WO2020091298A1 - 디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법 - Google Patents

디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법 Download PDF

Info

Publication number
WO2020091298A1
WO2020091298A1 PCT/KR2019/014000 KR2019014000W WO2020091298A1 WO 2020091298 A1 WO2020091298 A1 WO 2020091298A1 KR 2019014000 W KR2019014000 W KR 2019014000W WO 2020091298 A1 WO2020091298 A1 WO 2020091298A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
dimethyl ether
methanol
mixed
production
Prior art date
Application number
PCT/KR2019/014000
Other languages
English (en)
French (fr)
Inventor
이지혜
송택용
모용기
이현찬
권옥배
이영철
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Publication of WO2020091298A1 publication Critical patent/WO2020091298A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/25Nitrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/043Dimethyl ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a mixed catalyst for producing dimethyl ether (DME) from synthetic gas, a method for manufacturing the same, and a method for manufacturing dimethyl ether using the same, more specifically methanol from synthetic gas containing hydrogen, carbon monoxide and carbon dioxide It relates to a mixed catalyst for the production of dimethyl ether, which is a mixed catalyst of a synthetic methanol synthesis catalyst and a methanol dehydration catalyst, a manufacturing method thereof, and a method of manufacturing dimethyl ether using the same.
  • DME dimethyl ether
  • Dimethyl ether has similar physical and chemical properties to liquified petroleum gas (LPG), but it is superior in many ways to LPG, and can be used as an aerosol propellant, a diesel fuel substitute, and a chemical reaction intermediate. It is a containing compound.
  • LPG liquified petroleum gas
  • a typical method of synthesizing dimethyl ether is a method of reacting methanol with a concentrated sulfuric acid catalyst, which is expensive to regenerate sulfuric acid and has a lot of safety problems due to the risk of explosion due to the nature of sulfuric acid.
  • a method of recovering high purity dimethyl ether by dehydrating methanol and distilling the product using a solid acid dehydration catalyst in a fixed bed reactor has been proposed, but there is no advantage in terms of cost.
  • a method of synthesizing dimethyl ether directly from synthesis gas using a mixed catalyst of a methanol synthesis catalyst and a dehydration acid catalyst has been developed. In this method, methanol synthesis reaction, water gas conversion reaction, and dehydration reaction proceed simultaneously on the mixed catalyst, thereby compensating for the problems of other reactions.
  • Korean Patent No. 10-0812099 by the applicant of the present invention is at least selected from Mg, Zr, Ga and Ca in the main catalyst including copper nitrate solution, zinc nitrate solution and aluminum nitrate solution.
  • Methanol synthesis catalyst prepared from a metal nitrate solution and sodium carbonate solution prepared by adding a promoter consisting of one component, and methanol prepared by mixing gamma-alumina and aluminum phosphate
  • a mixed catalyst composed of a dehydration catalyst Disclosed is a mixed catalyst composed of a dehydration catalyst.
  • An object of the present invention is to provide a mixed catalyst for producing dimethyl ether capable of producing dimethyl ether with a high carbon monoxide conversion rate and dimethyl ether selectivity compared to a conventional method from a mixed gas.
  • Another object of the present invention is to provide a method for producing a mixed catalyst for the production of dimethyl ether.
  • Another object to be achieved by the present invention is to provide a method for producing dimethyl ether using the mixed catalyst for preparing dimethyl ether.
  • the mixed catalyst for dimethyl ether production according to the present invention for achieving the above object is composed of a methanol synthesis catalyst and a methanol dehydration catalyst.
  • the methanol synthesis catalyst is a CuO-ZnO-Al 2 O 3 main catalyst (promoter) consisting of one or more selected from Na, K, Li, Mg, Ca, Ga, Zr, Sr and Ba as the main catalyst It is prepared by adding.
  • the methanol dehydration catalyst is prepared by mixing gamma alumina ( ⁇ -alumina) with aluminum phosphate.
  • the weight ratio of the basic catalyst and the cocatalyst in the methanol synthesis catalyst is 1:19 or more and less than 1:99, and the weight ratio of the methanol synthesis catalyst and the methanol dehydration catalyst is in the range of 60/40 to 70/30.
  • Method for preparing a mixed catalyst for dimethyl ether production according to the present invention for achieving the above other problems is selected from Na, K, Li, Mg, Ca, Ga, Zr, Sr and Ba on the basic catalyst of CuO-ZnO-Al 2 O 3
  • Preparing a methanol synthesis catalyst by adding a cocatalyst consisting of one or more types Preparing a methanol dehydration catalyst by mixing aluminum phosphate with gamma alumina; And mixing the methanol synthesis catalyst and the methanol dehydration catalyst in a weight ratio of 60/40 to 70/30, wherein the weight ratio of the basic catalyst and the cocatalyst in the methanol synthesis catalyst is 1:19 or more and less than 1:99.
  • the weight ratio of gamma alumina to aluminum phosphate is 1: 0.8 to 1: 1.2.
  • Method for producing dimethyl ether according to the present invention for achieving the above another subject is, in the presence of the mixed catalyst, the synthesis gas containing hydrogen, carbon monoxide and carbon dioxide at a temperature of 220 to 300 ° C., a pressure of 30 to 70 atmospheres, and And reacting at a space velocity (GHSV) of 2,000 to 8,000 h ⁇ 1 .
  • GHSV space velocity
  • dimethyl ether When dimethyl ether is prepared from a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide using the mixed catalyst for dimethyl ether production according to the present invention, dimethyl ether can be produced with high carbon monoxide conversion rate and dimethyl ether selectivity, which is highly industrially practical.
  • the present invention is intended to illustrate certain embodiments, as various transformations may be applied and various embodiments may be applied. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention. In the description of the present invention, when it is determined that a detailed description of known technologies related to the present invention may obscure the subject matter of the present invention, the detailed description will be omitted.
  • the mixed catalyst for the production of dimethyl ether according to the present invention is a mixture of a methanol synthesis catalyst and a methanol dehydration catalyst.
  • the methanol synthesis catalyst is a CuO-ZnO-Al 2 O 3 main catalyst (promoter) consisting of one or more selected from Na, K, Li, Mg, Ca, Ga, Zr, Sr and Ba as the main catalyst It is prepared by adding.
  • the CuO-ZnO-Al 2 O 3 base catalyst may be formed by a co-precipitation method commonly used in the art.
  • the methanol dehydration catalyst is prepared by mixing gamma alumina ( ⁇ -alumina) with aluminum phosphate.
  • the weight ratio of the base catalyst and the cocatalyst in the methanol synthesis catalyst is from 1:19 to 1:99.
  • the co-catalyst added to the basic catalyst is used to improve the dispersion degree of the copper (Cu) metal serving as a catalytic activity point. It is possible to increase the conversion rate and improve the selectivity of dimethyl ether that is finally produced.
  • the cocatalyst consists of one or more selected from Na, K, Li, Sr and Ba. These components are particularly advantageous for increasing the conversion of carbon monoxide in the production of dimethyl ether.
  • the weight ratio of the methanol synthesis catalyst and the methanol dehydration catalyst ranges from 60/40 to 70/30. Since the dehydration reaction activity of methanol depends on the amount of the acid point, when the weight ratio of the methanol dehydration catalyst is less than the above range, since some solid acid points exist, the dehydration reaction activity is high and dehydration reaction proceeds further, resulting in by-products such as hydrocarbons. There is a problem that cannot be suppressed from being produced or coke is generated, and when the weight ratio of the methanol dehydration catalyst exceeds the above range, the dehydration activity is too low to perform a function as a catalyst.
  • the weight ratio of gamma alumina to aluminum phosphate in the methanol dehydration catalyst ranges from 1: 0.8 to 1: 1.2, which is preferred in terms of dimethyl ether selectivity and carbon monoxide conversion.
  • the cocatalyst is NaNO 3, KNO 3 , LiNO 3 , Mg (NO 3 ) 2 ⁇ 6H 2 O, Ca (NO 3 ) 2 ⁇ xH 2 O, Ga (NO 3 ) 3 ⁇ xH 2 O , ZrO (NO 3 ) 2 ⁇ xH 2 O, Sr (NO 3 ) 3 ⁇ 4H 2 O, and Ba (NO 3 ) 2 .
  • the co-catalyst may include one or more selected from NaNO 3, KNO 3 , LiNO 3 , Sr (NO 3 ) 3 ⁇ 4H 2 O and Ba (NO 3 ) 2 .
  • the method for preparing a mixed catalyst for the production of dimethyl ether according to the present invention is a co-catalyst consisting of one or more selected from Na, K, Li, Mg, Ca, Ga, Zr, Sr and Ba on a basic catalyst of CuO-ZnO-Al 2 O 3
  • a methanol synthesis catalyst by adding;
  • the weight ratio of the basic catalyst and the cocatalyst in the methanol synthesis catalyst is 1:19 or more and less than 1:99, and the weight ratio of gamma alumina to aluminum phosphate in the methanol dehydration catalyst is 1: 0.8 to 1: 1.2.
  • the co-catalyst in the preparation method is one or more selected from Na, K, Li, Sr and Ba.
  • the co-catalyst in the manufacturing method is NaNO 3, KNO 3 , LiNO 3 , Mg (NO 3 ) 2 ⁇ 6H 2 O, Ca (NO 3 ) 2 ⁇ xH 2 O, Ga (NO 3 ) 3 ⁇ xH intended to include 2 O, ZrO (NO 3) 2 ⁇ xH 2 O, Sr (NO 3) 3 ⁇ 4H 2 O and Ba (NO 3) 1 or more selected from the second.
  • the co-catalyst in the manufacturing method is one comprising at least one selected from NaNO 3, KNO 3 , LiNO 3 , Sr (NO 3 ) 3 ⁇ 4H 2 O and Ba (NO 3 ) 2 .
  • a temperature of 220 to 300 ° C, a pressure of 30 to 70 atmospheres and a space velocity of 2,000 to 8,000 h -1 to produce dimethyl ether from a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide (GHSV) range can be used.
  • the reaction temperature is less than 220 ° C, there is a problem that the conversion rate of carbon monoxide is low, and when it exceeds 300 ° C, dimethyl ether selectivity is lowered.
  • reaction pressure is less than 30 atm, it is thermodynamically disadvantageous for the production of dimethyl ether, and if it exceeds 70 atm, a problem occurs in the reaction operation.
  • the space velocity of the synthesis gas is a reaction productivity is lowered 2,000h less than -1, the carbon monoxide conversion rate becomes low and if it exceeds 8,000h -1.
  • the reaction is carried out in a fixed bed reactor or a fluidized bed reactor in a gas phase, but is not limited thereto.
  • a methanol synthesis catalyst and a dehydration catalyst were prepared in a plant facility environment and then mixed to prepare a mixed catalyst.
  • the materials used in the production of mixed catalysts and the basic processes of each step are based on those commonly used in the art. Since the materials used were processed in large quantities to fit the plant scale, it was difficult to measure each amount, and therefore, the weight ratio used was used.
  • the methanol synthesis catalyst is a CuO-ZnO-Al 2 O 3 base catalyst and a NaNO 3 cocatalyst, and the weight ratio of the base catalyst to the cocatalyst is 1:20 in distilled water, pH 7, and the precipitate is separated and dried. It was prepared by firing (400 ° C, 4 hours). Subsequently, a gamma alumina and aluminum phosphate were mixed so that the weight ratio of the gamma alumina to aluminum phosphate was 1: 1 to prepare a methanol dehydration catalyst.
  • the mixed catalyst in which the methanol synthesis catalyst and the methanol dehydration catalyst were mixed at a weight ratio of 60/40 was charged to a fixed bed reactor. In this state, a mixed gas of hydrogen and nitrogen was flowed to reduce the mixed catalyst.
  • hydrogen: carbon monoxide 1: 1 volume ratio
  • Dimethyl ether was obtained using the same material and the same method as in Example 1, except that KNO 3 was used as the cocatalyst and the weight ratio of the basic catalyst to the cocatalyst was 1:30.
  • Dimethyl ether was obtained using the same method as in Example 1, except that LiNO 3 was used as the cocatalyst and the weight ratio of the basic catalyst to the cocatalyst was 1:50.
  • Dimethyl ether was used in the same manner as in Example 1, except that Sr (NO 3 ) 3 ⁇ 4H 2 O was used as the cocatalyst and the weight ratio of the basic catalyst to the cocatalyst was 1:70. Obtained.
  • Dimethyl ether was obtained in the same manner as in Example 1, except that Ba (NO 3 ) 2 was used as the cocatalyst and the weight ratio of the basic catalyst to the cocatalyst was 1:90.
  • Dimethyl ether was obtained in the same manner as in Example 1, except that the cocatalyst was not used.
  • Dimethyl ether was obtained using the same method as the same material as in Example 1, except that the weight ratio of the basic catalyst to the cocatalyst was 1:15.
  • Dimethyl ether was obtained using the same material and the same method as in Example 2, except that the weight ratio of the basic catalyst to the cocatalyst was 1:10.
  • Dimethyl ether was obtained using the same method as the same material as in Example 3, except that the weight ratio of the basic catalyst to the cocatalyst was 1: 7.
  • Dimethyl ether was obtained using the same method as the same material as in Example 4, except that the weight ratio of the basic catalyst to the cocatalyst was 1: 5.
  • Dimethyl ether was obtained using the same material and the same method as in Example 5, except that the weight ratio of the basic catalyst to the cocatalyst was 1: 2.
  • Example 1 94.98 73.42
  • Example 2 94.31 74.60
  • Example 3 95.88 74.02
  • Example 4 94.60 75.13
  • Example 5 94.75 74.03
  • Comparative Example 1 81.20 62.01
  • Comparative Example 2 84.46 64.21 Comparative Example 3 83.58 65.96
  • Comparative Example 4 85.80 64.78 Comparative Example 5 85.98 65.35 Comparative Example 6 84.86 66.10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 특정 구성의 메탄올 합성촉매와 메탄올 탈수촉매의 혼합물인 디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법에 관한 것으로, 본 발명의 혼합 촉매를 사용하면 개선된 일산화탄소 전환율과 디메틸에테르 선택도로 디메틸에테르를 제조할 수 있다.

Description

디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법
본 출원은 2018년 10월 29일자로 출원된 한국특허출원 10-2018-0129525호에 기초한 우선권의 이익을 주장하며, 상기 특허문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 합성가스로부터 디메틸에테르(DME)를 제조하기 위한 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법에 관한 것으로, 보다 구체적으로는 수소, 일산화탄소 및 이산화탄소를 함유하는 합성가스로부터 메탄올을 합성하는 메탄올 합성촉매와 메탄올의 탈수촉매의 혼합 촉매인 디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법에 관한 것이다.
디메틸에테르는 물리적, 화학적 특성이 액화 석유가스(liquified petroleum gas, LPG)와 유사하나, LPG보다 여러 면에서 우수하여 에어로졸 추진제, 디젤 연료의 대체물질 및 화학반응 중간체로 사용할 수 있어 최근 주목 받고 있는 산소 함유 화합물이다.
디메틸에테르를 합성하는 전형적인 방법은 메탄올을 진한 황산 촉매와 반응시키는 방법인데, 이 방법은 황산을 재생하는데 많은 비용이 들고 황산의 특성상 폭발의 위험이 있어 안전상 많은 문제가 있다. 이후 고정층 반응기에서 고체 산 탈수 촉매를 이용하여 메탄올을 탈수시키고 그 생성물을 증류하여 고순도 디메틸에테르를 회수하는 방법이 제안되었으나, 비용 면에서 이점이 없다. 이후, 메탄올 합성 촉매와 탈수반응 산 촉매의 혼합 촉매를 사용하여 합성가스로부터 직접 디메틸에테르를 합성하는 방법이 개발되었다. 이러한 방법에서는 혼합 촉매 상에서 메탄올 합성반응, 수성 가스 전환반응 및 탈수 반응이 동시에 진행되어 다른 반응의 문제점을 보완해 준다.
상기 혼합 촉매와 관련하여, 본 출원인에 의한 대한민국 특허 제10-0812099호는 구리 질산염 용액, 아연 질산염 용액 및 알루미늄 질산염 용액을 포함하는 기본 촉매(main catalyst)에 Mg, Zr, Ga 및 Ca로부터 선택된 적어도 하나의 성분으로 이루어진 조촉매(promoter)를 첨가하여 제조된 금속 질산염 용액 및 탄산나트륨 용액으로 제조된 메탄올 합성 촉매와, 감마-알루미나(γ-alumina)와 인산알루미늄(aluminum phosphate)을 혼합하여 제조된 메탄올의 탈수촉매로 구성된 혼합 촉매를 개시하고 있다.
본 출원인은 상기 특허 및 관련 특허와 문헌들을 검토하였고, 상기 선행기술보다 개선된 일산화탄소 전환율 및 디메틸에테르 선택도를 제공할 수 있는 디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법을 개발하였다.
본 발명이 이루고자 하는 과제는 혼합가스로부터 기존의 방법에 비해 높은 일산화탄소 전환율 및 디메틸에테르 선택도로 디메틸에테르를 제조할 수 있는 디메틸에테르 제조용 혼합 촉매를 제공하는 데 있다.
본 발명이 이루고자 하는 다른 과제는 상기 디메틸에테르 제조용 혼합 촉매의 제조방법을 제공하는 데 있다.
본 발명이 이루고자 하는 또 다른 과제는 상기 디메틸에테르 제조용 혼합 촉매를 사용하여 디메틸에테르를 제조하는 방법을 제공하는 데 있다.
상기 과제를 달성하기 위한 본 발명에 따른 디메틸에테르 제조용 혼합 촉매는 메탄올 합성촉매와 메탄올 탈수촉매로 구성된다.
상기 메탄올 합성촉매는 CuO-ZnO-Al 2O 3 기본 촉매(main catalyst)에 Na, K, Li, Mg, Ca, Ga, Zr, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 조촉매(promoter)가 첨가되어 제조된다. 상기 메탄올 탈수촉매는 감마 알루미나(γ-alumina)에 인산알루미늄(aluminum phosphate)을 혼합하여 제조된다.
상기 메탄올 합성 촉매에서 기본촉매와 조촉매의 중량비는 1:19 이상 1:99 미만이며, 상기 메탄올 합성 촉매와 상기 메탄올 탈수 촉매의 중량비는 60/40 내지 70/30의 범위이다.
상기 다른 과제를 달성하기 위한 본 발명에 따른 디메틸에테르 제조용 혼합 촉매의 제조방법은 CuO-ZnO-Al 2O 3 기본 촉매에 Na, K, Li, Mg, Ca, Ga, Zr, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 조촉매를 첨가하여 메탄올 합성 촉매를 제조하는 단계; 감마 알루미나에 인산알루미늄을 혼합하여 메탄올 탈수 촉매를 제조하는 단계; 및 상기 메탄올 합성 촉매와 상기 메탄올 탈수 촉매를 60/40 내지 70/30의 중량비로 혼합하는 단계를 포함하며, 상기 메탄올 합성 촉매에서 기본 촉매와 조촉매의 중량비는 1:19 이상 1:99 미만이고, 상기 메탄올 탈수 촉매에서 감마 알루미나 대 인산알루미늄의 중량비는 1:0.8 내지 1:1.2 인 것으로 구성된다.
상기 또 다른 과제를 달성하기 위한 본 발명에 따른 디메틸에테르의 제조방법은 상기 혼합 촉매의 존재하에, 수소, 일산화탄소 및 이산화탄소를 함유하는 합성가스를 220 내지 300℃의 온도, 30 내지 70 기압의 압력 및 2,000 내지 8,000 h -1의 공간속도(GHSV)에서 반응시키는 것을 포함한다.
본 발명에 따른 디메틸에테르 제조용 혼합 촉매를 사용하여 수소, 일산화탄소 및 이산화탄소를 함유하는 합성가스로부터 디메틸에테르를 제조하는 경우, 높은 일산화탄소 전환율과 디메틸에테르 선택도로 디메틸에테르를 생산할 수 있어 산업적으로 실용성이 크다.
이하, 본 발명을 보다 상세히 설명한다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시양태를 가질 수 있는 바, 특정 실시양태들을 예시하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태로 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 발명에 따른 디메틸에테르 제조용 혼합 촉매는 메탄올 합성 촉매와 메탄올 탈수 촉매의 혼합물이다.
상기 메탄올 합성 촉매는 CuO-ZnO-Al 2O 3 기본 촉매(main catalyst)에 Na, K, Li, Mg, Ca, Ga, Zr, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 조촉매(promoter)가 첨가되어 제조된다. 상기 CuO-ZnO-Al 2O 3 기본 촉매는 당업계에서 통상 사용되는 공침전법(co-precipitation)으로 형성될 수 있다. 또한, 상기 메탄올 탈수 촉매는 감마 알루미나(γ-alumina)에 인산알루미늄(aluminum phosphate)을 혼합하여 제조된다.
일 실시양태에서, 상기 메탄올 합성 촉매에서 기본 촉매와 조촉매의 중량비는 1:19 이상 1:99 미만이다. 상기 기본 촉매에 첨가되는 조촉매는 촉매 활성점으로 작용하는 구리(Cu) 금속의 분산도를 향상시키기 위해 사용되는 것으로, 기본촉매, 및 조촉매가 상기 비율을 만족할 때, 오랜 반응시간 동안 일산화탄소의 전환율을 높이고 최종 생성되는 디메틸에테르의 선택도를 향상시킬 수 있다.
일 실시양태에서, 상기 조촉매는 Na, K, Li, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진다. 상기 성분들은 디메틸에테르 제조시 일산화탄소의 전환율을 높이는데 특히 유리하다.
일 실시양태에서, 상기 메탄올 합성 촉매와 상기 메탄올 탈수 촉매의 중량비는 60/40 내지 70/30의 범위이다. 메탄올의 탈수반응 활성도는 산점(酸点)의 양에 의존하기 때문에 상기 메탄올 탈수 촉매의 중량비가 상기 범위 미만인 경우, 고체 산점이 일부 존재하므로 탈수반응 활성도가 높아 탈수반응이 더욱 진행되어 탄화수소와 같은 부산물이 생성되거나 코크가 생성되는 것을 억제할 수 없는 문제가 발생하며, 상기 메탄올 탈수 촉매의 중량비가 상기 범위를 초과하면 탈수반응 활성도가 너무 낮아서 촉매로서의 기능을 수행하지 못하는 단점이 있다.
일 실시양태에서, 상기 메탄올 탈수 촉매에서 감마 알루미나 대 인산알루미늄의 중량비는 1:0.8 내지 1:1.2의 범위로서, 이 범위가 디메틸에테르 선택도 및 일산화탄소 전환율 면에서 바람직하다.
일 실시양태에서, 상기 조촉매는 NaNO 3, KNO 3, LiNO 3, Mg(NO 3) 6H 2O, Ca(NO 3) xH 2O, Ga(NO 3) xH 2O, ZrO(NO 3) xH 2O, Sr(NO 3) 4H 2O 및 Ba(NO 3) 2로부터 선택된 1종 이상을 포함할 수 있다.
일 실시양태에서, 상기 조촉매는 NaNO 3, KNO 3, LiNO 3, Sr(NO 3) 4H 2O 및 Ba(NO 3) 2로부터 선택된 1종 이상을 포함할 수 있다.
본 발명에 따른 디메틸에테르 제조용 혼합 촉매의 제조방법은 CuO-ZnO-Al 2O 3 기본 촉매에 Na, K, Li, Mg, Ca, Ga, Zr, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 조촉매를 첨가하여 메탄올 합성 촉매를 제조하는 단계;
감마 알루미나에 인산알루미늄을 혼합하여 메탄올 탈수 촉매를 제조하는 단계; 및
상기 메탄올 합성 촉매와 상기 메탄올 탈수 촉매를 60/40 내지 70/30의 중량비로 혼합하는 단계를 포함하며,
상기 메탄올 합성 촉매에서 기본 촉매와 조촉매의 중량비는 1:19 이상 1:99 미만이고, 상기 메탄올 탈수 촉매에서 감마 알루미나 대 인산알루미늄의 중량비는 1:0.8 내지 1:1.2 이다.
일 실시양태에서, 상기 제조방법에서의 조촉매는 Na, K, Li, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 것이다.
일 실시양태에서, 상기 제조방법에서의 조촉매는 NaNO 3, KNO 3, LiNO 3, Mg(NO 3) 6H 2O, Ca(NO 3) xH 2O, Ga(NO 3) xH 2O, ZrO(NO 3) xH 2O, Sr(NO 3) 4H 2O 및 Ba(NO 3) 2로부터 선택된 1종 이상을 포함하는 것이다.
일 실시양태에서, 상기 제조방법에서의 조촉매는 NaNO 3, KNO 3, LiNO 3, Sr(NO 3) 4H 2O 및 Ba(NO 3) 2로부터 선택된 1종 이상을 포함하는 것이다.
한편, 상기 혼합 촉매를 사용하여, 수소, 일산화탄소 및 이산화탄소를 함유하는 합성가스로부터 디메틸에테르를 제조하기 위해 220 내지 300 ℃의 온도, 30 내지 70 기압의 압력 및 2,000 내지 8,000 h -1의 공간속도(GHSV) 범위를 사용할 수 있다. 상기 반응온도가 220℃ 미만이면, 일산화탄소 전환율이 낮아지는 문제가 있고, 300℃를 초과하면 디메틸에테르 선택도가 저하된다.
또한, 반응압력이 30기압 미만이면 열역학적으로 디메틸에테르 생성에 불리하고, 70기압을 초과하면 반응 운전상 문제가 발생한다. 상기 합성가스의 공간속도가 2,000h -1 미만이면 반응 생산성이 낮아지고, 8,000h -1를 초과하면 일산화탄소 전환율이 낮아진다.
한 실시양태에서, 상기 반응은 기상의 고정층 반응기 또는 유동층 반응기에서 수행되나, 이에 한정되는 것은 아니다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
본 실시예에서는 플랜트 설비 환경에서 메탄올 합성 촉매와 탈수 촉매를 제조한 후 혼합하여 혼합 촉매를 제조하였다. 혼합 촉매 생산에 사용된 재료들과 각 단계의 기본 공정들은 당업계에서 통상 사용되는 것에 기초한 것이다. 사용된 재료들은 플랜트 규모에 맞게 대량으로 처리됨으로써 각각의 양을 측정하기가 어려웠기에 사용된 중량 비율로 기재한다.
메탄올 합성 촉매는 CuO-ZnO-Al 2O 3 기본 촉매와 NaNO 3 조촉매를, 상기 기본 촉매 대 조촉매의 중량비를 1:20으로 하여 증류수에 녹이고 pH 7이 되도록 만든 후 침전물을 분리하여 건조시키고 소성(400℃, 4시간)시켜 제조하였다. 이어서, 감마 알루미나와 인산알루미늄을, 상기 감마 알루미나 대 인산알루미늄의 중량비가 1:1이 되도록 혼합하여 메탄올 탈수 촉매를 제조하였다.
이어서, 상기 메탄올 합성 촉매와 메탄올 탈수 촉매를 60/40의 중량비로 혼합한 혼합 촉매를 고정층 반응기에 충전하였다. 이 상태에서 수소와 질소의 혼합 가스를 유동시켜 상기 혼합 촉매를 환원 처리하였다.
상기 혼합 촉매에 수소와 일산화탄소의 혼합 가스(수소:일산화탄소=1:1 부피비)를 300℃의 온도, 50기압의 압력 및 5,000h -1의 공간속도(GHSV)로 통과시켜 디메틸에테르를 수득하였다.
실시예 2
조촉매로서 KNO 3를 사용하고 기본 촉매 대 조촉매의 중량비를 1:30으로 하는 것을 제외하고는, 상기 실시예 1과 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
실시예 3
조촉매로서 LiNO 3를 사용하고 기본 촉매 대 조촉매의 중량비를 1:50으로 하는 것을 제외하고는, 상기 실시예 1과 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
실시예 4
조촉매로서 Sr(NO 3) 4H 2O를 사용하고 기본 촉매 대 조촉매의 중량비를 1:70으로 하는 것을 제외하고는, 상기 실시예 1과 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
실시예 5
조촉매로서 Ba(NO 3) 2를 사용하고 기본 촉매 대 조촉매의 중량비를 1:90으로 하는 것을 제외하고는, 상기 실시예 1과 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
비교예 1
조촉매를 사용하지 않는 것을 제외하고는 상기 실시예 1과 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
비교예 2
기본 촉매 대 조촉매의 중량비를 1:15로 하는 것을 제외하고는, 상기 실시예 1과 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
비교예 3
기본 촉매 대 조촉매의 중량비를 1:10으로 하는 것을 제외하고는, 상기 실시예 2와 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
비교예 4
기본 촉매 대 조촉매의 중량비를 1:7로 하는 것을 제외하고는, 상기 실시예 3과 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
비교예 5
기본 촉매 대 조촉매의 중량비를 1:5로 하는 것을 제외하고는, 상기 실시예 4와 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
비교예 6
기본 촉매 대 조촉매의 중량비를 1:2로 하는 것을 제외하고는, 상기 실시예 5와 동일한 재료와 동일한 방법을 사용하여 디메틸에테르를 수득하였다.
상기 실시예 1 내지 5에서 수득한 일산화탄소 전환율과 디메틸에테르 선택도, 및 상기 비교예 1 내지 6에서 얻은 일산화탄소 전환율과 디메틸에테르 선택도를 아래 표 1로 나타냈다:
구분 일산화탄소 전환율(%) 디메틸에테르 선택도(%)
실시예 1 94.98 73.42
실시예 2 94.31 74.60
실시예 3 95.88 74.02
실시예 4 94.60 75.13
실시예 5 94.75 74.03
비교예 1 81.20 62.01
비교예 2 84.46 64.21
비교예 3 83.58 65.96
비교예 4 85.80 64.78
비교예 5 85.98 65.35
비교예 6 84.86 66.10
상기 표 1로부터 알 수 있듯이, 본 발명에 따른 디메틸에테르 제조용 합성 촉매를 사용하여 디메틸에테르를 제조한 결과, 비교예 1 내지 6에 비해 일산화탄소 전환율 및 디메틸에테르 선택도가 증가하였음을 확인할 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (11)

  1. CuO-ZnO-Al 2O 3 기본 촉매(main catalyst)에 Na, K, Li, Mg, Ca, Ga, Zr, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 조촉매(promoter)가 첨가되어 제조된 메탄올 합성 촉매, 및
    감마 알루미나(γ-alumina)에 인산알루미늄(aluminum phosphate)을 혼합하여 제조된 메탄올 탈수 촉매로 구성되며,
    상기 메탄올 합성 촉매에서 기본 촉매와 조촉매의 중량비가 1:19 이상 1:99 미만이며,
    상기 메탄올 합성 촉매와 상기 메탄올 탈수 촉매의 중량비가 60/40 내지 70/30의 범위인, 디메틸에테르 제조용 혼합 촉매.
  2. 제1항에 있어서, 상기 조촉매는 Na, K, Li, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 것인, 디메틸에테르 제조용 혼합 촉매.
  3. 제1항에 있어서, 상기 조촉매는 NaNO 3, KNO 3, LiNO 3, Mg(NO 3) 6H 2O, Ca(NO 3) xH 2O, Ga(NO 3) xH 2O, ZrO(NO 3) xH 2O, Sr(NO 3) 4H 2O 및 Ba(NO 3) 2로부터 선택된 1종 이상을 포함하는 것인, 디메틸에테르 제조용 혼합 촉매.
  4. 제2항에 있어서, 상기 조촉매는 NaNO 3, KNO 3, LiNO 3, Sr(NO 3) 4H 2O 및 Ba(NO 3) 2로부터 선택된 1종 이상을 포함하는 것인, 디메틸에테르 제조용 혼합 촉매.
  5. 제1항에 있어서, 상기 메탄올 탈수 촉매는 감마 알루미나 대 인산알루미늄이 1:0.8 내지 1:1.2의 중량비로 혼합된 것인, 디메틸에테르 제조용 혼합 촉매.
  6. CuO-ZnO-Al 2O 3 기본 촉매에 Na, K, Li, Mg, Ca, Ga, Zr, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 조촉매를 첨가하여 메탄올 합성 촉매를 제조하는 단계;
    감마 알루미나에 인산알루미늄을 혼합하여 메탄올 탈수 촉매를 제조하는 단계; 및
    상기 메탄올 합성 촉매와 상기 메탄올 탈수 촉매를 60/40 내지 70/30의 중량비로 혼합하는 단계를 포함하며,
    상기 메탄올 합성 촉매에서 기본 촉매와 조촉매의 중량비가 1:19 이상 1:99 미만이고, 상기 메탄올 탈수 촉매에서 감마 알루미나 대 인산알루미늄의 중량비가 1:0.8 내지 1:1.2인 것인, 디메틸에테르 제조용 혼합 촉매의 제조방법.
  7. 제6항에 있어서, 상기 조촉매는 Na, K, Li, Sr 및 Ba로부터 선택된 1종 이상으로 이루어진 것인, 디메틸에테르 제조용 혼합 촉매의 제조방법.
  8. 제6항에 있어서, 상기 조촉매는 NaNO 3, KNO 3, LiNO 3, Mg(NO 3) 6H 2O, Ca(NO 3) xH 2O, Ga(NO 3) 3·xH 2O, ZrO(NO 3) xH 2O, Sr(NO 3) 4H 2O 및 Ba(NO 3) 2로부터 선택된 1종 이상을 포함하는 것인, 디메틸에테르 제조용 혼합 촉매의 제조방법.
  9. 제7항에 있어서, 상기 조촉매는 NaNO 3, KNO 3, LiNO 3, Sr(NO 3) 4H 2O 및 Ba(NO 3) 2로부터 선택된 1종 이상을 포함하는 것인, 디메틸에테르 제조용 혼합 촉매의 제조방법.
  10. 제1항에 따른 디메틸에테르 제조용 혼합 촉매의 존재하에, 수소, 일산화탄소 및 이산화탄소를 함유하는 합성가스를 220 내지 300 ℃의 온도, 30 내지 70 기압의 압력 및 2,000 내지 8,000 h -1의 공간속도(GHSV)에서 반응시키는 것을 포함하는, 디메틸에테르의 제조방법.
  11. 제10항에 있어서, 상기 반응은 기상의 고정층 반응기 또는 유동층 반응기에서 수행되는 것인, 디메틸에테르의 제조방법.
PCT/KR2019/014000 2018-10-29 2019-10-23 디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법 WO2020091298A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180129525A KR20200047977A (ko) 2018-10-29 2018-10-29 디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법
KR10-2018-0129525 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020091298A1 true WO2020091298A1 (ko) 2020-05-07

Family

ID=70461841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014000 WO2020091298A1 (ko) 2018-10-29 2019-10-23 디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법

Country Status (2)

Country Link
KR (1) KR20200047977A (ko)
WO (1) WO2020091298A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022248460A3 (en) * 2021-05-25 2023-01-12 Basf Se A catalyst comprising copper and gallium for the direct conversion of co2 and co2/co mixture in presence of h2 to mixtures of methanol and dimethylether

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070793A (ja) * 1999-09-08 2001-03-21 Kansai Electric Power Co Inc:The ジメチルエーテル合成触媒及び合成方法
KR20040074519A (ko) * 2003-02-19 2004-08-25 한국화학연구원 메탄올으로부터 디메틸에테르의 제조방법
KR100812100B1 (ko) * 2006-11-28 2008-03-12 한국가스공사 디메틸에테르 제조용 혼합촉매, 이의 제조방법 및 이를 이용한 디메틸에테르 제조방법
KR100812099B1 (ko) * 2006-11-28 2008-03-12 한국가스공사 디메틸에테르 제조용 혼합촉매, 이의 제조방법 및 이를 이용한 디메틸에테르 제조방법
WO2010068723A2 (en) * 2008-12-12 2010-06-17 Range Fuels, Inc. Methods for promoting syngas-to-alcohol catalysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070793A (ja) * 1999-09-08 2001-03-21 Kansai Electric Power Co Inc:The ジメチルエーテル合成触媒及び合成方法
KR20040074519A (ko) * 2003-02-19 2004-08-25 한국화학연구원 메탄올으로부터 디메틸에테르의 제조방법
KR100812100B1 (ko) * 2006-11-28 2008-03-12 한국가스공사 디메틸에테르 제조용 혼합촉매, 이의 제조방법 및 이를 이용한 디메틸에테르 제조방법
KR100812099B1 (ko) * 2006-11-28 2008-03-12 한국가스공사 디메틸에테르 제조용 혼합촉매, 이의 제조방법 및 이를 이용한 디메틸에테르 제조방법
WO2010068723A2 (en) * 2008-12-12 2010-06-17 Range Fuels, Inc. Methods for promoting syngas-to-alcohol catalysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022248460A3 (en) * 2021-05-25 2023-01-12 Basf Se A catalyst comprising copper and gallium for the direct conversion of co2 and co2/co mixture in presence of h2 to mixtures of methanol and dimethylether

Also Published As

Publication number Publication date
KR20200047977A (ko) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2010067945A1 (ko) 천연가스와 이산화탄소의 혼합 개질 반응으로부터 생성된 합성가스를 이용한 메탄올 합성 방법
US4375566A (en) Process for producing ortho-alkylated phenols from anisoles
WO2010011101A2 (ko) 합성가스로부터 메탄올 합성용 촉매 및 이의 제조방법
US3686334A (en) Direct hydration of ethylene to ethanol
KR100812099B1 (ko) 디메틸에테르 제조용 혼합촉매, 이의 제조방법 및 이를 이용한 디메틸에테르 제조방법
EP0297458A2 (en) Preparation of alcohols from synthesis gas
CA2093752C (en) Integrated process for oxygenated acetyl compounds from synthesis gas via dimethyl ether
WO2016186278A1 (ko) 2,5-푸란디카르복실산의 제조 방법
WO2020091298A1 (ko) 디메틸에테르 제조용 혼합 촉매, 이의 제조방법 및 이를 이용한 디메틸에테르의 제조방법
WO2012112003A2 (ko) 글리콜에테르를 이용한 고순도 이소부텐의 제조 방법
US5502243A (en) Hydrocarbonylation of dimethyl ether
US5238895A (en) Catalyst system and process for the liquid-phase production of methanol from synthesis gas
US5900521A (en) Catalysts for converting methane or purified natural gas, preparation thereof, and process for preparation of ethylene using the catalysts
US5847223A (en) Process for the preparation of methyl mercaptan
WO2018221785A1 (ko) 경질 올레핀의 회수방법
WO2017090864A1 (ko) 저온 개질반응용 코발트 담지촉매 및 이의 제조방법
WO2014204099A1 (ko) 젖산으로부터 락타이드 직접 제조용 성형 촉매 및 이의 제조 방법
US2584405A (en) Preparation of silica-boria cata
WO2018190642A2 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2020009318A1 (ko) 전환율 및 선택도가 향상된 올레핀 제조용 촉매 및 그 제조방법
KR100812100B1 (ko) 디메틸에테르 제조용 혼합촉매, 이의 제조방법 및 이를 이용한 디메틸에테르 제조방법
WO2021107541A1 (ko) 알칸족 가스로부터 올레핀 제조용 탈수소촉매 및 그 제조방법
WO2001007385B1 (en) Methanol process for natural gas conversion
JPH0669969B2 (ja) 炭化水素の製造方法
WO2022154480A1 (ko) 1-알코올의 탈수 반응용 첨가제 및 이를 이용한 1-올레핀의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879717

Country of ref document: EP

Kind code of ref document: A1