09-28 2018-09-28 유니버시티 오브 메릴랜드, 컬리지 파크 광범위한 전기화학적 안정성 윈도우가 있는 수성 및 혼성 전해질
KR20180114631A (ko) * 2017-04-11 2018-10-19 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20180115591A (ko) * 2017-04-13 2018-10-23 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169368A1 (ko) * 2017-03-17 2018-09-20 주식회사 엘지화학 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 전해질
WO2021127993A1 (zh) * 2019-12-24 2021-07-01 宁德新能源科技有限公司 电解液以及使用其的电化学装置和电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150028769A (ko) * 2012-06-04 2015-03-16 아르끄마 프랑스 Li-이온 전지용 2환 방향족 음이온염
KR20170128238A (ko) 2015-03-16 2017-11-22 아르끄마 프랑스 리튬 이온 배터리용 전해질 제형
KR20180105631A (ko) * 2015-09-28 2018-09-28 유니버시티 오브 메릴랜드, 컬리지 파크 광범위한 전기화학적 안정성 윈도우가 있는 수성 및 혼성 전해질
WO2018163127A1 (fr) * 2017-03-10 2018-09-13 HYDRO-QUéBEC Composition d'électrolyte et son utilisation dans des batteries lithium-ion
KR20180114631A (ko) * 2017-04-11 2018-10-19 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
KR20180115591A (ko) * 2017-04-13 2018-10-23 주식회사 엘지화학 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113451652A (zh) * 2021-07-28 2021-09-28 中节能万润股份有限公司 一种锂离子电池非水电解液添加剂及其应用

Also Published As

Publication number Publication date
US20220006121A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020130575A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019156539A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2018093152A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018135890A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2021049872A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020213962A1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2023085843A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2021256825A1 (ko) 리튬 이차전지용 비수 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2019151724A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2021025382A1 (ko) 사이클 특성이 향상된 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883102

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019883102

Country of ref document: EP

Effective date: 20210421

NENP Non-entry into the national phase

Ref country code: DE