WO2020093293A1 - 电容器检测设备及其检测方法 - Google Patents

电容器检测设备及其检测方法 Download PDF

Info

Publication number
WO2020093293A1
WO2020093293A1 PCT/CN2018/114466 CN2018114466W WO2020093293A1 WO 2020093293 A1 WO2020093293 A1 WO 2020093293A1 CN 2018114466 W CN2018114466 W CN 2018114466W WO 2020093293 A1 WO2020093293 A1 WO 2020093293A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
image
image acquisition
detection
acquisition component
Prior art date
Application number
PCT/CN2018/114466
Other languages
English (en)
French (fr)
Inventor
胡德霖
胡醇
张敏
陈凤亚
管逸恬
徐志刚
徐小雷
朱慧
Original Assignee
苏州电器科学研究院股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州电器科学研究院股份有限公司 filed Critical 苏州电器科学研究院股份有限公司
Priority to US17/291,147 priority Critical patent/US11402420B2/en
Publication of WO2020093293A1 publication Critical patent/WO2020093293A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station
    • G01R31/013Testing passive components
    • G01R31/016Testing of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30141Printed circuit board [PCB]

Definitions

  • the invention belongs to the technical field of capacitors, and particularly relates to a capacitor detection device and a detection method thereof.
  • a capacitor is an element capable of storing electric charge, and is also one of the most commonly used electronic elements.
  • Capacitors need to be tested in various ways after production, such as leakage detection.
  • the existing method is to manually hold the instrument, then clamp the detection clip on the instrument to the electrode, and then perform the test. This method is cumbersome and inefficient .
  • surface defects often appear on the surface of the capacitors, such as sleeve cracking, blistering, scratches, etc.
  • the appearance of capacitors is generally tested manually, which has low detection efficiency , The quality of testing cannot be guaranteed.
  • the present invention proposes a capacitor detection device and a detection method thereof.
  • Capacitor testing equipment including:
  • the carrier is provided with multiple card holes on the carrier, and the card holes are used to carry the capacitor to be detected;
  • Transmission device the transmission device is used to transmit the carrier
  • the image acquisition component includes an upper image acquisition component disposed above the transmission device and a lower image acquisition component disposed below the transmission device.
  • the upper image acquisition component and the lower image acquisition component are used for defect detection on the outer surface of the capacitor to be inspected;
  • the performance testing device includes: a performance testing circuit board and a lifting assembly for driving the performance testing circuit board up and down.
  • the performance testing device is used for testing the electrical performance of the capacitor to be tested.
  • the invention discloses a capacitor detection device, which has a simple structure and convenient operation, and can quickly and effectively detect the electrical performance of the capacitor (including: whether it leaks, whether it is short-circuited, and its specific capacitance value) and the surface of the capacitor
  • the process is semi-automated or automated, reducing manual intervention, reducing labor, and improving detection accuracy and speed.
  • a plurality of card holes are distributed in a matrix on the carrier.
  • an elastic layer can be attached to the inner wall of the card hole to protect the outer surface of the capacitor.
  • the upper image acquisition component and the lower image acquisition component respectively include: a plurality of image acquisition devices arranged in a row, and the number of image acquisition devices included in the upper image acquisition component and the lower image acquisition component is the same as that of the carrier.
  • the number of card holes in the row is the same.
  • the capacitor detection device further includes: a rejection component, which is used to reject the problematic capacitor after detection;
  • the rejection component includes: a rejection robot arm, an adsorption plate provided on the rejection robot arm, and one or more adsorption holes provided on the adsorption plate.
  • the adsorption hole is connected to the vacuuming device through the adsorption channel in the adsorption plate, and the rejection robot arm drives Suction plate action.
  • the rejection mechanical arm drives the suction plate to move, and the suction hole will remove the problematic capacitor.
  • the multiple suction holes are arranged in a row, and the number of suction holes is the same as the number of card holes in the row on the carrier.
  • the adsorption plate is provided with a plurality of adsorption channels, and each adsorption channel is provided with a valve, which is used to control the opening and closing of the adsorption channel.
  • Each adsorption hole is connected to the vacuuming device through the corresponding adsorption channel in the adsorption plate.
  • the capacitor detection device further includes: a light source assembly, which is used to illuminate the capacitor to be detected;
  • the light source assembly is disposed on both sides of the upper image acquisition assembly and / or the lower image acquisition assembly.
  • the light source assembly provides a light source to ensure the accuracy of capacitor image acquisition.
  • a connecting plate is provided on the transmission device, and the connecting plate is rotatably connected with the light source assembly.
  • the light source assembly can be fixed effectively and smoothly, and at the same time the angle of the light source assembly can be adjusted to provide sufficient illumination for the image acquisition assembly to facilitate accurate image acquisition.
  • the upper image acquisition component and the lower image acquisition component are respectively provided on the adjustment component, and the adjustment component adjusts the up, down, left and right positions of the upper image acquisition component and the lower image acquisition component.
  • the lower, left and right positions of the upper image collection component and the lower image collection component can be effectively adjusted to ensure that the upper image collection component and the lower image collection component can accurately collect images.
  • Capacitor detection method using capacitor detection equipment for detection, including the following steps:
  • the transmission device transmits the vehicle to the inspection station
  • the lifting component drives the performance detection circuit board to rise until the detection contacts on the performance detection circuit board are in contact with the capacitor to be detected on the carrier, and the performance detection circuit board detects the electrical performance of the capacitor;
  • the upper image acquisition component and the lower image acquisition component simultaneously perform defect detection on the outer surface of the capacitor to be detected;
  • the transmission device After the defect detection is completed, the transmission device transmits the vehicle to the next station.
  • the capacitor detection method of the invention has simple operation steps, high detection precision and fast detection speed, and is suitable for detecting a large number of capacitors, which greatly reduces the labor force.
  • the upper image acquisition component and the lower image acquisition component respectively include: a plurality of image acquisition devices arranged in a row, and the number of image acquisition devices included in the upper image acquisition component and the lower image acquisition component is the same as that of the carrier.
  • the number of card holes in the row is the same, and each image collector has its unique code;
  • Step 6) is specifically:
  • the upper image acquisition component and the lower image acquisition component simultaneously perform image acquisition on the outer surface of the capacitor to be detected;
  • Each image collector binds its own code to the collected original image and sends it to the processor after binding;
  • the processor performs localization and segmentation on the original image according to the code information to extract the partial image of the capacitor to be detected;
  • the processor will match the partial image of the capacitor to be detected with the image in the image database of the defect-free capacitor one by one;
  • the capacitor is free of defects
  • step 6.5 is entered
  • the processor performs a one-to-one match between the partial image of the capacitor to be detected and the image in the defective capacitor image library to determine which one or more images in the defect-free capacitor image library have a high degree of matching and the corresponding Image matching degree;
  • the processor obtains the defect detection score by the following formula
  • C is the defect detection score.
  • defective capacitors can be quickly and effectively removed, and the removed capacitors can be known specifically for problems such as splitting, blistering, and scratches of the sleeve.
  • FIG. 1 is a schematic structural diagram of a capacitor detection device provided by an embodiment of the present invention.
  • FIG 2 is one of the cross-sectional views of the carrier and the performance detection circuit board provided by the embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an upper image acquisition component provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a lower image acquisition component and a light source component provided by an embodiment of the present invention.
  • FIG. 5 is a second structural schematic diagram of a capacitor detection device provided by an embodiment of the present invention.
  • FIG. 6 is a second cross-sectional view of a carrier and a performance detection circuit board provided by an embodiment of the present invention.
  • 1 carrier 1 carrier, 11 card holes, 12 elastic layers, 2 capacitors, 3 transmission devices, 31 connection boards, 4 upper image acquisition components, 5 lower image acquisition components, 6 performance detection circuit board, 7 image acquisition, 8 Removal components, 9 light source components, 10 adjustment components, 101 cabinets, 102 alarm devices, 103 displays, 104 switch buttons, 105 keyboard consoles, 61 test adsorption plates, 62 positioning holes, 63 adsorption terminals.
  • the capacitor detection device includes:
  • the carrier 1 is provided with a plurality of card holes 11 on the carrier 1, and the card holes 11 are used to carry the capacitor 2 to be detected;
  • the image acquisition component includes an upper image acquisition component 4 disposed above the transmission device 3 and a lower image acquisition component 5 disposed below the transmission device 3, the upper image acquisition component 4 and the lower image acquisition component 5 are used to detect the external of the capacitor 2 Defect detection on the surface;
  • the performance detection device includes: a performance detection circuit board 6 and a lifting assembly (not shown) for driving the performance detection circuit board 6 to move up and down.
  • the performance detection device is used to detect the electrical performance of the capacitor 2 to be detected.
  • the invention discloses a capacitor detection device, which has a simple structure and convenient operation, and can quickly and effectively detect the electrical performance of the capacitor (such as: whether it leaks, whether it is short-circuited, and its specific capacitance value) and the surface of the capacitor
  • the process is semi-automated or automated, reducing manual intervention, reducing labor, and improving detection accuracy and speed.
  • the invention also discloses a capacitor detection method, which uses capacitor detection equipment for detection, and specifically includes the following steps:
  • the transmission device 3 transmits the carrier 1 to the inspection station
  • the lifting component drives the performance detection circuit board 6 to rise until the detection contact on the performance detection circuit board 6 contacts the capacitor 2 to be detected on the carrier 1, and the performance detection circuit board 6 detects the electrical performance of the capacitor 2, as shown in the figure 2 shown;
  • the upper image acquisition component 4 and the lower image acquisition component 5 simultaneously perform defect inspection on the outer surface of the capacitor 2 to be inspected;
  • the transmission device 3 After the defect detection is completed, the transmission device 3 transmits the carrier 1 to the latter station.
  • the capacitor detection method of the invention has simple operation steps, high detection precision and fast detection speed, and is suitable for detecting a large number of capacitors, which greatly reduces the labor force.
  • the rest of the features and technologies are the same, the difference is that the twelve card holes 11 are distributed in a matrix on the carrier 1 and are four rows, each row 3 ⁇ ⁇ ⁇ 11 ⁇ A card hole 11.
  • an elastic layer 12 may be attached to the inner wall of the card hole 11 to protect the outer surface of the capacitor.
  • the upper image acquisition component 4 and the lower image acquisition component 5 respectively include: three image collectors 7 arranged in a row, and the upper image acquisition component 4 and the lower image acquisition component 5 include The number of image collectors 7 is the same as the number of card holes 11 in the row of the carrier 1, which is three.
  • the upper image acquisition component 4 and the lower image acquisition component 5 respectively include: three image acquisition devices 7 arranged in a row, and the upper image acquisition component 4 and the lower image acquisition component 5 include the image acquisition device 7
  • the number is the same as the number of card holes 11 in the row of the carrier 1, and each image collector 7 has its unique code;
  • Step 6) of the capacitor detection method is specifically:
  • the upper image acquisition component 4 and the lower image acquisition component 5 simultaneously perform image acquisition on the outer surfaces of a row of three capacitors 2 to be tested;
  • Each image collector 7 binds its own code to the collected original image and sends it to the processor after binding;
  • the processor performs localization and segmentation on the original image according to the code information, and extracts the partial image of the capacitor 2 to be detected;
  • the processor will match the partial image of the capacitor to be detected with the image in the image database of the defect-free capacitor one by one
  • the capacitor is free of defects
  • step 6.5 is entered
  • the processor performs a one-to-one match between the partial image of the capacitor to be detected and the image in the defective capacitor image library to determine which one or more images in the defect-free capacitor image library have a high degree of matching and the corresponding Image matching degree;
  • the processor obtains the defect detection score by the following formula
  • C is the defect detection score.
  • defective capacitors can be quickly and effectively removed, and the removed capacitors can be known for any problems such as cracking, blistering, and scratching of the sleeve, and the defects of the capacitor can be effectively obtained
  • the transmission device 3 drives the carrier 1 one step further and detects the three capacitors in the next row until the detection of the capacitors on the carrier 1 is completed.
  • Three image collectors 7 (numbered 001, 002, and 003) have collected images of three capacitors, specifically:
  • the processor performs localization and segmentation on the original image according to the code information, and extracts the partial image of the capacitor 2 to be detected, specifically:
  • the processor matches the partial image of the capacitor to be detected with the image in the image database of the defect-free capacitor, and the image database of the defect-free capacitor stores 3 images;
  • the processor performs a one-to-one match between the partial capacitor image 2 and the partial capacitor image 3 of the capacitor to be inspected and the images in the defective capacitor image library to determine which two images of the non-defective capacitor image library match the partial images 2 and 3 High and corresponding image matching degree;
  • the local capacitor in Figure 2 has the highest match with the blistered image and the damaged image, which are 0.9 and 0.6, respectively.
  • the local capacitor in Figure 3 has the highest match with the split image and the scratch image, respectively 0.7 and 0.7.
  • the processor obtains the defect detection score by the following formula
  • the staff can set the corresponding threshold value, if the detection score exceeds 90 to retain the capacitor, if it is below 90, it will be scrapped directly. Obtain the defect detection score of the capacitor, and give the staff a reference, whether the capacitor can continue to be used, or directly scrapped.
  • the capacitor detection device further includes: a rejection component 8, which is used to reject the problematic capacitor after detection;
  • the rejection assembly 8 includes a rejection robot arm, an adsorption plate (not shown in the figure) provided on the rejection robot arm, and one or more adsorption holes (not shown in the figure) provided on the adsorption plate.
  • the suction channel in the board is connected to the vacuuming device, and the mechanical arm is removed to drive the suction board.
  • the rejection mechanical arm drives the suction plate to move, and the suction hole will remove the problematic capacitor.
  • the multiple suction holes are arranged in a row, and the number of suction holes is the same as the number of card holes 11 in the row of the carrier 1 , For 3.
  • the adsorption plate is provided with a plurality of adsorption channels, and each adsorption channel is provided with a valve, which is used to control the opening and closing of the adsorption channel.
  • Each adsorption hole is connected to the vacuuming device through the corresponding adsorption channel in the adsorption plate.
  • the capacitor detection device further includes: a light source assembly 9, which is used to illuminate the capacitor to be detected;
  • the light source assembly 9 is disposed on both sides of the upper image acquisition assembly 4 and / or the lower image acquisition assembly 5.
  • the light source assembly 9 provides a light source to ensure the accuracy of capacitor image acquisition.
  • the transmission device 3 is provided with a connecting plate 31, and the connecting plate 31 is rotatably connected to the light source assembly 9.
  • the light source assembly 9 can be effectively and smoothly fixed, and at the same time, the angle of the light source assembly 9 can be adjusted to provide sufficient illumination for the image acquisition assembly to facilitate accurate image acquisition.
  • the remaining features and technologies are the same, except that the upper image acquisition component 4 and the lower image acquisition component 5 are respectively provided on the adjustment component 10, and the adjustment component 10 is The up, down, left and right positions of the upper image acquisition component 4 and the lower image acquisition component 5 are adjusted.
  • the lower, left and right positions of the upper image collection component 4 and the lower image collection component 5 can be effectively adjusted to ensure that the upper image collection component 4 and the lower image collection component 5 can accurately collect images.
  • the capacitor detection device further includes: a casing 101, all of the above components
  • the inside of the casing 101 prevents external debris, dust or water from contaminating the image acquisition component and the light source component, extending the overall service life of the device.
  • An alarm device 102, a display 103, a switch button 104, and a keyboard operation table 105 are also provided outside the cabinet, making the capacitor detection device more user-friendly.
  • the capacitor detection device further includes: a test adsorption plate 61 and a test adsorption plate A drive assembly (not shown in the figure) connected by 61 transmission is provided with a plurality of positioning holes 62 matching the card holes 11 on the test suction plate 61, and a plurality of suction terminals on the test suction plate 61 63.
  • the suction terminal 63 is connected to an external vacuuming device.
  • the driving component drives the test adsorption plate 61 close to the carrier 1, and the positioning hole 62 passes through the corresponding capacitor 2 to be tested, and the adsorption terminal 63 provides a certain adsorption force for the carrier 1.
  • the lifting assembly drives the performance detection circuit board 6 to rise until the detection contact on the performance detection circuit board 6 contacts the capacitor 2 to be detected on the carrier 1, and the performance detection circuit board 6 detects the electrical performance of the capacitor; electrical performance detection After completion, the lifting assembly drives the performance detection circuit board 6 back to the original position. The detection is more accurate.

Abstract

一种电容器检测设备及其检测方法,该电容器检测设备包括:载具(1),在载具(1)上设有多个卡孔(11),卡孔(11)用于对待检测电容器(2)进行承载;传输装置(3),传输装置(3)用于对载具(1)进行传输;图像采集组件,包括设置于传输装置(3)上方的上图像采集组件(4)和设置于传输装置(3)下方的下图像采集组件(5),上图像采集组件(4)和下图像采集组件(5)用于对待检测电容器(2)的外表面进行缺陷检测;性能检测装置,包括:性能检测电路板(6)以及用于带动性能检测电路板(6)升降的升降组件,性能检测装置用于对待检测电容器(2)的电学性能进行检测。该检测设备结构简单,操作便捷,可以快速有效的对电容器(2)的电学性能以及电容器(2)的表面进行检测,降低人工干预,减少劳动力,提高检测精度和检测速度。

Description

电容器检测设备及其检测方法 技术领域
本发明属于电容器技术领域,尤其涉及一种电容器检测设备及其检测方法。
背景技术
在电子零件中,电容器是一种能够储藏电荷的元件,也是最常用的电子元件之一。
电容器在生产后需要进行各种方式的检测,如:漏电检测,现有的方式是人工手持仪表,再将仪表上的检测夹夹在电极上,再进行检测,这种方式操作繁琐,效率低。同时,在电容器的生产过程中,电容器的表面常出现表面缺陷,如套管剖裂、起泡、划痕等,而目前一般都是采用人工对电容器的外观进行检测的,这种检测效率低下,检测质量得不到保证。
发明内容
为了解决上述技术问题,本发明提出了一种电容器检测设备及其检测方法。
为了达到上述目的,本发明的技术方案如下:
电容器检测设备,包括:
载具,在载具上设有多个卡孔,卡孔用于对待检测电容器进行承载;
传输装置,传输装置用于对载具进行传输;
图像采集组件,包括设置于传输装置上方的上图像采集组件和设置于传输装置下方的下图像采集组件,上图像采集组件和下图像采集组件用于对待检测电容器的外表面进行缺陷检测;
性能检测装置,包括:性能检测电路板以及用于带动性能检测电 路板升降的升降组件,性能检测装置用于对待检测电容器的电学性能进行检测。
本发明公开一种电容器检测设备,其结构简单,操作便捷,可以快速有效的对电容器的电学性能(如包括:是否漏电、是否短路、其具体的电容值)以及电容器的表面进行检测,且检测过程实现半自动化或自动化,降低人工干预,减少劳动力,提高检测精度和检测速度。
在上述技术方案的基础上,还可做如下改进:
作为优选的方案,多个卡孔在载具上呈矩阵分布。
采用上述优选的方案,检测效果更佳。同时,可以在卡孔的内壁附上一层弹性层,以保护电容器的外表面。
作为优选的方案,上图像采集组件和下图像采集组件分别包括:多个设置于一排的图像采集器,且上图像采集组件和下图像采集组件包括的图像采集器的数量与载具上一排的卡孔数量相同。
采用上述优选的方案,可以同时对一排电容器的上、下均进行缺陷检测,检测精度高,速度快。
作为优选的方案,电容器检测设备还包括:剔除组件,剔除组件用于将检测后有问题的电容器剔除出来;
剔除组件包括:剔除机械臂、设置于剔除机械臂上的吸附板以及设置于吸附板上的一个或多个吸附孔,吸附孔通过吸附板内的吸附通道与抽真空装置连接,剔除机械臂带动吸附板动作。
采用上述优选的方案,剔除机械臂带动吸附板动作,吸附孔将有问题的电容器进行吸附剔除。
作为优选的方案,当吸附板上设有多个吸附孔时,多个吸附孔设置于一排,且吸附孔的数量与载具上一排的卡孔数量相同。
采用上述优选的方案,吸附板内设有多个吸附通道,每个吸附通道上设有阀门,该阀门用于控制该吸附通道的开闭。每个吸附孔通过吸附板内与其相对应的吸附通道与抽真空装置连接。当需要对某一个 电容器剔除时,对应的吸附通道的阀门开启,对应的吸附孔对该电容器吸附剔除。
作为优选的方案,电容器检测设备还包括:光源组件,光源组件用于对待检测电容器进行照明;
光源组件设置于上图像采集组件和/或下图像采集组件的两侧。
采用上述优选的方案,光源组件提供光源,保证电容器图像采集的准确性。
作为优选的方案,传输装置上设有连接板,连接板与光源组件转动连接。
采用上述优选的方案,可以有效平稳的固定光源组件,同时光源组件的角度可以调节,为图像采集组件提供充足的照明,以便于准确采集图像。
作为优选的方案,上图像采集组件和下图像采集组件分别设置于调节组件上,调节组件对上图像采集组件和下图像采集组件的上下、左右位置进行调节。
采用上述优选的方案,可以有效调节上图像采集组件和下图像采集组件的下、左右位置,保证上图像采集组件和下图像采集组件可以准确采集图像。
电容器检测方法,利用电容器检测设备进行检测,具体包括以下步骤:
1)将对待检测电容器一一置于载具的卡孔上;
2)将载具放置于传输装置上;
3)传输装置将载具传输至检测工位;
4)升降组件带动性能检测电路板上升直至性能检测电路板上的检测触头与载具上的待检测电容器接触,性能检测电路板对电容器的电学性能进行检测;
5)电学性能检测完成后,升降组件带动性能检测电路板回到原 始位置;
6)上图像采集组件和下图像采集组件同时对待检测电容器的外表面进行缺陷检测;
7)缺陷检测完成后,传输装置将载具传输至后一工位。
本发明一种电容器检测方法,其操作步骤简单,检测精度高,检测速度快,适合对大数量的电容器进行检测,大大降低了人工劳动力。
作为优选的方案,上图像采集组件和下图像采集组件分别包括:多个设置于一排的图像采集器,且上图像采集组件和下图像采集组件包括的图像采集器的数量与载具上一排的卡孔数量相同,且每个图像采集器具有其唯一的代码;
步骤6)具体为:
6.1)上图像采集组件和下图像采集组件同时对待检测电容器的外表面进行图像采集;
6.2)每个图像采集器将其自身的代码与采集的原始图像进行绑定,绑定后发送给处理器;
6.3)处理器根据代码信息,对原始图像进行定位分割,提取出待检测电容器的局部图像;
6.4)处理器将待检测电容器的局部图像与无缺陷电容器图像库内的图像进行一一匹配;
若有一幅匹配成功,则该电容器无缺陷;
若均匹配不成功,则该电容器存在缺陷,且进入步骤6.5);
6.5)处理器将待检测电容器的局部图像与缺陷电容器图像库内的图像进行一一匹配,确定该局部图像与哪一幅或多幅无缺陷电容器图像库内图像的匹配度较高以及对应的图像匹配度;
6.6)处理器通过下式得出缺陷检测分数;
C=100-(a1*S1+...+ai*S1+...aj*S1)-...-(a1*Si+...+ai*Si+...aj*Si)-(a1*Sn+...+ai*Sn+...aj*Sn);
其中,ai(i=1,...,j)为局部图像与缺陷电容器图像库内的图像的一副匹配度较高图像的图像匹配度;
Si(i=1,...,n)为局部图像与缺陷电容器图像库内的图像中的一副匹配度较高图像的对应的分数;
C为缺陷检测分数。
采用上述优选的方案,可以快速有效的将有缺陷的电容器剔除出来,且剔除出的电容器具体是套管剖裂、起泡、划痕等什么问题均可以知道。
附图说明
图1为本发明实施例提供的电容器检测设备的结构示意图之一。
图2为本发明实施例提供的载具与性能检测电路板的剖视图之一。
图3为本发明实施例提供的上图像采集组件的结构示意图。
图4为本发明实施例提供的下图像采集组件和光源组件的结构示意图。
图5为本发明实施例提供的电容器检测设备的结构示意图之二。
图6为本发明实施例提供的载具与性能检测电路板的剖视图之二。
其中:1载具、11卡孔、12层弹性层、2电容器、3传输装置、31连接板、4上图像采集组件、5下图像采集组件、6性能检测电路板、7图像采集器、8剔除组件、9光源组件、10调节组件、101机壳、102报警装置、103显示器、104开关按钮、105键盘操作台、61测试吸附用板、62定位孔、63吸附端子。
具体实施方式
下面结合附图详细说明本发明的优选实施方式。
为了达到本发明的目的,电容器检测设备及其检测方法的其中一些实施例中,如图1、3-4所示,电容器检测设备包括:
载具1,在载具1上设有多个卡孔11,卡孔11用于对待检测电容器2进行承载;
传输装置3,传输装置3用于对载具1进行传输;
图像采集组件,包括设置于传输装置3上方的上图像采集组件4和设置于传输装置3下方的下图像采集组件5,上图像采集组件4和下图像采集组件5用于对待检测电容器2的外表面进行缺陷检测;
性能检测装置,包括:性能检测电路板6以及用于带动性能检测电路板6升降的升降组件(图中未示出),性能检测装置用于对待检测电容器2的电学性能进行检测。
本发明公开一种电容器检测设备,其结构简单,操作便捷,可以快速有效的对电容器的电学性能(如包括:是否漏电、是否短路、其具体的电容值)以及电容器的表面进行检测,且检测过程实现半自动化或自动化,降低人工干预,减少劳动力,提高检测精度和检测速度。
本发明还公开一种电容器检测方法,利用电容器检测设备进行检测,具体包括以下步骤:
1)将对待检测电容器2一一置于载具1的卡孔11上;
2)将载具1放置于传输装置3上;
3)传输装置3将载具1传输至检测工位;
4)升降组件带动性能检测电路板6上升直至性能检测电路板6上的检测触头与载具1上的待检测电容器2接触,性能检测电路板6对电容器2的电学性能进行检测,如图2所示;
5)电学性能检测完成后,升降组件带动性能检测电路板6回到原始位置;
6)上图像采集组件4和下图像采集组件5同时对待检测电容器2的外表面进行缺陷检测;
7)缺陷检测完成后,传输装置3将载具1传输至后一工位。
本发明一种电容器检测方法,其操作步骤简单,检测精度高,检测速度快,适合对大数量的电容器进行检测,大大降低了人工劳动力。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,十二个卡孔11在载具1上呈矩阵分布,分别为四排,每排3个卡孔11。
采用上述优选的方案,检测效果更佳。同时,在其他实施例中,可以在卡孔11的内壁附上一层弹性层12,以保护电容器的外表面。
进一步,在上一个实施例的基础上,上图像采集组件4和下图像采集组件5分别包括:三个设置于一排的图像采集器7,且上图像采集组件4和下图像采集组件5包括的图像采集器7的数量与载具1上一排的卡孔11数量相同,为3个。
采用上述优选的方案,可以同时对一排电容器的上、下均进行缺陷检测,检测精度高,速度快。
根据上述的技术内容,上图像采集组件4和下图像采集组件5分别包括:三个设置于一排的图像采集器7,且上图像采集组件4和下图像采集组件5包括的图像采集器7的数量与载具1上一排的卡孔11数量相同,且每个图像采集器7具有其唯一的代码;
电容器检测方法的步骤6)具体为:
6.1)上图像采集组件4和下图像采集组件5同时对一排3个待检测电容器2的外表面进行图像采集;
6.2)每个图像采集器7将其自身的代码与采集的原始图像进行绑定,绑定后发送给处理器;
6.3)处理器根据代码信息,对原始图像进行定位分割,提取出待检测电容器2的局部图像;
6.4)处理器将待检测电容器的局部图像与无缺陷电容器图像库内的图像进行一一匹配;
若有一幅匹配成功,则该电容器无缺陷;
若均匹配不成功,则该电容器存在缺陷,且进入步骤6.5);
6.5)处理器将待检测电容器的局部图像与缺陷电容器图像库内的图像进行一一匹配,确定该局部图像与哪一幅或多幅无缺陷电容器图像库内图像的匹配度较高以及对应的图像匹配度;
6.6)处理器通过下式得出缺陷检测分数;
C=100-(a1*S1+...+ai*S1+...aj*S1)-...-(a1*Si+...+ai*Si+...aj*Si)-(a1*Sn+...+ai*Sn+...aj*Sn);
其中,ai(i=1,...,j)为局部图像与缺陷电容器图像库内的图像的一副匹配度较高图像的图像匹配度;
Si(i=1,...,n)为局部图像与缺陷电容器图像库内的图像中的一副匹配度较高图像的对应的分数;
C为缺陷检测分数。
采用上述优选的方案,可以快速有效的将有缺陷的电容器剔除出来,且剔除出的电容器具体是套管剖裂、起泡、划痕等什么问题均可以知道,且可以有效得到该电容器的缺陷检测分数,给工作人员以参考,该电容器是否可以继续使用,还是直接报废。
当检测完一排3个电容器后,传输装置3带动载具1前进一步,对下一排3个电容器进行检测,直至将载具1上的电容器均检测结束。
为了对发明内容更清楚的了解,以下具体的实验为例,
假如:三个图像采集器7(编号分别为001、002、003)分别采集了三个电容器的图像,具体为:
电容器图1;
电容器图2;
电容器图3;
处理器根据代码信息,对原始图像进行定位分割,提取出待检测电容器2的局部图像,具体为:
局部电容器图1;
局部电容器图2;
局部电容器图3。
处理器将待检测电容器的局部图像与无缺陷电容器图像库内的图像进行一一匹配,无缺陷电容器图像库保存有3幅图像;
局部电容器图1匹配成功,则该电容器无缺陷;
局部电容器图2匹配均不成功,则该电容器有缺陷;
局部电容器图3匹配均不成功,则该电容器有缺陷。
处理器将待检测电容器的局部电容器图2和局部电容器图3与缺陷电容器图像库内的图像进行一一匹配,确定局部图像2和3与哪2幅无缺陷电容器图像库内图像的匹配度较高以及对应的图像匹配度;
缺陷电容器图像库中保存有4幅图像,分别为:起泡图像、划痕图像、剖裂图像、破损图像,同时对应分数为:
起泡图像,9分;
划痕图像,4分;
剖裂图像,7分;
破损图像,10分。
局部电容器图2与起泡图像和破损图像匹配度最高,分别为0.9和0.6。
局部电容器图3与剖裂图像和划痕图像匹配度最高,分别为0.7和0.7。
处理器通过下式得出缺陷检测分数;
C=100-(a1*S1+...+ai*S1+...aj*S1)-...-(a1*Si+...+ai*Si+...aj*Si)-(a1*Sn+...+ai*Sn+...aj*Sn);
具体为:
电容器2:C2=100-(0.9*9)-(0.6*10)=85.9;
电容器3:C3=100-(0.7*7)-(0.7*4)=92.3。
工作人员可以设置对应的阈值,如检测分数超过90对电容器进行保留,低于90则直接报废。得到该电容器的缺陷检测分数,给工作人员以参考,该电容器是否可以继续使用,还是直接报废。
进一步,在上一个实施例的基础上,电容器检测设备还包括:剔除组件8,剔除组件8用于将检测后有问题的电容器剔除出来;
剔除组件8包括:剔除机械臂、设置于剔除机械臂上的吸附板(图中未示出)以及设置于吸附板上的一个或多个吸附孔(图中未示出),吸附孔通过吸附板内的吸附通道与抽真空装置连接,剔除机械臂带动吸附板动作。
采用上述优选的方案,剔除机械臂带动吸附板动作,吸附孔将有问题的电容器进行吸附剔除。
进一步,在上一个实施例的基础上,当吸附板上设有多个吸附孔时,多个吸附孔设置于一排,且吸附孔的数量与载具1上一排的卡孔11数量相同,为3个。
采用上述优选的方案,吸附板内设有多个吸附通道,每个吸附通道上设有阀门,该阀门用于控制该吸附通道的开闭。每个吸附孔通过吸附板内与其相对应的吸附通道与抽真空装置连接。当需要对某一个电容器剔除时,对应的吸附通道的阀门开启,对应的吸附孔对该电容器吸附剔除。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,电容器检测设备还包括:光源组件9,光源组件9用于对待检测电容器进行照明;
光源组件9设置于上图像采集组件4和/或下图像采集组件5的两侧。
采用上述优选的方案,光源组件9提供光源,保证电容器图像采集的准确性。
进一步,在上一个实施例的基础上,传输装置3上设有连接板31, 连接板31与光源组件9转动连接。
采用上述优选的方案,可以有效平稳的固定光源组件9,同时光源组件9的角度可以调节,为图像采集组件提供充足的照明,以便于准确采集图像。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,上图像采集组件4和下图像采集组件5分别设置于调节组件10上,调节组件10对上图像采集组件4和下图像采集组件5的上下、左右位置进行调节。
采用上述优选的方案,可以有效调节上图像采集组件4和下图像采集组件5的下、左右位置,保证上图像采集组件4和下图像采集组件5可以准确采集图像。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,如图5所示,电容器检测设备还包括:机壳101,其上述的部件均设置在机壳101内部,防止外部的杂物、灰尘或水污染图像采集组件和光源组件,延长设备的整体使用寿命。在机壳外部还设有报警装置102、显示器103、开关按钮104和键盘操作台105,使得电容器检测设备更人性化。
为了进一步地优化本发明的实施效果,在另外一些实施方式中,其余特征技术相同,不同之处在于,如图6所示,电容器检测设备还包括:测试吸附用板61以及与测试吸附用板61传动连接的驱动组件(图中未示出),在测试吸附用板61上设有多个与卡孔11相匹配的定位孔62,且在测试吸附用板61上设有多个吸附端子63,吸附端子63与外界抽真空装置连接。
在性能检测装置动作前,驱动组件驱动测试吸附用板61靠近载具1,且定位孔62穿过相对应的待测试电容器2,吸附端子63为载具1提供一定吸附力。然后,升降组件带动性能检测电路板6上升直至性能检测电路板6上的检测触头与载具1上的待检测电容器2接触, 性能检测电路板6对电容器的电学性能进行检测;电学性能检测完成后,升降组件带动性能检测电路板6回到原始位置。检测更精准。
对于本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 电容器检测设备,其特征在于,包括:
    载具,在所述载具上设有多个卡孔,所述卡孔用于对待检测电容器进行承载;
    传输装置,所述传输装置用于对所述载具进行传输;
    图像采集组件,包括设置于所述传输装置上方的上图像采集组件和设置于所述传输装置下方的下图像采集组件,所述上图像采集组件和下图像采集组件用于对待检测电容器的外表面进行缺陷检测;
    性能检测装置,包括:性能检测电路板以及用于带动所述性能检测电路板升降的升降组件,所述性能检测装置用于对待检测电容器的电学性能进行检测。
  2. 根据权利要求1所述的电容器检测设备,其特征在于,多个所述卡孔在所述载具上呈矩阵分布。
  3. 根据权利要求2所述的电容器检测设备,其特征在于,所述上图像采集组件和下图像采集组件分别包括:多个设置于一排的图像采集器,且所述上图像采集组件和下图像采集组件包括的图像采集器的数量与所述载具上一排的卡孔数量相同。
  4. 根据权利要求3所述的电容器检测设备,其特征在于,所述电容器检测设备还包括:剔除组件,所述剔除组件用于将检测后有问题的电容器剔除出来;
    所述剔除组件包括:剔除机械臂、设置于所述剔除机械臂上的吸附板以及设置于所述吸附板上的一个或多个吸附孔,所述吸附孔通过吸附板内的吸附通道与抽真空装置连接,所述剔除机械臂带动所述吸附板动作。
  5. 根据权利要求4所述的电容器检测设备,其特征在于,当所述吸附板上设有多个吸附孔时,多个所述吸附孔设置于一排,且所述吸附孔的数量与所述载具上一排的卡孔数量相同。
  6. 根据权利要求1-5任一项所述的电容器检测设备,其特征在于,所述电容器检测设备还包括:光源组件,所述光源组件用于对待检测电容器进行照明;
    所述光源组件设置于所述上图像采集组件和/或下图像采集组件的两侧。
  7. 根据权利要求6所述的电容器检测设备,其特征在于,所述传输装置上设有连接板,所述连接板与所述光源组件转动连接。
  8. 根据权利要求1-5任一项所述的电容器检测设备,其特征在于,所述上图像采集组件和下图像采集组件分别设置于调节组件上,所述调节组件对所述上图像采集组件和下图像采集组件的上下、左右位置进行调节。
  9. 电容器检测方法,其特征在于,利用如权利要求1-8任一项所述的电容器检测设备进行检测,具体包括以下步骤:
    1)将对待检测电容器一一置于载具的卡孔上;
    2)将载具放置于传输装置上;
    3)传输装置将载具传输至检测工位;
    4)升降组件带动性能检测电路板上升直至性能检测电路板上的检测触头与载具上的待检测电容器接触,性能检测电路板对电容器的电学性能进行检测;
    5)电学性能检测完成后,升降组件带动性能检测电路板回到原始位置;
    6)上图像采集组件和下图像采集组件同时对待检测电容器的外表面进行缺陷检测;
    7)缺陷检测完成后,传输装置将载具传输至后一工位。
  10. 根据权利要求9所述的电容器检测方法,其特征在于,所述上图像采集组件和下图像采集组件分别包括:多个设置于一排的图像采集器,且所述上图像采集组件和下图像采集组件包括的图像采集器的数量与所 述载具上一排的卡孔数量相同,且每个所述图像采集器具有其唯一的代码;
    所述步骤6)具体为:
    6.1)上图像采集组件和下图像采集组件同时对待检测电容器的外表面进行图像采集;
    6.2)每个所述图像采集器将其自身的代码与采集的原始图像进行绑定,绑定后发送给处理器;
    6.3)处理器根据代码信息,对原始图像进行定位分割,提取出待检测电容器的局部图像;
    6.4)处理器将待检测电容器的局部图像与无缺陷电容器图像库内的图像进行一一匹配;
    若有一幅匹配成功,则该电容器无缺陷;
    若均匹配不成功,则该电容器存在缺陷,且进入步骤6.5);
    6.5)处理器将待检测电容器的局部图像与缺陷电容器图像库内的图像进行一一匹配,确定该局部图像与哪一幅或多幅无缺陷电容器图像库内图像的匹配度较高以及对应的图像匹配度;
    6.6)处理器通过下式得出缺陷检测分数;
    C=100-(a1*S1+...+ai*S1+...aj*S1)-...-(a1*Si+...+ai*Si+...aj*Si)-(a1*Sn+...+ai*Sn+...aj*Sn);
    其中,ai(i=1,...,j)为局部图像与缺陷电容器图像库内的图像的一副匹配度较高图像的图像匹配度;
    Si(i=1,...,n)为局部图像与缺陷电容器图像库内的图像中的一副匹配度较高图像的对应的分数;
    C为缺陷检测分数。
PCT/CN2018/114466 2018-11-06 2018-11-08 电容器检测设备及其检测方法 WO2020093293A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/291,147 US11402420B2 (en) 2018-11-06 2018-11-08 Capacitor testing device and testing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811315723.5A CN109188161B (zh) 2018-11-06 2018-11-06 电容器检测设备及其检测方法
CN201811315723.5 2018-11-06

Publications (1)

Publication Number Publication Date
WO2020093293A1 true WO2020093293A1 (zh) 2020-05-14

Family

ID=64941977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114466 WO2020093293A1 (zh) 2018-11-06 2018-11-08 电容器检测设备及其检测方法

Country Status (3)

Country Link
US (1) US11402420B2 (zh)
CN (1) CN109188161B (zh)
WO (1) WO2020093293A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068294B (zh) * 2019-04-15 2020-09-15 苏州电器科学研究院股份有限公司 绕线式无感电阻器检测装置及检测方法
CN110441612A (zh) * 2019-07-26 2019-11-12 深圳市峰泳科技有限公司 柔性薄膜电容容值测试系统及方法
CN110361056B (zh) * 2019-08-22 2021-09-14 中车青岛四方车辆研究所有限公司 超级电容综合参数检测系统
CN115302219B (zh) * 2022-08-29 2024-01-19 博众精工科技股份有限公司 自动组装设备
CN116047166B (zh) * 2023-01-28 2023-06-02 四川绵润科技有限公司 一种基于电容的绝缘性电阻测试工装
CN116679144B (zh) * 2023-06-06 2023-12-19 深圳市创容新能源有限公司 一种电容器测试设备及其测试方法
CN116593814B (zh) * 2023-06-19 2024-02-02 深圳市创容新能源有限公司 一种电容器自动检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197500A1 (en) * 2002-04-19 2003-10-23 Ceramic Component Technologies, Inc. Test plate for ceramic surface mount devices and other electronic components
CN201859191U (zh) * 2010-08-19 2011-06-08 世宏机械股份有限公司 电容器检查机
CN103477237A (zh) * 2011-03-21 2013-12-25 温莎大学 自动化测试和验证电子元件的装置
CN104849500A (zh) * 2015-03-24 2015-08-19 昆山德友机械设备有限公司 一种电子器件极性测试设备的输送定位系统
CN105044114A (zh) * 2015-04-27 2015-11-11 中国人民解放军理工大学 一种电解电容外观包装缺陷图像检测系统与方法
CN204789357U (zh) * 2015-04-27 2015-11-18 中国人民解放军理工大学 一种电解电容外观包装缺陷图像检测系统
CN206113866U (zh) * 2016-10-27 2017-04-19 赵本晶 电感六面自动化检测设备
CN107860777A (zh) * 2017-12-20 2018-03-30 桂林电子科技大学 一种电解电容器外观缺陷检测装置及检测方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0722091B1 (en) * 1995-01-11 2004-03-03 Agilent Technologies, Inc. (a Delaware corporation) Test for determining polarity of electrolytic capacitors within electronic assemblies
KR100307029B1 (ko) * 1998-12-31 2001-11-30 이명수 콘덴서의극성반전불량선별방법
US6493079B1 (en) * 2000-09-07 2002-12-10 National Instruments Corporation System and method for machine vision analysis of an object using a reduced number of cameras
US6959108B1 (en) * 2001-12-06 2005-10-25 Interactive Design, Inc. Image based defect detection system
TWI281542B (en) * 2006-04-27 2007-05-21 Kuan-Chieh Su Method for lessening scratch marks on SMD type passive components during testing
CN101943740A (zh) * 2009-07-03 2011-01-12 自然兴电通科技股份有限公司 电路基板的双路径检测方法
CN201828932U (zh) * 2010-10-18 2011-05-11 益阳市鹏程科技发展有限公司 电容器外观质量检测装置
CN203433065U (zh) * 2013-09-29 2014-02-12 杭州锐凯电子有限公司 多工位电性能检测机
CN104070023B (zh) * 2014-06-26 2016-03-02 上海仪器仪表研究所 用于电容器高压分选的灭弧装置
CN204926119U (zh) * 2015-10-15 2015-12-30 昆山恒准技术服务有限公司 一种电容器印刷字符检测系统
CN205263223U (zh) * 2015-12-05 2016-05-25 佛山市南海区欣源电子有限公司 一种全自动的电容器充放电性能实验数据收集仪
CN105466859A (zh) * 2016-01-22 2016-04-06 东莞市誉铭新精密技术股份有限公司 Ccd检测机检测方法
CN205898944U (zh) * 2016-08-03 2017-01-18 益阳市鹏程科技发展有限公司 电容器用的多工位漏电流测试治具
CN206618383U (zh) * 2017-03-02 2017-11-07 东莞市速美达自动化有限公司 一种视觉检测设备
CN106952257B (zh) * 2017-03-21 2019-12-03 南京大学 一种基于模板匹配与相似度计算的曲面标签破损缺陷检测方法
CN207779917U (zh) * 2017-12-20 2018-08-28 桂林电子科技大学 一种电解电容器外观缺陷检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030197500A1 (en) * 2002-04-19 2003-10-23 Ceramic Component Technologies, Inc. Test plate for ceramic surface mount devices and other electronic components
CN201859191U (zh) * 2010-08-19 2011-06-08 世宏机械股份有限公司 电容器检查机
CN103477237A (zh) * 2011-03-21 2013-12-25 温莎大学 自动化测试和验证电子元件的装置
CN104849500A (zh) * 2015-03-24 2015-08-19 昆山德友机械设备有限公司 一种电子器件极性测试设备的输送定位系统
CN105044114A (zh) * 2015-04-27 2015-11-11 中国人民解放军理工大学 一种电解电容外观包装缺陷图像检测系统与方法
CN204789357U (zh) * 2015-04-27 2015-11-18 中国人民解放军理工大学 一种电解电容外观包装缺陷图像检测系统
CN206113866U (zh) * 2016-10-27 2017-04-19 赵本晶 电感六面自动化检测设备
CN107860777A (zh) * 2017-12-20 2018-03-30 桂林电子科技大学 一种电解电容器外观缺陷检测装置及检测方法

Also Published As

Publication number Publication date
CN109188161A (zh) 2019-01-11
CN109188161B (zh) 2020-07-31
US20210373062A1 (en) 2021-12-02
US11402420B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020093293A1 (zh) 电容器检测设备及其检测方法
CN106680296B (zh) 一种多工位背光模组aoi测试装置及方法
US9823759B2 (en) Touch panel scribing detection device and touch panel scribing detection method
CN208946827U (zh) 自动化贴合设备
KR101777547B1 (ko) 반도체 pcb 검사장비 및 검사방법
CN214472864U (zh) 一种偏光片缺陷检测设备及系统
CN210376168U (zh) 一种转盘式自动光学检测装置
CN111289437A (zh) 一种护目镜片自动检测设备
CN101327483A (zh) 芯片分类装置与方法
TWI639841B (zh) 電子部件測試用分選機及其示教點調整方法
US20080224723A1 (en) Method for testing a semiconductor wafer and apparatus thereof
CN113751341B (zh) 一种线路板智能检测设备、检测方法、存储介质和终端
CN206990465U (zh) 液晶面板的缺陷检测装置
KR101814246B1 (ko) 인라인 핸들러 및 이를 이용한 검사방법
CN211877795U (zh) 一种产品外观检测设备
CN109696437B (zh) 一种半导体料片的整平装置及其方法
KR101215373B1 (ko) 엘시디 패널의 자동 비젼검사 장치
CN212550547U (zh) 指纹模组功能测试自动分选机
JP2003090802A (ja) 基板検査システム
KR101949597B1 (ko) 반도체 pcb 검사장비 및 검사방법
KR100503760B1 (ko) 카메라 모듈의 이미지센서 자동 검사 장비 및 이를 이용한자동검사방법
CN220650434U (zh) 一种pcb板验孔装置
CN218968185U (zh) 一种自动捡蛋智能装备
CN209023364U (zh) 一种用于基板玻璃测试样品的存储装置
CN220154290U (zh) 一种用于检测电路板的aoi检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939325

Country of ref document: EP

Kind code of ref document: A1