WO2020091334A1 - 유산균의 동결 보호를 위한 시스테인 또는 이의 염의 용도 - Google Patents

유산균의 동결 보호를 위한 시스테인 또는 이의 염의 용도 Download PDF

Info

Publication number
WO2020091334A1
WO2020091334A1 PCT/KR2019/014257 KR2019014257W WO2020091334A1 WO 2020091334 A1 WO2020091334 A1 WO 2020091334A1 KR 2019014257 W KR2019014257 W KR 2019014257W WO 2020091334 A1 WO2020091334 A1 WO 2020091334A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
acid bacteria
cysteine
salt
culture medium
Prior art date
Application number
PCT/KR2019/014257
Other languages
English (en)
French (fr)
Inventor
신동주
김여진
김형철
박홍욱
배수진
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190134072A external-priority patent/KR102447791B1/ko
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CA3118263A priority Critical patent/CA3118263A1/en
Priority to CN201980080487.XA priority patent/CN113166715A/zh
Priority to AU2019369917A priority patent/AU2019369917C1/en
Priority to JP2021548490A priority patent/JP2022509472A/ja
Priority to SG11202104478QA priority patent/SG11202104478QA/en
Priority to EP19880216.7A priority patent/EP3875577A4/en
Priority to US17/290,526 priority patent/US20210317401A1/en
Publication of WO2020091334A1 publication Critical patent/WO2020091334A1/ko
Priority to JP2023030196A priority patent/JP2023073258A/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound

Definitions

  • the present application relates to an active ingredient for freeze protection of lactic acid bacteria and utilization / application of the active ingredient.
  • Lactic acid bacteria is also called lactic acid bacteria or lactic acid bacteria, it is an important bacterium that is used as a dressing agent by preventing abnormal fermentation by various bacteria while inhabiting the intestines of mammals.
  • lactic acid bacteria in order to exert the effect of bacteria, it is necessary to consume much more lactic acid bacteria than the amount ingested with food such as yogurt. Therefore, it is popular to separate only lactic acid bacteria and eat them conveniently in powder or capsule form.
  • the lactic acid bacteria are made into powder or capsule, there are many lactic acid bacteria that die during the long-term distribution process, and thus there is a limitation that the physiologically active functions of the lactic acid bacteria cannot be exerted.
  • the present application protects lactic acid bacteria from freezing, while freeze-dried and powdered, a composition for lactic acid bacteria freeze protection or culture medium for lactic acid bacteria freeze protection, and preparation of lactic acid bacteria using the same, which can impart high stability to lactic acid bacteria, for example, thermal stability I want to provide a method.
  • the present application is to provide a method for promoting the growth of lactic acid bacteria that can promote the growth of lactic acid bacteria by promoting the growth of lactic acid bacteria, and a culture medium of lactic acid bacteria for excellent growth of lactic acid bacteria.
  • one aspect of the present application provides a composition for freeze protection of lactic acid bacteria, comprising cysteine or a salt thereof as an active ingredient.
  • another aspect of the present application provides a method for preparing a lactic acid bacteria agent comprising mixing the lactic acid bacteria with the composition for freeze protection of the lactic acid bacteria and pulverizing the mixture.
  • another aspect of the present application provides a culture medium for lactic acid bacteria freeze protection, comprising cysteine or a salt thereof as an active ingredient.
  • another aspect of the present application provides a method for producing a lactic acid bacteria agent comprising culturing lactic acid bacteria in the culture medium, recovering the cultured lactic acid bacteria, and pulverizing the recovered lactic acid bacteria.
  • Another aspect of the present application is lactic acid bacteria; And cysteine or a salt thereof.
  • the present application may provide a culture medium for promoting lactic acid bacteria growth, which includes cysteine or a salt thereof as an active ingredient.
  • the present application can provide a method for promoting the growth of lactic acid bacteria, comprising culturing lactic acid bacteria in a culture medium of the present application, for example, a culture medium for lactic acid bacteria freeze protection and / or a culture medium for promoting growth of lactic acid bacteria. All.
  • the present application may provide a method for regulating energy metabolism of lactic acid bacteria, comprising culturing lactic acid bacteria in a culture medium of the present application, for example, a culture medium for freeze protection of lactic acid bacteria and / or a culture medium for promoting growth of lactic acid bacteria. have.
  • the present application can provide a method of increasing the thermal stability of lactic acid bacteria, comprising culturing lactic acid bacteria in a culture medium of the present application, for example, a culture medium for lactic acid bacteria freeze protection and / or a culture medium for promoting growth of lactic acid bacteria. have.
  • the active ingredient of the present application not only protects the lactic acid bacteria from freezing, but also has an effect of improving stability so that the lactic acid bacteria can maintain activity to the maximum even after being lyophilized and powdered.
  • the cysteine or its hydrochloride has the effect of allowing the lactic acid bacteria, which are alive but stopped to proliferate, to exhibit excellent stability even in a high temperature physical environment due to powdering, thereby facilitating the distribution or storage / storage of the living lactic acid bacteria. There is this.
  • lactic acid bacteria are cultured in the culture medium of the present application, for example, a culture medium for freeze protection of lactic acid bacteria and / or a culture medium for promoting growth of lactic acid bacteria
  • the growth yield of lactic acid bacteria can be dramatically improved, and also the thermal stability of lactic acid bacteria is dramatically improved. Can be improved.
  • the term 'lactic acid bacteria' referred to in the present application is a generic term for bacteria that ferment sugars to obtain energy and produce large amounts of lactic acid.
  • the lactic acid bacteria include Lactobacillus sp. , Bifidobacterium sp. , Streptococcus sp. , Lactococcus sp. , Enterococcus sp. , Pediococcus sp. May be one or more selected from the group consisting of the genus Leuconostoc sp. And Weissella sp .
  • Lactobacillus plantarum Lactobacillus casei , Lactobacillus rhamnosus , Lactobacillus acidophilus , Lactobacillus acidophilus , Bifidobacterium b. bifidum ), Bifidobacterium longum , Bifidobacterium breve , Streptococcus faecalis , Lactococcus lactis subsp. lactis , and more Specifically, Lactobacillus plantarum CJLP243 ( Lactobacillus plantarum CJLP243 ) disclosed in Korean Patent Registration No.
  • Lactobacillus plantarum CJLP133 Lactobacillus plantarum CJLP133
  • Korean Patent Registration No. 1,486,999 Korean Registered Patent Publication No. Lactobacillus plantarum CJLP136 disclosed in 1,075,558 , Korea, etc.
  • Lock disclosed in Patent Application No. 1.25505 million No. Lactobacillus Planta room CJLP55 (Lactobacillus plantarum CJLP55), Korea register may be a such as Patent No. 1,075,557 Lactobacillus Planta room CJLP56 (Lactobacillus plantarum CJLP56) disclosed in, not particularly limited to, No.
  • 'freeze protection' means to protect lactic acid bacteria tissue from freezing when stored by freeze-drying in order to preserve the activity of lactic acid bacteria as they are.
  • freeze drying' freezes the material to be dried by rapidly lowering the temperature of the container, then sublimates the solidified solvent contained in the material into water vapor by vacuuming the pressure inside the container. It is a method of drying.
  • the freeze-drying is a method of minimizing damage to heat-sensitive materials and effectively preserving them for a long time, and is useful in terms of pollution prevention, storage, transportation, and economics.
  • the freezing temperature of freeze drying as described above may be a sub-zero temperature, for example, -40 ° C to -196 ° C (boiling point of liquid nitrogen), -50 ° C to -196 ° C, -70 ° C to -196 ° C,
  • a sub-zero temperature for example, -40 ° C to -196 ° C (boiling point of liquid nitrogen), -50 ° C to -196 ° C, -70 ° C to -196 ° C.
  • a substance or composition added together during freeze-drying so as to recover its function upon rehydration without damaging or killing lactic acid bacteria is referred to as a 'freeze protection agent' or a 'freeze protection composition' It refers to, and it serves to increase the survival rate by imparting physicochemical stability to lactic acid bacteria.
  • the present application provides a composition for lactic acid bacteria freeze protection.
  • composition for freeze protection of lactic acid bacteria of the present application contains cysteine or a salt thereof as an active ingredient.
  • the cysteine is a kind of sulfur-containing ⁇ -amino acid having a structure of HS-CH 2 CH (NH 2 ) -COOH, and has a sulfhydryl group, thereby forming disulfide bonds with other cysteines.
  • the cysteine may be L-cysteine, D-cysteine or L, D-cysteine, and specifically L-cysteine.
  • the salt of the cysteine may be any salt of the cysteine, for example, hydrochloride, sulfate, and the like.
  • the cysteine or a salt thereof protects the lactic acid bacteria from freezing, thereby minimizing damage or death of the lactic acid bacteria by freezing, and further improving the stability of the lactic acid bacteria so that the lactic acid bacteria can maintain their own activity even after freeze-drying. do. Therefore, the cysteine or a salt thereof may be used not only as an active ingredient of the composition for freeze-protecting lactic acid bacteria, but also as an active ingredient of a composition for improving stability of dried, particularly freeze-dried lactic acid bacteria.
  • the cysteine or a salt thereof out of 100% by weight of the total composition, 0.01% by weight or more, for example, one lower limit and / or 10% by weight or less selected from the group consisting of 0.01% by weight, 0.05% by weight and 0.1% by weight, For example, it may be included in a content range consisting of a combination of one upper limit selected from the group consisting of 10% by weight, 7% by weight, 5% by weight, and 3% by weight.
  • the cysteine or a salt thereof is contained in an amount of 0.05% to 10% by weight, specifically 0.05% to 7%, 0.05% to 5%, 0.05% to 100% by weight of the total 100% by weight of the composition 3 wt%, or specifically 0.1 wt% to 10 wt%, 0.1 wt% to 7 wt%, 0.1 wt% to 5 wt%, 0.1 wt% to 3 wt% may be included in the content, cysteine as described above, or The content of the salt thereof can be appropriately adjusted by a person skilled in the art according to the type, size, amount of lactic acid bacteria, freeze drying conditions, and the type or content of other components included in the composition.
  • composition for freeze protection of lactic acid bacteria of the present application may further include a freeze protection agent, a porous support, or a nitrogen source.
  • the cryoprotectant refers to a material having a cryoprotective effect commonly used in the technical field to which this application belongs, except for the cysteine or a salt thereof, and commercially available ones may be purchased and used, and the type is not particularly limited. .
  • sugars, amino acids, peptides, gelatin, glycerol, sugar alcohols, whey, alginic acid, ascorbic acid, yeast extract, skim milk, and the like may be used.
  • trehalose a type of saccharide, may be used as the cryoprotectant.
  • the trehalose is a sugar that is widely present in nature such as plants and microorganisms, and prevents lactic acid bacteria from being damaged or killed by freeze-drying, and serves as a cryoprotectant that helps restore its function when rehydrated. It is known substance.
  • the trehalose is 10% by weight to 40% by weight, for example, 10% by weight to 30% by weight, specifically 15% by weight to 25% by weight, and more specifically 17.5% by weight, in 100% by weight of the total composition for lactic acid bacteria freeze protection It may be included in an amount of 22.5% by weight, but the content of the active ingredient contained in the composition for lactic acid bacteria freeze protection, the type, size, amount of lactic acid bacteria, freeze drying conditions, the type or content of other components included in the composition, etc. The technician can adjust accordingly.
  • the porous support blocks the inflow of external moisture and air, and imparts porosity to the lyophilized lactic acid bacteria to facilitate rehydration.
  • the porous support is a porous support commonly used in freeze-drying in the technical field to which the present application pertains, and commercially available ones can be purchased and used, and the type is not particularly limited.
  • the porous support may be maltodextrin, alginate, chitosan, starch, polyethylene glycol, propylene glycol, triacetin, acetyltriethyl citrate, triethyl citrate, glycerin, or a combination thereof, more specifically It may be maltodextrin.
  • the maltodextrin is a white powder based on a porous particle, and is a food additive often used in general foods such as yogurt, sauce, and salad dressing, and can also be used as a porous support during freeze drying of lactic acid bacteria.
  • the maltodextrin may be 0.1 wt% to 20 wt% of 100 wt% of the composition for lactic acid bacteria freeze protection, for example, 0.5 wt% to 15 wt%, specifically 1 wt% to 10 wt%, more specifically 2.5 wt% To 7.5% by weight.
  • the nitrogen source means a material used as a nitrogen energy source of lactic acid bacteria, which serves to prevent damage to the cells by post-fermentation.
  • lactic acid bacteria When lactic acid bacteria are mixed with the composition for freeze protection, lactic acid bacteria living under conditions without an energy source generate organic acids, which cause a decrease in pH, leading to the death of lactic acid bacteria. Therefore, the nitrogen energy source prevents the production of organic acids and the resulting decrease in pH, thereby preventing the death of lactic acid bacteria.
  • the nitrogen source is a nitrogen source commonly used in freeze-drying in the technical field to which the present application pertains, and commercially available ones may be purchased and used, and the type is not particularly limited.
  • the nitrogen source may be skim milk powder, whey protein, yeast extract, malt extract, beef extract, casein hydrolyzate, malt extract, tryptone, cysteine, peptone, etc.
  • the peptone is soypeptone, fish peptone, Proteose peptone, casein peptone, peptone No.3, and the like, and may be representatively soypeptone.
  • the soy-peptone may be 0.1% to 20% by weight of 100% by weight of the composition for lactic acid bacteria freeze protection, for example, 0.5% to 15% by weight, specifically 1% to 10% by weight, and more specifically 2.5% by weight To 7.5% by weight.
  • the composition for freeze protection of lactic acid bacteria may be applied in the form of a coating agent. That is, the composition for freeze protection of lactic acid bacteria may be mixed with lactic acid bacteria to coat the surface of lactic acid bacteria, thereby protecting lactic acid bacteria from the external environment and increasing storage stability, but is not particularly limited thereto.
  • the lactic acid bacteria prepared from the lactic acid bacteria freeze protection composition are as described below.
  • This application provides a culture medium for lactic acid bacteria freeze protection.
  • the culture medium of the present application may be a culture medium for promoting the growth of lactic acid bacteria.
  • the culture medium of the present application may be a culture medium for increasing the thermal stability of lactic acid bacteria.
  • the culture medium for lactic acid bacteria freeze protection may be a culture medium for promoting growth of lactic acid bacteria and increasing heat stability.
  • the culture medium means a mixture of nutrients required for culturing lactic acid bacteria, and supplies nutrients and growth factors, including water, which is indispensable for the survival and development of lactic acid bacteria.
  • the culture medium of the present application contains cysteine or a salt thereof as an active ingredient.
  • the cysteine is a kind of sulfur-containing ⁇ -amino acid having a structure of HS-CH 2 CH (NH 2 ) -COOH, and has a sulfhydryl group, thereby forming disulfide bonds with other cysteines.
  • the cysteine may be L-cysteine, D-cysteine or L, D-cysteine, and specifically L-cysteine.
  • the salt of the cysteine may be any salt of the cysteine, for example, hydrochloride, sulfate, and the like.
  • the cysteine or a salt thereof protects the lactic acid bacteria from freezing, thereby minimizing damage or death of the lactic acid bacteria by freezing, and further improving the stability of the lactic acid bacteria so that the lactic acid bacteria can maintain their own activity even after freeze-drying. do.
  • the cysteine or a salt thereof not only can significantly increase the production of lactic acid bacteria when lactic acid bacteria are cultured, but also serves to improve the stability of lactic acid bacteria so that the cultured lactic acid bacteria can maintain their own activity.
  • the cysteine or a salt thereof is not only as an active ingredient of the culture medium for lactic acid bacteria freeze protection, but also on the other hand, in a culture medium for improving stability of dried, particularly freeze-dried lactic acid bacteria, a culture medium for promoting the growth of lactic acid bacteria, and in such a culture medium. It can be used as a composition for improving the stability of cultured lactic acid bacteria, as well as an active ingredient of a culture medium for increasing the thermal stability of lactic acid bacteria.
  • the cysteine or a salt thereof is a content of 0.05% to 10% by weight, specifically 0.05% to 7%, 0.05% to 5%, 0.05% to 3% of 100% by weight of the whole culture medium , Or specifically 0.1% to 10% by weight, 0.1% to 7% by weight, 0.1% to 5% by weight, 0.1% to 3% by weight may be included, and the content of cysteine or a salt thereof Silver lactic acid bacteria can be appropriately adjusted by a person skilled in the art according to the type, size, amount, freeze-drying conditions, and the type or content of other components included in the culture medium.
  • the culture medium of the present application in addition to the above-described active ingredients, may further include nutrient components, such as carbon sources, nitrogen sources, personnel, inorganic compounds, amino acids and / or vitamins, which are usually included in the culture medium.
  • nutrient components such as carbon sources, nitrogen sources, personnel, inorganic compounds, amino acids and / or vitamins, which are usually included in the culture medium.
  • Examples of the carbon source include carbohydrates such as glucose, fructose, sucrose, maltose, mannitol, and sorbitol; Organic acids such as pyruvic acid, lactic acid, and citric acid; amino acids such as glutamic acid, methionine, lysine, and the like.
  • natural organic nutrients such as starch hydrolyzate, molasses, blackstrap molasses, rice winter, cassava, sugar cane residue, and corn steep liquor can be used, specifically glucose and sterilized pretreated molasses (i.e. converted to reduced sugars)
  • Carbohydrates such as molasses
  • Other suitable carbon sources can be used in various ways without limitation. These carbon sources may be used alone or in combination of two or more, but are not limited thereto.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Organic nitrogen sources such as amino acids such as glutamic acid, methionine, glutamine, peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation products, skim soy cake or its degradation products, etc. Can be used. These nitrogen sources may be used alone or in combination of two or more, but are not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
  • Organic nitrogen sources such as amino acids such as glutamic acid, methionine, glutamine, peptone, NZ-amine, meat extract, yeast extract, malt extract,
  • the personnel may include first potassium phosphate, second potassium phosphate, or a corresponding sodium-containing salt.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, etc. may be used, and other amino acids, vitamins, and / or suitable precursors may be included. These components or precursors may be added batchwise or continuously to the medium, but are not limited thereto.
  • a compound such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. can be added to the culture medium to adjust the pH of the culture medium, and an antifoaming agent such as a fatty acid polyglycol ester can be used to suppress the formation of bubbles during culture.
  • an antifoaming agent such as a fatty acid polyglycol ester can be used to suppress the formation of bubbles during culture.
  • oxygen or oxygen-containing gas may be injected into the culture medium, or nitrogen, hydrogen, or carbon dioxide gas may be injected without gas injection or to maintain the anaerobic and aerobic state. Does not work.
  • the culture medium may be solid or liquid.
  • Lactic acid bacteria prepared from the culture medium is as described below.
  • This application provides a method for producing a lactic acid bacteria agent, specifically a lactic acid bacteria agent having thermal stability.
  • the production method of the lactic acid bacteria of the present application includes mixing the lactic acid bacteria with a composition containing cysteine or a salt thereof to prepare a mixture, and freeze-drying the mixture to form a powder.
  • the composition containing the cysteine or a salt thereof may use a composition for lyophilizing lactic acid bacteria according to the present application.
  • composition comprising the cysteine or a salt thereof may use a culture medium according to the present application, such as a culture medium for lyophilization of lactic acid bacteria.
  • the lactic acid bacteria are mixed with a composition containing cysteine or a salt thereof, such as the composition for freeze protection of the lactic acid bacteria.
  • the lactic acid bacteria and the composition for freeze protection of lactic acid bacteria may be mixed in a ratio of 1: 0.1 to 1: 5, specifically 1: 0.5 to 1: 4, and more specifically 1: 1 to 1: 3 by weight. At the mixing ratio, lactic acid bacteria can be effectively protected from freezing, and powdering can be efficiently performed.
  • the mixing time of the lactic acid bacteria and the lactic acid bacteria freeze protection composition specifically, when the cysteine or a salt thereof is administered in the culture step of the lactic acid bacteria, the culture step of the lactic acid bacteria during the entire process of the manufacturing method of the lactic acid bacteria can be administered anywhere without limitation. And, for example, before culturing the lactic acid bacteria, it may be administered to at least one of the lag phase, exponential phase (exponential phase), and stationary phase (stationary phase) of the lactic acid bacteria.
  • the lactic acid bacteria may be sufficiently cultured by conventional means and methods, and recovered by a conventional method.
  • the culture means growing the lactic acid bacteria under appropriately controlled environmental conditions.
  • the culturing process may be performed according to a suitable medium and culture conditions known in the art to which this application belongs. This culture process can be appropriately adjusted by a person skilled in the art according to the selected strain.
  • the lactic acid bacteria may be cultured in the form of batch, continuous, fed-batch, and the like.
  • the culture temperature of the lactic acid bacteria may be a temperature of 20 °C to 50 °C, specifically 30 °C to 40 °C.
  • the culture time of the lactic acid bacteria can be cultured for 1 hour to 100 hours, specifically 5 hours to 50 hours.
  • the step of recovering the cells of the lactic acid bacteria may be used to recover the desired cells from the medium using an appropriate method known in the art to which the present application belongs, depending on the culture type of the lactic acid bacteria as described above. For example, centrifugation, filtration, treatment with a crystallization protein precipitator (salt-out method), extraction, ultrasonic crushing, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography It can be used in combination of various chromatography, HPLC and methods.
  • the recovery step may include an additional purification process, and using the appropriate method known in the art to which the present application pertains, the recovered lactic acid bacteria may be further purified.
  • the mixture of the lactic acid bacteria and the lactic acid bacteria freeze protection composition is lyophilized to powder.
  • the process of pulverizing the mixture of the lactic acid bacteria and the lactic acid bacteria freeze protection composition may be performed through freeze drying, which is generally used in the conventional food field.
  • the freeze drying may be performed at a temperature of -70 ° C to 30 ° C, specifically -70 ° C to -40 ° C.
  • the freeze-drying may be performed as a process of removing water by thawing in a freeze dryer after freezing under conditions of cooling for 3 hours to 48 hours, specifically 6 hours to 36 hours, and more specifically 12 hours to 24 hours. .
  • lactic acid bacteria By mixing the lactic acid bacteria with the composition for freeze protection of lactic acid bacteria of the present application and freeze-drying as described above, stability can be improved to produce a lactic acid bacteria agent that maintains the activity of lactic acid bacteria as much as possible.
  • the method for preparing the lactic acid bacteria may further include mixing the lactic acid bacteria with the composition for freeze protection of the lactic acid bacteria, and culturing the lactic acid bacteria cells using the mixture before freeze-drying the mixture. .
  • the lactic acid bacteria are mixed with the composition for freeze protection of the lactic acid bacteria, the mixture is used to cultivate the cells of the lactic acid bacteria, recover the cells of the cultured lactic acid bacteria, and recover the lactic acid bacteria cells Powdering.
  • the culture means growing the lactic acid bacteria under appropriately controlled environmental conditions.
  • the culturing process may be performed under suitable culturing conditions known in the art.
  • This culture process can be appropriately adjusted by a person skilled in the art according to the selected strain.
  • the lactic acid bacteria in the form of batch, continuous, fed-batch, etc., may be carried out at a temperature of 20 °C to 50 °C, specifically 30 °C to 40 °C.
  • the culture may be incubated for 1 hour to 100 hours, specifically 5 hours to 50 hours.
  • the step of recovering the cells of the lactic acid bacteria may be used to recover the desired cells from the medium using an appropriate method known in the art to which the present application belongs, depending on the culture type of the lactic acid bacteria as described above. For example, centrifugation, filtration, treatment with a crystallization protein precipitator (salt-out method), extraction, ultrasonic crushing, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography It can be used in combination of various chromatography, HPLC and methods.
  • the recovery step may include an additional purification process, and using the appropriate method known in the art to which the present application pertains, the recovered lactic acid bacteria may be further purified.
  • the lactic acid bacteria cells recovered as described above may be mixed with a composition containing a cryoprotectant, a porous support or a nitrogen source, without cysteine or a salt thereof.
  • a composition containing a cryoprotectant, a porous support or a nitrogen source without cysteine or a salt thereof.
  • the description of the cryoprotectant, the porous support and the nitrogen source is the same as described for the composition for lyophilizing the lactic acid bacteria.
  • the process of pulverizing the recovered lactic acid bacteria cells may be performed through a powdering method generally used in the conventional food field, for example, it may be performed by freeze-drying the recovered lactic acid bacteria cells.
  • the freeze drying is performed at a temperature of -70 ° C to 30 ° C, specifically -70 ° C to -40 ° C for 3 hours to 48 hours, specifically 6 hours to 36 hours, and more specifically 12 hours to 24 hours. After freezing, it can be performed by thawing in a freeze dryer to remove moisture.
  • lactic acid bacteria By culturing the lactic acid bacteria in a mixture with the composition for lactic acid bacteria freeze protection as described above and pulverizing the lactic acid bacteria cells recovered therefrom, stability can be improved to produce a lactic acid bacteria agent that maintains the activity of the lactic acid bacteria as much as possible.
  • the composition for lactic acid bacteria freeze protection in the above-described manufacturing method It is as described above as a manufacturing method using.
  • the stability of the lactic acid bacteria prepared according to the production method of the lactic acid bacteria of the present application will be described later.
  • Another aspect of the present application provides a method of promoting the growth of lactic acid bacteria, a method of regulating energy metabolism of lactic acid bacteria, and a method of increasing the thermal stability of lactic acid bacteria.
  • the method for promoting the growth of lactic acid bacteria of the present application, the method for regulating the energy metabolism of lactic acid bacteria, and the method for increasing the thermal stability of lactic acid bacteria include lactic acid bacteria, the above-described culture medium, for example, culture for promoting growth of lactic acid bacteria of the present application It may include culturing in a medium and / or mixing with the composition for lyophilizing the lactic acid bacteria described above and culturing in the mixture.
  • the specific method can be carried out in the same manner as the method for producing the lactic acid bacteria described above.
  • the energy production mechanism is not limited thereto, Energy can be produced by 'breathing'.
  • the conditions for minimizing oxygen exposure are changed to culture conditions, for example, oxygen / nitrogen substitution of a fermenter is performed, but cysteine or a salt thereof in the present application
  • culture conditions for example, oxygen / nitrogen substitution of a fermenter is performed, but cysteine or a salt thereof in the present application
  • Lactic acid bacteria promoted growth according to the present application has the effect of improving stability and maintaining a high level of lactic acid bacteria for a long period of time.
  • the stability of the lactic acid bacteria prepared according to the production method of the lactic acid bacteria of the present application will be described later.
  • This application provides a lactic acid bacteria agent, specifically a lactic acid bacteria agent having thermal stability.
  • the lactic acid bacteria of the present application is lactic acid bacteria; And cysteine or salts thereof.
  • the cysteine is a kind of sulfur-containing ⁇ -amino acid having a structure of HS-CH 2 CH (NH 2 ) -COOH, and has a sulfhydryl group, thereby forming disulfide bonds with other cysteines.
  • the cysteine may be L-cysteine, D-cysteine or L, D-cysteine, and specifically L-cysteine.
  • the salt of the cysteine may be any salt of the cysteine, specifically, a hydrochloride, sulfate, or the like.
  • the lactic acid bacteria are granules, powders, powders, granules, needles, emulsions, fluids, tablets, pills, capsules, granules, ointments, suppositories, injection solutions, inhalants, aerosols, suspensions, syrups, emulsions, soft capsules, hard capsules, It may be in the form of elixirs, troches, lozenge, etc., and may be specifically in the form of freeze-dried powder.
  • cysteine or a salt thereof lactic acid bacteria are protected from freezing to minimize damage or death of lactic acid bacteria, and further, even after being prepared in powder form, lactic acid bacteria can maintain their intrinsic activity.
  • the lactobacillus of the present application is stored at 40 ° C for 4 weeks, 45% or more compared to the initial storage, specifically 50% or more, 50.5% or more, 51% or more, 55% or more, 60% or more, 65% or more , 70% or more, 75% or more, or 77% or more.
  • 45% or more of the initial storage specifically 50% or more, 51% or more, 52% or more, 55% or more, 60% or more, 65% or more, 70% or more , 75% or more, 80% or more, or 81% or more.
  • the initial storage may be on day 0 or immediately before storage.
  • the growth of lactic acid bacteria can be promoted when the lactic acid bacteria are cultured by the cysteine or a salt thereof.
  • the OD (Optical Density) value measured using a spectrophotometer when the lactic acid bacteria were cultured at 37 ° C in the presence of cysteine or a salt thereof and diluted 20 times is 0.5 or more after 7 hours, specifically 0.7 or more, 0.9 Or more, 1.0 or more, or 1.2 or more.
  • after 8 hours it may represent 0.6 or more, 0.8 or more, 1.0 or more, 1.2 or more, or 1.3 or more.
  • after 9 hours 0.7 or more, 0.8 or more, 0.9 or more, 1.0 or more, 1.2 or more, 1.3 or more, or 1.4 or more.
  • after 10 hours it may represent 0.8 or more, 1.0 or more, 1.2 or more, 1.4 or more, or 1.5 or more. In one aspect, after 11 hours, it may represent 1.0 or more, 1.1 or more, 1.2 or more, 1.3 or more, 1.4 or more, or 1.5 or more.
  • the viable cell count is not limited thereto, but after 7 hours, 1.5x10 ⁇ 9 or more, 2.0x10 ⁇ 9 or more, 2.5x10 ⁇ 9 Or more, 3.0x10 ⁇ 9 or more, 3.5x10 ⁇ 9 or more, 4.0x10 ⁇ 9 or more, 5.0x10 ⁇ 9 or more, or 5.5x10 ⁇ 9 or more.
  • after 9 hours it may be 3.0x10 ⁇ 9 or more, 5.0x10 ⁇ 9 or more, 7.0x10 ⁇ 9 or more, 9.0x10 ⁇ 9 or more, or 9.5x10 ⁇ 9 or more.
  • after 10 hours 4.0x10 ⁇ 9 or more, 5.0x10 ⁇ 9 or more, 7.0x10 ⁇ 9 or more, 9.0x10 ⁇ 9 or more, 9.5x10 ⁇ 9 or more, 1.0x10 ⁇ 10 or more, or 1.2x10 ⁇ 10 or more .
  • Lactobacillus plantarum CJLP133 strain was cultured at 37 ° C. for 18 to 24 hours using MRS liquid medium (Difco, USA), and then the supernatant was discarded using a centrifuge to recover only lactic acid bacteria.
  • Example 1-1 Example 1-2
  • Example 1-3 Example 1-4 Cysteine hydrochloride 0.1 0.5 One 5 Trehalose 20 20 20 20 20 Maltodextrin 5 5 5 5 Soy Peptone 5 5 5 5 5 water Balance Balance Balance Balance total 100 100 100 100 100 100 100
  • the Lactobacillus plantarum CJLP133 strain disclosed in Korean Patent Publication No. 1,486,999 was cultured at 37 ° C. for 18 to 24 hours using MRS liquid medium (Difco, USA) containing 0.1% by weight of cysteine hydrochloride. , The supernatant was discarded using a centrifuge and only lactic acid bacteria were recovered.
  • the lactic acid bacteria cells recovered as described above were mixed in a weight ratio of 1: 2 with the composition for freeze protection of lactic acid bacteria prepared by mixing and sterilizing trehalose, maltodextrin, soypeptone, and water in the contents shown in Table 2 below.
  • Lactobacillus plantarum CJLP133 strain was cultured in MRS liquid medium (Difco, USA) containing 0.1% cysteine hydrochloride for 11 hours at 37 ° C.
  • the components of the MRS medium containing cysteine hydrochloride are shown in Table 3, and the pH lowered during the culture was set to neutralize to pH 5.95 through an automatic ammonia water feeding system.
  • L-Cysteine Monohydrochloride 1 g Proteose Peptone 10 g Beef Extract 10 g Yeast Extract 5 g Dextrose 20 g Polysorbate80 1 g Ammonium Citrate 2 g Sodium Acetate 5 g Magnesium Sulfate 0.1 g Manganese Sulfate 0.05 g Dipotassium Phosphate 2 g water 1,000 mL
  • Lactobacillus plantarum CJLP133 strain was cultured at 37 ° C. for 18 to 24 hours using MRS liquid medium (Difco, USA), and then the supernatant was discarded using a centrifuge to recover only lactic acid bacteria.
  • the lactic acid bacteria cells recovered as described above were mixed in a weight ratio of 1: 2 with the composition for lactic acid bacteria freeze protection prepared by mixing and sterilizing trehalose, maltodextrin, soypeptone, and water in the amounts shown in Table 2.
  • Lactobacillus plantarum CJLP133 strain was cultured in MRS liquid medium (Difco, USA) without 0.1% cysteine hydrochloride for 11 hours at 37 ° C.
  • the MRS medium components are shown in Table 4, and the pH lowered during the culture was set to neutralize to pH 5.95 through an automatic ammonia water feeding system.
  • the survival rate under the harsh conditions of Examples 1-1, 2, and 1 was analyzed.
  • the freeze-dried lactic acid bacteria powder gradually decreases in activity with storage temperature and storage period. In general, temperature, oxygen, moisture, etc. are factors influencing activity.
  • the freeze-dried lactic acid bacteria powder is very hygroscopic, and a lot of content decreases at the initial stage of storage.
  • there are various methods for deoxidizing or applying a deoxidizer to packaging materials but ultimately, a lot of difference is seen in the storage period depending on the degree of stability of the lactic acid bacteria powder itself. Therefore, in order to alleviate the hygroscopicity due to the characteristics of the raw materials, each sample was individually packaged and stored in an aluminum pouch, and stored at 40 ° C for 4 weeks to analyze the survival rate under harsh conditions.
  • the samples of the lactic acid bacteria powders prepared in Examples 1-1, 2, and 1 were sealed in an aluminum pouch packaging and individually packaged, and each sample was sealed in an incubator at 40 ° C. for 4 weeks. Kept. After a predetermined time, the experimental group samples were diluted in a saline buffer at a magnification of 1: 100, placed in a sterile bag, and then homogenized. Samples subjected to continuous dilution with a saline buffer solution were plated on MRS agar plates. Plates were collected and counted after standing culture for 24 hours under aerobic conditions at 37 ° C, and the results are shown in Table 5 below. The numbers listed in Table 5 below indicate the survival rate (%) compared to the initial lactic acid bacteria.
  • Example 1-1 As a result of measuring the activity of lactic acid bacteria over time by applying harsh conditions, in the case of Example 1-1 using a cryoprotective composition containing cysteine hydrochloride or Example 2 using a culture medium containing cysteine hydrochloride, Compared to Comparative Example 1, which did not contain cysteine hydrochloride, it was confirmed to exhibit a much higher survival rate of lactic acid bacteria.
  • Example 1-1 Example 1-2
  • Example 1-3 Example 1-4
  • Lactic acid bacteria culture evaluation was conducted by O.D. According to the value (Optical density) measurement method, the lactic acid bacteria culture solution was diluted 20-fold at 600 nm using a spectrophotometer (Spectrophotometer, NanoPhotometer, IMPLEN).
  • Example 3 cultured in a culture medium containing cysteine hydrochloride compared to Comparative Example 2 cultured in a culture medium containing no cysteine hydrochloride, the culture speed of lactic acid bacteria was significantly higher. Confirmed. From these results, it was confirmed that the ability to promote the growth of lactic acid bacteria by cysteine hydrochloride is excellent.
  • the lactic acid bacteria culture solution was diluted with sterile menstrual water to form 30 to 300 colonies on the MRS agar plate medium, and then incubated at 37 ° C for 24 hours. The number of colonies displayed after incubation was counted and calculated as the number of live bacteria per mL.
  • Example 1 which was cultured in a culture medium containing cysteine hydrochloride, compared with Comparative Example 1, which was cultured in a culture medium not containing cysteine hydrochloride, it was confirmed that the number of lactic acid bacteria was significantly higher. From these results, it was confirmed that the ability to promote lactic acid bacteria growth by cysteine hydrochloride is excellent.
  • a preferred embodiment of the present application has been exemplarily described, but the scope of the present application is not limited to the specific embodiment as described above. Those skilled in the art will be able to appropriately change within the scope described in the claims of the present application.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 출원은 시스테인 또는 이의 염의 유산균 보호, 유산균의 생육 촉진 및/또는 안정성 향상에 대한 용도에 관한 것이다.

Description

유산균의 동결 보호를 위한 시스테인 또는 이의 염의 용도
본 출원은 유산균을 동결 보호시키기 위한 유효 성분 및 상기 유효 성분의 활용/적용에 관한 것이다.
유산균(lactic acid bacteria)은 락트산균 또는 젖산균이라고도 하며, 포유류의 장내에 서식하면서 잡균에 의한 이상 발효를 방지하여 정장제로도 이용되는 중요한 세균이다. 그러나 세균의 효과를 발휘하기 위해서는, 기존에 요거트 등 식품으로 섭취하는 양보다 훨씬 더 많은 양의 유산균을 섭취해야 한다. 따라서 유산균만을 분리하여 분말이나 캡슐 형태로 간편하게 먹는 방법이 대중화되어 있다. 그러나 유산균을 분말이나 캡슐형으로 만들게 되면, 장기적인 유통 과정 중에 사멸하는 유산균이 많아 유산균 본래의 생리 활성 기능을 발휘하지 못하게 되는 한계점이 있다.
상기 생리 활성 유지를 위해 젤라틴 코팅 등의 방법 (Champagne et al., Food Research International, 29, 555-562 (1996))이 수행된 바 있으나 유산균의 생존률 및 보관 안정성을 더욱 높일 수 있는 방법의 개발이 요구되는 실정이다.
본 출원은 유산균을 동결로부터 보호하는 한편, 동결 건조되어 분말화된 이후에도 유산균에 높은 안정성, 일 예로 열안정성을 부여할 수 있는 유산균 동결 보호용 조성물 또는 유산균 동결 보호용 배양 배지, 및 이를 이용한 유산균제의 제조 방법을 제공하고자 한다.
또한, 본 출원은 유산균의 생육을 촉진하여 유산균 생산성을 우수하게 나타낼 수 있는 유산균의 생육을 촉진하는 방법, 및 유산균의 생육을 우수하게 촉진하기 위한 유산균의 배양 배지를 제공하고자 한다.
이를 위하여, 본 출원의 일 측면은 시스테인 또는 이의 염을 유효성분으로 포함하는, 유산균 동결 보호용 조성물을 제공한다.
또한, 본 출원의 다른 측면은 유산균을 상기 유산균 동결 보호용 조성물과 혼합하고, 상기 혼합물을 분말화하는 것을 포함하는 유산균제의 제조방법을 제공한다.
또한, 본 출원의 다른 측면은 시스테인 또는 이의 염을 유효성분으로 포함하는, 유산균 동결 보호용 배양 배지를 제공한다.
또한, 본 출원의 다른 측면은 유산균을 상기 배양 배지에서 배양하고, 상기 배양된 유산균의 균체를 회수하고, 상기 회수된 유산균 균체를 분말화하는 것을 포함하는 유산균제의 제조 방법을 제공한다.
또한, 본 출원의 다른 측면은 유산균; 및 시스테인 또는 이의 염;을 포함하는 유산균제를 제공한다.
또한, 본 출원은 시스테인 또는 이의 염을 유효성분으로 포함하는, 유산균 생육 촉진용 배양 배지를 제공할 수 있다.
또한, 본 출원은 유산균을, 본 출원의 배양 배지, 예를 들어 유산균 동결 보호용 배양 배지 및/또는 유산균 생육 촉진용 배양 배지에서 배양하는 것을 포함하는, 유산균의 생육을 촉진하는 방법을 제공할 수 있다다.
또한, 본 출원은 유산균을, 본 출원의 배양 배지, 예를 들어 유산균 동결 보호용 배양 배지 및/또는 유산균 생육 촉진용 배양 배지에서 배양하는 것을 포함하는, 유산균의 에너지 대사를 조절하는 방법을 제공할 수 있다.
또한, 본 출원은 유산균을, 본 출원의 배양 배지, 예를 들어 유산균 동결 보호용 배양 배지 및/또는 유산균 생육 촉진용 배양 배지에서 배양하는 것을 포함하는, 유산균의 열안정성을 증가하는 방법을 제공할 수 있다.
본 출원의 활성 성분인 시스테인 또는 이의 염은 유산균을 동결로부터 보호할 뿐만 아니라, 동결 건조되어 분말화된 이후에도 유산균이 활성을 최대한 유지할 수 있도록 안정성을 향상시키는 효과가 있다. 특히, 상기 시스테인 또는 이의 염산염은 분말화됨으로 인해 살아있기는 하지만 증식이 중단된 유산균이 고온의 물리적 환경에서도 우수한 안정성을 나타낼 수 있도록 하는 효과가 있어, 살아있는 유산균의 유통이나 보관/저장이 용이해지는 장점이 있다.
또한, 본 출원의 배양 배지, 예를 들어 유산균 동결 보호용 배양 배지 및/또는 유산균 생육 촉진용 배양 배지에서 유산균을 배양하면, 유산균의 생장 수율을 획기적으로 향상시킬 수 있으며, 또한 유산균의 열안정성을 획기적으로 향상시킬 수 있다.
다만, 본 출원의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들은 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.
먼저, 본 출원에서 이용된 용어를 정의한다.
본 출원에서 일컫는 용어 '유산균'은 당류를 발효하여 에너지를 획득하고 다량의 락트산을 생성하는 세균을 총칭하는 용어이다. 상기 유산균은 락토바실러스 속(Lactobacillus sp.), 비피도박테리움 속(Bifidobacterium sp.), 스트렙토코커스 속(Streptococcus sp.), 락토코커스 속(Lactococcus sp.), 엔테로코커스 속(Enterococcus sp.), 페디오코커스 속(Pediococcus sp.) 류코노스톡 속(Leuconostoc sp.) 및 비셀라 속(Weissella sp.)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 구체적으로, 락토바실러스 플란타룸(Lactobacillus plantarum), 락토바실러스 카제이(Lactobacillus casei), 락토바실러스 람노서(Lactobacillus rhamnosus), 락토바실러스 아시도필루스(Lactobacillus acidophilus), 비피도박테리움 비피덤(Bifidobacterium bifidum), 비피도박테리움 롱굼(Bifidobacterium longum), 비피도박테리움 브레브(Bifidobacterium breve), 스트렙토코커스 훼칼리스(Streptococcus faecalis), 락토코커스 락티스(Lactococcus lactis subsp. lactis) 등 일 수 있고, 보다 구체적으로, 한국 등록특허공보 제1,178,217호에 개시된 락토바실러스 플란타룸 CJLP243(Lactobacillus plantarum CJLP243), 한국 등록특허공보 제1,486,999호에 개시된 락토바실러스 플란타룸 CJLP133(Lactobacillus plantarum CJLP133), 한국 등록특허공보 제1,075,558호에 개시된 락토바실러스 플란타룸 CJLP136(Lactobacillus plantarum CJLP136), 한국 등록특허공보 제1,255,050호에 개시된 락토바실러스 플란타룸 CJLP55(Lactobacillus plantarum CJLP55), 한국 등록특허공보 제1,075,557호에 개시된 락토바실러스 플란타룸 CJLP56(Lactobacillus plantarum CJLP56) 등 일 수 있으나, 특별히 이들로 한정되지 아니한다.
본 출원에서 일컫는 용어 '동결 보호'는 유산균의 활성을 그대로 보존하기 위해 동결 건조하여 보관할 때 유산균 조직을 결빙으로부터 보호하는 것을 의미한다.
본 출원에서 일컫는 용어 '동결 건조(Freeze drying)'는 용기의 온도를 급격하게 낮추어 건조시키고자 하는 재료를 얼린 다음, 용기 내부의 압력을 진공으로 만들어 재료에 포함된 고체화된 용매를 바로 수증기로 승화시켜 건조하는 방법이다. 상기 동결 건조는 열에 민감한 물질의 손상을 최소화하고 효과적으로 장기 보존할 수 있는 방법으로서, 오염 방지, 저장, 수송, 경제성 측면에서 유용하다. 하지만, 상기와 같은 동결 건조의 동결 온도는 영하의 온도, 예컨대 -40 ℃ 내지 -196 ℃(액화질소의 비점), -50 ℃ 내지 -196 ℃, -70 ℃ 내지 -196 ℃일 수 있는바, 유산균을 동결 건조하는 경우 그 과정에서 유산균의 활성과 생존율이 급격하게 감소하게 되고, 동결 시 얼음 입자가 만들어지면서 유산균 세포의 막 구조를 손상시키는 문제점이 있다. 이러한 문제점을 개선하기 위해, 유산균이 손상되거나 사멸하지 않고 재수화(再水和)시 그 기능을 회복할 수 있도록 동결 건조시 함께 첨가하는 물질 또는 조성물을 '동결 보호제' 또는 '동결 보호용 조성물'이라고 지칭하며, 이는 유산균에 물리화학적 안정성을 부여하여 생존율을 높이는 역할을 한다.
이하, 본 출원을 구체적으로 설명한다.
본 출원은 유산균 동결 보호용 조성물을 제공한다.
상기 본 출원의 유산균 동결 보호용 조성물은 시스테인 또는 이의 염을 유효 성분으로 포함한다.
상기 시스테인은 HS-CH2CH(NH2)-COOH의 구조를 갖는 함 황유 α-아미노산의 일종으로서, 설프하이드릴(sulfhydryl)기를 가지고 있어 다른 시스테인과의 사이에서 이황화결합을 형성하는 특징을 가지고 있다. 상기 시스테인은 L-시스테인, D-시스테인 또는 L,D-시스테인일 수 있고, 구체적으로는 L-시스테인일 수 있다.
상기 시스테인의 염은 상기 시스테인의 임의의 염일 수 있고, 예를 들어 염산염, 황산염 등일 수 있다.
상기 시스테인 또는 이의 염은 유산균을 동결로부터 보호하여 동결에 의한 유산균의 손상이나 사멸을 최소화할 뿐만 아니라, 나아가 동결 건조된 이후에도 유산균이 그 고유의 활성을 유지할 수 있도록 하는 유산균의 안정성을 향상시키는 역할을 한다. 따라서 상기 시스테인 또는 이의 염은 유산균 동결 보호용 조성물의 유효 성분으로서뿐만 아니라, 다른 한편으로는 건조된, 특히 동결 건조된 유산균의 안정성 향상용 조성물의 유효 성분으로도 이용될 수 있다.
상기 시스테인 또는 이의 염은 상기 조성물 전체 100 중량% 중, 0.01 중량% 이상, 예를 들어 0.01 중량%, 0.05 중량% 및 0.1 중량%로 이루어진 군으로부터 선택되는 하나의 하한 및/또는 10 중량% 이하, 예를 들어 10 중량%, 7 중량%, 5 중량% 및 3 중량%로 이루어진 군으로부터 선택되는 하나의 상한의 조합으로 구성되는 함량 범위로 포함될 수 있다. 예를 들어, 상기 시스테인 또는 이의 염은 상기 조성물 전체 100 중량% 중, 0.05 중량% 내지 10 중량%의 함량, 구체적으로 0.05 중량% 내지 7 중량%, 0.05 중량% 내지 5 중량%, 0.05 중량% 내지 3 중량%, 또는 구체적으로 0.1 중량% 내지 10 중량%, 0.1 중량% 내지 7 중량%, 0.1 중량% 내지 5 중량%, 0.1 중량% 내지 3 중량%의 함량으로 포함될 수 있고, 상기와 같은 시스테인 또는 이의 염의 함량은 유산균의 종류, 크기, 양, 동결 건조 조건, 조성물에 포함되는 다른 성분의 종류나 함량 등에 따라 통상의 기술자가 적절히 조절할 수 있다.
본 출원의 유산균 동결 보호용 조성물은 동결 보호제, 다공성 지지체 또는 질소원 등을 더 포함할 수 있다.
상기 동결 보호제는 상기 시스테인 또는 이의 염을 제외한, 본 출원이 속하는 기술분야에서 통상적으로 이용되는 동결 보호 효능을 가지는 물질을 의미하는 것으로서, 시판되는 것을 구입하여 이용할 수 있으며, 그 종류에는 특별히 제한되지 않는다. 구체적으로, 상기 동결 보호제로서 당류, 아미노산, 펩티드, 젤라틴, 글리세롤, 당알콜, 유청, 알긴산, 아스코르빈산, 효모 추출물, 탈지유 등일 수 있다. 예컨대, 상기 동결 보호제로 당류의 일종인 트레할로오스(trehalose)가 이용될 수 있다. 상기 트레할로오스는 식물이나 미생물등 자연계에 널리 존재하고 있는 당질로서, 동결 건조로 인해 유산균이 손상 또는 사멸하는 것을 방지하며 재수화시 그 기능을 회복할 수 있게 도와주는 동결 보호제의 역할을 하는 것으로 알려진 물질이다. 상기 트레할로오스는 상기 유산균 동결 보호용 조성물 전체 100 중량% 중, 10 중량% 내지 40 중량%, 예컨대 10 중량% 내지 30 중량%, 구체적으로 15 중량% 내지 25 중량%, 보다 구체적으로 17.5 중량% 내지 22.5 중량%의 함량으로 포함될 수 있으나, 상기 유산균 동결 보호용 조성물에 포함되는 활성 성분의 함량, 유산균의 종류, 크기, 양, 동결 건조 조건, 조성물에 포함되는 다른 성분의 종류나 함량 등에 따라 통상의 기술자가 적절히 조절할 수 있다.
상기 다공성 지지체는 외부 수분 및 공기의 유입을 차단하고, 동결 건조된 유산균에 다공성을 부여하여 재수화 작용을 용이하게 하는 역할을 한다. 상기 다공성 지지체는 본 출원이 속하는 기술분야에서 동결 건조시 통상적으로 사용되는 다공성 지지체로서, 시판되는 것을 구입하여 이용할 수 있으며, 그 종류에는 특별히 제한되지 않는다. 구체적으로, 상기 다공성 지지체는 말토덱스트린, 알기네이트, 키토산, 전분, 폴리에틸렌글리콜, 프로필렌글리콜, 트리아세틴, 아세틸트리에틸 시트레이트, 트리에틸 시트레이트, 글리세린, 또는 이들의 조합일 수 있고, 보다 구체적으로 말토덱스트린(maltodextrin)일 수 있다. 상기 말토덱스트린은 다공성 입자 기제의 백색 분말로서, 흔히 요구르트, 소스, 샐러드 드레싱 등 일반 식품에 종종 사용되는 식품 첨가물이며, 유산균의 동결 건조시 다공성 지지체로도 이용될 수 있다. 상기 말토덱스트린은 유산균 동결 보호용 조성물 전체 100 중량% 중, 0.1 중량% 내지 20 중량%일 수 있고, 예컨대 0.5 중량% 내지 15 중량%, 구체적으로 1 중량% 내지 10 중량%, 더욱 구체적으로 2.5 중량% 내지 7.5 중량%일 수 있다.
상기 질소원(N-source)은 유산균의 질소 에너지원으로 사용되는 물질을 의미하며, 이는 후발효에 의한 균체의 손상을 방지하는 역할을 한다. 유산균을 동결 보호용 조성물과 혼합할 경우 에너지원이 없는 조건에서 살아있는 유산균은 유기산을 생성하게 되고, 이는 pH 저하를 일으켜 유산균의 사멸을 유도한다. 따라서, 질소 에너지원은 유기산 생성 및 이로 인한 pH 저하를 방지하므로, 유산균의 사멸을 예방할 수 있게 된다. 상기 질소원은 본 출원이 속하는 기술분야에서 동결 건조시 통상적으로 사용되는 질소원으로서, 시판되는 것을 구입하여 이용할 수 있으며, 그 종류에는 특별히 제한되지 않는다. 구체적으로, 상기 질소원은 탈지 분유, 유청 단백질, 효모 추출물, 맥아 추출물, 비프 추출물, 카세인 가수분해물, 맥아 추출물, 트립톤, 시스테인, 펩톤 등일 수 있고, 예를 들어 상기 펩톤은 소이펩톤, 피쉬 펩톤, 프로테오스 펩톤, 카세인 펩톤, 펩톤 No.3 등 일 수 있으며, 대표적으로 소이펩톤일 수 있다. 상기 소이펩톤은 유산균 동결 보호용 조성물 전체 100 중량% 중, 0.1 중량% 내지 20 중량%일 수 있고, 예컨대 0.5 중량% 내지 15 중량%, 구체적으로 1 중량% 내지 10 중량%, 더욱 구체적으로 2.5 중량% 내지 7.5 중량%일 수 있다.
상기 유산균 동결 보호용 조성물은 코팅제 형태로 적용될 수 있다. 즉, 상기 유산균 동결 보호용 조성물은 유산균과 혼합되어 유산균의 표면을 코팅시킬 수 있고, 이를 통해 유산균을 외부 환경으로부터 보호하고 보관 안정성을 높이는 것일 수 있으나, 특별히 이에 한정되지 아니한다.
상기 유산균 동결 보호용 조성물로부터 제조된 유산균제는 후술하는 바와 같다.
본 출원은 유산균 동결 보호용 배양 배지를 제공한다.
일 측면에서, 본 출원의 배양 배지는 유산균의 생육 촉진용 배양 배지일 수 있다.
일 측면에서, 본 출원의 배양 배지는 유산균의 열안정성 증가용 배양 배지일 수 있다.
일 측면에서, 상기 유산균 동결 보호용 배양 배지는 유산균의 생육 촉진 및 열안정성 증가용 배양 배지일 수 있다.
상기 배양 배지는 유산균을 배양하기 위해 필요로 하는 영양물질의 혼합물을 의미하며, 유산균의 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급하는 것이다.
상기 본 출원의 배양 배지는 시스테인 또는 이의 염을 유효 성분으로 포함한다.
상기 시스테인은 HS-CH2CH(NH2)-COOH의 구조를 갖는 함 황유 α-아미노산의 일종으로서, 설프하이드릴(sulfhydryl)기를 가지고 있어 다른 시스테인과의 사이에서 이황화결합을 형성하는 특징을 가지고 있다. 상기 시스테인은 L-시스테인, D-시스테인 또는 L,D-시스테인일 수 있고, 구체적으로는 L-시스테인일 수 있다.
상기 시스테인의 염은 상기 시스테인의 임의의 염일 수 있고, 예를 들어 염산염, 황산염 등일 수 있다.
상기 시스테인 또는 이의 염은 유산균을 동결로부터 보호하여 동결에 의한 유산균의 손상이나 사멸을 최소화할 뿐만 아니라, 나아가 동결 건조된 이후에도 유산균이 그 고유의 활성을 유지할 수 있도록 하는 유산균의 안정성을 향상시키는 역할을 한다. 뿐만 아니라, 상기 시스테인 또는 이의 염은 유산균의 배양 시 유산균의 생산량을 획기적으로 증대시킬 수 있을 뿐만 아니라, 이로써 배양된 유산균이 고유의 활성을 유지할 수 있도록 하는 유산균의 안정성을 향상시키는 역할을 한다. 따라서 상기 시스테인 또는 이의 염은 유산균 동결 보호용 배양 배지의 유효 성분으로서뿐만 아니라, 다른 한편으로는 건조된, 특히 동결 건조된 유산균의 안정성 향상용 배양 배지, 유산균의 생육 촉진용 배양 배지 및 이러한 배양 배지에서 배양된 유산균의 안정성 향상용 조성물, 뿐만 아니라 유산균의 열안정성 증가용 배양 배지의 유효 성분으로도 이용될 수 있다.
상기 시스테인 또는 이의 염은 상기 배양 배지 전체 100 중량% 중, 0.05 중량% 내지 10 중량%의 함량, 구체적으로 0.05 중량% 내지 7 중량%, 0.05 중량% 내지 5 중량%, 0.05 중량% 내지 3 중량%, 또는 구체적으로 0.1 중량% 내지 10 중량%, 0.1 중량% 내지 7 중량%, 0.1 중량% 내지 5 중량%, 0.1 중량% 내지 3 중량%의 함량으로 포함될 수 있고, 상기와 같은 시스테인 또는 이의 염의 함량은 유산균의 종류, 크기, 양, 동결 건조 조건, 배양 배지에 포함되는 다른 성분의 종류나 함량 등에 따라 통상의 기술자가 적절히 조절할 수 있다.
본 출원의 배양 배지는 상기 유효 성분 외에, 통상적으로 배양 배지에 포함되는 영양성분, 예컨대 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 더 포함할 수 있다.
상기 탄소원으로는 글루코오스, 프룩토오스, 수크로오스, 말토오스, 만니톨, 소르비톨 등과 같은 탄수화물; 피루브산, 락트산, 시트르산 등과 같은 유기산;글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2종 이상이 조합되어 사용될 수 있으나, 이에 제한되지 않는다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2종 이상이 조합되어 사용될 수 있으나, 이에 제한되지 않는다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 나트륨-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있으나, 이에 제한되지 않는다.
또한, 상기 배양 배지에는 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물이 첨가되어 배양 배지의 pH를 조정할 수 있고, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 배양 중의 기포 생성을 억제할 수 있다. 또한, 배양 중의 호기 상태를 유지하기 위하여, 배양 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 제한되지 않는다.
상기 배양 배지는 고상 또는 액상일 수 있다.
상기 배양 배지로부터 제조된 유산균제는 후술하는 바와 같다.
본 출원은 유산균제, 구체적으로 열안정성을 갖는 유산균제의 제조 방법을 제공한다.
본 출원의 유산균제의 제조 방법은, 유산균을 시스테인 또는 이의 염을 포함하는 조성물과 혼합하여 혼합물을 준비하고, 상기 혼합물을 동결 건조하여 분말화하는 것을 포함한다.
일 측면에서, 상기 시스테인 또는 이의 염을 포함하는 조성물은 본 출원에 따른 유산균 동결 보호용 조성물을 이용할 수 있다.
다른 측면에서, 상기 시스테인 또는 이의 염을 포함하는 조성물은 본 출원에 따른 배양 배지, 예컨대 유산균 동결 보호용 배양 배지를 이용할 수 있다.
이하 본 출원의 유산균제의 제조 방법에 대하여 설명한다.
먼저, 유산균을 시스테인 또는 이의 염을 포함하는 조성물, 예컨대 상기 유산균 동결 보호용 조성물과 혼합한다.
상기 유산균과 상기 유산균 동결 보호용 조성물은 중량 기준으로 1:0.1 내지 1:5, 구체적으로 1:0.5 내지 1:4, 더욱 구체적으로 1:1 내지 1:3의 비율로 혼합될 수 있다. 상기 혼합 비율에서 유산균을 동결로부터 효과적으로 보호하고, 분말화를 효율적으로 할 수 있다.
상기 유산균과 상기 유산균 동결 보호용 조성물의 혼합 시기는, 구체적으로 유산균의 배양 단계에 있어 시스테인 또는 이의 염을 투여하는 시기는, 유산균제의 제조 방법의 전체 공정 중 유산균의 배양 단계 어디서나 제한 없이 투여할 수 있으며 예를 들어 유산균의 배양 전, 유산균의 생장유도기(lag phase), 대수증식기(exponential phase), 및 정지기(stationary phase) 중 적어도 어느 하나의 단계에 투여할 수 있다.
예를 들어, 상기와 같이 유산균 동결 보호용 조성물과 혼합되기 전에, 상기 유산균은 통상의 수단과 방법으로 충분히 배양되어, 통상의 방법으로 회수된 것일 수 있다.
상기 배양은 상기 유산균을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 상기 배양 과정은 본 출원이 속하는 기술분야에 알려진 적당한 배지와 배양 조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 통상의 기술자가 적절히 조절할 수 있다. 예컨대 상기 유산균은, 회분식, 연속식, 유가식 등의 형태로 배양될 수 있다. 상기 유산균의 배양 온도는 20℃ 내지 50℃, 구체적으로는 30℃ 내지 40℃의 온도일 수 있다. 상기 유산균의 배양 시간은 1시간 내지 100시간, 구체적으로는 5시간 내지 50시간 동안 배양될 수 있다.
상기 유산균의 균체를 회수하는 단계는 상기와 같은 유산균의 배양 형태에 따라 본 출원이 속하는 기술분야에 공지된 적절한 방법을 이용하여 배지로부터 목적하는 균체를 회수할 수 있다. 예컨대 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 및 이들의 방법을 조합하여 사용될 수 있다. 상기 회수 단계는 추가적인 정제 공정을 포함할 수 있고, 본 출원이 속하는 기술분야에 알려진 적절한 방법을 이용하여, 회수된 유산균의 균체를 더욱 정제할 수 있다.
다음으로, 유산균과 유산균 동결 보호용 조성물의 혼합물을 동결 건조하여 분말화한다.
상기 유산균과 유산균 동결 보호용 조성물의 혼합물을 분말화하는 과정은 종래 식품 분야에서 일반적으로 이용되는 동결 건조를 통해 수행될 수 있다. 상기 동결 건조는 -70℃ 내지 30℃, 구체적으로 -70℃ 내지 -40℃의 온도에서 수행될 수 있다. 상기 동결 건조는 3시간 내지 48시간, 구체적으로 6시간 내지 36시간, 더욱 구체적으로 12시간 내지 24시간 동안 냉각되는 조건에서 동결시킨 후, 동결 건조기에서 해동하여 수분을 제거하는 과정으로 수행될 수 있다.
상기와 같이 유산균을 본 출원의 유산균 동결 보호용 조성물과 혼합한 후 동결 건조하여 분말화 함으로써, 안정성이 향상되어 유산균의 활성이 최대한 유지되는 유산균제를 제조할 수 있다.
일 측면에서, 상기 유산균제의 제조 방법은 유산균을, 상기 유산균 동결 보호용 조성물과 혼합하여 혼합물을 준비하고, 상기 혼합물을 동결 건조 하기 전에 혼합물을 이용하여 유산균 균체를 배양하는 것을 추가로 포함할 수 있다.
상기 본 출원의 유산균제의 제조 방법은, 유산균을 상기 유산균 동결 보호용 조성물과 혼합하고, 그 혼합물을 이용하여 유산균의 균체를 배양하고, 상기 배양된 유산균의 균체를 회수하고, 상기 회수된 유산균 균체를 분말화하는 것을 포함할 수 있다.
상기 배양은 상기 유산균을 적당히 조절된 환경 조건에서 생육시키는 것을 의미한다. 상기 배양 과정은 본 출원이 속하는 기술분야에 알려진 적당한 배양 조건 하에서 수행될 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 통상의 기술자가 적절히 조절할 수 있다. 예컨대 상기 유산균은, 회분식, 연속식, 유가식 등의 형태로, 20℃ 내지 50℃, 구체적으로는 30℃ 내지 40℃의 온도에서 수행될 수 있다. 배양은 1시간 내지 100시간, 구체적으로는 5시간 내지 50시간 동안 배양될 수 있다.
다음으로, 상기와 같이 배양된 유산균의 균체를 회수한다.
상기 유산균의 균체를 회수하는 단계는 상기와 같은 유산균의 배양 형태에 따라 본 출원이 속하는 기술분야에 공지된 적절한 방법을 이용하여 배지로부터 목적하는 균체를 회수할 수 있다. 예컨대 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 및 이들의 방법을 조합하여 사용될 수 있다. 상기 회수 단계는 추가적인 정제 공정을 포함할 수 있고, 본 출원이 속하는 기술분야에 알려진 적절한 방법을 이용하여, 회수된 유산균의 균체를 더욱 정제할 수 있다.
상기와 같이 회수된 유산균 균체는, 시스테인 또는 이의 염 없이, 동결 보호제, 다공성 지지체 또는 질소원 등을 포함하는 조성물과 혼합될 수 있다. 상기 동결 보호제, 다공성 지지체 및 질소원에 대한 설명은 상기 유산균 동결 보호용 조성물에 관하여 설명한 바와 동일하다.
마지막으로, 상기와 같이 회수된 유산균 균체를 분말화한다.
상기 회수된 유산균 균체를 분말화하는 과정은 종래 식품 분야에서 일반적으로 이용되는 분말화 방법을 통해 수행될 수 있고, 예컨대 상기 회수된 유산균 균체를 동결 건조하여 수행될 수 있다. 상기 동결 건조는 -70℃ 내지 30℃, 구체적으로 -70℃ 내지 -40℃의 온도에서 3시간 내지 48시간, 구체적으로 6시간 내지 36시간, 더욱 구체적으로 12시간 내지 24시간 동안 냉각되는 조건에서 동결시킨 후, 동결 건조기에서 해동하여 수분을 제거하는 과정으로 수행될 수 있다.
상기와 같이 유산균을 유산균 동결 보호용 조성물과의 혼합물에서 배양하고 이로부터 회수한 유산균 균체를 분말화 함으로써, 안정성이 향상되어 유산균의 활성이 최대한 유지되는 유산균제를 제조할 수 있다.
상기 유산균제의 제조 방법에 있어서, 시스테인 또는 이의 염을 포함하는 조성물로서 시스테인 또는 이의 염을 포함하는 배양 배지, 예컨대 상기 유산균 동결 보호용 배양 배지를 이용하는 경우 상술한 제조 방법에 있어 '유산균 동결 보호용 조성물'을 이용한 제조 방법으로 상술한 바와 같다.
본 출원의 유산균제의 제조 방법에 따라 제조되는 유산균제의 안정성에 관하여는 후술하기로 한다.
본 출원의 다른 측면은 유산균의 생육을 촉진하는 방법, 유산균의 에너지 대사를 조절하는 방법 및 유산균의 열안정성을 증가하는 방법을 제공한다.
상기 본 출원의 유산균의 생육을 촉진하는 방법, 유산균의 에너지 대사를 조절하는 방법 및 유산균의 열안정성을 증가하는 방법은, 유산균을, 상술한 배양 배지, 예를 들어 본 출원의 유산균 생육 촉진용 배양 배지에서 배양하는 것 및/또는 상술한 유산균 동결 보호용 조성물과 혼합하고, 그 혼합물에서 배양하는 것을 포함할 수 있다. 구체적인 방법은 상술한 유산균제의 제조 방법과 동일하게 수행할 수 있다.
이때, 시스테인 또는 이의 염을 포함하는 배양 배지, 예를 들어 유산균의 생육 촉진용 배양 배지에서 및/또는 유산균 동결 보호용 조성물을 이용하여 배양되는 상기 유산균은, 그 에너지 생산 기작이 이에 한정되는 것은 아니나, '호흡'에 의해 에너지를 생산하여 생육할 수 있다.
일반적으로 통성혐기성 유산균 배양을 위해 배양 조건을 산소 노출을 최소화하기 위한 조건, 예컨대 통성혐기성 조건으로 변경하는 것, 예를 들어 발효조의 산소/질소 치환 등을 수행하였으나, 상기 본 출원의 시스테인 또는 이의 염을 포함하는 배지를 이용하면 별도의 배양 조건의 변경 없이 상기 배양 배지를 통해 유산균이 활성 산소를 제거할 수 있는 환경을 부여함으로써 유산균의 생육을 우수하게 촉진할 수 있다.
뿐만 아니라, 배양조에 적절히 공기, 예를 들어 멸균 공기를 유입하여 유산균의 생육 촉진을 조절할 수 있다.
본 출원에 따라 생육이 촉진된 유산균은 안정성이 향상되어 장기간 동안 유산균의 수가 높은 수준으로 유지되는 효과가 있다.
본 출원의 유산균제의 제조 방법에 따라 제조되는 유산균제의 안정성에 관하여는 후술하기로 한다.
본 출원은 유산균제, 구체적으로 열안정성을 갖는 유산균제를 제공한다.
본 출원의 상기 유산균제는 유산균; 및 시스테인 또는 이의 염을 포함한다.
상기 시스테인은 HS-CH2CH(NH2)-COOH의 구조를 갖는 함 황유 α-아미노산의 일종으로서, 설프하이드릴(sulfhydryl)기를 가지고 있어 다른 시스테인과의 사이에서 이황화결합을 형성하는 특징을 가지고 있다. 상기 시스테인은 L-시스테인, D-시스테인 또는 L,D-시스테인일 수 있고, 구체적으로는 L-시스테인일 수 있다.
상기 시스테인의 염은 상기 시스테인의 임의의 염일 수 있고, 구체적으로 염산염, 황산염 등일 수 있다.
상기 유산균제는 그래뉼, 분말, 산제, 과립제, 침제, 유제, 유동제, 정제, 환제, 캅셀제, 과립제, 연고, 좌제, 주사액, 흡입제, 에어로졸, 현탁제, 시럽제, 에멀젼, 연질 캡슐, 경질 캡슐, 엘릭시르제(elixirs), 트로치제(troches), 로젠제(lozenge) 등의 형태일 수 있고, 구체적으로 동결 건조된 분말의 형태일 수 있다.
상기 시스테인 또는 이의 염에 의해, 유산균이 동결로부터 보호되어 유산균의 손상이나 사멸이 최소화될 뿐만 아니라, 나아가 분말 형태로 제조된 이후에도 유산균이 그 고유의 활성을 그대로 유지할 수 있다.
예컨대, 본 출원의 상기 유산균제가 40℃에서 4주간 보관한 후, 보관 초기 대비 45% 이상, 구체적으로는 50% 이상, 50.5% 이상, 51% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상 또는 77% 이상의 유산균 생존률을 나타낼 수 있다. 일 측면에서, 40℃에서 3주간 보관한 후, 보관 초기 대비 45% 이상, 구체적으로는 50% 이상, 51% 이상, 52% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 또는 81% 이상의 유산균 생존률을 나타낼 수 있다. 일 측면에서, 40℃에서 2주간 보관한 후, 초기 대비 55% 이상, 구체적으로는 60% 이상, 62% 이상, 64% 이상, 65%이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상 또는 91% 이상의 유산균 생존률을 나타낼 수 있다.
상기 보관 초기는 보관 0일차 또는 보관 직전일 수 있다.
또한, 상기 시스테인 또는 이의 염에 의해, 유산균의 배양 시 유산균의 생육이 촉진될 수 있다.
예컨대, 상기 유산균을 시스테인 또는 이의 염의 존재 하에서 37℃에서 배양하고, 배양액을 20배 희석하였을 때 분광 광도계를 이용하여 측정한 O.D(Optical density) 값은 7시간 후 0.5 이상, 구체적으로 0.7 이상, 0.9 이상, 1.0 이상 또는 1.2 이상을 나타낼 수 있다. 일 측면에서, 8시간 후 0.6 이상, 0.8 이상, 1.0 이상, 1.2 이상 또는 1.3 이상을 나타낼 수 있다. 일 측면에서, 9시간 후 0.7 이상, 0.8 이상, 0.9 이상, 1.0 이상, 1.2 이상, 1.3 이상 또는 1.4 이상을 나타낼 수 있다. 일 측면에서, 10시간 후 0.8 이상, 1.0 이상, 1.2 이상, 1.4 이상 또는 1.5 이상을 나타낼 수 있다. 일 측면에서, 11시간 후 1.0 이상, 1.1 이상, 1.2 이상, 1.3 이상, 1.4 이상 또는 1.5 이상을 나타낼 수 있다.
예컨대, 상기 유산균을 시스테인 또는 이의 염의 존재 하에서 37℃에서 배양하였을 때 생균수(CFU/ml)는 이에 제한되는 것은 아니나, 7시간 후 1.5x10^9 이상, 2.0x10^9 이상, 2.5x10^9 이상, 3.0x10^9 이상, 3.5x10^9 이상, 4.0x10^9 이상, 5.0x10^9 이상, 또는 5.5x10^9 이상일 수 있다. 일 측면에서, 8시간 후 2.5x10^9 이상, 3.0x10^9 이상, 3.5x10^9 이상, 4.0x10^9 이상, 5.0x10^9 이상, 5.5x10^9 이상, 6.0x10^9 이상, 6.5x10^9 이상, 7.0x10^9 이상, 7.5x10^9 이상, 8.0x10^9 이상, 8.5x10^9 이상 또는 9.0x10^9 이상일 수 있다. 일 측면에서, 9시간 후 3.0x10^9 이상, 5.0x10^9 이상, 7.0x10^9 이상, 9.0x10^9 이상 또는 9.5x10^9 일 수 있다. 일 측면에서, 10시간 후 4.0x10^9 이상, 5.0x10^9 이상, 7.0x10^9 이상, 9.0x10^9 이상 9.5x10^9 이상, 1.0x10^10 이상 또는 1.2x10^10 이상 일 수 있다. 일 측면에서, 11시간 후 5.0x10^9 이상, 7.0x10^9 이상, 9.0x10^9 이상 9.5x10^9 이상, 1.0x10^10 이상 또는 1.2x10^10 이상 일 수 있다.
이하, 본 출원을 실시예에 의하여 상세히 설명한다.
단, 하기 실시예는 본 출원을 구체적으로 예시하는 것이며, 본 출원의 내용이 하기 실시예에 의해 한정되지 아니한다.
[실시예 1]
락토바실러스 플란타룸 CJLP133 균주를 MRS 액체 배지(Difco, USA)를 이용하여, 37℃에서 18 내지 24시간 동안 배양한 다음, 원심 분리기를 이용하여 상등액은 버리고 유산균만을 회수하였다.
상기와 같이 회수된 유산균 균체를, 하기 표 1과 같은 함량으로 시스테인염산염, 트레할로오스, 말토덱스트린, 소이펩톤 및 물이 혼합 및 멸균하여 제조된 유산균 동결 보호용 조성물과 1:2의 중량 비율로 혼합하였다.
성분 함량(중량%)
실시예 1-1 실시예 1-2 실시예 1-3 실시예 1-4
시스테인염산염 0.1 0.5 1 5
트레할로오스 20 20 20 20
말토덱스트린 5 5 5 5
소이펩톤 5 5 5 5
잔부 잔부 잔부 잔부
총합 100 100 100 100
상기 혼합물을 현탁한 후, 동결 건조 트레이에 옮겨 담아, 급속 동결 조건(-40℃ 이하)에서 12 내지 24시간 전후로 유지한 후, 동결 건조기에서 해동하면서 수분을 제거하여 상기 표 1의 조성물로 코팅된 유산균 분말을 수득하였다.
[실시예 2]
한국 등록특허공보 제1,486,999호에 개시된 락토바실러스 플란타룸 CJLP133 균주를, 0.1 중량%의 시스테인염산염이 포함된 MRS 액체 배지(Difco, USA)를 이용하여, 37℃에서 18 내지 24시간 동안 배양한 다음, 원심 분리기를 이용하여 상등액은 버리고 유산균만을 회수하였다.
상기와 같이 회수된 유산균 균체를, 하기 표 2와 같은 함량으로 트레할로오스, 말토덱스트린, 소이펩톤 및 물이 혼합 및 멸균하여 제조된 유산균 동결 보호용 조성물과 1:2의 중량 비율로 혼합하였다.
성분 함량(중량%)
트레할로오스 20
말토덱스트린 5
소이펩톤 5
잔부
총합 100
상기 혼합물을 현탁한 후, 동결 건조 트레이에 옮겨 담아, 급속 동결 조건(-40℃ 이하)에서 12 내지 24시간 전후로 유지한 후, 동결 건조기에서 해동하면서 수분을 제거하여 상기 표 2의 조성물로 코팅된 유산균 분말을 수득하였다.
[실시예 3]
락토바실러스 플란타룸 CJLP133 균주를 0.1%의 시스테인염산염이 포함된 MRS 액체 배지(Difco, USA)에, 37 ℃에서 11시간 동안 배양하였다. 시스테인염산염이 포함된 MRS 배지 성분은 표 3과 같으며, 배양 도중 저하되는 pH는 암모니아수 자동 급여 시스템을 통해 pH 5.95로 중화되도록 설정하였다.
성분 함량
L-Cysteine Monohydrochloride 1 g
Proteose Peptone 10 g
Beef Extract 10 g
Yeast Extract 5 g
Dextrose 20 g
Polysorbate80 1 g
Ammonium Citrate 2 g
Sodium Acetate 5 g
Magnesium Sulfate 0.1 g
Manganese Sulfate 0.05 g
Dipotassium Phosphate 2 g
1,000 mL
[비교예 1]
락토바실러스 플란타룸 CJLP133 균주를 MRS 액체 배지(Difco, USA)를 이용하여, 37℃에서 18 내지 24시간 동안 배양한 다음, 원심 분리기를 이용하여 상등액은 버리고 유산균만을 회수하였다.
상기와 같이 회수된 유산균 균체를, 상기 표 2와 같은 함량으로 트레할로오스, 말토덱스트린, 소이펩톤 및 물이 혼합 및 멸균하여 제조된 유산균 동결 보호용 조성물과 1:2의 중량 비율로 혼합하였다.
상기 혼합물을 현탁한 후, 동결 건조 트레이에 옮겨 담아, 급속 동결 조건(-40℃ 이하)에서 12 내지 24시간 전후로 유지한 후, 동결 건조기에서 해동하면서 수분을 제거하여 상기 표 2의 조성물로 코팅된 유산균 분말을 수득하였다.
[비교예 2]
락토바실러스 플란타룸 CJLP133 균주를 0.1%의 시스테인염산염이 포함되지 않은 MRS 액체 배지(Difco, USA)에, 37 ℃에서 11시간 동안 배양하였다. MRS 배지 성분은 표 4와 같으며, 배양 도중 저하되는 pH는 암모니아수 자동 급여 시스템을 통해 pH 5.95로 중화되도록 설정하였다.
성분 함량
Proteose Peptone 10 g
Beef Extract 10 g
Yeast Extract 5 g
Dextrose 20 g
Polysorbate80 1 g
Ammonium Citrate 2 g
Sodium Acetate 5 g
Magnesium Sulfate 0.1 g
Manganese Sulfate 0.05 g
Dipotassium Phosphate 2 g
1,000 mL
[실험예 1]
시스테인염산염의 유무에 따른 유산균 분말의 고온 안정성 평가
시스테인염산염을 적용한 유산균 분말의 고온안정성을 평가하기 위해 상기 실시예 1-1, 실시예 2, 및 비교예 1의 가혹 조건에서의 생존율을 분석하였다. 동결 건조화된 유산균 분말은 저장 온도 및 저장 기간에 따라 점차 활성이 감소한다. 일반적으로 활성에 영향을 주는 요인으로는 온도, 산소, 수분 등이 꼽힌다. 동결 건조화된 유산균 분말은 흡습성이 매우 강하여 저장 초기에 많은 함량 감소가 일어나게 된다. 유통 저장성을 향상하기 위하여 포장재에 탈산소제를 적용하거나, 제습을 위한 여러 가지 방법들이 있지만, 궁극적으로는 유산균 분말 자체의 안정성 정도에 따라 저장 기간에 많은 차이를 보이게 된다. 따라서 원료 특성에 기인한 흡습성을 완화하기 위해 각 시료를 알루미늄 파우치에 개별 포장하여 보관하였으며, 40 ℃에서 4주간 보관하여 가혹 조건에서의 생존율을 분석하였다.
구체적으로, 상기 실시예 1-1, 실시예 2, 및 비교예 1에서 제조한 유산균 분말의 시료를 알루미늄 파우치 포장에 일정량을 담아 개별 포장하여 밀봉하고, 각각의 시료를 40℃의 인큐베이터에서 4주간 보관하였다. 소정의 시간이 지난 후 실험군 시료를 식염완충용액(saline buffer)에 1:100의 배율로 희석하여 멸균백에 담은 후 균질화하였다. 식염완충용액으로 연속적인 희석을 진행한 샘플을 MRS 아가 플레이트(Agar Plate)에 도말하였다. 플레이트를 수거하고 37℃의 호기 조건 하에서 24시간 정치 배양한 후 계수하여, 그 결과를 아래 표 5에 나타내었다. 하기 표 5에 기재한 숫자는 초기 유산균 대비 생존율(%)을 나타낸다.
시점 생존률(%)
비교예 1 실시예 1-1 실시예 2
초기 100.0 100.0 100.0
1주 54.7 72.7 89.0
2주 35.9 64.9 91.5
3주 40.9 52.2 81.8
4주 38.0 51.0 77.4
가혹 조건을 적용하여 시간의 경과에 따른 유산균의 활성을 측정한 결과, 시스테인염산염이 포함된 동결 보호용 조성물을 이용한 실시예 1-1이나 시스테인염산염이 포함된 배양 배지를 이용한 실시예2의 경우에, 시스테인염산염이 포함되지 않은 비교예 1에 비해, 훨씬 높은 유산균 생존율을 나타내는 것으로 확인되었다.
[실험예 2]
시스테인염산염의 함량에 따른 유산균 분말의 고온 안정성 평가
시스테인염산염을 적용한 유산균 분말의 시스테인염산염 함량에 따른 고온안정성을 평가하기 위하여 상기 실시예 1-1 내지 실시예 1-4에서 제조한 유산균 분말의 가혹 조건에서의 생존율을 분석하였다. 상기 실험예 1과 동일한 방법으로 가혹 조건을 적용하여 시간의 경과에 따른 유산균의 활성을 측정하여 그 결과를 아래 표 6에 나타내었다. 하기 표 6에 기재한 숫자 역시 초기 유산균 대비 생존율(%)을 나타낸다.
시점 생존률(%)
실시예 1-1 실시예 1-2 실시예 1-3 실시예 1-4
초기 100.0 100.0 100.0 100.0
1주 72.7 93.0 89.2 91.7
2주 64.9 75.2 82.3 88.5
3주 52.2 74.3 78.7 81.1
4주 51.0 73.4 77.5 75.5
[실험예 3]
유산균의 배양 배지 내 시스테인염산염의 유무에 따른 고농도 배양 평가 (O.D. value)
유산균 배양 평가는 식품첨가물공전의 O.D. value (Optical density) 측정법에 따라 분광 광도계(Spectrophotometer, NanoPhotometer, IMPLEN)를 이용하여 600 nm에서 유산균 배양액을 20배로 희석하여 측정하였다.
O.D. 비교예 2 실시예 3
0 hr 0 0
7 hr 0.446 1.282
8 hr 0.536 1.396
9 hr 0.664 1.457
10 hr 0.792 1.528
11 hr 0.937 1.510
위의 표 7에서 확인할 수 있는 바와 같이, 시스테인염산염이 포함된 배양 배지에서 배양되는 실시예 3에서 시스테인염산염이 포함되지 않은 배양 배지에서 배양되는 비교예 2과 비교하여 유산균의 배양 속도가 현저히 높은 것을 확인하였다. 이와 같은 결과로부터 시스테인염산염에 의한 유산균 생육 촉진능이 우수함을 확인하였다.
[실험예 4]
유산균의 배양 배지 내 시스테인염산염의 유무에 따른 고농도 배양 평가 (생균수 측정)
MRS 한천평판배지에 30 내지 300개의 집락이 형성되도록 유산균 배양액을 멸균 생리수로 희석하고 도말한 후 37℃ 에서 24시간 배양하였다. 배양 후 나타난 집락수를 세어 mL 당 생균수로 계산하였다.
CFU/ml 비교예 2 실시예 3
0hr 0 0
7hr 1.2 x 10^9 5.9 x 10^9
8hr 2.0 x 10^9 9.2 x 10^9
9hr 2.8 x 10^9 1.0 x 10^10
10hr 3.3 x 10^9 1.2 x 10^10
11hr 4.2 x 10^9 1.2 x 10^10
시스테인염산염을 포함하는 배양 배지에서 배양되는 실시예 1에서 시스테인염산염을 포함하지 않는 배양 배지에서 배양되는 비교예 1과 비교하여 유산균의 생균수가 현저히 높은 것을 확인하였다. 이와 같은 결과로부터 시스테인염산염에 의한 유산균 생육 촉진능이 우수함을 확인하였다.상기에서는 본 출원의 바람직한 실시예를 예시적으로 설명하였으나, 본 출원의 범위는 상기와 같은 특정 실시예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 출원의 청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.

Claims (17)

  1. 시스테인 또는 이의 염을 유효성분으로 포함하는, 유산균 동결 보호용 조성물.
  2. 청구항 1에 있어서,
    상기 시스테인염의 염은 염산염인, 유산균 동결 보호용 조성물.
  3. 청구항 1에 있어서,
    상기 시스테인 또는 이의 염은 0.01 중량% 내지 10 중량%의 함량으로 포함되는, 유산균 동결 보호용 조성물.
  4. 청구항 1에 있어서,
    트레할로오스, 말토덱스트린 및 소이펩톤으로 이루어진 군에서 선택되는 적어도 하나를 더 포함하는, 유산균 동결 보호용 조성물.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서,
    유산균의 열안정성을 갖는 것인, 유산균 동결 보호용 조성물.
  6. 시스테인 또는 이의 염을 유효성분으로 포함하는, 유산균 동결 보호용 배양 배지.
  7. 청구항 6에 있어서,
    상기 시스테인 또는 이의 염은 0.01 중량% 내지 10 중량%의 함량으로 포함되는, 유산균 동결 보호용 배양 배지.
  8. 청구항 6에 있어서,
    코엔자임 Q10, 비타민 C, 비타민 E 및 비타민 B2로 이루어진 군으로부터 선택되는 적어도 어느 하나를 더 포함하는, 유산균 동결 보호용 배양 배지.
  9. 청구항 6에 있어서,
    유산균의 생육 촉진 및 열안정성 증가 중 적어도 하나의 효능을 더 갖는 것인, 유산균 동결 보호용 배양 배지.
  10. 유산균을,
    시스테인 또는 이의 염을 포함하는 조성물과 혼합하여 혼합물을 준비하고, 상기 혼합물을 동결 건조하여 분말화하는 것을 포함하는, 유산균제의 제조 방법.
  11. 청구항 10에 있어서,
    상기 혼합물을 동결건조 하기 전 혼합물을 이용하여 유산균 균체를 배양하는 것을 추가로 포함하는 것인 유산균제의 제조 방법.
  12. 유산균; 및 시스테인 또는 이의 염;을 포함하는 열안정성을 갖는 유산균제.
  13. 청구항 12에 있어서,
    상기 유산균제는 그래뉼, 분말, 산제, 과립제, 침제, 유제, 유동제, 정제, 환제, 캅셀제, 과립제, 연고, 좌제, 주사액, 흡입제, 에어로졸, 현탁제, 시럽제, 에멀젼, 연질 캡슐, 경질 캡슐, 엘릭시르제(elixirs), 트로치제(troches) 또는 로젠제(lozenge) 형태인 유산균제.
  14. 청구항 12에 있어서,
    상기 유산균제는 동결 건조된 분말의 형태인 유산균제.
  15. 청구항 12 내지 청구항 14 중 어느 한 항에 있어서,
    상기 유산균제는 40℃에서 4주간 보관한 후의 유산균 생존률이 45% 이상인 유산균제.
  16. 유산균을, 청구항 6 내지 청구항 9 중 어느 한 항의 배양 배지에서 배양하는 것을 포함하는, 유산균의 생육을 촉진하는 방법.
  17. 유산균을, 청구항 6 내지 청구항 9 중 어느 한 항의 배양 배지에서 배양하는 것을 포함하는, 유산균의 열안정성을 증가하는 방법.
PCT/KR2019/014257 2018-10-30 2019-10-28 유산균의 동결 보호를 위한 시스테인 또는 이의 염의 용도 WO2020091334A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3118263A CA3118263A1 (en) 2018-10-30 2019-10-28 Use of cysteine or salt thereof for cryoprotecting lactic acid bacteria
CN201980080487.XA CN113166715A (zh) 2018-10-30 2019-10-28 半胱氨酸或半胱氨酸的盐用于保护乳酸菌防冻的用途
AU2019369917A AU2019369917C1 (en) 2018-10-30 2019-10-28 Use of cysteine or salt thereof for cryoprotecting lactic acid bacteria
JP2021548490A JP2022509472A (ja) 2018-10-30 2019-10-28 乳酸菌の凍結保護のためのシステインまたはその塩の用途(use of cysteine or salt thereof for cryoprotecting lactic acid bacteria)
SG11202104478QA SG11202104478QA (en) 2018-10-30 2019-10-28 Use of cysteine or salt thereof for cryoprotecting lactic acid bacteria
EP19880216.7A EP3875577A4 (en) 2018-10-30 2019-10-28 USE OF CYSTEINE OR A CORRESPONDING SALT FOR THE CRYOPROTECTION OF LACTIC BACTERIA
US17/290,526 US20210317401A1 (en) 2018-10-30 2019-10-28 Use of cysteine or salt thereof for cryoprotecting lactic acid bacteria
JP2023030196A JP2023073258A (ja) 2018-10-30 2023-02-28 乳酸菌の凍結保護のためのシステインまたはその塩の用途(use of cysteine or salt thereof for cryoprotecting lactic acid bacteria)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2018-0131242 2018-10-30
KR20180131242 2018-10-30
KR20190047299 2019-04-23
KR10-2019-0047299 2019-04-23
KR10-2019-0134072 2019-10-25
KR1020190134072A KR102447791B1 (ko) 2018-10-30 2019-10-25 유산균의 동결 보호를 위한 시스테인 또는 이의 염의 용도

Publications (1)

Publication Number Publication Date
WO2020091334A1 true WO2020091334A1 (ko) 2020-05-07

Family

ID=70464193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014257 WO2020091334A1 (ko) 2018-10-30 2019-10-28 유산균의 동결 보호를 위한 시스테인 또는 이의 염의 용도

Country Status (1)

Country Link
WO (1) WO2020091334A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113604402A (zh) * 2021-08-30 2021-11-05 江苏恒顺醋业股份有限公司 一种特异性的乳酸菌培养基及其培养方法和应用
CN113652359A (zh) * 2021-07-05 2021-11-16 上海商学院 一种乳酸菌冻干粉、制备方法及其冻干保护剂
CN114774281A (zh) * 2022-02-25 2022-07-22 河南省商业科学研究所有限责任公司 一种保加利亚乳杆菌冻干用复合保护剂

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285979A2 (en) * 1987-04-06 1988-10-12 Rhone-Poulenc Inc. Method for enhancing the stability of freeze-dried cultures
KR20060108964A (ko) * 2005-04-14 2006-10-19 정명준 엔테로코커스 패칼리스 cbt―sl(5), 이를 이용한항균 배양액 분리농축물의 제조 방법 및 이를 포함하는조성물
US20090324776A1 (en) * 2006-07-13 2009-12-31 Compagnie Gervais Danone Cysteine granules and use thereof as bifidobacterium animalis lactis growth stimulants
KR101075558B1 (ko) 2008-12-03 2011-10-20 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101075557B1 (ko) 2008-12-03 2011-10-20 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101178217B1 (ko) 2009-10-28 2012-09-07 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101255050B1 (ko) 2009-07-14 2013-04-16 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101486999B1 (ko) 2009-07-22 2015-01-28 씨제이제일제당 주식회사 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101604633B1 (ko) * 2015-08-28 2016-03-18 주식회사 락토메이슨 유산균 배지 조성물 및 이를 이용한 유산균 분말의 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285979A2 (en) * 1987-04-06 1988-10-12 Rhone-Poulenc Inc. Method for enhancing the stability of freeze-dried cultures
KR20060108964A (ko) * 2005-04-14 2006-10-19 정명준 엔테로코커스 패칼리스 cbt―sl(5), 이를 이용한항균 배양액 분리농축물의 제조 방법 및 이를 포함하는조성물
US20090324776A1 (en) * 2006-07-13 2009-12-31 Compagnie Gervais Danone Cysteine granules and use thereof as bifidobacterium animalis lactis growth stimulants
KR101075558B1 (ko) 2008-12-03 2011-10-20 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101075557B1 (ko) 2008-12-03 2011-10-20 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101255050B1 (ko) 2009-07-14 2013-04-16 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101486999B1 (ko) 2009-07-22 2015-01-28 씨제이제일제당 주식회사 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101178217B1 (ko) 2009-10-28 2012-09-07 씨제이제일제당 (주) 신규한 락토바실러스 플란타룸 및 이를 포함하는 조성물
KR101604633B1 (ko) * 2015-08-28 2016-03-18 주식회사 락토메이슨 유산균 배지 조성물 및 이를 이용한 유산균 분말의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CELIK, 0. F.: "Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria", JOURNAL OF DAIRY SCIENCE, 2013, pages 3506 - 3516 ; 3507, 3508, 3509, XP055702666 *
CHAMPAGNE ET AL., FOOD RESEARCH INTERNATIONAL, vol. 29, 1996, pages 555 - 562
FONT DE VALDEZ, G. ET AL.: "Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying", CRYOBIOLOGY, 1983, pages 560 - 566, XP001315085 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652359A (zh) * 2021-07-05 2021-11-16 上海商学院 一种乳酸菌冻干粉、制备方法及其冻干保护剂
CN113604402A (zh) * 2021-08-30 2021-11-05 江苏恒顺醋业股份有限公司 一种特异性的乳酸菌培养基及其培养方法和应用
CN114774281A (zh) * 2022-02-25 2022-07-22 河南省商业科学研究所有限责任公司 一种保加利亚乳杆菌冻干用复合保护剂

Similar Documents

Publication Publication Date Title
WO2020004933A1 (ko) 구연산염을 포함하는 유산균 동결 보호용 조성물
WO2016200048A1 (ko) 유산균의 생존율, 저장안정성, 내산성 또는 내담즙성을 증가시키는 방법
WO2020091334A1 (ko) 유산균의 동결 보호를 위한 시스테인 또는 이의 염의 용도
WO2012060579A2 (ko) 항균용 유산균 사균체 및 이의 제조방법
KR101604633B1 (ko) 유산균 배지 조성물 및 이를 이용한 유산균 분말의 제조 방법
WO2017105140A1 (ko) 장내 생존율이 증대된 유산균의 코팅 방법
WO2020050460A1 (ko) 염증성 장질환 예방 또는 치료용 약학적 조성물
CN108148789B (zh) 一种鼠李糖乳杆菌及其在制备细菌素中的应用
WO2018186700A1 (ko) 실크 피브로인으로 코팅되어 장내 정착성이 향상된 유산균을 포함하는 조성물
WO2010087551A1 (ko) 멤브레인 생물반응기를 이용한 고농도 유산균의 생산방법 및 유산균 동결건조 분말의 제조방법
JP2023073258A (ja) 乳酸菌の凍結保護のためのシステインまたはその塩の用途(use of cysteine or salt thereof for cryoprotecting lactic acid bacteria)
WO2014069874A1 (ko) 녹차 유산균을 포함하는 피부 각질 제거용 조성물
WO2018012941A2 (ko) 가스발생량이 낮은 류코노스톡 메센테로이드 cjlm119 균주 및 이를 이용한 김치의 제조방법
WO2019027073A1 (ko) 바실러스 서브틸리스 및 바실러스 리체니포미스를 포함하는 사료 첨가제, 상기 첨가제를 포함하는 사료 조성물 및 상기 사료첨가제의 제조 방법
WO2019045493A1 (en) NOVEL BACILLUS AMYLOLIC FACTOR STRAIN AND PROCESS FOR PREPARING A FERMENTED SOY PRODUCT USING THE SAME
CN115975858A (zh) 一株嗜酸乳杆菌ls001及其培养方法与抑制幽门螺杆菌的应用
WO2019013382A1 (ko) 바실러스 서브틸리스 및 바실러스 리체니포미스를 포함하는 사료 첨가제, 상기 첨가제를 포함하는 사료 조성물 및 상기 사료첨가제의 제조 방법
KR102290654B1 (ko) 동결보호용 조성물 및 이를 포함하는 유산균제
WO2012008760A9 (ko) 바실러스속 고온성 균주 및 이를 이용한 대두박이 함유된 어분의 제조방법
WO2023200262A1 (ko) 칼슘-알긴산 비드로 포집된 유산균의 제조 방법
US8501456B2 (en) Method for making lactic acid bacteria composition
KR102384604B1 (ko) 저분자 콜라겐 펩타이드를 포함하는 프로바이오틱스-코팅 동결보존용 조성물 및 동결 보존 방법
WO2021261929A1 (ko) 신규 락토바실러스 루테리 균주 및 이의 용도
WO2018012943A1 (ko) 가스발생량이 낮은 류코노스톡 메센테로이드 cjlm627 균주 및 이를 이용한 김치의 제조방법
WO2024090679A1 (ko) 크로노박터 사카자키에 대해 사멸능을 갖는 신규 박테리오파지, 캡슐화된 박테리오파지 분말의 제조방법, 박테리오파지 분말 및 이를 포함하는 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548490

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3118263

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019369917

Country of ref document: AU

Date of ref document: 20191028

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019880216

Country of ref document: EP

Effective date: 20210531