WO2020091322A1 - 폴리프로필렌 - Google Patents

폴리프로필렌 Download PDF

Info

Publication number
WO2020091322A1
WO2020091322A1 PCT/KR2019/014210 KR2019014210W WO2020091322A1 WO 2020091322 A1 WO2020091322 A1 WO 2020091322A1 KR 2019014210 W KR2019014210 W KR 2019014210W WO 2020091322 A1 WO2020091322 A1 WO 2020091322A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
molecular weight
present
catalyst
formula
Prior art date
Application number
PCT/KR2019/014210
Other languages
English (en)
French (fr)
Inventor
이인선
김석환
김병석
박하나
전상진
김세영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2020091322A1 publication Critical patent/WO2020091322A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/15Isotactic

Definitions

  • the present invention relates to polypropylene having excellent processability and mechanical properties.
  • Polypropylene has been used as a general-purpose resin in various fields in the past due to its low specific gravity, high heat resistance, and excellent processability and chemical resistance.
  • the catalyst for polypropylene polymerization can be largely divided into a Ziegler-Natta catalyst and a metallocene-based catalyst.
  • the Ziegler-Natta catalyst it is a multi-site catalyst with multiple active sites. It is characterized by a wide molecular weight distribution, and there is a problem in that the composition distribution of the comonomer is not uniform and thus there is a limit in securing desired physical properties.
  • the metallocene catalyst is composed of a combination of a main catalyst having a transition metal compound as a main component and a co-catalyst having an organometallic compound having aluminum as a main component.
  • a catalyst is a homogeneous complex catalyst, and is a single site catalyst. Is, the molecular weight distribution is narrow according to the properties of a single active point, a polymer having a uniform composition distribution of the comonomer is obtained, and the stereoregularity of the polymer, copolymerization characteristics, molecular weight, It has properties that can change the crystallinity, etc.
  • the present invention is to provide a polypropylene having excellent processability and mechanical properties and high heat resistance.
  • the molecular weight distribution (Mw / Mn, PDI) is 3.0 to 5.0
  • the integral value of the area where the log Mw value is 6.0 or higher is 2% or more of the total integral value
  • Polypropylene is provided.
  • the polypropylene according to the present invention has a high ultra-high molecular weight content and has a wide molecular weight distribution, so it can exhibit excellent processability and mechanical properties. In addition, since it exhibits high heat resistance, it can be usefully used in the manufacture of automobiles, home appliances, packaging materials, medical packages, medical films, and food packages.
  • Figure 1 shows the GPC curve of the polypropylene prepared in Example 1 of the present invention.
  • Figure 2 shows the GPC curve of the polypropylene prepared in Example 2 of the present invention.
  • Figure 3 shows the GPC curve of the polypropylene prepared in Example 3 of the present invention.
  • Figure 4 shows the GPC curve of the polypropylene prepared in Example 4 of the present invention.
  • Figure 5 shows the GPC curve of the polypropylene prepared in Example 5 of the present invention.
  • Figure 6 shows the GPC curve of the polypropylene prepared in Comparative Example 1 of the present invention.
  • first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
  • the integral value of a region having a log Mw value of 6.0 or more is 2% or more of the total integral value.
  • the present invention is to provide a polypropylene having a high heat resistance while having a high molecular weight distribution and a high molecular weight distribution to improve processability and high Tm.
  • the polypropylene provided in the present invention may be a homo propylene (homo polypropylene) that is a propylene homopolymer.
  • the polypropylene according to an embodiment of the present invention has a molecular weight distribution (Mw / Mn, PDI) of 3.0 to 5.0. That is, the present invention satisfies a broad molecular weight distribution of 3.0 or more, and thus can exhibit excellent processability during injection.
  • Mw / Mn, PDI molecular weight distribution
  • the molecular weight distribution of the polypropylene of the present invention is 3.0 or more, or 3.2 or more, or 3.4 or more, or 3.5 or more, and 5.0 or less, or 4.8 or less, or 4.5 or less, or 4.2 or less . Or 4.0 or less. According to the broad molecular weight distribution as described above, the polypropylene of the present invention can exhibit excellent processability.
  • the molecular weight distribution is measured by weight permeation molecular weight (Mw) and number average molecular weight (Mn) of polypropylene using gel permeation chromatography (GPC), and as a molecular weight distribution, the weight average molecular weight with respect to the number average molecular weight is Ratio (Mw / Mn) was calculated.
  • a polypropylene sample was evaluated using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm length column.
  • the evaluation temperature was 160 ° C
  • 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was measured at a rate of 1 mL / min.
  • Samples were prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 ⁇ L.
  • the values of Mw and Mn were measured using an assay curve formed using a polystyrene standard.
  • the molecular weight of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • the regio defects when the tacticity (mmmm%) is 97.5% or more are 0.5% or less.
  • 1,2-insertion occurs basically when propylene is inserted into the metal of the catalyst.
  • the pentad [mmmm] value is over 97.5%.
  • region defects are carbon (CH 2 ) Up to 5 per 1000, i.e. 0.5% or less.
  • a region defect of 0.5% or less means that the polypropylene may have a high melting point according to an embodiment of the present invention, and it is possible to confirm an effect of increasing heat resistance by these characteristics.
  • the region defects (regio defects) of the polypropylene of the present invention are 0.03% or more, or 0.05% or more, or 0.1% or more, and 1.0% or less, or 0.8% or less, or 0.5% or less Can be. According to the above-described region defect ratio, the polypropylene of the present invention may exhibit a high melting point.
  • the tacticity and regio defects were measured by analyzing the sequence distribution with reference to the paper Prog.Polymer.Sci.26 (2001) 443-533.
  • the integral value of a region having a log Mw value of 6.0 or more is 2% or more of the total integral value.
  • the polypropylene of the present invention has an integral value of a log Mw value of 6.0 or more in an integral value of 2% or more, or 2.2% or more, or 2.4% or more, or 2.5% or more of the total integral value. In addition, it may be 5% or less, 4.5% or less, or 4.0% or less, or 3.5% or less, or 3.3% or less.
  • the integral value of a region having a log Mw value of 6.0 or more is 2% or more of the total integral value, it means that the content of ultra high molecular weight of polypropylene is high, and this property is caused by further reaction between the double bond chain ends of polypropylene. Can be achieved.
  • the polypropylene of the present invention may exhibit a high ultra high molecular weight content, and thus many polymers having an ultra high molecular weight have excellent mechanical processability.
  • the GPC curve graph means that the log function molecular weight and mass fraction of polypropylene are measured by GPC and plotted on the x and y axes.
  • Mw in the above refers to a weight-average molecular weight.
  • polypropylene according to an embodiment of the present invention exhibits high stereotacticity, with xylene solubles (Xs) being 1.0 wt% or less, while meeting the properties as described above.
  • the xylene soluble is dissolved in polypropylene in xylene, cooled, and the insoluble portion is crystallized from the resulting cooling solution to measure the content (% by weight) of the soluble polymer in the determined cooling xylene.
  • the xylene solubles contain a low stereoregular polymer chain. Accordingly, it can be seen that the lower the xylene soluble content, the higher the stereoregularity of the polymer.
  • Polypropylene according to an embodiment of the present invention by showing a low xylene solubles of less than 1.0% by weight, has a high three-dimensional regularity, and as a result can exhibit excellent stiffness and flexural modulus.
  • the xylene solubles of the polypropylene of the present invention is 1.0% by weight or less, or 0.9% by weight or less, or 0.8% by weight or less, or 0.7% by weight or less, and 0.1% by weight or more, or 0.2% by weight Or more, or 0.3% or more, or 0.4% or more, or 0.5% or more.
  • the xylene solubles of polypropylene specifically, put xylene in a polypropylene sample, heat at 135 ° C. for 1 hour, cool for 30 minutes, pre-treat, and then in OminiSec (Viscotek FIPA) equipment 1
  • OminiSec Viscotek FIPA
  • the polypropylene according to an embodiment of the present invention has high melting point (Tm) while satisfying the characteristics as described above.
  • the melting point of the polypropylene of the present invention is 155 ° C or higher, or 156 ° C or higher, or 157 ° C or higher, and 165 ° C or lower, or 163 ° C or lower or 160 ° C or lower, according to conventional polypropylene It can have a higher melting point than.
  • the melting point of the polypropylene after increasing the temperature of the polypropylene to 200 °C, maintained at that temperature for 5 minutes, and then lowered to 30 °C, again increase the temperature DSC (Differential Scanning Calorimeter (manufactured by TA))
  • the top of the curve can be measured as the melting point.
  • the rate of temperature rise and fall is 10 ° C / min, respectively, and the melting point is a result measured in the section where the second temperature rises.
  • the polypropylene according to an embodiment of the present invention may have a tensile strength (Tensile Strength at Yield) of 350 to 400 kg / cm 2. More specifically, the tensile strength of the polypropylene according to an embodiment of the present invention is 350 kg / cm 2 or more, or 352 kg / cm 2 or more, or 354 kg / cm 2 or more, and 400 kg / cm 2 or less, or 390 kg / cm 2 Or less, or 380 kg / cm 2 or less, or 370 kg / cm 2 or less.
  • the polypropylene according to an embodiment of the present invention may have a flexural strength of 490 to 550 kg / cm 2. More specifically, the flexural strength of polypropylene according to an embodiment of the present invention is 490 kg / cm 2 or more, or 495 kg / cm 2 or more, or 500 kg / cm 2 or more, or 510 kg / cm 2 or more, and 550 kg / cm 2 Or less, or 545 kg / cm 2 or less, or 540 kg / cm 2 or less, or 535 kg / cm 2 or less.
  • the polypropylene according to an embodiment of the present invention may have a flexural modulus of 16,300 to 18,000 kg / cm 2. More specifically, the flexural modulus of polypropylene according to an embodiment of the present invention is 16,300 kg / cm 2 or more, or 16,500 kg / cm 2 or more, or 16,700 kg / cm 2 or more, or 16,800 kg / cm 2 or more, and 18,000 kg / cm 2 Or less, or 17,800 kg / cm 2 or less, or 17,700 kg / cm 2 or less, or 17,600 kg / cm 2 or less.
  • the polypropylene of the present invention may exhibit significantly improved tensile strength, flexural strength, and flexural modulus than the existing Ziegler-Natta catalyst-applied polypropylene.
  • the tensile strength, flexural strength, and flexural modulus of the polypropylene refer to values measured by the ASTM D790 method.
  • the polypropylene according to an embodiment of the present invention has a weight average molecular weight (Mw) of 100,000 to 400,000 g / mol. More preferably, the weight average molecular weight is 100,000 g / mol or more, or 120,000 g / mol or more, or 150,000 g / mol or more, or 160,000 g / mol or more, and 400,000 g / mol or less, or 300,000 g / mol Or less, or 250,000 g / mol or less, or 220,000 g / mol or less, or 200,000 g / mol or less.
  • Mw weight average molecular weight
  • the range of the weight average molecular weight (Mw) may be appropriately adjusted in consideration of the use or application field of the polypropylene.
  • polypropylene according to an embodiment of the invention having the above physical properties, in the presence of a specific metallocene compound as a catalytically active component can be prepared by a production method comprising the step of polymerizing a propylene monomer. have.
  • a method for producing polypropylene comprising polymerizing a propylene monomer is provided.
  • a method for producing polypropylene comprising polymerizing a propylene monomer is provided.
  • M is zirconium (Zr) or hafnium (Hf),
  • X 1 and X 2 are each independently halogen
  • A is carbon, silicon or germanium
  • R 1 to R 4 are each independently C 1-20 alkyl
  • R 5 and R 6 are each independently C 1-20 alkyl, C 1-20 alkoxy, or C 2-20 alkoxyalkyl.
  • Halogen may be fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the C 1-20 alkyl group may be a straight chain, branched chain or cyclic alkyl group.
  • the C 1-20 alkyl group is a C 1-15 straight chain alkyl group; C 1-10 straight chain alkyl group; C 1-5 straight chain alkyl group; C 3-20 branched or cyclic alkyl group; C 3-15 branched or cyclic alkyl group; Or it may be a C 3-10 branched chain or cyclic alkyl group.
  • the alkyl group of C 1-20 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, neo-pentyl group or cyclohexyl group.
  • the catalyst composition used in the production of polypropylene according to an embodiment of the present invention includes the metallocene compound of Formula 1 as a single catalyst.
  • an olefin polymer polymerized using one metallocene catalyst has a narrower molecular weight distribution than an olefin polymer polymerized using a Ziegler-Natta catalyst, thereby obtaining a polymer having a narrow molecular weight distribution.
  • the ligand of the metallocene compound of Chemical Formula 1 used in the production of polypropylene according to an embodiment of the present invention has two indacenes above and below and a silane bridge connecting them. It is made of. While the general ligand structure of the metallocene compound is indene, the metallocene compound of Formula 1 of the present invention includes an indencene structure in which a pentagonal saturated ring compound is fused to indene. .
  • the olefin polymer exhibiting a broad molecular weight distribution compared to the indene ligand may be polymerized by the ligand containing indacene.
  • the position 2 of the indacene is substituted with a methyl group
  • the positions 3 and 5 each include a phenyl group substituted with an alkyl group, so that sufficient electrons can be supplied. Better catalytic activity can be exhibited by an inductive effect.
  • the two indacenes are linked by a bridge group, they can have structurally high stability and exhibit high polymerization activity even when supported on a carrier.
  • R 1 to R 4 may each independently be a C 1-10 alkyl group, and more specifically, C 3-6 branched chain alkyl such as tert-butyl.
  • X 1 and X 2 may be each independently chloro (Cl).
  • A may be silicon
  • each of the substituents R 5 and R 6 of A may be independently C 1-10 alkyl or C 2-20 alkoxyalkyl, and more specifically C 1-4 straight-chain alkyl group, or C 3-6 branch. It may be a C 3-10 alkyl group substituted with a chain alkoxy group.
  • R 5 and R 6 may each independently be methyl, ethyl, n-propyl, iso-propyl, n-butyl, tert-butyl, or tert-butoxy hexyl.
  • the metallocene compound of Chemical Formula 1 may be represented by the following structural formula.
  • the metallocene compound represented by Chemical Formula 1 may be prepared by a method for synthesizing a known organic compound, and is described in detail in Examples described later.
  • the metallocene catalyst used in the present invention may be used in the form of a supported metallocene catalyst by supporting the metallocene compound represented by Chemical Formula 1 on a carrier together with a cocatalyst compound.
  • the co-catalyst supported on the carrier is an organometallic compound containing a Group 13 metal, and polymerizes olefins under a general metallocene catalyst. It is not particularly limited as long as it can be used.
  • the co-catalyst compound may include at least one of the aluminum-containing first co-catalyst of Formula 3 and the borate-based second co-catalyst of Formula 4 below.
  • R 7 are each independently a halogen, a halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more,
  • T + is a + monovalent polyatomic ion
  • B is a +3 oxidized boron
  • G is independently hydride, dialkylamido, halide, alkoxide, aryl oxide, hydrocarbyl, halocarbyl And halo-substituted hydrocarbyl, wherein G has 20 or fewer carbons, but at only one or less positions, G is halide.
  • the polymerization activity can be further improved by using the first and second cocatalysts.
  • the first co-catalyst of Chemical Formula 3 may be a linear, circular or reticulated alkyl aluminoxane-based compound having a repeating unit, and specific examples of the first co-catalyst are methyl aluminoxane (MAO) and ethyl alumina. And oxalic acid, isobutyl aluminoxane or butyl aluminoxane.
  • MAO methyl aluminoxane
  • ethyl alumina ethyl alumina
  • oxalic acid isobutyl aluminoxane or butyl aluminoxane.
  • the second cocatalyst of Formula 4 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • the second co-catalyst trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-butyl) ammonium tetraphenylborate , Methyltetradecyclooctadecylammonium tetraphenylborate, N, N-dimethylaninium tetraphenylborate, N, N-diethylaninium tetraphenylborate, N, N-dimethyl (2,4,6-trimethylaninium ) Tetraphenylborate, trimethylammonium tetrakis (pentafloorophenyl) borate, methylditetradecylammonium tetrakis (pentaphenyl) borate
  • the mass ratio of the total transition metal to the carrier included in the metallocene compound represented by Chemical Formula 1 may be 1: 10 to 1: 1,000.
  • the carrier and the metallocene compound are included in the mass ratio, an optimal shape may be exhibited.
  • the mass ratio of the co-catalyst compound to the carrier may be 1: 1 to 1: 100.
  • a carrier containing a hydroxy group on the surface may be used as the carrier, preferably having a highly reactive hydroxy group and a siloxane group that has been dried to remove moisture on the surface. Any carrier can be used.
  • silica dried at high temperature silica-alumina, and silica-magnesia can be used, and these are usually oxides, carbonates, such as Na 2 O, K 2 CO 3 , BaSO 4 , and Mg (NO 3 ) 2 , Sulfate, and nitrate components.
  • the drying temperature of the carrier is preferably 200 to 800 ° C, more preferably 300 to 600 ° C, and most preferably 300 to 400 ° C.
  • the drying temperature of the carrier is less than 200 ° C, there is too much moisture, and the surface water and the co-catalyst react, and when it exceeds 800 ° C, the surface area decreases as the pores on the surface of the carrier are combined, and there are many hydroxyl groups on the surface. It is not preferable because the reaction site with the co-catalyst decreases because only the siloxane group disappears.
  • the amount of hydroxy groups on the surface of the carrier is preferably 0.1 to 10 mmol / g, and more preferably 0.5 to 5 mmol / g.
  • the amount of hydroxy groups on the surface of the carrier can be controlled by the method and conditions of the carrier or drying conditions, such as temperature, time, vacuum or spray drying.
  • the amount of the hydroxy group is less than 0.1 mmol / g, there are few reaction sites with the cocatalyst, and if it exceeds 10 mmol / g, it is not preferable because it may be due to moisture other than the hydroxy group present on the surface of the carrier particle. not.
  • the polypropylene according to the present invention can be produced by polymerizing propylene in the presence of the above-mentioned metallocene catalyst.
  • the polymerization reaction may be performed by single polymerization of propylene using one continuous slurry polymerization reactor, loop slurry reactor, gas phase reactor, or solution reactor.
  • the polymerization temperature may be about 25 to about 500 ° C, preferably about 25 to about 200 ° C, more preferably about 50 to about 150 ° C.
  • the polymerization pressure may be about 1 to about 100 Kgf / cm 2, preferably about 1 to about 50 Kgf / cm 2, more preferably about 5 to about 30 Kgf / cm 2.
  • the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, such as pentane, hexane, heptane, nonane, decane, and their isomers and aromatic hydrocarbon solvents such as toluene and benzene, such as dichloromethane and chlorobenzene. It can be injected by dissolving or diluting a hydrocarbon solvent substituted with a chlorine atom.
  • the solvent used here is preferably used by removing a small amount of water or air acting as a catalyst poison by treating with a small amount of alkyl aluminum, and it is also possible to further use a cocatalyst.
  • the polypropylene according to the present invention can be produced by polymerizing propylene using the above-mentioned supported metallocene catalyst.
  • the polypropylene may exhibit excellent processability due to a wide molecular weight distribution, excellent mechanical properties according to a high content in the ultra-high molecular weight region, and high melting point due to low region defects. Due to the fulfillment of the above properties, the polypropylene according to the present invention has good processability and extrusion properties, and is excellent in heat resistance, and thus can be preferably applied to automobiles, home appliances, packaging materials, medical packages, medical films, foodstuff packages, and the like.
  • the aqueous layer and toluene were re-entered into the reactor, stirred and allowed to stand for 5 minutes, and then the aqueous layer was separated and removed.
  • the organic layer was dehydrated with MgSO 4 , filtered again, introduced into a reactor, dried, and the ligand compound dimethylsilanediyl (bis (4- (3,5-di-tert-butylphenyl) -2-methyl-1,5,6,7 -tetrahydro-s-indacen-1-yl) in 20% yield.
  • the aqueous layer and toluene were re-entered into the reactor, stirred and allowed to stand for 5 minutes, and then the aqueous layer was separated and removed.
  • the organic layer was dehydrated with MgSO 4 , filtered again, introduced into a reactor, and dried, and the ligand compound dibutylsilanediyl (bis (4- (3,5-di-tert-butylphenyl) -2-methyl-1,5,6,7 -tetrahydro-s-indacen-1-yl) in 25% yield.
  • aqueous layer and toluene were re-entered into the reactor, stirred and allowed to stand for 5 minutes, and then the aqueous layer was separated and removed.
  • the organic layer was dehydrated with MgSO 4 , filtered again, introduced into a reactor, and dried to form a ligand compound 6- (tert-butoxy) hexyl) methylsilanediyl (bis (4- (3,5-di-tert-butylphenyl) -2- methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) was obtained in a yield of 8%.
  • Ligand compound 6- (tert-butoxy) hexyl) methylsilanediyl (bis (4- (3,5-di-tert-butylphenyl) -2-methyl-1,5,6 in the same manner as in 4-1 of Synthesis Example 4 , 7-tetrahydro-s-indacen-1-yl).
  • Preparation Example 1 a supported catalyst was prepared in the same manner as in Preparation Example 1, except that 70 ⁇ mol of the metallocene compound of Synthesis Example 2 was added instead of the metallocene compound of Synthesis Example 1.
  • Preparation Example 1 a supported catalyst was prepared in the same manner as in Preparation Example 1, except that 70 ⁇ mol of the metallocene compound of Synthesis Example 3 was added instead of the metallocene compound of Synthesis Example 1.
  • Preparation Example 1 a supported catalyst was prepared in the same manner as in Preparation Example 1, except that 70 ⁇ mol of the metallocene compound of Synthesis Example 4 was added instead of the metallocene compound of Synthesis Example 1.
  • Preparation Example 1 a supported catalyst was prepared in the same manner as in Preparation Example 1, except that 70 ⁇ mol of the metallocene compound of Synthesis Example 5 was added instead of the metallocene compound of Synthesis Example 1.
  • Preparation Example 1 a supported catalyst was prepared in the same manner as in Preparation Example 1, except that 70 ⁇ mol of the metallocene compound of Comparative Synthesis Example 1 was added instead of the metallocene compound of Synthesis Example 1.
  • Preparation Example 1 a supported catalyst was prepared in the same manner as in Preparation Example 1, except that 70 ⁇ mol of the metallocene compound of Comparative Synthesis Example 2 was added instead of the metallocene compound of Synthesis Example 1.
  • the catalyst composition of Preparation Example 1 was mixed with oil / grease to prepare a mixture of 16 to 17% by weight (mud catalyst type). Then, the mixture and 20 kg / h of propylene were introduced together into a pre-polymerization reactor (reactor temperature 20 ° C., pressure 15 kgf / cm 2 ) (retention time 8 min), and then continuously loop reactor (loop reactor). ).
  • Homo polypropylene was produced in the same manner using each catalyst of Preparation Examples 2 to 5 and Comparative Preparation Examples 1 to 2.
  • GPC gel permeation chromatography, manufactured by Waters
  • Mn weight average molecular weight
  • PDI molecular weight distribution
  • a polypropylene sample was evaluated using a Waters PL-GPC220 instrument using a Polymer Laboratories PLgel MIX-B 300 mm length column.
  • the evaluation temperature was 160 ° C
  • 1,2,4-trichlorobenzene was used as a solvent, and the flow rate was measured at a rate of 1 mL / min.
  • Samples were prepared at a concentration of 10 mg / 10 mL, and then supplied in an amount of 200 ⁇ L.
  • the values of Mw and Mn were measured using an assay curve formed using a polystyrene standard.
  • the molecular weight of the polystyrene standard was 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • sequence distribution was analyzed and measured with reference to the paper Prog.Polymer.Sci.26 (2001) 443-533.
  • Xylene Soluble (Xylene Soluble, Weight%): Xylene was added to each polypropylene sample, heated at 135 ° C. for 1 hour, cooled for 30 minutes, and pretreated. Xylene was flowed for 4 hours at a flow rate of 1 mL / min in an OminiSec (FIPA) company's FIPA, Refractive Index (RI), Pressure across middle of bridge (DP), Inlet pressure through bridge top (IP) When the base line of the to bottom was stabilized, the concentration and injection amount of the pre-treated sample were recorded and measured, and the peak area was calculated.
  • FIPA OminiSec
  • RI Refractive Index
  • DP Pressure across middle of bridge
  • IP Inlet pressure through bridge top
  • the ratio of the integral value of the integral value of the area where the Log Mw value is 6.0 or higher is 2.0% or more and is very high. While having a high molecular weight content, it exhibited characteristics of a broad molecular weight distribution of 3.0 or more.
  • the melting point (Tm) is 155 ° C or higher and has high heat resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 가공성이 우수한 폴리프로필렌에 관한 것이다. 초고분자량 함량이 높고 넓은 분자량 분포를 가져 우수한 가공성, 기계적 물성 및 고내열성을 나타낼 수 있다.

Description

폴리프로필렌
관련 출원(들)과의 상호 인용
본 출원은 2018년 11월 2일자 한국 특허 출원 제 10-2018-0133861호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 가공성 및 기계적 물성이 우수한 폴리프로필렌에 관한 것이다.
폴리프로필렌은 낮은 비중과 높은 내열성, 그리고 우수한 가공성과 내화학성으로 인해 종래 다양한 분야에 범용 수지로 사용되어 왔다.
최근에는 투명성이 요구되는 사출 성형품 제조를 위해, 프로필렌을 에틸렌 또는 부텐과 랜덤 공중합하는 방법이 연구되고 있다. 그러나, 랜덤 공중합된 폴리프로필렌은 기존의 호모 폴리프로필렌과 비교하여 중합체내 공단량체인 부텐의 함량이 증가함에 따라 결정성이 감소하고, 그 결과로서 강성과 연관된 물성인 굴곡탄성율이 저하되는 문제가 있었다.
한편, 폴리프로필렌 중합용 촉매는 크게 지글러 나타계 촉매와 메탈로센계 촉매로 구분할 수 있는데, 지글러 나타계 촉매의 경우 활성점이 여러 개 혼재하는 다활성점 촉매(multi-site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.
반면, 메탈로센 촉매는 전이금속 화합물이 주성분인 주촉매와 알루미늄이 주성분인 유기 금속 화합물인 조촉매의 조합으로 이루어지며, 이와 같은 촉매는 균일계 착체 촉매로 단일 활성점 촉매(single site catalyst)이며, 단일 활성점 특성에 따라 분자량 분포가 좁으며, 공단량체의 조성 분포가 균일한 고분자가 얻어지며, 촉매의 리간드 구조 변형 및 중합 조건의 변경에 따라 고분자의 입체 규칙도, 공중합 특성, 분자량, 결정화도 등을 변화시킬 수 있는 특성을 가지고 있다.
이에 메탈로센계 촉매를 이용하여, 투명성 및 강성과 함께, 높은 굴곡 탄성율을 가져 사출 성형에 특히 유용한 폴리프로필렌의 개발이 요구된다.
상기 종래기술의 문제점을 해결하기 위해, 본 발명은 가공성과 기계적 물성이 우수하고 고내열성을 갖는 폴리프로필렌을 제공하고자 한다.
상기 과제를 해결하기 위하여, 본 발명은,
분자량 분포(Mw/Mn, PDI)가 3.0 내지 5.0 이고,
입체규칙성(tacticity, mmmm%) 97.5% 이상일 때의 영역 결함(regio defects)이 0.5% 이하이며,
x 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서 Log Mw 값이 6.0 이상인 영역의 적분값이 전체 적분 값의 2% 이상인,
폴리프로필렌(polypropylene)을 제공한다.
본 발명에 따른 폴리프로필렌은 초고분자량 함량이 높고 넓은 분자량 분포를 가져 우수한 가공성 및 기계적 물성을 나타낼 수 있다. 또한, 고내열성을 나타내어 자동차용, 가전용품, 포장재, 의료용패키지, 의료용 필름, 식료품패키지 등의 제조에 유용하게 사용될 수 있다.
도 1은 본 발명의 실시예 1에서 제조한 폴리프로필렌의 GPC 커브를 나타낸 것이다.
도 2는 본 발명의 실시예 2에서 제조한 폴리프로필렌의 GPC 커브를 나타낸 것이다.
도 3은 본 발명의 실시예 3에서 제조한 폴리프로필렌의 GPC 커브를 나타낸 것이다.
도 4는 본 발명의 실시예 4에서 제조한 폴리프로필렌의 GPC 커브를 나타낸 것이다.
도 5는 본 발명의 실시예 5에서 제조한 폴리프로필렌의 GPC 커브를 나타낸 것이다.
도 6은 본 발명의 비교예 1에서 제조한 폴리프로필렌의 GPC 커브를 나타낸 것이다.
도 7은 본 발명의 비교예 2에서 제조한 폴리프로필렌의 GPC 커브를 나타낸 것이다.
본 발명에서, 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명의 폴리프로필렌에 대해 상세히 설명한다.
본 발명의 일 구현예에 따른 폴리프로필렌은, 분자량 분포(Mw/Mn, PDI)가 3.0 내지 5.0 이고, 입체규칙성(tacticity, mmmm%) 97.5 % 이상일 때의 영역 결함(regio defects)이 0.5 % 이하이며, x 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서 Log Mw 값이 6.0 이상인 영역의 적분값이 전체 적분값의 2% 이상인 것을 특징으로 한다.
일반적으로 고분자의 초고분자량이 많을수록 또는 분자량 분포가 넓을 수록 기계적 특성이 향상되는 것으로 알려져 있으나, 메탈로센 촉매를 이용하여 고분자를 제조시 분자량 분포가 좁아져 초고분자량 함량이 낮고 사출강성이 낮은 문제가 있다.
이에 본 발명에서는 초고분자량 함량이 높으면서도 분자량 분포가 넓어 가공성이 향상되며, Tm이 높아 고내열성을 갖는 폴리프로필렌을 제공하고자 한다. 이때, 본 발명에서 제공하는 폴리프로필렌은 프로필렌 단일 중합체인 호모 폴리프로필렌(homo polypropylene)일 수 있다.
구체적으로, 본 발명의 일 구현예에 따른 폴리프로필렌은, 분자량 분포(Mw/Mn, PDI)가 3.0 내지 5.0이다. 즉, 본 발명은 3.0 이상의 넓은 분자량 분포를 만족하여 사출시 우수한 가공성을 나타낼 수 있다.
보다 구체적으로, 일 구현예에 따르면 본 발명의 폴리프로필렌의 분자량 분포는 3.0 이상, 또는 3.2 이상, 또는 3.4 이상, 또는, 또는 3.5 이상이면서, 5.0 이하, 또는 4.8 이하, 또는 4.5 이하, 또는 4.2 이하. 또는 4.0 이하일 수 있다. 상기와 같은 넓은 분자량 분포에 따라, 본 발명의 폴리프로필렌은 우수한 가공성을 나타낼 수 있다.
본 발명에 있어서 분자량 분포는 겔 투과 크로마토그래피(GPC)를 이용하여 폴리프로필렌의 중량평균 분자량(Mw) 및 수평균 분자량(Mn)을 각각 측정하고, 분자량 분포로서 수평균 분자량에 대한 중량평균 분자량의 비(Mw/Mn)를 계산하였다.
구체적으로, 폴리프로필렌 샘플을 Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여 평가하였다. 평가 온도는 160℃ 이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로 측정하였다. 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하였다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn 의 값을 측정하였다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
또한, 본 발명의 일 구현예에 따른 폴리프로필렌은, 입체규칙성(tacticity, mmmm%) 97.5 % 이상일 때의 영역 결함(regio defects)이 0.5 % 이하이다.
일반적으로 폴리프로필렌이 중합되는 과정에서 프로필렌이 촉매의 금속에 삽입(insertion)될 때 1,2-insertion이 기본적으로 일어나게 된다. 1,2-insertion이 규칙적으로 일어나게 될 경우 pentad[mmmm]값은 97.5 % 이상을 갖게 된다.
1,2-insertion이 아닌 2,1-insertion 또는 1,3-insertion이 일어나게 될 경우 영역 결함(regio defects)이 일어나게 되는데 본 발명의 일 구현예에 따른 폴리프로필렌은, 이러한 영역 결함이 탄소(CH2) 1000개당 5개 이하, 즉 0.5 % 이하로 나타날 수 있다. 상기와 같이 영역 결함이 0.5 % 이하인 것은 본 발명의 일 구현예에 따른 폴리프로필렌의 높은 용융점을 가질 수 있음을 의미하며, 이러한 특성에 의해 내열성이 높아지는 효과를 확인할 수 있다.
보다 구체적으로, 일 구현예에 따르면 본 발명의 폴리프로필렌의 영역 결함(regio defects)은 0.03 % 이상, 또는 0.05 % 이상, 또는 0.1 % 이상이면서, 1.0 % 이하, 또는 0.8 % 이하, 또는 0.5 % 이하일 수 있다. 상기와 같은 영역 결함 비율에 따라, 본 발명의 폴리프로필렌은 높은 용융점을 나타낼 수 있다.
본 발명에 있어서, 상기 입체규칙성(tacticity) 및 영역 결함(regio defects)은 논문 Prog.Polymer.Sci.26(2001) 443-533을 참고하여 sequence distribution을 분석하여 측정하였다.
또한, 본 발명의 일 구현예에 따른 폴리프로필렌은, x 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서 Log Mw 값이 6.0 이상인 영역의 적분값이 전체 적분값의 2% 이상이다.
보다 구체적으로, 일 구현예에 따르면, 본 발명의 폴리프로필렌은 Log Mw 값이 6.0 이상인 영역의 적분값이 전체 적분값에 대하여 2% 이상, 또는 2.2% 이상, 또는 2.4% 이상, 또는 2.5% 이상이면서, 5% 이하, 4.5% 이하, 또는 4.0% 이하, 또는 3.5% 이하, 또는 3.3% 이하일 수 있다. 상기와 같이 Log Mw 값이 6.0 이상인 영역의 적분값이 전체 적분값의 2% 이상인 것은 폴리프로필렌의 초고분자량의 함량이 높음을 의미하며, 이러한 특성은 폴리프로필렌의 이중 결합 사슬 말단 간의 추가 반응에 의해 달성될 수 있다.
상기와 Log Mw 값이 6.0 이상인 영역의 적분값 함량에 따라, 본 발명의 폴리프로필렌은 높은 초고분자량의 함량을 나타낼 수 있고, 이처럼 초고분자량을 갖는 폴리머가 많으므로 본 발명의 폴리프로필렌은 우수한 기계적 가공성을 가질 수 있다.
상기 GPC 커브 그래프는 폴리프로필렌의 로그 함수 분자량과 질량 분율을 GPC에 의해 측정하여 x 및 y축으로 도시한 것을 의미한다. 또, 상기에서 Mw는 중량 평균 분자량(weight-average molecular weight)을 의미한다.
또, 발명의 일 구현예에 따른 폴리프로필렌은 상술한 바와 같이 특성을 총족하면서 이와 함께, 자일렌 가용분(xylene solubles; Xs)이 1.0 중량% 이하로, 높은 입체 규칙도(tacticity)를 나타낸다.
본 발명에 있어서, 자일렌 가용분은 폴리프로필렌을 자일렌 중에 용해시킨 후 냉각하고, 결과의 냉각 용액으로부터 불용성 부분을 결정화하여, 결정된 냉각 자일렌 중 가용성인 중합체의 함량(중량%)을 측정한 것으로, 자일렌 가용분은 낮은 입체 규칙성의 중합체 사슬을 포함한다. 이에 따라, 자일렌 가용분이 낮을수록 중합체가 높은 입체 규칙도를 가짐을 알 수 있다. 본 발명의 일 구현예에 따른 폴리프로필렌은 1.0 중량% 이하의 낮은 자일렌 가용분을 나타냄으로써, 높은 입체 규칙도를 가지며, 그 결과로서 우수한 강성 및 굴곡 탄성율을 나타낼 수 있다.
일 구현예에 따르면, 본 발명의 폴리프로필렌의 자일렌 가용분은 1.0 중량% 이하, 또는 0.9 중량% 이하, 또는 0.8 중량% 이하, 또는 0.7 중량% 이하이면서, 0.1 중량% 이상, 또는 0.2 중량% 이상, 또는 0.3 중량% 이상, 또는 0.4 중량% 이상, 또는 0.5 중량% 이상일 수 있다.
본 발명에 있어서, 폴리프로필렌의 자일렌 가용분은, 구체적으로 폴리프로필렌 샘플에 자일렌을 넣고 135℃에서 1시간 동안 가열하고, 30분간 냉각하여 전처리 한 후, OminiSec(Viscotek사 FIPA) 장비에서 1 mL/min의 유속(flow rate)으로 4시간 동안 자일렌을 흘려주어 RI, DP, IP의 base line이 안정화시키고, 이후 전처리한 샘플의 농도, 인젝션 양을 기입하여 측정 후 피크면적을 계산함으로써 측정할 수 있다.
또, 발명의 일 구현예에 따른 폴리프로필렌은 상술한 바와 같이 특성을 총족하면서 이와 함께, 높은 융점(Tm)을 갖는다.
보다 구체적으로, 일 구현예에 따르면, 본 발명의 폴리프로필렌의 융점은 155℃ 이상, 또는 156℃ 이상, 또는 157℃ 이상이면서, 165℃ 이하, 또는 163℃ 이하 또는 160℃ 이하로 종래의 폴리프로필렌에 비하여 높은 융점을 가질 수 있다.
한편, 본 발명에 있어서 상기 폴리프로필렌의 융점은, 폴리프로필렌의 온도를 200 ℃까지 증가시킨 후, 5분 동안 그 온도에서 유지하고, 그 다음 30℃까지 내린 후, 다시 온도를 증가시켜 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기를 융점으로 하여 측정할 수 있다. 이 때, 온도의 상승과 내림의 속도는 각각 10℃/min 이고, 융점은 두 번째 온도가 상승하는 구간에서 측정한 결과이다.
또한, 본 발명의 일 구현예에 따른 폴리프로필렌은 인장 강도(Tensile Strength at Yield)가 350 내지 400 kg/㎠ 일 수 있다. 보다 구체적으로, 본 발명의 일 구현예에 따른 폴리프로필렌의 인장 강도는 350 kg/㎠ 이상, 또는 352 kg/㎠ 이상, 또는 354 kg/㎠ 이상이면서, 400 kg/㎠ 이하, 또는 390 kg/㎠ 이하, 또는 380 kg/㎠ 이하, 또는 370 kg/㎠ 이하일 수 있다.
또한, 본 발명의 일 구현예에 따른 폴리프로필렌은 굴곡 강도(Flexural Strength)가 490 내지 550 kg/㎠ 일 수 있다. 보다 구체적으로, 본 발명의 일 구현예에 따른 폴리프로필렌의 굴곡 강도는 490 kg/㎠ 이상, 또는 495 kg/㎠ 이상, 또는 500 kg/㎠ 이상, 또는 510 kg/㎠ 이상이면서, 550 kg/㎠ 이하, 또는 545 kg/㎠ 이하, 또는 540 kg/㎠ 이하, 또는 535 kg/㎠ 이하일 수 있다.
또한, 본 발명의 일 구현예에 따른 폴리프로필렌은 굴곡 모듈러스(Flexural modulus)가 16,300 내지 18,000 kg/㎠ 일 수 있다. 보다 구체적으로, 본 발명의 일 구현예에 따른 폴리프로필렌의 굴곡 모듈러스는 16,300 kg/㎠ 이상, 또는 16,500 kg/㎠ 이상, 또는 16,700 kg/㎠ 이상, 또는 16,800 kg/㎠ 이상이면서, 18,000 kg/㎠ 이하, 또는 17,800 kg/㎠ 이하, 또는 17,700 kg/㎠ 이하, 또는 17,600 kg/㎠ 이하일 수 있다.
상기와 같이 본 발명의 폴리프로필렌은 기존 지글러-나타 촉매 적용 폴리프로필렌 보다 월등히 향상된 인장 강도, 굴곡 강도, 굴곡 모듈러스를 나타낼 수 있다.
한편, 상기 폴리프로필렌의 인장 강도, 굴곡 강도 및 굴곡 모듈러스는 ASTM D790 방법에 의해 측정된 값을 의미한다.
또한, 본 발명의 일 구현예에 따른 폴리프로필렌은 중량 평균 분자량(Mw)이 100,000 내지 400,000 g/mol 이다. 보다 바람직하게는, 상기 중량 평균 분자량은, 100,000 g/mol 이상, 또는 120,000 g/mol 이상, 또는 150,000 g/mol 이상, 또는 160,000 g/mol 이상이면서, 400,000 g/mol 이하, 또는 300,000 g/mol 이하, 또는 250,000 g/mol 이하, 또는 220,000 g/mol 이하, 또는 200,000 g/mol 이하일 수 있다.
상기 중량 평균 분자량(Mw)의 범위는 상기 폴리프로필렌의 용도 또는 적용 분야를 고려하여 적절히 조절될 수 있다.
한편, 상기와 같은 물성적 특징을 갖는 발명의 일 구현예에 따른 폴리프로필렌은, 촉매 활성 성분으로 특정 메탈로센 화합물의 존재 하에, 프로필렌 단량체를 중합하는 단계를 포함하는 제조방법에 의해 제조될 수 있다.
보다 구체적으로, 본 발명의 다른 구현예에 따라, 본 발명은 하기 화학식 1의 메탈로센 화합물을 포함하는 촉매 조성물의 존재 하에, 프로필렌 단량체를 중합하는 단계를 포함하는 폴리프로필렌의 제조방법이 제공될 수 있다.
[화학식 1]
Figure PCTKR2019014210-appb-I000001
상기 화학식 1에서,
M은 지르코늄(Zr) 또는 하프늄(Hf)이고,
X1 및 X2는 각각 독립적으로 할로겐이고,
A는 탄소, 실리콘 또는 게르마늄이고,
R1 내지 R4는 각각 독립적으로 C1-20 알킬이고,
R5 및 R6은 각각 독립적으로, C1-20 알킬, C1-20 알콕시, 또는 C2-20 알콕시알킬이다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
할로겐(halogen)은 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)일 수 있다.
C1-20 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, C1-20 알킬기는 C1-15 직쇄 알킬기; C1-10 직쇄 알킬기; C1-5 직쇄 알킬기; C3-20 분지쇄 또는 고리형 알킬기; C3-15 분지쇄 또는 고리형 알킬기; 또는 C3-10 분지쇄 또는 고리형 알킬기일 수 있다. 보다 구체적으로, C1-20의 알킬기는 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, neo-펜틸기 또는 사이클로헥실기 등일 수 있다.
본 발명의 일 구현예에 따른 폴리프로필렌의 제조에 사용되는 촉매 조성물은 상기 화학식 1의 메탈로센 화합물을 단독 촉매로서 포함한다. 일반적으로 1종의 메탈로센 촉매를 이용하여 중합한 올레핀 중합체는 지글러-나타 촉매를 이용하여 중합한 올레핀 중합체보다 좁은 분자량 분포를 가져 분자량 분포가 좁은 중합체가 얻어지는 것으로 알려져 있다.
그러나, 본 발명의 본 발명의 일 구현예에 따른 폴리프로필렌의 제조에 사용되는 상기 화학식 1의 메탈로센 화합물의 리간드는 위 아래 두 개의 인다센(indacene)과 이를 연결하는 실란 브릿지(silane bridge)로 되어 있는 구조이다. 메탈로센 화합물의 일반적인 리간드 구조가 인덴(indene)인데 비해, 본 발명의 화학식 1의 메탈로센 화합물은, 인덴에 5각형의 포화 고리 화합물이 퓨즈된(fused) 구조인 인다센 구조를 포함한다. 이러한 인다센을 포함하는 리간드에 의해 인덴 리간드 대비 넓은 분자량 분포를 나타내는 올레핀 중합체를 중합할 수 있다.
또, 인다센의 2번 위치가 메틸기로 치환되어 있고, 3번 및 5번 위치(R1, R2, R3, R4)가 각각 알킬기로 치환된 페닐기를 포함함으로써 충분한 전자를 공급할 수 있는 유발 효과(inductive effect)에 의해 보다 우수한 촉매 활성을 나타낼 수 있다.
또한 두 개의 인다센은 브릿지 그룹에 의해 연결되어 있기 때문에 구조적으로 높은 안정성을 가질 수 있으며, 담체에 담지 시에도 높은 중합 활성을 나타낼 수 있다.
보다 구체적으로 상기 화학식 1에서 R1 내지 R4는 각각 독립적으로 C1-10 알킬기일 수 있으며, 보다 더 구체적으로는 tert-부틸과 같은 C3-6 분지쇄 알킬일 수 있다.
또, 상기 화학식 1에서, X1 및 X2는 각각 독립적으로 클로로(Cl)일 수 있다.
또, 상기 화학식 1에서 A는 실리콘일 수 있다.
또, 상기 A의 치환기인 R5 및 R6은 각각 독립적으로 C1-10 알킬 또는 C2-20 알콕시알킬일 수 있고, 보다 구체적으로는 C1-4 직쇄상 알킬기, 또는 C3-6 분지쇄 알콕시기로 치환된 C3-10 알킬기일 수 있다. 바람직하게 R5 및 R6은 각각 독립적으로 메틸, 에틸, n-프로필, iso-프로필, n-부틸, tert-부틸, 또는 tert-부톡시 헥실일 수 있다.
구체적으로, 상기 화학식 1의 메탈로센 화합물은, 하기 구조식으로 표시되는 것일 수 있다.
Figure PCTKR2019014210-appb-I000002
상기 화학식 1로 표시되는 메탈로센 화합물은 알려진 유기 화합물의 합성 방법에 의해 제조할 수 있으며, 후술하는 실시예에 보다 구체화하여 기재하였다.
본 발명에서 사용되는 메탈로센 촉매는 상기 화학식 1로 표시되는 제 메탈로센 화합물을 조촉매 화합물과 함께 담체에 담지하여 담지 메탈로센 촉매의 형태로 사용될 수 있다.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 3의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 4의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.
[화학식 3]
Figure PCTKR2019014210-appb-I000003
화학식 3에서, R7은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고,
[화학식 4]
Figure PCTKR2019014210-appb-I000004
화학식 4에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드, 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드이다.
이러한 제 1 및 제 2 조촉매의 사용에 의해 중합 활성이 보다 향상될 수 있다.
상기 화학식 3의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 4의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, N,N-디메틸아닐늄 테트라페닐보레이트, N,N-디에틸아닐늄 테트라페닐보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄테트라키스(펜타프루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트 또는 N,N-디메틸-(2,4,6-트리메틸아닐늄)테트라키스-(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 또는 디사이클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트 또는 트리(2,6-, 디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 화학식 1로 표시되는 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 온도는 200 내지 800℃가 바람직하고, 300 내지 600℃가 더욱 바람직하며, 300 내지 400℃가 가장 바람직하다. 상기 담체의 건조 온도가 200℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 800℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 0.1 내지 10 mmol/g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
한편, 본 발명에 따른 폴리프로필렌은, 상술한 메탈로센 촉매의 존재 하에서, 프로필렌을 중합시킴으로써 제조할 수 있다.
상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 프로필렌을 단일 중합하여 진행할 수 있다.
그리고, 상기 중합 온도는 약 25 내지 약 500℃, 바람직하게는 약 25 내지 약 200℃, 보다 바람직하게는 약 50 내지 약 150℃일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 Kgf/㎠, 바람직하게는 약 1 내지 약 50 Kgf/㎠, 보다 바람직하게는 약 5 내지 약 30 Kgf/㎠일 수 있다.
상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
이와 같이 본 발명에 따른 폴리프로필렌은 상술한 담지 메탈로센 촉매를 사용하여, 프로필렌을 중합하여 제조될 수 있다. 그 결과, 상기 폴리프로필렌은, 넓은 분자량 분포에 의한 우수한 가공성과, 초고분자량 영역의 높은 함량에 따른 우수한 기계적 물성 및 낮은 region defects에 의한 높은 융점을 나타낼 수 있다. 상기와 같은 물성 충족으로 인하여, 본 발명에 따른 폴리프로필렌은 가공성 및 압출 특성이 양호하고, 내열성이 우수하여 자동차용, 가전용품, 포장재, 의료용패키지, 의료용 필름, 식료품패키지 등에 바람직하게 적용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<실시예>
<메탈로센 화합물의 합성 실시예>
합성예 1
dimethylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium dichloride의 제조
Figure PCTKR2019014210-appb-I000005
1-1> 리간드 화합물의 합성
indacene 5g을 반응기에 투입한 후 30분간 감압 건조하고, Toluene 43 mL, THF 4.3 mL를 투입하고 교반시켜 완전히 용해시켰다. 반응기를 -25℃로 냉각시킨 후, n-BuLi (2.5 M, 5.9 mL)를 교반하면서 천천히 적가하였다. 25℃에서 12 시간 동안 교반 한 후, CuCN 18.0 mg을 소량의 toluene slurry 로 가하고 30분 후 dimethylsilane (7.25 mmol)을 이어서 넣었다. 상온에서 12 시간 동안 교반 후, 물을 투입한 후 교반시켰다. 반응기를 정치시킨 후 수층을 분리하였다. 수층과 톨루엔을 반응기에 재투입하고 5분간 교반 및 정치시킨 후 수층을 분리 제거하였다. 유기층을 MgSO4로 탈수 시키고, 다시 filter하며 반응기로 투입한 후 건조하여, 리간드 화합물 dimethylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)을 20%의 수율로 수득하였다.
1H NMR (500MHz, CDCl3): 0.21 (s, 6H), 1.32 (s, 36H), 1.79(s, 6H), 1.95(m, 4H), 2.80-2.85(m, 8H), 7.73(s, 2H), 7.42(s,2H), 7.55(s, 2H), 7.73(s, 4H)
1-2> 메탈로센 화합물의 합성
건조된 리간드에 Toluene 21 mL, Et2O 2.1 mL를 주입하고 교반하였다. -25℃로 냉각 후, n-BuLi (2.5 M, 5.9 mL)를 천천히 적가하며 교반하였다. 25℃에서 12 시간동안 교반하고 -20℃로 냉각한 후 ZrCl4(7 mmol)을 Toluene에 풀어 투입하였다. 25℃에서 12 시간동안 교반 후 용매를 모두 건조하였다. DCM을 이용하여 filter하여 건조한 후에 DCM을 이용하여 재결정을 진행하였다. 노란색 powder(only racemic) 형태의 표제 화합물을 20%의 수율로 수득하였다.
합성예 2
dimethylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) hafnium dichloride의 제조
Figure PCTKR2019014210-appb-I000006
2-1> 리간드 화합물의 합성
상기 합성예 1의 1-1과 동일하게 하여 리간드 화합물 dimethylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)을 수득하였다.
2-2> 메탈로센 화합물의 합성
건조된 리간드에 Toluene 21 mL, Et2O 2.1 mL를 주입하고 교반하였다. -25℃로 냉각 후, n-BuLi (2.5 M, 5.9 mL)를 천천히 적가하며 교반하였다. 25℃에서 12 시간동안 교반하고 -20℃로 냉각한 후 HfCl4(7 mmol)을 Toluene에 풀어 투입하였다. 25℃에서 12 시간동안 교반 후 용매를 모두 건조하였다. DCM을 이용하여 filter하여 건조한 후에 DCM을 이용하여 재결정을 진행하였다. 노란색 powder(only racemic) 형태의 표제 화합물을 15%의 수율로 수득하였다.
합성예 3
dibutylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium dichloride의 제조
Figure PCTKR2019014210-appb-I000007
3-1> 리간드 화합물의 합성
indacene 5g을 반응기에 투입한 후 30분간 감압 건조하고, Toluene 43 mL, THF 4.3 mL를 투입하고 교반시켜 완전히 용해시켰다. 반응기를 -25℃로 냉각시킨 후, n-BuLi (2.5 M, 5.9 mL)를 교반하면서 천천히 적가하였다. 25℃에서 12 시간 동안 교반 한 후, CuCN 18.0 mg을 소량의 toluene slurry 로 가하고 30분 후 dibutylsilane (7.25 mmol)을 이어서 넣었다. 상온에서 12 시간 동안 교반 후, 물을 투입한 후 교반시켰다. 반응기를 정치시킨 후 수층을 분리하였다. 수층과 톨루엔을 반응기에 재투입하고 5분간 교반 및 정치시킨 후 수층을 분리 제거하였다. 유기층을 MgSO4로 탈수 시키고, 다시 filter하며 반응기로 투입한 후 건조하여, 리간드 화합물 dibutylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)을 25%의 수율로 수득하였다.
1H NMR (500MHz, CDCl3): 0.60(t, 4H), 0.89(t,6H), 1.23-1.30(m, 8H), 1.32 (s, 36H), 1.79(s, 6H), 1.95(m, 4H), 2.80-2.85(m, 8H), 7.73(s, 2H), 7.42(s,2H), 7.55(s, 2H), 7.73(s, 4H)
3-2> 메탈로센 화합물의 합성
건조된 리간드에 Toluene 21 mL, Et2O 2.1 mL를 주입하고 교반하였다. -25℃로 냉각 후, n-BuLi (2.5 M, 5.9 mL)를 천천히 적가하며 교반하였다. 25℃에서 12 시간동안 교반하고 -20℃로 냉각한 후 ZrCl4(7 mmol)을 Toluene에 풀어 투입하였다. 25℃에서 12 시간동안 교반 후 용매를 모두 건조하였다. DCM을 이용하여 filter하여 건조한 후에 DCM을 이용하여 재결정을 진행하였다. 노란색 powder(only racemic) 형태의 표제 화합물을 11%의 수율로 수득하였다.
합성예 4
6-(tert-butoxy)hexyl)methylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) zirconium dichloride의 제조
Figure PCTKR2019014210-appb-I000008
4-1> 리간드 화합물의 합성
indacene 5g을 반응기에 투입한 후 30분간 감압 건조하고, Toluene 43 mL, THF 4.3 mL를 투입하고 교반시켜 완전히 용해시켰다. 반응기를 -25℃로 냉각시킨 후, n-BuLi (2.5 M, 5.9 mL)를 교반하면서 천천히 적가하였다. 25℃에서 12 시간 동안 교반 한 후, CuCN 18.0 mg을 소량의 toluene slurry 로 가하고 30분 후 6-tertbutoxyhexylmethylsilane (7.25 mmol)을 이어서 넣었다. 상온에서 12 시간 동안 교반 후, 물을 투입한 후 교반시켰다. 반응기를 정치시킨 후 수층을 분리하였다. 수층과 톨루엔을 반응기에 재투입하고 5분간 교반 및 정치시킨 후 수층을 분리 제거하였다. 유기층을 MgSO4로 탈수 시키고, 다시 filter하며 반응기로 투입한 후 건조하여, 리간드 화합물 6-(tert-butoxy)hexyl)methylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)을 8%의 수율로 수득하였다.
1H NMR (500MHz, CDCl3): 0.21(s,3H), 0.60(t, 2H), 1.13(s, 9H), 1.23-1.30(m, 4H), 1.32 (s, 36H), 1.79(s, 6H), 1.95(m, 4H), 3.35(t, 2H), 6.36(s,2H), 7.42(s,2H), 7.55(s, 2H), 7.73(s, 4H)
4-2> 메탈로센 화합물의 합성
건조된 리간드에 Toluene 21 mL, Et2O 2.1 mL를 주입하고 교반하였다. -25℃로 냉각 후, n-BuLi (2.5 M, 5.9 mL)를 천천히 적가하며 교반하였다. 25℃에서 12 시간동안 교반하고 -20℃로 냉각한 후 ZrCl4(7 mmol)을 Toluene에 풀어 투입하였다. 25℃에서 12 시간동안 교반 후 용매를 모두 건조하였다. DCM을 이용하여 filter하여 건조한 후에 DCM을 이용하여 재결정을 진행하였다. 노란색 powder(only racemic) 형태의 표제 화합물을 14%의 수율로 수득하였다.
합성예 5
6-(tert-butoxy)hexyl)methylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl) hafnium dichloride의 제조
Figure PCTKR2019014210-appb-I000009
5-1> 리간드 화합물의 합성
상기 합성예 4의 4-1과 동일하게 하여 리간드 화합물 6-(tert-butoxy)hexyl)methylsilanediyl(bis(4-(3,5-di-tert-butylphenyl)-2-methyl-1,5,6,7-tetrahydro-s-indacen-1-yl)을 수득하였다.
5-2> 메탈로센 화합물의 합성
건조된 리간드에 Toluene 21 mL, Et2O 2.1 mL를 주입하고 교반하였다. -25℃로 냉각 후, n-BuLi (2.5 M, 5.9 mL)를 천천히 적가하며 교반하였다. 25℃에서 12 시간동안 교반하고 -20℃로 냉각한 후 HfCl4(7 mmol)을 Toluene에 풀어 투입하였다. 25℃에서 12 시간동안 교반 후 용매를 모두 건조하였다. DCM을 이용하여 filter하여 건조한 후에 DCM을 이용하여 재결정을 진행하였다. 노란색 powder(only racemic) 형태의 표제 화합물을 26%의 수율로 수득하였다.
비교 합성예 1
dimethylsilanediyl(bis(4-(4-tbutylphenyl)-2-methylindene) zirconium dichloride의 제조
Figure PCTKR2019014210-appb-I000010
WO 2006-002924에 개시된 바에 따라 표제 화합물을 제조하였다.
비교 합성예 2
1,1'-dimethylsilylene-bis[2-methyl-4-(4-tert-butylphenyl)-5,6,7-trihydro-s-indacen-1-yl]} zirconium dichloride의 제조
Figure PCTKR2019014210-appb-I000011
WO 2006-097497A1에 개시된 바에 따라 표제 화합물을 제조하였다.
<담지 촉매의 제조 실시예>
제조예 1
실리카 (SP2410) 3 g을 쉬링크 플라스크에 미리 칭량한 후 메틸알루미녹산(MAO) 13 mmol을 넣어 95 ℃에서 24 시간 동안 반응시켰다. 침전 후 상층부는 제거하고 톨루엔으로 2회에 걸쳐 세척하였다.
상기 합성예 1에서 제조한 메탈로센 화합물 70 μmol을 톨루엔에 녹인 후, 50 ℃에서 5 시간 동안 반응시켰다. 반응 종료 후 침전이 끝나면, 상층부 용액은 제거하고 남은 반응 생성물을 톨루엔으로 세척하였다. 디메틸아닐리니윰테트라키스(펜타플루오로페닐)보레이트 70 μmol를 75℃에서 5 시간 동안 반응시켰다. 반응 종료한 후 톨루엔으로 세척하였고, 헥산으로 재차 세척한 후 ATMER 163을 3wt%/silica g을 헥산에 녹여 10분 동안 반응 후 상층부 용액을 제거한다. 진공 건조하여 고체 입자 형태의 실리카 담지 메탈로센 촉매 5 g을 얻었다.
제조예 2
제조예 1에서, 합성예 1의 메탈로센 화합물 대신 합성예 2의 메탈로센 화합물 70μmol을 투입한 것을 제외하고는 제조예 1과 동일하게 담지 촉매를 제조하였다.
제조예 3
제조예 1에서, 합성예 1의 메탈로센 화합물 대신 합성예 3의 메탈로센 화합물 70μmol을 투입한 것을 제외하고는 제조예 1과 동일하게 담지 촉매를 제조하였다.
제조예 4
제조예 1에서, 합성예 1의 메탈로센 화합물 대신 합성예 4의 메탈로센 화합물 70μmol을 투입한 것을 제외하고는 제조예 1과 동일하게 담지 촉매를 제조하였다.
제조예 5
제조예 1에서, 합성예 1의 메탈로센 화합물 대신 합성예 5의 메탈로센 화합물 70μmol을 투입한 것을 제외하고는 제조예 1과 동일하게 담지 촉매를 제조하였다.
비교 제조예 1
제조예 1에서, 합성예 1의 메탈로센 화합물 대신 비교 합성예 1의 메탈로센 화합물 70μmol을 투입한 것을 제외하고는 제조예 1과 동일하게 담지 촉매를 제조하였다.
비교 제조예 2
제조예 1에서, 합성예 1의 메탈로센 화합물 대신 비교 합성예 2의 메탈로센 화합물 70μmol을 투입한 것을 제외하고는 제조예 1과 동일하게 담지 촉매를 제조하였다.
<폴리프로필렌 중합 실시예>
실시예 1 내지 5 및 비교예 1 내지 2
제조예 1의 촉매 조성물을 오일/그리스(oil/grease)와 섞어 16 ~ 17 중량%의 혼합물(머드 촉매 형태)로 제조하였다. 그리고, 상기 혼합물과 20kg/h의 프로필렌을 예비 중합 반응기 (pre-polymerization reactor, 반응기 온도 20℃, 압력 15 kgf/cm2)로 함께 투입한 후(체류시간 8min), 연속적으로 루프 반응기(loop reactor)로 이동시켜 투입시켰다.
이때, 수소가 프로필렌과 함께 루프 반응기로 투입되도록 하였으며, 반응기 온도는 70℃로 유지하여 호모 폴리프로필렌을 제조하였다(루프 반응기 내 체류시간 2시간, 압력 38 kgf/cm2). 반응 종료후 미반응된 프로필렌은 벤트(vent)하였다.
제조예 2 내지 5 및 비교 제조예 1 내지 2의 각 촉매를 이용하여 동일한 방법으로 호모 폴리프로필렌을 제조하였다.
<실험예>
폴리프로필렌의 물성 평가
상기 실시예 및 비교예에서 제조한 폴리프로필렌에 대하여 하기의 방법으로 물성을 평가하였다.
(1) 중량 평균 분자량(Mw) 및 분자량 분포(MWD, polydispersity index), GPC 커브: 겔 투과 크로마토그래피(GPC: gel permeation chromatography, Waters사 제조)를 이용하여 중합체의 중량평균 분자량(Mw)과 수평균 분자량(Mn)을 측정하였고, 중량평균 분자량을 수평균 분자량으로 나누어 분자량 분포(PDI)를 계산하였다.
구체적으로, 폴리프로필렌 샘플을 Polymer Laboratories PLgel MIX-B 300mm 길이 칼럼을 이용하여 Waters PL-GPC220 기기를 이용하여 평가하였다. 평가 온도는 160℃ 이며, 1,2,4-트리클로로벤젠을 용매로서 사용하였으며 유속은 1mL/min의 속도로 측정하였다. 샘플은 10mg/10mL의 농도로 조제한 다음, 200 μL 의 양으로 공급하였다. 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 Mw 및 Mn 의 값을 측정하였다. 폴리스티렌 표준품의 분자량은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용하였다.
(2) Log Mw (>6.0): 상기 (1)에서 측정한 GPC 커브 그래프를 통해 전체 GPC 커브 그래프의 전체 면적(적분값)에 대하여 Log Mw 값이 6.0 이상인 영역의 적분값의 비율로 계산하였다.
(3) 입체규칙성(tacticity) / 영역 결함(regio defects)
논문 Prog.Polymer.Sci.26(2001) 443-533을 참고하여 sequence distribution을 분석하여 측정하였다.
(4) 융점(Tm, ℃)
측정하고자 하는 폴리프로필렌의 온도를 200℃까지 증가시킨 후, 5분 동안 그 온도에서 유지하고, 그 다음 30℃까지 내리고, 다시 온도를 증가시켜 DSC(Differential Scanning Calorimeter, TA사 제조) 곡선의 꼭대기를 융점으로 하였다. 이 때, 온도의 상승과 내림의 속도는 10℃/min 이고, 융점은 두 번째 온도가 상승하는 구간에서 측정한 결과를 사용하였다.
(5) 자일렌 가용분(Xylene Soluble, 중량%): 각각의 폴리프로필렌 샘플에 자일렌을 넣고, 135℃에서 1시간 동안 가열하고, 30분간 냉각하여 전처리를 하였다. OminiSec(Viscotek사 FIPA) 장비에서 1 mL/min의 유속(flow rate)으로 4시간 동안 자일렌을 흘려주어, RI(Refractive Index), DP(Pressure across middle of bridge), IP(Inlet pressure through bridge top to bottom)의 베이스 라인(base line)이 안정화되면, 전처리한 샘플의 농도 및 인젝션 양을 기입하여 측정한 후, 피크면적을 계산하였다.
(6) 수율에서의 인장 강도(Tensile Strength at Yield, kg/㎠): ASTM D790 방법으로 측정하였다.
(7) 굴곡 모듈러스(Flexural modulus, kg/㎠): ASTM D790 방법으로 측정하였다.
(8) 굴곡 강도 (Flexural Strength, kg/㎠): ASTM D790 방법으로 측정하였다.
상기 결과를 하기 표 1 에 나타내었다. 또한, 각 실시예 및 비교예 폴리프로필렌의 GPC 커브를 각각 순서대로 도 1 내지 도 7에 나타내었다.
Figure PCTKR2019014210-appb-T000001
* x 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서, Log Mw 값이 6.0 이상인 영역의 적분값의 전체 적분값에 대한 비율
** tacticity (mmmm%) 97.5 % 이상일 때의 영역 결함의 비율(%, CH2 1000개 기준)
상기 표 1 및 도면을 참고하면, 본 발명에 따른 실시예 1 내지 5의 폴리프로필렌은 GPC 커브 그래프에서, Log Mw 값이 6.0 이상인 영역의 적분값의 전체 적분값에 대한 비율이 2.0% 이상으로 초고분자량 함량이 높으면서도, 3.0 이상의 넓은 분자량 분포의 특성을 나타내었다.
이로 인해 높은 인장 강도, 굴곡 강도, 및 굴곡 모듈러스 등 가공성 및 기계적 물성을 나타냄을 확인하였다. 또한, 융점(Tm)이 155℃ 이상으로 고내열성 특성을 가지는 것으로 확인되었다.

Claims (11)

  1. 분자량 분포(Mw/Mn, PDI)가 3.0 내지 5.0 이고,
    입체규칙성(tacticity, mmmm%) 97.5 % 이상일 때의 영역 결함(regio defects)이 0.5 % 이하이며,
    x 축이 log Mw이고 y 축이 dw/dlogMw인 GPC 커브 그래프에서 Log Mw 값이 6.0 이상인 영역의 적분값이 전체 적분값의 2% 이상인,
    폴리프로필렌(polypropylene).
  2. 제1항에 있어서,
    용융점(Tm)이 155 내지 165℃, 폴리프로필렌.
  3. 제1항에 있어서,
    자일렌 가용분(xylene solubles; Xs)이 1.0 중량% 이하인, 폴리프로필렌.
  4. 제1항에 있어서,
    ASTM D790 방법에 의해 측정한 인장 강도(Tensile Strength at Yield)가 350 내지 400 kg/㎠인, 폴리프로필렌.
  5. 제1항에 있어서,
    ASTM D790 방법에 의해 측정한 굴곡 강도(Flexural Strength)가 490 내지 550 kg/㎠인, 폴리프로필렌.
  6. 제1항에 있어서,
    ASTM D790 방법에 의해 측정한 굴곡 모듈러스(Flexural modulus)가 16,300 내지 18,000 kg/㎠인, 폴리프로필렌.
  7. 제1항에 있어서,
    중량 평균 분자량(Mw)이 100,000 내지 400,000 g/mol인, 폴리프로필렌.
  8. 제1항에 있어서,
    상기 폴리프로필렌은 하기 화학식 1로 표시되는 메탈로센 화합물의 존재 하에 프로필렌을 중합시킴으로써 제조되는, 폴리프로필렌:
    [화학식 1]
    Figure PCTKR2019014210-appb-I000012
    상기 화학식 1에서,
    M은 지르코늄(Zr) 또는 하프늄(Hf)이고,
    X1 및 X2는 각각 독립적으로 할로겐이고,
    A는 탄소, 실리콘 또는 게르마늄이고,
    R1 내지 R4는 각각 독립적으로 C1-20 알킬이고,
    R5 및 R6은 각각 독립적으로, C1-20 알킬, C1-20 알콕시, 또는 C2-20 알콕시알킬이다.
  9. 제8항에 있어서,
    상기 화학식 1의 A는 실리콘이고, R1 내지 R4는 각각 독립적으로 C3-6 분지쇄 알킬이고, R5 및 R6은 각각 독립적으로 C1-10 알킬 또는 C2-20 알콕시알킬인, 폴리프로필렌.
  10. 제8항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 구조식으로 표시되는 화합물들 중 어느 하나인, 폴리프로필렌:
    Figure PCTKR2019014210-appb-I000013
  11. 제1항에 있어서,
    호모 폴리프로필렌(homo polypropylene)인, 폴리프로필렌.
PCT/KR2019/014210 2018-11-02 2019-10-25 폴리프로필렌 WO2020091322A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180133861A KR102389323B1 (ko) 2018-11-02 2018-11-02 폴리프로필렌
KR10-2018-0133861 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020091322A1 true WO2020091322A1 (ko) 2020-05-07

Family

ID=70461946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014210 WO2020091322A1 (ko) 2018-11-02 2019-10-25 폴리프로필렌

Country Status (2)

Country Link
KR (1) KR102389323B1 (ko)
WO (1) WO2020091322A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158791A2 (en) * 2014-04-17 2015-10-22 Borealis Ag New catalyst system for producing polyethylene copolymers in a high temperature solution polymerization process
KR20170009597A (ko) * 2015-07-17 2017-01-25 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법
KR20170009598A (ko) * 2015-07-17 2017-01-25 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법
KR20170068474A (ko) * 2014-09-12 2017-06-19 보레알리스 아게 프로필렌의 코폴리머의 제조 공정

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015158791A2 (en) * 2014-04-17 2015-10-22 Borealis Ag New catalyst system for producing polyethylene copolymers in a high temperature solution polymerization process
KR20170068474A (ko) * 2014-09-12 2017-06-19 보레알리스 아게 프로필렌의 코폴리머의 제조 공정
KR20170009597A (ko) * 2015-07-17 2017-01-25 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법
KR20170009598A (ko) * 2015-07-17 2017-01-25 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUKLIN, M. S. ET AL.: "Quantitative structure-property relationships in propene polymerization by zirconocenes with a rac-SiMe2[Ind]2 based ligand framework", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, 2016, pages 39 - 46, XP029378414 *

Also Published As

Publication number Publication date
KR102389323B1 (ko) 2022-04-20
KR20200050797A (ko) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2010128826A2 (ko) 올레핀계 중합체 및 이를 포함하는 섬유
WO2017155149A1 (ko) 혼성 촉매 조성물, 이의 제조방법, 및 이를 이용하여 제조된 폴리올레핀
WO2019125050A1 (ko) 올레핀계 중합체
WO2019212303A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2019132475A1 (ko) 올레핀계 중합체
WO2019212308A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
WO2019093630A1 (ko) 고용융장력 폴리프로필렌 수지 제조방법
WO2017003261A1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2015057001A1 (ko) 헤테로 원자를 갖는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
WO2020171625A1 (ko) 우수한 물성의 가교 폴리에틸렌 파이프
WO2019212304A1 (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
KR102559050B1 (ko) 프로필렌-1-부텐 공중합체 및 그 제조방법
WO2018097468A1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법
WO2020171624A1 (ko) 고가교도를 갖는 폴리에틸렌 및 이를 포함하는 가교 폴리에틸렌 파이프
WO2020091322A1 (ko) 폴리프로필렌
WO2021066490A1 (ko) 올레핀계 중합체
WO2021066486A1 (ko) 올레핀계 중합체
WO2017115927A1 (ko) 혼성 메탈로센 담지 촉매, 이를 이용한 올레핀 중합체의 제조방법 및 용융강도가 향상된 올레핀 중합체
WO2017111553A1 (ko) 신규한 전이금속 화합물을 포함하는 촉매 조성물
WO2020046051A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020122561A1 (ko) 폴리에틸렌 및 이의 염소화 폴리에틸렌
WO2020096250A1 (ko) 프로필렌 공중합체 수지 조성물 및 그 제조방법
WO2020096306A1 (ko) 펠렛형 폴리프로필렌 수지 및 그 제조방법
WO2022005257A1 (ko) 올레핀계 중합체
WO2021066398A1 (ko) 펠렛형 폴리프로필렌 수지 조성물 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19877638

Country of ref document: EP

Kind code of ref document: A1