WO2020090680A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2020090680A1
WO2020090680A1 PCT/JP2019/042014 JP2019042014W WO2020090680A1 WO 2020090680 A1 WO2020090680 A1 WO 2020090680A1 JP 2019042014 W JP2019042014 W JP 2019042014W WO 2020090680 A1 WO2020090680 A1 WO 2020090680A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
bead
cord
radial direction
width direction
Prior art date
Application number
PCT/JP2019/042014
Other languages
English (en)
French (fr)
Inventor
福島 敦
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2020553858A priority Critical patent/JPWO2020090680A1/ja
Publication of WO2020090680A1 publication Critical patent/WO2020090680A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead

Definitions

  • the present invention relates to a tire in which a part of a bead portion is made of a resin material.
  • Patent Document 1 a tire in which resin is filled in the void portion of the bead core is known (see Patent Document 1).
  • a bead core forming method by arranging the cord units having a rectangular cross-section adjacent to each other, a void is not formed between the cord units, and a highly rigid and lightweight bead core can be easily manufactured.
  • the position of the carcass ply is relatively displaced with respect to other components such as a bead structure including a bead core (referred to as ply slip) so that a desired tire shape is obtained.
  • ply slip a bead structure including a bead core
  • so-called fretting may occur in which the carcass ply is rubbed and damaged by the corners of the bead structure.
  • an object of the present invention is to provide a tire having both ease of manufacturing and durability while using a cord unit in which a bead cord is coated with a resin material. .
  • a tread portion that is in contact with a road surface a tire side portion that is continuous with the tread portion, is located inside the tire radial direction of the tread portion, and is continuous with the tire side portion, and a tire diameter of the tire side portion.
  • the bead portion located on the inner side in the direction, in a cross section along the tire width direction and the tire radial direction, the bead portion is arranged adjacently along the tire width direction and the tire radial direction.
  • a bead structure having a bead core composed of a number of cord units, the cord unit including a bead cord and a coating resin formed of a resin material and coating the bead cord, and a tire width direction and a tire diameter.
  • the cord unit is a convex polygon having a quadrangle or more, and the tire having the bead structure.
  • Direction inside end portion includes an inclined portion inclined outward in the tire radial direction to bring the tire width direction center of the bead structure towards the tire width direction outside.
  • FIG. 1 is a sectional view of a pneumatic tire 10.
  • FIG. 2 is a partially enlarged sectional view of the pneumatic tire 10.
  • FIG. 3 is an enlarged cross-sectional view of the bead structure 61.
  • FIG. 4 is a sectional view of the bead core 62 alone.
  • FIG. 5 is an explanatory diagram of a method of configuring the bead core 62.
  • FIG. 6 is an enlarged cross-sectional view of a bead structure 61X according to a modification.
  • FIG. 7 is an enlarged cross-sectional view of a bead structure 61Y according to another modification.
  • FIG. 1 is a sectional view of a pneumatic tire 10 according to the present embodiment. Specifically, FIG. 1 is a cross-sectional view of the pneumatic tire 10 taken along the tire width direction and the tire radial direction. In FIG. 1, cross-sectional hatching is omitted (the same applies below).
  • the pneumatic tire 10 includes a tread portion 20, a tire side portion 30, a carcass ply 40, a belt layer 50 and a bead portion 60.
  • the tread part 20 is a part that contacts the road surface (not shown).
  • the tread portion 20 is formed with a pattern (not shown) according to the usage environment of the pneumatic tire 10 and the type of vehicle to which the pneumatic tire 10 is attached.
  • Tire side part 30 is connected to the tread part 20 and is located inside the tire radial direction of the tread part 20.
  • the tire side portion 30 is an area from the tire width direction outer end of the tread portion 20 to the upper end of the bead portion 60.
  • the tire side portion 30 is sometimes called a sidewall or the like.
  • the carcass ply 40 forms the skeleton of the pneumatic tire 10.
  • the carcass ply 40 has a radial structure in which carcass cords (not shown) radially arranged along the tire radial direction are covered with a rubber material.
  • the structure is not limited to the radial structure, and may be a bias structure in which the carcass cords are arranged so as to intersect in the tire radial direction.
  • the carcass cord is not particularly limited, and may be formed of an organic fiber cord similarly to a tire for a general passenger car.
  • the belt layer 50 is provided inside the tread portion 20 in the tire radial direction.
  • the belt layer 50 is a single-layer spiral belt having a reinforcing cord 51, and the reinforcing cord 51 is covered with a resin.
  • the belt layer 50 is not limited to the single-layer spiral belt.
  • the belt layer 50 may be a two-layer cross belt covered with rubber.
  • a resin material having a higher tensile elastic modulus than the rubber material forming the tire side portion 30 and the rubber material forming the tread portion 20 is used for the resin that covers the reinforcing cord 51.
  • a resin covering the reinforcing cord 51 a thermoplastic resin having elasticity, a thermoplastic elastomer (TPE), a thermosetting resin, or the like can be used. Considering elasticity during running and moldability during manufacturing, it is desirable to use a thermoplastic elastomer.
  • thermoplastic elastomers include polyolefin thermoplastic elastomer (TPO), polystyrene thermoplastic elastomer (TPS), polyamide thermoplastic elastomer (TPA), polyurethane thermoplastic elastomer (TPU), polyester thermoplastic elastomer (TPC). , Dynamically crosslinked thermoplastic elastomer (TPV) and the like.
  • thermoplastic resin examples include polyurethane resin, polyolefin resin, vinyl chloride resin, and polyamide resin.
  • the deflection temperature under load (at 0.45MPa load) specified by ISO75-2 or ASTM D648 is 78 ° C or more
  • the tensile yield strength specified by JIS K7113 is 10MPa or more.
  • a material having a tensile elongation at break of 50% or more specified in JIS K7113 and a Vicat softening temperature (A method) of 130 ° C or more specified in JIS K7206 can be used.
  • the bead portion 60 is connected to the tire side portion 30 and is located inside the tire side portion 30 in the tire radial direction.
  • the bead portion 60 has an annular shape extending in the tire circumferential direction.
  • a part of the bead portion 60 is made of a resin material appropriately selected from the above resin materials.
  • a part of the bead portion 60 is formed of the same resin material as that used for the belt layer 50 described above.
  • the bead portion 60 is locked to a flange portion 110 (not shown in FIG. 1, see FIG. 2) formed at the radially outer end of the rim wheel 100.
  • an inner liner (not shown) that prevents the air (or a gas such as nitrogen) filled in the internal space of the pneumatic tire 10 assembled to the rim wheel 100 from leaking is provided on the inner surface of the pneumatic tire 10. It is pasted.
  • FIG. 2 is a partially enlarged sectional view of the pneumatic tire 10. Specifically, FIG. 2 is a partially enlarged sectional view of the pneumatic tire 10 including the bead portion 60 along the tire width direction and the tire radial direction.
  • the bead portion 60 includes a bead structure 61.
  • the carcass ply 40 is folded back to the outside in the tire width direction via the bead portion 60.
  • the carcass ply 40 includes a body portion 41 and a folded portion 42.
  • the bead structure 61 includes a bead core 62 (not shown in FIG. 2, see FIG. 3) and has an annular shape along the tire circumferential direction.
  • the body portion 41 is provided over the tread portion 20, the tire side portion 30, and the bead portion 60, and is a portion until the bead portion 60, specifically, the bead structure 61 is folded back.
  • the folded portion 42 is a portion that is continuous with the main body portion 41 and is folded back to the outside in the tire width direction via the bead structure 61.
  • FIG. 3 is an enlarged sectional view of the bead structure 61.
  • a bead core 62 including the peripheral portion of the bead core 62
  • a bead filler 66 are integrally formed. That is, the bead portion 60 has the bead core 62 and the bead filler 66.
  • the bead filler 66 does not necessarily have to be formed integrally with the bead core 62, and may be formed as a separate body.
  • the bead core 62 is composed of a predetermined number of cord units arranged adjacent to each other in the tire width direction and the tire radial direction.
  • the bead core 62 is composed of a cord unit 63A, a cord unit 63B, a cord unit 63C and a cord unit 63D. That is, in the present embodiment, the bead core 62 is composed of four (predetermined number) code units in a cross section along the tire width direction and the tire radial direction.
  • the inner end of the bead structure 61 in the tire radial direction includes an inclined portion 61s that inclines outward in the tire radial direction from the center in the tire width direction of the bead structure 61 toward the outer side in the tire width direction. That is, the tire radial inner end of the bead structure 61 is convex toward the tire radial inner side.
  • FIG. 4 is a sectional view of the bead core 62 alone.
  • each of the cord units 63A to 63D includes a bead cord 64 and a coating resin 65.
  • the bead cord 64 is formed of a metal material (for example, steel). That is, the bead core 62 is formed using a metal material. Note that the bead cord 64 may be formed of organic fiber, carbon fiber, or inorganic fiber, instead of.
  • the coating resin 65 is made of a resin material.
  • the resin material used for the bead structure 61 excluding the coating resin 65 and the bead core 62 may be the same as the resin material used for the belt layer 50.
  • the resin material used for the coating resin 65 and the resin material used for the bead structure 61 excluding the bead core 62 may be different as long as they are the above-mentioned resin materials that can be used for the belt layer 50.
  • the cord units 63A to 63D are convex polygons of quadrangle or more in a cross section along the tire width direction and the tire radial direction. Specifically, the cord units 63A to 63D are diamond-shaped in a cross section along the tire width direction and the tire radial direction. The apex portions 63p of the diamond-shaped cord units 63A to 63D are chamfered.
  • the bead core 62 formed by a plurality of cord units preferably has as few voids as possible between adjacent cord units, and the cord unit has a cross-sectional shape that prevents such voids.
  • Each of the cord units 63A to 63D includes two bead cords 64.
  • the two bead cords 64 are arranged so as to be parallel to any side of the diamond-shaped cord units 63A to 63D. That is, each of the cord units 63A to 63D includes a plurality of bead cords 64 arranged in parallel with any of the sides of the rhombus.
  • FIG. 5 is an explanatory diagram of a method of configuring the bead core 62.
  • each of the cord units 63A to 63D in which the bead cord 64 is coated with the coating resin 65 is actually two continuous cord units, and the two cord units are surrounded by the tire circumference. It is wound multiple times (twice) along the direction.
  • the cord unit 63A and the cord unit 63C are one continuous cord unit.
  • the cord unit 63B and the cord unit 63D are one continuous cord unit.
  • the cord units 63A and 63B corresponding to the first stage are wound in an annular shape, and then the cord units 63C and 63D corresponding to the second stage are wound in an annular shape. .
  • the cord unit 63A and the cord unit 63B, and the cord unit 63C and the cord unit 63D are one continuous cord unit, and first, the cord unit 63B and the cord unit 63D corresponding to the first stage are wound in an annular shape, Next, the cord unit 63A and the cord unit 63C corresponding to the second stage may be wound in an annular shape.
  • each of the cord units 63A to 63D includes a bead cord 64 formed of a metal material and a coating resin 65 formed of a resin material and covering the bead cord 64.
  • the cord units 63A to 63D are convex polygons having a quadrangle or larger, and the inner end portion of the bead structure 61 in the tire radial direction extends from the tire width direction center of the bead structure 61 toward the tire width direction outer side. It includes an inclined portion 61s that is inclined outward in the tire radial direction.
  • the bead structure 61 is formed with the inclined portion 61s, it is possible to prevent the carcass ply 40 from being rubbed and damaged.
  • the pneumatic tire 10 it is possible to achieve both ease of manufacturing and durability while using the cord units 63A to 63D in which the bead cords 64 are coated with a resin material.
  • the cross-sectional shape of the cord units 63A to 63D is a rhombus. Therefore, when the bead core 62 is formed, no void is formed between the adjacent cord units, and the rigidity of the bead core 62 can be increased. Thereby, the durability of the pneumatic tire 10 can be improved.
  • the bead core 62 when the bead core 62 is constructed by winding one cord unit, it can be easily stacked. That is, manufacturability can be improved.
  • each of the cord units 63A to 63D includes a plurality of bead cords 64 arranged in parallel with any side of the diamond. Therefore, it is easy to secure the required rigidity of the cord unit as a whole. Thereby, the durability of the pneumatic tire 10 can be improved.
  • the apex 63p of the code unit is chamfered. Therefore, when the bead core 62 is formed by winding the cord units, it is possible to suppress the interference with the adjacent cord units. In addition, damage to the apex portion 63p can be suppressed. As a result, manufacturability and durability can be improved.
  • the cross-sectional shape of the cord units 63A to 63D was a rhombus, but it may be changed as follows.
  • FIG. 6 is an enlarged cross-sectional view of the bead structure 61X according to the modification.
  • the bead structure 61X includes a bead core 62X including a predetermined number (seven) of cord units 63X.
  • the cross-sectional shape of the cord unit 63X is a convex polygon, specifically, a hexagon (honeycomb shape).
  • FIG. 7 is an enlarged cross-sectional view of a bead structure 61Y according to another modification.
  • the bead structure 61Y includes a bead core 62Y including a predetermined number (seven) of cord units 63Y.
  • the cross-sectional shape of the cord unit 63Y is a quadrangle, specifically a square.
  • the cross-sectional shape of the cord unit may be any other shape, such as a rectangle or a parallelogram, which does not allow a space between adjacent cord units.
  • the two bead cords 64 are arranged so as to be parallel to any side of the diamond-shaped cord units 63A to 63D. Instead, they may be arranged so as to be parallel to the diagonal line.

Abstract

空気入りタイヤ(10)のビード部(60)は、タイヤ幅方向及びタイヤ径方向に沿って隣接して配置された所定数のコードユニットによって構成されるビードコアを有するビード構造体を含む。コードユニットは、金属材料によって形成されたビードコードと、樹脂材料によって形成され、ビードコードを被覆する被覆樹脂とを含む。コードユニットは、四角形以上の凸多角形であり、ビード構造体のタイヤ径方向内側端部は、ビード構造体のタイヤ幅方向中心からタイヤ幅方向外側に向かうに連れてタイヤ径方向外側に傾斜する傾斜部分を含む。

Description

タイヤ
 本発明は、ビード部の一部が樹脂材料によって形成されているタイヤに関する。
 従来、ビードコアの空隙部分に樹脂を充填したタイヤが知られている(特許文献1参照)。
 これにより、金属製のビードコードの量を削減できるため、タイヤの軽量化が可能になるとされている。
特開2002-187414号公報
 上述したようなビード部の一部に樹脂を用いる技術をさらに発展させ、ビードコードを樹脂材料によって被覆したコードユニットをタイヤ周方向に沿って複数回巻き付けることによってビードコアを形成することが検討されている。
 このようなビードコアの形成方法によれば、断面形状が方形状のコードユニットを隣接して配置することによって、コードユニット間に空隙ができず、高剛性かつ軽量なビードコアを容易に製造し得る。
 一方で、このようなビードコアを用いる場合、次のような課題がある。具体的には、ビードコアを取り囲むビード構造体がビードコアの形状に沿って方形状(正方形状)となるため、製造工程におけるカーカスプライの動きを制限する。
 特に、生タイヤの加硫時においては、カーカスプライの位置が、ビードコアを含むビード構造体など、他の構成部材に対して相対的にずれること(プライスリップという)によって所望のタイヤ形状となることが重要だが、カーカスプライの動きがビード構造体の角部によって規制され、プライスリップが誘発され難い。
 また、製造後においても、カーカスプライがビード構造体の角部によって擦れて損傷する、いわゆるフレッティングが発生し得る。
 そこで、本発明は、このような状況に鑑みてなされたものであり、ビードコードを樹脂材料で被覆したコードユニットを用いつつ、製造容易性と耐久性とを両立したタイヤの提供を目的とする。
 本発明の一態様は、路面に接するトレッド部と、前記トレッド部に連なり、前記トレッド部のタイヤ径方向内側に位置するタイヤサイド部と、前記タイヤサイド部に連なり、前記タイヤサイド部のタイヤ径方向内側に位置するビード部とを含むタイヤであって、タイヤ幅方向及びタイヤ径方向に沿った断面において、前記ビード部は、タイヤ幅方向及びタイヤ径方向に沿って隣接して配置された所定数のコードユニットによって構成されるビードコアを有するビード構造体を含み、前記コードユニットは、ビードコードと、樹脂材料によって形成され、前記ビードコードを被覆する被覆樹脂とを含み、タイヤ幅方向及びタイヤ径方向に沿った断面において、前記コードユニットは、四角形以上の凸多角形であり、前記ビード構造体のタイヤ径方向内側端部は、前記ビード構造体のタイヤ幅方向中心からタイヤ幅方向外側に向かうに連れてタイヤ径方向外側に傾斜する傾斜部分を含む。
図1は、空気入りタイヤ10の断面図である。 図2は、空気入りタイヤ10の一部拡大断面図である。 図3は、ビード構造体61の拡大断面図である。 図4は、ビードコア62の単体断面図である。 図5は、ビードコア62の構成方法の説明図である。 図6は、変更例に係るビード構造体61Xの拡大断面図である。 図7は、他の変更例に係るビード構造体61Yの拡大断面図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)タイヤの全体概略構成
 図1は、本実施形態に係る空気入りタイヤ10の断面図である。具体的には、図1は、空気入りタイヤ10のタイヤ幅方向及びタイヤ径方向に沿った断面図である。なお、図1では、断面ハッチングの図示は省略されている(以下同)。
 図1に示すように、空気入りタイヤ10は、トレッド部20、タイヤサイド部30、カーカスプライ40、ベルト層50及びビード部60を備える。
 トレッド部20は、路面(不図示)に接する部分である。トレッド部20には、空気入りタイヤ10の使用環境や装着される車両の種別に応じたパターン(不図示)が形成される。
 タイヤサイド部30は、トレッド部20に連なり、トレッド部20のタイヤ径方向内側に位置する。タイヤサイド部30は、トレッド部20のタイヤ幅方向外側端からビード部60の上端までの領域である。タイヤサイド部30は、サイドウォールなどと呼ばれることもある。
 カーカスプライ40は、空気入りタイヤ10の骨格を形成する。カーカスプライ40は、タイヤ径方向に沿って放射状に配置されたカーカスコード(不図示)がゴム材料によって被覆されたラジアル構造である。但し、ラジアル構造に限定されず、カーカスコードがタイヤ径方向に交錯するように配置されたバイアス構造でも構わない。
 また、カーカスコードは、特に限定されず、概ね一般的な乗用自動車用のタイヤと同様に有機繊維のコードによって形成し得る。
 ベルト層50は、トレッド部20のタイヤ径方向内側に設けられる。ベルト層50は、補強コード51を有し、補強コード51が樹脂によって被覆された単層スパイラルベルトである。但し、ベルト層50は、単層スパイラルベルトに限定されない。例えば、ベルト層50は、ゴムによって被覆された2層交錯ベルトでもよい。
 補強コード51を被覆する樹脂には、タイヤサイド部30を構成するゴム材料、及びトレッド部20を構成するゴム材料よりも引張弾性率の高い樹脂材料が用いられる。補強コード51を被覆する樹脂としては、弾性を有する熱可塑性樹脂、熱可塑性エラストマー(TPE)、及び熱硬化性樹脂等を用いることができる。走行時の弾性と製造時の成形性を考慮すると、熱可塑性エラストマーを用いることが望ましい。
 熱可塑性エラストマーとしては、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリアミド系熱可塑性エラストマー(TPA)、ポリウレタン系熱可塑性エラストマー(TPU)、ポリエステル系熱可塑性エラストマー(TPC)、動的架橋型熱可塑性エラストマー(TPV)などが挙げられる。
 また、熱可塑性樹脂としては、ポリウレタン樹脂、ポリオレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。さらに、熱可塑性樹脂材料としては、例えば、ISO75-2またはASTM D648に規定されている荷重たわみ温度(0.45MPa荷重時)が78°C以上、JIS K7113に規定される引張降伏強さが10MPa以上、同じくJIS K7113に規定される引張破壊伸びが50%以上、JIS K7206に規定されるビカット軟化温度(A法)が130°C以上であるものを用いることができる。
 ビード部60は、タイヤサイド部30に連なり、タイヤサイド部30のタイヤ径方向内側に位置する。ビード部60は、タイヤ周方向に延びる円環状である。
 ビード部60の一部は、上述した樹脂材料から適宜選択された樹脂材料によって構成される。本実施形態では、ビード部60の一部は、上述したベルト層50に用いられている樹脂材料と同一の樹脂材料によって形成されている。
 ビード部60は、リムホイール100の径方向外側端に形成されるフランジ部分110(図1において不図示、図2参照)に係止される。
 また、空気入りタイヤ10のタイヤ内側面には、リムホイール100に組み付けられた空気入りタイヤ10の内部空間に充填された空気(または窒素などの気体)漏れを防止するインナーライナー(不図示)が貼り付けられている。
 (2)ビード部の概略構成
 図2は、空気入りタイヤ10の一部拡大断面図である。具体的には、図2は、空気入りタイヤ10のタイヤ幅方向及びタイヤ径方向に沿ったビード部60を含む一部拡大断面図である。
 図2に示すように、ビード部60は、ビード構造体61を含む。
 カーカスプライ40は、ビード部60を介してタイヤ幅方向外側に折り返される。具体的には、カーカスプライ40は、本体部41と折り返し部42とを含む。ビード構造体61は、ビードコア62(図2において不図示、図3参照)を含み、タイヤ周方向に沿って円環状である。
 本体部41は、トレッド部20、タイヤサイド部30及びビード部60に亘って設けられ、ビード部60、具体的には、ビード構造体61において折り返されるまでの部分である。
 折り返し部42は、本体部41に連なり、ビード構造体61を介してタイヤ幅方向外側に折り返された部分である。
 (3)ビード部の詳細構成
 図3は、ビード構造体61の拡大断面図である。図3に示すように、ビード構造体61は、ビードコア62(ビードコア62の周辺部分も含む)と、ビードフィラー66とが一体に形成されている。つまり、ビード部60は、ビードコア62とビードフィラー66とを有する。なお、ビードフィラー66は、必ずしもビードコア62と一体に形成されていなくてよく、別体として形成されてもよい。
 ビードコア62は、タイヤ幅方向及びタイヤ径方向に沿って隣接して配置された所定数のコードユニットによって構成される。本実施形態では、ビードコア62は、コードユニット63A、コードユニット63B、コードユニット63C及びコードユニット63Dによって構成される。つまり、本実施形態では、ビードコア62は、タイヤ幅方向及びタイヤ径方向に沿った断面において、4つ(所定数)のコードユニットによって構成される。
 また、ビード構造体61のタイヤ径方向内側端部は、ビード構造体61のタイヤ幅方向中心からタイヤ幅方向外側に向かうに連れてタイヤ径方向外側に傾斜する傾斜部分61sを含む。つまり、ビード構造体61のタイヤ径方向内側端部は、タイヤ径方向内側に向かって凸となっている。
 図4は、ビードコア62の単体断面図である。図4に示すように、コードユニット63A~63Dのそれぞれは、ビードコード64と被覆樹脂65とを含む。ビードコード64は、金属材料(例えば、スチール)によって形成される。つまり、ビードコア62は、金属材料を用いて形成される。なお、ビードコード64は、ではなく、有機繊維、炭素繊維または無機繊維によって形成されてもよい。
 被覆樹脂65は、樹脂材料によって形成される。被覆樹脂65、及びビードコア62を除くビード構造体61に用いられる樹脂材料は、ベルト層50に用いられている樹脂材料と同一としてもよい。
 また、被覆樹脂65に用いられる樹脂材料と、ビードコア62を除くビード構造体61に用いられる樹脂材料とは、ベルト層50に用い得る上述した樹脂材料であれば、異なっていてもよい。
 本実施形態では、コードユニット63A~63Dは、タイヤ幅方向及びタイヤ径方向に沿った断面において、四角形以上の凸多角形である。具体的には、コードユニット63A~63Dは、タイヤ幅方向及びタイヤ径方向に沿った断面において、菱形である。なお、菱形のコードユニット63A~63Dの頂点部63pのそれぞれは、面取りされている。
 複数のコードユニットによって形成されるビードコア62は、隣接するコードユニット間になるべく空隙ができないことが好ましく、コードユニットには、このような空隙ができないような断面形状が採用される。
 コードユニット63A~63Dのそれぞれは、2本のビードコード64を含む。2本のビードコード64は、菱形のコードユニット63A~63Dの何れかの辺と平行になるように配置されている。つまり、コードユニット63A~63Dのそれぞれは、菱形の何れかの辺と平行に配置された複数のビードコード64を含む。
 図5は、ビードコア62の構成方法の説明図である。図5に示すように、ビードコード64が被覆樹脂65によって被覆されたコードユニット63A~63Dのそれぞれは、実際には、2本の連続したコードユニットであり、当該2本のコードユニットをタイヤ周方向に沿って複数回(2回)巻き付けたものである。
 具体的には、コードユニット63Aとコードユニット63Cとは、連続した1本のコードユニットである。同様に、コードユニット63Bとコードユニット63Dとは、連続した1本のコードユニットである。
 図5に示すように、まず、1段目に相当するコードユニット63A及びコードユニット63Bが円環状に巻き付けられ、次いで、2段目に相当するコードユニット63C及びコードユニット63Dが円環状に巻き付けられる。
 或いは、コードユニット63Aとコードユニット63B、コードユニット63Cとコードユニット63Dとを連続した1本のコードユニットとし、まず、1段目に相当するコードユニット63B及びコードユニット63Dが円環状に巻き付けられ、次いで、2段目に相当するコードユニット63A及びコードユニット63Cが円環状に巻き付けられるようにしてもよい。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、コードユニット63A~コードユニット63Dは、金属材料によって形成されたビードコード64と、樹脂材料によって形成され、ビードコード64を被覆する被覆樹脂65とを含む。
 コードユニット63A~コードユニット63Dは、四角形以上の凸多角形であり、ビード構造体61のタイヤ径方向内側端部は、ビード構造体61のタイヤ幅方向中心からタイヤ幅方向外側に向かうに連れてタイヤ径方向外側に傾斜する傾斜部分61sを含む。
 このため、生タイヤの状態である空気入りタイヤ10の加硫時において、他の構成部材(ビードコア62など)に対するカーカスプライ40の相対的な位置ずれを許容することが可能となり、空気入りタイヤ10の所望のタイヤ形状を得やすくなる。
 さらに、ビード構造体61には、傾斜部分61sが形成されているため、カーカスプライ40が擦れて損傷することも防止し得る。
 すなわち、空気入りタイヤ10によれば、ビードコード64を樹脂材料で被覆したコードユニット63A~コードユニット63Dを用いつつ、製造容易性と耐久性とを両立し得る。
 本実施形態では、コードユニット63A~コードユニット63Dの断面形状は菱形である。このため、ビードコア62を構成する際に、隣接するコードユニット間に空隙ができず、ビードコア62の剛性を高め得る。これにより、空気入りタイヤ10の耐久性を高め得る。
 また、1本のコードユニットを巻き付けてビードコア62を構成する際に、容易に積み重ねることができる。つまり、製造容易性を高め得る。
 さらに、本実施形態では、コードユニット63A~コードユニット63Dのそれぞれは、当該菱形の何れかの辺と平行に配置された複数のビードコード64を含む。このため、コードユニット全体としての必要な剛性を確保し易い。これにより、空気入りタイヤ10の耐久性を高め得る。
 本実施形態では、コードユニットの頂点部63pは、面取りされている。このため、コードユニットを巻き付けてビードコア62を構成する際に、隣接するコードユニットとの干渉を抑制し得る。また、頂点部63pの損傷も抑制し得る。これにより、製造容易性と耐久性とを高め得る。
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、コードユニット63A~63Dの断面形状は、菱形であったが、次にように変更してもよい。
 図6は、変更例に係るビード構造体61Xの拡大断面図である。図6に示すように、ビード構造体61Xは、所定数(7つ)のコードユニット63Xによって構成されるビードコア62Xを含む。コードユニット63Xの断面形状は、凸多角形、具体的には、六角形(ハニカム形)である。
 図7は、他の変更例に係るビード構造体61Yの拡大断面図である。図7に示すように、ビード構造体61Yは、所定数(7つ)のコードユニット63Yによって構成されるビードコア62Yを含む。コードユニット63Yの断面形状は、四角形、具体的には正方形である。
 また、ビード構造体61X及びビード構造体61Yも、ビード構造体61と同様に、傾斜部分61sが形成される。
 なお、コードユニットの断面形状は、他にも、長方形、平行四辺形など、隣接するコードユニット間になるべく空隙ができない形状であればよい。
 また、上述した実施形態では、2本のビードコード64は、菱形のコードユニット63A~63Dの何れかの辺と平行になるように配置されていたが、2本のビードコード64は、辺ではなく、対角線と平行になるように配置されてもよい。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 10 空気入りタイヤ
 20 トレッド部
 30 タイヤサイド部
 40 カーカスプライ
 41 本体部
 42 折り返し部
 50 ベルト層
 51 補強コード
 60 ビード部
 61ビード構造体
 61s 傾斜部分
 61X, 61Y ビード構造体
 62, 62X, 62Y ビードコア
 63A, 63B, 63C, 63D, 63X, 63Y コードユニット
 63p 頂点部
 64 ビードコード
 65 被覆樹脂
 66 ビードフィラー
 100 リムホイール
 110 フランジ部分

Claims (5)

  1.  路面に接するトレッド部と、
     前記トレッド部に連なり、前記トレッド部のタイヤ径方向内側に位置するタイヤサイド部と、
     前記タイヤサイド部に連なり、前記タイヤサイド部のタイヤ径方向内側に位置するビード部と
    を含むタイヤであって、
     タイヤ幅方向及びタイヤ径方向に沿った断面において、前記ビード部は、タイヤ幅方向及びタイヤ径方向に沿って隣接して配置された所定数のコードユニットによって構成されるビードコアを有するビード構造体を含み、
     前記コードユニットは、
     ビードコードと、
     樹脂材料によって形成され、前記ビードコードを被覆する被覆樹脂と
    を含み、
     タイヤ幅方向及びタイヤ径方向に沿った断面において、
     前記コードユニットは、四角形以上の凸多角形であり、
     前記ビード構造体のタイヤ径方向内側端部は、前記ビード構造体のタイヤ幅方向中心からタイヤ幅方向外側に向かうに連れてタイヤ径方向外側に傾斜する傾斜部分を含むタイヤ。
  2.  前記ビードコードは、金属材料を用いて形成される請求項1に記載のタイヤ。
  3.  タイヤ幅方向及びタイヤ径方向に沿った断面において、前記コードユニットは、菱形である請求項1または2に記載のタイヤ。
  4.  前記コードユニットは、前記菱形の何れかの辺と平行に配置された複数の前記ビードコードを含む請求項3に記載のタイヤ。
  5.  前記コードユニットの頂点部は、面取りされている請求項1乃至4の何れか一項に記載のタイヤ。
PCT/JP2019/042014 2018-10-29 2019-10-25 タイヤ WO2020090680A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020553858A JPWO2020090680A1 (ja) 2018-10-29 2019-10-25 タイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-202941 2018-10-29
JP2018202941 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020090680A1 true WO2020090680A1 (ja) 2020-05-07

Family

ID=70463679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042014 WO2020090680A1 (ja) 2018-10-29 2019-10-25 タイヤ

Country Status (2)

Country Link
JP (1) JPWO2020090680A1 (ja)
WO (1) WO2020090680A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143288A1 (ja) * 2007-05-21 2008-11-27 Bridgestone Corporation 空気入りタイヤ
WO2011122450A1 (ja) * 2010-03-30 2011-10-06 株式会社ブリヂストン タイヤの製造方法、タイヤ、及び、タイヤ成形用金型
JP2011235835A (ja) * 2010-05-13 2011-11-24 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2013089111A1 (ja) * 2011-12-12 2013-06-20 株式会社ブリヂストン タイヤ
JP2017537842A (ja) * 2014-12-16 2017-12-21 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー オーバーモールドされたビード構造を有するタイヤ、空気入りタイヤ用のビード

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143288A1 (ja) * 2007-05-21 2008-11-27 Bridgestone Corporation 空気入りタイヤ
WO2011122450A1 (ja) * 2010-03-30 2011-10-06 株式会社ブリヂストン タイヤの製造方法、タイヤ、及び、タイヤ成形用金型
JP2011235835A (ja) * 2010-05-13 2011-11-24 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2013089111A1 (ja) * 2011-12-12 2013-06-20 株式会社ブリヂストン タイヤ
JP2017537842A (ja) * 2014-12-16 2017-12-21 ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー オーバーモールドされたビード構造を有するタイヤ、空気入りタイヤ用のビード

Also Published As

Publication number Publication date
JPWO2020090680A1 (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
US8056596B2 (en) Multiple ply modular construction
JP7011461B2 (ja) 空気入りタイヤ
JP4901144B2 (ja) 空気入りタイヤ
WO2020137587A1 (ja) ランフラットタイヤ
WO2020090680A1 (ja) タイヤ
WO2020255850A1 (ja) タイヤ
WO2020255831A1 (ja) タイヤ
WO2020129847A1 (ja) ランフラットタイヤ
WO2020090984A1 (ja) タイヤ
WO2020137627A1 (ja) ランフラットタイヤ
WO2020091017A1 (ja) タイヤ
WO2020090983A1 (ja) タイヤ
JP7078497B2 (ja) タイヤ
WO2020071442A1 (ja) タイヤ
JP7128271B2 (ja) 空気入りタイヤ
WO2020090982A1 (ja) タイヤ
JP7099932B2 (ja) タイヤ
WO2020090679A1 (ja) タイヤ
WO2020091019A1 (ja) タイヤ
WO2020091018A1 (ja) タイヤ
WO2020090850A1 (ja) ランフラットタイヤ
WO2020090750A1 (ja) タイヤ
WO2020085498A1 (ja) ランフラットタイヤ
WO2020085477A1 (ja) タイヤ
WO2020085497A1 (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553858

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878237

Country of ref document: EP

Kind code of ref document: A1