WO2020095351A1 - ゲート駆動回路および電力変換装置 - Google Patents

ゲート駆動回路および電力変換装置 Download PDF

Info

Publication number
WO2020095351A1
WO2020095351A1 PCT/JP2018/041061 JP2018041061W WO2020095351A1 WO 2020095351 A1 WO2020095351 A1 WO 2020095351A1 JP 2018041061 W JP2018041061 W JP 2018041061W WO 2020095351 A1 WO2020095351 A1 WO 2020095351A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
voltage
resistor
terminal
power mosfet
Prior art date
Application number
PCT/JP2018/041061
Other languages
English (en)
French (fr)
Inventor
浅井 孝公
理史 一木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880099013.5A priority Critical patent/CN112930642A/zh
Priority to EP18939467.9A priority patent/EP3879685A4/en
Priority to PCT/JP2018/041061 priority patent/WO2020095351A1/ja
Priority to JP2020556378A priority patent/JP7034330B2/ja
Publication of WO2020095351A1 publication Critical patent/WO2020095351A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit
    • H03K17/08142Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • H03K17/163Soft switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a gate drive circuit that controls on / off of a semiconductor switch, and a power conversion device including the gate drive circuit.
  • the semiconductor switch especially the voltage-driven semiconductor switch, changes the resistance value between the two terminals to which the main current is input and output according to the voltage applied to the gate terminal, which is the control terminal, and Change.
  • Known voltage-driven semiconductor switches include power MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), IGBTs (Insulated Gate Bipolar Transistors), and the like.
  • Voltage-driven semiconductor switches are characterized by high-speed switching operation, and are often used in high-frequency power converters. However, when the switching speed of the voltage-driven semiconductor switch is increased, the surge voltage applied to the semiconductor switch also increases due to the current interruption at turn-off.
  • the forward direction of the semiconductor switch is the direction from the drain terminal to the source terminal in the case of an N-channel MOSFET, for example.
  • a semiconductor switch having a relatively high breakdown voltage has a large conduction resistance value when turned on. For this reason, the power loss in the semiconductor switch is increased, and the required heat dissipation device is also increased accordingly. Therefore, it is a good idea to make full use of semiconductor switches having a low breakdown voltage. In other words, it is required to suppress the surge voltage.
  • the conventional technique according to Patent Document 1 detects a value obtained by adding a fixed value of a surge voltage to a power supply voltage and suppresses a peak voltage. Therefore, in the conventional technique according to Patent Document 1, the suppression amount of the surge voltage changes depending on the power supply voltage, and not the actual magnitude of the surge voltage, but the absolute value of the voltage applied to the semiconductor switch. You can only limit Here, as an example, consider a case where a semiconductor switch is driven by using a general-purpose gate driver IC having a half bridge as a basic configuration. In this case, the level at which the midpoint potential of the gate driver IC becomes a negative potential due to the surge voltage due to switching cannot be uniquely controlled.
  • the gate driver IC has a withstand voltage against a negative voltage generated by a surge voltage. In order to prevent the breakdown of the gate driver IC due to exceeding the withstand voltage, it is necessary to suppress the generated negative voltage within the withstand voltage range. However, the negative voltage of the midpoint potential cannot be controlled by the level of the power supply voltage only by suppressing the peak voltage of the voltage including the surge voltage applied to the semiconductor switch, and it is difficult to prevent the breakdown voltage from being exceeded. ..
  • the present invention has been made to solve the above problems, and a gate drive circuit capable of suppressing a surge voltage while suppressing an increase in switching loss that occurs when switching a semiconductor switch. , And a power conversion device.
  • a gate drive circuit includes a gate drive unit that controls ON / OFF of a semiconductor switch having a first terminal, a second terminal, and a gate terminal, and a gate resistor connected between the gate drive unit and the gate terminal. Is connected between the gate drive unit and the first terminal, and when the gate drive unit turns off the semiconductor switch, the negative potential generated at the first terminal by the electromotive voltage of the wiring inductance , A gate discharge current adjusting circuit for changing the gate charge of the semiconductor switch in a direction to delay the discharging speed of discharging through the gate resistor.
  • the power conversion device includes the gate drive circuit according to the present invention.
  • the present invention it is possible to obtain a gate drive circuit and a power conversion device capable of suppressing a surge voltage while suppressing an increase in switching loss that occurs when switching a semiconductor switch.
  • FIG. 3 is a block diagram showing a gate drive circuit and its peripheral configuration according to the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing details of the gate discharge current adjusting circuit shown in FIG. 1 in the first embodiment of the present invention.
  • FIG. 3 is a diagram showing waveforms of respective parts related to the power MOSFET and the inductor in the first embodiment of the present invention. It is a figure which shows schematic structure of the power converter device provided with the gate drive circuit which concerns on Embodiment 1 of this invention.
  • FIG. 6 is a circuit diagram showing details of a gate discharge current adjusting circuit included in the gate drive circuit according to the second embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing details of a gate discharge current adjusting circuit included in a gate drive circuit according to a third embodiment of the present invention.
  • Embodiment 1. 1 is a block diagram showing a gate drive circuit and its peripheral configuration according to a first embodiment of the present invention. More specifically, it is one semiconductor switch that constitutes a single-phase or multiple-phase bridge-type power converter and its peripheral portion are extracted.
  • the semiconductor switch 51 is an N-channel type power MOSFET, and the semiconductor switch 51 is referred to as a power MOSFET 51 in the following description.
  • the power MOSFET 51 is turned on / off by a gate drive circuit 31 connected between the control circuit 41 and the power MOSFET 51.
  • the inductor 61 connected to the source terminal of the power MOSFET 51 represents the inductance component of the wiring connected to the source terminal.
  • the gate driver 21 receives an on / off control signal based on the GND potential from the control circuit 41. Then, the gate driver 21 amplifies the received on / off control signal and converts it into a drive output based on the potential of the source terminal of the power MOSFET 51. Further, the gate driver 21 drives the power MOSFET 51 on and off by supplying a voltage between the gate terminal and the source terminal of the power MOSFET 51 via the gate resistance Rg.
  • the gate resistance Rg has a function of adjusting the switching speed and the like.
  • the source terminal corresponds to the first terminal
  • the drain terminal corresponds to the second terminal
  • the gate driver 21 corresponds to the gate driver
  • a gate discharge current adjusting circuit 11 is connected between the source terminal of the power MOSFET 51 and the gate driver 21.
  • the gate discharge current adjusting circuit 11 is a core part of the first embodiment and will be described in more detail.
  • FIG. 2 is a circuit diagram showing details of gate discharge current adjusting circuit 11 shown in FIG. 1 in the first exemplary embodiment of the present invention.
  • the gate discharge current adjusting circuit 11 is composed of a voltage source VS and a series circuit in which a diode D1, a resistor R2, a capacitor C1, and a resistor R1 are connected in series.
  • the series circuit is connected between the voltage source VS and the source terminal of the power MOSFET 51. That is, in the series circuit, the end on the diode D1 side is connected to the voltage source VS, and the end on the resistance R1 side is connected to the source terminal of the power MOSFET 51.
  • the diode D1 has an anode terminal connected to the voltage source VS and a cathode terminal connected to the resistor R2. Further, one end of the capacitor C1 is connected to the resistor R2, and the other end of the capacitor C1 is connected to the resistor R1.
  • the resistor R1 corresponds to the first resistor
  • the resistor R2 corresponds to the second resistor
  • the diode D1 corresponds to the first diode.
  • one end of the resistor R1 is connected to the other end of the capacitor C1 and also to the gate driver 21.
  • the other end of the resistor R1 is connected to the source terminal of the power MOSFET 51.
  • the gate discharge current adjusting circuit 11 has a configuration in which the diode D1, the resistor R2, and the capacitor C1 are connected in series between the voltage source VS and the connection point of the resistor R1 and the gate driver 21.
  • the connecting order when the diode D1, the resistor R2, and the capacitor C1 are connected in series is arbitrary, and the connecting order shown in FIG. 2 is merely an example.
  • the voltage source VS may be a power source having an arbitrary voltage based on the GND potential.
  • a half bridge is composed of a plurality of semiconductor switches 51, it is preferable to apply a gate drive power source for the lower arm of the half bridge as the voltage source VS.
  • the diode D1 When applied to the lower arm, the diode D1 may be omitted and the resistor R2 may be directly connected to the voltage source VS.
  • FIG. 3 is a diagram showing waveforms of respective parts relating to the power MOSFET 51 and the inductor 61 in the first embodiment of the present invention. More specifically, FIG. 3 schematically shows an example of the waveform of each part from the ON state of the power MOSFET 51 driven by the gate drive circuit 31 of FIG. 2 to the OFF state.
  • Vgs gate-source voltage of power MOSFET 51
  • Vds drain-source voltage of power MOSFET 51
  • Id drain current of power MOSFET 51
  • VL voltage across inductor 61
  • Ig gate current of power MOSFET 51 Voltage VL across inductor 61
  • the source terminal side of the power MOSFET 51 is positive.
  • the gate current Ig is positive in the discharging direction.
  • the section A is a state in which the gate driver 21 drives the power MOSFET 51 to be ON based on the ON command output from the control circuit 41.
  • a forward current which is a direction from the drain terminal to the source terminal, flows from the DC power supply (not shown) via the inductor 61.
  • the capacitor C1 is in an equilibrium state in which it is charged by the voltage obtained by subtracting the voltage drop of the diode D1 from the voltage of the voltage source VS. Therefore, no current flows in the gate discharge current adjusting circuit 11.
  • the section B is a state in which the gate driver 21 starts the off driving of the power MOSFET 51 based on the turn-off command output from the control circuit 41.
  • Ig flows as a discharge current along the route of gate resistance Rg ⁇ gate driver 21 ⁇ resistance R1.
  • Vgs decreases according to this discharge current. However, switching does not occur until Vgs drops to a voltage near the ON threshold.
  • Section C is a state in which Vgs is reduced to a voltage near the ON threshold value.
  • Vgs decreases to a voltage near the ON threshold value
  • Vds increases as the ON resistance of the power MOSFET 51 rapidly increases.
  • the reduction rate of Vgs sharply decreases due to the Miller effect, and changes to approximately flat.
  • the section D is a state in which Vds exceeds the voltage of the DC power supply and Id starts decreasing.
  • Vds exceeds the voltage of the DC power supply
  • Id starts decreasing even if Vgs exceeds the ON threshold value.
  • a surge voltage ⁇ V is generated in Vds, which is determined by the multiplication of the decreasing rate of Id and the total sum of parasitic inductance in the loop where the current change of Id occurs.
  • the voltage VL across the inductor 61 which is a part of the parasitic inductance in the loop where the current change occurs, is also affected by the electromotive voltage obtained by the product of the decreasing rate of Id and the inductance value of the inductor 61. Occurs in the direction. Therefore, the voltage VL at both ends becomes a negative voltage.
  • the potential downstream of the inductor 61 is GND.
  • the potential downstream of the inductor 61 is the freewheeling voltage of the parasitic diode or the freewheeling diode of the power MOSFET 51 in the lower arm.
  • the potential is a sum of -Vf and the electromotive voltage of the wiring inductance of the lower arm. Therefore, in any case, the source terminal of the power MOSFET 51 has a negative potential.
  • the section E is a state in which Vds keeps an equilibrium state and changes until Id becomes zero.
  • the voltage drop across the resistor R1 increases.
  • the voltage across the gate resistance Rg becomes smaller, and the gate current Ig also becomes smaller.
  • the turn-off speed is reduced and the surge voltage ⁇ V is suppressed. That is, the current from the voltage source VS flows into the source terminal of the power MOSFET 51 via the resistor R1 so as to adjust the gate current Ig so that the surge voltage ⁇ V of Vds becomes constant. Therefore, in the section E, the Vds keeps the equilibrium state, and the transition is made until the Id becomes zero.
  • ⁇ Regarding section G> Ig is zero and the power MOSFET 51 is kept off.
  • the gate driver 21 maintains the off state of the power MOSFET 51 by the voltage supplied between the gate resistor Rg and the resistor R1 based on the off signal from the control circuit 41.
  • FIG. 4 is a diagram showing a schematic configuration of a power conversion device including a gate drive circuit according to the first embodiment of the present invention.
  • FIG. 4 shows the overall configuration of a system in which the DC power of the DC power supply 91 is converted by the power converter 71 to drive the load 81 such as a motor.
  • the power conversion device 71 includes a half bridge composed of N-channel power MOSFETs 51a and 51b connected in series, and a smoothing capacitor 101 connected in parallel to the half bridge.
  • the smoothing capacitor 101 is a capacitor for smoothing the voltage between the DC terminals when switching the power MOSFETs 51a and 51b.
  • the positive terminal of the DC power supply 91 is connected to the high voltage side DC terminal P of the power converter 71, and the negative terminal of the DC power supply 91 is connected to the low voltage side DC terminal N of the power converter 71.
  • a load 81 such as a motor winding is connected to the midpoint of the half bridge.
  • FIG. 4 illustrates the power conversion device 71 including only one half bridge, which is a basic unit, in order to simplify the description. However, the power conversion device 71 may have a configuration in which a plurality of half bridges are connected in parallel depending on the type of the motor that is the load 81.
  • the gate drive circuit 31a according to the first embodiment is connected to the power MOSFET 51a, and the gate drive circuit 31b according to the first embodiment is connected to the power MOSFET 51b. Further, the control circuit 41 is connected upstream of the gate drive circuits 31a and 31b.
  • the insides of the gate drive circuits 31a and 31b have the same circuit configuration as the gate drive circuit 31 of FIG.
  • the inductors LHD, LHS, LLD, LLS, LCP, and LCN shown in the power conversion device 71 all indicate parasitic inductance components of internal wiring parts.
  • the inductance value of each inductor is represented by the above-mentioned reference numeral, and the total inductance value thereof is defined as Lall.
  • the resistance values of the resistors R1 and R2 in the gate drive circuits 31a and 31b are represented by the reference symbols R1 and R2.
  • the voltage between both ends is represented by adding "V" to the head of the reference numeral.
  • VLHD the voltage across the inductor LHD.
  • the gate-source voltage of the mirror region during the turn-off of the power MOSFET 51b is defined as Vgs_m.
  • the VLLS at this time is expressed by the following equation (1).
  • VLLS and VLall have the relationship of the following expression (2).
  • the maximum surge voltage VLall applied between the drain terminal and the source terminal of the power MOSFET 51b can be freely set by setting the resistance values of the resistors R1 and R2 based on the above equation (3). It turns out that it is possible to control.
  • Vgs_m The gate-source voltage of the mirror region during the turn-off of the power MOSFET 51a, that is, the gate-source voltage in the section E is defined as Vgs_m, like the power MOSFET 51b.
  • VLLS + VLLD + VLHS at this time is represented by the following formula (4).
  • VLLS + VLLD + VLHS and VLall have the relationship of the following formula (5).
  • Lall, LLS, LLD, and LHS are constants that are uniquely determined by the wiring structure such as the bus bar connected to the power converter 71, the printed circuit board, and the like, and there is almost no individual variation. Although there is some individual variation in Vgs_m, the variation is less than 2 V even if the maximum including the temperature characteristic is expected. Therefore, if the ratio of the resistance values of the resistors R1 and R2 is set to, for example, 1: 1, the individual variation of VLall can be suppressed to less than 4V at the maximum.
  • the turn-off speed is delayed only in the section E in FIG. 3 where the surge voltage is generated.
  • the surge voltage generated is automatically fed back to the gate drive circuit to limit the surge voltage. Therefore, the surge limiting voltage does not depend on the characteristic variation of the semiconductor switch. As a result, in designing or manufacturing, it is not necessary to individually adjust for the characteristic variation of the semiconductor switch, and the margin design considering the characteristic variation of the semiconductor switch can be eliminated. Therefore, it is possible to manufacture a highly reliable gate drive circuit and a power conversion device including the gate drive circuit at a lower cost.
  • a general-purpose gate driver IC can be used as the gate driver 21.
  • the configuration that suppresses the surge voltage can be realized with only a small number of passive elements that allow a current to flow due to the induced voltage generated by the parasitic inductance that is always present in the wiring of the power converter. Therefore, the structure for suppressing the surge voltage is very robust and low in cost.
  • FIG. 5 is a circuit diagram showing details of the gate discharge current adjusting circuit included in the gate drive circuit according to the second embodiment of the present invention. Compared with FIG. 2 of the first embodiment, the configuration of FIG. 5 is different only in the internal configuration of the gate discharge current adjusting circuit 11.
  • the gate discharge current adjusting circuit 11 shown in FIG. 5 is composed of resistors R1 and R3.
  • the resistor R1 has one end connected to the gate driver 21 and the other end connected to the source terminal of the power MOSFET 51.
  • the resistor R3 has one end connected to the gate driver 21 and the other end connected to the downstream side of the inductor 61. That is, the resistor R3 is connected between the connection point between the resistor R1 and the gate driver 21 and the downstream side of the inductor 61.
  • the resistor R1 corresponds to the first resistor and the resistor R3 corresponds to the third resistor.
  • the section A is a state in which the gate driver 21 drives the power MOSFET 51 to be ON based on the ON command output from the control circuit 41.
  • a forward current which is a direction from the drain terminal to the source terminal, flows from the DC power supply (not shown) via the inductor 61.
  • both ends of the inductor 61 have the same potential, and no current flows in the gate discharge current adjusting circuit 11.
  • the section B is a state in which the gate driver 21 starts the off driving of the power MOSFET 51 based on the turn-off command output from the control circuit 41.
  • Ig flows as a discharge current in the path of the parallel circuit of the gate resistor Rg ⁇ the gate driver 21 ⁇ the resistor R1 and the resistor R3.
  • Vgs decreases according to this discharge current. However, switching does not occur until Vgs drops to a voltage near the ON threshold.
  • Section C is a state in which Vgs is reduced to a voltage near the ON threshold value.
  • Vgs decreases to a voltage near the ON threshold value
  • Vds increases as the ON resistance of the power MOSFET 51 rapidly increases.
  • the reduction rate of Vgs sharply decreases due to the Miller effect, and changes to approximately flat.
  • the section D is a state in which Vds exceeds the voltage of the DC power supply and Id starts decreasing.
  • Vds exceeds the voltage of the DC power supply
  • Id starts decreasing even if Vgs exceeds the ON threshold value.
  • a surge voltage ⁇ V is generated in Vds, which is determined by the multiplication of the decreasing rate of Id and the total sum of parasitic inductance in the loop where the current change of Id occurs.
  • the voltage VL across the inductor 61 which is a part of the parasitic inductance in the loop where the current change occurs, is also affected by the electromotive voltage obtained by the product of the decreasing rate of Id and the inductance value of the inductor 61. Occurs in the direction. Therefore, the voltage VL at both ends becomes a negative voltage.
  • the reference side of the gate driver 21 has a higher potential than the source terminal of the power MOSFET 51 by the amount of the voltage drop across the resistor R1, and the voltage across the gate resistor Rg that determines the discharge speed of the gate charge of the power MOSFET 51 is small. Become. Therefore, the gate current Ig of the power MOSFET 51 becomes small.
  • the section E is a state in which Vds keeps an equilibrium state and changes until Id becomes zero.
  • the voltage drop across the resistor R1 increases.
  • the current flowing through the resistor R3 becomes large.
  • the voltage across the gate resistance Rg becomes smaller, and the gate current Ig also becomes smaller.
  • the turn-off speed is reduced and the surge voltage ⁇ V is suppressed. That is, a current flows to the source terminal of the power MOSFET 51 via the resistors R3 and R1 so as to adjust the gate current Ig so that the surge voltage ⁇ V of Vds becomes constant. Therefore, in the section E, the Vds keeps the equilibrium state, and the transition is made until the Id becomes zero.
  • ⁇ Regarding section G> Ig is zero and the power MOSFET 51 is kept off.
  • the gate driver 21 maintains the off state of the power MOSFET 51 by the voltage supplied between the gate resistor Rg and the resistor R1 based on the off signal from the control circuit 41.
  • the power converter 71 shown in FIG. 4 is applicable to the gate drive circuit 31 according to the second embodiment shown in FIG. Therefore, the power converter 71 shown in FIG. 4 also corresponds to the power converter according to the second embodiment.
  • the gate-source voltage of the mirror region during the turn-off of the power MOSFET 51b, that is, the gate-source voltage in the section E is defined as Vgs_m.
  • the VLLS at this time is expressed by the following equation (7).
  • VLLS and VLall have the relationship of the following expression (8).
  • the gate-source voltage of the mirror region during the turn-off of the power MOSFET 51a that is, the gate-source voltage in the section E is defined as Vgs_m, like the power MOSFET 51b.
  • the VLHS at this time is expressed by the following equation (10).
  • VLHS and VLall have the relationship of the following formula (11).
  • the maximum VLall applied between the drain terminal and the source terminal of the power MOSFET 51b is freely controlled by setting the resistance values of the resistors R1 and R3 based on the above equation (12). It turns out that it is possible.
  • ⁇ Lall, LLS, and LHS are constants that are uniquely determined by the wiring structure of the bus bar connected to the power converter 71, the printed circuit board, etc., and there is almost no individual variation. Although there is some individual variation in Vgs_m, the variation is less than 2 V even if the maximum including the temperature characteristic is expected. Therefore, if the ratio of the resistance values of the resistors R1 and R3 is set to, for example, 1: 1, the individual variation of VLall can be suppressed to less than 4V at the maximum.
  • the second embodiment As described above, according to the second embodiment, the same effect as that of the first embodiment can be obtained, and the circuit configuration and the used parts are simpler and lower than those of the first embodiment. It comes at a cost. Therefore, the second embodiment is also effective in further suppressing the manufacturing costs of the gate drive circuit and the power conversion device.
  • FIG. 6 is a circuit diagram showing details of the gate discharge current adjusting circuit included in the gate drive circuit according to the third embodiment of the present invention. Compared with FIG. 2 of the first embodiment, the configuration of FIG. 6 is different only in the internal configuration of the gate discharge current adjusting circuit 11.
  • the gate discharge current adjusting circuit 11 shown in FIG. 6 is composed of a resistor R1, a resistor R4, and a diode D2.
  • the anode terminal of the diode D2 is connected to GND, and the cathode terminal is connected to one end of the resistor R4.
  • the other end of the resistor R4 is connected to the connection point between the gate driver 21 and the resistor R1. Note that the connection order when the diode D2 and the resistor R4 are connected in series is arbitrary, and the connection order shown in FIG. 6 is merely an example.
  • the resistor R1 is also connected between the gate driver 21 and the source terminal of the power MOSFET 51.
  • the resistor R1 corresponds to the first resistor
  • the resistor R4 corresponds to the fourth resistor
  • the diode D2 corresponds to the second diode.
  • the section A is a state in which the gate driver 21 drives the power MOSFET 51 to be ON based on the ON command output from the control circuit 41.
  • a forward current which is a direction from the drain terminal to the source terminal, flows from the DC power supply (not shown) via the inductor 61.
  • both ends of the inductor 61 have the same potential, and no current flows in the gate discharge current adjusting circuit 11.
  • the section B is a state in which the gate driver 21 starts the off driving of the power MOSFET 51 based on the turn-off command output from the control circuit 41.
  • Ig flows as a discharge current along the route of gate resistance Rg ⁇ gate driver 21 ⁇ resistance R1.
  • Vgs decreases according to this discharge current. However, switching does not occur until Vgs drops to a voltage near the ON threshold.
  • Section C is a state in which Vgs is reduced to a voltage near the ON threshold value.
  • Vgs decreases to a voltage near the ON threshold value
  • Vds increases as the ON resistance of the power MOSFET 51 rapidly increases.
  • the reduction rate of Vgs sharply decreases due to the Miller effect, and changes to approximately flat.
  • the section D is a state in which Vds exceeds the voltage of the DC power supply and Id starts decreasing.
  • Vds exceeds the voltage of the DC power supply
  • Id starts decreasing even if Vgs exceeds the ON threshold value.
  • a surge voltage ⁇ V is generated in Vds, which is determined by the multiplication of the decreasing rate of Id and the total sum of parasitic inductance in the loop where the current change of Id occurs.
  • the voltage VL across the inductor 61 which is a part of the parasitic inductance in the loop where the current change occurs, is also affected by the electromotive voltage obtained by the product of the decreasing rate of Id and the inductance value of the inductor 61. Occurs in the direction. Therefore, the voltage VL at both ends becomes a negative voltage.
  • the potential downstream of the inductor 61 is GND.
  • the potential downstream of the inductor 61 is the freewheeling voltage of the parasitic diode or the freewheeling diode of the power MOSFET 51 in the lower arm.
  • the potential is a sum of -Vf and the electromotive voltage of the wiring inductance of the lower arm. Therefore, in any case, the source terminal of the power MOSFET 51 has a negative potential.
  • the reference side of the gate driver 21 has a higher potential than the source terminal of the power MOSFET 51 by the amount of the voltage drop across the resistor R1, and the voltage across the gate resistor Rg that determines the discharge speed of the gate charge of the power MOSFET 51 is small. Become. Therefore, the gate current Ig of the power MOSFET 51 becomes small.
  • the section E is a state in which Vds keeps an equilibrium state and changes until Id becomes zero.
  • the voltage drop across the resistor R1 increases.
  • the current flowing from GND via the resistors R4 and R1 also increases. Therefore, the voltage across the gate resistance Rg becomes smaller, and the gate current Ig also becomes smaller.
  • the turn-off speed is reduced and the surge voltage ⁇ V is suppressed. That is, a current flows from GND to the resistor R1 so as to adjust the gate current Ig so that the surge voltage ⁇ V of Vds becomes constant. Therefore, in the section E, the Vds keeps the equilibrium state, and the transition is made until the Id becomes zero.
  • ⁇ Regarding section G> Ig is zero and the power MOSFET 51 is kept off.
  • the gate driver 21 maintains the off state of the power MOSFET 51 by the voltage supplied between the gate resistor Rg and the resistor R1 based on the off signal from the control circuit 41.
  • the power conversion device 71 shown in FIG. 4 is applicable to the gate drive circuit 31 according to the third embodiment shown in FIG. Therefore, the power converter 71 shown in FIG. 4 also corresponds to the power converter according to the third embodiment.
  • the gate-source voltage of the mirror region during the turn-off of the power MOSFET 51b is defined as Vgs_m.
  • the VLLS at this time is expressed by the following equation (13).
  • VLLS and VLall have the relationship of the following expression (14).
  • the maximum VLall applied between the drain terminal and the source terminal of the power MOSFET 51b is freely controlled by setting the respective resistance values of the resistors R1 and R4 based on the above equation (15). It turns out that it is possible.
  • Vgs_m The gate-source voltage of the mirror region during the turn-off of the power MOSFET 51a, that is, the gate-source voltage in the section E is defined as Vgs_m, like the power MOSFET 51b.
  • VLLS + VLLD + VLHS at this time is represented by the following formula (16).
  • VLLS + VLLD + VLHS and VLall have the relationship of the following expression (17).
  • the maximum VLall applied between the drain terminal and the source terminal of the power MOSFET 51b is freely controlled by setting the resistance values of the resistors R1 and R4 based on the above equation (18). It turns out that it is possible.
  • Lall, LLS, LLD, and LHS are constants that are uniquely determined by the wiring structure such as the bus bar connected to the power converter 71, the printed circuit board, and the like, and there is almost no individual variation. Although there is some individual variation in Vgs_m, the variation is less than 2 V even if the maximum including the temperature characteristic is expected. Therefore, if the ratio of the resistance values of the resistors R1 and R4 is set to, for example, 1: 1, the individual variation of VLall can be suppressed to less than 4V at the maximum.
  • the third embodiment it is possible to obtain the same effects as those of the first embodiment, and the circuit configuration and the used parts thereof are simpler and lower in cost than those of the first embodiment. It will be Therefore, the third embodiment is also effective in suppressing the manufacturing costs of the gate drive circuit and the power conversion device, similarly to the second embodiment.
  • the present invention is not limited to the above-described first to third embodiments, and the present invention includes modifications, improvements and the like within a range in which the object of the present invention can be achieved.
  • the first, second and third embodiments apply the present invention to a half-bridge type power conversion device.
  • the power conversion device to which the present invention is applicable is not limited to the half-bridge type power conversion device.
  • the power conversion device may be any device that switches a semiconductor switch at high speed.
  • the power conversion device may be an H-bridge type (two-phase bridge) power conversion device, a three-phase bridge type power conversion device, a four-phase or more bridge type power conversion device, and the like.
  • a plurality of semiconductor switches may be connected in parallel.
  • the gate drive circuit according to the present invention can be used for switching one or more semiconductor switches included in a power conversion device.
  • the power MOSFET is used as the semiconductor switch used in the power conversion device.
  • the semiconductor switch may be another voltage-driven semiconductor switch such as an IGBT.
  • the gate drive circuit has a configuration in which a circuit is connected in parallel with the gate resistor Rg in order to individually control the switching speeds of turn-on and turn-off, and the turn-on and turn-off gate currents flow through different paths. It doesn't matter. Therefore, similarly to the power converter, the gate drive circuit is not limited to the configurations of the first to third embodiments.
  • the application of the first to third embodiments to the upper arm and the lower arm of the half bridge can be made in any combination.
  • 11 gate discharge current adjusting circuit 21 gate driver (gate driving unit), 31, 31a, 31b gate driving circuit, 41 control circuit, 51, 51a, 51b power MOSFET, 61 inductor (wiring parasitic inductance), 71 power converter , 81 load, 91 DC power supply, LHD, LHS, LLD, LLS, LCP, LCN inductor (parasitic inductance), R1 resistance (first resistance), R2 resistance (second resistance), R3 resistance (third resistance) ), R4 resistance (fourth resistance), Rg gate resistance, D1 diode (first diode), D2 diode (second diode), VS voltage source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

ゲート駆動回路は、第1の端子、第2の端子、およびゲート端子を有する半導体スイッチをオンオフ制御するゲート駆動部と、ゲート駆動部とゲート端子との間に接続されたゲート抵抗と、ゲート駆動部と第1の端子との間に接続され、ゲート駆動部が半導体スイッチをターンオフさせる場合に、配線インダクタンスの起電圧によって第1の端子に発生する負電位の大きさに応じて、半導体スイッチのゲート電荷がゲート抵抗を介して放電される放電速度を遅らせる方向に変化させるゲート放電電流調整回路と、を備える。

Description

ゲート駆動回路および電力変換装置
 本発明は、半導体スイッチをオンオフ制御するゲート駆動回路、およびゲート駆動回路を備えた電力変換装置に関する。
 半導体スイッチ、中でも電圧駆動形の半導体スイッチは、制御端子であるゲート端子に印加される電圧に応じて、主電流が入出力される二つの端子間の抵抗値が変化することで、流れる電流が変化する。電圧駆動形の半導体スイッチとしては、電力用のMOSFET(Metal Oxcide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等が知られている。
 電圧駆動形の半導体スイッチは、スイッチング動作が高速であるという特徴を有しており、高周波の電力変換装置によく用いられている。しかしながら、電圧駆動形の半導体スイッチのスイッチングが高速化されると、ターンオフ時の電流遮断により、半導体スイッチに印加されるサージ電圧も大きくなる。
 ここで、ターンオフ時の電流遮断によるサージ電圧の発生メカニズムについて説明する。プリント基板のパターン、バスバーなど、電流が流れる配線には必ず寄生的なインダクタンス成分が存在する。
 オンしている半導体スイッチの順方向に電源からの電流が流れている時に、オンしている半導体スイッチをターンオフさせて電流を遮断する場合を考える。この場合、配線の寄生インダクタンスには電流の時間変化率に比例した起電圧が、電流の変化を妨げる方向に発生する。この起電圧は、ターンオフした半導体スイッチに対しては、電源の電圧に対して積み上がる方向となる。この起電圧は、一般的にサージ電圧と呼ばれている。なお、半導体スイッチの順方向は、例えばNチャネル型のMOSFETであれば、ドレイン端子からソース端子に向かう方向である。
 サージ電圧の発生は、半導体スイッチによって電流をオンオフ制御する装置では避けられない現象である。このため、半導体スイッチは、その装置で発生し得るサージ電圧に電源電圧を加算した電圧よりも高い耐圧を有している必要がある。
 しかしながら、相対的に耐圧が高い半導体スイッチほど、オン時の導通抵抗値が大きい。このため、半導体スイッチでの電力損失が大きくなり、それによって必要な放熱装置も大きくなる。従って、できるだけ耐圧が低い半導体スイッチを使いこなすことが得策である。換言すると、サージ電圧を抑制することが求められる。
 サージ電圧を抑制するためには、前述した発生原理より、電流の時間変化率を下げる、すなわち半導体スイッチのスイッチング速度を遅くする、という解決方法が考えられる。しかしながら、スイッチング速度を単純に遅くすると、スイッチング損失が大きくなる。この結果、半導体スイッチでの電力損失が大きくなり、必要な放熱装置も大きくなる。
 スナバ回路を付加することでサージ電圧を吸収する解決方法もある。しかしながら、この解決方法は、部品点数が増えるため、装置の費用増大および大形化を招く。
 このように、サージ電圧の低減と、半導体スイッチの電力損失の抑制との間には、一般的にはトレードオフの関係がある。このため、スイッチング損失の増加を抑制しつつ、サージ電圧を低減することが要望されている。
 このような課題を解決する従来技術として、例えば、電圧駆動型の半導体スイッチの出力端子の電圧を検出し、あらかじめ設定された値以上の電圧を検出すると、ゲート電荷の放電経路におけるゲート抵抗値を、より大きな値に変化させるものがある。
 ゲート抵抗値をより大きな値へ変化させるには、2つの放電経路を設け、そのうちの1つを遮断させることで行うことができる(例えば、特許文献1参照)。放電経路のゲート抵抗値をより大きな値に変化させることによって、ゲート電圧が減少する速度を遅くすることができ、電流変化(di/dt)が緩和することでサージ電圧を低減させることができる。
特開2001-45740号公報
 しかしながら、上述した従来技術には以下の課題がある。
 特許文献1に係る従来技術は、電源電圧にサージ電圧の固定値を加算した値を検出して、ピーク電圧を抑制する。このため、特許文献1に係る従来技術において、サージ電圧の抑制量は、電源電圧によって変化することとなり、サージ電圧の実際の大きさではなく、半導体スイッチに印加される電圧の絶対値に対しての制限しかできない。ここで、一例として、ハーフブリッジを基本構成とした汎用のゲートドライバICを用いて半導体スイッチを駆動する場合を考える。この場合、ゲートドライバICに対して、その中点電位がスイッチングによるサージ電圧により負電位になるレベルを一意に制御できない。
 ゲートドライバICは、サージ電圧によって発生する負電圧に対する耐圧を有している。耐圧超過によるゲートドライバICの故障を防止するためには、発生する負電圧を耐圧の範囲内に抑える必要がある。しかしながら、半導体スイッチに印加される、サージ電圧を含む電圧のピーク電圧を抑制するだけでは、電源電圧のレベルによって中点電位の負電圧を制御することができず、耐圧超過の防止が困難である。
 本発明は、前記のような課題を解決するためになされたものであり、半導体スイッチをスイッチングする際に発生するスイッチング損失の増大を抑制しつつ、サージ電圧を抑制することが可能なゲート駆動回路、および電力変換装置を得ることを目的とする。
 本発明に係るゲート駆動回路は、第1の端子、第2の端子、およびゲート端子を有する半導体スイッチをオンオフ制御するゲート駆動部と、ゲート駆動部とゲート端子との間に接続されたゲート抵抗と、ゲート駆動部と第1の端子との間に接続され、ゲート駆動部が半導体スイッチをターンオフさせる場合に、配線インダクタンスの起電圧によって第1の端子に発生する負電位の大きさに応じて、半導体スイッチのゲート電荷がゲート抵抗を介して放電される放電速度を遅らせる方向に変化させるゲート放電電流調整回路と、を備えるものである。
 また、本発明に係る電力変換装置は、本発明に係るゲート駆動回路を備えるものである。
 本発明によれば、半導体スイッチをスイッチングする際に発生するスイッチング損失の増大を抑制しつつ、サージ電圧を抑制することが可能なゲート駆動回路、および電力変換装置を得ることができる。
本発明の実施の形態1に係るゲート駆動回路とその周辺構成を示すブロック図である。 本発明の実施の形態1における図1に示したゲート放電電流調整回路の詳細を示した回路図である。 本発明の実施の形態1におけるパワーMOSFETおよびインダクタに関する各部の波形を示した図である。 本発明の実施の形態1に係るゲート駆動回路を備える電力変換装置の概略構成を示す図である。 本発明の実施の形態2に係るゲート駆動回路が備えるゲート放電電流調整回路の詳細を示した回路図である。 本発明の実施の形態3に係るゲート駆動回路が備えるゲート放電電流調整回路の詳細を示した回路図である。
 以下、本発明に係るゲート駆動回路および電力変換装置の好適な実施の形態につき図面を用いて説明する。なお、以下の説明では、同一の部品は同一の符号で表記する。
 実施の形態1.
 図1は、本発明の実施の形態1に係るゲート駆動回路とその周辺構成を示すブロック図である。より具体的には、単相または複数相のブリッジ型の電力変換装置を構成する1つの半導体スイッチ、およびその周辺部分を抜き出したものである。
 半導体スイッチ51は、Nチャネル型のパワーMOSFETであり、以下の説明では、半導体スイッチ51のことをパワーMOSFET51と表記する。パワーMOSFET51は、制御回路41とパワーMOSFET51との間に接続されるゲート駆動回路31によってオンオフ駆動が行なわれる。パワーMOSFET51のソース端子に接続されているインダクタ61は、ソース端子に接続された配線のインダクタンス成分を示している。
 次に、ゲート駆動回路31の内部構成について説明する。ゲートドライバ21は、制御回路41から、GND電位を基準としたオンオフ制御信号を受信する。そして、ゲートドライバ21は、受信したオンオフ制御信号を、駆動力を増幅してパワーMOSFET51のソース端子の電位を基準とした駆動出力に変換する。さらに、ゲートドライバ21は、ゲート抵抗Rgを介してパワーMOSFET51のゲート端子とソース端子との間に電圧を供給することで、パワーMOSFET51のオンオフ駆動を行なう。ゲート抵抗Rgは、スイッチング速度等を調整する機能を有する。
 本実施の形態1において、ソース端子は、第1の端子に相当し、ドレイン端子は、第2の端子に相当し、ゲートドライバ21は、ゲート駆動部に相当する。
 また、パワーMOSFET51のソース端子とゲートドライバ21との間には、ゲート放電電流調整回路11が接続されている。ゲート放電電流調整回路11は、本実施の形態1の中核部となる構成であり、さらに詳細に説明する。
 図2は、本発明の実施の形態1における図1に示したゲート放電電流調整回路11の詳細を示した回路図である。ゲート放電電流調整回路11は、ダイオードD1、抵抗R2、コンデンサC1、および抵抗R1が直列接続された直列回路と、電圧源VSとから構成されている。そして、この直列回路は、電圧源VSと、パワーMOSFET51のソース端子との間に接続されている。すなわち、直列回路において、ダイオードD1側の端部が電圧源VSに接続され、抵抗R1側の端部がパワーMOSFET51のソース端子に接続されている。
 ダイオードD1は、アノード端子が電圧源VSに接続され、カソード端子が抵抗R2に接続されている。また、コンデンサC1の一端は、抵抗R2に接続され、コンデンサC1の他端は、抵抗R1に接続されている。本実施の形態1において、抵抗R1は、第1の抵抗、抵抗R2は、第2の抵抗、ダイオードD1は、第1のダイオード、にそれぞれ相当する。
 また、抵抗R1の一端は、コンデンサC1の他端に接続されるとともに、ゲートドライバ21に接続されている。抵抗R1の他端は、パワーMOSFET51のソース端子に接続されている。
 すなわち、ゲート放電電流調整回路11は、電圧源VSと、抵抗R1およびゲートドライバ21の接続点との間に、ダイオードD1、抵抗R2、およびコンデンサC1を直列に接続した構成となっている。なお、ダイオードD1、抵抗R2、およびコンデンサC1を直列接続する際の接続順序は、任意であり、図2に示した接続順序は、一例に過ぎない。
 ここで、電圧源VSは、GND電位を基準とした任意の電圧の電源でよい。複数の半導体スイッチ51によりハーフブリッジが構成される場合には、電圧源VSとしては、ハーフブリッジの下アームに対するゲート駆動用電源を適用することが好適である。また、下アームに適用する場合には、ダイオードD1を省略して、電圧源VSに対して抵抗R2を直接接続することも可能である。
 図3は、本発明の実施の形態1におけるパワーMOSFET51およびインダクタ61に関する各部の波形を示した図である。より具体的には、図3では、図2のゲート駆動回路31によって駆動されるパワーMOSFET51がオン状態からオフ状態に移るまでの各部の波形の一例を模式的に示している。
 図3に示した各符号は、以下の内容を意味している。
  Vgs:パワーMOSFET51のゲート・ソース間電圧
  Vds:パワーMOSFET51のドレイン・ソース間電圧
  Id:パワーMOSFET51のドレイン電流
  VL:インダクタ61の両端電圧
  Ig:パワーMOSFET51のゲート電流
 なお、インダクタ61の両端電圧VLは、パワーMOSFET51のソース端子側を正としている。また、ゲート電流Igは、放電する方向を正としている。また、Vgs、Vds、Id、VL、Igについて、以下の説明においては、適宜、符号のみを記載する。
 次に、本実施の形態1でのパワーMOSFET51およびインダクタ61の動作について、図3に示す区間A~区間Gに分けて個別に説明する。
<区間Aについて>
 区間Aは、制御回路41から出力されるオン指令に基づいて、ゲートドライバ21がパワーMOSFET51をオン駆動した状態である。区間Aにおいて、ドレイン端子からソース端子に向かう方向である順方向の電流が、図示しない直流電源からインダクタ61を経由して流れる。このとき、コンデンサC1は、電圧源VSの電圧からダイオードD1の電圧降下を引いた電圧により充電された平衡状態となっている。従って、ゲート放電電流調整回路11内において、電流は流れていない。
<区間Bについて>
 区間Bは、制御回路41から出力されるターンオフ指令に基づいて、ゲートドライバ21がパワーMOSFET51のオフ駆動を開始した状態である。区間Bにおいて、ゲート抵抗Rg→ゲートドライバ21→抵抗R1の経路で、Igが放電電流として流れる。この放電電流に応じて、Vgsが低下する。ただし、Vgsがオンしきい値付近の電圧に低下するまでは、スイッチングは起こらない。
<区間Cについて>
 区間Cは、Vgsがオンしきい値付近の電圧に低下した状態である。Vgsがオンしきい値付近の電圧に低下すると、パワーMOSFET51のオン抵抗が急激に上昇するのに伴い、Vdsが上昇する。このとき、Vgsは、ミラー効果により減少率が急激に低下し、ほぼ横ばいの変化となる。
<区間Dについて>
 区間Dは、Vdsが直流電源の電圧を越え、Idが減少を始める状態である。Vdsが直流電源の電圧を越えると、Vgsがオンしきい値を越える電圧であっても、Idが減少を始める。そして、Vdsには、Idの減少速度と、Idの電流変化が発生するループにおける寄生インダクタンスの総和と、の掛け算により決まるサージ電圧ΔVが発生する。
 このとき、電流変化が発生するループにおける寄生インダクタンスの一部であるインダクタ61の両端電圧VLにも、Idの減少速度と、インダクタ61のインダクタンス値との積で求まる起電圧が、電流変化を妨げる方向に発生する。このため、両端電圧VLは、負電圧となる。
 パワーMOSFET51がハーフブリッジの下アームの場合、または、パワーMOSFET51がローサイドスイッチの場合であれば、インダクタ61の下流の電位は、GNDとなる。一方、パワーMOSFET51がハーフブリッジの上アームの場合、または、パワーMOSFET51がハイサイドスイッチの場合であれば、インダクタ61の下流の電位は、下アームにおけるパワーMOSFET51の寄生ダイオードまたは還流ダイオードによる還流電圧である-Vfに対して、下アームの配線インダクタンスでの起電圧を加算した電位となる。このため、いずれの場合もパワーMOSFET51のソース端子は、負電位となる。
 それにより、電圧源VSからパワーMOSFET51のソース端子に向かって、パワーMOSFET51のソース端子の負電位の大きさに応じた電流が流れる。その結果、ゲートドライバ21の基準側は、パワーMOSFET51のソース端子に対して抵抗R1での電圧降下分だけ高電位となり、パワーMOSFET51のゲート電荷の放電速度を決めるゲート抵抗Rgの両端電圧が小さくなる。このため、パワーMOSFET51のゲート電流Igは、小さくなる。
<区間Eについて>
 区間Eは、Vdsが平衡状態を保ったまま、Idがゼロになるまで推移する状態である。前の区間Dにおいて、VLに関する負電圧の絶対値が大きくなるにつれて、抵抗R1での電圧降下は大きくなる。その結果、ゲート抵抗Rgの両端電圧は、さらに小さくなり、ゲート電流Igも、さらに小さくなる。
 この結果、ターンオフ速度は、低下し、サージ電圧ΔVは、抑制される。すなわち、Vdsのサージ電圧ΔVが一定になるように、ゲート電流Igを調整するように、電圧源VSからの電流が抵抗R1を介してパワーMOSFET51のソース端子に流れる。従って、区間Eにおいては、Vdsが平衡状態を保ったまま、Idがゼロになるまで推移する。
<区間Fについて>
 区間Fは、Idがゼロになり、パワーMOSFET51が完全にオフとなった状態である。前の区間Eにおいて、最終的にIdがゼロとなると、VLの起電圧がゼロになるとともに、Vdsのサージ電圧ΔVもゼロとなる。この結果、区間Fにおいて、パワーMOSFET51は完全にオフ状態となる。このとき、電圧源Vsからの電流もゼロとなり、Igは、ゲート抵抗Rg→ゲートドライバ21→抵抗R1の経路に流れ、最終的にゼロとなる。
<区間Gについて>
 区間Gは、Igがゼロとなり、パワーMOSFET51がオフに維持されている状態である。ゲートドライバ21は、制御回路41からのオフ信号に基づいて、ゲート抵抗Rgと抵抗R1との間に供給する電圧により、パワーMOSFET51のオフ状態を維持する。
 次に、図2のゲート放電電流調整回路11の抵抗値とサージ電圧の制限値との関係について説明する。より具体的には、ハーフブリッジを基本とした電力変換装置に図2のゲート駆動回路31を適用した場合を例として、抵抗値とサージ電圧の制限値との関係を詳細に説明する。
 図4は、本発明の実施の形態1に係るゲート駆動回路を備える電力変換装置の概略構成を示す図である。図4では、直流電源91の直流電力を、電力変換装置71によって電力変換して、モータなどの負荷81を駆動するシステムの全体構成を示している。
 電力変換装置71は、Nチャネル型のパワーMOSFET51aおよび51bの直列接続で構成されたハーフブリッジと、ハーフブリッジに並列接続された平滑コンデンサ101と、を備えている。平滑コンデンサ101は、パワーMOSFET51aおよび51bのスイッチング時に、直流端子間の電圧を平滑するためのコンデンサである。
 直流電源91の正極端子は、電力変換装置71の高電圧側直流端子Pに接続されており、直流電源91の負極端子は、電力変換装置71の低電圧側直流端子Nに接続されている。また、ハーフブリッジの中点には、モータ巻線などの負荷81が接続されている。なお、図4では、説明を簡略化するために、基本単位であるハーフブリッジを1つのみ備える電力変換装置71を示している。ただし、電力変換装置71は、負荷81となるモータなどの種類によって、複数のハーフブリッジを並列接続させた構成であってもよい。
 パワーMOSFET51aには、本実施の形態1に係るゲート駆動回路31aが接続されており、パワーMOSFET51bには、本実施の形態1に係るゲート駆動回路31bが接続されている。さらに、ゲート駆動回路31aおよび31bの上流に制御回路41が接続されている。ここで、ゲート駆動回路31aおよび31bの内部は、図2のゲート駆動回路31と同様の回路構成である。
 電力変換装置71内に示されたインダクタLHD、LHS、LLD、LLS、LCP、およびLCNは、いずれも内部の各配線部の寄生的なインダクタンス成分を示している。ここでは、各インダクタのインダクタンス値を前述の符号で表し、それらの合計のインダクタンス値をLallと定義する。
 また、同様に、ゲート駆動回路31a、および31b内の抵抗R1、およびR2についても、それらの抵抗値は前述の符号R1、R2で表す。両端電圧は、符号の先頭に「V」を付して表す。それにより、例えば、インダクタLHDの両端電圧は、VLHDと表される。
 ここで、パワーMOSFET51aがオフ、かつパワーMOSFET51bがオンで、直流電源91→負荷81→パワーMOSFET51bの経路で電流が流れている状態から、ゲート駆動回路31bによりパワーMOSFET51bをターンオフさせた場合の動作について説明する。
 このときのパワーMOSFET51bおよびゲート駆動回路31b内の一連の動作は、前述の図3と同様となる。そこで、特に、区間Eの状態での各数値について詳細に説明する。
 パワーMOSFET51bのターンオフ中におけるミラー領域のゲート・ソース間電圧、すなわち区間Eでのゲート・ソース間電圧を、Vgs_mと定義する。このときのVLLSは、下式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 さらに、VLLSとVLallには、下式(2)の関係がある。
Figure JPOXMLDOC01-appb-M000002
 すなわち、上式(1)、(2)より、下式(3)が得られる。
Figure JPOXMLDOC01-appb-M000003
 これより、上式(3)に基づいて抵抗R1と抵抗R2のそれぞれの抵抗値を設定することにより、パワーMOSFET51bのドレイン端子とソース端子との間に印加される最大のサージ電圧VLallを自在に制御することが可能であることがわかる。
 次に、パワーMOSFET51bがオフ、かつパワーMOSFET51aがオンで、直流電源91→パワーMOSFET51a→負荷81の経路で電流が流れている状態から、ゲート駆動回路31aによりパワーMOSFET51aをターンオフさせた場合の動作について説明する。
 このときのパワーMOSFET51aおよびゲート駆動回路31a内の一連の動作は、前述の図3と同様となる。そこで、特に、区間Eの状態での各数値について詳細に説明する。
 パワーMOSFET51aのターンオフ中におけるミラー領域のゲート・ソース間電圧、すなわち区間Eでのゲート・ソース間電圧を、パワーMOSFET51bと同様にVgs_mと定義する。このときのVLLS+VLLD+VLHSは、下式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
 さらに、VLLS+VLLD+VLHSと、VLallには、下式(5)の関係がある。
Figure JPOXMLDOC01-appb-M000005
 そこで、上式(4)、(5)より、下式(6)が得られる。
Figure JPOXMLDOC01-appb-M000006
 これより、上式(6)に基づいて抵抗R1と抵抗R2のそれぞれの抵抗値を設定することにより、パワーMOSFET51bのドレイン端子とソース端子との間に印加される最大のサージ電圧VLallを自在に制御することが可能であることがわかる。
 Lall、LLS、LLD、およびLHSは、電力変換装置71に接続されたバスバー、プリント基板等の配線構造によって一意的に決まる定数であり、個体によるばらつきはほとんど発生しない。Vgs_mには、若干の個体ばらつきは存在するものの、温度特性を含めて最大を見込んでも、ばらつきは2V未満には収まる。そこで、抵抗R1と抵抗R2の抵抗値の比率を、例えば1:1に設定すると、VLallの個体ばらつきは、最大でも4V未満に抑えることができる。
 以上に述べたように、本実施の形態1によれば、サージ電圧が発生する図3の区間Eのみターンオフの速度を遅らせる構成を備えている。このような構成を備えることで、スイッチングにおけるターンオフ損失の増大を抑制しつつ、サージ電圧をより適切に低減することが可能となる。その結果、耐圧が低い、すなわち導通損失が小さい半導体スイッチを適用することができるため、半導体スイッチでの損失を低減できる。
 このため、半導体スイッチのサイズを下げることで、または、放熱系の構成を簡素化することで、もしくはその両方を適用することで、製品の小型化とコストダウンとの両立を図ることができる。
 また、発生したサージ電圧が、ゲート駆動回路に自動的にフィードバックされてサージ電圧が制限される。このため、サージの制限電圧が半導体スイッチの特性ばらつきに依存しない。その結果として、設計または製造において、半導体スイッチの特性ばらつきに対しての個別の調整が不要となり、半導体スイッチの特性ばらつきを考慮したマージン設計を排除することができる。従って、高い信頼性のゲート駆動回路、およびゲート駆動回路を備えた電力変換装置を、より低コストで製造することが可能となる。
 さらには、サージ電圧ΔVを抑制することのできるこのような構成により、サージ電圧ΔVによって発生する負電圧も抑制することができる。この結果、サージ電圧ΔVを抑制することのできるこのような構成は、ゲートドライバICに印加される負電圧に対する保護にも寄与する。従って、ゲートドライバ21として汎用的なゲートドライバICを使用することができるようになる。
 また、サージ電圧を抑制する構成は、電力変換装置の配線に必ず存在する寄生インダクタンスで発生する誘起電圧によって電流が流れるようにする少数の受動素子のみで実現できる。このため、サージ電圧を抑制する構成は、非常に堅牢で低コストとなる。
 実施の形態2.
 図5は、本発明の実施の形態2に係るゲート駆動回路が備えるゲート放電電流調整回路の詳細を示した回路図である。先の実施の形態1の図2と比較すると、図5の構成は、ゲート放電電流調整回路11の内部構成のみが異なっている。
 図5に示したゲート放電電流調整回路11は、抵抗R1と抵抗R3から構成されている。抵抗R1は、一端がゲートドライバ21に接続され、他端がパワーMOSFET51のソース端子に接続されている。また、抵抗R3は、一端がゲートドライバ21に接続され、他端がインダクタ61の下流側に接続されている。すなわち、抵抗R3は、抵抗R1とゲートドライバ21との接続点と、インダクタ61の下流側との間に接続されている。本実施の形態2において、抵抗R1は、第1の抵抗、抵抗R3は、第3の抵抗にそれぞれ相当する。
 次に、本実施の形態2でのパワーMOSFET51およびインダクタ61の動作について、図3に示す区間A~区間Gに分けて個別に説明する。
<区間Aについて>
 区間Aは、制御回路41から出力されるオン指令に基づいて、ゲートドライバ21がパワーMOSFET51をオン駆動した状態である。区間Aにおいて、ドレイン端子からソース端子に向かう方向である順方向の電流が、図示しない直流電源からインダクタ61を経由して流れる。このとき、インダクタ61の両端は、同電位となっており、ゲート放電電流調整回路11内では、電流は流れていない。
<区間Bについて>
 区間Bは、制御回路41から出力されるターンオフ指令に基づいて、ゲートドライバ21がパワーMOSFET51のオフ駆動を開始した状態である。区間Bにおいて、ゲート抵抗Rg→ゲートドライバ21→抵抗R1と抵抗R3の並列回路の経路で、Igが放電電流として流れる。この放電電流に応じて、Vgsが低下する。ただし、Vgsがオンしきい値付近の電圧に低下するまでは、スイッチングは起こらない。
<区間Cについて>
 区間Cは、Vgsがオンしきい値付近の電圧に低下した状態である。Vgsがオンしきい値付近の電圧に低下すると、パワーMOSFET51のオン抵抗が急激に上昇するのに伴い、Vdsが上昇する。このとき、Vgsは、ミラー効果により減少率が急激に低下し、ほぼ横ばいの変化となる。
<区間Dについて>
 区間Dは、Vdsが直流電源の電圧を越え、Idが減少を始める状態である。Vdsが直流電源の電圧を越えると、Vgsがオンしきい値を越える電圧であっても、Idが減少を始める。そして、Vdsには、Idの減少速度と、Idの電流変化が発生するループにおける寄生インダクタンスの総和と、の掛け算により決まるサージ電圧ΔVが発生する。
 このとき、電流変化が発生するループにおける寄生インダクタンスの一部であるインダクタ61の両端電圧VLにも、Idの減少速度と、インダクタ61のインダクタンス値との積で求まる起電圧が、電流変化を妨げる方向に発生する。このため、両端電圧VLは、負電圧となる。
 それにより、インダクタ61の下流側から抵抗R3および抵抗R1を介してパワーMOSFET51のソース端子に向かって、インダクタ61の両端に発生する起電圧の大きさに応じた電流が流れる。インダクタ61の下流側は、本実施の形態2での基準とする電位である。
 その結果として、ゲートドライバ21の基準側は、パワーMOSFET51のソース端子に対して抵抗R1での電圧降下分だけ高電位となり、パワーMOSFET51のゲート電荷の放電速度を決めるゲート抵抗Rgの両端電圧が小さくなる。このため、パワーMOSFET51のゲート電流Igは、小さくなる。
<区間Eについて>
 区間Eは、Vdsが平衡状態を保ったまま、Idがゼロになるまで推移する状態である。前の区間Dにおいて、VLに関する負電圧の絶対値が大きくなるにつれて、抵抗R1での電圧降下は大きくなる。一方、抵抗R3を流れる電流は大きくなる。その結果、ゲート抵抗Rgの両端電圧は、さらに小さくなり、ゲート電流Igも、さらに小さくなる。
 この結果、ターンオフ速度は、低下し、サージ電圧ΔVは、抑制される。すなわち、Vdsのサージ電圧ΔVが一定になるように、ゲート電流Igを調整するように、電流が抵抗R3および抵抗R1を介してパワーMOSFET51のソース端子に流れる。従って、区間Eにおいては、Vdsが平衡状態を保ったまま、Idがゼロになるまで推移する。
<区間Fについて>
 区間Fは、Idがゼロになり、パワーMOSFET51が完全にオフとなった状態である。前の区間Eにおいて、最終的にIdがゼロとなると、VLの起電圧がゼロになるとともに、Vdsのサージ電圧ΔVもゼロとなる。この結果、区間Fにおいて、パワーMOSFET51は完全にオフ状態となる。このとき、インダクタ61の下流から抵抗R3と抵抗R1を経由する電流もゼロとなり、Igは、ゲート抵抗Rg→ゲートドライバ21→抵抗R1と抵抗R3の並列回路の経路に流れ、最終的にゼロとなる。
<区間Gについて>
 区間Gは、Igがゼロとなり、パワーMOSFET51がオフに維持されている状態である。ゲートドライバ21は、制御回路41からのオフ信号に基づいて、ゲート抵抗Rgと抵抗R1との間に供給する電圧により、パワーMOSFET51のオフ状態を維持する。
 次に、図5のゲート放電電流調整回路11の各抵抗値とサージ電圧の制限値との関係について説明する。より具体的には、ハーフブリッジを基本とした図4に示す電力変換装置71に、図5のゲート駆動回路31を適用した場合を例として、具体的に説明する。
 図4の説明は前述の通りであるため、ここでは省略する。図4に示す電力変換装置71は、図5に示す本実施の形態2に係るゲート駆動回路31を適用可能である。従って、図4に示す電力変換装置71は、本実施の形態2に係る電力変換装置にも相当する。
 ここで、パワーMOSFET51aがオフ、かつパワーMOSFET51bがオンで、直流電源91→負荷81→パワーMOSFET51bの経路で電流が流れている状態から、ゲート駆動回路31bによりパワーMOSFET51bをターンオフさせた場合の動作について説明する。
 このときのパワーMOSFET51bおよびゲート駆動回路31b内の一連の動作は、前述の図3と同様となる。そこで、特に、区間Eの状態での各数値について詳細に説明する。
 パワーMOSFET51bのターンオフ中におけるミラー領域のゲート・ソース間電圧、すなわち区間Eでのゲート・ソース間電圧を、Vgs_mと定義する。このときのVLLSは、下式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 さらに、VLLSとVLallには、下式(8)の関係がある。
Figure JPOXMLDOC01-appb-M000008
 すなわち、上式(7)、(8)より、下式(9)が得られる。
Figure JPOXMLDOC01-appb-M000009
 これより、上式(9)に基づいて抵抗R1と抵抗R3のそれぞれの抵抗値を設定することにより、パワーMOSFET51bのドレイン端子とソース端子との間に印加される最大のVLallを自在に制御することが可能であることがわかる。
 次に、パワーMOSFET51bがオフ、かつパワーMOSFET51aがオンで、直流電源91→パワーMOSFET51a→負荷81の経路で電流が流れている状態から、ゲート駆動回路31aによりパワーMOSFET51aをターンオフさせた場合の動作について説明する。
 このときのパワーMOSFET51aおよびゲート駆動回路31a内の一連の動作は、前述の図3と同様となる。そこで、特に、区間Eの状態での各数値について詳細に説明する。
 パワーMOSFET51aのターンオフ中におけるミラー領域のゲート・ソース間電圧、すなわち区間Eでのゲート・ソース間電圧を、パワーMOSFET51bと同様にVgs_mと定義する。このときのVLHSは、下式(10)で表される。
Figure JPOXMLDOC01-appb-M000010
 さらに、VLHSとVLallには、下式(11)の関係がある。
Figure JPOXMLDOC01-appb-M000011
 すなわち、上式(10)、(11)より、下式(12)が得られる。
Figure JPOXMLDOC01-appb-M000012
 これより、上式(12)に基づいて抵抗R1と抵抗R3のそれぞれの抵抗値を設定することにより、パワーMOSFET51bのドレイン端子とソース端子との間に印加される最大のVLallを自在に制御することが可能であることがわかる。
 Lall、LLS、およびLHSは、電力変換装置71に接続されたバスバー、プリント基板等の配線構造によって一意的に決まる定数であり、個体によるばらつきはほとんど発生しない。Vgs_mには、若干の個体ばらつきは存在するものの、温度特性を含めて最大を見込んでも、ばらつきは2V未満には収まる。そこで、抵抗R1と抵抗R3の抵抗値の比率を、例えば1:1に設定すると、VLallの個体ばらつきは、最大でも4V未満に抑えることができる。
 このように、本実施の形態2によれば、上記実施の形態1と同様な効果を得ることができ、その回路構成、および使用部品は、上記実施の形態1のそれよりもさらに簡素で低コストなものとなる。そのため、本実施の形態2は、ゲート駆動回路、および電力変換装置の製造コストをより抑制するうえでも有効である。
 実施の形態3.
 図6は、本発明の実施の形態3に係るゲート駆動回路が備えるゲート放電電流調整回路の詳細を示した回路図である。先の実施の形態1の図2と比較すると、図6の構成は、ゲート放電電流調整回路11の内部構成のみが異なっている。
 図6に示したゲート放電電流調整回路11は、抵抗R1、抵抗R4、およびダイオードD2から構成されている。ダイオードD2のアノード端子は、GNDに接続され、カソード端子は、抵抗R4の一端に接続されている。抵抗R4の他端は、ゲートドライバ21と抵抗R1との接続点に接続されている。なお、ダイオードD2、および抵抗R4を直列接続する際の接続順序は、任意であり、図6に示した接続順序は、一例に過ぎない。
 また、抵抗R1は、ゲートドライバ21とパワーMOSFET51のソース端子との間に接続されている。本実施の形態3において、抵抗R1は、第1の抵抗、抵抗R4は、第4の抵抗、ダイオードD2は、第2のダイオードにそれぞれ相当する。
 次に、本実施の形態3でのパワーMOSFET51およびインダクタ61の動作について、図3に示す区間A~区間Gに分けて個別に説明する。
<区間Aについて>
 区間Aは、制御回路41から出力されるオン指令に基づいて、ゲートドライバ21がパワーMOSFET51をオン駆動した状態である。区間Aにおいて、ドレイン端子からソース端子に向かう方向である順方向の電流が、図示しない直流電源からインダクタ61を経由して流れる。このとき、インダクタ61の両端は、同電位となっており、ゲート放電電流調整回路11内では、電流は流れていない。
<区間Bについて>
 区間Bは、制御回路41から出力されるターンオフ指令に基づいて、ゲートドライバ21がパワーMOSFET51のオフ駆動を開始した状態である。区間Bにおいて、ゲート抵抗Rg→ゲートドライバ21→抵抗R1の経路で、Igが放電電流として流れる。この放電電流に応じて、Vgsは低下する。ただし、Vgsがオンしきい値付近の電圧に低下するまでは、スイッチングは起こらない。
<区間Cについて>
 区間Cは、Vgsがオンしきい値付近の電圧に低下した状態である。Vgsがオンしきい値付近の電圧に低下すると、パワーMOSFET51のオン抵抗が急激に上昇するのに伴い、Vdsが上昇する。このとき、Vgsは、ミラー効果により減少率が急激に低下し、ほぼ横ばいの変化となる。
<区間Dについて>
 区間Dは、Vdsが直流電源の電圧を越え、Idが減少を始める状態である。Vdsが直流電源の電圧を越えると、Vgsがオンしきい値を越える電圧であっても、Idが減少を始める。そして、Vdsには、Idの減少速度と、Idの電流変化が発生するループにおける寄生インダクタンスの総和と、の掛け算により決まるサージ電圧ΔVが発生する。
 このとき、電流変化が発生するループにおける寄生インダクタンスの一部であるインダクタ61の両端電圧VLにも、Idの減少速度と、インダクタ61のインダクタンス値との積で求まる起電圧が、電流変化を妨げる方向に発生する。このため、両端電圧VLは、負電圧となる。
 パワーMOSFET51がハーフブリッジの下アームの場合、または、パワーMOSFET51がローサイドスイッチの場合であれば、インダクタ61の下流の電位は、GNDとなる。一方、パワーMOSFET51がハーフブリッジの上アームの場合、または、パワーMOSFET51がハイサイドスイッチの場合であれば、インダクタ61の下流の電位は、下アームにおけるパワーMOSFET51の寄生ダイオードまたは還流ダイオードによる還流電圧である-Vfに対して、下アームの配線インダクタンスでの起電圧を加算した電位となる。このため、いずれの場合もパワーMOSFET51のソース端子は、負電位となる。
 それにより、GNDから、ダイオードD2→抵抗R4→抵抗R1の経路でパワーMOSFET51のソース端子に向かって、パワーMOSFET51のソース端子の負電位の大きさに応じた電流が流れる。
 その結果として、ゲートドライバ21の基準側は、パワーMOSFET51のソース端子に対して抵抗R1での電圧降下分だけ高電位となり、パワーMOSFET51のゲート電荷の放電速度を決めるゲート抵抗Rgの両端電圧が小さくなる。このため、パワーMOSFET51のゲート電流Igは、小さくなる。
<区間Eについて>
 区間Eは、Vdsが平衡状態を保ったまま、Idがゼロになるまで推移する状態である。前の区間Dにおいて、VLに関する負電圧の絶対値が大きくなるにつれて、抵抗R1での電圧降下は大きくなる。一方、GNDから抵抗R4と抵抗R1を介して流れる電流も大きくなる。従って、ゲート抵抗Rgの両端電圧は、さらに小さくなり、ゲート電流Igも、さらに小さくなる。
 この結果、ターンオフ速度は、低下し、サージ電圧ΔVは、抑制される。すなわち、Vdsのサージ電圧ΔVが一定になるように、ゲート電流Igを調整するように、電流がGNDから抵抗R1に流れる。従って、区間Eにおいては、Vdsが平衡状態を保ったまま、Idがゼロになるまで推移する。
<区間Fについて>
 区間Fは、Idがゼロになり、パワーMOSFET51が完全にオフとなった状態である。前の区間Eにおいて、最終的にIdがゼロとなると、VLの起電圧がゼロになるとともに、Vdsのサージ電圧ΔVもゼロとなる。この結果、区間Fにおいて、パワーMOSFET51は完全にオフ状態となる。このとき、GNDから抵抗R4と抵抗R1を経由する電流もゼロとなり、Igは、ゲート抵抗Rg→ゲートドライバ21→抵抗R1の経路を流れ、最終的にゼロとなる。
<区間Gについて>
 区間Gは、Igがゼロとなり、パワーMOSFET51がオフに維持されている状態である。ゲートドライバ21は、制御回路41からのオフ信号に基づいて、ゲート抵抗Rgと抵抗R1との間に供給する電圧により、パワーMOSFET51のオフ状態を維持する。
 次に、図6のゲート放電電流調整回路11の各抵抗値とサージ電圧の制限値との関係について説明する。より具体的には、ハーフブリッジを基本とした図4に示す電力変換装置71に、図6のゲート駆動回路31を適用した場合を例として、具体的に説明する。
 図4の説明は前述の通りであるため、ここでは省略する。図4に示す電力変換装置71は、図6に示す本実施の形態3に係るゲート駆動回路31を適用可能である。従って、図4に示す電力変換装置71は、本実施の形態3に係る電力変換装置にも相当する。
 ここで、パワーMOSFET51aがオフ、かつパワーMOSFET51bがオンで、直流電源91→負荷81→パワーMOSFET51bの経路で電流が流れている状態から、ゲート駆動回路31bによりパワーMOSFET51bをターンオフさせた場合の動作について説明する。
 このときのパワーMOSFET51bおよびゲート駆動回路31b内の一連の動作は、前述の図3と同様となる。そこで、特に、区間Eの状態での各数値について詳細に説明する。
 パワーMOSFET51bのターンオフ中におけるミラー領域のゲート・ソース間電圧、すなわち区間Eでのゲート・ソース間電圧を、Vgs_mと定義する。このときのVLLSは、下式(13)で表される。
Figure JPOXMLDOC01-appb-M000013
 さらに、VLLSとVLallには、下式(14)の関係がある。
Figure JPOXMLDOC01-appb-M000014
 すなわち、上式(13)、(14)より、下式(15)が得られる。
Figure JPOXMLDOC01-appb-M000015
 これより、上式(15)に基づいて抵抗R1と抵抗R4のそれぞれの抵抗値を設定することにより、パワーMOSFET51bのドレイン端子とソース端子との間に印加される最大のVLallを自在に制御することが可能であることがわかる。
 次に、パワーMOSFET51bがオフ、かつパワーMOSFET51aがオンで、直流電源91→パワーMOSFET51a→負荷81の経路で電流が流れている状態から、ゲート駆動回路31aによりパワーMOSFET51aをターンオフさせた場合の動作について説明する。
 このときのパワーMOSFET51aおよびゲート駆動回路31a内の一連の動作は、前述の図3と同様となる。そこで、特に、区間Eの状態での各数値について詳細に説明する。
 パワーMOSFET51aのターンオフ中におけるミラー領域のゲート・ソース間電圧、すなわち区間Eでのゲート・ソース間電圧を、パワーMOSFET51bと同様にVgs_mと定義する。このときのVLLS+VLLD+VLHSは、下式(16)で表される。
Figure JPOXMLDOC01-appb-M000016
 さらに、VLLS+VLLD+VLHSと、VLallには、下式(17)の関係がある。
Figure JPOXMLDOC01-appb-M000017
 すなわち、上式(16)、(17)より、下式(18)が得られる。
Figure JPOXMLDOC01-appb-M000018
 これより、上式(18)に基づいて抵抗R1と抵抗R4のそれぞれの抵抗値を設定することにより、パワーMOSFET51bのドレイン端子とソース端子との間に印加される最大のVLallを自在に制御することが可能であることがわかる。
 Lall、LLS、LLD、およびLHSは、電力変換装置71に接続されたバスバー、プリント基板等の配線構造によって一意的に決まる定数であり、個体によるばらつきはほとんど発生しない。Vgs_mには、若干の個体ばらつきは存在するものの、温度特性を含めて最大を見込んでも、ばらつきは2V未満には収まる。そこで、抵抗R1と抵抗R4の抵抗値の比率を、例えば1:1に設定すると、VLallの個体ばらつきは、最大でも4V未満に抑えることができる。
 このように、本実施の形態3によれば、上記実施の形態1と同様な効果を得ることができ、その回路構成および使用部品は、上記実施の形態1のそれよりもさらに簡素で低コストなものとなる。そのため、本実施の形態3は、上記実施の形態2と同様に、ゲート駆動回路、および電力変換装置の製造コストをより抑制するうえでも有効である。
 なお、本発明は、上述した実施の形態1~3に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等を行ったものは、本発明に含まれる。
 本実施の形態1、2、3は、ハーフブリッジ型の電力変換装置に対して、本発明を適用したものである。しかしながら、本発明を適用可能な電力変換装置は、ハーフブリッジ型の電力変換装置に限定されない。電力変換装置は、半導体スイッチを高速にスイッチングするものであれば良い。
 そのため、電力変換装置は、Hブリッジ型(2相ブリッジ)の電力変換装置、3相ブリッジ型の電力変換装置、4相以上のブリッジ型の電力変換装置等であってもよい。大電流を流す電力変換装置である場合には、複数の半導体スイッチを並列接続した構成であってもよい。本発明に係るゲート駆動回路は、電力変換装置が備える1つ以上の半導体スイッチのスイッチングに用いることができる。
 また、本実施の形態1、2、3では、電力変換装置に用いられる半導体スイッチとして、パワーMOSFETを用いて説明した。しかしながら、半導体スイッチは、IGBTなど他の電圧駆動型の半導体スイッチでも構わない。
 また、ゲート駆動回路は、ターンオン・ターンオフそれぞれのスイッチング速度を個別に制御するために、ゲート抵抗Rgと並列に回路を接続して、ターンオンとターンオフのゲート電流が別の経路を流れる構成となっていても構わない。このことから、電力変換装置と同様に、ゲート駆動回路も本実施の形態1~3のような構成に限定されない。
 さらに、ハーフブリッジの上アームと下アームへの本実施の形態1~3の適用は、任意の組み合わせとすることが可能である。
 11 ゲート放電電流調整回路、21 ゲートドライバ(ゲート駆動部)、31、31a、31b ゲート駆動回路、41 制御回路、51、51a、51b パワーMOSFET、61 インダクタ(配線の寄生インダクタンス)、71 電力変換装置、81 負荷、91 直流電源、LHD、LHS,LLD、LLS、LCP、LCN インダクタ(寄生インダクタンス)、R1 抵抗(第1の抵抗)、R2 抵抗(第2の抵抗)、R3 抵抗(第3の抵抗)、R4 抵抗(第4の抵抗)、Rg ゲート抵抗、D1 ダイオード(第1のダイオード)、D2 ダイオード(第2のダイオード)、VS 電圧源。

Claims (7)

  1.  第1の端子、第2の端子、およびゲート端子を有する半導体スイッチをオンオフ制御するゲート駆動部と、
     前記ゲート駆動部と前記ゲート端子との間に接続されたゲート抵抗と、
     前記ゲート駆動部と前記第1の端子との間に接続され、前記ゲート駆動部が前記半導体スイッチをターンオフさせる場合に、配線インダクタンスの起電圧によって前記第1の端子に発生する負電位の大きさに応じて、前記半導体スイッチのゲート電荷が前記ゲート抵抗を介して放電される放電速度を遅らせる方向に変化させるゲート放電電流調整回路と、
     を備えるゲート駆動回路。
  2.  前記ゲート放電電流調整回路は、基準とする電位から前記第1の端子に対して電流を流すことで、前記放電速度を遅らせる方向に変化させる、
     請求項1に記載のゲート駆動回路。
  3.  前記ゲート放電電流調整回路は、
      前記第1の端子と前記ゲート駆動部との間に接続された第1の抵抗と、
      前記基準とする電位を供給する電圧源と、
      第1のダイオード、第2の抵抗、およびコンデンサが任意の順序で直列接続されることで構成された直列回路と、
     を含んで構成され、
      前記直列回路は、一端が前記第1の抵抗と前記ゲート駆動部との接続点に接続され、他端が前記電圧源に接続されている、
     請求項2に記載のゲート駆動回路。
  4.  前記電圧源は、複数の前記半導体スイッチによりハーフブリッジが構成されている場合には、前記ハーフブリッジの下アームのゲート駆動用電源である、
     請求項3に記載のゲート駆動回路。
  5.  前記ゲート放電電流調整回路は、
      前記第1の端子と前記ゲート駆動部との間に接続された第1の抵抗と、
      前記第1の抵抗と前記ゲート駆動部との接続点と、前記第1の端子に接続された配線インダクタンスの下流側との間に接続された第3の抵抗と、
     を含んで構成され、
      前記基準とする電位を、前記配線インダクタンスの下流側の電位とする、
     請求項2に記載のゲート駆動回路。
  6.  前記ゲート放電電流調整回路は、
      前記第1の端子と前記ゲート駆動部との間に接続された第1の抵抗と、
      第2のダイオード、および第4の抵抗が任意の順序で直列接続されることで構成された直列回路と、
     を含んで構成され、
      前記直列回路は、一端が前記第1の抵抗と前記ゲート駆動部との接続点に接続され、他端がGNDに接続され、
      前記基準とする電位を前記GNDとする、
     請求項2に記載のゲート駆動回路。
  7.  請求項1から6のいずれか1項に記載のゲート駆動回路、
     を備えた電力変換装置。
PCT/JP2018/041061 2018-11-05 2018-11-05 ゲート駆動回路および電力変換装置 WO2020095351A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880099013.5A CN112930642A (zh) 2018-11-05 2018-11-05 栅极驱动电路和功率转换装置
EP18939467.9A EP3879685A4 (en) 2018-11-05 2018-11-05 GRID ATTACK CIRCUIT AND POWER CONVERSION DEVICE
PCT/JP2018/041061 WO2020095351A1 (ja) 2018-11-05 2018-11-05 ゲート駆動回路および電力変換装置
JP2020556378A JP7034330B2 (ja) 2018-11-05 2018-11-05 ゲート駆動回路および電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041061 WO2020095351A1 (ja) 2018-11-05 2018-11-05 ゲート駆動回路および電力変換装置

Publications (1)

Publication Number Publication Date
WO2020095351A1 true WO2020095351A1 (ja) 2020-05-14

Family

ID=70610904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041061 WO2020095351A1 (ja) 2018-11-05 2018-11-05 ゲート駆動回路および電力変換装置

Country Status (4)

Country Link
EP (1) EP3879685A4 (ja)
JP (1) JP7034330B2 (ja)
CN (1) CN112930642A (ja)
WO (1) WO2020095351A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206065A1 (ja) * 2020-04-07 2021-10-14 パナソニックIpマネジメント株式会社 制御回路及びスイッチ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045740A (ja) 1999-07-29 2001-02-16 Nissan Motor Co Ltd パワー半導体素子の駆動回路
JP2018093681A (ja) * 2016-12-07 2018-06-14 富士電機株式会社 駆動回路及び該回路を含んでなる半導体モジュール
JP2018520625A (ja) * 2015-06-23 2018-07-26 ティーエム4・インコーポレーテッド 電力コンバータの物理的トポロジー

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947063A (en) * 1987-10-09 1990-08-07 Western Digital Corporation Method and apparatus for reducing transient noise in integrated circuits
JPH1155936A (ja) * 1997-07-29 1999-02-26 Mitsubishi Electric Corp 絶縁ゲートトランジスタの駆動回路
JP4343897B2 (ja) * 2005-12-12 2009-10-14 三菱電機株式会社 電力変換装置
JP5460519B2 (ja) * 2010-08-09 2014-04-02 本田技研工業株式会社 半導体素子の駆動装置及び方法
CN105814780B (zh) * 2013-11-14 2019-03-12 Tm4股份有限公司 控制功率电子开关的接通和关断的补偿电路、整流单元和功率转换器
JP6298735B2 (ja) * 2014-07-31 2018-03-20 株式会社日立製作所 半導体駆動装置ならびにそれを用いた電力変換装置
JP6168253B1 (ja) * 2017-05-01 2017-07-26 富士電機株式会社 駆動装置およびスイッチ装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045740A (ja) 1999-07-29 2001-02-16 Nissan Motor Co Ltd パワー半導体素子の駆動回路
JP2018520625A (ja) * 2015-06-23 2018-07-26 ティーエム4・インコーポレーテッド 電力コンバータの物理的トポロジー
JP2018093681A (ja) * 2016-12-07 2018-06-14 富士電機株式会社 駆動回路及び該回路を含んでなる半導体モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3879685A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206065A1 (ja) * 2020-04-07 2021-10-14 パナソニックIpマネジメント株式会社 制御回路及びスイッチ装置

Also Published As

Publication number Publication date
JPWO2020095351A1 (ja) 2021-05-13
JP7034330B2 (ja) 2022-03-11
EP3879685A1 (en) 2021-09-15
CN112930642A (zh) 2021-06-08
EP3879685A4 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP3752943B2 (ja) 半導体素子の駆動装置及びその制御方法
JP5260957B2 (ja) 電力変換装置
JP3598933B2 (ja) 電力変換装置
WO2014034063A1 (ja) 半導体装置
KR100936427B1 (ko) 전력 변환 장치
JP2005304294A (ja) 同期整流回路およびこの同期fetのソース共通インダクタンスを利用するための方法
US20090001410A1 (en) Driver Circuit and Electrical Power Conversion Device
JP2013509152A (ja) 同期整流器制御のシステム及び方法
JP2009065485A (ja) スイッチング制御装置及びモータ駆動装置
US11543846B2 (en) Gate driver circuit for reducing deadtime inefficiencies
US11843368B2 (en) Method for reducing oscillation during turn on of a power transistor by regulating the gate switching speed control of its complementary power transistor
JP6066867B2 (ja) 駆動回路および半導体装置
JP4212546B2 (ja) 電力変換装置
US11444613B1 (en) Actively tracking switching speed control and regulating switching speed of a power transistor during turn-on
JP5630484B2 (ja) 半導体装置
JP2006353093A (ja) 半導体素子の制御方法
WO2020095351A1 (ja) ゲート駆動回路および電力変換装置
JP4135403B2 (ja) スイッチング回路及び電源回路
US11770119B2 (en) Actively tracking switching speed control and regulating switching speed of a power transistor during turn-on
JP6274348B1 (ja) 駆動回路および半導体モジュール
JP7296331B2 (ja) ゲート駆動装置およびゲート駆動方法、パワー半導体モジュール、並びに電力変換装置
JP5541349B2 (ja) 半導体装置
GB2589296A (en) Feedback controlled gate driver
Wittig et al. Current injection gate drive circuit for controlling the turn-off characteristic of low voltage power MOSFETs with high current ratings
Wittig et al. Adaption of MOSFETs current slope by systematic adjustment of common source stray inductance and gate resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018939467

Country of ref document: EP

Effective date: 20210607