WO2020090914A1 - 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット - Google Patents

面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット Download PDF

Info

Publication number
WO2020090914A1
WO2020090914A1 PCT/JP2019/042628 JP2019042628W WO2020090914A1 WO 2020090914 A1 WO2020090914 A1 WO 2020090914A1 JP 2019042628 W JP2019042628 W JP 2019042628W WO 2020090914 A1 WO2020090914 A1 WO 2020090914A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane magnetized
magnetized film
oxide
film
plane
Prior art date
Application number
PCT/JP2019/042628
Other languages
English (en)
French (fr)
Inventor
キム コング タム
了輔 櫛引
雅広 青野
恭伸 渡邉
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to JP2020553991A priority Critical patent/JP7219285B2/ja
Priority to CN201980071989.6A priority patent/CN113228208B/zh
Priority to US17/289,500 priority patent/US11810700B2/en
Publication of WO2020090914A1 publication Critical patent/WO2020090914A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to an in-plane magnetized film, an in-plane magnetized film multilayer structure, a hard bias layer, a magnetoresistive effect element, and a sputtering target, and more specifically, a coercive force Hc of 2.00 kOe or more and a unit area.
  • CoPt that can realize the magnetic performance that the residual magnetization Mrt is 2.00 memu / cm 2 or more without forming a film by heating the substrate (hereinafter, also referred to as a heating film formation).
  • the present invention relates to a magnetoresistive element and a sputtering target associated with a magnetic film multilayer structure or the hard bias layer.
  • the CoPt-oxide based in-plane magnetized film and the CoPt-oxide based in-plane magnetized film multilayer structure can be used as a hard bias layer of a magnetoresistive effect element.
  • the hard bias layer has a coercive force Hc of 2.00 kOe or more and a residual magnetization Mrt per unit area of 2.00 memu / cm 2 or more, the hard bias layer is less than the hard bias layer of the current magnetoresistive element. It is considered that they have coercive force and remanent magnetization of the same level or higher.
  • the hard bias layer is a thin film magnet that applies a bias magnetic field to a magnetic layer that exhibits a magnetoresistive effect (hereinafter, also referred to as a free magnetic layer).
  • the magnetoresistive effect element includes a magnetic layer (free magnetic layer) that exhibits a magnetoresistive effect and a hard bias layer that applies a bias magnetic field to the magnetic layer (free magnetic layer). It is required that a magnetic field of a predetermined magnitude or more can be stably applied to the free magnetic layer.
  • the hard bias layer is required to have high coercive force and residual magnetization.
  • the coercive force of the hard bias layer of the current magnetoresistive effect element is about 2 kOe (for example, FIG. 7 of Patent Document 1), and it is desired to realize a coercive force higher than this.
  • the residual magnetization per unit area is about 2 memu / cm 2 or more (for example, paragraph 0007 of Patent Document 2).
  • Patent Document 3 As a technology that may be able to deal with these, there is a technology described in Patent Document 3, for example.
  • the technique described in Patent Document 3 is a seed layer (Ta layer provided between a sensor laminate (a laminate having a free magnetic layer) and a hard bias layer, and a seed layer formed on the Ta layer.
  • a composite seed layer including a metal layer having a cubic (111) crystal structure or a hexagonal close-packed (001) crystal structure the magnetic material is oriented so that the easy axis is oriented in the longitudinal direction, and the coercive force of the hard bias layer is oriented. It is a method that tried to improve the. However, it does not satisfy the magnetic properties desired for the hard bias layer. Further, in this method, in order to improve the coercive force, it is necessary to thicken the seed layer provided between the sensor laminate and the hard bias layer. Therefore, this structure has a problem that the magnetic field applied to the free magnetic layer in the sensor laminate becomes weak.
  • Patent Document 4 describes that FePt is used as a magnetic material used for the hard bias layer, an FePt hard bias layer having a Pt or Fe seed layer, and a Pt or Fe capping layer. 4 proposes a structure in which Pt or Fe in the seed layer and the capping layer and FePt in the hard bias layer are mixed with each other during the annealing at an annealing temperature of about 250 to 350 ° C. ..
  • annealing temperature of about 250 to 350 ° C. .
  • Patent Document 5 shows that the annealing temperature can be optimized to lower the annealing temperature to about 200 ° C., and the hard bias layer has a coercive force of 3.5 kOe or more.
  • the remanent magnetization per unit area is about 1.2 memu / cm 2 , which does not satisfy the magnetic characteristics desired for the hard bias layer.
  • Patent Document 6 describes a magnetic recording medium for longitudinal recording, and its magnetic layer has a ferromagnetic crystal grain having a hexagonal close-packed structure and non-magnetic grains mainly surrounding the ferromagnetic crystal grain. Although it is a granular structure including a field, there is no case where such a granular structure is used for the hard bias layer of the magnetoresistive effect element. Further, the technique described in Patent Document 6 aims to reduce the signal-to-noise ratio, which is a problem of the magnetic recording medium, and uses a nonmagnetic layer between the magnetic layers to make the magnetic layer multilayer. Since the upper and lower magnetic layers have antiferromagnetic coupling, the structure is not suitable for improving the coercive force of the magnetic layer.
  • JP, 2008-283016 A Japanese Patent Publication No. 2008-547150 Japanese Patent Laid-Open No. 2011-008907 US Patent Application Publication No. 2009 / 027493A1 JP 2012-216275 A JP-A-2003-178423
  • the sensor laminated body laminated body including a free magnetic layer
  • the hard bias layer are made as thin as possible, and heating film formation is not performed.
  • heating film formation is not performed.
  • the present inventors In order to obtain a hard bias layer that exceeds the coercive force (about 2 kOe) and the remanent magnetization per unit area (about 2 memu / cm 2 ) of the hard bias layer of the current magnetoresistive element after satisfying this condition, The present inventors consider that it is necessary to search for an element or compound different from the element or compound currently used in the current hard bias layer, and apply the oxide to the CoPt in-plane magnetized film. The present inventor thought that might be promising. The present inventor has also considered that it may be promising to make a CoPt-based in-plane magnetized film using an oxide into a multi-layer by using a non-magnetic intermediate layer.
  • the present invention has been made in view of the above point, and has a magnetic performance of a coercive force Hc of 2.00 kOe or more and a residual magnetization Mrt per unit area of 2.00 memu / cm 2 or more.
  • An object is to provide an in-plane magnetized film, an in-plane magnetized film multilayer structure, and a hard bias layer that can be achieved without heating film formation, and also to provide the in-plane magnetized film and the in-plane magnetized film multilayer. It is also a supplemental issue to provide a magnetoresistive element and a sputtering target associated with the structure or said hard bias layer.
  • the present invention has solved the above problems by the following in-plane magnetized film, in-plane magnetized film multilayer structure, hard bias layer, magnetoresistive effect element, and sputtering target.
  • the in-plane magnetized film according to the present invention is an in-plane magnetized film used as a hard bias layer of a magnetoresistive effect element, and contains metal Co, metal Pt and an oxide.
  • the metal Co is contained in an amount of 55 at% or more and less than 95 at%
  • the metal Pt is contained in an amount of more than 5 at% and 45 at% or less
  • the oxide is contained in an amount of 10 vol% with respect to the entire in-plane magnetized film.
  • the in-plane magnetized film is characterized by containing 42 vol% or less and having a thickness of 20 nm or more and 80 nm or less.
  • the hard bias layer is a thin film magnet that applies a bias magnetic field to the free magnetic layer that exhibits a magnetoresistive effect.
  • the “remanent magnetization per unit area” of the in-plane magnetized film is a value obtained by multiplying the remanent magnetization per unit volume of the in-plane magnetized film by the thickness of the in-plane magnetized film. is there.
  • the in-plane magnetized film may have a granular structure composed of CoPt alloy crystal grains and crystal grain boundaries of the oxide.
  • the crystal grain boundary is the boundary of the crystal grains.
  • the oxide may include at least one of Ti, Si, W, B, Mo, Ta and Nb oxides.
  • a first aspect of the in-plane magnetized film multilayer structure according to the present invention is an in-plane magnetized film multilayer structure used as a hard bias layer of a magnetoresistive effect element, comprising a plurality of in-plane magnetized films and a non-magnetic intermediate layer. And the non-magnetic intermediate layer is arranged between the in-plane magnetized films, and the in-plane magnetized films adjacent to each other with the non-magnetic intermediate layer interposed therebetween are ferromagnetic.
  • the in-plane magnetized film is bonded and contains metal Co, metal Pt and an oxide, and the metal Co is contained at 55 at% or more and less than 95 at% with respect to the total metal components of the in-plane magnetized film.
  • metal Pt is contained in an amount of more than 5 at% and 45 at% or less, and the oxide is contained in an amount of 10 vol% or more and 42 vol% or less with respect to the entire in-plane magnetized film.
  • Coercive force is 2.00 kOe or more, and An in-plane magnetization film multilayer structure, wherein the residual magnetization per unit area is 2.00memu / cm 2 or more.
  • the non-magnetic intermediate layer is a non-magnetic layer disposed between the in-plane magnetized films.
  • the ferromagnetic coupling means an exchange interaction that works when spins of adjacent magnetic layers (here, the in-plane magnetized film) sandwiching a non-magnetic intermediate layer are parallel (in the same direction). It is a combination based on.
  • the “remanent magnetization per unit area” of the in-plane magnetized film multilayer structure refers to the remanent magnetization per unit volume of the in-plane magnetized film included in the in-plane magnetized film multilayer structure. It is a value obtained by multiplying the total thickness of the in-plane magnetized films included in the film multilayer structure.
  • a second aspect of the in-plane magnetized film multilayer structure according to the present invention is an in-plane magnetized film multilayer structure used as a hard bias layer of a magnetoresistive effect element, wherein a plurality of in-plane magnetized films and a crystal structure are hexagonal. And a non-magnetic intermediate layer having a closest packing structure, the non-magnetic intermediate layer being disposed between the in-plane magnetized films, and being adjacent to each other with the non-magnetic intermediate layer interposed therebetween.
  • the matching in-plane magnetized films are ferromagnetically coupled to each other, and the in-plane magnetized film contains a metal Co, a metal Pt and an oxide, and with respect to the total of the metal components of the in-plane magnetized film.
  • a metal Co of 55 at% or more and less than 95 at%, a metal Pt of more than 5 at% and 45 at% or less, and the oxide of 10 vol% or more and 42 vol% or less with respect to the entire in-plane magnetized film.
  • the total thickness of the plurality of in-plane magnetized films is An in-plane magnetization film multilayer structure, characterized in that at 0nm or more.
  • the non-magnetic intermediate layer is preferably made of Ru or a Ru alloy.
  • the in-plane magnetized film may have a granular structure composed of CoPt alloy crystal grains and crystal grain boundaries of the oxide.
  • the oxide may include at least one of oxides of Ti, Si, W, B, Mo, Ta and Nb.
  • the hard bias layer according to the present invention is a hard bias layer comprising the in-plane magnetized film or the in-plane magnetized film multilayer structure.
  • the magnetoresistive effect element according to the present invention is a magnetoresistive effect element including the hard bias layer.
  • a sputtering target according to the present invention is a sputtering target used when forming an in-plane magnetization film used as at least a part of a hard bias layer of a magnetoresistive effect element at room temperature, and includes metal Co, metal Pt, and an oxide.
  • the sputtering target containing 60 at% or more and less than 95 at% of metal Co, and containing more than 5 at% and 40 at% or less of metal Pt, the entire sputtering target.
  • the in-plane magnetized film containing 10% by volume or more and 40% by volume or less of the oxide has a coercive force of 2.00 kOe or more and a residual magnetization per unit area of 2.00 memu / cm 2 or more.
  • the sputtering target is characterized in that
  • room temperature film formation means film formation without heating the substrate.
  • the magnetic performance that the coercive force Hc is 2.00 kOe or more and the remanent magnetization Mrt per unit area is 2.00 memu / cm 2 or more is realized without heating film formation. It is possible to provide an in-plane magnetized film, an in-plane magnetized film multi-layer structure and a hard bias layer which can be used.
  • FIG. 4 is a cross-sectional view schematically showing a state in which the CoPt-oxide-based in-plane magnetized film 10 according to the first embodiment of the present invention is applied to the hard bias layer 14 of the magnetoresistive effect element 12.
  • Sectional drawing which shows typically the state which has applied the in-plane magnetization film multilayer structure 20 which concerns on 2nd Embodiment of this invention to the hard bias layer 26 of the magnetoresistive effect element 24.
  • FIG. The perspective view which shows typically the shape of the thinning sample 80 after performing a thinning process.
  • the result of the line analysis (elemental analysis) performed in the thickness direction of the in-plane magnetized film of Example 45 taken along the black line in FIG. 4).
  • FIG. 1 is a sectional view schematically showing a state in which an in-plane magnetized film 10 according to a first embodiment of the present invention is applied to a hard bias layer 14 of a magnetoresistive effect element 12. Is.
  • the underlayer the in-plane magnetized film 10 is formed on the underlayer
  • the configuration shown in FIG. 1 will be described with a tunnel type magnetoresistive effect element in mind as the magnetoresistive effect element 12.
  • the in-plane magnetized film 10 according to the first embodiment has a tunnel type magnetoresistive effect.
  • the application to the hard bias layer of the element is not limited, and for example, application to a hard bias layer of a giant magnetoresistive effect element or an anisotropic magnetoresistive effect element is also possible.
  • the magnetoresistive effect element 12 (here, a tunnel type magnetoresistive effect element) is composed of two ferromagnetic layers (free magnetic layer 16 and pinned layer) separated by a very thin non-magnetic tunnel barrier layer (hereinafter, barrier layer 54). 52).
  • the pinned layer 52 has its magnetization direction fixed by being fixed by exchange coupling with an adjacent antiferromagnetic layer (not shown).
  • the magnetization direction of the free magnetic layer 16 can be freely rotated with respect to the magnetization direction of the pinned layer 52 in the presence of an external magnetic field.
  • the free magnetic layer 16 rotates with respect to the magnetization direction of the pinned layer 52 by the external magnetic field, the electric resistance changes. Therefore, the external magnetic field can be detected by detecting the change in the electric resistance.
  • the hard bias layer 14 has a role of applying a bias magnetic field to the free magnetic layer 16 to stabilize the magnetization direction axis of the free magnetic layer 16.
  • the insulating layer 50 is made of an electrically insulating material, and a sensor current flowing in the sensor laminate (the free magnetic layer 16, the barrier layer 54, and the pinned layer 52) in the vertical direction is a sensor laminate (the free magnetic layer 16, It has a role of suppressing shunting to the hard bias layer 14 on both sides of the barrier layer 54 and the pinned layer 52).
  • the in-plane magnetized film 10 according to the first embodiment can be used as the hard bias layer 14 of the magnetoresistive effect element 12, and a bias magnetic field is applied to the free magnetic layer 16 that exhibits the magnetoresistive effect. Can be added.
  • the hard bias layer 14 is composed only of the in-plane magnetized film 10 according to the first embodiment, and is composed of a single layer of the in-plane magnetized film 10.
  • the in-plane magnetized film 10 according to the first embodiment contains an oxide, and has a coercive force equal to or more than the coercive force of the hard bias layer of the current magnetoresistive effect element (coercive force of 2.00 kOe or more). ) And a remanent magnetization per unit area (2.00 memu / cm 2 or more).
  • the in-plane magnetized film 10 according to the first embodiment is a CoPt-oxide based in-plane magnetized film, which contains metal Co, metal Pt, and an oxide, and has the in-plane magnetized film.
  • the metal Co is contained in an amount of 55 at% or more and less than 95 at%
  • the metal Pt is contained in an amount of more than 5 at% and 45 at% or less with respect to the total metal components of the film
  • 10 vol of the oxide is contained in the entire in-plane magnetized film. % Or more and 42 vol% or less
  • the thickness is 20 nm or more and 80 nm or less.
  • the metal Co may be simply referred to as Co
  • the metal Pt may be simply referred to as Pt
  • the metal Ru may be simply referred to as Ru.
  • other metal elements may be similarly described.
  • the in-plane magnetization film 10 contains Co and Pt as metal components, and also contains an oxide.
  • Metal Co and Pt are constituent components of magnetic crystal grains (micro magnets) in the in-plane magnetized film formed by sputtering.
  • Co is a ferromagnetic metal element and plays a central role in the formation of magnetic crystal grains (micro magnets) in the in-plane magnetized film.
  • the content ratio of Co in the in-plane magnetized film according to the present embodiment is set to 55 at% or more and less than 95 at% with respect to the total of metal components in the in-plane magnetized film.
  • the content ratio of Co in the in-plane magnetized film according to the present embodiment is 55 at% or more and 80 at% or less with respect to the total of metal components in the in-plane magnetized film. It is more preferably 65 at% or more and 75 at% or less.
  • Pt has a function of reducing the magnetic moment of the alloy by alloying with Co in a predetermined composition range, and also has a role of adjusting the magnetic strength of the magnetic crystal grains. On the other hand, it has a function of increasing the magnetocrystalline anisotropy constant Ku of the CoPt alloy crystal grains (magnetic crystal grains) in the in-plane magnetized film obtained by sputtering to increase the coercive force of the in-plane magnetized film.
  • the in-plane magnetized film according to the present embodiment is The content ratio of Pt is more than 5 at% and 45 at% or less with respect to the total of metal components in the in-plane magnetized film. From the same point, it is preferable that the Pt content in the in-plane magnetized film according to the present embodiment is 20 at% or more and 40 at% or less with respect to the total of metal components in the in-plane magnetized film. It is more preferably 25 at% or more and 35 at% or less.
  • the oxide contained in the in-plane magnetized film 10 according to the first embodiment contains at least one of oxides of Ti, Si, W, B, Mo, Ta, and Nb. Then, in the in-plane magnetized film 10, the CoPt alloy magnetic crystal grains are partitioned by the non-magnetic material made of the oxide as described above, and a granular structure is formed. That is, this granular structure is composed of CoPt alloy crystal grains and the crystal grain boundaries of the oxide surrounding the crystal grains.
  • the content of the oxide contained in the in-plane magnetized film 10 is set to 10 vol% or more, and from the same viewpoint, the in-plane according to the first embodiment.
  • the content of the oxide contained in the magnetic film 10 is preferably 12.5 vol% or more, and more preferably 15 vol% or more.
  • the content of the oxide contained in the in-plane magnetized film 10 becomes too large, the oxide is mixed into the CoPt alloy crystal grains (magnetic crystal grains) to cause the crystallinity of the CoPt alloy crystal grains (magnetic crystal grains). This may adversely affect the proportion of structures other than hcp in the CoPt alloy crystal grains (magnetic crystal grains).
  • the content of the oxide contained in the in-plane magnetized film 10 according to the first embodiment is 42 vol% or less, and from the same viewpoint, the in-plane according to the first embodiment.
  • the content of the oxide contained in the magnetic film 10 is preferably 37.5 vol% or less, and more preferably 35 vol% or less.
  • the content of the oxide contained in the in-plane magnetized film 10 is set to 10 vol% or more and 42 vol% or less, and the in-plane magnetized film 10 according to the first embodiment.
  • the content of the oxide contained therein is preferably 12.5 vol% or more and 37.5 vol% or less, and more preferably 15 vol% or more and 35 vol% or less.
  • WO 3 or MoO 3 when WO 3 or MoO 3 is included as an oxide, the coercive force Hc of the in-plane magnetized film 10 is increased, so that WO 3 or MoO 3 may be included as an oxide. preferable.
  • a simple element such as Cr, W, Ta or B is used as a grain boundary material for partitioning CoPt alloy crystal grains (magnetic crystal grains).
  • CoPt alloy crystal grains magnetic crystal grains
  • the grain boundary material is an oxide
  • the grain boundary material is a simple element such as Cr, W, Ta, B, etc.
  • the material is hard to form a solid solution in the CoPt alloy.
  • the saturation magnetization and the residual magnetization of the CoPt alloy crystal grains (magnetic crystal grains) in the in-plane magnetized film 10 according to the first embodiment become large, and the in-plane magnetized film 10 according to the first embodiment.
  • the coercive force Hc and the residual magnetization of are increased. This is demonstrated in the examples described below.
  • the thickness of the CoPt-WO 3 in- plane magnetization film is When it is less than 20 nm, the residual magnetization Mrt per unit area becomes less than 2.00 memu / cm 2 (Comparative Example 7), and the thickness of the CoPt-WO 3 in- plane magnetized film (in the case of a single layer without a non-magnetic intermediate layer) ) Is more than 80 nm, the coercive force Hc is less than 2.00 kOe (Comparative Examples 8 and 9). Therefore, the CoPt-WO 3 in- plane magnetized film according to the first embodiment is a single layer. Has a thickness of 20 nm or more and 80 nm or less.
  • the coercive force Hc increases when the thickness of the single-layer CoPt-WO 3 in- plane magnetized film is 20 to 40 nm (Examples 9, 12, 13), Since the coercive force Hc becomes particularly large at 20 to 30 nm (Examples 9 and 12), the thickness of the in-plane magnetized film according to the first embodiment is preferably 20 to 40 nm, and 20 to 30 nm. More preferably.
  • the in-plane magnetized film 10 has a coercive force equal to or more than the coercive force of the hard bias layer of the current magnetoresistive effect element. It is a single-layer in-plane magnetized film having a coercive force (coercive force of 2.00 kOe or more) and a remanent magnetization per unit area (2.00 memu / cm 2 or more) of the same level or more.
  • the in-plane magnetized film 10 according to the first embodiment is multilayered with the non-magnetic intermediate layer 22 (see FIG. 2) interposed, whereby the residual magnetization The coercive force can be further improved while maintaining the value. This is demonstrated in the examples described below.
  • the underlayer film used when forming the in-plane magnetized film 10 according to the first embodiment has the same crystal structure (hexagonal maximum) as the magnetic particles (CoPt alloy particles) of the in-plane magnetized film 10.
  • a base film made of metal Ru or Ru alloy having a close packing structure hcp) is suitable.
  • the Ru underlayer film or Ru alloy underlayer film used has a (10.0) plane. Alternatively, it is preferable to arrange many (11.0) planes.
  • the underlayer film used when forming the in-plane magnetized film according to the present invention is not limited to the Ru underlayer film or the Ru alloy underlayer film, and the CoPt magnetic crystal grains of the obtained in-plane magnetized film are in-plane. Any underlayer film that can be oriented and can promote magnetic separation between CoPt magnetic crystal grains can be used.
  • the sputtering target used when forming the in-plane magnetized film 10 according to the first embodiment is an in-plane magnetized film used as at least a part of the hard bias layer 14 of the magnetoresistive effect element 12.
  • 10 is a sputtering target used when forming 10 by room temperature film formation, comprising metal Co, metal Pt, and an oxide, and the metal Co is 60 at% or more and 95 at% with respect to the total metal components of the sputtering target. %, 40 at% or less of metal Pt, and 10 vol% or more and 40 vol% or less of the oxide with respect to the entire sputtering target.
  • composition analysis of manufactured CoPt-oxide type in-plane magnetized film described later, the actual composition of the manufactured CoPt-oxide type in-plane magnetized film (by composition analysis Since the composition obtained is different from the composition of the sputtering target used for forming the CoPt-oxide-based in-plane magnetized film, the composition range of each element contained in the above-mentioned sputtering target is different from that composition.
  • the composition range is set in consideration, and does not match the composition range of each element contained in the in-plane magnetized film 10 according to the first embodiment.
  • the in-plane magnetized film 10 according to the first embodiment is sputtered using the sputtering target described in the above “(1-5) Sputtering target”, It is formed by forming a film on a predetermined base film (the base film described in "(1-4) Base film” above). It should be noted that heating in this film formation process is not necessary, and the in-plane magnetized film 10 according to the first embodiment can be formed by room temperature film formation.
  • FIG. 2 schematically shows a state in which the in-plane magnetized film multilayer structure 20 according to the second embodiment of the present invention is applied to the hard bias layer 26 of the magnetoresistive effect element 24.
  • the in-plane magnetized film multilayer structure 20 according to the second embodiment will be described.
  • the constituent components of the in-plane magnetized film 10, coercive force and remanent magnetization of the in-plane magnetized film 10, and the in-plane magnetized film 10 are formed. Since the underlying film used in this case, the sputtering target used in forming the in-plane magnetized film 10, and the method for forming the in-plane magnetized film 10 have already been described in “(1) First Embodiment”, The description is omitted.
  • the in-plane magnetized film multilayer structure 20 according to the second embodiment of the present invention includes a plurality of in-plane magnetized films 10 according to the first embodiment, and further, in the plurality of first embodiments.
  • a non-magnetic intermediate layer 22 is provided between the in-plane magnetized films 10, and a plurality of in-plane magnetized films 10 are stacked via the non-magnetic intermediate layer 22.
  • the thickness of each in-plane magnetized film 10 is typically 5 nm or more and 30 nm or less.
  • the total thickness of the in-plane magnetized film 10 (total thickness) is set to 20 nm or more from the viewpoint of setting the residual magnetization Mrt to 2 mem / cm 2 or more.
  • the adjacent in-plane magnetized films 10 separated by the interposition of the non-magnetic intermediate layer 22 are ferromagnetic, as described later.
  • each in-plane magnetized film 10 in the in-plane magnetized film multilayer structure 20 is preferably 5 nm or more and 15 nm or less, and more preferably 10 nm or more and 15 nm or less, from the viewpoint of increasing the coercive force Hc. More preferably.
  • the in-plane magnetized film multilayer structure 20 according to the second embodiment can be used as the hard bias layer 26 of the magnetoresistive effect element 24, and a bias magnetic field can be applied to the free magnetic layer 28 exhibiting the magnetoresistive effect. ..
  • the non-magnetic intermediate layer 22 is interposed between the in-plane magnetized films 10 according to the first embodiment to separate the in-plane magnetized films 10 and to make the in-plane magnetized films 10 multi-layered.
  • the coercive force Hc can be further improved while maintaining the value of the residual magnetization Mrt.
  • Adjacent in-plane magnetized films 10 separated by the interposition of the non-magnetic intermediate layer 22 are arranged so that spins are parallel (same direction). By arranging in this way, since the adjacent in-plane magnetization films 10 separated by the interposition of the non-magnetic intermediate layer 22 are ferromagnetically coupled, the in-plane magnetization film 10 has the value of the residual magnetization Mrt. The coercive force Hc can be further improved while maintaining it.
  • the in-plane magnetized film multilayer structure 20 according to the second embodiment can exhibit a good coercive force Hc.
  • the metal used for the non-magnetic intermediate layer 22 has the same crystal structure (hexagonal close-packed structure hcp) as the CoPt alloy magnetic crystal grains from the viewpoint of not impairing the crystal structure of the CoPt alloy magnetic crystal grains.
  • metal Ru or Ru alloy having the same crystal structure (hexagonal close-packed structure hcp) as the crystal structure of the CoPt alloy magnetic crystal grains in the in-plane magnetized film 10 is preferably used. Can be used.
  • the metal used for the non-magnetic intermediate layer 22 is a Ru alloy
  • Cr, Pt, and Co can be used, for example, and the range of addition amount of these metals is hexagonal for Ru alloy. It is preferable that the range is the closest packed structure hcp.
  • the added amount of Pt should be less than 15 at%.
  • a hexagonal close-packed structure hcp is formed irrespective of the amount of Co added, but Co is less than 12.5 at%, and more preferably less than 10 at%. Since it becomes a magnetic substance when added at 40 at% or more, it is appropriate that the addition amount of Co is less than 40 at%, preferably less than 30 at%, and more preferably less than 20 at%.
  • the thickness of the non-magnetic intermediate layer 22 is preferably 0.3 nm or more and 3 nm or less. As demonstrated in Examples described later, by using a nonmagnetic intermediate layer made of metal Ru or Ru alloy and having a thickness of 0.3 nm or more and 3 nm or less, the coercive force Hc of the in-plane magnetized film 10 is about 15%. Can be improved. However, a nonmagnetic intermediate layer having a thickness of 0.3 nm or more and 3 nm or less has almost the same effect of improving the coercive force Hc of the in-plane magnetized film 10. From the viewpoint of ease of application (the smaller the thickness, the easier it is to apply to the magnetoresistive element). The thickness of the nonmagnetic intermediate layer 22 is more preferably 0.3 nm or more and 1.5 nm or less. , 0.3 nm or more and 0.6 nm or less are particularly preferable.
  • the actual composition of the CoPt-oxide-based in-plane magnetized film composition obtained by composition analysis
  • the CoPt-oxide-based in-plane magnetized film were prepared.
  • the CoPt—WO 3 based in-plane magnetized films of Examples 45, 47, 50 and 52 were picked up and subjected to composition analysis. As a result, it was found that there was a discrepancy between the composition of the in-plane magnetized film and the composition of the sputtering target used for producing the in-plane magnetized film.
  • composition of the CoPt-oxide-based in-plane magnetized films other than those of Examples 45, 47, 50, 52 that were actually subjected to composition analysis were found from the composition analysis results of Examples 45, 47, 50, 52.
  • the composition of the CoPt-oxide-based in-plane magnetized film in each example was calculated from the composition of the sputtering target used for the production in consideration of the composition deviation.
  • composition ratio of Co and Pt which are the metal components of the CoPt-oxide type in-plane magnetized film (Examples 1 to 7, Comparative Examples 1 and 2)> Experimental data were obtained by changing the composition of Co and Pt, which are the metal components of the CoPt-oxide based in-plane magnetized film formed on the Ru underlayer.
  • the CoPt-oxide based in-plane magnetized film to be formed is a single layer, and no non-magnetic intermediate layer is provided. Specifically, it is as follows.
  • a Ru underlayer film was formed on a Si substrate using ES-3100W manufactured by Eiko Engineering Co., Ltd. by a sputtering method so as to have a thickness of 30 nm, and a CoPt-oxide in-plane magnetized film was formed thereon.
  • the substrate was not heated, but the film was formed at room temperature.
  • the sputtering apparatus used for sputtering in the examples and comparative examples of the present application is ES-3100W manufactured by Eiko Engineering Co., Ltd. However, the description of the apparatus name is omitted below.
  • Samples were prepared by changing the Pt content ratio from the total of Co and Pt, which are the metal components of the CoPt-oxide-based in-plane magnetized film to be formed, from 5.7 at% to 50.5 at% in increments of 5.6 at%. It was prepared and data was acquired.
  • the hysteresis loop of the produced CoPt-oxide-based in-plane magnetized film was measured by a vibration type magnetometer (VSM: TM-VSM211483-HGC type manufactured by Tamagawa Seisakusho Co., Ltd.) (hereinafter referred to as a vibration type magnetometer). ..
  • the coercive force Hc (kOe) and the residual magnetization Mr (memu / cm 3 ) were read from the measured hysteresis loop.
  • the read remanent magnetization Mr (memu / cm 3 ) is multiplied by the film thickness 50 nm of the CoPt-oxide-based in-plane magnetized film thus prepared to obtain a unit area of the CoPt-oxide-based in-plane magnetized film.
  • the residual magnetization per unit Mrt (memu / cm 2 ) was calculated. The results are shown in Table 1 below.
  • the Pt content is 10 to 45 at% with respect to the total metal components (Co, Pt) of the CoPt-oxide-based in-plane magnetized film, and the entire CoPt-oxide-based in-plane magnetized film is The volume ratio of the oxide (WO 3 ) to 3 is 31.0 vol%, and the thickness is 50 nm.
  • the coercive force Hc is 2.00 kOe or more, Further, the magnetic performance that the residual magnetization Mrt per unit area is 2.00 memu / cm 2 or more is realized by the room temperature film formation without heating the substrate.
  • the CoPt-oxide-based in-plane magnetized film has a Pt content of 5.7 at% with respect to the total of metal components (Co, Pt), and Comparative Example 1 which does not fall within the scope of the present invention has a coercive force.
  • Hc is 1.47 kOe and coercive force Hc is less than 2.00 kOe.
  • the Pt content is 50.5 at% with respect to the total of the metal components (Co, Pt) of the CoPt-oxide-based in-plane magnetized film
  • Comparative Example 2 not included in the scope of the present invention has a unit area of The remanent magnetization Mrt per unit area is 1.62 memu / cm 2 , and the remanent magnetization Mrt per unit area is less than 2.00 memu / cm 2 .
  • a Ru underlayer film was formed on a Si substrate to a thickness of 30 nm by a sputtering method, and a CoPt-oxide in-plane magnetized film was formed thereon to a thickness of 30 nm by a sputtering method.
  • the substrate was not heated, but the film was formed at room temperature.
  • the volume ratio of the oxide (WO 3 ) of the CoPt-oxide-based in-plane magnetized film to be formed is from 0 vol% to 51.8 vol% of 5.2 vol% or 10.4 vol% (or 10.5 vol%). Samples were prepared by changing the step size and data was acquired.
  • the hysteresis loop of the produced CoPt-oxide-based in-plane magnetized film was measured by a vibrating magnetometer.
  • the coercive force Hc (kOe) and the residual magnetization Mr (memu / cm 3 ) were read from the measured hysteresis loop.
  • the read remanent magnetization Mr (memu / cm 3 ) is multiplied by the film thickness 30 nm of the CoPt-oxide-based in-plane magnetized film thus prepared to obtain a unit area of the CoPt-oxide-based in-plane magnetized film.
  • the residual magnetization per unit Mrt (memu / cm 2 ) was calculated. The results are shown in Table 2 below.
  • the volume ratio of the oxide (WO 3 ) to the entire CoPt-oxide-based in-plane magnetized film is 10 to 42 vol%, and the metal component of the CoPt-oxide-based in-plane magnetized film (Co , Pt) is 22.5 at% with respect to the total of Pt), and the thickness is 30 nm.
  • the coercive force Hc is 2.00 kOe or more, Further, the magnetic performance that the residual magnetization Mrt per unit area is 2.00 memu / cm 2 or more is realized by the room temperature film formation without heating the substrate.
  • the volume ratio of the oxide (WO 3 ) to the entire CoPt-oxide-based in-plane magnetized film is 0 vol%
  • Comparative Example 3 not included in the scope of the present invention has a coercive force Hc of 1.34 kOe.
  • the coercive force Hc is less than 2.00 kOe.
  • the volume ratio of the oxide (WO 3 ) to the entire CoPt-oxide-based in-plane magnetized film was 4.9 vol%, and Comparative Example 4 not included in the scope of the present invention had a coercive force Hc of 1 It is 0.59 kOe and the coercive force Hc is less than 2.00 kOe.
  • the volume ratio of the oxide (WO 3 ) to the entire CoPt-oxide-based in-plane magnetized film was 46.6 vol%, and Comparative Example 5, which is not included in the scope of the present invention, had a residual per unit area.
  • the magnetization Mrt is 1.77 memu / cm 2 , and the residual magnetization Mrt per unit area is less than 2.00 memu / cm 2 .
  • the volume ratio of the oxide (WO 3 ) to the entire CoPt-oxide-based in-plane magnetized film was 51.8 vol%, and Comparative Example 6, which is not included in the scope of the present invention, has a residual amount per unit area.
  • the magnetization Mrt is 1.53 memu / cm 2 , and the residual magnetization Mrt per unit area is less than 2.00 memu / cm 2 .
  • a Ru underlayer film is formed on a Si substrate to a thickness of 30 nm by a sputtering method, and a CoPt-oxide-based in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 is sputtered thereon. Formed by the method. In this film forming process, the substrate was not heated, but the film was formed at room temperature.
  • the thickness of the obtained CoPt-oxide-based in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 is changed from 10 nm to 100 nm in steps of 10 nm by changing the sputtering time. Then, a sample was prepared and data was acquired.
  • the thickness of the in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 of each sample can be calculated from the sputtering rate and the sputtering time.
  • the sputter rate was calculated by previously measuring the relationship between the thickness of the in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 and the sputtering time.
  • the thickness of the in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 was measured by using a stylus profilometer (DektakXT manufactured by BRUKER) and applying a load of 100 ⁇ N to the stylus to form a film adhesion part.
  • the non-adhered portion was passed, and the difference in height in the film thickness direction when passing was calculated. Furthermore, the in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 of each sample was observed with a TEM (transmission electron microscope) (H-9500 manufactured by Hitachi High-Technologies Corporation) to confirm the film thickness. It was
  • the hysteresis loop of the produced CoPt-oxide-based in-plane magnetized film was measured by a vibrating magnetometer.
  • the coercive force Hc (kOe) and the residual magnetization Mr (memu / cm 3 ) were read from the measured hysteresis loop.
  • the read residual magnetization Mr (memu / cm 3 ) is multiplied by the film thickness of the produced CoPt-oxide-based in-plane magnetized film to obtain a unit area of the produced CoPt-oxide-based in-plane magnetized film.
  • the remanent magnetization Mrt (memu / cm 2 ) of was calculated. The results are shown in Table 3 below.
  • the CoPt-oxide-based in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 has a thickness of 20 to 80 nm and is included in the scope of the present invention.
  • Nos. 12 to 17 have magnetic properties of a coercive force Hc of 2.00 kOe or more and a remanent magnetization Mrt per unit area of 2.00 memu / cm 2 or more, which are realized at room temperature without heating the substrate. ing.
  • Comparative Example 7 in which the CoPt-oxide-based in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 has a thickness of 10 nm and is not included in the scope of the present invention is
  • the magnetization Mrt is 1.26 memu / cm 2
  • the residual magnetization Mrt per unit area is less than 2.00 memu / cm 2 .
  • the thickness of the CoPt-oxide-based in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 is 90 nm, and Comparative Example 8 not included in the scope of the present invention has a coercive force Hc of 1 It is 0.78 kOe and the coercive force Hc is less than 2.00 kOe. Further, the thickness of the CoPt-oxide-based in-plane magnetized film (Co-22.5Pt) -20.5vol% WO 3 is 100 nm, and the coercive force Hc of Comparative Example 9 is not within the scope of the present invention. It is 0.49 kOe and the coercive force Hc is less than 2.00 kOe.
  • a Ru underlayer film was formed on a Si substrate to a thickness of 30 nm by a sputtering method, and a CoPt-oxide in-plane magnetized film was formed thereon to a thickness of 30 nm by a sputtering method.
  • the substrate was not heated, but the film was formed at room temperature.
  • Data were acquired by variously changing the type of oxide of the CoPt-oxide-based in-plane magnetized film to be formed.
  • the oxides used are WO 3 , B 2 O 3 , MoO 3 , Nb 2 O 5 , SiO 2 , Ta 2 O 5 , and TiO 2 .
  • the hysteresis loop of the produced CoPt-oxide-based in-plane magnetized film was measured by a vibrating magnetometer.
  • the coercive force Hc (kOe) and the residual magnetization Mr (memu / cm 3 ) were read from the measured hysteresis loop.
  • the read remanent magnetization Mr (memu / cm 3 ) is multiplied by the film thickness 30 nm of the CoPt-oxide-based in-plane magnetized film thus prepared to obtain a unit area of the CoPt-oxide-based in-plane magnetized film.
  • the residual magnetization per unit Mrt (memu / cm 2 ) was calculated. The results are shown in Table 4 below.
  • WO 3 , B 2 O 3 , MoO 3 , Nb 2 O 5 , SiO 2 , Ta 2 O 5 , and TiO 2 are used as the oxide of the CoPt-oxide-based in-plane magnetized film.
  • the composition is (Co-22.5Pt) -30 to 31 vol% oxide and the thickness is 30 nm, which is included in the scope of the present invention.
  • the magnetic performance that Hc is 2.00 kOe or more and the residual magnetization Mrt per unit area is 2.00 memu / cm 2 or more is realized by the room temperature film formation without heating the substrate.
  • Example 10 using WO 3 as the oxide and Example 19 using MoO 3 as the oxide the coercive force of the CoPt-oxide-based in-plane magnetized film produced exceeds 3 kOe, and CoPt- It is preferable as an oxide used in an oxide-based in-plane magnetized film.
  • Example 24 to 30 A non-magnetic intermediate layer (hereinafter referred to as metal Ru non-magnetic) formed at the intermediate position in the thickness direction of the CoPt-oxide-based in-plane magnetized film formed on the Ru underlayer by using a sputtering target made of metal Ru alone. Intermediate layer) is provided, and the CoPt-oxide-based in-plane magnetized film is multilayered (double-layered) to obtain experimental data.
  • the thickness of the metallic Ru nonmagnetic intermediate layer to be provided was changed in the range of 0 nm to 3.0 nm to obtain data. Specifically, it is as follows.
  • a Ru underlayer film was formed on the Si substrate to a thickness of 30 nm by a sputtering method, and a CoPt-oxide-based in-plane magnetized film was formed on the Si substrate to a thickness of 30 nm by sputtering.
  • a metallic Ru nonmagnetic intermediate layer was formed thereon by a sputtering method, and a CoPt-oxide-based in-plane magnetized film was further formed thereon by a sputtering method so as to have a thickness of 30 nm.
  • the substrate was not heated, and both were formed at room temperature.
  • Samples were prepared by changing the thickness of the metallic Ru non-magnetic intermediate layer to 0 nm, 0.3 nm, 0.6 nm, 1.2 nm, 1.8 nm, 2.4 nm, and 3.0 nm, and the data was acquired.
  • the hysteresis loop of the produced multilayer sample was measured by a vibrating magnetometer. From the measured hysteresis loop, the coercive force Hc (kOe) and the remanent magnetization Mr (memu / cm 3 ) of the in-plane magnetized film contained in the multilayer sample were read.
  • Example 24 is an example in which a non-magnetic intermediate layer is not provided, and is positioned as a reference example for comparison with Examples 25 to 30 in which a non-magnetic intermediate layer is provided and the in-plane magnetized film is multilayered. It is an example of.
  • Example 25 to 30 in which the metal Ru non-magnetic intermediate layer was provided to make the in-plane magnetized film multilayer, the non-magnetic intermediate layer was not provided and the in-plane magnetized film was a single layer. Compared to Example 24, the coercive force Hc was improved by about 15% or more. On the other hand, the residual magnetization Mrt (memu / cm 2 ) per unit area is almost the same as that of Example 24 (the in-plane magnetized film is a single layer).
  • the CoPt-oxide-based in-plane magnetized film is multilayered by the metallic Ru non-magnetic intermediate layer, so that the coercive force Hc is 15 while maintaining the residual magnetization Mrt (memu / cm 2 ) per unit area. It is thought that it can be improved by about 10% or more.
  • the thickness of the metal Ru non-magnetic intermediate layer varied within the range of 0.3 to 3.0 nm.
  • the coercive force Hc (kOe) and the residual magnetization per unit area Mrt (memu / cm 2 ) are almost the same.
  • the thickness of the metal Ru non-magnetic intermediate layer is in the range of 0.3 to 3.0 nm, the effect on the multilayered CoPt-oxide based in-plane magnetized film (coercive force Hc and remanent magnetization Mrt) is obtained.
  • the effect is considered to be the same.
  • a non-magnetic intermediate layer formed by using a sputtering target made of a Ru alloy (Ru-25Cr-25Co) at an intermediate position in the thickness direction of a CoPt-oxide based in-plane magnetized film formed on a Ru underlayer (
  • a Ru alloy non-magnetic intermediate layer may be provided), and a CoPt-oxide-based in-plane magnetized film was formed into multiple layers (two layers) to obtain experimental data.
  • the thickness of the Ru alloy nonmagnetic intermediate layer to be provided was changed in the range of 0 nm to 3.0 nm to obtain data. Specifically, it is as follows.
  • a Ru underlayer film was formed on the Si substrate to a thickness of 30 nm by a sputtering method, and a CoPt-oxide-based in-plane magnetized film was formed on the Si substrate to a thickness of 30 nm by sputtering.
  • a Ru alloy non-magnetic intermediate layer was formed thereon by a sputtering method, and a CoPt-oxide-based in-plane magnetized film was further formed thereon by a sputtering method so as to have a thickness of 30 nm.
  • the substrate was not heated, and both were formed at room temperature.
  • Samples were prepared by changing the thickness of the Ru alloy non-magnetic intermediate layer to 0 nm, 0.3 nm, 0.6 nm, 1.2 nm, 1.8 nm, 2.4 nm, and 3.0 nm, and data was acquired.
  • the hysteresis loop of the produced multilayer sample was measured by a vibrating magnetometer. From the measured hysteresis loop, the coercive force Hc (kOe) and the remanent magnetization Mr (memu / cm 3 ) of the in-plane magnetized film contained in the multilayer sample were read.
  • Example 24 is an example in which a non-magnetic intermediate layer is not provided, and is positioned as a reference example for comparison with Examples 31 to 36 in which a non-magnetic intermediate layer is provided and the in-plane magnetized film is multilayered. It is an example of.
  • the CoPt-oxide-based in-plane magnetized film is multi-layered by the Ru alloy non-magnetic intermediate layer so that the coercive force Hc is 11 while maintaining the residual magnetization Mrt (memu / cm 2 ) per unit area. It is thought that it can be improved by about 10% or more.
  • the thickness of the Ru alloy non-magnetic intermediate layer varied within the range of 0.3 to 3.0 nm.
  • the coercive force Hc (kOe) and the residual magnetization per unit area Mrt (memu / cm 2 ) are almost the same.
  • the thickness of the Ru alloy non-magnetic intermediate layer is in the range of 0.3 to 3.0 nm, the effect on the in-plane magnetized film of the multilayered CoPt-oxide system (coercive force Hc and remanent magnetization Mrt) is obtained.
  • the effect is considered to be the same.
  • the coercive force Hc of Examples 25 to 30 in which the nonmagnetic intermediate layer is a metal Ru nonmagnetic intermediate layer and the coercive force Hc of Examples 31 to 36 in which the nonmagnetic intermediate layer is a Ru alloy nonmagnetic intermediate layer are shown. Compared with each other, it can be seen from Tables 5 and 6 that the coercive force Hc of Examples 25 to 30 in which the non-magnetic intermediate layer is the metal Ru non-magnetic intermediate layer is larger than that of the non-magnetic intermediate layer. As the intermediate layer, the metal Ru nonmagnetic intermediate layer is considered to be more suitable than the Ru alloy nonmagnetic intermediate layer.
  • a non-magnetic intermediate layer (hereinafter referred to as “metal Cr non-magnetic”) formed at the intermediate position in the thickness direction of the CoPt-oxide-based in-plane magnetized film formed on the Ru underlayer by using a sputtering target made of a single metal Cr. Intermediate layer) is provided, and the CoPt-oxide-based in-plane magnetized film is multilayered (double-layered) to obtain experimental data. At that time, the thickness of the non-magnetic intermediate layer provided was changed in the range of 0 nm to 3.0 nm to obtain data. Specifically, it is as follows.
  • Samples were prepared by changing the thickness of the metallic Cr non-magnetic intermediate layer to 0 nm, 0.3 nm, 0.6 nm, 1.2 nm, 1.8 nm, 2.4 nm, and 3.0 nm, and data was acquired.
  • the hysteresis loop of the produced multilayer sample was measured by a vibrating magnetometer. From the measured hysteresis loop, the coercive force Hc (kOe) and the remanent magnetization Mr (memu / cm 3 ) of the in-plane magnetized film contained in the multilayer sample were read.
  • Example 24 is an example in which a non-magnetic intermediate layer is not provided, and is positioned as a reference example for comparison with Comparative Examples 10 to 15 in which a non-magnetic intermediate layer is provided and the in-plane magnetized film is multilayered. It is an example of.
  • the residual magnetization Mrt (memu / cm 2 ) per unit area can be increased by about 49% or more by forming the CoPt-oxide-based in-plane magnetized film into a multilayer structure with the metal Cr non-magnetic intermediate layer.
  • the coercive force Hc is considered to decrease by 50% or more.
  • the thickness of the metallic Cr non-magnetic intermediate layer is in the range of 0.3 to 3.0 nm, the effect on the multilayered CoPt-oxide based in-plane magnetized film (coercive force Hc and remanent magnetization Mrt) is obtained.
  • the effect is considered to be the same.
  • Example 24 the in-plane magnetized film is a single layer.
  • the coercive force Hc is improved by about 15% or more, and when a Ru alloy non-magnetic intermediate layer is formed into a multilayer, as shown in Examples 31 to 36, Example 24 (the in-plane magnetized film is a single layer) is used.
  • the coercive force Hc is improved by about 11% or more as compared with (4), when multi-layered with a metal Cr non-magnetic intermediate layer, as shown in Comparative Examples 10 to 15, as shown in Comparative Examples 10 to 15, The coercive force Hc is reduced by 50% or more compared to the single layer).
  • the reason is that the metal Ru and the Ru-25Cr-25Co alloy have a hexagonal close-packed structure hcp, which is the same crystal structure as the magnetic particles (CoPt alloy particles) of the CoPt-oxide-based in-plane magnetized film.
  • the crystal structure of metal Cr is the body-centered cubic structure bcc.
  • the CoPt-oxide-based in-plane magnetized film formed on the Ru base film is divided into two equal parts, such as four, six, and twelve parts in the thickness direction, and a metal having a thickness of 2.0 nm.
  • the Ru non-magnetic intermediate layer is provided, and the CoPt-oxide type in-plane magnetized film is multilayered so that the total thickness of the CoPt-oxide type in-plane magnetized film is 60 nm. did. Specifically, it is as follows.
  • An Ru underlayer film was formed on a Si substrate to a thickness of 30 nm by a sputtering method, and a RuPt-oxide-based in-plane magnetized film was formed thereon to a thickness of 30 nm by a sputtering method.
  • a metallic Ru nonmagnetic intermediate layer having a thickness of 2.0 nm is formed thereon by a sputtering method, and further, a CoPt-oxide-based in-plane magnetized film is formed by a sputtering method so that the thickness thereof becomes 30 nm.
  • the CoPt-oxide-based in-plane magnetized film was formed so that the total thickness was 60 nm (Example 37).
  • a Ru underlayer film was formed on the Si substrate to a thickness of 30 nm by a sputtering method, and a CoPt-oxide based in-plane magnetized film was formed to a thickness of 15 nm by a sputtering method.
  • a 2.0-nm-thick metal Ru nonmagnetic intermediate layer is formed thereon by a sputtering method, and further, a CoPt-oxide-based in-plane magnetized film is sputtered to a thickness of 15 nm.
  • a metal Ru nonmagnetic intermediate layer having a thickness of 2.0 nm is formed thereon by a sputtering method, and the same process is performed until the total thickness of the CoPt-oxide based in-plane magnetized film reaches 60 nm.
  • the film formation was repeated to prepare a multilayered sample in which four 15-nm-thick CoPt-oxide-based in-plane magnetized films were stacked (Example 38).
  • a Ru underlayer film was formed on the Si substrate to a thickness of 30 nm by a sputtering method, and a CoPt-oxide based in-plane magnetized film was formed to a thickness of 10 nm by a sputtering method.
  • a 2.0-nm-thick metallic Ru nonmagnetic intermediate layer is formed thereon by a sputtering method, and further, a CoPt-oxide-based in-plane magnetized film is sputtered to a thickness of 10 nm.
  • a metal Ru nonmagnetic intermediate layer having a thickness of 2.0 nm is formed thereon by a sputtering method, and the same process is performed until the total thickness of the CoPt-oxide based in-plane magnetized film reaches 60 nm.
  • the film formation was repeated to prepare a multi-layered sample in which six CoPt-oxide based in-plane magnetized films having a thickness of 10 nm were stacked (Example 39).
  • a Ru underlayer film was formed on the Si substrate to a thickness of 30 nm by a sputtering method, and a CoPt-oxide based in-plane magnetized film was formed to a thickness of 5 nm by a sputtering method.
  • a 2.0-nm-thick metal Ru nonmagnetic intermediate layer is formed thereon by a sputtering method, and further, a CoPt-oxide-based in-plane magnetized film is sputtered to a thickness of 5 nm.
  • a metal Ru nonmagnetic intermediate layer having a thickness of 2.0 nm is formed thereon by a sputtering method, and the same process is performed until the total thickness of the CoPt-oxide based in-plane magnetized film reaches 60 nm.
  • the film formation was repeated to prepare a multilayered sample in which 12 CoPt-oxide-based in-plane magnetized films having a thickness of 5 nm were stacked (Example 40).
  • the substrate was not heated during these film formation processes, and all were performed at room temperature.
  • the hysteresis loop of the produced multilayer sample was measured by a vibrating magnetometer. From the measured hysteresis loop, the coercive force Hc (kOe) and the remanent magnetization Mr (memu / cm 3 ) of the in-plane magnetized film contained in the multilayer sample were read.
  • Example 24 is an example in which a non-magnetic intermediate layer is not provided, and is positioned as a reference example for comparison with Examples 37 to 40 in which a non-magnetic intermediate layer is provided and the in-plane magnetized film is multilayered. It is an example of.
  • Example 8 in Examples 37 to 40 in which the metal Ru non-magnetic intermediate layer is provided to make the in-plane magnetized film multi-layered, the non-magnetic intermediate layer is not provided and the in-plane magnetized film is a single layer. Compared with Example 24, the coercive force Hc is improved by about 13% or more. On the other hand, the residual magnetization Mrt (memu / cm 2 ) per unit area is almost the same as that of Example 24 (the in-plane magnetized film is a single layer).
  • the CoPt-oxide-based in-plane magnetized film is multilayered by the metal Ru non-magnetic intermediate layer, so that the coercive force Hc is 13 while maintaining the residual magnetization Mrt (memu / cm 2 ) per unit area. It is thought that it can be improved by about 10% or more.
  • the coercive force Hc is improved by about 55% as compared with the twenty-fourth embodiment.
  • the coercive force Hc is improved by about 29% as compared with the twenty-fourth embodiment.
  • the coercive force Hc is improved by about 17% compared to the twenty-fourth embodiment.
  • the coercive force Hc is improved by about 14% as compared with the twenty-fourth embodiment.
  • the thickness per layer is preferably 5 to 30 nm, more preferably 7.5 to 25 nm, and particularly preferably 10 to 20 nm.
  • the value of the residual magnetization Mrt per unit area is 2. Since it is less than 0.000 memu / cm 2 , it is premised that the total thickness of the in-plane magnetized film is 20 nm or more.
  • the thickness per layer is preferably 5 to 30 nm, more preferably 7.5 to 25 nm, and more preferably 10 to 10 from the viewpoint of coercive force Hc. 20 nm is particularly preferred.
  • the oxide (WO 3 ) content in the in-plane magnetized film is 31.0 vol% and 10.1 vol%. I examined the case.
  • a metal Ru non-magnetic intermediate layer having a thickness of 2.0 nm was provided in the same manner as in (H) above, and each in-plane magnetized film multilayer structure was produced. Further, as in the case of (H) above, the substrate was not heated during the film formation process, and both were formed at room temperature.
  • Table 9 shows the measurement results in the case where the total thickness of the in-plane magnetized film is 30 nm
  • Table 10 shows the total thickness of the in-plane magnetized film of 100 nm and the oxide (WO 3 ) content of the in-plane magnetized film of 31.
  • Table 11 shows the measurement results for the case of 0 vol%
  • Table 11 shows the measurement results for the case where the total thickness of the in-plane magnetized film is 100 nm and the oxide (WO 3 ) content of the in-plane magnetized film is 10.1 vol%. ..
  • Example 41 to 43 total thickness of the in-plane magnetized film is 30 nm
  • the metallic Ru non-magnetic intermediate layer is provided to form the multilayered in-plane magnetized film
  • the non-magnetic intermediate layer is formed.
  • the coercive force Hc is improved by about 3 to 11% as compared with Example 10 in which the in-plane magnetization film is not provided and is a single layer.
  • the residual magnetization Mrt per unit area is almost the same as in Example 10 (the in-plane magnetized film is a single layer).
  • the coercive force Hc is set to 3 while maintaining the remanent magnetization Mrt per unit area by forming a multi-layered metal Ru non-magnetic intermediate layer. It is thought that it can be improved by about 11%.
  • Examples 44 to 48 in which a metal Ru non-magnetic intermediate layer is provided to make the in-plane magnetized film multi-layered (the total thickness of the in-plane magnetized film is 100 nm and the in-plane magnetized film is 100 nm).
  • Oxide (WO 3 ) content of 31.0 vol%) the coercive force Hc is more than doubled as compared with Comparative Example 16 in which the non-magnetic intermediate layer is not provided and the in-plane magnetized film is a single layer. is doing.
  • the residual magnetization Mrt per unit area is almost the same as that of Comparative Example 16 (the in-plane magnetized film is a single layer), or is about 12% at maximum.
  • the multi-layered structure is formed by the metal Ru non-magnetic intermediate layer. It is considered that the coercive force Hc can be doubled or more while the remanent magnetization Mrt per unit area is almost maintained.
  • Examples 49 to 53 in which the metal Ru non-magnetic intermediate layer is provided to make the in-plane magnetized film multi-layered (the total thickness of the in-plane magnetized film is 100 nm, and the in-plane magnetized film is 100 nm).
  • Oxide (WO 3 ) content of 10.1 vol%) the coercive force Hc is more than doubled as compared with Comparative Example 17 in which the non-magnetic intermediate layer is not provided and the in-plane magnetized film is a single layer. is doing.
  • the residual magnetization Mrt per unit area is almost the same as that of Comparative Example 17 (the in-plane magnetized film is a single layer), or is about 12% at maximum.
  • the unit is obtained by forming a multi-layer by the metal Ru non-magnetic intermediate layer. It is considered that the coercive force Hc can be more than doubled while the residual magnetization Mrt per area is almost maintained.
  • Examples 41 to 43 in which the total thickness of the in-plane magnetized film is 30 nm are all good in terms of improving the coercive force while maintaining the residual magnetization Mrt (memu / cm 2 ) per unit area.
  • Example 41 the thickness of one layer of the in-plane magnetized film is 15 nm
  • Example 42 the thickness of one layer of the in-plane magnetized film is 10 nm
  • Examples 44 to 48 in which the total thickness of the in-plane magnetized film is 100 nm and the oxide (WO 3 ) content thereof is 31.0 vol% maintain the remanent magnetization Mrt (memu / cm 2 ) per unit area. From the viewpoint of improving the coercive force, both of them are good, but among them, Example 45 (the thickness of one layer of the in-plane magnetized film is 25 nm) and Example 46 (one layer of the in-plane magnetized film) The thickness is 12.5 nm) and Example 47 (the thickness of one layer of the in-plane magnetized film is 10 nm) is better, and Example 46 and Example 47 are particularly good.
  • Examples 49 to 53 in which the total thickness of the in-plane magnetized film is 100 nm and the oxide (WO 3 ) content thereof is 10.1 vol% maintain the remanent magnetization Mrt (memu / cm 2 ) per unit area. From the viewpoint of improving the coercive force while all of them are good, among them, Example 50 (the thickness of one layer of the in-plane magnetized film is 25 nm) and Example 51 (one layer of the in-plane magnetized film) The thickness is 12.5 nm) and Example 52 (the thickness of one layer of the in-plane magnetized film is 10 nm) is better, and Example 51 and Example 52 are particularly good.
  • the thickness per layer is preferably 5 to 30 nm, more preferably 7.5 to 25 nm, from the viewpoint of the coercive force Hc, when the in-plane magnetized film is composed of a plurality of layers as described in (H) above.
  • a line analysis for composition analysis is performed in the thickness direction of the in-plane magnetized film, and a portion where the composition does not fluctuate is selected from the line analysis execution points of the cross section in the thickness direction of the in-plane magnetized film (procedure). 1-4). Then, a line analysis for composition analysis is performed for a range of 100 nm in the in-plane direction of the in-plane magnetized film (167 measurement points) centering on an arbitrary measurement point included in a portion where the composition does not fluctuate ( Step 5). Then, for each detected element, the average value of the detected intensities at 167 measurement points is calculated to determine the composition of the in-plane magnetized film (procedure 6). The contents of steps 1 to 6 will be specifically described below.
  • the in-plane magnetized film to be subjected to composition analysis is cut along two planes parallel to each other in the direction orthogonal to the in-plane direction (thickness direction of the in-plane magnetized film), and the obtained two parallel
  • the thinning process is performed by the FIB method ( ⁇ -sampling method) until the distance between the cut surfaces reaches about 100 nm.
  • the shape of the thinned sample 80 after this thinning treatment is schematically shown in FIG. As shown in FIG. 3, the thin sample 80 has a substantially rectangular parallelepiped shape.
  • the distance between the two parallel cut surfaces is about 100 nm, and the length of one side in the in-plane direction of the rectangular parallelepiped sample 80 is about 100 nm, while the lengths of the other two sides are: If it can be observed by a scanning transmission electron microscope, it may be appropriately determined.
  • the cut surface (cut surface in the thickness direction of the in-plane magnetized film) of the thinned sample 80 obtained in the procedure 1 can be observed by magnifying the length of 100 nm up to 2 cm (magnification observation up to 200,000 times).
  • (Available) Scanning Transmission Electron Microscope is used to acquire an observation image.
  • the obtained observation image is rectangular, but the line of the part where the uppermost surface of the in-plane magnetized film to be observed and the cut surface (cut surface in the thickness direction of the in-plane magnetized film) intersect is the length of the rectangular observed image.
  • the image is picked up so that it is oriented.
  • An example of the obtained observation image (observation image of Example 45) is shown in FIG. HD-2700 manufactured by Hitachi High-Technologies Corporation was used to obtain an observation image of the in-plane magnetized film.
  • a line analysis for analysis was performed, and three straight lines (one straight line in the thickness direction passing through the points of the black circles and two straight lines in the thickness direction passing through the points of the white circles) were measured in the thickness direction of the in-plane magnetized film.
  • Perform line analysis for elemental analysis When performing the line analysis for this elemental analysis, the scanning range of the line analysis of the three straight lines is set to the entire range in the thickness direction of the in-plane magnetized film (when the target of the composition analysis is the in-plane magnetized film multilayer structure, It is necessary to select one point of a black circle 82 and two points of two white circles 84 so that the entire range from the in-plane magnetized film of the uppermost layer to the in-plane magnetized film of the lowermost layer can be obtained.
  • EDX energy dispersive X-ray analysis
  • EMAX Evolution manufactured by Horiba Ltd. was used as the elemental analysis device.
  • the specific analysis conditions are as follows. That is, the X-ray detector was a Si drift detector, the X-ray extraction angle was 24.8 °, and the solid angle was about 2.2 sr. Second / point, the scanning point interval was set to 0.6 nm, and the irradiation beam diameter was set to about 0.2 nm ⁇ .
  • the conditions described in this paragraph may be referred to as “analytical conditions for procedure 3”.
  • FIG. 5 shows the result of the line analysis (elemental analysis) performed along the black line (the line in the thickness direction of the in-plane magnetized film that passes through the black dots) in FIG. 4 (observed image of Example 45).
  • the vertical axis represents the detected intensity for each element
  • the horizontal axis represents the scanning position.
  • Each element shown in the legend in FIG. 5 is an element for which sufficient detection intensity was confirmed, and in the case of this Example 45, the elements for which sufficient detection intensity was confirmed were Co, Pt, W, O, Ru. Met.
  • the K ⁇ 1 ray was selected for detecting Co and O
  • the L ⁇ 1 ray was selected for detecting Pt, Ru, and W.
  • each detection intensity was corrected by subtracting the detection intensity in the blank measurement measured in advance.
  • the final end (bottom end) of the line analysis in FIG. 4 is the Si substrate. This part is theoretically not detected except for Si and O due to surface oxidation. Therefore, since the detected values other than Si and O detected at this location are considered to be unavoidable detection error values in the device, the presence of the element is indicated only when the detected intensity is larger than this value. I decided.
  • Example 45 has an in-plane magnetized film multilayer structure, and an in-plane magnetized film having a thickness of 25 nm per layer was formed by using a sputtering target having a composition of (Co-20Pt) -30 vol% WO 3. At the same time, the metal Ru non-magnetic intermediate layer was formed so as to be located between the in-plane magnetized films by 2 nm each between the layers of the in-plane magnetized film. When forming the metallic Ru non-magnetic intermediate layer, a sputtering target having a composition of 100 at% Ru was used.
  • Co, Pt, W, and O were mainly confirmed in the in-plane magnetized film, and Ru was mainly confirmed in the nonmagnetic intermediate layer.
  • the detection intensity based on the constituent elements of the in-plane magnetized film is partially confirmed. This is because the elements in the vertically adjacent layers are slightly diffused by the sputtering heat during film formation. This is because However, as far as the distribution of each main element in the in-plane magnetized film and the non-magnetic intermediate layer is seen, it was confirmed that the film was formed as designed.
  • Example 18 boron (B) oxide (B 2 O 3 ) is used for the in-plane magnetized film, but since boron (B) is a light element having a smaller atomic number than oxygen (O), It cannot be detected by analysis on EDX. Therefore, in the composition of the in-plane magnetized film in Example 18, the composition ratio of Co and Pt can be determined, but the B 2 O 3 content cannot be determined.
  • the in-plane magnetized film, the in-plane magnetized film multilayer structure, the hard bias layer, the magnetoresistive element, and the sputtering target according to the present invention have a coercive force Hc of 2.00 kOe or more and a residual magnetization Mrt per unit area.
  • the magnetic performance of 2.00 memu / cm 2 or more can be realized without heating film formation, and has industrial applicability.

Abstract

2.00kOe以上の保磁力Hcを有し、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるCoPt-酸化物系の面内磁化膜を提供する。 磁気抵抗効果素子(12)のハードバイアス層(14)として用いられる面内磁化膜(10)であって、金属Co、金属Ptおよび酸化物を含有してなり、面内磁化膜(10)の金属成分の合計に対して、金属Coを55at%以上95at%未満含有し、金属Ptを5at%より多く45at%以下含有し、面内磁化膜(10)の全体に対して前記酸化物を10vol%以上42vol%以下含有し、厚さが20nm以上80nm以下である。

Description

面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット
 本発明は、面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲットに関し、詳細には、保磁力Hcが2.00kOe以上で、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるという磁気的性能を、基板を加熱して行う成膜(以下、加熱成膜と記すことがある。)を行わずに実現することができるCoPt-酸化物系の面内磁化膜、CoPt-酸化物系の面内磁化膜多層構造およびハードバイアス層に関するとともに、前記CoPt-酸化物系の面内磁化膜、前記CoPt-酸化物系の面内磁化膜多層構造または前記ハードバイアス層に関連する、磁気抵抗効果素子およびスパッタリングターゲットに関する。前記CoPt-酸化物系の面内磁化膜および前記CoPt-酸化物系の面内磁化膜多層構造は、磁気抵抗効果素子のハードバイアス層に用いることができる。
 保磁力Hcが2.00kOe以上であり、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるハードバイアス層であれば、現状の磁気抵抗効果素子のハードバイアス層と比べて同等程度以上の保磁力および残留磁化を有していると考えられる。なお、本願において、ハードバイアス層とは、磁気抵抗効果を発揮する磁性層(以下、フリー磁性層と記すことがある。)にバイアス磁界を加える薄膜磁石のことである。
 現在多くの分野で磁気センサが用いられているが、汎用的に用いられている磁気センサの1つに磁気抵抗効果素子がある。
 磁気抵抗効果素子は、磁気抵抗効果を発揮する磁性層(フリー磁性層)と、該磁性層(フリー磁性層)にバイアス磁界を加えるハードバイアス層と、を有してなり、ハードバイアス層には、所定以上の大きさの磁界を安定的にフリー磁性層に印加できることが求められている。
 したがって、ハードバイアス層には、高い保磁力および残留磁化が求められる。
 しかしながら、現状の磁気抵抗効果素子のハードバイアス層の保磁力は、2kOe程度であり(例えば、特許文献1の図7)、これ以上の保磁力の実現が望まれている。
 また、単位面積当たりの残留磁化は、2memu/cm2程度以上であることが望まれている(例えば、特許文献2の段落0007)。
 これらに対応できる可能性のある技術として、例えば特許文献3に記載の技術がある。特許文献3に記載の技術は、センサ積層体(フリー磁性層を備えた積層体)とハードバイアス層との間に設けたシード層(Ta層と、そのTa層の上に形成され、面心立方(111)結晶構造または六方最密(001)結晶構造を有する金属層とを含む複合シード層)により、長手方向に容易軸を向かせるように磁性材料を配向させ、ハードバイアス層の保磁力の向上を試みた手法である。しかしながら、ハードバイアス層に望まれる前記磁気特性を満たしていない。また、この手法では、保磁力向上のため、センサ積層体とハードバイアス層との間に設けたシード層を厚くする必要がある。このため、センサ積層体中のフリー磁性層への印加磁場が弱くなるという問題も抱える構造である。
 また、特許文献4には、ハードバイアス層に用いる磁性材にFePtを用いることや、Pt又はFeシード層を有するFePtハードバイアス層、及びPt又はFeのキャッピング層が記載されており、この特許文献4では、焼なまし温度が約250~350℃である焼なましの間に、シード層及びキャッピング層内のPt又はFe、ならびにハードバイアス層内のFePtが互いに混ざり合う構造が提案されている。しかしながら、このハードバイアス層の形成に必要な加熱工程においては、既に積層されている他の膜への影響を考慮する必要があり、この加熱工程は可能な限り避けるべき工程である。
 特許文献5では、焼なまし温度の最適化が行われて、焼なまし温度を200℃程度まで下げることが可能であることが示され、ハードバイアス層の保磁力が3.5kOe以上であることが示されているが、単位面積当たりの残留磁化は1.2memu/cm2程度であり、ハードバイアス層に望まれている前記磁気特性を満たしていない。
 なお、特許文献6には、長手記録用磁気記録媒体が記載されており、その磁性層は、六方最密充填構造を有する強磁性結晶粒と、それを取り巻く主に酸化物からなる非磁性粒界とからなるグラニュラ構造であるが、このようなグラニュラ構造が磁気抵抗効果素子のハードバイアス層へ用いられた事例は無い。また、特許文献6に記載の技術は、磁気記録媒体の課題である信号対雑音比の低減を目的としており、磁性層の層間に非磁性層を用いて磁性層を多層化させているが、その上下の磁性層同士は反強磁性結合を有しており、磁性層の保持力の向上には適さない構造となっている。
特開2008-283016号公報 特表2008-547150号公報 特開2011-008907号公報 米国特許出願公開第2009/027493A1号公報 特開2012-216275号公報 特開2003-178423号公報
 実際の磁気抵抗効果素子への適用を視野に入れた場合、センサ積層体(フリー磁性層を備えた積層体)およびハードバイアス層は、できるだけ薄くすることが好ましく、また、加熱成膜は行わないことが好ましい。
 この条件を満たした上で、現状の磁気抵抗効果素子のハードバイアス層の保磁力(2kOe程度)および単位面積当たりの残留磁化(2memu/cm2程度)を上回るハードバイアス層を得るためには、現状のハードバイアス層に用いられている元素や化合物とは異なる元素や化合物を探索していく必要があると本発明者は考え、また、酸化物をCoPt系の面内磁化膜に適用することが有望であるのではないかと本発明者は考えた。また、酸化物を適用したCoPt系の面内磁化膜を非磁性中間層を用いて多層化することも有望であるのではないかと本発明者は考えた。
 本発明は、かかる点に鑑みてなされたものであり、保磁力Hcが2.00kOe以上で、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるという磁気的性能を、加熱成膜を行わずに達成することができる面内磁化膜、面内磁化膜多層構造およびハードバイアス層を提供することを課題とし、併せて、前記面内磁化膜、前記面内磁化膜多層構造または前記ハードバイアス層に関連する、磁気抵抗効果素子およびスパッタリングターゲットを提供することも補足的な課題とする。
 本発明は、以下の面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲットにより、前記課題を解決したものである。
 即ち、本発明に係る面内磁化膜は、磁気抵抗効果素子のハードバイアス層として用いられる面内磁化膜であって、金属Co、金属Ptおよび酸化物を含有してなり、当該面内磁化膜の金属成分の合計に対して、金属Coを55at%以上95at%未満含有し、金属Ptを5at%より多く45at%以下含有し、当該面内磁化膜の全体に対して前記酸化物を10vol%以上42vol%以下含有し、厚さが20nm以上80nm以下であることを特徴とする面内磁化膜である。
 本願において、ハードバイアス層とは、磁気抵抗効果を発揮するフリー磁性層にバイアス磁界を加える薄膜磁石のことである。
 また、本願において、面内磁化膜の「単位面積あたりの残留磁化」とは、当該面内磁化膜の単位体積当たりの残留磁化に、当該面内磁化膜の厚さを乗じた値のことである。
 前記面内磁化膜は、CoPt合金結晶粒と前記酸化物の結晶粒界とからなるグラニュラ構造を有してなるように構成してもよい。
 ここで、結晶粒界とは、結晶粒の境界のことである。
 前記酸化物は、Ti、Si、W、B、Mo、Ta、Nbの酸化物のうちの少なくとも1種を含むものを用いてもよい。
 本発明に係る面内磁化膜多層構造の第1の態様は、磁気抵抗効果素子のハードバイアス層として用いられる面内磁化膜多層構造であって、複数の面内磁化膜と、非磁性中間層と、を有してなり、前記非磁性中間層は、前記面内磁化膜同士の間に配置されており、かつ、前記非磁性中間層を挟んで隣り合う前記面内磁化膜同士は強磁性結合をしており、前記面内磁化膜は、金属Co、金属Ptおよび酸化物を含有してなり、当該面内磁化膜の金属成分の合計に対して、金属Coを55at%以上95at%未満含有し、金属Ptを5at%より多く45at%以下含有し、当該面内磁化膜の全体に対して前記酸化物を10vol%以上42vol%以下含有しており、前記面内磁化膜多層構造は、保磁力が2.00kOe以上であり、かつ、単位面積当たりの残留磁化が2.00memu/cm2以上であることを特徴とする面内磁化膜多層構造である。
 ここで、本願において、非磁性中間層とは、面内磁化膜同士の間に配置される非磁性層のことである。
 また、本願において、強磁性結合とは、非磁性中間層を挟んで隣り合う磁性層(ここでは、前記面内磁化膜)のスピンが平行(同じ向き)になっているときに働く交換相互作用に基づく結合のことである。
 また、本願において、面内磁化膜多層構造の「単位面積あたりの残留磁化」とは、当該面内磁化膜多層構造に含まれる面内磁化膜の単位体積当たりの残留磁化に、当該面内磁化膜多層構造に含まれる面内磁化膜の厚さの合計の値を乗じた値のことである。
 本発明に係る面内磁化膜多層構造の第2の態様は、磁気抵抗効果素子のハードバイアス層として用いられる面内磁化膜多層構造であって、複数の面内磁化膜と、結晶構造が六方最密充填構造である非磁性中間層と、を有してなり、前記非磁性中間層は、前記面内磁化膜同士の間に配置されており、かつ、前記非磁性中間層を挟んで隣り合う前記面内磁化膜同士は強磁性結合をしており、前記面内磁化膜は、金属Co、金属Ptおよび酸化物を含有してなり、当該面内磁化膜の金属成分の合計に対して、金属Coを55at%以上95at%未満含有し、金属Ptを5at%より多く45at%以下含有し、当該面内磁化膜の全体に対して前記酸化物を10vol%以上42vol%以下含有してなり、前記複数の面内磁化膜の合計の厚さは20nm以上であることを特徴とする面内磁化膜多層構造である。
 前記非磁性中間層は、RuまたはRu合金からなることが好ましい。
 前記面内磁化膜多層構造において、前記面内磁化膜は、CoPt合金結晶粒と前記酸化物の結晶粒界とからなるグラニュラ構造を有してなるように構成してもよい。
 前記面内磁化膜多層構造において、前記酸化物は、Ti、Si、W、B、Mo、Ta、Nbの酸化物のうちの少なくとも1種を含むものを用いてもよい。
 本発明に係るハードバイアス層は、前記面内磁化膜または前記面内磁化膜多層構造を有してなることを特徴とするハードバイアス層である。
 本発明に係る磁気抵抗効果素子は、前記ハードバイアス層を有してなることを特徴とする磁気抵抗効果素子である。
 本発明に係るスパッタリングターゲットは、磁気抵抗効果素子のハードバイアス層の少なくとも一部として用いられる面内磁化膜を室温成膜で形成する際に用いるスパッタリングターゲットであって、金属Co、金属Ptおよび酸化物を含有してなり、当該スパッタリングターゲットの金属成分の合計に対して、金属Coを60at%以上95at%未満含有し、金属Ptを5at%より多く40at%以下含有し、当該スパッタリングターゲットの全体に対して前記酸化物を10vol%以上40vol%以下含有し、形成する前記面内磁化膜は、保磁力が2.00kOe以上で、かつ、単位面積当たりの残留磁化が2.00memu/cm2以上であることを特徴とするスパッタリングターゲットである。
 ここで、室温成膜とは、基板加熱をせずに成膜することを意味する。
 本発明によれば、保磁力Hcが2.00kOe以上で、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるという磁気的性能を、加熱成膜を行わずに実現することができる面内磁化膜、面内磁化膜多層構造およびハードバイアス層を提供することができる。
本発明の第1実施形態に係るCoPt-酸化物系の面内磁化膜10を、磁気抵抗効果素子12のハードバイアス層14に適用している状態を模式的に示す断面図。 本発明の第2実施形態に係る面内磁化膜多層構造20を、磁気抵抗効果素子24のハードバイアス層26に適用している状態を模式的に示す断面図。 薄片化処理を行った後の薄片化サンプル80の形状を模式的に示す斜視図。 走査透過電子顕微鏡を用いて撮像して取得した観察像の一例(実施例45の観察像)。 実施例45の面内磁化膜の厚さ方向に行った(図4中の黒線に沿って行った)線分析(元素分析)の結果。
(1)第1実施形態
 図1は、本発明の第1実施形態に係る面内磁化膜10を、磁気抵抗効果素子12のハードバイアス層14に適用している状態を模式的に示す断面図である。なお、図1においては、下地層(面内磁化膜10は下地層の上に形成される)の記載は省略している。
 ここでは、磁気抵抗効果素子12としてトンネル型磁気抵抗効果素子を念頭に置いて図1に示す構成の説明を行うが、本第1実施形態に係る面内磁化膜10は、トンネル型磁気抵抗効果素子のハードバイアス層への適用に限定されるわけではなく、例えば巨大磁気抵抗効果素子、異方性磁気抵抗効果素子のハードバイアス層への適用も可能である。
 磁気抵抗効果素子12(ここでは、トンネル型磁気抵抗効果素子)は、非常に薄い非磁性トンネル障壁層(以下、バリア層54)によって分離された2つの強磁性層(フリー磁性層16、ピン層52)を有する。ピン層52は、隣接する反強磁性層(図示せず)との交換結合により固定されることなどによって、その磁化方向が固定されている。フリー磁性層16は、外部磁界が存在する状態で、その磁化方向を、ピン層52の磁化方向に対して自由に回転させることができる。フリー磁性層16が外部磁界によってピン層52の磁化方向に対して回転すると、電気抵抗が変化するため、この電気抵抗の変化を検出することで、外部磁界を検出することができる。
 ハードバイアス層14は、フリー磁性層16にバイアス磁界を加えて、フリー磁性層16の磁化方向軸を安定させる役割を有する。絶縁層50は電気的な絶縁材料で形成されており、センサ積層体(フリー磁性層16、バリア層54、ピン層52)を垂直方向に流れるセンサ電流が、センサ積層体(フリー磁性層16、バリア層54、ピン層52)の両側のハードバイアス層14に分流するのを抑制する役割を有する。
 図1に示すように、本第1実施形態に係る面内磁化膜10は、磁気抵抗効果素子12のハードバイアス層14として用いることができ、磁気抵抗効果を発揮するフリー磁性層16にバイアス磁界を加えることができる。ハードバイアス層14は、本第1実施形態に係る面内磁化膜10のみで構成されており、面内磁化膜10の単層で構成されている。
 本第1実施形態に係る面内磁化膜10は、酸化物を含有し、現状の磁気抵抗効果素子のハードバイアス層の保磁力と比べて同等程度以上の保磁力(2.00kOe以上の保磁力)および単位面積当たりの残留磁化(2.00memu/cm2以上)を有する単層の面内磁化膜である。具体的には、本第1実施形態に係る面内磁化膜10は、CoPt-酸化物系の面内磁化膜であり、金属Co、金属Ptおよび酸化物を含有してなり、当該面内磁化膜の金属成分の合計に対して、金属Coを55at%以上95at%未満含有し、金属Ptを5at%より多く45at%以下含有し、当該面内磁化膜の全体に対して前記酸化物を10vol%以上42vol%以下含有し、厚さが20nm以上80nm以下である。
 なお、本願では、金属Coを単にCoと記載し、金属Ptを単にPtと記載し、金属Ruを単にRuと記載することがある。また、他の金属元素についても同様に記載することがある。
(1-1)面内磁化膜10の構成成分
 本第1実施形態に係る面内磁化膜10は、前述したように、金属成分としてCoおよびPtを含有し、また、酸化物を含有する。
 金属Coおよび金属Ptは、スパッタリングによって形成される面内磁化膜において、磁性結晶粒(微小な磁石)の構成成分となる。
 Coは強磁性金属元素であり、面内磁化膜中の磁性結晶粒(微小な磁石)の形成において中心的な役割を果たす。スパッタリングによって得られる面内磁化膜中のCoPt合金結晶粒(磁性結晶粒)の結晶磁気異方性定数Kuを大きくするという観点および得られる面内磁化膜中のCoPt合金結晶粒(磁性結晶粒)の磁性を維持するという観点から、本実施形態に係る面内磁化膜中のCoの含有割合は、当該面内磁化膜中の金属成分の合計に対して55at%以上95at%未満としている。また、同様の点から、本実施形態に係る面内磁化膜中のCoの含有割合は、当該面内磁化膜中の金属成分の合計に対して55at%以上80at%以下であることが好ましく、65at%以上75at%以下であることがより好ましい。
 Ptは、所定の組成範囲でCoと合金化することにより合金の磁気モーメントを低減させる機能を有し、磁性結晶粒の磁性の強さを調整する役割を有する。一方、スパッタリングによって得られる面内磁化膜中のCoPt合金結晶粒(磁性結晶粒)の結晶磁気異方性定数Kuを大きくして、面内磁化膜の保磁力を大きくするという機能を有する。面内磁化膜の保磁力を大きくするという観点および得られる面内磁化膜中のCoPt合金結晶粒(磁性結晶粒)の磁性を調整するという観点から、本実施形態に係る面内磁化膜中のPtの含有割合は、当該面内磁化膜中の金属成分の合計に対して5at%より多く45at%以下としている。また、同様の点から、本実施形態に係る面内磁化膜中のPtの含有割合は、当該面内磁化膜中の金属成分の合計に対して20at%以上40at%以下であることが好ましく、25at%以上35at%以下であることがより好ましい。
 本第1実施形態に係る面内磁化膜10が含有する酸化物は、Ti、Si、W、B、Mo、Ta、Nbの酸化物のうちの少なくとも1種を含む。そして、面内磁化膜10中において、前記のような酸化物からなる非磁性体によって、CoPt合金磁性結晶粒同士が仕切られており、グラニュラ構造が形成されている。即ち、このグラニュラ構造は、CoPt合金結晶粒とその周囲を取り囲む前記酸化物の結晶粒界とからなる。
 したがって、面内磁化膜10中の酸化物の含有量を多くした方が磁性結晶粒同士の間を確実に仕切りやすくなり、磁性結晶粒同士を独立させやすくなるので好ましい。この観点から、本第1実施形態に係る面内磁化膜10中に含まれる酸化物の含有量を、10vol%以上にしており、また、同様の観点から、本第1実施形態に係る面内磁化膜10中に含まれる酸化物の含有量は、12.5vol%以上であることが好ましく、15vol%以上であることがより好ましい。
 ただし、面内磁化膜10中の酸化物の含有量が多くなりすぎると、酸化物がCoPt合金結晶粒(磁性結晶粒)中に混入してCoPt合金結晶粒(磁性結晶粒)の結晶性に悪影響を与えて、CoPt合金結晶粒(磁性結晶粒)においてhcp以外の構造の割合が増えるおそれがある。この観点から、本第1実施形態に係る面内磁化膜10中に含まれる酸化物の含有量を、42vol%以下にしており、また、同様の観点から、本第1実施形態に係る面内磁化膜10中に含まれる酸化物の含有量は、37.5vol%以下であることが好ましく、35vol%以下であることがより好ましい。
 したがって、本第1実施形態においては、面内磁化膜10中に含まれる酸化物の含有量を、10vol%以上42vol%以下にしており、また、本第1実施形態に係る面内磁化膜10中に含まれる酸化物の含有量は、12.5vol%以上37.5vol%以下であることが好ましく、15vol%以上35vol%以下であることがより好ましい。
 後述する実施例で実証しているように、酸化物としてWO3またはMoO3を含むと、面内磁化膜10の保磁力Hcが大きくなるので、酸化物としてWO3またはMoO3を含むことが好ましい。
 なお、現状の面内磁化膜では、CoPt合金結晶粒(磁性結晶粒)同士を仕切る粒界材料として、Cr、W、Ta、B等の単体元素が用いられているため、粒界材料が、ある程度、CoPt合金に固溶すると考えられる。このため、現状の面内磁化膜のCoPt合金結晶粒(磁性結晶粒)は、結晶性に悪影響を受けて飽和磁化および残留磁化が低減していると考えられ、現状の面内磁化膜は、その保磁力Hcおよび残留磁化の値が悪影響を受けていると考えられる。
 一方、本第1実施形態に係る面内磁化膜10においては、粒界材料が酸化物であるので、粒界材料がCr、W、Ta、B等の単体元素の場合と比べて、粒界材料がCoPt合金に固溶しにくい。このため、本第1実施形態に係る面内磁化膜10中のCoPt合金結晶粒(磁性結晶粒)の飽和磁化および残留磁化は大きくなり、また、本第1実施形態に係る面内磁化膜10の保磁力Hcおよび残留磁化は大きくなる。このことは、後述する実施例で実証している。
(1-2)面内磁化膜10の厚さ
 後述する実施例で実証しているように、CoPt-WO3面内磁化膜の厚さ(非磁性中間層を設けない単層の場合)が20nmを下回ると、単位面積当たりの残留磁化Mrtが2.00memu/cm2未満となり(比較例7)、CoPt-WO3面内磁化膜の厚さ(非磁性中間層を設けない単層の場合)が80nmを上回ると、保磁力Hcが2.00kOeを下回る(比較例8、9)ので、CoPt-WO3面内磁化膜が単層である本第1実施形態に係る面内磁化膜10の厚さは、20nm以上80nm以下に設定している。
 ただし、後述する実施例で実証しているように、単層のCoPt-WO3面内磁化膜の厚さが20~40nmのとき保磁力Hcが大きくなり(実施例9、12、13)、20~30nmのとき保磁力Hcが特に大きくなる(実施例9、12)ので、本第1実施形態に係る面内磁化膜の厚さは、20~40nmであることが好ましく、20~30nmであることがより好ましい。
(1-3)面内磁化膜10の保磁力および残留磁化
 本第1実施形態に係る面内磁化膜10は、現状の磁気抵抗効果素子のハードバイアス層の保磁力と比べて同等程度以上の保磁力(2.00kOe以上の保磁力)および同等程度以上の単位面積当たりの残留磁化(2.00memu/cm2以上)を有する単層の面内磁化膜である。
 後述する第2実施形態で詳述するように、本第1実施形態に係る面内磁化膜10を、非磁性中間層22(図2参照)を介在させて多層化することにより、残留磁化の値を維持したまま、保磁力をさらに向上させることができる。このことは、後述する実施例で実証している。
(1-4)下地膜
 本第1実施形態に係る面内磁化膜10を形成する際に用いる下地膜としては、面内磁化膜10の磁性粒子(CoPt合金粒子)と同じ結晶構造(六方最密充填構造hcp)である金属RuまたはRu合金からなる下地膜が適している。
 積層する面内磁化膜(CoPt-酸化物)10の磁性結晶粒(CoPt合金粒子)を整然と面内配向させるため、用いるRu下地膜またはRu合金下地膜の表面には、(10.0)面または(11.0)面が多く配置されるようにすることが好ましい。
 なお、本発明に係る面内磁化膜を形成する際に用いる下地膜は、Ru下地膜またはRu合金下地膜に限定されるわけではなく、得られる面内磁化膜のCoPt磁性結晶粒を面内配向させ、かつ、CoPt磁性結晶粒同士の磁気的な分離を促進させることができる下地膜であれば使用可能である。
(1-5)スパッタリングターゲット
 本第1実施形態に係る面内磁化膜10を作製する際に用いるスパッタリングターゲットは、磁気抵抗効果素子12のハードバイアス層14の少なくとも一部として用いられる面内磁化膜10を室温成膜で形成する際に用いるスパッタリングターゲットであって、金属Co、金属Ptおよび酸化物を含有してなり、当該スパッタリングターゲットの金属成分の合計に対して、金属Coを60at%以上95at%未満含有し、金属Ptを5at%より多く40at%以下含有し、当該スパッタリングターゲットの全体に対して前記酸化物を10vol%以上40vol%以下含有し、形成する面内磁化膜は、保磁力が2.00kOe以上で、かつ、単位面積当たりの残留磁化が2.00memu/cm2以上である。後述する「(J)作製したCoPt-酸化物系の面内磁化膜の組成分析」に記載しているように、作製したCoPt-酸化物系の面内磁化膜の実際の組成(組成分析によって得られた組成)と、当該CoPt-酸化物系の面内磁化膜の作製に用いたスパッタリングターゲットの組成とはずれが生じるので、前記したスパッタリングターゲットに含まれる各元素の組成範囲は、そのずれを考慮して設定した組成範囲であり、本第1実施形態に係る面内磁化膜10に含まれる各元素の組成範囲とは一致していない。
 このスパッタリングターゲットの構成成分(金属Co、金属Ptおよび酸化物)についての説明は、前記「(1-1)面内磁化膜10の構成成分」に記載した面内磁化膜の構成成分についての説明と同様であるので、説明は省略する。
(1-6)面内磁化膜10の形成方法
 本第1実施形態に係る面内磁化膜10は、前記「(1-5)スパッタリングターゲット」に記載したスパッタリングターゲットを用いてスパッタリングを行って、所定の下地膜(前記「(1-4)下地膜」に記載した下地膜)の上に成膜して形成する。なお、この成膜過程で加熱することは不要であり、本第1実施形態に係る面内磁化膜10は、室温成膜で形成することが可能である。
(2)第2実施形態
 図2は、本発明の第2実施形態に係る面内磁化膜多層構造20を、磁気抵抗効果素子24のハードバイアス層26に適用している状態を模式的に示す断面図である。
 以下、本第2実施形態に係る面内磁化膜多層構造20について説明するが、面内磁化膜10の構成成分、面内磁化膜10の保持力および残留磁化、面内磁化膜10を形成する際に用いる下地膜、面内磁化膜10を作製する際に用いるスパッタリングターゲット、および面内磁化膜10の形成方法については、すでに「(1)第1実施形態」において説明を行っているので、説明は省略する。
 図2に示すように、本発明の第2実施形態に係る面内磁化膜多層構造20は、第1実施形態に係る面内磁化膜10を複数備え、さらに、その複数の第1実施形態に係る面内磁化膜10同士の間に、非磁性中間層22を備えており、面内磁化膜10が非磁性中間層22を介して複数積み重ねられた構造になっている。
 面内磁化膜多層構造20において、面内磁化膜10の1層当たりの厚さは、標準的には5nm以上30nm以下である。また、面内磁化膜10の総厚(合計の厚さ)は、残留磁化Mrtを2meum/cm2以上にする観点から、20nm以上にしている。また、面内磁化膜10の総厚(合計の厚さ)の上限に関しては、後述するように、非磁性中間層22が介在することによって分離された隣り合う面内磁化膜10同士は強磁性結合を行うため、面内磁化膜10の総厚(合計の厚さ)が大きくなっても、理論上は保磁力Hcは小さくならず、上限はない。実際に、後述する実施例によって、少なくとも総厚(合計の厚さ)が100nmまでは、保磁力Hcが2kOe以上となることを確認している。また、面内磁化膜多層構造20における面内磁化膜10の1層当たりの厚さに関しては、保磁力Hcをより大きくする観点から、5nm以上15nm以下であることが好ましく、10nm以上15nm以下であることがより好ましい。
 本第2実施形態に係る面内磁化膜多層構造20は、磁気抵抗効果素子24のハードバイアス層26として用いることができ、磁気抵抗効果を発揮するフリー磁性層28にバイアス磁界を加えることができる。
 非磁性中間層22は、第1実施形態に係る面内磁化膜10同士の間に介在して、面内磁化膜10を分離し、面内磁化膜10を多層化する役割を有する。面内磁化膜10を非磁性中間層22を介在させて多層化することにより、残留磁化Mrtの値を維持したまま、保磁力Hcをさらに向上させることができる。
 非磁性中間層22が介在することによって分離された隣り合う面内磁化膜10同士は、スピンが平行(同じ向き)になるように配置する。このように配置することにより、非磁性中間層22が介在することによって分離された隣り合う面内磁化膜10同士は強磁性結合を行うため、面内磁化膜10は、残留磁化Mrtの値を維持したまま、保磁力Hcをさらに向上させることができる。
 したがって、本第2実施形態に係る面内磁化膜多層構造20は良好な保磁力Hcを発現することができる。
 非磁性中間層22に用いる金属は、CoPt合金磁性結晶粒の結晶構造を損なわないようにする観点から、CoPt合金磁性結晶粒と同じ結晶構造(六方最密充填構造hcp)の金属にする。具体的には、非磁性中間層22としては、面内磁化膜10中のCoPt合金磁性結晶粒の結晶構造と同じ結晶構造(六方最密充填構造hcp)である金属RuまたはRu合金を好適に用いることができる。
 非磁性中間層22に用いる金属がRu合金の場合の添加元素としては、具体的には例えば、Cr、Pt、Coを用いることができ、それらの金属の添加量の範囲は、Ru合金が六方最密充填構造hcpとなる範囲とするのがよい。
 アーク溶解を行ってRu合金のバルクサンプルを作製し、X線回折装置(XRD:((株)リガク製 SmartLab)によってX線回折のピーク解析を行ったところ、RuCr合金においては、Crの添加量が50at%のときに、六方最密充填構造hcpとRuCr2の混相が確認されたので、非磁性中間層22にRuCr合金を用いる場合、Crの添加量は50at%未満とするのが適当であり、40at%未満とすることが好ましく、30at%未満とすることがより好ましい。また、RuPt合金においては、Ptの添加量が15at%のときに、六方最密充填構造hcpとPt由来の面心立方構造fccの混相が確認されたので、非磁性中間層22にRuPt合金を用いる場合、Ptの添加量は15at%未満とするのが適当であり、12.5at%未満とすることが好ましく、10at%未満とすることがより好ましい。また、RuCo合金においては、Coの添加量に関わらず六方最密充填構造hcpを形成するが、Coを40at%以上添加すると磁性体となるため、Coの添加量は40at%未満とするのが適当であり、30at%未満とすることが好ましく、20at%未満とすることがより好ましい。
 また、非磁性中間層22の厚さは、0.3nm以上3nm以下が好ましい。後述する実施例で実証しているように、金属RuまたはRu合金からなる厚さ0.3nm以上3nm以下の非磁性中間層を用いることにより、面内磁化膜10の保磁力Hcを15%程度向上させることができる。ただし、厚さ0.3nm以上3nm以下の非磁性中間層であれば、面内磁化膜10の保磁力Hcを向上させる効果はほぼ同じであるので、材料コスト低減の観点および磁気抵抗効果素子への適用のしやすさの観点(厚さが薄い方が、磁気抵抗効果素子へ適用しやすくなる。)から、非磁性中間層22の厚さは、0.3nm以上1.5nm以下がより好ましく、0.3nm以上0.6nm以下が特に好ましい。
 以下、CoPt-酸化物系の面内磁化膜について、本発明を裏付けるための実施例および比較例について記載する。以下の(A)では、CoPt-酸化物系の面内磁化膜の金属成分であるCo、Ptの組成比について検討しており、以下の(B)では、CoPt-酸化物系の面内磁化膜の酸化物(WO3)の体積比について検討しており、以下の(C)では、CoPt-酸化物系の面内磁化膜の厚さについて検討しており、以下の(D)では、CoPt-酸化物系の面内磁化膜の酸化物の種類について検討している。また、以下の(E)~(I)では、非磁性中間層によるCoPt-酸化物系の面内磁化膜の多層化について記載している。
 また、以下の(J)では、作製したCoPt-酸化物系の面内磁化膜の実際の組成(組成分析によって得られた組成)と、当該CoPt-酸化物系の面内磁化膜の作製に用いたスパッタリングターゲットの組成とのずれの程度を確認するために、実施例45、47、50、52のCoPt-WO3系の面内磁化膜を取り上げて、組成分析を行った。その結果、面内磁化膜の組成と当該面内磁化膜を作製するのに用いたスパッタリングターゲットの組成との間にずれが生じることが判明した。そのため、実際に組成分析を行った実施例45、47、50、52以外のCoPt-酸化物系の面内磁化膜の組成については、実施例45、47、50、52の組成分析結果から判明した組成のずれを考慮して、作製に用いたスパッタリングターゲットの組成から算出し、各実施例におけるCoPt-酸化物系の面内磁化膜の組成とした。
<(A)CoPt-酸化物系の面内磁化膜の金属成分であるCo、Ptの組成比についての検討(実施例1~7、比較例1、2)>
 Ru下地膜の上に形成するCoPt-酸化物系の面内磁化膜の金属成分であるCo、Ptの組成を変化させて実験データを取得した。形成するCoPt-酸化物系の面内磁化膜は単層であり、非磁性中間層は設けていない。具体的には以下の通りである。
 Si基板上に、Ru下地膜を、株式会社エイコーエンジニアリング製ES-3100Wを用いてスパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜を同装置を用いてスパッタリング法により厚さ50nmとなるように形成した。この成膜過程では基板加熱を行っておらず、室温成膜で行った。なお、本願の実施例および比較例においてスパッタリングの際に用いたスパッタリング装置は株式会社エイコーエンジニアリング製ES-3100Wであるが、以下では装置名の記載は省略する。
 形成するCoPt-酸化物系の面内磁化膜の金属成分であるCoとPtの合計に対するPtの含有割合を、5.7at%から50.5at%まで5.6at%刻みで変化させてサンプルを作製し、データを取得した。
 作製したCoPt-酸化物系の面内磁化膜のヒステリシスループを振動型磁力計(VSM:(株)玉川製作所製 TM-VSM211483-HGC型)(以下、振動型磁力計と記す。)により測定した。測定したヒステリシスループから、保磁力Hc(kOe)および残留磁化Mr(memu/cm3)を読み取った。そして、読み取った残留磁化Mr(memu/cm3)に、作製したCoPt-酸化物系の面内磁化膜の膜厚50nmを乗じて、作製したCoPt-酸化物系の面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)を算出した。それらの結果を、次の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、CoPt-酸化物系の面内磁化膜の金属成分(Co、Pt)の合計に対するPtの含有量が10~45at%、CoPt-酸化物系の面内磁化膜の全体に対する酸化物(WO3)の体積比が31.0vol%で、かつ、厚さが50nmであり、本発明の範囲に含まれる実施例1~7は、保磁力Hcが2.00kOe以上で、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるという磁気的性能を、基板加熱をしない室温成膜で実現している。
 一方、CoPt-酸化物系の面内磁化膜の金属成分(Co、Pt)の合計に対するPtの含有量が5.7at%であり、本発明の範囲に含まれない比較例1は、保磁力Hcが1.47kOeであり、保磁力Hcが2.00kOe未満である。また、CoPt-酸化物系の面内磁化膜の金属成分(Co、Pt)の合計に対するPtの含有量が50.5at%であり、本発明の範囲に含まれない比較例2は、単位面積当たりの残留磁化Mrtが1.62memu/cm2であり、単位面積当たりの残留磁化Mrtが2.00memu/cm2未満である。
<(B)CoPt-酸化物系の面内磁化膜の酸化物(WO3)の体積比についての検討(実施例8~11、比較例3~6)>
 Ru下地膜の上に形成するCoPt-酸化物系の面内磁化膜の酸化物(WO3)の体積比を変化させて実験データを取得した。形成するCoPt-酸化物系の面内磁化膜は単層であり、非磁性中間層は設けていない。具体的には以下の通りである。
 Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜をスパッタリング法により厚さ30nmとなるように形成した。この成膜過程では基板加熱を行っておらず、室温成膜で行った。
 形成するCoPt-酸化物系の面内磁化膜の酸化物(WO3)の体積比を、0vol%から51.8vol%まで、5.2vol%または10.4vol%(または10.5vol%)の刻み幅で変化させてサンプルを作製し、データを取得した。
 作製したCoPt-酸化物系の面内磁化膜のヒステリシスループを振動型磁力計により測定した。測定したヒステリシスループから、保磁力Hc(kOe)および残留磁化Mr(memu/cm3)を読み取った。そして、読み取った残留磁化Mr(memu/cm3)に、作製したCoPt-酸化物系の面内磁化膜の膜厚30nmを乗じて、作製したCoPt-酸化物系の面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)を算出した。それらの結果を、次の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、CoPt-酸化物系の面内磁化膜の全体に対する酸化物(WO3)の体積比が10~42vol%、CoPt-酸化物系の面内磁化膜の金属成分(Co、Pt)の合計に対するPtの含有量が22.5at%で、かつ、厚さが30nmであり、本発明の範囲に含まれる実施例8~11は、保磁力Hcが2.00kOe以上で、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるという磁気的性能を、基板加熱をしない室温成膜で実現している。
 一方、CoPt-酸化物系の面内磁化膜の全体に対する酸化物(WO3)の体積比が0vol%であり、本発明の範囲に含まれない比較例3は、保磁力Hcが1.34kOeであり、保磁力Hcが2.00kOe未満である。また、CoPt-酸化物系の面内磁化膜の全体に対する酸化物(WO3)の体積比が4.9vol%であり、本発明の範囲に含まれない比較例4は、保磁力Hcが1.59kOeであり、保磁力Hcが2.00kOe未満である。また、CoPt-酸化物系の面内磁化膜の全体に対する酸化物(WO3)の体積比が46.6vol%であり、本発明の範囲に含まれない比較例5は、単位面積当たりの残留磁化Mrtが1.77memu/cm2であり、単位面積当たりの残留磁化Mrtが2.00memu/cm2未満である。また、CoPt-酸化物系の面内磁化膜の全体に対する酸化物(WO3)の体積比が51.8vol%であり、本発明の範囲に含まれない比較例6は、単位面積当たりの残留磁化Mrtが1.53memu/cm2であり、単位面積当たりの残留磁化Mrtが2.00memu/cm2未満である。
<(C)CoPt-酸化物系の面内磁化膜の厚さについての検討(実施例9、12~17および比較例7~9)>
 Ru下地膜の上に形成するCoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さを変化させて実験データを取得した。形成するCoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3は単層であり、非磁性中間層を設けていない。具体的には以下の通りである。
 Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3をスパッタリング法により形成した。この成膜過程では基板加熱を行っておらず、室温成膜で行った。
 スパッタリングの際には、スパッタ時間を変化させて、得られるCoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さを、10nmから100nmまで10nm刻みで変化させてサンプルを作製し、データを取得した。
 ここで、各サンプルの面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さは、スパッタレートとスパッタ時間から算出することができる。スパッタレートについては、成膜した面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さとスパッタ時間との関係を事前に測定して算出した。この際、面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さは、触針式段差計(BRUKER製 DektakXT)を用い、触針に100μNの負荷を加えて膜付着部と未付着部を通過させ、通過させた際の膜厚方向の高さの差を求めて算出した。さらに、各サンプルの面内磁化膜(Co-22.5Pt)-20.5vol%WO3の垂直断面をTEM(透過電子顕微鏡)(日立ハイテクノロジーズ製 H-9500)で観察して膜厚の確認を行った。
 作製したCoPt-酸化物系の面内磁化膜のヒステリシスループを振動型磁力計により測定した。測定したヒステリシスループから、保磁力Hc(kOe)および残留磁化Mr(memu/cm3)を読み取った。そして、読み取った残留磁化Mr(memu/cm3)に、作製したCoPt-酸化物系の面内磁化膜の膜厚を乗じて、作製したCoPt-酸化物系の面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)を算出した。それらの結果を、次の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3からわかるように、CoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さが20~80nmであり、本発明の範囲に含まれる実施例9、12~17は、保磁力Hcが2.00kOe以上で、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるという磁気的性能を、基板加熱をしない室温成膜で実現している。
 実施例9、12~17のうち、CoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さが20~40nmである実施例9、12、13は、保磁力Hcが3.5kOe以上と大きい。また、厚さが薄い方が、磁気抵抗効果素子への適用もしやすくなり、また、材料費も低減される。したがって、CoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さは20~40nmであることが好ましいと考えられる。
 一方、CoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さが10nmであり、本発明の範囲に含まれない比較例7は、単位面積当たりの残留磁化Mrtが1.26memu/cm2であり、単位面積当たりの残留磁化Mrtが2.00memu/cm2未満である。また、CoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さが90nmであり、本発明の範囲に含まれない比較例8は、保磁力Hcが1.78kOeであり、保磁力Hcが2.00kOe未満である。また、CoPt-酸化物系の面内磁化膜(Co-22.5Pt)-20.5vol%WO3の厚さが100nmであり、本発明の範囲に含まれない比較例9は、保磁力Hcが1.49kOeであり、保磁力Hcが2.00kOe未満である。
<(D)CoPt-酸化物系の面内磁化膜の酸化物の種類についての検討(実施例10、18~23)>
 Ru下地膜の上に形成するCoPt-酸化物系の面内磁化膜の酸化物の種類を種々変更して実験データを取得した。形成するCoPt-酸化物系の面内磁化膜は単層であり、非磁性中間層は設けていない。具体的には以下の通りである。
 Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜をスパッタリング法により厚さ30nmとなるように形成した。この成膜過程では基板加熱を行っておらず、室温成膜で行った。
 形成するCoPt-酸化物系の面内磁化膜の酸化物の種類を種々変更してデータを取得した。用いた酸化物は、WO3、B23、MoO3、Nb25、SiO2、Ta25、TiO2である。
 作製したCoPt-酸化物系の面内磁化膜のヒステリシスループを振動型磁力計により測定した。測定したヒステリシスループから、保磁力Hc(kOe)および残留磁化Mr(memu/cm3)を読み取った。そして、読み取った残留磁化Mr(memu/cm3)に、作製したCoPt-酸化物系の面内磁化膜の膜厚30nmを乗じて、作製したCoPt-酸化物系の面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)を算出した。それらの結果を、次の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4からわかるように、CoPt-酸化物系の面内磁化膜の酸化物として、WO3、B23、MoO3、Nb25、SiO2、Ta25、TiO2を用いた実施例10、18~23は、組成が(Co-22.5Pt)-30~31vol%酸化物で、かつ、厚さが30nmであり、本発明の範囲に含まれるが、いずれも、保磁力Hcが2.00kOe以上で、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるという磁気的性能を、基板加熱をしない室温成膜で実現している。
 酸化物としてWO3を用いた実施例10および酸化物としてMoO3を用いた実施例19においては、作製したCoPt-酸化物系の面内磁化膜の保磁力が3kOeを超えており、CoPt-酸化物系の面内磁化膜において用いる酸化物として好ましい。
<(E)非磁性中間層(金属Ru単体からなるスパッタリングターゲットを用いて作製した非磁性中間層)によるCoPt-酸化物系の面内磁化膜の多層化についての検討(実施例24~30)>
 Ru下地膜の上に形成するCoPt-酸化物系の面内磁化膜の厚さ方向の中間位置に、金属Ru単体からなるスパッタリングターゲットを用いて作製した非磁性中間層(以下、金属Ru非磁性中間層と記すことがある。)を設けて、CoPt-酸化物系の面内磁化膜を多層化(2層化)させて実験データを取得した。その際、設ける金属Ru非磁性中間層の厚さを0nmから3.0nmの範囲で変化させてデータの取得を行った。具体的には以下の通りである。
 Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜をスパッタリング法により厚さ30nmとなるように形成した後、その上に金属Ru非磁性中間層をスパッタリング法により形成し、さらにその上にCoPt-酸化物系の面内磁化膜をスパッタリング法により厚さ30nmとなるように形成した。この成膜過程では基板加熱を行っておらず、いずれも室温成膜で行った。
 金属Ru非磁性中間層の厚さを、0nm、0.3nm、0.6nm、1.2nm、1.8nm、2.4nm、3.0nmと変化させてサンプルを作製し、データを取得した。
 作製した多層化サンプルのヒステリシスループを振動型磁力計により測定した。測定したヒステリシスループから、多層化サンプルに含まれる面内磁化膜の保磁力Hc(kOe)および単位体積当たりの残留磁化Mr(memu/cm3)を読み取った。そして、作製した多層化サンプルに含まれる面内磁化膜の合計の膜厚60nmを、多層化サンプルに含まれる面内磁化膜の単位体積当たりの残留磁化Mr(memu/cm3)に乗じて、多層化サンプルに含まれる面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)を算出した。それらの結果を、次の表5に示す。なお、実施例24は、非磁性中間層を設けていない実施例であり、非磁性中間層を設けて面内磁化膜を多層化した実施例25~30と対比するための参考実施例という位置づけの実施例である。
Figure JPOXMLDOC01-appb-T000005
 表5からわかるように、金属Ru非磁性中間層を設けて面内磁化膜の多層化を行った実施例25~30は、非磁性中間層を設けておらず面内磁化膜が単層の実施例24と比べて、保磁力Hcがいずれも15%程度以上向上している。一方、単位面積当たりの残留磁化Mrt(memu/cm2)は、実施例24(面内磁化膜が単層)とほぼ同等である。
 したがって、CoPt-酸化物系の面内磁化膜を、金属Ru非磁性中間層によって多層化することにより、単位面積当たりの残留磁化Mrt(memu/cm2)を維持したまま、保磁力Hcを15%程度以上向上させることができると考えられる。
 また、金属Ru非磁性中間層を設けて面内磁化膜の多層化を行った実施例25~30においては、金属Ru非磁性中間層の厚さが0.3~3.0nmの範囲で変化しているが、保磁力Hc(kOe)および単位面積当たりの残留磁化Mrt(memu/cm2)は、ほぼ同等である。
 したがって、金属Ru非磁性中間層の厚さは、0.3~3.0nmの範囲であれば、多層化したCoPt-酸化物系の面内磁化膜への効果(保磁力Hcおよび残留磁化Mrtの点での効果)は同等であると考えられる。
<(F)非磁性中間層(Ru合金層)によるCoPt-酸化物系の面内磁化膜の多層化についての検討(実施例24、31~36)>
 Ru下地膜の上に形成するCoPt-酸化物系の面内磁化膜の厚さ方向の中間位置に、Ru合金(Ru-25Cr-25Co)からなるスパッタリングターゲットを用いて作製した非磁性中間層(以下、Ru合金非磁性中間層と記すことがある。)を設けて、CoPt-酸化物系の面内磁化膜を多層化(2層化)させて実験データを取得した。その際、設けるRu合金非磁性中間層の厚さを0nmから3.0nmの範囲で変化させてデータの取得を行った。具体的には以下の通りである。
 Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜をスパッタリング法により厚さ30nmとなるように形成した後、その上にRu合金非磁性中間層をスパッタリング法により形成し、さらにその上にCoPt-酸化物系の面内磁化膜をスパッタリング法により厚さ30nmとなるように形成した。この成膜過程では基板加熱を行っておらず、いずれも室温成膜で行った。
 Ru合金非磁性中間層の厚さを、0nm、0.3nm、0.6nm、1.2nm、1.8nm、2.4nm、3.0nmと変化させてサンプルを作製し、データを取得した。
 作製した多層化サンプルのヒステリシスループを振動型磁力計により測定した。測定したヒステリシスループから、多層化サンプルに含まれる面内磁化膜の保磁力Hc(kOe)および単位体積当たりの残留磁化Mr(memu/cm3)を読み取った。そして、作製した多層化サンプルに含まれる面内磁化膜の合計の膜厚60nmを、多層化サンプルに含まれる面内磁化膜の単位体積当たりの残留磁化Mr(memu/cm3)に乗じて、多層化サンプルに含まれる面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)を算出した。それらの結果を、次の表6に示す。なお、実施例24は、非磁性中間層を設けていない実施例であり、非磁性中間層を設けて面内磁化膜を多層化した実施例31~36と対比するための参考実施例という位置づけの実施例である。
Figure JPOXMLDOC01-appb-T000006
 表6からわかるように、Ru合金非磁性中間層を設けて面内磁化膜の多層化を行った実施例31~36は、非磁性中間層を設けておらず面内磁化膜が単層の実施例24と比べて、保磁力Hcがいずれも11%程度以上向上している。一方、単位面積当たりの残留磁化Mrt(memu/cm2)は、実施例24(面内磁化膜が単層)とほぼ同等である。
 したがって、CoPt-酸化物系の面内磁化膜を、Ru合金非磁性中間層によって多層化することにより、単位面積当たりの残留磁化Mrt(memu/cm2)を維持したまま、保磁力Hcを11%程度以上向上させることができると考えられる。
 また、Ru合金非磁性中間層を設けて面内磁化膜の多層化を行った実施例31~36においては、Ru合金非磁性中間層の厚さが0.3~3.0nmの範囲で変化しているが、保磁力Hc(kOe)および単位面積当たりの残留磁化Mrt(memu/cm2)は、ほぼ同等である。
 したがって、Ru合金非磁性中間層の厚さは、0.3~3.0nmの範囲であれば、多層化したCoPt-酸化物系の面内磁化膜への効果(保磁力Hcおよび残留磁化Mrtの点での効果)は同等であると考えられる。
 なお、非磁性中間層が金属Ru非磁性中間層である実施例25~30の保磁力Hcと、非磁性中間層がRu合金非磁性中間層である実施例31~36の保磁力Hcとを比べると、差はわずかであるが、非磁性中間層が金属Ru非磁性中間層である実施例25~30の保磁力Hcの方が大きいことが、表5および表6から読み取れるので、非磁性中間層としては、金属Ru非磁性中間層の方がRu合金非磁性中間層よりも適していると考えられる。
<(G)非磁性中間層(金属Cr単体からなるスパッタリングターゲットを用いて作製した非磁性中間層)によるCoPt-酸化物系の面内磁化膜の多層化についての検討(実施例24、比較例10~15)>
 Ru下地膜の上に形成するCoPt-酸化物系の面内磁化膜の厚さ方向の中間位置に、金属Cr単体からなるスパッタリングターゲットを用いて作製した非磁性中間層(以下、金属Cr非磁性中間層と記すことがある。)を設けて、CoPt-酸化物系の面内磁化膜を多層化(2層化)させて実験データを取得した。その際、設ける非磁性中間層の厚さを0nmから3.0nmの範囲で変化させてデータの取得を行った。具体的には以下の通りである。
 Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜をスパッタリング法により厚さ30nmとなるように形成した後、その上に金属Cr非磁性中間層を形成し、さらにその上にCoPt-酸化物系の面内磁化膜をスパッタリング法により厚さ30nmとなるように形成した。この成膜過程では基板加熱を行っておらず、室温成膜で行った。
 金属Cr非磁性中間層の厚さを、0nm、0.3nm、0.6nm、1.2nm、1.8nm、2.4nm、3.0nmと変化させてサンプルを作製し、データを取得した。
 作製した多層化サンプルのヒステリシスループを振動型磁力計により測定した。測定したヒステリシスループから、多層化サンプルに含まれる面内磁化膜の保磁力Hc(kOe)および単位体積当たりの残留磁化Mr(memu/cm3)を読み取った。そして、作製した多層化サンプルに含まれる面内磁化膜の合計の膜厚60nmを、多層化サンプルに含まれる面内磁化膜の単位体積当たりの残留磁化Mr(memu/cm3)に乗じて、多層化サンプルに含まれる面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)を算出した。それらの結果を、次の表7に示す。なお、実施例24は、非磁性中間層を設けていない実施例であり、非磁性中間層を設けて面内磁化膜を多層化した比較例10~15と対比するための参考実施例という位置づけの実施例である。
Figure JPOXMLDOC01-appb-T000007
 表7からわかるように、金属Cr非磁性中間層を設けて面内磁化膜の多層化を行った比較例10~15は、非磁性中間層を設けておらず面内磁化膜が単層の実施例24と比べて、保磁力Hcがいずれも50%以上減少している。一方、単位面積当たりの残留磁化Mrt(memu/cm2)は、実施例24(面内磁化膜が単層)と比べて、49%程度以上増加している。
 したがって、CoPt-酸化物系の面内磁化膜を、金属Cr非磁性中間層によって多層化することにより、単位面積当たりの残留磁化Mrt(memu/cm2)を49%程度以上増大させることができる一方、保磁力Hcは50%以上減少してしまうと考えられる。
 また、金属Cr非磁性中間層を設けて面内磁化膜の多層化を行った比較例10~15においては、金属Cr非磁性中間層の厚さが0.3~3.0nmの範囲で変化しているが、保磁力Hc(kOe)および単位面積当たりの残留磁化Mrt(memu/cm2)は、ほぼ同等である。
 したがって、金属Cr非磁性中間層の厚さは、0.3~3.0nmの範囲であれば、多層化したCoPt-酸化物系の面内磁化膜への効果(保磁力Hcおよび残留磁化Mrtの点での効果)は同等であると考えられる。
 以上説明したように、CoPt-酸化物系の面内磁化膜を金属Ru非磁性中間層で多層化した場合は、実施例25~30に示すように、実施例24(面内磁化膜が単層)と比べて保磁力Hcが15%程度以上向上し、Ru合金非磁性中間層で多層化した場合は、実施例31~36に示すように、実施例24(面内磁化膜が単層)と比べて保磁力Hcが11%程度以上向上しているが、金属Cr非磁性中間層で多層化した場合は、比較例10~15に示すように、実施例24(面内磁化膜が単層)と比べて保磁力Hcが50%以上減少している。この理由は、金属RuおよびRu-25Cr-25Co合金の結晶構造は、CoPt-酸化物系の面内磁化膜の磁性粒子(CoPt合金粒子)と同じ結晶構造である六方最密充填構造hcpであるのに対し、金属Crの結晶構造は、体心立方構造bccであるためと考えられる。
<(H)非磁性中間層(金属Ru単体層)によるCoPt-酸化物系の面内磁化膜の多層化における面内磁化膜1層の厚さの検討(実施例24、37~40)>
 Ru下地膜の上に形成するCoPt-酸化物系の面内磁化膜を、厚さ方向に2等分、4等分、6等分、12等分する位置に、厚さ2.0nmの金属Ru非磁性中間層を設けて、CoPt-酸化物系の面内磁化膜の合計の厚さが60nmとなるように、CoPt-酸化物系の面内磁化膜を多層化させて実験データを取得した。具体的には以下の通りである。
 Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜の厚さが30nmとなるようにスパッタリング法により形成した後、その上に厚さ2.0nmの金属Ru非磁性中間層をスパッタリング法により形成し、さらにその上にCoPt-酸化物系の面内磁化膜の厚さが30nmとなるようにスパッタリング法により形成して、CoPt-酸化物系の面内磁化膜の合計の厚さが60nmとなるように形成した(実施例37)。
 また、Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜の厚さが15nmとなるようにスパッタリング法により形成した後、その上に厚さ2.0nmの金属Ru非磁性中間層をスパッタリング法により形成し、さらにその上にCoPt-酸化物系の面内磁化膜の厚さが15nmとなるようにスパッタリング法により形成した後、その上に厚さ2.0nmの金属Ru非磁性中間層をスパッタリング法により形成し、CoPt-酸化物系の面内磁化膜の合計の厚さが60nmとなるまで同様に成膜を繰り返して、厚さ15nmのCoPt-酸化物系の面内磁化膜が4層積み重ねられた多層化サンプルを作製した(実施例38)。
 また、Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜の厚さが10nmとなるようにスパッタリング法により形成した後、その上に厚さ2.0nmの金属Ru非磁性中間層をスパッタリング法により形成し、さらにその上にCoPt-酸化物系の面内磁化膜の厚さが10nmとなるようにスパッタリング法により形成した後、その上に厚さ2.0nmの金属Ru非磁性中間層をスパッタリング法により形成し、CoPt-酸化物系の面内磁化膜の合計の厚さが60nmとなるまで同様に成膜を繰り返して、厚さ10nmのCoPt-酸化物系の面内磁化膜が6層積み重ねられた多層化サンプルを作製した(実施例39)。
 また、Si基板上に、Ru下地膜を、スパッタリング法により厚さ30nmとなるように形成し、その上にCoPt-酸化物系の面内磁化膜の厚さが5nmとなるようにスパッタリング法により形成した後、その上に厚さ2.0nmの金属Ru非磁性中間層をスパッタリング法により形成し、さらにその上にCoPt-酸化物系の面内磁化膜の厚さが5nmとなるようにスパッタリング法により形成した後、その上に厚さ2.0nmの金属Ru非磁性中間層をスパッタリング法により形成し、CoPt-酸化物系の面内磁化膜の合計の厚さが60nmとなるまで同様に成膜を繰り返して、厚さ5nmのCoPt-酸化物系の面内磁化膜が12層積み重ねられた多層化サンプルを作製した(実施例40)。
 これらの成膜過程では基板加熱を行っておらず、いずれも室温成膜で行った。
 作製した多層化サンプルのヒステリシスループを振動型磁力計により測定した。測定したヒステリシスループから、多層化サンプルに含まれる面内磁化膜の保磁力Hc(kOe)および単位体積当たりの残留磁化Mr(memu/cm3)を読み取った。そして、作製した多層化サンプルに含まれる面内磁化膜の合計の膜厚60nmを、多層化サンプルに含まれる面内磁化膜の単位体積当たりの残留磁化Mr(memu/cm3)に乗じて、多層化サンプルに含まれる面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)を算出した。それらの結果を、次の表8に示す。なお、実施例24は、非磁性中間層を設けていない実施例であり、非磁性中間層を設けて面内磁化膜を多層化した実施例37~40と対比するための参考実施例という位置づけの実施例である。
Figure JPOXMLDOC01-appb-T000008
 表8からわかるように、金属Ru非磁性中間層を設けて面内磁化膜の多層化を行った実施例37~40は、非磁性中間層を設けておらず面内磁化膜が単層の実施例24と比べて、保磁力Hcがいずれも13%程度以上向上している。一方、単位面積当たりの残留磁化Mrt(memu/cm2)は、実施例24(面内磁化膜が単層)とほぼ同等である。
 したがって、CoPt-酸化物系の面内磁化膜を、金属Ru非磁性中間層によって多層化することにより、単位面積当たりの残留磁化Mrt(memu/cm2)を維持したまま、保磁力Hcを13%程度以上向上させることができると考えられる。
 また、1層当たりの面内磁化膜の厚さが15nmで4層構造の実施例38の保磁力Hcは3.66kOeであり、非磁性中間層を設けておらず面内磁化膜が単層の実施例24と比べて、保磁力Hcが55%程度向上している。
 また、1層当たりの面内磁化膜の厚さが10nmで6層構造の実施例39の保磁力Hcは3.04kOeであり、非磁性中間層を設けておらず面内磁化膜が単層の実施例24と比べて、保磁力Hcが29%程度向上している。
 また、1層当たりの面内磁化膜の厚さが30nmで2層構造の実施例37の保磁力Hcは2.76kOeであり、非磁性中間層を設けておらず面内磁化膜が単層の実施例24と比べて、保磁力Hcが17%程度向上している。
 また、1層当たりの面内磁化膜の厚さが5nmで12層構造の実施例40の保磁力Hcは2.68kOeであり、非磁性中間層を設けておらず面内磁化膜が単層の実施例24と比べて、保磁力Hcが14%程度向上している。
 したがって、面内磁化膜を複数層にした場合、1層当たりの厚さは5~30nmが好ましく、7.5~25nmがより好ましく、10~20nmが特に好ましい。ただし、実施例9、12~17、比較例7の結果からわかるように、面内磁化膜の総厚(合計の厚さ)が20nmを下回ると、単位面積当たりの残留磁化Mrtの値が2.00memu/cm2を下回るので、面内磁化膜の合計の厚さが20nm以上であることが前提である。
<(I)非磁性中間層(金属Ru単体層)によるCoPt-酸化物系の面内磁化膜の多層化における面内磁化膜1層の厚さの追加検討および面内磁化膜多層構造における面内磁化膜の総厚についての検討(実施例41~53、比較例16、17)>
 前段落に記載したように、面内磁化膜を複数層にした場合、保磁力Hcの観点から、1層当たりの厚さは5~30nmが好ましく、7.5~25nmがより好ましく、10~20nmが特に好ましい。この点をさらに検討するため、金属Ru非磁性中間層によるCoPt-酸化物系の面内磁化膜の多層化における面内磁化膜1層の厚さの追加検討を行った。また、前記(H)における面内磁化膜多層構造についての検討では、面内磁化膜の総厚が60nmの実施例のみであったので、面内磁化膜の総厚を30nm、100nmにした面内磁化膜多層構造についても検討した。また、面内磁化膜の総厚を100nmにした面内磁化膜多層構造においては、面内磁化膜における酸化物(WO3)の含有量を31.0vol%にした場合と10.1vol%にした場合について検討した。
 非磁性中間層としては、前記(H)と同様に、厚さ2.0nmの金属Ru非磁性中間層を設けて、各面内磁化膜多層構造を作製した。また、前記(H)と同様に、成膜過程では基板加熱を行っておらず、いずれも室温成膜で行った。
 各面内磁化膜多層構造の作製における具体的な手順は、前記(H)と同様に行った。また、多層化サンプルに含まれる面内磁化膜の保磁力Hc(kOe)の測定および多層化サンプルに含まれる面内磁化膜の単位面積当たりの残留磁化Mrt(memu/cm2)の測定も、前記(H)と同様に行った。
 それらの測定結果を、次の表9~11に示す。表9は面内磁化膜の総厚が30nmの場合についての測定結果であり、表10は面内磁化膜の総厚が100nm、面内磁化膜の酸化物(WO3)含有量が31.0vol%の場合についての測定結果であり、表11は面内磁化膜の総厚が100nm、面内磁化膜の酸化物(WO3)含有量が10.1vol%の場合についての測定結果である。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表9からわかるように、金属Ru非磁性中間層を設けて面内磁化膜の多層化を行った実施例41~43(面内磁化膜の合計厚さは30nm)は、非磁性中間層を設けておらず面内磁化膜が単層の実施例10と比べて、保磁力Hcが3~11%程度向上している。一方、単位面積当たりの残留磁化Mrtは、実施例10(面内磁化膜が単層)とほぼ同等である。
 したがって、CoPt-酸化物系の面内磁化膜の厚さが30nmの場合、金属Ru非磁性中間層によって多層化することにより、単位面積当たりの残留磁化Mrtを維持したまま、保磁力Hcを3~11%程度向上させることができると考えられる。
 また、表10からわかるように、金属Ru非磁性中間層を設けて面内磁化膜の多層化を行った実施例44~48(面内磁化膜の合計厚さが100nmで、面内磁化膜の酸化物(WO3)含有量が31.0vol%)は、非磁性中間層を設けておらず面内磁化膜が単層の比較例16と比べて、保磁力Hcが2倍以上に向上している。一方、単位面積当たりの残留磁化Mrtは、比較例16(面内磁化膜が単層)とほぼ同等か、最大でも12%小さくなる程度である。
 したがって、CoPt-酸化物系の面内磁化膜の厚さが100nmで、その酸化物(WO3)含有量が31.0vol%である場合、金属Ru非磁性中間層によって多層化することにより、単位面積当たりの残留磁化Mrtをほぼ維持したまま、保磁力Hcを2倍以上に向上させることができると考えられる。
 また、表11からわかるように、金属Ru非磁性中間層を設けて面内磁化膜の多層化を行った実施例49~53(面内磁化膜の合計厚さが100nmで、面内磁化膜の酸化物(WO3)含有量が10.1vol%)は、非磁性中間層を設けておらず面内磁化膜が単層の比較例17と比べて、保磁力Hcが2倍以上に向上している。一方、単位面積当たりの残留磁化Mrtは、比較例17(面内磁化膜が単層)とほぼ同等か、最大でも12%小さくなる程度である。
 したがって、CoPt-酸化物系の面内磁化膜の厚さが100nmで、その酸化物(WO3)含有量が10.1vol%の場合、金属Ru非磁性中間層によって多層化することにより、単位面積当たりの残留磁化Mrtをほぼ維持したまま、保磁力Hcを2倍以上に向上させることができると考えられる。
 また、面内磁化膜の合計厚さが30nmである実施例41~43は、単位面積当たりの残留磁化Mrt(memu/cm2)を維持しつつ保持力を向上させる観点において、いずれも良好であるが、その中でも、実施例41(面内磁化膜の1層の厚さが15nm)および実施例42(面内磁化膜の1層の厚さが10nm)が特に良好である。
 面内磁化膜の合計厚さが100nmで、その酸化物(WO3)含有量が31.0vol%である実施例44~48は、単位面積当たりの残留磁化Mrt(memu/cm2)を維持しつつ保持力を向上させる観点において、いずれも良好であるが、その中でも、実施例45(面内磁化膜の1層の厚さが25nm)、実施例46(面内磁化膜の1層の厚さが12.5nm)および実施例47(面内磁化膜の1層の厚さが10nm)がより良好であり、実施例46および実施例47が特に良好である。
 面内磁化膜の合計厚さが100nmで、その酸化物(WO3)含有量が10.1vol%である実施例49~53は、単位面積当たりの残留磁化Mrt(memu/cm2)を維持しつつ保持力を向上させる観点において、いずれも良好であるが、その中でも、実施例50(面内磁化膜の1層の厚さが25nm)、実施例51(面内磁化膜の1層の厚さが12.5nm)および実施例52(面内磁化膜の1層の厚さが10nm)がより良好であり、実施例51および実施例52が特に良好である。
 したがって、前記(H)で記載した「面内磁化膜を複数層にした場合、保磁力Hcの観点から、1層当たりの厚さは5~30nmが好ましく、7.5~25nmがより好ましく、10~20nmが特に好ましい」点は、実施例41~53の結果からも裏付けられた。
 また、実施例41~43の結果から、面内磁化膜の合計厚さが30nmである場合について、面内磁化膜の多層化の効果を確認することができた。実施例44~53の結果から、面内磁化膜の合計厚さが100nmである場合について、面内磁化膜の多層化の効果を確認することができた。
<(J)面内磁化膜の組成分析(実施例45、47、50、52)>
 実施例45、47、50、52の面内磁化膜の組成分析を行った。以下、行った組成分析の手法の手順について概要を説明した後、各手順の内容を具体的に説明する。
[手順の概要]面内磁化膜の厚さ方向に組成分析のための線分析を行い、面内磁化膜の厚さ方向断面の線分析実施箇所から、組成の変動の少ない箇所を選び出す(手順1~4)。そして、その組成の変動の少ない箇所に含まれる任意の測定点を中心として、面内磁化膜の面内方向の100nmの範囲(測定点は167点)について組成分析のための線分析を行う(手順5)。そして、検出された元素ごとに、167点の測定点についての検出強度の平均値を算出して、面内磁化膜の組成を決定する(手順6)。以下、手順1~6の内容を具体的に説明する。
[手順1]組成分析の対象となる面内磁化膜を面内方向と直交する方向(面内磁化膜の厚さ方向)に、平行な2面で切断するとともに、得られた2つの平行な切断面の間の距離が100nm程度となるまで、FIB法(μ-サンプリング法)により薄片化処理を行う。この薄片化処理を行った後の薄片化サンプル80の形状を、図3に模式的に示す。図3に示すように、薄片化サンプル80の形状は概ね直方体形状である。前記2つの平行な切断面の間の距離が100nm程度であり、直方体形状の薄片化サンプル80の面内方向の1辺の長さは100nm程度であるが、他の2辺の長さは、走査透過電子顕微鏡による観察が可能であれば、適宜に定めてよい。
[手順2]手順1で得られた薄片化サンプル80の切断面(面内磁化膜の厚さ方向の切断面)を、100nmの長さを2cmまで拡大観察可能な(20万倍まで拡大観察可能な)走査透過電子顕微鏡を用いて撮像し、観察像を取得する。得られる観察像は長方形であるが、観察対象の面内磁化膜の最上面と切断面(面内磁化膜の厚さ方向の切断面)とが交わる部位の線が、長方形の観察像の長手方向になるように撮像する。得られた観察像の一例(実施例45の観察像)を図4に示す。面内磁化膜の観察像の取得においては、株式会社日立ハイテクノロジーズ製HD-2700を用いた。
[手順3]手順2で得られた観察像から、面内磁化膜に含まれる任意の点を選び(図4において黒丸82で示す)、その点から、観察像の長手方向に左右10nmの位置に点をそれぞれ付す(図4において白丸84で示す)。そして、黒丸82の点を通るように面内磁化膜の厚さ方向に、元素分析のための線分析を行うとともに、白丸84の点を通るように面内磁化膜の厚さ方向に、元素分析のための線分析を行って、3つの直線(黒丸の点を通る厚さ方向の1つの直線および白丸の点を通る厚さ方向の2つの直線)について、面内磁化膜の厚さ方向に元素分析のための線分析を行う。この元素分析のための線分析を行うに際し、前記3直線の線分析の走査範囲を、面内磁化膜の厚さ方向の全範囲(組成分析の対象が面内磁化膜多層構造の場合は、最上層の面内磁化膜から最下層の面内磁化膜までの全範囲)とすることができるように、1つの黒丸82の点および2つの白丸84の点を選び出すことが必要である。
 面内磁化膜の組成分析においては、元素分析手法としてエネルギー分散型X線分析法(EDX)を採用し、元素分析装置として株式会社堀場製作所製EMAX Evolutionを用いた。そして、具体的な分析条件を次のようにした。即ち、X線検出器をSiドリフト検出器とし、X線取出角を24.8°とし、立体角を約2.2srとし、各元素に応じ一般的に適切な分光結晶を用い、測定時間2秒/点とし、走査点間隔を0.6nmとし、照射ビーム径を約0.2nmφとした。以下、本段落に記載の条件を、「手順3の分析条件」と記すことがある。
 図4(実施例45の観察像)中の黒線(黒丸の点を通る面内磁化膜の厚さ方向の線)に沿って行った線分析(元素分析)の結果を図5に示す。図5において、縦軸は各元素についての検出強度、横軸は走査位置である。図5内の凡例に示す各元素は、十分な検出強度を確認できた元素であり、この実施例45の場合、十分な検出強度を確認できた元素は、Co、Pt、W、O、Ruであった。また、この実施例45の組成分析においては、Co、Oの検出にはKα1線を選択し、Pt、Ru、Wの検出にはLα1線を選択した。また、各検出強度においては、事前に測定したブランク測定における検出強度を差し引く補正を施した。図4の線分析の最終端(最下端)は、Si基板である。この箇所は理論上Siおよび表面酸化によるO以外は検出されない。そのため、この箇所で検出されたSi、O以外の検出値は当該装置における不可避な検出誤差値と考えられるので、この値より検出強度が大きな値を示した場合にのみ、当該元素の存在を示すものとした。
 実施例45は面内磁化膜多層構造であり、組成が(Co-20Pt)-30vol%WO3であるスパッタリングターゲットを用いて、1層あたりの厚さが25nmである面内磁化膜を成膜するととともに、その面内磁化膜の間に位置するように、金属Ru非磁性中間層を、面内磁化膜の層間に2nmずつ設ける成膜を行った。金属Ru非磁性中間層の成膜に際しては、組成が100at%Ruであるスパッタリングターゲットを用いた。
 図5に示す線分析の結果からわかるように、面内磁化膜においては主にCo、Pt、W、Oが確認され、非磁性中間層においては主にRuが確認された。金属Ru非磁性中間層においては面内磁化膜の構成元素に基づく検出強度が一部確認されるが、これは、成膜中におけるスパッタ熱によって、上下に隣り合う各層の元素が僅かに拡散しているためである。しかしながら、面内磁化膜および非磁性中間層の各主要元素の分布をみる限り、おおよそ設計した通りの成膜が行われていることが確認できた。
[手順4]手順3で行った線分析(面内磁化膜の厚さ方向に元素分析のために行った線分析)の結果から、組成の変動の少ない測定点の集合箇所を選び出す。組成の変動の少ない測定点の集合箇所は、次の条件a~cを満たす測定点の集合箇所のことである。
  条件a) 手順3で行った3つの直線の線分析のうちのいずれかについての測定点であって、CoおよびPtの検出強度の合計が1000カウントを超える測定点であること。
  条件b)当該測定点でのCoおよびPtの検出強度の合計をXカウント、当該測定点での測定を行った後の次の測定点(当該測定点から0.6nm下方に離れて隣り合う測定点)でのCoおよびPtの検出強度の合計をYカウントとしたとき、
       Y/X-1<0.05
を満たすこと。
  条件c)条件aおよびbを満たす5点以上の連続する測定点であること。
 条件a~cを満たす測定点の集合箇所は、5点以上の連続する測定点であるので、0.6nm×4=2.4nm以上の直線領域となる。したがって、条件a~cを満たす測定点の集合箇所は、2.4nm以上の範囲で、安定してCoおよびPtのうちの少なくともいずれか一方が検出される直線領域である。
[手順5]手順4で選び出した測定点の集合から任意の1つの測定点を選択して、面内磁化膜の組成分析のための基準点とする(図4において二重白丸86で示す)。そして、その基準点を中心として、組成分析を行う面内磁化膜の面内方向(図4の観察像の長手方向)に左右50nmの直線領域(合計で100nmの直線領域であり、図4において白破線88で示す。)について、手順3の分析条件と同様の分析条件で、組成分析を行う。この組成分析では、100nmの直線領域について、線分析を、走査点間隔0.6nmで行うので、合計で167点の測定点における分析結果が得られる。
[手順6]検出された元素ごとに、167点の測定点についての検出強度(カウント数)の平均値を算出する。検出された各元素の検出強度(カウント数)の平均値の比が、当該面内磁化膜の各元素の組成比となる。
 なお、EDXにおける分析においては、酸素(O)等の軽元素の蛍光X線が、白金(Pt)等の重元素の蛍光X線に吸収されることは避けられないが、本発明に係る面内磁化膜においては、酸素(O)等の軽元素と白金(Pt)等の重元素とが混在する。このため、酸素(O)に関しては、酸化物として存在する金属(実施例45ではW)が全て適切に酸化した状態(実施例45ではWO3)になっているものとして、当該面内磁化膜の組成を決定した。
 また、実施例18では面内磁化膜にホウ素(B)酸化物(B23)を用いているが、ホウ素(B)は酸素(O)よりも原子番号の小さい軽元素であるため、EDXにおける分析では検出することができない。このため、実施例18における面内磁化膜の組成は、CoおよびPtの組成比は確定できるが、B23の含有量は確定できない。
 本発明に係る面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲットは、保磁力Hcが2.00kOe以上で、かつ、単位面積当たりの残留磁化Mrtが2.00memu/cm2以上であるという磁気的性能を、加熱成膜を行わずに実現することができ、産業上の利用可能性を有する。
 10…面内磁化膜
 12、24…磁気抵抗効果素子
 14、26…ハードバイアス層
 16、28…フリー磁性層
 20…面内磁化膜多層構造
 22…非磁性中間層
 50…絶縁層
 52…ピン層
 54…バリア層
 80…薄片化サンプル
 82…黒丸(面内磁化膜に含まれる任意の点)
 84…白丸(黒丸82から観察像の長手方向に左右10nmの位置の点)
 86…二重白丸(面内磁化膜の組成分析のための基準点)
 88…白破線(二重白丸86(基準点)から観察像の長手方向に左右50nmの直線領域

Claims (12)

  1.  磁気抵抗効果素子のハードバイアス層として用いられる面内磁化膜であって、
     金属Co、金属Ptおよび酸化物を含有してなり、
     当該面内磁化膜の金属成分の合計に対して、金属Coを55at%以上95at%未満含有し、金属Ptを5at%より多く45at%以下含有し、
     当該面内磁化膜の全体に対して前記酸化物を10vol%以上42vol%以下含有し、
     厚さが20nm以上80nm以下であることを特徴とする面内磁化膜。
  2.  CoPt合金結晶粒と前記酸化物の結晶粒界とからなるグラニュラ構造を有してなることを特徴とする請求項1に記載の面内磁化膜。
  3.  前記酸化物は、Ti、Si、W、B、Mo、Ta、Nbの酸化物のうちの少なくとも1種を含むことを特徴とする請求項1または2に記載の面内磁化膜。
  4.  磁気抵抗効果素子のハードバイアス層として用いられる面内磁化膜多層構造であって、
     複数の面内磁化膜と、
     非磁性中間層と、
    を有してなり、
     前記非磁性中間層は、前記面内磁化膜同士の間に配置されており、かつ、前記非磁性中間層を挟んで隣り合う前記面内磁化膜同士は強磁性結合をしており、
     前記面内磁化膜は、
     金属Co、金属Ptおよび酸化物を含有してなり、
     当該面内磁化膜の金属成分の合計に対して、金属Coを55at%以上95at%未満含有し、金属Ptを5at%より多く45at%以下含有し、
     当該面内磁化膜の全体に対して前記酸化物を10vol%以上42vol%以下含有しており、
     前記面内磁化膜多層構造は、保磁力が2.00kOe以上であり、かつ、単位面積当たりの残留磁化が2.00memu/cm2以上であることを特徴とする面内磁化膜多層構造。
  5.  磁気抵抗効果素子のハードバイアス層として用いられる面内磁化膜多層構造であって、
     複数の面内磁化膜と、
     結晶構造が六方最密充填構造である非磁性中間層と、
    を有してなり、
     前記非磁性中間層は、前記面内磁化膜同士の間に配置されており、かつ、前記非磁性中間層を挟んで隣り合う前記面内磁化膜同士は強磁性結合をしており、
     前記面内磁化膜は、
     金属Co、金属Ptおよび酸化物を含有してなり、
     当該面内磁化膜の金属成分の合計に対して、金属Coを55at%以上95at%未満含有し、金属Ptを5at%より多く45at%以下含有し、
     当該面内磁化膜の全体に対して前記酸化物を10vol%以上42vol%以下含有してなり、
     前記複数の面内磁化膜の合計の厚さは20nm以上であることを特徴とする面内磁化膜多層構造。
  6.  前記非磁性中間層は、RuまたはRu合金からなることを特徴とする請求項4または5に記載の面内磁化膜多層構造。
  7.  前記面内磁化膜は、CoPt合金結晶粒と前記酸化物の結晶粒界とからなるグラニュラ構造を有してなることを特徴とする請求項4~6のいずれかに記載の面内磁化膜多層構造。
  8.  前記酸化物は、Ti、Si、W、B、Mo、Ta、Nbの酸化物のうちの少なくとも1種を含むことを特徴とする請求項4~7のいずれかに記載の面内磁化膜多層構造。
  9.  前記面内磁化膜の1層あたりの厚さは、5nm以上30nm以下であることを特徴とする請求項4~8のいずれかに記載の面内磁化膜多層構造。
  10.  請求項1~3のいずれかに記載の面内磁化膜または請求項4~9のいずれかに記載の面内磁化膜多層構造を有してなることを特徴とするハードバイアス層。
  11.  請求項10に記載のハードバイアス層を有してなることを特徴とする磁気抵抗効果素子。
  12.  磁気抵抗効果素子のハードバイアス層の少なくとも一部として用いられる面内磁化膜を室温成膜で形成する際に用いるスパッタリングターゲットであって、
     金属Co、金属Ptおよび酸化物を含有してなり、
     当該スパッタリングターゲットの金属成分の合計に対して、金属Coを60at%以上95at%未満含有し、金属Ptを5at%より多く40at%以下含有し、
     当該スパッタリングターゲットの全体に対して前記酸化物を10vol%以上40vol%以下含有し、
     形成する前記面内磁化膜は、保磁力が2.00kOe以上で、かつ、単位面積当たりの残留磁化が2.00memu/cm2以上であることを特徴とするスパッタリングターゲット。
PCT/JP2019/042628 2018-10-30 2019-10-30 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット WO2020090914A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020553991A JP7219285B2 (ja) 2018-10-30 2019-10-30 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット
CN201980071989.6A CN113228208B (zh) 2018-10-30 2019-10-30 面内磁化膜、面内磁化膜多层结构、硬偏置层、磁阻效应元件和溅射靶
US17/289,500 US11810700B2 (en) 2018-10-30 2019-10-30 In-plane magnetized film, in-plane magnetized film multilayer structure, hard bias layer, magnetoresistive element, and sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018204303 2018-10-30
JP2018-204303 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090914A1 true WO2020090914A1 (ja) 2020-05-07

Family

ID=70464107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042628 WO2020090914A1 (ja) 2018-10-30 2019-10-30 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット

Country Status (4)

Country Link
US (1) US11810700B2 (ja)
JP (1) JP7219285B2 (ja)
CN (1) CN113228208B (ja)
WO (1) WO2020090914A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221095A1 (ja) * 2020-05-01 2021-11-04 田中貴金属工業株式会社 面内磁化膜多層構造、ハードバイアス層、および磁気抵抗効果素子
WO2021221096A1 (ja) * 2020-05-01 2021-11-04 田中貴金属工業株式会社 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット
US11810700B2 (en) 2018-10-30 2023-11-07 Tanaka Kikinzoku Kogyo K.K. In-plane magnetized film, in-plane magnetized film multilayer structure, hard bias layer, magnetoresistive element, and sputtering target
JP7438845B2 (ja) 2020-05-01 2024-02-27 田中貴金属工業株式会社 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、および磁気抵抗効果素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238925A (ja) * 1998-02-20 1999-08-31 Toshiba Corp 磁気素子とそれを用いた磁気部品および電子部品
JP2006107625A (ja) * 2004-10-05 2006-04-20 Japan Science & Technology Agency 磁気記録媒体

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063643A (ja) * 1995-07-25 2005-03-10 Hitachi Global Storage Technologies Inc 磁気抵抗効果型磁気ヘッド及び磁気記録再生装置
JP2911798B2 (ja) * 1995-11-28 1999-06-23 ホーヤ株式会社 磁気記録媒体及びその製造方法
US6069820A (en) 1998-02-20 2000-05-30 Kabushiki Kaisha Toshiba Spin dependent conduction device
JP2001093130A (ja) 1999-09-24 2001-04-06 Naruse Atsushi 磁気記録媒体及びその製造方法
JP2001291225A (ja) * 2000-04-07 2001-10-19 Hitachi Maxell Ltd 磁気記録媒体及び磁気記録装置
JP2003123240A (ja) 2001-10-12 2003-04-25 Sony Corp 磁気記録媒体及びその製造方法
JP2003178423A (ja) 2001-12-12 2003-06-27 Fuji Electric Co Ltd 長手記録用磁気記録媒体およびその製造方法
JP2005353256A (ja) 2004-05-13 2005-12-22 Fujitsu Ltd 垂直磁気記録媒体およびその製造方法、磁気記憶装置
US20060292705A1 (en) 2005-06-24 2006-12-28 Veeco Instruments Inc. Method and process for fabricating read sensors for read-write heads in mass storage devices
JP2008060202A (ja) 2006-08-30 2008-03-13 Tdk Corp Cpp構造の磁気抵抗効果素子の製造方法。
JP2008276893A (ja) * 2007-05-07 2008-11-13 Tdk Corp 磁気検出素子
JP2008283016A (ja) 2007-05-11 2008-11-20 Tdk Corp 磁気検出素子及びその製造方法
JP2009253066A (ja) 2008-04-08 2009-10-29 Fujitsu Ltd Tmr素子製造方法
US8932667B2 (en) 2008-04-30 2015-01-13 Seagate Technology Llc Hard magnet with cap and seed layers and data storage device read/write head incorporating the same
JP5067739B2 (ja) * 2008-07-28 2012-11-07 国立大学法人東北大学 磁性薄膜とその成膜方法並びに磁性薄膜の応用デバイス
JP5550007B2 (ja) * 2008-12-05 2014-07-16 国立大学法人東北大学 磁性薄膜及びその製造方法、並びにこのような磁性薄膜を用いた各種応用デバイス
US8563147B2 (en) 2009-06-24 2013-10-22 Headway Technologies, Inc. Thin seeded Co/Ni multilayer film with perpendicular anisotropy for read head sensor stabilization
WO2012004883A1 (ja) 2010-07-09 2012-01-12 国立大学法人東北大学 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
US8218270B1 (en) 2011-03-31 2012-07-10 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with improved hard magnet biasing structure
JP2013055088A (ja) * 2011-08-31 2013-03-21 Fujitsu Ltd 磁気抵抗素子及び磁気記憶装置
JP2013055281A (ja) 2011-09-06 2013-03-21 Alps Green Devices Co Ltd 電流センサ
JP5665707B2 (ja) * 2011-09-21 2015-02-04 株式会社東芝 磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果素子の製造方法
CN105934532B (zh) * 2013-10-29 2019-09-20 田中贵金属工业株式会社 磁控溅射用靶
JP6309796B2 (ja) 2014-03-20 2018-04-11 株式会社東芝 磁気ヘッド、磁気記録再生装置、および磁気ヘッドの製造方法
JP6416497B2 (ja) * 2014-05-02 2018-10-31 田中貴金属工業株式会社 スパッタリングターゲットおよびその製造方法
CN114361329A (zh) 2015-11-27 2022-04-15 Tdk株式会社 磁阻效应元件、磁存储器、磁化反转方法及自旋流磁化反转元件
JP2017212464A (ja) * 2017-08-09 2017-11-30 ソニー株式会社 記憶素子、記憶装置、磁気ヘッド
WO2020053987A1 (ja) 2018-09-12 2020-03-19 Tdk株式会社 リザボア素子及びニューロモルフィック素子
CN113228208B (zh) 2018-10-30 2023-06-02 田中贵金属工业株式会社 面内磁化膜、面内磁化膜多层结构、硬偏置层、磁阻效应元件和溅射靶

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238925A (ja) * 1998-02-20 1999-08-31 Toshiba Corp 磁気素子とそれを用いた磁気部品および電子部品
JP2006107625A (ja) * 2004-10-05 2006-04-20 Japan Science & Technology Agency 磁気記録媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11810700B2 (en) 2018-10-30 2023-11-07 Tanaka Kikinzoku Kogyo K.K. In-plane magnetized film, in-plane magnetized film multilayer structure, hard bias layer, magnetoresistive element, and sputtering target
WO2021221095A1 (ja) * 2020-05-01 2021-11-04 田中貴金属工業株式会社 面内磁化膜多層構造、ハードバイアス層、および磁気抵抗効果素子
WO2021221096A1 (ja) * 2020-05-01 2021-11-04 田中貴金属工業株式会社 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット
JP7438845B2 (ja) 2020-05-01 2024-02-27 田中貴金属工業株式会社 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、および磁気抵抗効果素子

Also Published As

Publication number Publication date
CN113228208A (zh) 2021-08-06
US20210391105A1 (en) 2021-12-16
US11810700B2 (en) 2023-11-07
JP7219285B2 (ja) 2023-02-07
CN113228208B (zh) 2023-06-02
JPWO2020090914A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2020090914A1 (ja) 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット
EP0498344B1 (en) Magnetoresistance effect element
US7116532B2 (en) Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems
JP4768488B2 (ja) 磁気抵抗効果素子,磁気ヘッド,および磁気ディスク装置
US5858125A (en) Magnetoresistive materials
CN103761977A (zh) 包括传感增强层的磁性传感器件
CN107408626A (zh) 磁阻效应元件
US10243139B2 (en) Magnetoresistive effect element
TW201407648A (zh) 旋轉閥型通道磁阻元件之製造方法
CN107887506B (zh) 磁阻效应元件
JP2009283499A (ja) 磁気抵抗効果素子、磁気抵抗効果ヘッド、磁気記録再生装置および磁気メモリ
JP7438845B2 (ja) 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、および磁気抵抗効果素子
JP7431660B2 (ja) 面内磁化膜多層構造、ハードバイアス層、および磁気抵抗効果素子
WO2021221096A1 (ja) 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット
JP2005285936A (ja) 磁気抵抗効果素子、磁気再生ヘッド、および磁気再生装置
WO2017110534A1 (ja) 面直通電巨大磁気抵抗素子用積層膜、面直通電巨大磁気抵抗素子、及びその用途
CN104952463B (zh) 磁记录介质
JP2023013057A (ja) 磁気抵抗効果素子
JP2024034320A (ja) 面内磁化膜、面内磁化膜多層構造、ハードバイアス層、磁気抵抗効果素子、およびスパッタリングターゲット
CN107210047B (zh) 磁记录介质
JPH0923031A (ja) 磁気抵抗効果多層膜
TWI778318B (zh) 垂直磁性記錄媒體
Paleo et al. Magnetic hardness of graded interface exchange spring L10-FePt films with Co nanoinclusions
JPH08316033A (ja) 磁性積層体
Won et al. Phase separation and nanoparticle formation in Cr-dosed FePt thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880449

Country of ref document: EP

Kind code of ref document: A1