WO2020090957A1 - Electronic component mounting apparatus - Google Patents

Electronic component mounting apparatus Download PDF

Info

Publication number
WO2020090957A1
WO2020090957A1 PCT/JP2019/042724 JP2019042724W WO2020090957A1 WO 2020090957 A1 WO2020090957 A1 WO 2020090957A1 JP 2019042724 W JP2019042724 W JP 2019042724W WO 2020090957 A1 WO2020090957 A1 WO 2020090957A1
Authority
WO
WIPO (PCT)
Prior art keywords
collet
mounting
electronic component
image
deviation
Prior art date
Application number
PCT/JP2019/042724
Other languages
French (fr)
Japanese (ja)
Inventor
前田 徹
洋 尾又
Original Assignee
ヤマハモーターロボティクスホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハモーターロボティクスホールディングス株式会社 filed Critical ヤマハモーターロボティクスホールディングス株式会社
Priority to CN201980071518.5A priority Critical patent/CN113287191A/en
Priority to JP2020554021A priority patent/JP6940207B2/en
Priority to SG11202104308TA priority patent/SG11202104308TA/en
Priority to KR1020217016199A priority patent/KR102488231B1/en
Publication of WO2020090957A1 publication Critical patent/WO2020090957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling
    • H01L2221/6839Separation by peeling using peeling wedge or knife or bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors

Definitions

  • the present invention relates to the structure of an electronic component mounting device.
  • Many electronic component mounting devices are used to pick up a semiconductor die from a wafer and mount it on a substrate or lead frame.
  • the mounting position on the substrate is recognized by the camera, and the center position of the mounting collet is aligned with the mounting position to position the semiconductor die and the mounting position.
  • the semiconductor die is mounted while the temperature of the substrate is kept at about 100 ° C., if the mounting is continued for a long time, the positional relationship between the camera, the collet, and the substrate may change due to the temperature change over time. In some cases, the positioning accuracy may change and the positioning accuracy may decrease.
  • a reference mark is provided on each of the transfer path for transferring the substrate and the bonding head to which the collet is attached, and each reference mark is imaged by the camera to detect the positional deviation between the camera and the bonding head with respect to the transfer path. It has been proposed to correct the positional relationship among the camera, collet, and substrate (for example, see Patent Document 1).
  • the temperature change over time also affects the pickup unit that picks up the semiconductor die from the wafer.
  • the semiconductor die to be picked up is recognized by the camera, the center position of the pickup collet is aligned with the center position of the semiconductor die, the semiconductor die is picked up, and the semiconductor die is transferred onto the substrate and mounted at the mounting position on the substrate. Therefore, when the center position of the pickup collet and the center position of the semiconductor die to be picked up are deviated, the mounting accuracy of the semiconductor die on the substrate may be deteriorated.
  • the electronic component mounting apparatus of the present invention has a wafer ring that holds a wafer, a collet that has a central hole, and picks up an electronic component from the wafer, a collet drive unit that horizontally drives the collet, and a base side of the collet.
  • a wafer-side illumination unit that allows light to enter the center hole of the collet, a wafer-side imaging device that captures an image of the collet from the base side of the collet, an image processing unit that processes the image captured by the wafer-side imaging device, and a collet
  • a controller for adjusting the position and an electronic component mounting apparatus comprising, the wafer-side imaging device, an image of reflected light that is incident on the center hole of the collet and reflected on the surface of the wafer directly below the collet,
  • the image processing unit determines the center position of the center hole of the collet based on the image of the reflected light reflected by the surface of the wafer captured by the wafer-side imaging device. As the center position of the collet, and the deviation between the detected center position of the collet and the reference position in the field of view of the wafer-side imaging device is detected. Adjusting the position of.
  • the deviation between the center position of the collet and the reference position in the field of view of the wafer side imaging device is detected, and the position of the collet is adjusted by correcting the horizontal position of the collet based on the deviation.
  • the deviation amount can be corrected at any time, and the semiconductor die can be accurately picked up from the wafer.
  • the collet includes an push-up pin that pushes up the electronic component picked up from the lower side of the wafer, the wafer-side imaging device captures an image of the push-up pin from the upper side, and the image processing unit is the wafer side.
  • the center position of the push-up pin may be detected as a pin center based on the image of the push-up pin captured by the image pickup device, and the detected pin center may be set as a reference position in the field of view of the wafer-side image pickup device.
  • the wafer-side imaging device includes a wafer ring driving unit that horizontally drives the wafer ring, the wafer-side imaging device images an electronic component picked up by the collet from the upper side of the wafer, and the image processing unit includes the collet imaged by the wafer-side imaging device. Detects the center position of the electronic component picked up by the collet as the chip center based on the image of the electronic component picked up by the collet, and the control unit adjusts the wafer ring so that the chip center becomes the reference position in the field of view of the wafer side image pickup device.
  • the horizontal position of the wafer ring may be adjusted by the driving unit.
  • the center position of the push-up pin is set to the reference position in the field of view of the wafer side image pickup device, and the chip center, which is the center position of the electronic component picked up by the collet, is set to the reference position in the view field of the wafer side image pickup device. Since the position of the wafer ring in the horizontal direction is adjusted so that, the center position of the semiconductor die to be picked up can be aligned with the push-up pin.
  • the deviation amount is corrected at any time, so the center position of the push-up pin, the semiconductor die to be picked up, and the collet The semiconductor die can be picked up with the center position of the semiconductor die aligned.
  • it is possible to suppress the occurrence of chip misalignment at the time of pickup, and to suppress deterioration of the mounting accuracy of the semiconductor die on the substrate even when there is a temperature change over time.
  • the collet includes a frame-side illumination unit that causes light to enter the center hole of the collet from the root side of the collet, and a frame-side imaging device that captures an image of the collet from the root side of the collet. Mounts the electronic component adsorbed on the tip on the mounting target, the image processing unit processes the image captured by the frame-side imaging device, and the frame-side imaging device adsorbs the electronic component on the tip of the collet.
  • the control unit may adjust the position of the horizontal direction of the collet by the collet driving portion on the basis of the first difference may be.
  • the collet center position and the reference position in the field of view of the frame-side imaging device Since the first deviation between them is detected and the horizontal position of the collet is adjusted based on the first deviation, there is a deviation in the positional relationship between the collet center position and the reference position in the field of view of the frame-side imaging device. When it occurs, the deviation amount can be corrected at any time, and the semiconductor die can be mounted accurately.
  • the frame-side imaging device captures an image of the mounting target
  • the image processing unit mounts the electronic component based on the image of the mounting target captured by the frame-side imaging device.
  • the position is detected, a second deviation between the detected mounting position and the reference position in the field of view of the frame-side imaging device is detected, and the control unit determines the collet drive unit based on the first deviation and the second deviation.
  • the horizontal position of the collet may be adjusted by.
  • the second deviation between the mounting position of the substrate or the lead frame which is the mounting object and the reference position in the field of view of the frame-side imaging device is detected, and based on the first deviation and the second deviation. Since the horizontal position of the collet is adjusted, if there is a deviation in the positional relationship between the collet center position and the mounting position, the amount of deviation can be corrected at any time, and the semiconductor die can be mounted more accurately. Can be implemented in.
  • the electronic component mounting apparatus of the present invention it is arranged between a pickup unit that picks up an electronic component from a wafer and a mounting unit that mounts the picked-up electronic component on a mounting target, and an image of the tip of the collet and a tip of the collet are provided.
  • the backside camera that captures the image of the backside of the sucked electronic component is provided, and the image processing unit, based on the image of the tip of the collet and the backside image of the electronic component captured by the backside camera, displays the image of the electronic component for the collet.
  • the control unit may detect the positional deviation amount and the control unit may adjust the horizontal position of the collet by the collet driving unit based on the first deviation, the second deviation, and the positional deviation amount of the electronic component with respect to the collet.
  • the deviation can be corrected and the electronic component can be mounted on the board in a state where the chip center DC of the electronic component matches the mounting position.
  • a mounting collet that has a central hole and mounts an electronic component adsorbed at the tip on a mounting target, a mounting collet driving unit that horizontally drives the mounting collet, and a root of the mounting collet.
  • the frame-side illuminating section that allows light to enter the center hole of the mounting collet from the side
  • the frame-side imaging device that captures the image of the mounting collet from the root side of the mounting collet. The captured image is processed, the control unit adjusts the position of the mounting collet, and the frame-side imaging device causes the electronic component to be adsorbed to the tip of the mounting collet and makes it enter the center hole of the mounting collet.
  • An image of the reflected light reflected by the surface of the electronic component that is adsorbed on the tip of the mounting part is captured, and the image processing unit is attached to the tip of the mounting collet imaged by the frame-side imaging device.
  • the center position of the center hole of the mounting collet is detected as the mounting collet center position based on the image of the reflected light reflected from the surface of the electronic component, and the detected mounting collet center position and the reference position in the field of view of the frame-side imaging device It is good also as detecting the 1st deviation between and, and controlling the position of the mounting collet in the horizontal direction by the mounting collet drive part based on the 1st deviation.
  • the mounting collet center position and the reference position in the field of view of the frame-side imaging device Is detected and the horizontal position of the mounting collet is adjusted based on the first deviation, the positional relationship between the mounting collet center position and the reference position in the field of view of the frame-side imaging device. If a deviation occurs, the deviation amount can be corrected at any time, and the semiconductor die can be mounted accurately.
  • the frame-side imaging device captures an image of the mounting target
  • the image processing unit mounts the electronic component based on the image of the mounting target captured by the frame-side imaging device.
  • the position is detected, the second deviation between the detected mounting position and the reference position in the field of view of the frame-side imaging device is detected, and the control unit drives the mounting collet based on the first deviation and the second deviation.
  • the position of the mounting collet in the horizontal direction may be adjusted by the section.
  • the second deviation between the mounting position of the substrate or the lead frame which is the mounting object and the reference position in the field of view of the frame-side imaging device is detected, and based on the first deviation and the second deviation. Since the horizontal position of the mounting collet is adjusted, if there is a deviation in the positional relationship between the mounting collet center position and the mounting position, the deviation amount can be corrected at any time, and the semiconductor die can be more accurately It can be mounted at the mounting position.
  • the electronic component mounting apparatus of the present invention it is arranged between a pickup unit that picks up an electronic component from a wafer and a mounting unit that mounts the picked-up electronic component on a mounting target, and an image of the tip of the mounting collet and the mounting collet.
  • the image processing unit includes a backside camera that captures an image of the backside of the electronic component that is attracted to the tip, and the image processing unit, based on the image of the tip of the mounting collet captured by the backside camera and the image of the backside of the electronic component, the mounting collet.
  • the positional deviation amount of the electronic component relative to the mounting collet is detected, and the control unit adjusts the horizontal position of the mounting collet by the mounting collet driving unit based on the first deviation, the second deviation, and the positional deviation amount of the electronic component with respect to the mounting collet. You may.
  • the deviation can be corrected and the electronic component can be mounted on the board in a state where the chip center DC of the electronic component matches the mounting position.
  • the electronic component mounting apparatus of the present invention has a mounting collet that has a central hole and mounts an electronic component adsorbed at the tip on a mounting target, a mounting collet driving unit that horizontally drives the mounting collet, and a root of the mounting collet.
  • FIG. 1 Side illumination unit that allows light to enter the center hole of the mounting collet from the side, a frame-side imaging device that captures an image of the mounting collet from the root side of the mounting collet, and image processing that processes the image captured by the frame-side imaging device
  • An electronic component mounting apparatus comprising: a mounting section, and a control section for adjusting the position of the mounting collet, wherein the frame-side imaging device has a center hole of the mounting collet in a state where the electronic component is adsorbed to the tip of the mounting collet. An image of the reflected light that is incident and reflected on the surface of the electronic component that is adsorbed at the tip of the mounting collet is captured, and the image processing unit displays the mounting core image captured by the frame-side imaging device.
  • the center position of the center hole of the mounting collet is detected as the mounting collet center position based on the image of the reflected light reflected on the surface of the electronic component that is adsorbed at the tip of the mount, and the detected mounting collet center position and the frame side imaging device
  • the control unit detects a first deviation from the reference position in the field of view, and the control unit adjusts the horizontal position of the mounting collet by the mounting collet driving unit based on the first deviation.
  • the amount of the deviation can be corrected at any time, and the semiconductor die can be mounted accurately.
  • the frame-side imaging device captures an image of the mounting target
  • the image processing unit mounts the electronic component based on the image of the mounting target captured by the frame-side imaging device.
  • the position is detected, the second deviation between the detected mounting position and the reference position in the field of view of the frame-side imaging device is detected, and the control unit drives the mounting collet based on the first deviation and the second deviation.
  • the position of the mounting collet may be adjusted depending on the part.
  • the second deviation between the mounting position of the substrate or the lead frame which is the mounting object and the reference position in the field of view of the frame-side imaging device is detected, and based on the first deviation and the second deviation. Since the horizontal position of the mounting collet is adjusted, if there is a deviation in the positional relationship between the mounting collet center position and the mounting position, the deviation amount can be corrected at any time, and the semiconductor die can be more accurately It can be mounted at the mounting position.
  • the electronic component mounting apparatus of the present invention can suppress deterioration of mounting accuracy of the semiconductor die on the substrate.
  • FIG. 3 is a vertical sectional view of a pickup section of the electronic component mounting apparatus of the embodiment (AA sectional view shown in FIGS. 1 and 2).
  • FIG. 3 is a vertical sectional view of a mounting portion of the electronic component mounting apparatus of the embodiment (BB sectional view shown in FIGS. 1 and 2).
  • 6 is a flowchart showing the operation of the pickup section of the electronic component mounting apparatus of the embodiment.
  • FIG. 5 is a vertical cross-sectional view showing a state in which the push-up needle is imaged by the wafer side camera from the upper side in the electronic component mounting apparatus of the embodiment.
  • FIG. 6 is a vertical cross-sectional view showing a state where the collet of the pickup head has been moved to just above the wafer. It is a figure which shows the visual field of the wafer side camera in the state shown in FIG.
  • FIG. 5 is a vertical cross-sectional view showing a state in which the center position of the collet of the pickup head is aligned with the reference position of the wafer side camera. It is a figure which shows the visual field of the wafer side camera in the state shown in FIG. It is an elevational sectional view showing the state where a semiconductor die is picked up from a wafer.
  • FIG. 6 is a flowchart showing the operation of the mounting unit of the electronic component mounting apparatus of the embodiment.
  • FIG. 3 is a vertical cross-sectional view showing a state in which a mounting collet having a semiconductor die attached to its tip is moved to directly above a substrate in the semiconductor mounting device of the embodiment. It is a figure which shows the visual field of the frame side camera in the state shown in FIG.
  • FIG. 6 is a vertical cross-sectional view showing a state in which the mounting position of the board is captured by the frame side camera. It is a figure which shows the visual field of the frame side camera in the state of FIG.
  • FIG. 18 is a view obtained by superimposing the view of FIG. 15 on the view of FIG. 17.
  • FIG. 3 is a vertical cross-sectional view showing a state where mounting of a semiconductor die is completed. It is a figure which shows the visual field of the frame side camera in the state shown in FIG. It is an elevation sectional view of a pickup part of an electronic parts mounting device of other embodiments. It is an elevation sectional view of a mounting part of an electronic parts mounting device of other embodiments.
  • FIG. 27 is a vertical sectional view of a mounting portion of an electronic component mounting apparatus according to another embodiment (BB sectional view shown in FIGS. 25 and 26). It is an elevation view which shows the structure of the electronic component mounting apparatus of other embodiment. It is a figure which shows the visual field of the back surface camera of the electronic component mounting apparatus shown in FIG.
  • the electronic component mounting apparatus 100 includes a base 10, a pickup unit 101, a mounting unit 102, and a control device 80.
  • the transport direction of the substrate 74 will be described as the X direction, the direction orthogonal to the X direction as the Y direction, and the vertical direction as the Z direction.
  • the XY directions are horizontal directions.
  • the pickup unit 101 includes a wafer ring 42, a push-up unit 43, a pickup head 20 to which the collet 30 is attached, and a wafer-side camera 12 that is a wafer-side imaging device. ing.
  • the wafer ring 42 holds the wafer 35 on the upper surface and is driven in the XY directions by the wafer ring driving unit 41 arranged on the side surface.
  • the push-up unit 43 is attached to the base 10 below the wafer ring 42, and a push-up pin 44 that pushes up the semiconductor die 36 that moves in the Z direction and picks up from the lower side of the wafer 35 is provided in the center. ..
  • the pickup head 20 is fixed to the base 10 and is guided by the linear guide 14 extending in the X direction through the pickup unit 101 and the mounting unit 102 to move between the pickup unit 101 and the mounting unit 102 in the X direction.
  • the pickup head 20 includes a main body 21 that is guided by the linear guide 14 to move between the pickup unit 101 and the mounting unit 102, a bracket 22 provided on the lower side of the main body 21, and a rotation shaft of a lower end portion of the bracket 22. It has an arm 23 rotatably attached around 24 and a collet 30 attached to the X-direction plus side end of the arm 23. The collet 30 of the pickup head 20 picks up the semiconductor die 36 and mounts it on the substrate 74.
  • a spring 26 is provided between the minus side end of the arm 23 in the X direction and the protrusion 25 attached to the upper side of the bracket 22. The spring 26 pulls the X-direction negative end of the arm 23 upward, and presses the upper surface of the X-direction negative end of the arm 23 against the lower surface of the bracket 22.
  • the main body 21 includes a Y-direction drive mechanism for driving the pickup head 20 in the Y-direction and a Z-direction drive mechanism for driving the collet 30 in the Z-direction inside.
  • the Y-direction drive mechanism may be, for example, a linear motor
  • the Z-direction drive mechanism may be, for example, a servomotor and a screw mechanism.
  • the linear guide 14 moves in the X direction by a linear guide drive mechanism (not shown).
  • the pickup head 20 and the linear guide drive mechanism form a collet drive unit that drives the collet 30 in the XY directions.
  • the collet 30 is composed of a shaft 31 on the base side and a collet body 33 on the tip side.
  • the shaft 31 is made of metal, and the collet body 33 is made of, for example, heat-resistant resin.
  • Circular center holes 32 and 34 are coaxially provided at the centers of the shaft 31 and the collet body 33.
  • the upper end of the shaft 31 is attached to a portion of the arm 23 where the concave portion 23a is provided, and the central hole 32 of the shaft 31 communicates with the concave portion 23a provided at the upper portion of the arm 23 and is located above the concave portion 23a in the Z direction. It is open towards.
  • the center hole 34 of the collet body 33 communicates with the center hole 32 of the shaft 31 and is opened downward from the lower end surface in the Z direction.
  • a light source 27 and a beam splitter 28 are provided on the upper surface of the recess 23 a of the arm 23.
  • a wafer-side camera 12 that captures an image of the collet 30 from the root side of the collet 30 is attached to the upper base 11 on the upper side of the collet 30.
  • the wafer-side camera 12 is arranged such that the optical axis 13 and the pin center PC at the center of the push-up pin 44 are at the same horizontal position.
  • the beam splitter 28 is arranged directly above the central hole 32 of the shaft 31, and reflects the light from the light source 27 to make it enter the central hole 32 of the shaft 31 and the central hole 34 of the collet body 33. Further, the beam splitter 28 transmits the reflected light reflected on the surface of the wafer 35 located immediately below the collet 30 toward the upper side in the Z direction and makes it incident on the wafer side camera 12.
  • the light source 27 and the beam splitter 28 form a wafer side illumination unit 29.
  • the light source 27 may be a high brightness LED or a laser light source.
  • the beam splitter 28 may be replaced by a half mirror.
  • the mounting unit 102 includes a mounting stage 72 that sucks and fixes a substrate 74 that is a mounting target, and a frame-side camera 63 that is a frame-side imaging device.
  • the pickup head 20 is guided by the linear guide 14 extending through the pickup unit 101 and the mounting unit 102 to move between the pickup unit 101 and the mounting unit 102, and the semiconductor die 36 is mounted on the mounting unit 102. Is mounted on the substrate 74.
  • the mounting stage 72 is attached to the base 10 via the pedestal 71.
  • a transport mechanism 73 configured of two guide rails extending in the X direction and transporting the substrate 74 in the X direction is provided.
  • a frame-side camera 63 that captures an image of the collet 30 from the root side of the collet 30 when the pickup head 20 moves to the mounting unit 102 is attached to the upper side of the mounting stage 72.
  • the frame-side camera 63 is attached to the upper base 11 and is attached to the tip of an arm 62 that is movable in the Y direction by being guided by a linear guide 61 extending in the Y direction.
  • a Y-direction drive mechanism such as a linear motor for moving the arm 62 in the Y-direction is attached.
  • the control device 80 is a computer that internally includes a CPU and a memory, and has two functional blocks, a control unit 81 and an image processing unit 82, which function by the CPU and the memory, which is a storage unit, operating in cooperation with each other.
  • the wafer side camera 12, the pickup head 20, the wafer ring drive unit 41, the frame side camera 63, the transfer mechanism 73, and the mounting stage 72 are connected to the control unit 81, and operate according to commands from the control unit 81.
  • the image captured by the wafer-side camera 12 is input to the image processing unit 82 and image-processed by the image processing unit 82.
  • the data obtained by the image processing is input to the control unit 81.
  • the control unit 81 captures an image of the push-up pin 44 with the wafer-side camera 12 from the upper side of the wafer ring 42 and outputs it to the image processing unit 82.
  • the image processing unit 82 processes the input image data to detect the position of the tip of the push-up pin 44 as the pin center PC at the center of the push-up pin 44.
  • the processing of the image data may use, for example, that the brightness of the tip image of the push-up pin 44 is higher than the brightness of the image of the tapered surface near the tip of the push-up pin 44.
  • the optical axis 13 of the wafer side camera 12 and the pin center PC of the center of the push-up pin 44 are arranged at the same position by design, the optical axis 13 of the wafer side camera 12 and the push-up pin 44 are arranged.
  • the pin center PC of the push-up pin 44 shown in FIG. 7 is the reference indicated by the intersection of the reference line 16 in the X direction and the reference line 17 in the Y direction of the field of view 15 of the wafer side camera 12. It is the same position as the position C1. However, as shown in FIG. 7, the position of the pin center PC and the position of the reference position C1 may be displaced.
  • the control unit 81 defines the reference line C1 of the X direction and the reference line of the Y direction that define the reference position C1 of the visual field 15 so that the reference position C1 coincides with the pin center PC. 17 is moved in the XY directions. Then, the moved position is set as the reference position C1 of the visual field 15.
  • the control unit 81 causes the collet 30 to be directly above the wafer 35 by the drive mechanism of the main body 21 of the pickup head 20 in the XY direction and the Z direction, and the lower surface of the collet body 33 to be about 0.1 mm from the wafer 35.
  • the position is a minute height.
  • the center axis of the collet 30 is aligned with the optical axis 13 of the wafer side camera 12.
  • the control unit 81 turns on the light source 27 provided on the pickup head 20.
  • the light from the light source 27 travels in the X direction, is reflected by the beam splitter 28, travels downward in the Z direction, and enters the center hole 32 of the shaft 31 from the root side of the collet 30.
  • the light incident on the center hole 32 passes through the center hole 34 of the collet body 33 from the center hole 32, and is reflected by the surface of the wafer 35 immediately below the collet body 33.
  • the reflected light reflected by the surface of the wafer 35 travels upward in the Z direction through the central holes 34 and 32, passes through the beam splitter 28, and enters the wafer side camera 12.
  • the reflected light from the surface of the wafer 35 located near the lower surface of the collet body 33 is the wafer side camera.
  • the central holes 32, 34 appear as white circular images.
  • the size of the semiconductor die 36 and the collet 30 is drawn larger than the actual size.
  • the size of the collet 30 and the central holes 32 and 34 is very small, and the size of the field of view 15 of the wafer side camera 12 is smaller than that of the recess 23a provided on the upper portion of the arm 23.
  • the focus of the wafer side camera 12 is set near the lower surface of the collet body 33. Therefore, around the white circular images of the center holes 32 and 34 of the visual field 15, not the image of the bottom surface of the recess 23a but the arm 23 between the wafer side camera 12 and the lower surface of the collet body 33 which is the focal plane. Concave portion 23a appears as a black shadow background.
  • the wafer-side camera 12 captures a white image of the reflected light that is incident on the center holes 32 and 34 of the collet 30 that is raised in the black background and reflected on the surface of the wafer 35, as shown in step S104 of FIG.
  • the captured image is output to the image processing unit 82.
  • a blurred image of the bottom surface of the recess 23a may appear around the white circular image.
  • the bottom surface of the recess 23a is black. By doing so, a black background can appear around the white circular image.
  • the image processing unit 82 processes the input image and detects the center positions of the center holes 32 and 34 of the collet 30 as the collet center position CC1.
  • the collet center position CC1 There are various image processing methods for detecting the collet center position CC1, but as an example, the boundary line of the white circular image is detected from the contrast between the black background and the white circular images of the central holes 32 and 34. Then, the collet center position CC1 is detected by calculating the center position of the circle. As shown in FIG. 9, in the visual field 15, the collet center position CC1 is the intersection of the X-direction center line 37 and the Y-direction center line 38.
  • the image processing unit 82 detects an X-direction deviation ⁇ X1 and a Y-direction deviation ⁇ Y1 between the collet center position CC1 and the reference position C1 of the visual field 15 detected as shown in step S106 of FIG. To do.
  • the control unit 81 stores the input deviations ⁇ X1 and ⁇ Y1 in the storage unit.
  • the image processing unit 82 recognizes the semiconductor die 36 to be picked up in the field of view 15 as shown in step S107 and FIG. 9 of FIG. 5, and as shown in step S108 of FIG.
  • the center position of 36 is detected as the chip center DC and output to the control unit 81.
  • the control unit 81 stores the input chip center DC in the storage unit.
  • the recognized image of the semiconductor die 36 is processed to obtain a square contour line of the semiconductor die 36, the X-direction center line 36x and the Y-direction center line 36y are obtained, and the chip center DC is determined as the intersection. May be detected.
  • the control unit 81 reads the chip center DC from the storage unit, and as shown in step S109 in FIG. 5, the chip center DC of the semiconductor die 36 to be picked up becomes the reference position C1 in the field of view 15 of the wafer side camera 12.
  • the wafer ring drive unit 41 moves the wafer ring 42.
  • the reference position C1 is set to the same position as the position of the pin center PC of the push-up pin 44, this operation can make the chip center DC, the reference position C1, and the pin center PC the same position. it can.
  • the control unit 81 reads the deviations ⁇ X1 and ⁇ Y1 from the storage unit and corrects the position by the deviation ⁇ Y1 to set the collet center position CC1 in the visual field 15 of the wafer side camera 12 as shown in step S110 of FIG. Adjust to the reference position C1 of. Specifically, as shown in FIG. 9, when the deviation in the Y direction between the collet center position CC1 and the reference position C1 is ⁇ Y1, the control unit 81 moves the pickup head 20 toward the Y direction plus side. At this time, the pickup head 20 is moved to a position where the scale of the linear scale for detecting the position of the pickup head 20 in the Y direction is larger than the scale corresponding to the reference position C1 by a deviation ⁇ Y1.
  • the deviation ⁇ Y1 is corrected and the position of the collet 30 in the Y direction coincides with the reference position C1.
  • the deviation ⁇ X1 is corrected by moving the linear guide 14 in the X direction by the deviation ⁇ X1 by a linear guide drive mechanism (not shown).
  • the chip center DC, the reference position C1, the pin center PC, and the collet center position CC1 are at the same position as shown in FIG. Can be
  • the controller 81 lowers the collet 30 onto the semiconductor die 36 for picking up the collet 30 by the Z-direction drive mechanism of the main body 21 of the pickup head 20, as shown in step S111 and FIG. 12 of FIG.
  • the semiconductor die 36 is attracted to the surface of the semiconductor die 36, and the push-up pins 44 are moved upward to push up the semiconductor die 36 from the lower side to pick up the semiconductor die 36 from the wafer 35.
  • the chip center DC, the reference position C1, the pin center PC, and the collet center position CC1 are at the same position, the center of the semiconductor die 36 is pushed up by the push-up pin 44, and the semiconductor die 36 is placed at the center of the collet body 33. Can be adsorbed. Therefore, the semiconductor die 36 can be accurately picked up from the wafer 35, and a decrease in mounting accuracy of the semiconductor die 36 on the substrate 74 can be suppressed.
  • the tip of the collet body 33 can be prevented from being deformed by the collet body 33 picking up the semiconductor die 36 in a biased manner.
  • the electronic component mounting apparatus 100 of the present embodiment causes light to enter the center holes 32 and 34 from the upper side of the collet 30 and detects the collet center position CC1 by the reflected light from the wafer 35 immediately below the collet 30,
  • the operation of detecting the deviation from Step S104 to Step S106 of Step 5 can be performed during the operation of picking up the semiconductor die 36 from the wafer 35.
  • the deviation can be corrected and the pickup can be continued every time the pickup operation is performed several times, so that the semiconductor die 36 can be accurately picked up even if there is a change over time, and the substrate 74 It is possible to effectively prevent the mounting accuracy of the semiconductor die 36 from being reduced.
  • deviation detection and correction may be performed for each pick-up instead of every pick-up.
  • the deviation ⁇ X1 in the X direction detected by the image processing unit 82 and the deviation ⁇ Y1 in the Y direction are stored in the storage unit of the control unit 81, and in the subsequent mounting, the deviation stored in the storage unit is used. It is possible to make a correction and pick up a predetermined number of times. In this case, it is possible to effectively suppress a decrease in mounting accuracy of the semiconductor die 36 on the substrate 74 while suppressing a decrease in bonding efficiency.
  • the controller 81 operates the Y-direction drive mechanism arranged inside the main body 21 of the pickup head 20 to move the pickup head 20 to the lower side of the frame side camera 63. To move. At this time, the control unit 81 moves the pickup head 20 so that the collet center position CC2 of the collet 30 coincides with the position of the optical axis 64 of the frame side camera 63. Further, since the focus of the frame side camera 63 is on the surface of the substrate 74, the position of the surface of the semiconductor die 36 attracted to the tip of the collet 30 is separated from the surface of the substrate 74 by a very small amount, for example, about 0.1 mm. The collet 30 is lowered so that the upper surface of the semiconductor die 36 enters the depth of focus of the frame side camera 63. The collet 30 is moved downward by driving in the Z direction arranged inside the main body 21 of the pickup head 20.
  • the position of the optical axis 64 of the frame-side camera 63 is the reference position C2 indicated by the intersection of the X-direction center line 66 and the Y-direction center line 67 in the field of view 65 of the frame-side camera 63 as shown in FIG. Becomes In the field of view 65, the collet center position CC2 is the intersection of the X-direction center line 55x and the Y-direction center line 55y.
  • the collet center position CC2 coincides with the reference position C2.
  • the collet center position CC2 may deviate from the reference position C2.
  • the control unit 81 turns on the light source 27a provided in the pickup head 20, as described above.
  • the light from the light source 27 enters the center holes 32 and 34 of the collet 30 and becomes a white image of the reflected light reflected by the surface of the wafer 35.
  • the white image has a black background around it.
  • the frame side camera 63 captures a white image of the reflected light that is projected inward on a black background. The captured image is output to the image processing unit 82.
  • the image processing unit 82 processes the input image and detects the center positions of the center holes 32 and 34 of the collet 30 as the collet center position CC2, as described above. ..
  • the image processing unit 82 detects the X-direction first deviation ⁇ X2 and the Y-direction first deviation ⁇ Y2 between the collet center position CC2 detected as shown in step S204 of FIG. 13 and the reference position C2 of the visual field 65, and controls them. Output to the unit 81.
  • the control unit 81 stores the input X-direction first deviation ⁇ X2 and Y-direction first deviation ⁇ Y2 in the storage unit.
  • control unit 81 causes the reference position C2 of the visual field 65 of the frame side camera 63 to be in the visual field of the mounting position BC at the center of the mounting area 75 for mounting the semiconductor die 36 on the substrate 74.
  • the frame side camera 63 is moved to such a position.
  • the movement in the Y direction is performed by the Y direction drive mechanism arranged in the arm 62.
  • the control unit 81 operates the frame side camera 63 to image the mounting area 75.
  • the captured image is input to the image processing unit 82.
  • the image processing unit 82 processes the acquired image to detect the mounting position BC at the center of the mounting area 75, and outputs it to the control unit 81, as shown in step S206 of FIG.
  • the control unit 81 stores the input mounting position BC in the storage unit.
  • the recognized mounting area 75 image is processed to obtain a square contour line of the mounting area 75, the X-direction center line 76 and the Y-direction center line 77 are obtained, and the mounting position BC is detected as the intersection. You can
  • a displacement may occur between the reference position C2 of the field of view 65 of the frame side camera 63 and the mounting position BC.
  • the image processing unit 82 detects the X-direction second deviation ⁇ X3 and the Y-direction second deviation ⁇ Y3 between the mounting position BC and the reference position C2 of the visual field 65 detected as shown in step S207 of FIG. 13, and the control unit Output to 81.
  • the control unit 81 stores the input X-direction second deviation ⁇ X3 and Y-direction second deviation ⁇ Y3 in the storage unit.
  • the control unit 81 reads the X-direction second deviation ⁇ X3 and the Y-direction second deviation ⁇ Y3 from the storage unit, and as shown in step S208 of FIG. 13 and FIG. 18, the Y-direction first deviation ⁇ Y2 and the Y-direction second deviation ⁇ Y3.
  • the position is corrected by 2 deviations ⁇ Y3, the X direction first deviation ⁇ X2 and the X direction second deviation ⁇ X3 are corrected, and the collet center position CC2 is adjusted to the mounting position BC.
  • the control unit 81 moves the pickup head 20 toward the Y direction plus side, the scale of the linear scale that detects the position of the pickup head 20 in the Y direction is larger than the scale corresponding to the mounting position BC.
  • the pickup head 20 is moved to a position where the sum of the Y-direction first deviation ⁇ Y2 and the Y-direction second deviation ⁇ Y3 increases. Further, the control unit 81 moves the linear guide 14 in the X direction by a linear guide drive mechanism (not shown) to correct the deviation ⁇ X2. As a result, the Y-direction first deviation ⁇ Y2, the Y-direction second deviation ⁇ Y3, the X-direction first deviation ⁇ X2, and the X-direction second deviation ⁇ X3 are corrected so that the collet center position CC2 coincides with the mounting position BC.
  • the collet center position CC2 can be matched with the mounting position BC in the state where the chip center DC is attracted so as to match the collet center position CC2 of the collet 30 as shown in FIG.
  • the semiconductor die 36 can be mounted on the substrate 74 with the chip center DC aligned with the mounting position BC.
  • step S209 of FIG. 13 the control unit 81 lowers the collet 30 in the state shown in FIG. 19 to mount the semiconductor die 36 on the mounting area 75.
  • the electronic component mounting apparatus 100 of this embodiment it is possible to suppress deterioration of the mounting accuracy of the semiconductor die 36 on the substrate 74 when there is a change over time.
  • the electronic component mounting apparatus 100 of the present embodiment causes light to enter the center holes 32 and 34 from the upper side of the collet 30 and detects the collet center position CC2 by the reflected light from the surface of the semiconductor die 36 adsorbed to the tip of the collet 30. Therefore, the operation of detecting the first deviation from step S201 to step S204 of FIG. 13 and the operation of detecting the second deviation of step S205 to S207 of FIG. 13 to correct the first and second deviations are performed. , Can be performed during mounting of the semiconductor die 36.
  • the mounting unit 102 when the mounting unit 102 repeatedly picks up and mounts the semiconductor die 36, the mounting is first started with the first deviation set as a predetermined set value, and the semiconductor die 36 after mounting several times is mounted. Immediately before mounting on the substrate 74, the first deviation is detected while the surface of the semiconductor die 36 attracted to the tip of the collet 30 is lowered to a position slightly separated from the surface of the substrate 74, for example, about 0.1 mm.
  • the result is stored in the storage unit of the control unit 81, and in the subsequent mounting, the correction can be performed using the first deviation stored in the storage unit, and the mounting can be performed a predetermined number of times.
  • the detection of the second deviation is performed after the mounting has been performed many times, and the detection result is stored in the storage unit of the control unit 81. In the subsequent mounting, the detection is stored in the storage unit.
  • the correction can be performed using the second deviation and the mounting can be performed a predetermined number of times.
  • the pickup head 20 that picks up and mounts the semiconductor die 36 is guided by the linear guide 14 that extends between the pickup unit 101 and the mounting unit 102, and is in the X direction.
  • the position of is adjusted by moving the linear guide 14 in the X direction. Therefore, when the mounting unit 102 adjusts the X-direction first deviation ⁇ X2 and the X-direction second deviation ⁇ X3, the pickup unit 101 shifts between the X-direction collet center position CC1 and the reference position C1 and the pin center PC. May occur.
  • the position of the collet 30 is corrected using the difference between the deviation ⁇ X1 and the X-direction first deviation ⁇ X2 3 or the X-direction second deviation ⁇ X3 when the pickup operation is returned from the mounting section 102 to the pickup section 101. You may do so.
  • the first deviation and the second deviation may be detected each time the mounting is performed, rather than every time the mounting is performed, and each deviation may be corrected. In this case, the deterioration of the mounting accuracy of the semiconductor die 36 on the substrate 74 can be suppressed more effectively.
  • the semiconductor die 36 is mounted on the substrate 74.
  • the electronic component mounting apparatus 100 is not limited to this, and the other semiconductor die 36 is used as a mounting target. It is also applicable when mounting the semiconductor die 36 on the die 36.
  • an image of another semiconductor die 36 is picked up instead of the mounting area 75 of the substrate 74, the center position thereof is detected, and the second deviation between the mounting position BC and the reference position C2 of the frame side camera 63 is determined. It should be detected.
  • FIGS. 23 is a vertical cross-sectional view of the pickup unit 101 of the electronic component mounting apparatus 200
  • FIG. 24 is a vertical cross-sectional view of the mounting unit 102.
  • the same parts as those of the electronic component mounting apparatus 100 described above with reference to FIGS. 1 to 22 are designated by the same reference numerals and the description thereof will be omitted.
  • the light source 27 and the beam splitter 28 provided on the arm 23 are configured to cause light to enter the center holes 32 and 34 of the collet 30.
  • ring illuminations 92 and 92a are arranged on the lower end side surfaces of the wafer side camera 12 and the frame side camera 63, and the center is located at the upper end of the shaft 31 of the collet 30.
  • a glass cover 91 that covers the hole 32 is attached, and the light from the ring illumination 92 is configured to enter the center holes 32 and 34 through the glass cover 91.
  • the ring illuminations 92 and 92a and the glass cover 91 constitute a wafer side illumination section 93 and a frame side illumination section 93a.
  • the electronic component mounting apparatus 200 has the same operation and effect as the electronic component mounting apparatus 100.
  • FIGS. 25 to 27 An electronic component mounting apparatus 300 of another embodiment will be described with reference to FIGS. 25 to 27.
  • the same parts as those of the electronic component mounting apparatus 100 described above with reference to FIGS. 1 to 22 are designated by the same reference numerals and the description thereof will be omitted.
  • the electronic component mounting apparatus 300 includes an intermediate stage 48 on which the semiconductor die 36 picked up by the pickup head 20 by the pickup unit 101 is placed, and a semiconductor die placed on the intermediate stage 48.
  • the mounting head 50 mounts the semiconductor die 36 on the mounting unit 102 by picking up the semiconductor device 36.
  • the configuration of the pickup head 20 is the same as the pickup head 20 of the electronic component mounting apparatus 100 described with reference to FIG.
  • the pickup head 20 is guided by the linear guide 14 and moves in the X direction.
  • the linear guide 14 is moved in the Y direction by a linear guide drive mechanism (not shown).
  • the mounting head 50 includes a main body 51 guided by the linear guide 18 extending in the Y direction, a bracket 52 provided below the main body 51, and an arm attached to a lower end portion of the bracket 22. 53 and a mounting collet 55 attached to the X direction plus side end of the arm 53.
  • the linear guide 18 moves in the X direction by a linear guide drive mechanism (not shown).
  • the main body 51 internally includes a Y-direction drive mechanism that drives the mounting head 50 in the Y-direction and an X-direction drive mechanism that drives the mounting collet 55 in the Z-direction.
  • the Y-direction drive mechanism may be, for example, a linear motor
  • the Z-direction drive mechanism may be, for example, a voice coil motor.
  • the mounting head 50 constitutes a mounting collet drive unit that drives the mounting collet 55 in the Y direction.
  • the mounting collet 55 is composed of a shaft 56 on the root side and a mounting collet body 58 on the tip side.
  • the shaft 56 is made of metal, and the mounting collet body 58 is made of, for example, metal or ceramics.
  • Circular center holes 57 and 59 are coaxially provided at the centers of the shaft 56 and the mounting collet body 58.
  • the upper end of the shaft 56 is attached to a portion of the arm 53 where the upper concave portion 53a is provided, and the central hole 57 of the shaft 56 communicates with the upper concave portion 53a of the arm 53 and is located upward in the Z direction from the concave portion 53a. It is open to the public.
  • the center hole 59 of the mounting collet body 58 communicates with the center hole 57 of the shaft 56, and is opened downward from the lower end surface in the Z direction.
  • a light source 27a and a beam splitter 28a are provided above the recess 53a in the upper part of the arm 53.
  • the beam splitter 28a is disposed immediately above the center hole 57 of the shaft 56 of the mounting collet 55, reflects the light from the light source 27a, and extends from the root side of the mounting collet 55 to the center hole 57 of the shaft 56 and the center of the mounting collet body 58. It is made incident into the hole 59. Further, the beam splitter 28a transmits the reflected light reflected by the surface of the semiconductor die 36 adsorbed to the tip of the mounting collet body 58 of the mounting collet 55 toward the upper side in the Z direction and makes it incident on the frame side camera 63.
  • the light source 27a and the beam splitter 28a form a frame side illumination unit 29a.
  • the light source 27a may be a high brightness LED or a laser light source.
  • the beam splitter 28a may be replaced with a half mirror.
  • the intermediate stage 48 is arranged between the wafer ring 42 and the transfer mechanism 73 and is guided by a linear guide 47 which is a long member extending in the Y direction. Move in the direction.
  • the operation of the pickup unit 101 of the electronic component mounting apparatus 300 of the embodiment described above is different from the operation of the pickup unit 101 of the electronic component mounting apparatus 100 described above in only the X direction and the Y direction, and the other movements are the same. is there.
  • the operation of the mounting head 50 of the mounting unit 102 is similar to the operation after the pickup head 20 of the electronic component mounting apparatus 100 moves to the mounting unit 102.
  • the electronic component mounting apparatus 300 of this embodiment has the same operation and effect as the electronic component mounting apparatus 100.
  • the electronic component mounting apparatus 400 includes a back camera 85 for picking up an image of the semiconductor die 36 adsorbed to the tip of the collet 30 between the pickup unit 101 and the mounting unit 102, and a strobe 86 as a light source.
  • the strobe 86 is connected to the image processing unit 82, and turns on and off according to a command from the image processing unit 82.
  • the image captured by the rear camera 85 is input to the image processing unit 82.
  • the electronic component mounting apparatus 100 is the same as the electronic component mounting apparatus 100 described with reference to FIGS.
  • the back surface camera 85 focuses on the back surface (the surface in the Z direction lower side) of the semiconductor die 36 that is attracted to the tip of the collet 30 when the collet 30 moves to a predetermined position directly above. Are arranged so that they match each other, and are adjusted so that a sharp image of the back surface of the semiconductor die 36 can be obtained.
  • the strobe 86 includes a reflecting mirror 86a that directs the emitted light toward the collet 30.
  • the control unit 81 moves the pickup head 20 from the pickup unit 101 to the mounting unit 102, and as shown in FIG. 28, the collet 30 comes to a predetermined position directly above the rear surface camera 85, and the rear surface camera 85 moves.
  • a trigger signal for causing the strobe 86 to emit light is output. This trigger signal is transmitted to the image processing unit 82.
  • the image processing unit 82 When the trigger signal is input, the image processing unit 82 outputs a command to make the strobe 86 emit light. This command causes the strobe 86 to emit light. Further, when the trigger signal is input, the image processing unit 82 captures an image as shown in FIG. 29 from the rear camera 85 in synchronization with the light emission of the strobe 86. The captured image is stored in the memory of the image processing unit 82. The image is taken in while moving the collet 30 (without stopping the movement).
  • FIG. 29 is a view showing the field of view 87 of the rear camera 85.
  • a circular image showing the tip of the collet 30 and a square image showing the outer shape of the semiconductor die 36 appear in the visual field 87 of the rear surface camera 85.
  • the image processing unit 82 processes the captured image to detect a circular image 191 showing the outer shape of the collet 30 and a square image 192 showing the outer shape of the semiconductor die 36. Then, the image processing unit 82 detects the position of the center 197 of the circular image 191 and the position of the center 198 of the square image 192, passes through the center 197 of the circular image 191, and moves toward the X direction of the visual field 87 of the rear camera 85.
  • a direction reference line 194 and a Y direction reference line 193 that passes through the center 197 of the circular image 191 and extends in the Y direction of the visual field 87 of the rear camera 85 are set. Further, the image processing unit 82 passes through the center 198 of the square image 192 and the X direction measurement line 196 parallel to the side near the X direction reference line 194 of the square image 192 and the center 198 of the square image 192, and the Y of the square image 192. A Y direction measurement line 195 parallel to the side close to the direction reference line 193 is set.
  • the image processing unit 82 obtains the shift amounts ⁇ X4 and ⁇ Y4 in the X direction and the Y direction between the position of the center 197 of the circular image 191 and the position of the center 198 of the square image 192. Further, the image processing unit 82 determines the square image 192 from the angle difference between the X-direction reference line 194 and the X-direction measurement line 196 in the ⁇ direction or the angle difference between the Y-direction reference line 193 and the Y-direction measurement line 195 in the ⁇ direction. The rotation angle deviation ⁇ 4 in the ⁇ direction is detected.
  • the image processing unit 82 outputs the detected deviation amounts ⁇ X4 and ⁇ Y4 in the X and Y directions and the rotation angle deviation ⁇ 4 in the ⁇ direction to the control unit 81.
  • the control unit 81 stores the input ⁇ X4, ⁇ Y4, and ⁇ 4 in the storage unit.
  • the control unit 81 corrects the position by the Y-direction first deviation ⁇ Y2 and the Y-direction second deviation ⁇ Y3 to adjust the collet center position CC2 to the mounting position BC, and the X-direction.
  • the positional deviation amounts of the semiconductor die 36 with respect to the collet 30, ⁇ X4, ⁇ Y4, and ⁇ 4 are considered.
  • the collet center position CC2 is aligned with the mounting position BC.
  • the electronic component mounting apparatus 400 corrects the deviation so that the chip center DC of the semiconductor die 36 coincides with the mounting position BC.
  • the semiconductor die 36 can be mounted on the substrate 74 in the state.
  • the pickup head 20 moves between the pickup unit 101 and the mounting unit 102, and the collet 30 picks up and mounts the semiconductor die 36.
  • the configuration in which the rear surface camera 85 and the strobe 86 are arranged between the pickup unit 101 and the mounting unit 102 to detect the amount of positional deviation of the semiconductor die 36 with respect to the collet 30 has been described above with reference to FIGS. It can also be applied to the component mounting apparatus 300.
  • the image processing unit 82 based on the image of the front end of the mounting collet 55 and the image of the rear surface of the semiconductor die 36 captured by the rear surface camera 85, the positional deviation amounts ⁇ X4 and ⁇ Y4 of the semiconductor die 36 with respect to the mounting collet 55. ⁇ 4 is detected and output to the control unit 81.
  • the control unit 81 uses the mounting collet drive unit to mount the collet based on the first deviations ⁇ X2 and ⁇ Y2, the second deviations ⁇ X3 and ⁇ Y3, and the positional deviation amounts ⁇ X4, ⁇ Y4, and ⁇ 4. Adjust the horizontal position of 55.

Abstract

The present invention comprises: a wafer ring (42); a collet (30); a pickup head (20) that drives the collet (30) in a horizontal direction; a wafer-side illumination unit (29); a wafer-side camera (12); an image processing unit; and a control unit, wherein the wafer-side camera (12) captures an image of reflected light reflected on the surface of a wafer (35) directly below the collet (30), the image processing unit detects a collet center position on the basis of each image and detects a deviation between the collet center position and a reference position of the wafer-side camera (12) in a visual field, and the control unit adjusts the horizontal position of the collet (30) by means of the pickup head (20) on the basis of the deviation. Accordingly, a decrease in the mounting accuracy of a semiconductor die on a substrate is suppressed.

Description

電子部品実装装置Electronic component mounting device
 本発明は、電子部品実装装置の構造に関する。 The present invention relates to the structure of an electronic component mounting device.
 ウェーハから半導体ダイをピックアップして基板或いはリードフレームに実装する電子部品実装装置が多く用いられている。このような電子部品実装装置では、基板上の実装位置をカメラで認識しその実装位置に実装コレットの中心位置を合わせることにより半導体ダイと実装位置の位置決めを行っている。一方、半導体ダイの実装は、基板の温度を100℃程度に保った状態で行われるので、長時間実装を継続していると経時的な温度変化により、カメラとコレットと基板との位置関係が変化してしまい位置決め精度が低下してくる場合がある。 Many electronic component mounting devices are used to pick up a semiconductor die from a wafer and mount it on a substrate or lead frame. In such an electronic component mounting apparatus, the mounting position on the substrate is recognized by the camera, and the center position of the mounting collet is aligned with the mounting position to position the semiconductor die and the mounting position. On the other hand, since the semiconductor die is mounted while the temperature of the substrate is kept at about 100 ° C., if the mounting is continued for a long time, the positional relationship between the camera, the collet, and the substrate may change due to the temperature change over time. In some cases, the positioning accuracy may change and the positioning accuracy may decrease.
 このため、基板を搬送する搬送路とコレットが取り付けられているボンディングヘッドとにそれぞれ基準マークを設け、各基準マークをカメラで撮像して搬送路に対するカメラとボンディングヘッドとの位置ずれを検出し、カメラとコレットと基板との位置関係を補正することが提案されている(例えば、特許文献1参照)。 Therefore, a reference mark is provided on each of the transfer path for transferring the substrate and the bonding head to which the collet is attached, and each reference mark is imaged by the camera to detect the positional deviation between the camera and the bonding head with respect to the transfer path. It has been proposed to correct the positional relationship among the camera, collet, and substrate (for example, see Patent Document 1).
特開2016-197630号公報JP, 2016-197630, A
 ところで、電子部品実装装置において、長時間実装を行うとウェーハから半導体ダイをピックアップするピックアップ部にも経時的な温度変化の影響が及んでくる。ピックアップ部では、ピックアップする半導体ダイをカメラで認識し、その中心位置にピックアップコレットの中心位置を合わせて半導体ダイをピックアップし、基板の上に移送されて、基板の実装位置に実装される。このため、ピックアップコレットの中心位置とピックアップする半導体ダイの中心位置とがずれると、半導体ダイの基板への実装精度が低下する場合があった。 By the way, in an electronic component mounting device, if mounting is performed for a long time, the temperature change over time also affects the pickup unit that picks up the semiconductor die from the wafer. In the pickup unit, the semiconductor die to be picked up is recognized by the camera, the center position of the pickup collet is aligned with the center position of the semiconductor die, the semiconductor die is picked up, and the semiconductor die is transferred onto the substrate and mounted at the mounting position on the substrate. Therefore, when the center position of the pickup collet and the center position of the semiconductor die to be picked up are deviated, the mounting accuracy of the semiconductor die on the substrate may be deteriorated.
 そこで、本発明は、電子部品実装装置において、半導体ダイの基板への実装精度の低下を抑制することを目的とする。 Therefore, it is an object of the present invention to suppress a decrease in mounting accuracy of a semiconductor die on a substrate in an electronic component mounting apparatus.
 本発明の電子部品実装装置は、ウェーハを保持するウェーハリングと、中心穴を有し、ウェーハから電子部品をピックアップするコレットと、コレットを水平方向に駆動するコレット駆動部と、コレットの根元側からコレットの中心穴に光を入射させるウェーハ側照明部と、コレットの根元側からコレットの画像を撮像するウェーハ側撮像装置と、ウェーハ側撮像装置が撮像した画像を処理する画像処理部と、コレットの位置を調整する制御部と、を備える電子部品実装装置であって、ウェーハ側撮像装置は、コレットの中心穴に入射してコレットの直下のウェーハの表面で反射した反射光の画像を撮像し、画像処理部は、ウェーハ側撮像装置が撮像したウェーハの表面で反射した反射光の画像に基づいてコレットの中心穴の中心位置をコレット中心位置として検出し、検出したコレット中心位置とウェーハ側撮像装置の視野の中の基準位置との間の偏差を検出し、制御部は、偏差に基づいてコレット駆動部によってコレットの水平方向の位置を調整すること、を特徴とする。 The electronic component mounting apparatus of the present invention has a wafer ring that holds a wafer, a collet that has a central hole, and picks up an electronic component from the wafer, a collet drive unit that horizontally drives the collet, and a base side of the collet. A wafer-side illumination unit that allows light to enter the center hole of the collet, a wafer-side imaging device that captures an image of the collet from the base side of the collet, an image processing unit that processes the image captured by the wafer-side imaging device, and a collet A controller for adjusting the position, and an electronic component mounting apparatus comprising, the wafer-side imaging device, an image of reflected light that is incident on the center hole of the collet and reflected on the surface of the wafer directly below the collet, The image processing unit determines the center position of the center hole of the collet based on the image of the reflected light reflected by the surface of the wafer captured by the wafer-side imaging device. As the center position of the collet, and the deviation between the detected center position of the collet and the reference position in the field of view of the wafer-side imaging device is detected. Adjusting the position of.
 このように、コレット中心位置とウェーハ側撮像装置の視野の中の基準位置との間の偏差を検出し、偏差に基づいてコレットの水平方向の位置を補正してコレットの位置調整を行うので、コレット中心位置とウェーハ側撮像装置の視野の中の基準位置との間の位置関係にずれが生じた場合に、そのずれ量を随時補正することができ、ウェーハから半導体ダイを正確にピックアップすることができる。 In this way, the deviation between the center position of the collet and the reference position in the field of view of the wafer side imaging device is detected, and the position of the collet is adjusted by correcting the horizontal position of the collet based on the deviation. When there is a deviation in the positional relationship between the collet center position and the reference position in the field of view of the wafer side imaging device, the deviation amount can be corrected at any time, and the semiconductor die can be accurately picked up from the wafer. You can
 本発明の電子部品実装装置において、コレットがピックアップする電子部品をウェーハの下側から突き上げる突き上げピンを含み、ウェーハ側撮像装置は、上側から突き上げピンの画像を撮像し、画像処理部は、ウェーハ側撮像装置が撮像した突き上げピンの画像に基づいて突き上げピンの中心位置をピンセンタとして検出し、検出したピンセンタをウェーハ側撮像装置の視野の中の基準位置に設定すること、としてもよい。また、ウェーハリングを水平方向に駆動するウェーハリング駆動部を含み、ウェーハ側撮像装置は、ウェーハの上側からコレットがピックアップする電子部品を撮像し、画像処理部は、ウェーハ側撮像装置が撮像したコレットがピックアップする電子部品の画像に基づいてコレットがピックアップする電子部品の中心位置をチップセンタとして検出し、制御部は、チップセンタがウェーハ側撮像装置の視野の中の基準位置となるようにウェーハリング駆動部によってウェーハリングの水平方向の位置を調整すること、としてもよい。 In the electronic component mounting apparatus of the present invention, the collet includes an push-up pin that pushes up the electronic component picked up from the lower side of the wafer, the wafer-side imaging device captures an image of the push-up pin from the upper side, and the image processing unit is the wafer side. The center position of the push-up pin may be detected as a pin center based on the image of the push-up pin captured by the image pickup device, and the detected pin center may be set as a reference position in the field of view of the wafer-side image pickup device. In addition, the wafer-side imaging device includes a wafer ring driving unit that horizontally drives the wafer ring, the wafer-side imaging device images an electronic component picked up by the collet from the upper side of the wafer, and the image processing unit includes the collet imaged by the wafer-side imaging device. Detects the center position of the electronic component picked up by the collet as the chip center based on the image of the electronic component picked up by the collet, and the control unit adjusts the wafer ring so that the chip center becomes the reference position in the field of view of the wafer side image pickup device. The horizontal position of the wafer ring may be adjusted by the driving unit.
 このように、突き上げピンの中心位置をウェーハ側撮像装置の視野の中の基準位置に設定し、コレットがピックアップする電子部品の中心位置であるチップセンタをウェーハ側撮像装置の視野の中の基準位置となるようにウェーハリングの水平方向の位置を調整するので、突き上げピンとピックアップする半導体ダイの中心位置を合わせることができる。また、コレット中心位置とウェーハ側撮像装置の視野の中の基準位置との間の位置関係にずれが生じた場合にそのずれ量を随時補正するので、突き上げピンとピックアップする半導体ダイの中心位置とコレットの中心位置とを合わせた状態で半導体ダイをピックアップできる。これによりピックアップ時のチップずれが発生することを抑制し、経時的な温度変化があった場合でも半導体ダイの基板への実装精度の低下を抑制することができる。 In this way, the center position of the push-up pin is set to the reference position in the field of view of the wafer side image pickup device, and the chip center, which is the center position of the electronic component picked up by the collet, is set to the reference position in the view field of the wafer side image pickup device. Since the position of the wafer ring in the horizontal direction is adjusted so that, the center position of the semiconductor die to be picked up can be aligned with the push-up pin. Also, if there is a deviation in the positional relationship between the collet center position and the reference position in the field of view of the wafer-side imaging device, the deviation amount is corrected at any time, so the center position of the push-up pin, the semiconductor die to be picked up, and the collet The semiconductor die can be picked up with the center position of the semiconductor die aligned. As a result, it is possible to suppress the occurrence of chip misalignment at the time of pickup, and to suppress deterioration of the mounting accuracy of the semiconductor die on the substrate even when there is a temperature change over time.
 本発明の電子部品実装装置において、コレットの根元側からコレットの中心穴に光を入射させるフレーム側照明部と、コレットの根元側からコレットの画像を撮像するフレーム側撮像装置と、を含み、コレットは、先端に吸着した電子部品を実装対象物に実装し、画像処理部は、フレーム側撮像装置が撮像した画像を処理し、フレーム側撮像装置は、コレットの先端に電子部品を吸着させた状態で、コレットの中心穴に入射してコレットの先端に吸着された電子部品の表面で反射した反射光の画像を撮像し、画像処理部は、フレーム側撮像装置が撮像したコレットの先端に吸着された電子部品の表面で反射した反射光の画像に基づいてコレットの中心穴の中心位置をコレット中心位置として検出し、検出したコレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、制御部は、第1偏差に基づいてコレット駆動部によってコレットの水平方向の位置を調整すること、としてもよい。 In the electronic component mounting apparatus of the present invention, the collet includes a frame-side illumination unit that causes light to enter the center hole of the collet from the root side of the collet, and a frame-side imaging device that captures an image of the collet from the root side of the collet. Mounts the electronic component adsorbed on the tip on the mounting target, the image processing unit processes the image captured by the frame-side imaging device, and the frame-side imaging device adsorbs the electronic component on the tip of the collet. Then, an image of the reflected light that is incident on the center hole of the collet and reflected on the surface of the electronic component that is adsorbed on the tip of the collet is captured, and the image processing unit is adsorbed on the tip of the collet imaged by the frame-side imaging device. The center position of the center hole of the collet is detected as the collet center position based on the image of the reflected light reflected from the surface of the electronic component, and the detected collet center position and the frame side Detecting a first deviation between the reference position in the field of view of the image device, the control unit may adjust the position of the horizontal direction of the collet by the collet driving portion on the basis of the first difference may be.
 このように、突き上げピンとピックアップする半導体ダイの中心位置とコレットの中心位置とを合わせた状態で半導体ダイをピックアップすることに加え、コレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、第1偏差に基づいてコレットの水平方向の位置を調整するので、コレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の位置関係にずれが生じた場合に、そのずれ量を随時補正することができ、半導体ダイを正確に実装することができる。 In this way, in addition to picking up the semiconductor die in a state where the center position of the push-up pin and the center position of the semiconductor die to be picked up and the center position of the collet are matched, the collet center position and the reference position in the field of view of the frame-side imaging device Since the first deviation between them is detected and the horizontal position of the collet is adjusted based on the first deviation, there is a deviation in the positional relationship between the collet center position and the reference position in the field of view of the frame-side imaging device. When it occurs, the deviation amount can be corrected at any time, and the semiconductor die can be mounted accurately.
 本発明の電子部品実装装置において、フレーム側撮像装置は、実装対象物の画像を撮像し、画像処理部は、フレーム側撮像装置が撮像した実装対象物の画像に基づいて電子部品を実装する実装位置を検出し、検出した実装位置とフレーム側撮像装置の視野の中の基準位置との間の第2偏差を検出し、制御部は、第1偏差と第2偏差とに基づいてコレット駆動部によってコレットの水平方向の位置を調整すること、としてもよい。 In the electronic component mounting apparatus of the present invention, the frame-side imaging device captures an image of the mounting target, and the image processing unit mounts the electronic component based on the image of the mounting target captured by the frame-side imaging device. The position is detected, a second deviation between the detected mounting position and the reference position in the field of view of the frame-side imaging device is detected, and the control unit determines the collet drive unit based on the first deviation and the second deviation. The horizontal position of the collet may be adjusted by.
 このように、実装対象物である基板或いはリードフレームの実装位置とフレーム側撮像装置の視野の中の基準位置との間の第2偏差を検出し、第1偏差と第2偏差とに基づいてコレットの水平方向の位置を調整するので、コレット中心位置と実装位置との間の位置関係にずれが生じた場合に、そのずれ量を随時補正することができ、半導体ダイを更に正確に実装位置に実装することができる。 In this way, the second deviation between the mounting position of the substrate or the lead frame which is the mounting object and the reference position in the field of view of the frame-side imaging device is detected, and based on the first deviation and the second deviation. Since the horizontal position of the collet is adjusted, if there is a deviation in the positional relationship between the collet center position and the mounting position, the amount of deviation can be corrected at any time, and the semiconductor die can be mounted more accurately. Can be implemented in.
 本発明の電子部品実装装置において、ウェーハから電子部品をピックアップするピックアップ部と、ピックアップした電子部品を実装対象物に実装する実装部との間に配置され、コレットの先端の画像とコレットの先端に吸着された電子部品の裏面の画像とを撮像する裏面カメラを備え、画像処理部は、裏面カメラが撮像したコレットの先端の画像と電子部品の裏面の画像とに基づいて、コレットに対する電子部品の位置ずれ量を検出し、制御部は、第1偏差と第2偏差とコレットに対する電子部品の位置ずれ量とに基づいてコレット駆動部によってコレットの水平方向の位置を調整してもよい。 In the electronic component mounting apparatus of the present invention, it is arranged between a pickup unit that picks up an electronic component from a wafer and a mounting unit that mounts the picked-up electronic component on a mounting target, and an image of the tip of the collet and a tip of the collet are provided. The backside camera that captures the image of the backside of the sucked electronic component is provided, and the image processing unit, based on the image of the tip of the collet and the backside image of the electronic component captured by the backside camera, displays the image of the electronic component for the collet. The control unit may detect the positional deviation amount and the control unit may adjust the horizontal position of the collet by the collet driving unit based on the first deviation, the second deviation, and the positional deviation amount of the electronic component with respect to the collet.
 これにより、コレットに対する電子部品の位置にずれがある場合でも、そのずれを補正して、電子部品のチップセンタDCを実装位置に一致させた状態で電子部品を基板に実装することができる。 With this, even if there is a deviation in the position of the electronic component with respect to the collet, the deviation can be corrected and the electronic component can be mounted on the board in a state where the chip center DC of the electronic component matches the mounting position.
 本発明の電子部品実装装置において、中心穴を有し、先端に吸着した電子部品を実装対象物に実装する実装コレットと、実装コレットを水平方向に駆動する実装コレット駆動部と、実装コレットの根元側から実装コレットの中心穴に光を入射させるフレーム側照明部と、実装コレットの根元側から実装コレットの画像を撮像するフレーム側撮像装置と、を含み、画像処理部は、フレーム側撮像装置が撮像した画像を処理し、制御部は、実装コレットの位置を調整し、フレーム側撮像装置は、実装コレットの先端に電子部品を吸着させた状態で、実装コレットの中心穴に入射して実装コレットの先端に吸着された電子部品の表面で反射した反射光の画像とを撮像し、画像処理部は、フレーム側撮像装置が撮像した実装コレットの先端に吸着された電子部品の表面で反射した反射光の画像に基づいて実装コレットの中心穴の中心位置を実装コレット中心位置として検出し、検出した実装コレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、制御部は、第1偏差に基づいて実装コレット駆動部によって実装コレットの水平方向の位置を調整すること、としてもよい。 In the electronic component mounting apparatus of the present invention, a mounting collet that has a central hole and mounts an electronic component adsorbed at the tip on a mounting target, a mounting collet driving unit that horizontally drives the mounting collet, and a root of the mounting collet. The frame-side illuminating section that allows light to enter the center hole of the mounting collet from the side, and the frame-side imaging device that captures the image of the mounting collet from the root side of the mounting collet. The captured image is processed, the control unit adjusts the position of the mounting collet, and the frame-side imaging device causes the electronic component to be adsorbed to the tip of the mounting collet and makes it enter the center hole of the mounting collet. An image of the reflected light reflected by the surface of the electronic component that is adsorbed on the tip of the mounting part is captured, and the image processing unit is attached to the tip of the mounting collet imaged by the frame-side imaging device. The center position of the center hole of the mounting collet is detected as the mounting collet center position based on the image of the reflected light reflected from the surface of the electronic component, and the detected mounting collet center position and the reference position in the field of view of the frame-side imaging device It is good also as detecting the 1st deviation between and, and controlling the position of the mounting collet in the horizontal direction by the mounting collet drive part based on the 1st deviation.
 このように、突き上げピンとピックアップする半導体ダイの中心位置とコレットの中心位置とを合わせた状態で半導体ダイをピックアップすることに加え、実装コレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、第1偏差に基づいて実装コレットの水平方向の位置を調整するので、実装コレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の位置関係にずれが生じた場合に、そのずれ量を随時補正することができ、半導体ダイを正確に実装することができる。 In this way, in addition to picking up the semiconductor die with the center position of the push-up pin and the center position of the semiconductor die to be picked up and the center position of the collet aligned, the mounting collet center position and the reference position in the field of view of the frame-side imaging device Is detected and the horizontal position of the mounting collet is adjusted based on the first deviation, the positional relationship between the mounting collet center position and the reference position in the field of view of the frame-side imaging device. If a deviation occurs, the deviation amount can be corrected at any time, and the semiconductor die can be mounted accurately.
 本発明の電子部品実装装置において、フレーム側撮像装置は、実装対象物の画像を撮像し、画像処理部は、フレーム側撮像装置が撮像した実装対象物の画像に基づいて電子部品を実装する実装位置を検出し、検出した実装位置とフレーム側撮像装置の視野の中の基準位置との間の第2偏差を検出し、制御部は、第1偏差と第2偏差とに基づいて実装コレット駆動部によって実装コレットの水平方向の位置を調整すること、としてもよい。 In the electronic component mounting apparatus of the present invention, the frame-side imaging device captures an image of the mounting target, and the image processing unit mounts the electronic component based on the image of the mounting target captured by the frame-side imaging device. The position is detected, the second deviation between the detected mounting position and the reference position in the field of view of the frame-side imaging device is detected, and the control unit drives the mounting collet based on the first deviation and the second deviation. The position of the mounting collet in the horizontal direction may be adjusted by the section.
 このように、実装対象物である基板或いはリードフレームの実装位置とフレーム側撮像装置の視野の中の基準位置との間の第2偏差を検出し、第1偏差と第2偏差とに基づいて実装コレットの水平方向の位置を調整するので、実装コレット中心位置と実装位置との間の位置関係にずれが生じた場合に、そのずれ量を随時補正することができ、半導体ダイを更に正確に実装位置に実装することができる。 In this way, the second deviation between the mounting position of the substrate or the lead frame which is the mounting object and the reference position in the field of view of the frame-side imaging device is detected, and based on the first deviation and the second deviation. Since the horizontal position of the mounting collet is adjusted, if there is a deviation in the positional relationship between the mounting collet center position and the mounting position, the deviation amount can be corrected at any time, and the semiconductor die can be more accurately It can be mounted at the mounting position.
 本発明の電子部品実装装置において、ウェーハから電子部品をピックアップするピックアップ部と、ピックアップした電子部品を実装対象物に実装する実装部との間に配置され、実装コレットの先端の画像と実装コレットの先端に吸着された電子部品の裏面の画像とを撮像する裏面カメラを備え、画像処理部は、裏面カメラが撮像した実装コレットの先端の画像と電子部品の裏面の画像とに基づいて、実装コレットに対する電子部品の位置ずれ量を検出し、制御部は、第1偏差と第2偏差と実装コレットに対する電子部品の位置ずれ量とに基づいて実装コレット駆動部によって実装コレットの水平方向の位置を調整してもよい。 In the electronic component mounting apparatus of the present invention, it is arranged between a pickup unit that picks up an electronic component from a wafer and a mounting unit that mounts the picked-up electronic component on a mounting target, and an image of the tip of the mounting collet and the mounting collet. The image processing unit includes a backside camera that captures an image of the backside of the electronic component that is attracted to the tip, and the image processing unit, based on the image of the tip of the mounting collet captured by the backside camera and the image of the backside of the electronic component, the mounting collet. The positional deviation amount of the electronic component relative to the mounting collet is detected, and the control unit adjusts the horizontal position of the mounting collet by the mounting collet driving unit based on the first deviation, the second deviation, and the positional deviation amount of the electronic component with respect to the mounting collet. You may.
 これにより、実装コレットに対する電子部品の位置にずれがある場合でも、そのずれを補正して、電子部品のチップセンタDCを実装位置に一致させた状態で電子部品を基板に実装することができる。 By this, even if there is a deviation in the position of the electronic component with respect to the mounting collet, the deviation can be corrected and the electronic component can be mounted on the board in a state where the chip center DC of the electronic component matches the mounting position.
 本発明の電子部品実装装置は、中心穴を有し、先端に吸着した電子部品を実装対象物に実装する実装コレットと、実装コレットを水平方向に駆動する実装コレット駆動部と、実装コレットの根元側から実装コレットの中心穴に光を入射させるフレーム側照明部と、実装コレットの根元側から実装コレットの画像を撮像するフレーム側撮像装置と、フレーム側撮像装置が撮像した画像を処理する画像処理部と、実装コレットの位置を調整する制御部と、を備える電子部品実装装置であって、フレーム側撮像装置は、実装コレットの先端に電子部品を吸着させた状態で、実装コレットの中心穴に入射して実装コレットの先端に吸着された電子部品の表面で反射した反射光の画像を撮像し、画像処理部は、フレーム側撮像装置が撮像した実装コレットの先端に吸着された電子部品の表面で反射した反射光の画像に基づいて実装コレットの中心穴の中心位置を実装コレット中心位置として検出し、検出した実装コレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、制御部は、第1偏差に基づいて実装コレット駆動部によって実装コレットの水平方向の位置を調整すること、を特徴とする。 The electronic component mounting apparatus of the present invention has a mounting collet that has a central hole and mounts an electronic component adsorbed at the tip on a mounting target, a mounting collet driving unit that horizontally drives the mounting collet, and a root of the mounting collet. Side illumination unit that allows light to enter the center hole of the mounting collet from the side, a frame-side imaging device that captures an image of the mounting collet from the root side of the mounting collet, and image processing that processes the image captured by the frame-side imaging device An electronic component mounting apparatus comprising: a mounting section, and a control section for adjusting the position of the mounting collet, wherein the frame-side imaging device has a center hole of the mounting collet in a state where the electronic component is adsorbed to the tip of the mounting collet. An image of the reflected light that is incident and reflected on the surface of the electronic component that is adsorbed at the tip of the mounting collet is captured, and the image processing unit displays the mounting core image captured by the frame-side imaging device. The center position of the center hole of the mounting collet is detected as the mounting collet center position based on the image of the reflected light reflected on the surface of the electronic component that is adsorbed at the tip of the mount, and the detected mounting collet center position and the frame side imaging device The control unit detects a first deviation from the reference position in the field of view, and the control unit adjusts the horizontal position of the mounting collet by the mounting collet driving unit based on the first deviation.
 これにより、実装コレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、第1偏差に基づいて実装コレットの水平方向の位置を調整するので、実装コレット中心位置とフレーム側撮像装置の視野の中の基準位置との間の位置関係にずれが生じた場合に、そのずれ量を随時補正することができ、半導体ダイを正確に実装することができる。 This detects the first deviation between the mounting collet center position and the reference position in the field of view of the frame-side imaging device, and adjusts the horizontal position of the mounting collet based on the first deviation. When the positional relationship between the center position and the reference position in the field of view of the frame-side imaging device is deviated, the amount of the deviation can be corrected at any time, and the semiconductor die can be mounted accurately.
 本発明の電子部品実装装置において、フレーム側撮像装置は、実装対象物の画像を撮像し、画像処理部は、フレーム側撮像装置が撮像した実装対象物の画像に基づいて電子部品を実装する実装位置を検出し、検出した実装位置とフレーム側撮像装置の視野の中の基準位置との間の第2偏差を検出し、制御部は、第1偏差と第2偏差とに基づいて実装コレット駆動部によって実装コレットの位置を調整すること、としてもよい。 In the electronic component mounting apparatus of the present invention, the frame-side imaging device captures an image of the mounting target, and the image processing unit mounts the electronic component based on the image of the mounting target captured by the frame-side imaging device. The position is detected, the second deviation between the detected mounting position and the reference position in the field of view of the frame-side imaging device is detected, and the control unit drives the mounting collet based on the first deviation and the second deviation. The position of the mounting collet may be adjusted depending on the part.
 このように、実装対象物である基板或いはリードフレームの実装位置とフレーム側撮像装置の視野の中の基準位置との間の第2偏差を検出し、第1偏差と第2偏差とに基づいて実装コレットの水平方向の位置を調整するので、実装コレット中心位置と実装位置との間の位置関係にずれが生じた場合に、そのずれ量を随時補正することができ、半導体ダイを更に正確に実装位置に実装することができる。 In this way, the second deviation between the mounting position of the substrate or the lead frame which is the mounting object and the reference position in the field of view of the frame-side imaging device is detected, and based on the first deviation and the second deviation. Since the horizontal position of the mounting collet is adjusted, if there is a deviation in the positional relationship between the mounting collet center position and the mounting position, the deviation amount can be corrected at any time, and the semiconductor die can be more accurately It can be mounted at the mounting position.
 本発明の電子部品実装装置は、半導体ダイの基板への実装精度の低下を抑制することができる。 The electronic component mounting apparatus of the present invention can suppress deterioration of mounting accuracy of the semiconductor die on the substrate.
実施形態の電子部品実装装置の構成を示す立面図である。It is an elevation view showing a configuration of an electronic component mounting apparatus of an embodiment. 実施形態の電子部品実装装置の構成を示す平面図である。It is a top view showing composition of an electronic parts mounting device of an embodiment. 実施形態の電子部品実装装置のピックアップ部の立断面図である(図1、2に示すA-A断面図)。FIG. 3 is a vertical sectional view of a pickup section of the electronic component mounting apparatus of the embodiment (AA sectional view shown in FIGS. 1 and 2). 実施形態の電子部品実装装置の実装部の立断面図である(図1、2に示すB-B断面図)。FIG. 3 is a vertical sectional view of a mounting portion of the electronic component mounting apparatus of the embodiment (BB sectional view shown in FIGS. 1 and 2). 実施形態の電子部品実装装置のピックアップ部の動作を示すフローチャートである。6 is a flowchart showing the operation of the pickup section of the electronic component mounting apparatus of the embodiment. 実施形態の電子部品実装装置において、上側からウェーハ側カメラで突き上げ針を撮像している状態を示す立断面図である。FIG. 5 is a vertical cross-sectional view showing a state in which the push-up needle is imaged by the wafer side camera from the upper side in the electronic component mounting apparatus of the embodiment. 図6の状態におけるウェーハ側カメラの視野を示す図である。It is a figure which shows the visual field of the wafer side camera in the state of FIG. ピックアップヘッドのコレットをウェーハの直上に移動した状態を示す立断面図である。FIG. 6 is a vertical cross-sectional view showing a state where the collet of the pickup head has been moved to just above the wafer. 図8に示す状態におけるウェーハ側カメラの視野を示す図である。It is a figure which shows the visual field of the wafer side camera in the state shown in FIG. ピックアップヘッドのコレットの中心位置をウェーハ側カメラの基準位置に合わせた状態を示す立断面図である。FIG. 5 is a vertical cross-sectional view showing a state in which the center position of the collet of the pickup head is aligned with the reference position of the wafer side camera. 図10に示す状態におけるウェーハ側カメラの視野を示す図である。It is a figure which shows the visual field of the wafer side camera in the state shown in FIG. 半導体ダイをウェーハからピックアップする状態を示す立断面図である。It is an elevational sectional view showing the state where a semiconductor die is picked up from a wafer. 実施形態の電子部品実装装置の実装部の動作を示すフローチャートである。6 is a flowchart showing the operation of the mounting unit of the electronic component mounting apparatus of the embodiment. 実施形態の半導体実装装置において、先端に半導体ダイを吸着した実装コレットを基板の直上に移動させた状態を示す立断面図である。FIG. 3 is a vertical cross-sectional view showing a state in which a mounting collet having a semiconductor die attached to its tip is moved to directly above a substrate in the semiconductor mounting device of the embodiment. 図14に示す状態におけるフレーム側カメラの視野を示す図である。It is a figure which shows the visual field of the frame side camera in the state shown in FIG. フレーム側カメラで基板の実装位置を撮像する状態を示す立断面図である。FIG. 6 is a vertical cross-sectional view showing a state in which the mounting position of the board is captured by the frame side camera. 図16の状態におけるフレーム側カメラの視野を示す図である。It is a figure which shows the visual field of the frame side camera in the state of FIG. 図17に示す視野の図に図15に示す視野の図を重ね合わせた図である。FIG. 18 is a view obtained by superimposing the view of FIG. 15 on the view of FIG. 17. 実装コレットの中心位置と半導体ダイの中心位置と実装位置とが一致した状態のフレーム側カメラの視野を示す図である。It is a figure which shows the visual field of the frame side camera in the state where the center position of the mounting collet, the center position of the semiconductor die, and the mounting position corresponded. 実装コレットによって半導体ダイを基板の実装位置に実装する状態を示す立断面図である。It is an elevation sectional view showing a state where a semiconductor die is mounted in a mounting position of a substrate by a mounting collet. 半導体ダイの実装が終了した状態を示す立断面図である。FIG. 3 is a vertical cross-sectional view showing a state where mounting of a semiconductor die is completed. 図21に示す状態におけるフレーム側カメラの視野を示す図である。It is a figure which shows the visual field of the frame side camera in the state shown in FIG. 他の実施形態の電子部品実装装置のピックアップ部の立断面図である。It is an elevation sectional view of a pickup part of an electronic parts mounting device of other embodiments. 他の実施形態の電子部品実装装置の実装部の立断面図である。It is an elevation sectional view of a mounting part of an electronic parts mounting device of other embodiments. 他の実施形態の電子部品実装装置の構成を示す立面図である。It is an elevation view which shows the structure of the electronic component mounting apparatus of other embodiment. 他の実施形態の電子部品実装装置の構成を示す平面図である。It is a top view which shows the structure of the electronic component mounting apparatus of other embodiment. 他の実施形態の電子部品実装装置の実装部の立断面図である(図25、26に示すB-B断面図)。FIG. 27 is a vertical sectional view of a mounting portion of an electronic component mounting apparatus according to another embodiment (BB sectional view shown in FIGS. 25 and 26). 他の実施形態の電子部品実装装置の構成を示す立面図である。It is an elevation view which shows the structure of the electronic component mounting apparatus of other embodiment. 図28に示す電子部品実装装置の裏面カメラの視野を示す図である。It is a figure which shows the visual field of the back surface camera of the electronic component mounting apparatus shown in FIG.
 <電子部品実装装置の構成>
 以下、図面を参照しながら実施形態の電子部品実装装置100について説明する。なお、視野を示す図以外の各立面図、各平面図、各立断面図では、理解しやすいように半導体ダイ36、コレット30を実際の寸法よりも大きく描いてある。
<Configuration of electronic component mounting device>
Hereinafter, the electronic component mounting apparatus 100 of the embodiment will be described with reference to the drawings. It should be noted that the semiconductor die 36 and the collet 30 are drawn larger than actual dimensions in each elevation view, each plan view, and each elevation sectional view other than the view showing the field of view for easy understanding.
 図1、2に示すように、実施形態の電子部品実装装置100は、ベース10と、ピックアップ部101と、実装部102と、制御装置80とを含んでいる。各図面において、基板74の搬送方向をX方向、X方向と直角方向をY方向、上下方向をZ方向として説明する。XY方向は水平方向である。 As shown in FIGS. 1 and 2, the electronic component mounting apparatus 100 according to the embodiment includes a base 10, a pickup unit 101, a mounting unit 102, and a control device 80. In each of the drawings, the transport direction of the substrate 74 will be described as the X direction, the direction orthogonal to the X direction as the Y direction, and the vertical direction as the Z direction. The XY directions are horizontal directions.
 図1、2に示すように、ピックアップ部101は、ウェーハリング42と、突き上げユニット43と、コレット30が取り付けられたピックアップヘッド20と、ウェーハ側撮像装置であるウェーハ側カメラ12と、を有している。 As shown in FIGS. 1 and 2, the pickup unit 101 includes a wafer ring 42, a push-up unit 43, a pickup head 20 to which the collet 30 is attached, and a wafer-side camera 12 that is a wafer-side imaging device. ing.
 図3に示すように、ウェーハリング42は、上面にウェーハ35を保持し、側面に配置されたウェーハリング駆動部41によってXY方向に駆動される。突き上げユニット43は、ウェーハリング42の下側のベース10に取り付けられており、中央にはZ方向に移動してピックアップする半導体ダイ36をウェーハ35の下側から突き上げる突き上げピン44が設けられている。ピックアップヘッド20は、ベース10に固定されてピックアップ部101と実装部102とを通してX方向に伸びるリニアガイド14にガイドされてピックアップ部101と実装部102との間をX方向に移動する。 As shown in FIG. 3, the wafer ring 42 holds the wafer 35 on the upper surface and is driven in the XY directions by the wafer ring driving unit 41 arranged on the side surface. The push-up unit 43 is attached to the base 10 below the wafer ring 42, and a push-up pin 44 that pushes up the semiconductor die 36 that moves in the Z direction and picks up from the lower side of the wafer 35 is provided in the center. .. The pickup head 20 is fixed to the base 10 and is guided by the linear guide 14 extending in the X direction through the pickup unit 101 and the mounting unit 102 to move between the pickup unit 101 and the mounting unit 102 in the X direction.
 ピックアップヘッド20は、リニアガイド14にガイドされてピックアップ部101と実装部102との間を移動する本体21と、本体21の下側に設けられたブラケット22と、ブラケット22の下端部の回転軸24の回りに回転可能に取り付けられたアーム23と、アーム23のX方向プラス側端に取り付けられたコレット30とを有している。ピックアップヘッド20のコレット30は、半導体ダイ36のピックアップと基板74への実装とを行う。アーム23のX方向マイナス側端とブラケット22の上側に取り付けられた突出部25との間にはスプリング26が設けられている。スプリング26はアーム23のX方向マイナス端を上方向に引張り、アーム23のX方向マイナス端の上面をブラケット22の下面に押し付けている。 The pickup head 20 includes a main body 21 that is guided by the linear guide 14 to move between the pickup unit 101 and the mounting unit 102, a bracket 22 provided on the lower side of the main body 21, and a rotation shaft of a lower end portion of the bracket 22. It has an arm 23 rotatably attached around 24 and a collet 30 attached to the X-direction plus side end of the arm 23. The collet 30 of the pickup head 20 picks up the semiconductor die 36 and mounts it on the substrate 74. A spring 26 is provided between the minus side end of the arm 23 in the X direction and the protrusion 25 attached to the upper side of the bracket 22. The spring 26 pulls the X-direction negative end of the arm 23 upward, and presses the upper surface of the X-direction negative end of the arm 23 against the lower surface of the bracket 22.
 本体21は、内部にピックアップヘッド20をY方向に駆動するY方向駆動機構と、コレット30をZ方向に駆動するZ方向駆動機構とを含んでいる。Y方向の駆動機構は、例えば、リニアモータであり、Z方向の駆動機構は、例えば、サーボモータとねじ機構で構成されていてもよい。また、リニアガイド14は、図示しないリニアガイド駆動機構によってX方向に移動する。ピックアップヘッド20とリニアガイド駆動機構とは、コレット30をXY方向に駆動するコレット駆動部を構成する。 The main body 21 includes a Y-direction drive mechanism for driving the pickup head 20 in the Y-direction and a Z-direction drive mechanism for driving the collet 30 in the Z-direction inside. The Y-direction drive mechanism may be, for example, a linear motor, and the Z-direction drive mechanism may be, for example, a servomotor and a screw mechanism. Further, the linear guide 14 moves in the X direction by a linear guide drive mechanism (not shown). The pickup head 20 and the linear guide drive mechanism form a collet drive unit that drives the collet 30 in the XY directions.
 コレット30は、根本側のシャフト31と先端側のコレット本体33とで構成される。シャフト31は金属製でコレット本体33は例えば、耐熱樹脂等で構成されている。シャフト31、コレット本体33の中心には、同軸に円形の中心穴32,34が設けられている。シャフト31の上端は、アーム23の凹部23aが設けられた部分に取り付けられており、シャフト31の中心穴32は、アーム23の上部に設けられた凹部23aに連通し、凹部23aからZ方向上側に向かって開放されている。コレット本体33の中心穴34は、シャフト31の中心穴32に連通し、下端面からZ方向下側に向かって開放されている。 The collet 30 is composed of a shaft 31 on the base side and a collet body 33 on the tip side. The shaft 31 is made of metal, and the collet body 33 is made of, for example, heat-resistant resin. Circular center holes 32 and 34 are coaxially provided at the centers of the shaft 31 and the collet body 33. The upper end of the shaft 31 is attached to a portion of the arm 23 where the concave portion 23a is provided, and the central hole 32 of the shaft 31 communicates with the concave portion 23a provided at the upper portion of the arm 23 and is located above the concave portion 23a in the Z direction. It is open towards. The center hole 34 of the collet body 33 communicates with the center hole 32 of the shaft 31 and is opened downward from the lower end surface in the Z direction.
 アーム23の凹部23aの上面には、光源27とビームスプリッタ28とが設けられている。また、コレット30の上側の上側ベース11には、コレット30の根本側からコレット30の画像を撮像するウェーハ側カメラ12が取り付けられている。ウェーハ側カメラ12は、設計上、光軸13と突き上げピン44の中心のピンセンタPCとは水平位置が同一となるように配置されている。 A light source 27 and a beam splitter 28 are provided on the upper surface of the recess 23 a of the arm 23. A wafer-side camera 12 that captures an image of the collet 30 from the root side of the collet 30 is attached to the upper base 11 on the upper side of the collet 30. By design, the wafer-side camera 12 is arranged such that the optical axis 13 and the pin center PC at the center of the push-up pin 44 are at the same horizontal position.
 ビームスプリッタ28は、シャフト31の中心穴32の直上に配置され、光源27からの光を反射してシャフト31の中心穴32、コレット本体33の中心穴34の中に入射させる。また、ビームスプリッタ28は、コレット30の直下に位置するウェーハ35の表面で反射した反射光をZ方向上側に向かって透過させ、ウェーハ側カメラ12に入射させる。光源27とビームスプリッタ28とはウェーハ側照明部29を構成する。ここで、光源27は、高輝度LED或いはレーザ光源であってもよい。また、ビームスプリッタ28に代えてハーフミラーで構成してもよい。 The beam splitter 28 is arranged directly above the central hole 32 of the shaft 31, and reflects the light from the light source 27 to make it enter the central hole 32 of the shaft 31 and the central hole 34 of the collet body 33. Further, the beam splitter 28 transmits the reflected light reflected on the surface of the wafer 35 located immediately below the collet 30 toward the upper side in the Z direction and makes it incident on the wafer side camera 12. The light source 27 and the beam splitter 28 form a wafer side illumination unit 29. Here, the light source 27 may be a high brightness LED or a laser light source. Further, the beam splitter 28 may be replaced by a half mirror.
 図1、2に示すように、実装部102は、実装対象物である基板74を吸着固定する実装ステージ72と、フレーム側撮像装置であるフレーム側カメラ63とを有している。先に説明したように、ピックアップヘッド20は、ピックアップ部101と実装部102とを通して伸びるリニアガイド14にガイドされてピックアップ部101と実装部102との間を移動し、実装部102で半導体ダイ36の基板74への実装とを行う。 As shown in FIGS. 1 and 2, the mounting unit 102 includes a mounting stage 72 that sucks and fixes a substrate 74 that is a mounting target, and a frame-side camera 63 that is a frame-side imaging device. As described above, the pickup head 20 is guided by the linear guide 14 extending through the pickup unit 101 and the mounting unit 102 to move between the pickup unit 101 and the mounting unit 102, and the semiconductor die 36 is mounted on the mounting unit 102. Is mounted on the substrate 74.
 実装ステージ72は、台座71を介してベース10に取り付けられている。実装ステージ72のY方向の両側には、X方向に伸びる2本のガイドレールで構成されて基板74をX方向に搬送する搬送機構73が設けられている。 The mounting stage 72 is attached to the base 10 via the pedestal 71. On both sides of the mounting stage 72 in the Y direction, a transport mechanism 73 configured of two guide rails extending in the X direction and transporting the substrate 74 in the X direction is provided.
 図4に示すように、実装ステージ72の上側には、ピックアップヘッド20が実装部102に移動した際にコレット30の根本側からコレット30の画像を撮像するフレーム側カメラ63が取り付けられている。フレーム側カメラ63は、上側ベース11に取り付けられてY方向に伸びるリニアガイド61にガイドされてY方向に移動可能であるアーム62の先端に取り付けられている。アーム62の内部にはアーム62をY方向に移動させるリニアモータ等のY方向駆動機構が取り付けられている。 As shown in FIG. 4, a frame-side camera 63 that captures an image of the collet 30 from the root side of the collet 30 when the pickup head 20 moves to the mounting unit 102 is attached to the upper side of the mounting stage 72. The frame-side camera 63 is attached to the upper base 11 and is attached to the tip of an arm 62 that is movable in the Y direction by being guided by a linear guide 61 extending in the Y direction. Inside the arm 62, a Y-direction drive mechanism such as a linear motor for moving the arm 62 in the Y-direction is attached.
 制御装置80は、内部にCPUとメモリとを含むコンピュータであり、CPUと記憶部であるメモリとが協働して動作することにより機能する制御部81と画像処理部82の2つの機能ブロックを有している。 The control device 80 is a computer that internally includes a CPU and a memory, and has two functional blocks, a control unit 81 and an image processing unit 82, which function by the CPU and the memory, which is a storage unit, operating in cooperation with each other. Have
 ウェーハ側カメラ12、ピックアップヘッド20、ウェーハリング駆動部41、フレーム側カメラ63、搬送機構73、実装ステージ72、は、制御部81に接続され、制御部81の指令によって動作する。ウェーハ側カメラ12が撮像した画像は画像処理部82に入力され、画像処理部82で画像処理される。画像処理で得られたデータは、制御部81に入力される。 The wafer side camera 12, the pickup head 20, the wafer ring drive unit 41, the frame side camera 63, the transfer mechanism 73, and the mounting stage 72 are connected to the control unit 81, and operate according to commands from the control unit 81. The image captured by the wafer-side camera 12 is input to the image processing unit 82 and image-processed by the image processing unit 82. The data obtained by the image processing is input to the control unit 81.
 <ピックアップ部の動作>
 以上の様に構成された電子部品実装装置100のピックアップ部101の動作について、図5から図12を参照して説明する。
<Operation of pickup section>
The operation of the pickup unit 101 of the electronic component mounting apparatus 100 configured as above will be described with reference to FIGS. 5 to 12.
 図5のステップS101、図6に示すように、制御部81は、ウェーハリング42の上側からウェーハ側カメラ12で突き上げピン44の画像を撮像して画像処理部82に出力する。図5のステップS102に示すように、画像処理部82は、入力された画像データを処理して突き上げピン44の先端の位置を突き上げピン44の中心のピンセンタPCとして検出する。画像データの処理は、例えば、突き上げピン44の先端画像の輝度が突き上げピン44の先端近傍のテーパ面の画像の輝度よりも高くなることを利用してもよい。 As shown in step S101 and FIG. 6 of FIG. 5, the control unit 81 captures an image of the push-up pin 44 with the wafer-side camera 12 from the upper side of the wafer ring 42 and outputs it to the image processing unit 82. As shown in step S102 of FIG. 5, the image processing unit 82 processes the input image data to detect the position of the tip of the push-up pin 44 as the pin center PC at the center of the push-up pin 44. The processing of the image data may use, for example, that the brightness of the tip image of the push-up pin 44 is higher than the brightness of the image of the tapered surface near the tip of the push-up pin 44.
 先に述べたように、設計上、ウェーハ側カメラ12の光軸13と突き上げピン44の中心のピンセンタPCとは同一位置に配置されているので、ウェーハ側カメラ12の光軸13と突き上げピン44とが設計通りの位置にある場合には、図7に示す突き上げピン44のピンセンタPCはウェーハ側カメラ12の視野15のX方向の基準線16とY方向の基準線17の交点で示される基準位置C1と同一位置となっている。しかし、図7に示すように、ピンセンタPCの位置と基準位置C1の位置がずれている場合がある。 As described above, since the optical axis 13 of the wafer side camera 12 and the pin center PC of the center of the push-up pin 44 are arranged at the same position by design, the optical axis 13 of the wafer side camera 12 and the push-up pin 44 are arranged. When and are at the positions as designed, the pin center PC of the push-up pin 44 shown in FIG. 7 is the reference indicated by the intersection of the reference line 16 in the X direction and the reference line 17 in the Y direction of the field of view 15 of the wafer side camera 12. It is the same position as the position C1. However, as shown in FIG. 7, the position of the pin center PC and the position of the reference position C1 may be displaced.
 図5のステップS103、図7に示すように、制御部81は、基準位置C1がピンセンタPCに一致するように視野15の基準位置C1を規定するX方向の基準線16とY方向の基準線17をXY方向に移動させる。そして、移動させた位置を視野15の基準位置C1に設定する。 As shown in step S103 of FIG. 5 and FIG. 7, the control unit 81 defines the reference line C1 of the X direction and the reference line of the Y direction that define the reference position C1 of the visual field 15 so that the reference position C1 coincides with the pin center PC. 17 is moved in the XY directions. Then, the moved position is set as the reference position C1 of the visual field 15.
 制御部81は、図8に示すようにピックアップヘッド20の本体21のXY方向、Z方向の駆動機構によってコレット30をウェーハ35の直上で、コレット本体33下面がウェーハ35から例えば、0.1mm程度の微小な高さの位置とする。そして、コレット30の中心軸とウェーハ側カメラ12の光軸13とを合わせる。次に、制御部81は、ピックアップヘッド20に設けた光源27を点灯させる。光源27からの光は、X方向に進んだ後、ビームスプリッタ28に反射してZ方向下向きに向かって進み、コレット30の根元側からシャフト31の中心穴32に入射する。中心穴32に入射した光は、中心穴32からコレット本体33の中心穴34を通って、コレット本体33の直下のウェーハ35の表面で反射する。ウェーハ35の表面で反射した反射光は、中心穴34、32をZ方向上方に向かって進み、ビームスプリッタ28を通過してウェーハ側カメラ12に入射する。 As shown in FIG. 8, the control unit 81 causes the collet 30 to be directly above the wafer 35 by the drive mechanism of the main body 21 of the pickup head 20 in the XY direction and the Z direction, and the lower surface of the collet body 33 to be about 0.1 mm from the wafer 35. The position is a minute height. Then, the center axis of the collet 30 is aligned with the optical axis 13 of the wafer side camera 12. Next, the control unit 81 turns on the light source 27 provided on the pickup head 20. The light from the light source 27 travels in the X direction, is reflected by the beam splitter 28, travels downward in the Z direction, and enters the center hole 32 of the shaft 31 from the root side of the collet 30. The light incident on the center hole 32 passes through the center hole 34 of the collet body 33 from the center hole 32, and is reflected by the surface of the wafer 35 immediately below the collet body 33. The reflected light reflected by the surface of the wafer 35 travels upward in the Z direction through the central holes 34 and 32, passes through the beam splitter 28, and enters the wafer side camera 12.
 ウェーハ側カメラ12の焦点は、コレット本体33の下面近傍に合わせてあるので、図9に示すように、コレット本体33の下面近傍に位置しているウェーハ35の表面からの反射光はウェーハ側カメラ12の視野15には中心穴32,34の白い円形の画像として現れる。 Since the focus of the wafer side camera 12 is set near the lower surface of the collet body 33, as shown in FIG. 9, the reflected light from the surface of the wafer 35 located near the lower surface of the collet body 33 is the wafer side camera. In the field of view 15 of 12, the central holes 32, 34 appear as white circular images.
 先に説明したように、各立面図、各平面図、各立断面図では、半導体ダイ36、コレット30の大きさを実際の大きさよりも大きく描いているが、実際には、半導体ダイ36、コレット30、中心穴32,34の大きさは非常に小さく、ウェーハ側カメラ12の視野15の大きさは、アーム23の上部に設けられた凹部23aよりも小さくなっている。また、ウェーハ側カメラ12の焦点は、コレット本体33の下面近傍に合わせてある。このため、視野15の中心穴32,34の白い円形の画像の周囲には、凹部23aの底面の画像ではなく、ウェーハ側カメラ12と焦点面であるコレット本体33の下面と間にあるアーム23の凹部23aが黒い影の背景として現れる。 As described above, in each elevation view, each plan view, and each elevation sectional view, the size of the semiconductor die 36 and the collet 30 is drawn larger than the actual size. The size of the collet 30 and the central holes 32 and 34 is very small, and the size of the field of view 15 of the wafer side camera 12 is smaller than that of the recess 23a provided on the upper portion of the arm 23. Further, the focus of the wafer side camera 12 is set near the lower surface of the collet body 33. Therefore, around the white circular images of the center holes 32 and 34 of the visual field 15, not the image of the bottom surface of the recess 23a but the arm 23 between the wafer side camera 12 and the lower surface of the collet body 33 which is the focal plane. Concave portion 23a appears as a black shadow background.
 ウェーハ側カメラ12は、図5のステップS104に示すように黒い背景に中に浮き出たコレット30の中心穴32,34に入射してウェーハ35の表面で反射した反射光の白い画像を撮像する。撮像した画像は画像処理部82に出力される。なお、凹部23aの底面で光の反射がある場合には、白い円形の画像の周囲に凹部23aの底面のぼやけた画像が現れる場合があるが、この場合には、凹部23aの底面を黒色とすることにより、白い円形の画像の周囲に黒い背景が現われるようにできる。 The wafer-side camera 12 captures a white image of the reflected light that is incident on the center holes 32 and 34 of the collet 30 that is raised in the black background and reflected on the surface of the wafer 35, as shown in step S104 of FIG. The captured image is output to the image processing unit 82. When light is reflected on the bottom surface of the recess 23a, a blurred image of the bottom surface of the recess 23a may appear around the white circular image. In this case, the bottom surface of the recess 23a is black. By doing so, a black background can appear around the white circular image.
 画像処理部82は、図5のステップS105に示すように、入力された画像を処理してコレット30の中心穴32,34の中心位置をコレット中心位置CC1として検出する。
コレット中心位置CC1を検出する画像処理の方法は様々な方法があるが、一例を示すと、黒い背景と中心穴32,34の白い円形の画像とのコントラストから白い円形の画像の境界線を検出し、その円の中心位置を計算することによりコレット中心位置CC1を検出する。図9に示すように、視野15の中ではコレット中心位置CC1はX方向中心線37、Y方向中心線38の交点となる。
As shown in step S105 of FIG. 5, the image processing unit 82 processes the input image and detects the center positions of the center holes 32 and 34 of the collet 30 as the collet center position CC1.
There are various image processing methods for detecting the collet center position CC1, but as an example, the boundary line of the white circular image is detected from the contrast between the black background and the white circular images of the central holes 32 and 34. Then, the collet center position CC1 is detected by calculating the center position of the circle. As shown in FIG. 9, in the visual field 15, the collet center position CC1 is the intersection of the X-direction center line 37 and the Y-direction center line 38.
 図9に示すように、ウェーハ側カメラ12の視野15の基準位置C1と、コレット中心位置CC1との間に位置ずれが発生している場合がある。画像処理部82は、図5のステップS106に示すように検出したコレット中心位置CC1と視野15の基準位置C1とのX方向の偏差ΔX1とY方向の偏差ΔY1とを検出し制御部81に出力する。制御部81は入力された各偏差ΔX1,ΔY1を記憶部に格納する。 As shown in FIG. 9, there may be a displacement between the reference position C1 of the field of view 15 of the wafer side camera 12 and the collet center position CC1. The image processing unit 82 detects an X-direction deviation ΔX1 and a Y-direction deviation ΔY1 between the collet center position CC1 and the reference position C1 of the visual field 15 detected as shown in step S106 of FIG. To do. The control unit 81 stores the input deviations ΔX1 and ΔY1 in the storage unit.
 また、画像処理部82は、図5のステップS107、図9に示すように、ピックアップしようとする半導体ダイ36を視野15の中に認識し、図5のステップS108に示すように、その半導体ダイ36の中心位置をチップセンタDCとして検出し、制御部81に出力する。制御部81は入力されたチップセンタDCを記憶部に格納する。チップセンタDCの検出は、例えば、認識した半導体ダイ36の画像を処理して半導体ダイ36の四角い輪郭線を求め、X方向中心線36x、Y方向中心線36yを求め、この交点としてチップセンタDCを検出するようにしてもよい。 Further, the image processing unit 82 recognizes the semiconductor die 36 to be picked up in the field of view 15 as shown in step S107 and FIG. 9 of FIG. 5, and as shown in step S108 of FIG. The center position of 36 is detected as the chip center DC and output to the control unit 81. The control unit 81 stores the input chip center DC in the storage unit. To detect the chip center DC, for example, the recognized image of the semiconductor die 36 is processed to obtain a square contour line of the semiconductor die 36, the X-direction center line 36x and the Y-direction center line 36y are obtained, and the chip center DC is determined as the intersection. May be detected.
 制御部81は、記憶部からチップセンタDCを読み出して、図5のステップS109に示すように、ピックアップする半導体ダイ36のチップセンタDCがウェーハ側カメラ12の視野15の中の基準位置C1となるようにウェーハリング駆動部41によってウェーハリング42を移動させる。先に説明したように基準位置C1は突き上げピン44のピンセンタPCの位置と同一位置に設定されているので、この動作により、チップセンタDCと基準位置C1とピンセンタPCとを同一位置とすることができる。 The control unit 81 reads the chip center DC from the storage unit, and as shown in step S109 in FIG. 5, the chip center DC of the semiconductor die 36 to be picked up becomes the reference position C1 in the field of view 15 of the wafer side camera 12. Thus, the wafer ring drive unit 41 moves the wafer ring 42. As described above, since the reference position C1 is set to the same position as the position of the pin center PC of the push-up pin 44, this operation can make the chip center DC, the reference position C1, and the pin center PC the same position. it can.
 制御部81は、記憶部から各偏差ΔX1,ΔY1を読み出して、図5のステップS110に示すように、偏差ΔY1分だけ位置を補正してコレット中心位置CC1をウェーハ側カメラ12の視野15の中の基準位置C1に合わせる。具体的には、図9に示すようにコレット中心位置CC1と基準位置C1との間のY方向の偏差がΔY1の場合、制御部81は、ピックアップヘッド20をY方向プラス側に向かって移動させる際には、ピックアップヘッド20のY方向位置を検出するリニアスケールの目盛が基準位置C1に対応する目盛よりも偏差ΔY1だけ大きくなる位置までピックアップヘッド20を移動させる。これにより、偏差ΔY1が補正されて、コレット30のY方向位置が基準位置C1に一致する。また、偏差ΔX1については、図示しないリニアガイド駆動機構によってリニアガイド14をX方向に偏差ΔX1だけ移動させることによって補正する。 The control unit 81 reads the deviations ΔX1 and ΔY1 from the storage unit and corrects the position by the deviation ΔY1 to set the collet center position CC1 in the visual field 15 of the wafer side camera 12 as shown in step S110 of FIG. Adjust to the reference position C1 of. Specifically, as shown in FIG. 9, when the deviation in the Y direction between the collet center position CC1 and the reference position C1 is ΔY1, the control unit 81 moves the pickup head 20 toward the Y direction plus side. At this time, the pickup head 20 is moved to a position where the scale of the linear scale for detecting the position of the pickup head 20 in the Y direction is larger than the scale corresponding to the reference position C1 by a deviation ΔY1. As a result, the deviation ΔY1 is corrected and the position of the collet 30 in the Y direction coincides with the reference position C1. The deviation ΔX1 is corrected by moving the linear guide 14 in the X direction by the deviation ΔX1 by a linear guide drive mechanism (not shown).
 このように、ウェーハリング42、コレット30の位置を調整することにより、図10に示す状態では、図11に示すように、チップセンタDCと基準位置C1とピンセンタPCとコレット中心位置CC1を同一位置とすることができる。 By adjusting the positions of the wafer ring 42 and the collet 30 as described above, in the state shown in FIG. 10, the chip center DC, the reference position C1, the pin center PC, and the collet center position CC1 are at the same position as shown in FIG. Can be
 この状態で制御部81は、図5のステップS111、図12に示すように、ピックアップヘッド20の本体21のZ方向駆動機構によりコレット30をピックアップする半導体ダイ36の上に降下させて半導体ダイ36の表面に半導体ダイ36を吸着させるとともに、突き上げピン44を上方向に移動させて半導体ダイ36を下側から突き上げ、半導体ダイ36をウェーハ35からピックアップする。 In this state, the controller 81 lowers the collet 30 onto the semiconductor die 36 for picking up the collet 30 by the Z-direction drive mechanism of the main body 21 of the pickup head 20, as shown in step S111 and FIG. 12 of FIG. The semiconductor die 36 is attracted to the surface of the semiconductor die 36, and the push-up pins 44 are moved upward to push up the semiconductor die 36 from the lower side to pick up the semiconductor die 36 from the wafer 35.
 この際、チップセンタDCと基準位置C1とピンセンタPCとコレット中心位置CC1が同一位置になっているので、突き上げピン44で半導体ダイ36の中心を突き上げて、コレット本体33の中心に半導体ダイ36を吸着させることができる。このため、ウェーハ35から半導体ダイ36を正確にピックアップすることができ、半導体ダイ36の基板74への実装精度の低下を抑制することができる。 At this time, since the chip center DC, the reference position C1, the pin center PC, and the collet center position CC1 are at the same position, the center of the semiconductor die 36 is pushed up by the push-up pin 44, and the semiconductor die 36 is placed at the center of the collet body 33. Can be adsorbed. Therefore, the semiconductor die 36 can be accurately picked up from the wafer 35, and a decrease in mounting accuracy of the semiconductor die 36 on the substrate 74 can be suppressed.
 また、コレット本体33の中心で半導体ダイ36をピックアップできるので、コレット本体33が半導体ダイ36を偏ってピックアップすることによりコレット本体33の先端が変形することを抑制できる。 Further, since the semiconductor die 36 can be picked up at the center of the collet body 33, the tip of the collet body 33 can be prevented from being deformed by the collet body 33 picking up the semiconductor die 36 in a biased manner.
 本実施形態の電子部品実装装置100は、コレット30の上側から中心穴32、34に光を入射させ、コレット30の直下のウェーハ35からの反射光によってコレット中心位置CC1の検出を行うので、図5のステップS104からステップS106までの偏差を検出する動作をウェーハ35から半導体ダイ36をピックアップする動作の間に行うことができる。 Since the electronic component mounting apparatus 100 of the present embodiment causes light to enter the center holes 32 and 34 from the upper side of the collet 30 and detects the collet center position CC1 by the reflected light from the wafer 35 immediately below the collet 30, The operation of detecting the deviation from Step S104 to Step S106 of Step 5 can be performed during the operation of picking up the semiconductor die 36 from the wafer 35.
 このため、何回かのピックアップ動作を行う毎に偏差を補正してピックアップを継続することができるので、経時的な変化があった場合でも半導体ダイ36を正確にピックアップすることができ、基板74への半導体ダイ36の実装精度の低下を効果的に抑制することができる。 Therefore, the deviation can be corrected and the pickup can be continued every time the pickup operation is performed several times, so that the semiconductor die 36 can be accurately picked up even if there is a change over time, and the substrate 74 It is possible to effectively prevent the mounting accuracy of the semiconductor die 36 from being reduced.
 また、何回かのピックアップ毎ではなく、ピックアップの都度、偏差検出、補正を行ってもよい。この場合には、画像処理部82が検出したX方向の偏差ΔX1とY方向の偏差ΔY1制御部81の記憶部に格納しておき、その後の実装においては、記憶部に格納した偏差を用いて補正を行い、所定回数のピックアップを行うことができる。この場合には、ボンディング効率を低下させることを抑制しつつ、基板74への半導体ダイ36の実装精度の低下を効果的に抑制することができる。 Also, deviation detection and correction may be performed for each pick-up instead of every pick-up. In this case, the deviation ΔX1 in the X direction detected by the image processing unit 82 and the deviation ΔY1 in the Y direction are stored in the storage unit of the control unit 81, and in the subsequent mounting, the deviation stored in the storage unit is used. It is possible to make a correction and pick up a predetermined number of times. In this case, it is possible to effectively suppress a decrease in mounting accuracy of the semiconductor die 36 on the substrate 74 while suppressing a decrease in bonding efficiency.
<実装部の動作>
 次に図13、図14から図22を参照しながら、実装部102の動作について説明する。
<Operation of mounting part>
Next, the operation of the mounting unit 102 will be described with reference to FIGS. 13 and 14 to 22.
 図13のステップS201、図14に示すように、制御部81は、ピックアップヘッド20の本体21の内部に配置されたY方向駆動機構を動作させてピックアップヘッド20をフレーム側カメラ63の下側に移動させる。この際、制御部81は、コレット30のコレット中心位置CC2がフレーム側カメラ63の光軸64の位置と一致するようにピックアップヘッド20を移動させる。また、フレーム側カメラ63の焦点は、基板74の表面となっているので、コレット30の先端に吸着した半導体ダイ36の表面を基板74の表面から極僅か、例えば、0.1mm程度離間した位置となるようにコレット30を降下させ、半導体ダイ36の上側の面がフレーム側カメラ63の焦点深度の中に入るようにする。コレット30の降下は、ピックアップヘッド20の本体21の内部に配置されたZ方向駆動により行う。 As shown in step S201 and FIG. 14 of FIG. 13, the controller 81 operates the Y-direction drive mechanism arranged inside the main body 21 of the pickup head 20 to move the pickup head 20 to the lower side of the frame side camera 63. To move. At this time, the control unit 81 moves the pickup head 20 so that the collet center position CC2 of the collet 30 coincides with the position of the optical axis 64 of the frame side camera 63. Further, since the focus of the frame side camera 63 is on the surface of the substrate 74, the position of the surface of the semiconductor die 36 attracted to the tip of the collet 30 is separated from the surface of the substrate 74 by a very small amount, for example, about 0.1 mm. The collet 30 is lowered so that the upper surface of the semiconductor die 36 enters the depth of focus of the frame side camera 63. The collet 30 is moved downward by driving in the Z direction arranged inside the main body 21 of the pickup head 20.
 フレーム側カメラ63の光軸64の位置は、図15に示すようにフレーム側カメラ63の視野65の中ではX方向の中心線66とY方向の中心線67との交点で示される基準位置C2となる。また、視野65の中ではコレット中心位置CC2はX方向中心線55x、Y方向中心線55yの交点となる。コレット中心位置CC2がフレーム側カメラ63の光軸64の位置と一致している場合には、コレット中心位置CC2は基準位置C2に一致する。しかし、図15に示すように、コレット中心位置CC2と基準位置C2とがずれている場合がある。 The position of the optical axis 64 of the frame-side camera 63 is the reference position C2 indicated by the intersection of the X-direction center line 66 and the Y-direction center line 67 in the field of view 65 of the frame-side camera 63 as shown in FIG. Becomes In the field of view 65, the collet center position CC2 is the intersection of the X-direction center line 55x and the Y-direction center line 55y. When the collet center position CC2 coincides with the position of the optical axis 64 of the frame side camera 63, the collet center position CC2 coincides with the reference position C2. However, as shown in FIG. 15, the collet center position CC2 may deviate from the reference position C2.
 制御部81は、先に説明したと同様、ピックアップヘッド20に設けた光源27aを点灯させる。光源27からの光は、コレット30の中心穴32,34に入射し、ウェーハ35の表面で反射した反射光の白い画像となり、図15に示すように、白い画像の周囲は黒い背景となる。フレーム側カメラ63は、黒い背景に中に浮き出た反射光の白い画像を撮像する。撮像した画像は画像処理部82に出力される。 The control unit 81 turns on the light source 27a provided in the pickup head 20, as described above. The light from the light source 27 enters the center holes 32 and 34 of the collet 30 and becomes a white image of the reflected light reflected by the surface of the wafer 35. As shown in FIG. 15, the white image has a black background around it. The frame side camera 63 captures a white image of the reflected light that is projected inward on a black background. The captured image is output to the image processing unit 82.
 画像処理部82は、図13のステップS203に示すように、先に説明したと同様、入力された画像を処理してコレット30の中心穴32,34の中心位置をコレット中心位置CC2として検出する。 As shown in step S203 of FIG. 13, the image processing unit 82 processes the input image and detects the center positions of the center holes 32 and 34 of the collet 30 as the collet center position CC2, as described above. ..
 図15に示すように、フレーム側カメラ63の視野65の基準位置C2と、コレット中心位置CC2との間に位置ずれが発生している場合がある。画像処理部82は、図13のステップS204に示すように検出したコレット中心位置CC2と視野65の基準位置C2とのX方向第1偏差ΔX2と、Y方向第1偏差ΔY2とを検出し、制御部81に出力する。制御部81は入力されたX方向第1偏差ΔX2と、Y方向第1偏差ΔY2とを記憶部に格納する。 As shown in FIG. 15, there may be a displacement between the reference position C2 of the field of view 65 of the frame side camera 63 and the collet center position CC2. The image processing unit 82 detects the X-direction first deviation ΔX2 and the Y-direction first deviation ΔY2 between the collet center position CC2 detected as shown in step S204 of FIG. 13 and the reference position C2 of the visual field 65, and controls them. Output to the unit 81. The control unit 81 stores the input X-direction first deviation ΔX2 and Y-direction first deviation ΔY2 in the storage unit.
 また、制御部81は、図16に示すように、フレーム側カメラ63の視野65の基準位置C2が基板74の上の半導体ダイ36を実装する実装領域75の中心の実装位置BCが視野に入るような位置にフレーム側カメラ63を移動させる。Y方向の移動は、アーム62の中に配置したY方向駆動機構によっておこなう。 Further, as shown in FIG. 16, the control unit 81 causes the reference position C2 of the visual field 65 of the frame side camera 63 to be in the visual field of the mounting position BC at the center of the mounting area 75 for mounting the semiconductor die 36 on the substrate 74. The frame side camera 63 is moved to such a position. The movement in the Y direction is performed by the Y direction drive mechanism arranged in the arm 62.
 そして、制御部81は、図13のステップS205に示すように、フレーム側カメラ63を動作させて実装領域75を撮像する。撮像した画像は画像処理部82に入力される。画像処理部82は、図13のステップS206に示すように、取得した画像を処理して実装領域75の中心の実装位置BCを検出し、制御部81に出力する。制御部81は、入力された実装位置BCを記憶部に格納する。画像処理は、例えば、認識した実装領域75画像を処理して実装領域75の四角い輪郭線を求め、X方向中心線76、Y方向中心線77を求め、この交点として実装位置BCを検出するようにしてもよい。 Then, as shown in step S205 of FIG. 13, the control unit 81 operates the frame side camera 63 to image the mounting area 75. The captured image is input to the image processing unit 82. The image processing unit 82 processes the acquired image to detect the mounting position BC at the center of the mounting area 75, and outputs it to the control unit 81, as shown in step S206 of FIG. The control unit 81 stores the input mounting position BC in the storage unit. In the image processing, for example, the recognized mounting area 75 image is processed to obtain a square contour line of the mounting area 75, the X-direction center line 76 and the Y-direction center line 77 are obtained, and the mounting position BC is detected as the intersection. You can
 図17に示すように、フレーム側カメラ63の視野65の基準位置C2と、実装位置BCとの間に位置ずれが発生している場合がある。画像処理部82は、図13のステップS207に示すように検出した実装位置BCと視野65の基準位置C2とのX方向第2偏差ΔX3と、Y方向第2偏差ΔY3とを検出し、制御部81に出力する。制御部81は、入力されたX方向第2偏差ΔX3と、Y方向第2偏差ΔY3とを記憶部に格納する。 As shown in FIG. 17, a displacement may occur between the reference position C2 of the field of view 65 of the frame side camera 63 and the mounting position BC. The image processing unit 82 detects the X-direction second deviation ΔX3 and the Y-direction second deviation ΔY3 between the mounting position BC and the reference position C2 of the visual field 65 detected as shown in step S207 of FIG. 13, and the control unit Output to 81. The control unit 81 stores the input X-direction second deviation ΔX3 and Y-direction second deviation ΔY3 in the storage unit.
 制御部81は、記憶部からX方向第2偏差ΔX3と、Y方向第2偏差ΔY3とを読み出して、図13のステップS208、図18に示すように、Y方向第1偏差ΔY2、Y方向第2偏差ΔY3だけ位置を補正し、X方向第1偏差ΔX2、X方向第2偏差ΔX3だけ補正してコレット中心位置CC2を実装位置BCに合わせる。具体的には、制御部81は、ピックアップヘッド20をY方向プラス側に向かって移動させる際には、ピックアップヘッド20のY方向位置を検出するリニアスケールの目盛が実装位置BCに対応する目盛よりもY方向第1偏差ΔY2とY方向第2偏差ΔY3の合計だけ大きくなる位置までピックアップヘッド20を移動させる。また、制御部81は、図示しないリニアガイド駆動機構によってリニアガイド14をX方向に移動させて偏差ΔX2を補正する。これにより、Y方向第1偏差ΔY2、Y方向第2偏差ΔY3及びX方向第1偏差ΔX2、X方向第2偏差ΔX3が補正されてコレット中心位置CC2が実装位置BCに一致する。 The control unit 81 reads the X-direction second deviation ΔX3 and the Y-direction second deviation ΔY3 from the storage unit, and as shown in step S208 of FIG. 13 and FIG. 18, the Y-direction first deviation ΔY2 and the Y-direction second deviation ΔY3. The position is corrected by 2 deviations ΔY3, the X direction first deviation ΔX2 and the X direction second deviation ΔX3 are corrected, and the collet center position CC2 is adjusted to the mounting position BC. Specifically, when the control unit 81 moves the pickup head 20 toward the Y direction plus side, the scale of the linear scale that detects the position of the pickup head 20 in the Y direction is larger than the scale corresponding to the mounting position BC. Also, the pickup head 20 is moved to a position where the sum of the Y-direction first deviation ΔY2 and the Y-direction second deviation ΔY3 increases. Further, the control unit 81 moves the linear guide 14 in the X direction by a linear guide drive mechanism (not shown) to correct the deviation ΔX2. As a result, the Y-direction first deviation ΔY2, the Y-direction second deviation ΔY3, the X-direction first deviation ΔX2, and the X-direction second deviation ΔX3 are corrected so that the collet center position CC2 coincides with the mounting position BC.
 これにより、図19に示すようにチップセンタDCがコレット30のコレット中心位置CC2と一致するように吸着された状態で、コレット中心位置CC2を実装位置BCに一致させることができ、半導体ダイ36のチップセンタDCを実装位置BCに一致させた状態で半導体ダイ36を基板74に実装することができる。 As a result, the collet center position CC2 can be matched with the mounting position BC in the state where the chip center DC is attracted so as to match the collet center position CC2 of the collet 30 as shown in FIG. The semiconductor die 36 can be mounted on the substrate 74 with the chip center DC aligned with the mounting position BC.
 制御部81は、図13のステップS209において、図19に示す状態で図20に示すようにコレット30を降下させて半導体ダイ36を実装領域75に実装する。 In step S209 of FIG. 13, the control unit 81 lowers the collet 30 in the state shown in FIG. 19 to mount the semiconductor die 36 on the mounting area 75.
 図21に示すように、半導体ダイ36の実装が終了した後の基板74を上方向からフレーム側カメラ63で撮像すると図22に示すように半導体ダイ36は、実装領域75にぴったり実装されている。 As shown in FIG. 21, when the frame side camera 63 takes an image of the substrate 74 after the mounting of the semiconductor die 36 is completed, the semiconductor die 36 is exactly mounted in the mounting area 75 as shown in FIG. ..
 以上説明したように、本実施形態の電子部品実装装置100では、経時的な変化があった場合の半導体ダイ36の基板74への実装精度の低下を抑制することができる。 As described above, in the electronic component mounting apparatus 100 of this embodiment, it is possible to suppress deterioration of the mounting accuracy of the semiconductor die 36 on the substrate 74 when there is a change over time.
 本実施形態の電子部品実装装置100は、コレット30の上側から中心穴32,34に光を入射させ、コレット30の先端に吸着した半導体ダイ36の表面からの反射光によってコレット中心位置CC2の検出を行うので、図13のステップS201からステップS204までの第1偏差を検出する動作と、図13のステップS205からS207の第2偏差を検出して第1、第2偏差を補正する動作とを、半導体ダイ36の実装中に行うことができる。 The electronic component mounting apparatus 100 of the present embodiment causes light to enter the center holes 32 and 34 from the upper side of the collet 30 and detects the collet center position CC2 by the reflected light from the surface of the semiconductor die 36 adsorbed to the tip of the collet 30. Therefore, the operation of detecting the first deviation from step S201 to step S204 of FIG. 13 and the operation of detecting the second deviation of step S205 to S207 of FIG. 13 to correct the first and second deviations are performed. , Can be performed during mounting of the semiconductor die 36.
 例えば、実装部102が半導体ダイ36のピックアップ、実装を繰返し実行している場合、最初は第1偏差を所定の設定値として実装を開始し、何回か実装を行った後の半導体ダイ36を基板74に実装する直前で、コレット30の先端に吸着した半導体ダイ36の表面を基板74の表面から極僅か、例えば、0.1mm程度離間した位置まで降下させた状態で第1偏差の検出を行い、その結果を制御部81の記憶部に格納し、その後の実装においては、記憶部に格納した第1偏差を用いて補正を行い、所定回数の実装を行うことができる。 For example, when the mounting unit 102 repeatedly picks up and mounts the semiconductor die 36, the mounting is first started with the first deviation set as a predetermined set value, and the semiconductor die 36 after mounting several times is mounted. Immediately before mounting on the substrate 74, the first deviation is detected while the surface of the semiconductor die 36 attracted to the tip of the collet 30 is lowered to a position slightly separated from the surface of the substrate 74, for example, about 0.1 mm. The result is stored in the storage unit of the control unit 81, and in the subsequent mounting, the correction can be performed using the first deviation stored in the storage unit, and the mounting can be performed a predetermined number of times.
 第2偏差の検出も第1偏差の検出と同様、実装を何回が実行した後に検出を行い、その結果を制御部81の記憶部に格納し、その後の実装においては、記憶部に格納した第2偏差を用いて補正を行い、所定回数の実装を行うことができる。 Similarly to the detection of the first deviation, the detection of the second deviation is performed after the mounting has been performed many times, and the detection result is stored in the storage unit of the control unit 81. In the subsequent mounting, the detection is stored in the storage unit. The correction can be performed using the second deviation and the mounting can be performed a predetermined number of times.
 このため、経時的な変化があっても、何回かの実装を行う毎に、第1偏差、第2偏差を補正して実装を継続することができるので、ボンディング効率を低下させることを抑制しつつ、経時的な変化があった場合の基板74への半導体ダイ36の実装精度の低下を効果的に抑制することができる。 Therefore, even if there is a change over time, it is possible to continue the mounting by correcting the first deviation and the second deviation every time the mounting is performed several times, so that it is possible to suppress the deterioration of the bonding efficiency. At the same time, it is possible to effectively suppress the deterioration of the mounting accuracy of the semiconductor die 36 on the substrate 74 when there is a change with time.
 なお、本実施形態の電子部品実装装置100では、半導体ダイ36のピックアップと実装とを行うピックアップヘッド20がピックアップ部101と実装部102との間に延びるリニアガイド14にガイドされており、X方向の位置の調整はリニアガイド14をX方向に移動することによって行う。このため、実装部102でX方向第1偏差ΔX2、X方向第2偏差ΔX3の調整を行うと、ピックアップ部101でのX方向のコレット中心位置CC1と基準位置C1,ピンセンタPCとの間にずれが生じる場合がある。この場合には、実装部102からピックアップ部101に戻ってピックアップ動作を行う際に、偏差ΔX1とX方向第1偏差ΔX23或いはX方向第2偏差ΔX3との差を用いてコレット30の位置を補正するようにしてもよい。 In the electronic component mounting apparatus 100 of this embodiment, the pickup head 20 that picks up and mounts the semiconductor die 36 is guided by the linear guide 14 that extends between the pickup unit 101 and the mounting unit 102, and is in the X direction. The position of is adjusted by moving the linear guide 14 in the X direction. Therefore, when the mounting unit 102 adjusts the X-direction first deviation ΔX2 and the X-direction second deviation ΔX3, the pickup unit 101 shifts between the X-direction collet center position CC1 and the reference position C1 and the pin center PC. May occur. In this case, the position of the collet 30 is corrected using the difference between the deviation ΔX1 and the X-direction first deviation ΔX2 3 or the X-direction second deviation ΔX3 when the pickup operation is returned from the mounting section 102 to the pickup section 101. You may do so.
 また、何回かの実装毎ではなく、実装の都度、第1偏差、第2偏差の検出を行い、各偏差の補正を行ってもよい。この場合には、より効果的に基板74への半導体ダイ36の実装精度の低下を効果的に抑制することができる。 Also, the first deviation and the second deviation may be detected each time the mounting is performed, rather than every time the mounting is performed, and each deviation may be corrected. In this case, the deterioration of the mounting accuracy of the semiconductor die 36 on the substrate 74 can be suppressed more effectively.
 以上の説明では、基板74に半導体ダイ36を実装することとして説明したが、これに限らず、本実施形態の電子部品実装装置100は、他の半導体ダイ36を実装対象物とし、他の半導体ダイ36の上に半導体ダイ36を実装する場合にも適用できる。この場合、基板74の実装領域75に代えて他の半導体ダイ36の画像を撮像し、その中心位置を検出して実装位置BCとフレーム側カメラ63の基準位置C2との間の第2偏差を検出すればよい。 In the above description, the semiconductor die 36 is mounted on the substrate 74. However, the electronic component mounting apparatus 100 according to the present embodiment is not limited to this, and the other semiconductor die 36 is used as a mounting target. It is also applicable when mounting the semiconductor die 36 on the die 36. In this case, an image of another semiconductor die 36 is picked up instead of the mounting area 75 of the substrate 74, the center position thereof is detected, and the second deviation between the mounting position BC and the reference position C2 of the frame side camera 63 is determined. It should be detected.
 <他の実施形態>
 次に図23、24を参照して他の実施形態の電子部品実装装置200について説明する。図23は電子部品実装装置200のピックアップ部101の立断面図であり、図24は実装部102の立断面図である。先に図1から図22を参照して説明した電子部品実装装置100と同様の部位には同様の符号を付して説明は省略する。
<Other Embodiments>
Next, an electronic component mounting apparatus 200 of another embodiment will be described with reference to FIGS. 23 is a vertical cross-sectional view of the pickup unit 101 of the electronic component mounting apparatus 200, and FIG. 24 is a vertical cross-sectional view of the mounting unit 102. The same parts as those of the electronic component mounting apparatus 100 described above with reference to FIGS. 1 to 22 are designated by the same reference numerals and the description thereof will be omitted.
 電子部品実装装置100では、アーム23の上に設けられた光源27とビームスプリッタ28によりコレット30の中心穴32,34の中に光を入射させるように構成されていた。電子部品実装装置200ではこれに代えて、図23に示すように、ウェーハ側カメラ12、フレーム側カメラ63の下端側面にリング照明92,92aを配置し、コレット30のシャフト31の上側端に中心穴32を覆うガラスカバー91を取り付け、リング照明92からの光をガラスカバー91を通して中心穴32,34に入射させるように構成したものである。リング照明92,92aとガラスカバー91とはウェーハ側照明部93,フレーム側照明部93aを構成する。 In the electronic component mounting apparatus 100, the light source 27 and the beam splitter 28 provided on the arm 23 are configured to cause light to enter the center holes 32 and 34 of the collet 30. In the electronic component mounting apparatus 200, instead of this, as shown in FIG. 23, ring illuminations 92 and 92a are arranged on the lower end side surfaces of the wafer side camera 12 and the frame side camera 63, and the center is located at the upper end of the shaft 31 of the collet 30. A glass cover 91 that covers the hole 32 is attached, and the light from the ring illumination 92 is configured to enter the center holes 32 and 34 through the glass cover 91. The ring illuminations 92 and 92a and the glass cover 91 constitute a wafer side illumination section 93 and a frame side illumination section 93a.
 電子部品実装装置200は電子部品実装装置100と同様の作用、効果を奏する。 The electronic component mounting apparatus 200 has the same operation and effect as the electronic component mounting apparatus 100.
 次に、図25~27を参照しながら他の実施形態の電子部品実装装置300について説明する。先に図1から図22を参照して説明した電子部品実装装置100と同様の部位には同様の符号を付して説明は省略する。 Next, an electronic component mounting apparatus 300 of another embodiment will be described with reference to FIGS. 25 to 27. The same parts as those of the electronic component mounting apparatus 100 described above with reference to FIGS. 1 to 22 are designated by the same reference numerals and the description thereof will be omitted.
 図25、26に示すように、電子部品実装装置300は、ピックアップヘッド20がピックアップ部101でピックアップした半導体ダイ36を載置する中間ステージ48と、中間ステージ48の上に載置された半導体ダイ36をピックアップして実装部102で半導体ダイ36の実装を行う実装ヘッド50とを有している。 As shown in FIGS. 25 and 26, the electronic component mounting apparatus 300 includes an intermediate stage 48 on which the semiconductor die 36 picked up by the pickup head 20 by the pickup unit 101 is placed, and a semiconductor die placed on the intermediate stage 48. The mounting head 50 mounts the semiconductor die 36 on the mounting unit 102 by picking up the semiconductor device 36.
 ピックアップヘッド20の構成は、図3を参照して説明した電子部品実装装置100のピックアップヘッド20と同一である。本実施形態の電子部品実装装置300では、ピックアップヘッド20は、リニアガイド14にガイドされてX方向に移動する。また、リニアガイド14は図示しないリニアガイド駆動機構でY方向に移動する。 The configuration of the pickup head 20 is the same as the pickup head 20 of the electronic component mounting apparatus 100 described with reference to FIG. In the electronic component mounting apparatus 300 of this embodiment, the pickup head 20 is guided by the linear guide 14 and moves in the X direction. The linear guide 14 is moved in the Y direction by a linear guide drive mechanism (not shown).
 図27に示すように、実装ヘッド50は、Y方向に延びるリニアガイド18にガイドされる本体51と、本体51の下側に設けられたブラケット52と、ブラケット22の下端部に取り付けられたアーム53と、アーム53のX方向プラス側端に取り付けられた実装コレット55とを有している。リニアガイド18は、図示しないリニアガイド駆動機構でX方向に移動する。 As shown in FIG. 27, the mounting head 50 includes a main body 51 guided by the linear guide 18 extending in the Y direction, a bracket 52 provided below the main body 51, and an arm attached to a lower end portion of the bracket 22. 53 and a mounting collet 55 attached to the X direction plus side end of the arm 53. The linear guide 18 moves in the X direction by a linear guide drive mechanism (not shown).
 本体51は、内部に実装ヘッド50をY方向に駆動するY方向駆動機構と、実装コレット55をZ方向に駆動するX方向駆動機構とを含んでいる。Y方向の駆動機構は、例えば、リニアモータであり、Z方向の駆動機構は、例えば、ボイスコイルモータで構成されていてもよい。実装ヘッド50は、実装コレット55をY方向に駆動する実装コレット駆動部を構成する。 The main body 51 internally includes a Y-direction drive mechanism that drives the mounting head 50 in the Y-direction and an X-direction drive mechanism that drives the mounting collet 55 in the Z-direction. The Y-direction drive mechanism may be, for example, a linear motor, and the Z-direction drive mechanism may be, for example, a voice coil motor. The mounting head 50 constitutes a mounting collet drive unit that drives the mounting collet 55 in the Y direction.
 実装コレット55は、根本側のシャフト56と先端側の実装コレット本体58とで構成される。シャフト56は金属製で実装コレット本体58は例えば、金属或いはセラミックス等で構成されている。シャフト56、実装コレット本体58の中心には、同軸に円形の中心穴57,59が設けられている。シャフト56の上端は、アーム53の上側の凹部53aが設けられた部分に取り付けられており、シャフト56の中心穴57は、アーム53の上部の凹部53aに連通し、凹部53aからZ方向上側に向かって開放されている。実装コレット本体58の中心穴59は、シャフト56の中心穴57に連通し、下端面からZ方向下側に向かって開放されている。アーム53の上部の凹部53aの上側には、光源27aとビームスプリッタ28aとが設けられている。 The mounting collet 55 is composed of a shaft 56 on the root side and a mounting collet body 58 on the tip side. The shaft 56 is made of metal, and the mounting collet body 58 is made of, for example, metal or ceramics. Circular center holes 57 and 59 are coaxially provided at the centers of the shaft 56 and the mounting collet body 58. The upper end of the shaft 56 is attached to a portion of the arm 53 where the upper concave portion 53a is provided, and the central hole 57 of the shaft 56 communicates with the upper concave portion 53a of the arm 53 and is located upward in the Z direction from the concave portion 53a. It is open to the public. The center hole 59 of the mounting collet body 58 communicates with the center hole 57 of the shaft 56, and is opened downward from the lower end surface in the Z direction. A light source 27a and a beam splitter 28a are provided above the recess 53a in the upper part of the arm 53.
 ビームスプリッタ28aは、実装コレット55のシャフト56の中心穴57の直上に配置され、光源27aからの光を反射して実装コレット55の根元側からシャフト56の中心穴57、実装コレット本体58の中心穴59の中に入射させる。また、ビームスプリッタ28aは、実装コレット55の実装コレット本体58の先端に吸着された半導体ダイ36の表面で反射した反射光をZ方向上側に向かって透過させ、フレーム側カメラ63に入射させる。光源27aとビームスプリッタ28aとはフレーム側照明部29aを構成する。ここで、光源27aは、高輝度LED或いはレーザ光源であってもよい。また、ビームスプリッタ28aに代えてハーフミラーで構成してもよい。 The beam splitter 28a is disposed immediately above the center hole 57 of the shaft 56 of the mounting collet 55, reflects the light from the light source 27a, and extends from the root side of the mounting collet 55 to the center hole 57 of the shaft 56 and the center of the mounting collet body 58. It is made incident into the hole 59. Further, the beam splitter 28a transmits the reflected light reflected by the surface of the semiconductor die 36 adsorbed to the tip of the mounting collet body 58 of the mounting collet 55 toward the upper side in the Z direction and makes it incident on the frame side camera 63. The light source 27a and the beam splitter 28a form a frame side illumination unit 29a. Here, the light source 27a may be a high brightness LED or a laser light source. Further, the beam splitter 28a may be replaced with a half mirror.
 図25、26に示すように、中間ステージ48は、ウェーハリング42と搬送機構73との間に配置されてY方向に伸びる長尺部材であるリニアガイド47にガイドされ、図示しない駆動機構によってY方向に移動する。 As shown in FIGS. 25 and 26, the intermediate stage 48 is arranged between the wafer ring 42 and the transfer mechanism 73 and is guided by a linear guide 47 which is a long member extending in the Y direction. Move in the direction.
 以上説明した実施形態の電子部品実装装置300のピックアップ部101の動作は先に説明した電子部品実装装置100のピックアップ部101の動作とX方向とY方向とが異なるのみでその他の動きは同様である。また、実装部102の実装ヘッド50の動作は、電子部品実装装置100のピックアップヘッド20が実装部102に移動した後の動作と同様である。 The operation of the pickup unit 101 of the electronic component mounting apparatus 300 of the embodiment described above is different from the operation of the pickup unit 101 of the electronic component mounting apparatus 100 described above in only the X direction and the Y direction, and the other movements are the same. is there. The operation of the mounting head 50 of the mounting unit 102 is similar to the operation after the pickup head 20 of the electronic component mounting apparatus 100 moves to the mounting unit 102.
 本実施形態の電子部品実装装置300は、電子部品実装装置100と同様の作用、効果を奏する。 The electronic component mounting apparatus 300 of this embodiment has the same operation and effect as the electronic component mounting apparatus 100.
 次に、図28を参照しながら他の実施形態の電子部品実装装置400について説明する。電子部品実装装置400は、ピックアップ部101と実装部102との間にコレット30の先端に吸着された半導体ダイ36の画像を撮像する裏面カメラ85と、光源であるストロボ86とを備えている。ストロボ86は、画像処理部82に接続されて画像処理部82の指令によって点灯、消灯する。また、裏面カメラ85が撮像した画像は、画像処理部82に入力される。上記以外は、図1から図22を参照して説明した電子部品実装装置100と同様である。 Next, an electronic component mounting apparatus 400 of another embodiment will be described with reference to FIG. The electronic component mounting apparatus 400 includes a back camera 85 for picking up an image of the semiconductor die 36 adsorbed to the tip of the collet 30 between the pickup unit 101 and the mounting unit 102, and a strobe 86 as a light source. The strobe 86 is connected to the image processing unit 82, and turns on and off according to a command from the image processing unit 82. The image captured by the rear camera 85 is input to the image processing unit 82. Other than the above, the electronic component mounting apparatus 100 is the same as the electronic component mounting apparatus 100 described with reference to FIGS.
 図28に示すように、裏面カメラ85は、コレット30が真上の所定の位置に移動してきた際にコレット30の先端に吸着された半導体ダイ36の裏面(Z方向下側の面)に焦点が合うような位置に配置され、半導体ダイ36の裏面のシャープな画像を取得できるように調整されている。ストロボ86は、発光した光をコレット30の方向に向ける反射鏡86aを備えている。 As shown in FIG. 28, the back surface camera 85 focuses on the back surface (the surface in the Z direction lower side) of the semiconductor die 36 that is attracted to the tip of the collet 30 when the collet 30 moves to a predetermined position directly above. Are arranged so that they match each other, and are adjusted so that a sharp image of the back surface of the semiconductor die 36 can be obtained. The strobe 86 includes a reflecting mirror 86a that directs the emitted light toward the collet 30.
 以下、電子部品実装装置400において、裏面カメラ85によってコレット30の先端に吸着されている半導体ダイ36のコレット30に対する位置ずれ量を検出する動作について説明する。 Hereinafter, in the electronic component mounting apparatus 400, the operation of detecting the amount of positional deviation of the semiconductor die 36 attracted to the tip of the collet 30 by the rear surface camera 85 with respect to the collet 30 will be described.
 制御部81は、ピックアップヘッド20をピックアップ部101から実装部102に移動させる間に、図28に示すように、コレット30が裏面カメラ85の真上の所定の位置に来て、裏面カメラ85のレンズの中心位置にコレット30の中心軸が合った状態となったらストロボ86を発光させるトリガ信号を出力する。このトリガ信号は、画像処理部82に伝達される。 The control unit 81 moves the pickup head 20 from the pickup unit 101 to the mounting unit 102, and as shown in FIG. 28, the collet 30 comes to a predetermined position directly above the rear surface camera 85, and the rear surface camera 85 moves. When the central axis of the collet 30 is aligned with the central position of the lens, a trigger signal for causing the strobe 86 to emit light is output. This trigger signal is transmitted to the image processing unit 82.
 画像処理部82は、このトリガ信号が入力されたら、ストロボ86を発光させる指令を出力する。この指令により、ストロボ86が発光する。また、画像処理部82は、トリガ信号が入力されたら、ストロボ86の発光と同期させて裏面カメラ85から図29に示すような画像を取り込む。取り込んだ画像は、画像処理部82のメモリに格納される。なお、画像の取り込みは、コレット30を移動させながら(移動を停止させずに)行う。 When the trigger signal is input, the image processing unit 82 outputs a command to make the strobe 86 emit light. This command causes the strobe 86 to emit light. Further, when the trigger signal is input, the image processing unit 82 captures an image as shown in FIG. 29 from the rear camera 85 in synchronization with the light emission of the strobe 86. The captured image is stored in the memory of the image processing unit 82. The image is taken in while moving the collet 30 (without stopping the movement).
 図29は裏面カメラ85の視野87を示す図である。図29に示すように裏面カメラ85の視野87には、コレット30の先端を示す円形の画像と、半導体ダイ36の外形を示す四角形の画像が現われている。画像処理部82は、取り込んだ画像を処理してコレット30の外形を示す円形画像191と半導体ダイ36の外形を示す四角画像192とを検出する。そして、画像処理部82は、円形画像191の中心197の位置と、四角画像192の中心198の位置を検出し、円形画像191の中心197を通り裏面カメラ85の視野87のX方向に向かうX方向基準線194と、円形画像191の中心197を通り裏面カメラ85の視野87のY方向に向かうY方向基準線193とを設定する。また、画像処理部82は、四角画像192の中心198を通り四角画像192のX方向基準線194に近い辺に並行なX方向計測線196と四角画像192の中心198を通り四角画像192のY方向基準線193に近い辺に並行なY方向計測線195とを設定する。そして、画像処理部82は、円形画像191の中心197の位置と四角画像192の中心198の位置のX方向、Y方向それぞれのずれ量ΔX4,ΔY4を求める。また、画像処理部82は、X方向基準線194とX方向計測線196とのθ方向の角度差あるいはY方向基準線193とY方向計測線195とのθ方向の角度差から四角画像192のθ方向の回転角度ずれΔθ4を検出する。 FIG. 29 is a view showing the field of view 87 of the rear camera 85. As shown in FIG. 29, a circular image showing the tip of the collet 30 and a square image showing the outer shape of the semiconductor die 36 appear in the visual field 87 of the rear surface camera 85. The image processing unit 82 processes the captured image to detect a circular image 191 showing the outer shape of the collet 30 and a square image 192 showing the outer shape of the semiconductor die 36. Then, the image processing unit 82 detects the position of the center 197 of the circular image 191 and the position of the center 198 of the square image 192, passes through the center 197 of the circular image 191, and moves toward the X direction of the visual field 87 of the rear camera 85. A direction reference line 194 and a Y direction reference line 193 that passes through the center 197 of the circular image 191 and extends in the Y direction of the visual field 87 of the rear camera 85 are set. Further, the image processing unit 82 passes through the center 198 of the square image 192 and the X direction measurement line 196 parallel to the side near the X direction reference line 194 of the square image 192 and the center 198 of the square image 192, and the Y of the square image 192. A Y direction measurement line 195 parallel to the side close to the direction reference line 193 is set. Then, the image processing unit 82 obtains the shift amounts ΔX4 and ΔY4 in the X direction and the Y direction between the position of the center 197 of the circular image 191 and the position of the center 198 of the square image 192. Further, the image processing unit 82 determines the square image 192 from the angle difference between the X-direction reference line 194 and the X-direction measurement line 196 in the θ direction or the angle difference between the Y-direction reference line 193 and the Y-direction measurement line 195 in the θ direction. The rotation angle deviation Δθ4 in the θ direction is detected.
 画像処理部82は、検出したX方向、Y方向それぞれのずれ量ΔX4,ΔY4と、θ方向の回転角度ずれΔθ4とを制御部81に出力する。制御部81は、入力されたΔX4,ΔY4,Δθ4を記憶部に格納する。 The image processing unit 82 outputs the detected deviation amounts ΔX4 and ΔY4 in the X and Y directions and the rotation angle deviation Δθ4 in the θ direction to the control unit 81. The control unit 81 stores the input ΔX4, ΔY4, and Δθ4 in the storage unit.
 制御部81は、先に図18を参照して説明したように、Y方向第1偏差ΔY2、Y方向第2偏差ΔY3だけ位置を補正してコレット中心位置CC2を実装位置BCに合わせ、X方向第1偏差ΔX2、X方向第2偏差ΔX3だけ補正してコレット中心位置CC2を実装位置BCに合わせる際に、コレット30に対する半導体ダイ36の位置ずれ量であるΔX4,ΔY4、Δθ4を考慮して、コレット中心位置CC2を実装位置BCに合わせる。 As described above with reference to FIG. 18, the control unit 81 corrects the position by the Y-direction first deviation ΔY2 and the Y-direction second deviation ΔY3 to adjust the collet center position CC2 to the mounting position BC, and the X-direction. When correcting the first deviation ΔX2 and the second deviation ΔX3 in the X direction to align the collet center position CC2 with the mounting position BC, the positional deviation amounts of the semiconductor die 36 with respect to the collet 30, ΔX4, ΔY4, and Δθ4, are considered. The collet center position CC2 is aligned with the mounting position BC.
 以上説明した実施形態の電子部品実装装置400は、コレット30に対する半導体ダイ36の位置にずれがある場合でも、そのずれを補正して、半導体ダイ36のチップセンタDCを実装位置BCに一致させた状態で半導体ダイ36を基板74に実装することができる。 Even if the position of the semiconductor die 36 with respect to the collet 30 is deviated, the electronic component mounting apparatus 400 according to the above-described embodiment corrects the deviation so that the chip center DC of the semiconductor die 36 coincides with the mounting position BC. The semiconductor die 36 can be mounted on the substrate 74 in the state.
 以上説明した電子部品実装装置400は、ピックアップヘッド20がピックアップ部101と実装部102とを移動し、コレット30が半導体ダイ36のピックアップと実装を行うものとして説明したが、電子部品実装装置400の裏面カメラ85とストロボ86をピックアップ部101と実装部102との間に配置してコレット30に対する半導体ダイ36の位置ずれ量を検出する構成は、先に図25~27を参照して説明した電子部品実装装置300にも適用することができる。この場合、画像処理部82は、裏面カメラ85が撮像した実装コレット55の先端の画像と半導体ダイ36の裏面の画像とに基づいて、実装コレット55に対する半導体ダイ36の位置ずれ量ΔX4,ΔY4、Δθ4を検出して制御部81に出力し、制御部81は、第1偏差ΔX2,ΔY2と第2偏差ΔX3,ΔY3と位置ずれ量ΔX4,ΔY4、Δθ4とに基づいて実装コレット駆動部によって実装コレット55の水平方向の位置を調整する。 In the electronic component mounting apparatus 400 described above, the pickup head 20 moves between the pickup unit 101 and the mounting unit 102, and the collet 30 picks up and mounts the semiconductor die 36. The configuration in which the rear surface camera 85 and the strobe 86 are arranged between the pickup unit 101 and the mounting unit 102 to detect the amount of positional deviation of the semiconductor die 36 with respect to the collet 30 has been described above with reference to FIGS. It can also be applied to the component mounting apparatus 300. In this case, the image processing unit 82, based on the image of the front end of the mounting collet 55 and the image of the rear surface of the semiconductor die 36 captured by the rear surface camera 85, the positional deviation amounts ΔX4 and ΔY4 of the semiconductor die 36 with respect to the mounting collet 55. Δθ4 is detected and output to the control unit 81. The control unit 81 uses the mounting collet drive unit to mount the collet based on the first deviations ΔX2 and ΔY2, the second deviations ΔX3 and ΔY3, and the positional deviation amounts ΔX4, ΔY4, and Δθ4. Adjust the horizontal position of 55.
 10 ベース、11 上側ベース、12 ウェーハ側カメラ、13,64 光軸、14,18,47,61 リニアガイド、15,65,87 視野、16,17 基準線、20 ピックアップヘッド、21,51 本体、22,52 ブラケット、23,53,62 アーム、23a,53a 凹部、24 回転軸、25 突出部、26 スプリング、27,27a 光源、28,28a ビームスプリッタ、29,93 ウェーハ側照明部、29a,93a フレーム側照明部、30 コレット、31,56 シャフト、32,34,57,59 中心穴、33 コレット本体、35 ウェーハ、36 半導体ダイ、36x,37,55x,76 X方向中心線、36y,38,55y,77 Y方向中心線、41 ウェーハリング駆動部、42 ウェーハリング、43 突き上げユニット、44 突き上げピン、48 中間ステージ、50 実装ヘッド、55 実装コレット、58 実装コレット本体、63 フレーム側カメラ、66,67 中心線、71 台座、72 実装ステージ、73 搬送機構、74 基板、75 実装領域、80 制御装置、81 制御部、82 画像処理部、85 裏面カメラ、86 ストロボ、86a 反射鏡、91 ガラスカバー、92,92a リング照明、100,200,300,400 電子部品実装装置、101 ピックアップ部、102 実装部、191 円形画像、192 四角画像、193 Y方向基準線、194 X方向基準線、195 Y方向計測線、196 X方向計測線、197,198 中心、BC 実装位置、C1,C2 基準位置、CC1 コレット中心位置、CC2 コレット中心位置、DC チップセンタ、PC ピンセンタ。 10 base, 11 upper base, 12 wafer side camera, 13,64 optical axis, 14, 18, 47, 61 linear guide, 15, 65, 87 field of view, 16, 17 reference line, 20 pickup head, 21, 51 body, 22,52 bracket, 23,53,62 arm, 23a, 53a recess, 24 rotating shaft, 25 protruding part, 26 spring, 27,27a light source, 28,28a beam splitter, 29,93 wafer side illumination part, 29a, 93a Frame side illumination unit, 30 collets, 31, 56 shafts, 32, 34, 57, 59 center holes, 33 collet body, 35 wafers, 36 semiconductor dies, 36x, 37, 55x, 76 X direction centerlines, 36y, 38, 55y, 77 Y direction center line, 41 wafer ring drive Part, 42 wafer ring, 43 thrust unit, 44 thrust pin, 48 intermediate stage, 50 mounting head, 55 mounting collet, 58 mounting collet body, 63 frame side camera, 66, 67 center line, 71 pedestal, 72 mounting stage, 73 Transport mechanism, 74 board, 75 mounting area, 80 control unit, 81 control unit, 82 image processing unit, 85 back camera, 86 strobe, 86a reflector, 91 glass cover, 92, 92a ring illumination, 100, 200, 300, 400 electronic component mounting device, 101 pickup unit, 102 mounting unit, 191, circular image, 192 square image, 193 Y-direction reference line, 194 X-direction reference line, 195 Y-direction measurement line, 196 X-direction measurement line, 197, 198 center , BC implementation position , C1, C2 reference position, CC1 collet center position, CC2 collet center position, DC chip center, PC Pinsenta.

Claims (11)

  1.  ウェーハを保持するウェーハリングと、
     中心穴を有し、前記ウェーハから電子部品をピックアップするコレットと、
     前記コレットを水平方向に駆動するコレット駆動部と、
     前記コレットの根元側から前記コレットの中心穴に光を入射させるウェーハ側照明部と、
     前記コレットの根元側から前記コレットの画像を撮像するウェーハ側撮像装置と、
     前記ウェーハ側撮像装置が撮像した画像を処理する画像処理部と、
     前記コレットの位置を調整する制御部と、を備える電子部品実装装置であって、
     前記ウェーハ側撮像装置は、前記コレットの中心穴に入射して前記コレットの直下の前記ウェーハの表面で反射した反射光の画像を撮像し、
     前記画像処理部は、前記ウェーハ側撮像装置が撮像した前記コレットの画像と前記ウェーハの表面で反射した反射光の画像とに基づいて前記コレットの中心穴の中心位置をコレット中心位置として検出し、検出したコレット中心位置と前記ウェーハ側撮像装置の視野の中の基準位置との間の偏差を検出し、
     前記制御部は、前記偏差に基づいてコレット駆動部によって前記コレットの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    A wafer ring that holds the wafer,
    A collet that has a central hole and picks up electronic components from the wafer,
    A collet drive unit for driving the collet horizontally,
    A wafer side illuminating section which makes light enter the center hole of the collet from the root side of the collet,
    A wafer-side imaging device that captures an image of the collet from the base side of the collet,
    An image processing unit that processes an image captured by the wafer-side imaging device,
    A controller for adjusting the position of the collet, and an electronic component mounting apparatus comprising:
    The wafer-side imaging device captures an image of reflected light that is incident on the center hole of the collet and is reflected on the surface of the wafer directly below the collet,
    The image processing unit detects the center position of the center hole of the collet as the collet center position based on the image of the collet imaged by the wafer-side imaging device and the image of the reflected light reflected on the surface of the wafer, Detecting a deviation between the detected collet center position and a reference position in the field of view of the wafer-side imaging device,
    The controller adjusts the horizontal position of the collet by a collet driver based on the deviation,
    An electronic component mounting device characterized by:
  2.  請求項1に記載の電子部品実装装置であって、
     前記コレットがピックアップする電子部品を前記ウェーハの下側から突き上げる突き上げピンを含み、
     前記ウェーハ側撮像装置は、上側から前記突き上げピンの画像を撮像し、
     前記画像処理部は、
     前記ウェーハ側撮像装置が撮像した前記突き上げピンの画像に基づいて前記突き上げピンの中心位置をピンセンタとして検出し、
     検出した前記ピンセンタを前記ウェーハ側撮像装置の視野の中の基準位置に設定すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to claim 1, wherein
    Including a push-up pin that pushes up the electronic component picked up by the collet from the lower side of the wafer,
    The wafer-side imaging device captures an image of the push-up pin from above,
    The image processing unit,
    Detecting the center position of the push-up pin as a pin center based on the image of the push-up pin captured by the wafer-side imaging device,
    Setting the detected pin center at a reference position in the field of view of the wafer-side imaging device,
    An electronic component mounting device characterized by:
  3.  請求項2に記載の電子部品実装装置であって、
     前記ウェーハリングを水平方向に駆動するウェーハリング駆動部を含み、
     前記ウェーハ側撮像装置は、前記ウェーハの上側から前記コレットがピックアップする電子部品を撮像し、
     前記画像処理部は、
     前記ウェーハ側撮像装置が撮像した前記コレットがピックアップする電子部品の画像に基づいて前記コレットがピックアップする電子部品の中心位置をチップセンタとして検出し、
     前記制御部は、前記チップセンタが前記ウェーハ側撮像装置の視野の中の基準位置となるようにウェーハリング駆動部によって前記ウェーハリングの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to claim 2, wherein
    A wafer ring driving unit for horizontally driving the wafer ring,
    The wafer-side imaging device images an electronic component picked up by the collet from the upper side of the wafer,
    The image processing unit,
    The center position of the electronic component picked up by the collet is detected as a chip center based on the image of the electronic component picked up by the collet imaged by the wafer-side imaging device,
    The control unit adjusts the horizontal position of the wafer ring by the wafer ring driving unit so that the chip center becomes a reference position in the field of view of the wafer side image pickup device;
    An electronic component mounting device characterized by:
  4.  請求項1から3のいずれか1項に記載の電子部品実装装置であって、
     前記コレットの根元側から前記コレットの中心穴に光を入射させるフレーム側照明部と、
     前記コレットの根元側から前記コレットの画像を撮像するフレーム側撮像装置と、を含み、
     前記コレットは、先端に吸着した電子部品を実装対象物に実装し、
     前記画像処理部は、前記フレーム側撮像装置が撮像した画像を処理し、
     前記フレーム側撮像装置は、前記コレットの先端に電子部品を吸着させた状態で、前記コレットの中心穴に入射して前記コレットの先端に吸着された電子部品の表面で反射した反射光の画像を撮像し、
     前記画像処理部は、前記フレーム側撮像装置が撮像した前記コレットの先端に吸着された電子部品の表面で反射した反射光の画像に基づいて前記コレットの中心穴の中心位置をコレット中心位置として検出し、検出したコレット中心位置と前記フレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、
     前記制御部は、前記第1偏差に基づいてコレット駆動部によって前記コレットの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to any one of claims 1 to 3,
    A frame-side illumination unit that allows light to enter the center hole of the collet from the root side of the collet,
    A frame-side imaging device that captures an image of the collet from the root side of the collet;
    The collet mounts an electronic component adsorbed at the tip on a mounting object,
    The image processing unit processes an image captured by the frame-side imaging device,
    The frame-side imaging device, in a state in which an electronic component is adsorbed on the tip of the collet, makes an image of reflected light that is incident on the center hole of the collet and reflected on the surface of the electronic component adsorbed on the tip of the collet Take an image,
    The image processing unit detects the center position of the center hole of the collet as the collet center position based on the image of the reflected light reflected by the surface of the electronic component adsorbed to the tip of the collet captured by the frame-side imaging device. Then, the first deviation between the detected center position of the collet and the reference position in the visual field of the frame-side imaging device is detected,
    The controller adjusts a horizontal position of the collet by a collet driver based on the first deviation,
    An electronic component mounting device characterized by:
  5.  請求項4に記載の電子部品実装装置であって、
     前記フレーム側撮像装置は、前記実装対象物の画像を撮像し、
     前記画像処理部は、前記フレーム側撮像装置が撮像した前記実装対象物の画像に基づいて前記電子部品を実装する実装位置を検出し、検出した前記実装位置と前記フレーム側撮像装置の視野の中の基準位置との間の第2偏差を検出し、
     前記制御部は、
     前記第1偏差と前記第2偏差とに基づいて前記コレット駆動部によって前記コレットの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to claim 4,
    The frame-side imaging device captures an image of the mounting target,
    The image processing unit detects a mounting position for mounting the electronic component based on an image of the mounting target imaged by the frame-side imaging device, and detects the mounting position and the field of view of the frame-side imaging device. The second deviation from the reference position of
    The control unit is
    Adjusting the horizontal position of the collet by the collet driver based on the first deviation and the second deviation;
    An electronic component mounting device characterized by:
  6.  請求項5に記載の電子部品実装装置であって、
     前記ウェーハから前記電子部品をピックアップするピックアップ部と、ピックアップした前記電子部品を前記実装対象物に実装する実装部との間に配置され、前記コレットの先端の画像と前記コレットの先端に吸着された前記電子部品の裏面の画像とを撮像する裏面カメラを備え、
     前記画像処理部は、前記裏面カメラが撮像した前記コレットの先端の画像と前記電子部品の裏面の画像とに基づいて、前記コレットに対する前記電子部品の位置ずれ量を検出し、
     前記制御部は、
     前記第1偏差と前記第2偏差と前記コレットに対する前記電子部品の位置ずれ量とに基づいて前記コレット駆動部によって前記コレットの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to claim 5,
    It is arranged between a pickup unit that picks up the electronic component from the wafer and a mounting unit that mounts the picked-up electronic component on the mounting target, and is attracted to the image of the tip of the collet and the tip of the collet. A backside camera for capturing an image of the backside of the electronic component,
    The image processing unit, based on the image of the tip of the collet and the image of the back surface of the electronic component captured by the back camera, detects the amount of misalignment of the electronic component with respect to the collet,
    The control unit is
    Adjusting the horizontal position of the collet by the collet drive unit based on the first deviation, the second deviation, and the amount of displacement of the electronic component with respect to the collet.
    An electronic component mounting device characterized by:
  7.  請求項1から3のいずれか1項に記載の電子部品実装装置であって、
     中心穴を有し、先端に吸着した電子部品を実装対象物に実装する実装コレットと、
     前記実装コレットを水平方向に駆動する実装コレット駆動部と、
     前記実装コレットの根元側から前記実装コレットの中心穴に光を入射させるフレーム側照明部と、
     前記実装コレットの根元側から前記実装コレットの画像を撮像するフレーム側撮像装置と、を含み、
     前記画像処理部は、前記フレーム側撮像装置が撮像した画像を処理し、
     前記制御部は、前記実装コレットの位置を調整し、
     前記フレーム側撮像装置は、前記実装コレットの先端に電子部品を吸着させた状態で、前記実装コレットの中心穴に入射して前記実装コレットの先端に吸着された電子部品の表面で反射した反射光の画像を撮像し、
     前記画像処理部は、前記フレーム側撮像装置が撮像した前記実装コレットの先端に吸着された電子部品の表面で反射した反射光の画像とに基づいて前記実装コレットの中心穴の中心位置を実装コレット中心位置として検出し、検出した前記実装コレット中心位置と前記フレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、
     前記制御部は、前記第1偏差に基づいて前記実装コレット駆動部によって前記実装コレットの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to any one of claims 1 to 3,
    A mounting collet that has a central hole and that mounts the electronic component that is adsorbed on the tip to the mounting target,
    A mounting collet drive unit for driving the mounting collet in a horizontal direction,
    A frame-side illumination unit that allows light to enter the center hole of the mounting collet from the root side of the mounting collet,
    A frame-side imaging device that captures an image of the mounting collet from the root side of the mounting collet;
    The image processing unit processes an image captured by the frame-side imaging device,
    The control unit adjusts the position of the mounting collet,
    The frame-side imaging device, in a state in which an electronic component is adsorbed on the tip of the mounting collet, is reflected light that is incident on the center hole of the mounting collet and reflected on the surface of the electronic component adsorbed on the tip of the mounting collet Image of
    The image processing unit determines the center position of the center hole of the mounting collet based on the image of the reflected light reflected by the surface of the electronic component adsorbed to the tip of the mounting collet captured by the frame-side imaging device. Detecting as a center position, detecting a first deviation between the detected mounting collet center position and a reference position in the field of view of the frame-side imaging device,
    The control unit adjusts a horizontal position of the mounting collet by the mounting collet driving unit based on the first deviation;
    An electronic component mounting device characterized by:
  8.  請求項7に記載の電子部品実装装置であって、
     前記フレーム側撮像装置は、前記実装対象物の画像を撮像し、
     前記画像処理部は、前記フレーム側撮像装置が撮像した前記実装対象物の画像に基づいて前記電子部品を実装する実装位置を検出し、検出した前記実装位置と前記フレーム側撮像装置の視野の中の基準位置との間の第2偏差を検出し、
     前記制御部は、
     前記第1偏差と前記第2偏差とに基づいて前記実装コレット駆動部によって前記実装コレットの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to claim 7,
    The frame-side imaging device captures an image of the mounting target,
    The image processing unit detects a mounting position for mounting the electronic component based on an image of the mounting target imaged by the frame-side imaging device, and detects the mounting position and the field of view of the frame-side imaging device. The second deviation from the reference position of
    The control unit is
    Adjusting the horizontal position of the mounting collet by the mounting collet driving unit based on the first deviation and the second deviation;
    An electronic component mounting device characterized by:
  9.  請求項8に記載の電子部品実装装置であって、
     前記ウェーハから前記電子部品をピックアップするピックアップ部と、ピックアップした前記電子部品を前記実装対象物に実装する実装部との間に配置され、前記実装コレットの先端の画像と前記実装コレットの先端に吸着された前記電子部品の裏面の画像とを撮像する裏面カメラを備え、
     前記画像処理部は、前記裏面カメラが撮像した前記実装コレットの先端の画像と前記電子部品の裏面の画像とに基づいて、前記実装コレットに対する前記電子部品の位置ずれ量を検出し、
     前記制御部は、
     前記第1偏差と前記第2偏差と前記実装コレットに対する前記電子部品の位置ずれ量とに基づいて前記実装コレット駆動部によって前記実装コレットの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to claim 8,
    The pick-up unit that picks up the electronic component from the wafer and the mounting unit that mounts the picked-up electronic component on the mounting target are attached to the image of the tip of the mounting collet and the tip of the mounting collet. A rear surface camera for capturing an image of the rear surface of the electronic component,
    The image processing unit, based on the image of the tip of the mounting collet and the image of the back surface of the electronic component captured by the back camera, detects the amount of positional deviation of the electronic component with respect to the mounting collet,
    The control unit is
    Adjusting the horizontal position of the mounting collet by the mounting collet drive unit based on the first deviation, the second deviation, and the amount of displacement of the electronic component with respect to the mounting collet.
    An electronic component mounting device characterized by:
  10.  中心穴を有し、先端に吸着した電子部品を実装対象物に実装する実装コレットと、
     前記実装コレットを水平方向に駆動する実装コレット駆動部と、
     前記実装コレットの根元側から前記実装コレットの中心穴に光を入射させるフレーム側照明部と、
     前記実装コレットの根元側から前記実装コレットの画像を撮像するフレーム側撮像装置と、
     前記フレーム側撮像装置が撮像した画像を処理する画像処理部と、
     前記実装コレットの位置を調整する制御部と、を備える電子部品実装装置であって、
     前記フレーム側撮像装置は、前記実装コレットの先端に電子部品を吸着させた状態で、前記実装コレットの中心穴に入射して前記実装コレットの先端に吸着された電子部品の表面で反射した反射光の画像を撮像し、
     前記画像処理部は、前記フレーム側撮像装置が撮像した前記実装コレットの先端に吸着された電子部品の表面で反射した反射光の画像に基づいて前記実装コレットの中心穴の中心位置を実装コレット中心位置として検出し、検出した前記実装コレット中心位置と前記フレーム側撮像装置の視野の中の基準位置との間の第1偏差を検出し、
     前記制御部は、前記第1偏差に基づいて実装コレット駆動部によって前記実装コレットの水平方向の位置を調整すること、
     を特徴とする電子部品実装装置。
    A mounting collet that has a central hole and that mounts the electronic component that is adsorbed on the tip to the mounting target,
    A mounting collet drive unit for driving the mounting collet in a horizontal direction,
    A frame-side illumination unit that allows light to enter the center hole of the mounting collet from the root side of the mounting collet,
    A frame-side imaging device that captures an image of the mounting collet from the base side of the mounting collet,
    An image processing unit that processes an image captured by the frame-side imaging device,
    A controller for adjusting the position of the mounting collet, and an electronic component mounting apparatus comprising:
    The frame-side imaging device, in a state where an electronic component is adsorbed on the tip of the mounting collet, is reflected light that is incident on the center hole of the mounting collet and is reflected on the surface of the electronic component adsorbed on the tip of the mounting collet. Image of
    The image processing unit determines the center position of the center hole of the mounting collet based on the image of the reflected light reflected by the surface of the electronic component adsorbed to the tip of the mounting collet captured by the frame-side imaging device. Detecting as a position, and detecting a first deviation between the detected mounting collet center position and a reference position in the field of view of the frame-side imaging device,
    The control unit adjusts a horizontal position of the mounting collet by a mounting collet driving unit based on the first deviation;
    An electronic component mounting device characterized by:
  11.  請求項9に記載の電子部品実装装置であって、
     前記フレーム側撮像装置は、前記実装対象物の画像を撮像し、
     前記画像処理部は、前記フレーム側撮像装置が撮像した前記実装対象物の画像に基づいて前記電子部品を実装する前記実装位置を検出し、検出した前記実装位置と前記フレーム側撮像装置の視野の中の基準位置との間の前記第2偏差を検出し、
     前記制御部は、
     前記第1偏差と前記第2偏差とに基づいて前記実装コレット駆動部によって前記実装コレットの位置を調整すること、
     を特徴とする電子部品実装装置。
    The electronic component mounting apparatus according to claim 9,
    The frame-side imaging device captures an image of the mounting target,
    The image processing unit detects the mounting position where the electronic component is mounted based on an image of the mounting target imaged by the frame-side imaging device, and detects the mounting position and the visual field of the frame-side imaging device. Detecting the second deviation from the reference position in
    The control unit is
    Adjusting the position of the mounting collet by the mounting collet driving unit based on the first deviation and the second deviation;
    An electronic component mounting device characterized by:
PCT/JP2019/042724 2018-11-01 2019-10-31 Electronic component mounting apparatus WO2020090957A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980071518.5A CN113287191A (en) 2018-11-01 2019-10-31 Electronic component packaging device
JP2020554021A JP6940207B2 (en) 2018-11-01 2019-10-31 Electronic component mounting device
SG11202104308TA SG11202104308TA (en) 2018-11-01 2019-10-31 Electronic component mounting apparatus
KR1020217016199A KR102488231B1 (en) 2018-11-01 2019-10-31 Electronic component mounting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-206394 2018-11-01
JP2018206394 2018-11-01

Publications (1)

Publication Number Publication Date
WO2020090957A1 true WO2020090957A1 (en) 2020-05-07

Family

ID=70462573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042724 WO2020090957A1 (en) 2018-11-01 2019-10-31 Electronic component mounting apparatus

Country Status (5)

Country Link
JP (1) JP6940207B2 (en)
KR (1) KR102488231B1 (en)
CN (1) CN113287191A (en)
SG (1) SG11202104308TA (en)
WO (1) WO2020090957A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410826B2 (en) 2020-09-03 2024-01-10 株式会社Fuji Pin misalignment measuring device and die feeding device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145094A (en) * 1996-11-14 1998-05-29 Nec Corp Parts mounting device
JP2003218132A (en) * 2002-01-21 2003-07-31 Fujitsu Ltd Holder and method for adjusting position of collet
JP2014179561A (en) * 2013-03-15 2014-09-25 Hitachi High-Tech Instruments Co Ltd Bonding head and die bonder equipped with the same
JP2015060926A (en) * 2013-09-18 2015-03-30 株式会社日立ハイテクインスツルメンツ Die bonder
JP2017139411A (en) * 2016-02-05 2017-08-10 パナソニックIpマネジメント株式会社 Apparatus for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046030B2 (en) * 2002-08-30 2008-02-13 株式会社村田製作所 Component mounting method and component mounting apparatus
JP6470088B2 (en) 2015-04-02 2019-02-13 ファスフォードテクノロジ株式会社 Bonding apparatus and bonding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145094A (en) * 1996-11-14 1998-05-29 Nec Corp Parts mounting device
JP2003218132A (en) * 2002-01-21 2003-07-31 Fujitsu Ltd Holder and method for adjusting position of collet
JP2014179561A (en) * 2013-03-15 2014-09-25 Hitachi High-Tech Instruments Co Ltd Bonding head and die bonder equipped with the same
JP2015060926A (en) * 2013-09-18 2015-03-30 株式会社日立ハイテクインスツルメンツ Die bonder
JP2017139411A (en) * 2016-02-05 2017-08-10 パナソニックIpマネジメント株式会社 Apparatus for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410826B2 (en) 2020-09-03 2024-01-10 株式会社Fuji Pin misalignment measuring device and die feeding device

Also Published As

Publication number Publication date
CN113287191A (en) 2021-08-20
JPWO2020090957A1 (en) 2021-09-02
JP6940207B2 (en) 2021-09-22
SG11202104308TA (en) 2021-05-28
KR102488231B1 (en) 2023-01-13
KR20210082514A (en) 2021-07-05

Similar Documents

Publication Publication Date Title
JP5059518B2 (en) Electronic component mounting method and apparatus
US8782879B2 (en) Workpiece transfer apparatus
JP4147923B2 (en) Electronic component mounting apparatus and electronic component mounting method
CN109906029B (en) Electronic component mounting device and electronic component mounting method
KR20080038013A (en) Mounting device and mounting method for the semiconductor chip
WO2014174598A1 (en) Component mounting device, mounting head, and control device
JPH10145094A (en) Parts mounting device
WO2020090957A1 (en) Electronic component mounting apparatus
JP2005197564A (en) Surface mounting machine
JP5254106B2 (en) Electronic component mounting equipment
TWI730506B (en) Electronic parts packaging device
KR100627065B1 (en) Chip mounter
JP4351083B2 (en) Surface mount machine
JP5663869B2 (en) Device, mounting apparatus and method
JP3815637B2 (en) Component mounting device
JPH04307314A (en) Photographing apparatus of mounting pattern or electronic components in mounting machine
WO2022185875A1 (en) Collet detection device, collet position correction device, bonding device, collet detection method, and collet position correction method
JP3781232B2 (en) Component mounting device
JPH11274240A (en) Device and method for mounting electronic component
JPH0845970A (en) Die bonding device
CN116896859A (en) Mounting device and mounting method
JP2006080176A (en) Pickup device for electronic component
JPH08148897A (en) Component mounting device
JPH11135992A (en) Components mounting apparatus
CN111564375A (en) Mounting apparatus and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217016199

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19879617

Country of ref document: EP

Kind code of ref document: A1