WO2020090183A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2020090183A1
WO2020090183A1 PCT/JP2019/031531 JP2019031531W WO2020090183A1 WO 2020090183 A1 WO2020090183 A1 WO 2020090183A1 JP 2019031531 W JP2019031531 W JP 2019031531W WO 2020090183 A1 WO2020090183 A1 WO 2020090183A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
gradation value
pixel
power supply
Prior art date
Application number
PCT/JP2019/031531
Other languages
English (en)
French (fr)
Inventor
池田 雅延
伊東 理
金谷 康弘
匡史 尾崎
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to CN201980071079.8A priority Critical patent/CN112956036B/zh
Priority to JP2020554773A priority patent/JP6987273B2/ja
Publication of WO2020090183A1 publication Critical patent/WO2020090183A1/ja
Priority to US17/240,469 priority patent/US11811002B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a display device.
  • a display device using an inorganic light emitting diode (micro LED) as a display element is known.
  • micro LED inorganic light emitting diode
  • different types of LEDs are used for each color to be displayed.
  • the red LED described in Patent Document 1 has a multiple quantum well structure of gallium nitride (GaN) applied as a light emitting layer.
  • GaN gallium nitride
  • a material obtained by adding europium (Eu) to gallium nitride (GaN) is used as a light emitting layer.
  • the red LED of Patent Document 1 has lower luminous efficiency than the blue LED and the green LED. Therefore, it is necessary to increase the driving current of the red LED, which may increase power consumption. Further, in the red LED of Patent Document 2, the half-width of the light spectrum is smaller than the half-width of the light spectrum of the blue LED or the green LED. For this reason, only the red color is displayed vividly, which may make it difficult to display an image well.
  • An object of the present invention is to provide a display device capable of displaying an image well.
  • a display device of one embodiment of the present invention includes a substrate, a plurality of pixels provided on the substrate, a plurality of first light emitting elements and a plurality of second light emitting elements provided in each of the plurality of pixels.
  • the light emitting layer of the first light emitting device includes gallium nitride (GaN) doped with europium (Eu)
  • the light emitting layer of the second light emitting device includes indium gallium nitride (InGaN) and gallium nitride (GaN).
  • GaN gallium nitride
  • InGaN indium gallium nitride
  • GaN gallium nitride
  • FIG. 1 is a plan view schematically showing the display device according to the embodiment.
  • FIG. 2 is a plan view showing a plurality of pixels.
  • FIG. 3 is a circuit diagram showing a pixel circuit.
  • FIG. 4 is an enlarged plan view showing two pixels of the display device according to the embodiment.
  • FIG. 5 is a sectional view taken along the line VV ′ of FIG.
  • FIG. 6 is a sectional view taken along line VI-VI ′ of FIG.
  • FIG. 7 is a cross-sectional view showing the first light emitting device according to the embodiment.
  • FIG. 8 is a cross-sectional view showing the second light emitting device according to the embodiment.
  • FIG. 9 is a graph schematically showing the relationship between the emission intensity and wavelength of each light emitting element.
  • FIG. 10 is a block diagram schematically showing the configuration of the signal processing circuit.
  • FIG. 11 is an explanatory diagram for explaining the relationship between the input gradation value and the driven light emitting element.
  • FIG. 12 is a flowchart for explaining a method of setting the output gradation value of each light emitting element according to the first modification.
  • FIG. 13 is a block diagram schematically showing the configuration of the signal processing circuit according to the second modification.
  • FIG. 14 is a flowchart for explaining a method of setting the output gradation value of each light emitting element according to the second modification.
  • FIG. 15 is a flowchart for explaining a method of setting the output gradation value of each light emitting element according to the third modification.
  • FIG. 11 is an explanatory diagram for explaining the relationship between the input gradation value and the driven light emitting element.
  • FIG. 12 is a flowchart for explaining a method of setting the output gradation value of each light emitting element according to the first modification.
  • FIG. 13
  • FIG. 16A is a plan view showing a first arrangement pattern of each light emitting element in one pixel group according to the fourth modification.
  • FIG. 16B is a plan view showing a second arrangement pattern of each light emitting element in one pixel group.
  • FIG. 16C is a plan view showing a third arrangement pattern of each light emitting element in one pixel group.
  • FIG. 17A is a plan view showing a fourth arrangement pattern of light emitting elements in two pixel groups according to the fifth modification.
  • FIG. 17B is a plan view showing a fifth arrangement pattern of each light emitting element in two pixel groups.
  • FIG. 17C is a plan view showing a sixth arrangement pattern of each light emitting element in two pixel groups.
  • FIG. 18 is a sectional view showing a light emitting element according to the sixth modification.
  • FIG. 1 is a plan view schematically showing the display device according to the embodiment.
  • the display device 1 includes an array substrate 2, pixels Pix (pixel group), a drive circuit 12, a drive IC (Integrated Circuit) 210, and a cathode wiring 60.
  • the array substrate 2 is a drive circuit substrate for driving each pixel Pix, and is also called a backplane or an active matrix substrate.
  • the array substrate 2 has a substrate 21, a plurality of transistors, a plurality of capacitors, various wirings, and the like.
  • the display device 1 has a display area AA and a peripheral area GA.
  • the display area AA is an area that is arranged so as to overlap the plurality of pixels Pix and displays an image.
  • the peripheral area GA is an area that does not overlap the plurality of pixels Pix, and is arranged outside the display area AA.
  • the plurality of pixels Pix are arranged in the first direction Dx and the second direction Dy in the display area AA.
  • the first direction Dx and the second direction Dy are parallel to the surface of the substrate 21.
  • the first direction Dx is orthogonal to the second direction Dy.
  • the first direction Dx may intersect with the second direction Dy instead of being orthogonal to each other.
  • the third direction Dz is a direction orthogonal to the first direction Dx and the second direction Dy.
  • the third direction Dz corresponds to the normal line direction of the substrate 21, for example. Note that, hereinafter, the plan view refers to a positional relationship when viewed from the third direction Dz.
  • the drive circuit 12 operates based on various control signals from the drive IC 210 to generate a plurality of gate lines (for example, reset control signal line L5, output control signal line L6, pixel control signal line L7, initialization control signal line L8 (see FIG. 3). )) Is a circuit for driving.
  • the drive circuit 12 sequentially or simultaneously selects a plurality of gate lines and supplies a gate drive signal (for example, a pixel control signal SG) to the selected gate lines. As a result, the drive circuit 12 selects the plurality of pixels Pix connected to the gate line.
  • the drive IC 210 is a circuit that controls the display of the display device 1.
  • the drive IC 210 is mounted as a COG (Chip On Glass) in the peripheral area GA of the substrate 21.
  • the drive IC 210 is not limited to this, and may be mounted as a COF (Chip On Film) on the wiring board connected to the peripheral area GA of the board 21.
  • the wiring board is, for example, a flexible printed board or a rigid board.
  • the cathode wiring 60 is provided in the peripheral area GA of the substrate 21.
  • the cathode wiring 60 is provided so as to surround the plurality of pixels Pix in the display area AA and the drive circuit 12 in the peripheral area GA.
  • the cathode wiring 60 is arranged between the peripheral circuit formed on the substrate 10 and the outer edge of the substrate 21.
  • the cathodes (cathode terminals 22t (see FIG. 5)) of the plurality of light emitting elements 3 are connected to a common cathode wiring 60 and are supplied with a fixed potential (eg, ground potential). More specifically, the cathode terminal 22t (see FIG. 5) of the light emitting element 3 is connected to the cathode wiring 60 via the cathode electrode 22.
  • the cathode wiring 60 is not limited to one wiring continuously formed along the three sides of the substrate 10, but may be two partial wirings having slits on any side on the substrate 21. It suffices that the wiring is arranged along at least one side of the substrate 21.
  • FIG. 2 is a plan view showing a plurality of pixels.
  • one pixel Pix includes a plurality of pixels 49.
  • the pixel Pix has a first pixel 49Ra, a second pixel 49Rb, a third pixel 49G, and a fourth pixel 49B.
  • the first pixel 49Ra displays the primary red color as the first color.
  • the second pixel 49Rb displays the primary color second red color as the first color.
  • the third pixel 49G displays the primary color green as the second color.
  • the fourth pixel 49B displays the primary color blue as the third color.
  • Both the first red color and the second red color are red light, but the emission intensity and the half-width of the light spectrum are different.
  • the first pixel 49Ra and the second pixel 49Rb are arranged in the second direction Dy.
  • the first pixel 49Ra and the fourth pixel 49B are arranged in the first direction Dx.
  • the second pixel 49Rb and the third pixel 49G are arranged in the first direction Dx.
  • the third pixel 49G and the fourth pixel 49B are arranged in the second direction Dy.
  • the first color, the second color, and the third color are not limited to red, green, and blue, respectively, and any color such as a complementary color can be selected.
  • the pixel 49 is referred to as a pixel 49.
  • Each pixel 49 has a light emitting element 3 and an anode electrode 23.
  • the first pixel 49Ra, the second pixel 49Rb, the third pixel 49G, and the fourth pixel 49B respectively include a first light emitting element 3Ra, a second light emitting element 3Rb, a third light emitting element 3G, and a fourth light emitting element.
  • the first light emitting element 3Ra and the second light emitting element 3Rb are arranged in the second direction Dy.
  • the first light emitting element 3Ra and the fourth light emitting element 3B are arranged in the first direction Dx.
  • the second light emitting element 3Rb and the third light emitting element 3G are arranged in the first direction Dx.
  • the third light emitting element 3G and the fourth light emitting element 3B are arranged in the second direction Dy.
  • the first light emitting element 3Ra emits the first red light.
  • the second light emitting element 3Rb emits the second red light.
  • the third light emitting element 3G emits green light.
  • the fourth light emitting element 3B emits blue light.
  • the first light emitting element 3Ra, the second light emitting element 3Rb, the third light emitting element 3G, and the fourth light emitting element 3B are referred to as light emitting element 3 when it is not necessary to distinguish them.
  • the light emitting element 3 is an inorganic light emitting diode (LED) chip having a size of 3 ⁇ m or more and 300 ⁇ m or less in a plan view, and is called a micro LED (micro LED) or a mini LED (mini LED).
  • the display device 1 including a micro LED in each pixel is also called a micro LED display device. It should be noted that the micro of the micro LED does not limit the size of the light emitting element 3.
  • the plurality of light emitting elements 3 may emit different lights of four colors or more.
  • the first color, the second color, and the third color are not limited to red, green, and blue, respectively, and any color such as a complementary color can be selected.
  • the number of pixels 49 arranged in one pixel Pix is not limited to 4, and may be 5 or more, and 5 or more pixels 49 may be associated with different colors.
  • the arrangement of the pixels 49 is not limited to this, and the first pixel 49Ra, the second pixel 49Rb, the third pixel 49G, and the fourth pixel 49B are arranged in one of the first direction Dx and the second direction Dy. It may be arranged.
  • FIG. 3 is a circuit diagram showing a pixel circuit.
  • FIG. 3 shows the pixel circuit PICA provided in one pixel 49, and the pixel circuit PICA is provided in each of the plurality of pixels 49.
  • the pixel circuit PICA includes the light emitting element 3, five transistors, and two capacitors.
  • the pixel circuit PICA includes a drive transistor DRT, an output transistor BCT, an initialization transistor IST, a pixel selection transistor SST, and a reset transistor RST.
  • the drive transistor DRT, the output transistor BCT, the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST are each composed of an n-type TFT (Thin Film Transistor).
  • the pixel circuit PICA includes a first capacitor Cs1 and a second capacitor Cs2.
  • the cathode (cathode terminal 22t) of the light emitting element 3 is connected to the cathode power supply line L10.
  • the anode (anode terminal 23t) of the light emitting element 3 is connected to the anode power supply line L1 via the drive transistor DRT and the output transistor BCT.
  • the anode power supply potential PVDD is supplied to the anode power supply line L1.
  • a cathode power supply potential PVSS corresponding to the cathode wiring 60 and the cathode electrode 22 is supplied to the cathode power supply line L10.
  • the anode power supply potential PVDD is higher than the cathode power supply potential PVSS.
  • the anode power supply line L1 supplies the pixel 49 with an anode power supply potential PVDD which is a drive potential.
  • the light emitting element 3 ideally supplies a forward current (driving current) by the potential difference (PVDD-PVSS) between the anode power supply potential PVDD and the cathode power supply potential PVSS, and emits light. That is, the anode power supply potential PVDD has a potential difference with respect to the cathode power supply potential PVSS that causes the light emitting element 3 to emit light.
  • the anode terminal 23t of the light emitting element 3 is connected to the anode electrode 23, and the second capacitor Cs2 is connected between the anode electrode 23 and the anode power supply line L1.
  • the source electrode of the drive transistor DRT is connected to the anode terminal 23t of the light emitting element 3 via the anode electrode 23, and the drain electrode is connected to the source electrode of the output transistor BCT.
  • the gate electrode of the drive transistor DRT is connected to the first capacitor Cs1, the drain electrode of the pixel selection transistor SST, and the drain electrode of the initialization transistor IST.
  • the gate electrode of the output transistor BCT is connected to the output control signal line L6.
  • the output control signal BG is supplied to the output control signal line L6.
  • the drain electrode of the output transistor BCT is connected to the anode power supply line L1.
  • the source electrode of the initialization transistor IST is connected to the initialization power supply line L4.
  • the initialization potential Vini is supplied to the initialization power supply line L4.
  • the gate electrode of the initialization transistor IST is connected to the initialization control signal line L8.
  • An initialization control signal IG is supplied to the initialization control signal line L8. That is, the initialization power supply line L4 is connected to the gate electrode of the drive transistor DRT through the initialization transistor IST.
  • the source electrode of the pixel selection transistor SST is connected to the video signal line L2.
  • the video signal Vsig is supplied to the video signal line L2.
  • the pixel control signal line L7 is connected to the gate electrode of the pixel selection transistor SST.
  • a pixel control signal SG is supplied to the pixel control signal line L7.
  • the source electrode of the reset transistor RST is connected to the reset power supply line L3.
  • the reset power supply potential Vrst is supplied to the reset power supply line L3.
  • the reset control signal line L5 is connected to the gate electrode of the reset transistor RST.
  • a reset control signal RG is supplied to the reset control signal line L5.
  • the drain electrode of the reset transistor RST is connected to the anode electrode 23 (anode terminal 23t of the light emitting element 3) and the source electrode of the drive transistor DRT. The reset operation of the reset transistor RST resets the voltage held in the first capacitor Cs1 and the second capacitor Cs2.
  • a first capacitor Cs1 is provided between the drain electrode of the reset transistor RST and the gate electrode of the drive transistor DRT.
  • the pixel circuit PICA can suppress the fluctuation of the gate voltage due to the parasitic capacitance of the drive transistor DRT and the leakage current by the first capacitance Cs1 and the second capacitance Cs2.
  • the anode power supply line L1 and the cathode power supply line L10 may be simply referred to as power supply lines.
  • the video signal line L2, the reset power supply line L3, and the initialization power supply line L4 may be referred to as signal lines.
  • the reset control signal line L5, the output control signal line L6, the pixel control signal line L7, and the initialization control signal line L8 may be referred to as gate lines.
  • a potential according to the video signal Vsig (or gradation signal) is supplied to the gate electrode of the drive transistor DRT. That is, the drive transistor DRT supplies the light emitting element 3 with a current according to the video signal Vsig based on the anode power supply potential PVDD supplied via the output transistor BCT. In this way, the anode power supply potential PVDD supplied to the anode power supply line L1 drops due to the drive transistor DRT and the output transistor BCT, so that a potential lower than the anode power supply potential PVDD is supplied to the anode terminal 23t of the light emitting element 3. To be done.
  • the anode power supply potential PVDD is supplied to one electrode of the second capacitance Cs2 via the anode power supply line L1, and the potential lower than the anode power supply potential PVDD is supplied to the other electrode of the second capacitance Cs2. That is, one electrode of the second capacitor Cs2 is supplied with a higher potential than the other electrode of the second capacitor Cs2.
  • One electrode of the second capacitor Cs2 is, for example, the anode power supply line L1, and the other electrode of the second capacitor Cs2 is the anode electrode 23 connected to the source of the drive transistor DRT and the anode connection electrode connected thereto. 24.
  • the drive circuit 12 sequentially selects a plurality of pixel rows from the top row (for example, the pixel row located at the top in the display area AA in FIG. 1).
  • the drive IC 210 writes the video signal Vsig (video writing potential) to the pixels 49 of the selected pixel row, and causes the light emitting element 3 to emit light.
  • the drive IC 210 supplies the video signal Vsig to the video signal line L2, the reset power supply potential Vrst to the reset power supply line L3, and the initialization potential Vini to the initialization power supply line L4 for each horizontal scanning period.
  • the display device 1 repeats these operations for each frame of image.
  • FIG. 4 is an enlarged plan view showing two pixels of the display device according to the embodiment.
  • FIG. 4 shows two pixels 49 (for example, a second pixel 49Rb and a third pixel 49G) adjacent to each other in the first direction Dx.
  • the anode power supply line L1, the video signal line L2, the reset power supply line L3, and the initialization power supply line L4 extend in the second direction Dy.
  • the reset control signal line L5, the output control signal line L6, the pixel control signal line L7, and the initialization control signal line L8 extend in the first direction Dx, and in plan view, the anode power supply line L1, the video signal line L2, and the reset power supply.
  • the line L3 and the initialization power supply line L4 intersect with each other.
  • the connection wiring L9 is provided between the two anode power supply lines L1 adjacent to each other in the first direction Dx.
  • the connection wiring L9 connects the drive transistor DRT, the pixel selection transistor SST, and the initialization transistor IST.
  • the anode power supply line L1, the video signal line L2, the reset power supply line L3, and the initialization power supply line L4 are hatched in order to distinguish each wiring and semiconductor layer.
  • the reset control signal line L5, the output control signal line L6, the pixel control signal line L7, and the initialization control signal line L8 are shown by dotted lines.
  • the semiconductor layers 61, 65, 71, 75, 79 are also shaded.
  • the anode connection electrode 24 is shown by a two-dot chain line.
  • the anode power supply line L1, the video signal line L2, the reset power supply line L3, the initialization power supply line L4, and the connection wiring L9 are gate lines (reset control signal line L5, output control signal line L6, pixel control signal line L7, initialization). It is formed of a metal layer provided in a layer different from the control signal line L8).
  • titanium (Ti), molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb), indium tin oxide (ITO), aluminum (Al), silver (Ag), Ag An alloy, copper (Cu), carbon nanotube, graphite, graphene or carbon nanobud is used.
  • the sheet resistance values of the anode power supply line L1, the video signal line L2, the reset power supply line L3, the initialization power supply line L4, and the connection wiring L9 are not more than the sheet resistance value of each gate line.
  • the sheet resistance value of the anode power supply line L1 is less than or equal to the sheet resistance value of each signal line (video signal line L2, reset power supply line L3, initialization power supply line L4) and connection wiring L9.
  • the sheet resistance value of the anode power supply line L1 is 30 m ⁇ / ⁇ or more and 120 m ⁇ / ⁇ or less.
  • the sheet resistance value of each signal line and the connection wiring L9 is 120 m ⁇ / ⁇ or more and 300 m ⁇ / ⁇ or less.
  • the sheet resistance value of each gate line is 300 m ⁇ / ⁇ or more and 3000 m ⁇ / ⁇ or less. Accordingly, the display device 1 can suppress the voltage drop of the drive voltage applied to the anode power supply line L1 and can suppress the deterioration of the display performance.
  • each wiring is not limited to a single layer, and may be composed of a laminated film.
  • each power supply line and signal line may have a laminated structure of Ti / Al / Ti or Mo / Al / Mo, or may be a single layer film of Al.
  • Ti, Al and Mo may be alloys.
  • the semiconductor layers 61, 65, 71, 75, 79 are made of, for example, amorphous silicon, microcrystalline oxide semiconductor, amorphous oxide semiconductor, polysilicon, low temperature polysilicon (LTPS: Low Temperature Polycrystalline Silicon) or gallium nitride (GaN). Composed.
  • oxide semiconductors include IGZO, zinc oxide (ZnO), and ITZO.
  • IGZO is indium gallium zinc oxide.
  • ITZO is indium tin zinc oxide.
  • the semiconductor layers 61, 65, 71, 75, 79 may all be made of the same material, for example, polysilicon.
  • the reset power supply line L3 and the initialization power supply line L4 are shared by two pixels 49 adjacent to each other in the first direction Dx. That is, in the second pixel 49Rb shown on the left side of FIG. 4, the initialization power supply line L4 is not provided, but the reset power supply line L3 is provided along the video signal line L2. In the third pixel 49G shown on the right side of FIG. 4, the reset power supply line L3 is not provided, but the initialization power supply line L4 is provided along the video signal line L2. As a result, the number of wirings can be reduced and wirings can be efficiently arranged as compared with the case where the reset power supply line L3 and the initialization power supply line L4 are provided in each pixel 49.
  • the drive transistor DRT has a semiconductor layer 61, a source electrode 62 and a gate electrode 64.
  • the semiconductor layer 61, the source electrode 62, and the gate electrode 64 are arranged such that at least a portion thereof overlaps each other in plan view, and the two anode power supply lines L1 adjacent to each other in the first direction Dx, the output control signal line L6, and the pixel control It is provided in a region surrounded by the signal line L7.
  • a channel region is formed in a portion of the semiconductor layer 61 that overlaps with the gate electrode 64.
  • the drive transistor DRT has a single gate structure in which one gate electrode 64 is provided so as to overlap the semiconductor layer 61.
  • the semiconductor layer 61 has a first partial semiconductor layer 61a.
  • the first partial semiconductor layer 61a is the same layer as the semiconductor layer 61 and is made of the same semiconductor material.
  • the first partial semiconductor layer 61a is a portion protruding from the semiconductor layer 61 in the first direction Dx.
  • the width of the first partial semiconductor layer 61a in the first direction Dx is larger than the width of the semiconductor layer 61 in the first direction Dx at the portion connected to the semiconductor layer 65 of the output transistor BCT.
  • the semiconductor layer 61 is connected to the source electrode 62 via the first partial semiconductor layer 61a.
  • the semiconductor layer 61 and the first partial semiconductor layer 61a are provided so as to overlap the first insulating film 91 (see FIG.
  • the semiconductor layer 61 and the first partial semiconductor layer 61a may each be formed in a rectangular shape and electrically connected to each other via a connecting portion.
  • the output transistor BCT has a semiconductor layer 65.
  • the semiconductor layer 65 is connected to the semiconductor layer 61 of the drive transistor DRT and intersects the output control signal line L6 in a plan view.
  • a channel region is formed in a region of the semiconductor layer 65 that overlaps with the output control signal line L6.
  • a portion of the output control signal line L6 that overlaps with the semiconductor layer 65 functions as the gate electrode 66 of the output transistor BCT.
  • One end side of the semiconductor layer 65 is electrically connected to the anode power supply line connecting portion L1a.
  • the anode power supply line connecting portion L1a is a portion branched from the anode power supply line L1 in the first direction Dx. As a result, the anode power supply potential PVDD is supplied from the anode power supply line L1 to the drive transistor DRT and the output transistor BCT.
  • the initialization transistor IST has the semiconductor layer 71.
  • the initialization transistor IST includes the semiconductor layer 71A.
  • the semiconductor layers 71 and 71A respectively intersect the initialization control signal line L8 and the branch signal line L8a in a plan view.
  • a channel region is formed in a region of the semiconductor layers 71 and 71A that overlaps with the initialization control signal line L8 and the branch signal line L8a.
  • the branch signal line L8a is branched from the initialization control signal line L8 and extends in the first direction Dx.
  • the portions of the initialization control signal line L8 and the branch signal line L8a that overlap the semiconductor layers 71 and 71A function as the gate electrode 74 of the initialization transistor IST, respectively. That is, the initialization transistor IST has a double gate structure in which two gate electrodes 74 are provided so as to overlap with the semiconductor layers 71 and 71A, respectively.
  • the semiconductor layer 71 extends in the second direction Dy, one end thereof is electrically connected to the connection wiring L9, and the other end thereof is connected to the initialization power supply line connecting portion L4a.
  • the initialization power supply line connecting portion L4a is a portion branched from the initialization power supply line L4 in the first direction Dx.
  • the semiconductor layer 71A has a portion extending in the second direction Dy and a portion extending in the first direction Dx. One end of the portion of the semiconductor layer 71A extending in the second direction Dy is electrically connected to the connection wiring L9.
  • a portion of the semiconductor layer 71A extending in the first direction Dx intersects the anode power supply line L1 and the video signal line L2 in a plan view and extends to the third pixel 49G, and is electrically connected to the initialization power supply line connecting portion L4a. Connected to each other. With the configuration described above, one initialization power supply line L4 is electrically connected to the two initialization transistors IST and shared by the two pixels 49 adjacent to each other in the first direction Dx.
  • the pixel selection transistor SST has a semiconductor layer 75.
  • the semiconductor layer 75 extends in the first direction Dx and intersects the two branch signal lines L7a in a plan view. A channel region is formed in the semiconductor layer 75 in a region overlapping the two branch signal lines L7a.
  • the two branch signal lines L7a are portions branched from the pixel control signal line L7 in the second direction Dy.
  • a portion of the two branch signal lines L7a that overlaps with the semiconductor layer 75 functions as a gate electrode 78 of the pixel selection transistor SST. That is, the pixel selection transistor SST has a double gate structure in which the two gate electrodes 78 are provided so as to overlap the semiconductor layer 75.
  • One end of the semiconductor layer 75 is connected to the video signal line connecting portion L2a, and the other end is connected to the connection wiring L9.
  • the video signal line connection portion L2a is a portion branched from the video signal line L2 in the first direction Dx.
  • the reset transistor RST has a semiconductor layer 79.
  • the semiconductor layer 79 extends in the second direction Dy and intersects the reset control signal line L5 and the branch signal line L5a in a plan view.
  • a channel region is formed in the semiconductor layer 79 in a region overlapping the reset control signal line L5 and the branch signal line L5a.
  • the branch signal line L5a is branched from the reset control signal line L5 and extends in the first direction Dx.
  • the portions of the reset control signal line L5 and the branch signal line L5a that overlap the semiconductor layer 79 function as the gate electrodes of the reset transistor RST, respectively. That is, the reset transistor RST has a double gate structure.
  • the reset power supply line L3 is connected to reset power supply line connecting portions L3a and L3b and a bridge portion L3c extending in the first direction Dx.
  • the reset power supply line connecting portions L3a and L3b are formed of the same metal layer as the reset power supply line L3, and the bridge portion L3c is a layer different from the reset power supply line connecting portions L3a and L3b, for example, a metal layer of the same layer as various gate lines. Is formed by.
  • the reset power supply line connecting portion L3a is provided in the second pixel 49Rb, and the reset power supply line connecting portion L3b is provided in the third pixel 49G.
  • An anode power supply line L1, a video signal line L2, and an initialization power supply line L4 are provided between the reset power supply line connecting portion L3a and the reset power supply line connecting portion L3b.
  • the bridge portion L3c intersects the anode power supply line L1, the video signal line L2, and the initialization power supply line L4 in a plan view, and connects the reset power supply line connecting portion L3a and the reset power supply line connecting portion L3b.
  • one end of the semiconductor layer 79 is connected to the reset power supply line connecting portion L3a.
  • one end of the semiconductor layer 79 is connected to the reset power supply line connecting portion L3b.
  • the other end of the semiconductor layer 79 is electrically connected to the semiconductor layer 61 of the drive transistor DRT. That is, the other end of the semiconductor layer 79 of the reset transistor RST is electrically connected to the anode terminal 23t of the light emitting element 3 via the semiconductor layer 61 and the source electrode 62.
  • one reset power supply line L3 is electrically connected to the two reset transistors RST and shared by the two pixels 49 adjacent to each other in the first direction Dx.
  • the first capacitor Cs1 (see FIG. 3) is formed between the semiconductor layer 61 (first partial semiconductor layer 61a) and the gate electrode 64.
  • the anode connection electrode 24 is electrically connected to the drive transistor DRT and is arranged at least overlapping with the anode power supply line L1.
  • a second capacitor Cs2 (see FIG. 3) is formed between the anode connection electrode 24 and the anode power supply line L1 and various wirings connected to the anode power supply line L1.
  • the second capacitor Cs2 formed by the second pixel 49Rb and the second capacitor Cs2 formed by the third pixel 49G have substantially the same size, and each is, for example, about 250 fF.
  • the drive transistor DRT and the output transistor BCT for supplying the drive current to the light emitting element 3 have a single gate structure.
  • the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST have a double gate structure. Thereby, the leak currents of the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST can be suppressed.
  • FIG. 5 is a sectional view taken along the line VV ′ of FIG.
  • FIG. 6 is a sectional view taken along line VI-VI ′ of FIG. Note that, in FIG. 6, the cathode wiring 60 and the transistor Tr provided in the peripheral area GA are schematically shown.
  • the light emitting element 3 is provided on the array substrate 2.
  • the array substrate 2 has a substrate 21, various transistors, various wirings, and various insulating films.
  • the substrate 21 is an insulating substrate, and for example, a glass substrate, a resin substrate, a resin film, or the like is used.
  • the direction from the substrate 21 toward the planarization film 27 in the direction perpendicular to the surface of the substrate 21 is referred to as “upper side”. Further, the direction from the flattening film 27 to the substrate 21 is referred to as “lower side”.
  • the drive transistor DRT, the output transistor BCT, the initialization transistor IST, the pixel selection transistor SST, and the reset transistor RST are provided on one surface side of the substrate 21.
  • the undercoat film 90, each gate line, the first insulating film 91, the semiconductor layers 61, 65, 71, 75, the second insulating film 92, each signal line and power supply line, the third insulating film. 93, the anode connection electrode 24, the shield electrode 26, and the fourth insulating film 94 are stacked in this order.
  • the anode electrode 23 and the light emitting element 3 are provided on the anode connection electrode 24 and the shield electrode 26 via the fourth insulating film 94.
  • the array substrate 2 includes layers from the substrate 21 to the anode electrode 23.
  • the array substrate 2 does not include the flattening film 27, the cathode electrode 22, and the light emitting element 3.
  • the undercoat film 90, the first insulating film 91, the second insulating film 92, and the fourth insulating film 94 are inorganic insulating materials such as a silicon oxide film (SiO), a silicon nitride film (SiN), or a silicon oxynitride film (SiON). Is used. Further, each inorganic insulating film is not limited to a single layer and may be a laminated film. Further, the undercoat film 90 may not be provided.
  • the third insulating film 93 and the flattening film 27 are an organic insulating film or an inorganic-organic hybrid insulating film (a material in which an organic group (methyl group or phenyl group) is bonded to the Si—O main chain).
  • the gate electrodes 64, 66, 74, 78 are provided on the substrate 21 via the undercoat film 90.
  • the first insulating film 91 is provided on the undercoat film 90 so as to cover the gate electrodes 64, 66, 74 and 78.
  • the semiconductor layers 61, 65, 71, 75 are provided on the first insulating film 91.
  • the second insulating film 92 is provided on the first insulating film 91 so as to cover the semiconductor layers 61, 65, 71, 75.
  • each transistor has a so-called bottom gate structure.
  • each transistor may have a top gate structure in which a gate electrode is provided on the upper side of the semiconductor layer or a dual gate structure in which a gate electrode is provided on both the upper side and the lower side of the semiconductor layer.
  • connection wiring L9, the source electrodes 62 and 72, and the drain electrode 67 are provided on the second insulating film 92.
  • the source electrode 62 is electrically connected to the first partial semiconductor layer 61a (semiconductor layer 61) through a contact hole provided in the second insulating film 92.
  • the drain electrode 67 is electrically connected to the semiconductor layer 65 via a contact hole provided in the second insulating film 92.
  • the source electrode 72 of the initialization transistor IST is electrically connected to the semiconductor layer 71 via a contact hole provided in the second insulating film 92.
  • connection wiring L9 is electrically connected to the semiconductor layer 75 of the pixel selection transistor SST via a contact hole provided in the second insulating film 92. A portion of the connection wiring L9 that overlaps with the semiconductor layer 75 functions as the drain electrode 77. The other end of the connection wiring L9 is electrically connected to the semiconductor layer 71 of the initialization transistor IST via a contact hole provided in the second insulating film 92. A portion of the connection wiring L9 that overlaps with the semiconductor layer 71 functions as the drain electrode 73. With such a configuration, the drain of the pixel selection transistor SST and the drain of the initialization transistor IST are electrically connected via the connection wiring L9.
  • the third insulating film 93 is provided on the second insulating film 92, covering the source electrodes 62, 72 and the drain electrodes 67, 73, 77.
  • the anode connection electrode 24 and the shield electrode 26 are provided on the third insulating film 93.
  • the anode connection electrode 24 is connected to the source electrode 62 via a contact hole provided in the third insulating film 93.
  • the shield electrode 26 is provided below the anode electrode 23 and the light emitting element 3.
  • the fourth insulating film 94 is provided on the third insulating film 93 so as to cover the anode connection electrode 24 and the shield electrode 26.
  • the anode electrode 23 is provided on the fourth insulating film 94.
  • the anode electrode 23 is electrically connected to the anode connection electrode 24 via a contact hole provided in the fourth insulating film 94.
  • the light emitting element 3 is provided on the anode electrode 23, and the anode terminal 23t of the light emitting element 3 is connected to the anode electrode 23. As a result, the anode terminal 23t of the light emitting element 3 is electrically connected to the source electrode 62 of the drive transistor DRT.
  • the flattening film 27 is provided on the fourth insulating film 94 so as to cover at least the side surface 3a of the light emitting element 3.
  • the cathode electrode 22 is provided on the flattening film 27 and is connected to the cathode terminal 22t of the light emitting element 3.
  • the cathode electrode 22 is provided from the display area AA to the peripheral area GA and is electrically connected to the light emitting elements 3 of the plurality of pixels 49.
  • a transistor Tr included in the drive circuit 12 in the peripheral area GA of the substrate 21, as a plurality of transistors, a transistor Tr included in the drive circuit 12 (see FIG. 1) and a cathode wiring 60 are provided.
  • the cathode wiring 60 is provided in the same layer as the anode power supply line L1 and is provided on the second insulating film 92 in the peripheral region GA.
  • the cathode electrode 22 shown in FIG. 5 is electrically connected to the cathode wiring 60 through the contact holes provided in the third insulating film 93, the fourth insulating film 94, and the flattening film 27.
  • the cathode power supply line L10 shown in FIG. 3 includes a cathode wiring 60 and a cathode electrode 22.
  • the transistor Tr includes a semiconductor layer 81, a source electrode 82, a drain electrode 83 and a gate electrode 84.
  • the transistor Tr has the same layer structure as each transistor included in the pixel circuit PICA, and detailed description thereof will be omitted.
  • the semiconductor layer 81 is provided on the second insulating film 92, that is, in the same layer as the semiconductor layers 61, 65, 71, 75, 79. However, the transistor Tr may be provided in a layer different from that of each transistor of the pixel 49.
  • the anode power supply line L1, the video signal line L2, and the reset power supply line L3 are provided on the second insulating film 92.
  • the width of the anode power supply line L1 is larger than the width of each of the video signal line L2 and the reset power supply line L3.
  • the thickness t2 of the anode power supply line L1 is thicker than the thickness t1 of the gate electrode 64 (see FIG. 5).
  • the thickness t2 of the anode power supply line L1 is equal to the thickness of the video signal line L2 and the reset power supply line L3. As a result, the resistance value of the anode power supply line L1 can be reduced.
  • the thickness t2 of the anode power supply line L1 may be different from the thicknesses of the video signal line L2 and the reset power supply line L3.
  • each wiring can be changed appropriately.
  • the anode power supply line L1 and each signal line such as the video signal line L2 and the reset power supply line L3 may be provided in different layers.
  • the capacitance formed between the anode power supply line L1 and various gate lines is used as a decoupling capacitor.
  • the decoupling capacitor can absorb the fluctuation of the anode power supply potential PVDD and stably operate the drive IC 210.
  • the decoupling capacitor can suppress leakage of electromagnetic noise generated in the display device 1 to the outside.
  • the configuration of the pixel circuit PICA shown in FIG. 3 described above can be changed as appropriate.
  • the number of wirings and the number of transistors in one pixel 49 may be different.
  • FIG. 7 is a cross-sectional view showing the first light emitting element according to the embodiment.
  • the first light emitting element 3Ra has a so-called face-up structure in which the anode terminal 23t is provided on the lower side and the cathode terminal 22t is provided on the upper side.
  • the first light emitting element 3Ra includes a plurality of partial light emitting elements 3s, a protective layer 39 covering the plurality of partial light emitting elements 3s, a p-type electrode 37, and an n-type electrode 38.
  • the plurality of partial light emitting elements 3s are formed in a columnar shape between the p-type electrode 37 and the n-type electrode 38, respectively.
  • the plurality of partial light emitting devices 3s include an n-type clad layer 33, a light emitting layer 34, and a p-type clad layer 35.
  • the n-type electrode 38 is electrically connected to the n-type cladding layer 33.
  • the p-type electrode 37 is electrically connected to the p-type clad layer 35.
  • a p-type clad layer 35, a light emitting layer 34, and an n-type clad layer 33 are stacked in this order on the p-type electrode 37.
  • a compound semiconductor such as gallium nitride (GaN) or aluminum indium phosphide (AlInP) is used.
  • the light emitting layer 34 of the first light emitting element 3Ra is gallium nitride (GaN) to which europium (Eu) is added.
  • the n-type electrode 38 is a translucent conductive material such as ITO (Indium Tin Oxide).
  • the n-type electrode 38 is the cathode terminal 22t of the first light emitting element 3Ra and is connected to the cathode electrode 22.
  • the p-type electrode 37 is the anode terminal 23t of the first light emitting element 3Ra and has a Pt layer 37a and a thick film Au layer 37b formed by plating.
  • the thick film Au layer 37b is connected to the mounting surface 23a of the anode electrode 23.
  • the protective layer 39 is, for example, SOG (Spin on Glass).
  • the side surface of the protective layer 39 becomes the side surface 3a of the first light emitting element 3Ra.
  • the flattening film 27 is provided so as to surround the side surface of the protective layer 39.
  • FIG. 8 is a cross-sectional view showing the second light emitting element according to the embodiment.
  • the second light emitting element 3Rb that emits the second red light has a different structure from the first light emitting element 3Ra that emits the first red light.
  • the light emitting layer 34A of the second light emitting element 3Rb has a multiple quantum well structure in which indium gallium nitride (InGaN) and gallium nitride (GaN) are stacked in multiple layers.
  • InGaN indium gallium nitride
  • GaN gallium nitride
  • the third light emitting element 3G and the fourth light emitting element 3B have the same laminated structure as the first light emitting element 3Ra and the second light emitting element 3Rb, and the single light emitting layer 34 is formed similarly to the first light emitting element 3Ra.
  • the second light-emitting element 3Rb may have the light-emitting layer 34, and the light-emitting layer 34 may have a multi-layer structure.
  • FIG. 9 is a graph schematically showing the relationship between the light emission intensity of each light emitting element and the wavelength.
  • the maximum emission wavelengths are about 620 nm, 645 nm, 530 nm, and 450 nm, respectively.
  • the maximum light emission wavelength of the first light emitting element 3Ra is in the vicinity of the maximum light emission wavelength of the second light emitting element 3Rb, and both the first light emitting element 3Ra and the second light emitting element 3Rb emit red light (first red, second red ) Is emitted.
  • the wavelength range of the spectrum of the first red light overlaps the wavelength range of the spectrum of the second red light.
  • the full width at half maximum of the spectrum of the first red light is smaller than the full width at half maximum of the spectrum of the second red light.
  • the emission intensity of the spectrum of the first red light is higher than the emission intensity of the spectrum of the second red light.
  • the first light emitting element 3Ra and the second light emitting element 3Rb which have different light spectra, display a red color, so that an image can be displayed well.
  • FIG. 10 is a block diagram schematically showing the configuration of the signal processing circuit.
  • FIG. 11 is an explanatory diagram for explaining the relationship between the input gradation value and the driven light emitting element.
  • the signal processing circuit 100 has a first processing circuit 110, a memory 115, and a buffer 125.
  • the signal processing circuit 100 calculates the output gradation values SoRa, SoRb, SoG, SoB of each of the four pixels 49 based on the video signal Vsig.
  • the video signal Vsig includes input gradation values SiR, SiG, and SiB for each pixel Pix.
  • the input gradation values SiR, SiG, and SiB are gradation values of red, green, and blue, respectively.
  • the output gradation value SoRa is a gradation value corresponding to the first pixel 49Ra.
  • the output gradation value SoRb is a gradation value corresponding to the second pixel 49Rb.
  • the output gradation value SoG is a gradation value corresponding to the third pixel 49G.
  • the output gradation value SoB is a gradation value corresponding to the fourth pixel 49B.
  • the signal processing circuit 100 may be included in, for example, the drive IC 210 shown in FIG. 1, or may be provided on the substrate 21 as a circuit chip separate from the drive IC 210.
  • output grayscale values So when it is not necessary to distinguish the output grayscale values SoRa, SoRb, SoG, and SoB, they are referred to as output grayscale values So.
  • the input gradation values Si are referred to as the input gradation values Si.
  • the buffer 125 is a circuit that stores the input gradation value Si.
  • the buffer 125 may store the input grayscale value Si including the input grayscale values SiR, SiG, and SiB included in the video signal Vsig for one frame.
  • the input gradation value Si included in part of the video signal Vsig may be captured.
  • the memory 115 includes a data LUT showing information indicating the relationship between the input gradation values SiR, SiG, SiB and the output gradation values SoRa, SoRb, SoG, SoB of each of the four pixels 49.
  • the data LUT is, for example, table data such as a Look Up Table.
  • the data LUT is associated with output gradation values SoRa and SoRb for turning on only the first light emitting element 3Ra in a range where the input gradation value SiR is 0 or more and the first threshold value Lth (see FIG. 11) or less. .. That is, the output gradation value SoRb is 0 (gradation value 0) in the range where the input gradation value SiR is 0 or more and the first threshold value Lth or less. Further, in the data LUT, in the range where the input gradation value SiR is larger than the first threshold value Lth and smaller than the second threshold value Hth (see FIG. 11), the first light emitting element 3Ra and the second light emitting element 3Rb are included.
  • the output grayscale values SoRa and SoRb that light both of them are associated with each other.
  • the second threshold value Hth is a gradation value larger than the first threshold value Lth.
  • output gradation values SoRa and SoRb that light only the first light emitting element 3Ra are associated with each other in the range where the input gradation value SiR is equal to or larger than the second threshold value Hth. That is, the output gradation value SoRb is 0 (gradation value 0) in the range where the input gradation value SiR is equal to or higher than the second threshold value Hth.
  • the first processing circuit 110 refers to the data LUT read from the memory 115 and specifies the output grayscale values SoRa, SoRb, SoG, SoB corresponding to the input grayscale values SiR, SiG, SiB.
  • the first processing circuit 110 outputs the output gradation values SoRa, SoRb, SoG, SoB to the pixel Pix. Each pixel 49 lights up based on the output gradation values SoRa, SoRb, SoG, SoB.
  • the first light emitting element 3Ra lights up and the second light emitting element 3Ra is lit based on the output gradation values SoRa and SoRb. 3Rb does not light.
  • the first light emitting element 3Ra and the second light emitting element 3Rb are based on the output gradation values SoRa and SoRb. Both lights up.
  • the first light emitting element 3Ra having high light emission efficiency is turned on to suppress an increase in drive current and perform good display. it can.
  • the display of the intermediate gradation it is possible to perform excellent display by turning on both the first light emitting element 3Ra and the second light emitting element 3Rb.
  • the second capacitance Cs2 formed by the second pixel 49Rb should be set to the same size as that of the other pixels 49. You can
  • FIG. 12 is a flowchart for explaining a method of setting the output gradation value of each light emitting element.
  • the signal processing circuit 100 calculates the output grayscale values SoRa, SoRb, SoG, SoB based on a predetermined data LUT, but the present invention is not limited to this.
  • the signal processing circuit 100 takes in one frame image (step ST1).
  • the buffer 125 takes in the video signal Vsig for one frame and stores the input gradation values SiR, SiG, and SiB corresponding to red, green, and blue, respectively.
  • the first processing circuit 110 determines, for each pixel Pix, whether the input gradation value SiR is larger than 0 (step ST2). In other words, it is determined for each pixel Pix whether or not there is red display.
  • the first processing circuit 110 sets the gradation value 0 as the output gradation values SoRa and SoRb (step ST3).
  • the gradation value 0 is a gradation value that puts the pixel Pix in a non-lighting state.
  • the set output gradation values SoRa and SoRb are output to the pixel Pix, and the first light emitting element 3Ra and the second light emitting element 3Rb are turned off.
  • step ST2 when the input gradation value SiR is larger than 0 (step ST2, Yes), that is, when the input gradation value SiR is a value of 1 or more, the first processing circuit 110 sets the input gradation value SiR to The first threshold value Lth and the second threshold value Hth are compared (step ST4).
  • the first processing circuit 110 Output gradation values SoRa and SoRb for turning on only the first light emitting element 3Ra are set (step ST5). More specifically, a value larger than 0 (gradation value SioRa) based on the input gradation value SiR is set as the output gradation value SoRa, and a gradation value 0 is set as the output gradation value SoRb.
  • the set output gradation values SoRa and SoRb are output to the pixel Pix, the first light emitting element 3Ra is turned on, and the second light emitting element 3Rb is turned off.
  • the first processing circuit 110 causes the first light emitting element 3Ra and the second light emitting element.
  • Output gradation values SoRa and SoRb for lighting 3Rb are set (step ST6). More specifically, a value larger than 0 (gradation value SioRa) based on the input gradation value SiR is set as the output gradation value SoRa, and a gradation value SioRb based on the input gradation value SiR is set as the output gradation value SoRb. To set.
  • the gradation value SioRb has a value greater than 0.
  • the set output gradation values SoRa and SoRb are output to the pixel Pix, and the first light emitting element 3Ra and the second light emitting element 3Rb are turned on.
  • step ST7 determines whether the input gradation value SiG is larger than 0 (step ST7). In other words, the first processing circuit 110 determines whether there is a green display.
  • the first processing circuit 110 sets the gradation value 0 as the output gradation value SoG (step ST8).
  • the set output gradation value SoG is output to the pixel Pix, and the third light emitting element 3G is turned off.
  • the first processing circuit 110 causes the first processing circuit 110 to calculate the gradation value based on the input gradation value SiG (The gradation value SioG) is set as the output gradation value SoG (step ST9).
  • the set output gradation value SoG is output to the pixel Pix, and the third light emitting element 3G lights up.
  • the first processing circuit 110 determines whether the input gradation value SiB is larger than 0 (step ST10). In other words, the first processing circuit 110 determines whether there is a blue display. When the input gradation value SiB is 0 (No in step ST10), the first processing circuit 110 sets the gradation value 0 as the output gradation value SoB (step ST11). The set output gradation value SoB is output to the pixel Pix, and the fourth light emitting element 3B is turned off.
  • the first processing circuit 110 causes the first processing circuit 110 to calculate the gradation value based on the input gradation value SiB (The gradation value SioB) is set as the output gradation value SoB (step ST12).
  • the set output gradation value SoB is output to the pixel Pix, and the fourth light emitting element 3B lights up.
  • step ST13 the first processing circuit 110 determines whether the output gradation values SoRa, SoRb, SoG, SoB of all pixels Pix for one frame have been set. .. When the output gradation values So of all the pixels Pix are not set (No in step ST13), the process from step ST2 is executed for the next pixel Pix. When the output gradation values So of all the pixels Pix have been set (Yes in step ST13), the setting processing of the output gradation values So is completed.
  • the output grayscale values SoRa, SoRb, SoG, SoB are output to the pixels Pix, and the light emitting elements 3 arranged in the respective pixels Pix have the set output grayscale values SoRa, SoRb. , SoG, SoB are used for lighting control.
  • the timing at which the output gradation value So is set and then output to the pixel Pix may be after the setting of the output gradation value So of all the pixels in one frame is completed, or it may be connected to a common gate line. It may be output to the pixel Pix when the setting of the pixel group of one line is completed. Further, the output gradation values So may be sequentially output to the pixels Pix in the order in which the output gradation values So are set for each pixel Pix.
  • FIG. 13 is a block diagram schematically showing the configuration of the signal processing circuit according to the second modification.
  • FIG. 14 is a flowchart for explaining a method of setting the output gradation value of each light emitting element according to the second modification.
  • the signal processing circuit 100A further includes a second processing circuit 120.
  • two adjacent pixels Pix are referred to as a first pixel group Pix1 and a second pixel group Pix2.
  • the signal processing circuit 100A turns on some pixels 49 of the second pixel group Pix2 in addition to each pixel 49 of the first pixel group Pix1 based on the input gradation values SiR, SiG, SiB of the first pixel group Pix1. ..
  • the first processing circuit 110 performs the same processing as the processing shown in FIG. 12, and outputs the output gradation values SoRa, SoRb1, SoG, SoB to the second processing circuit 120.
  • the second processing circuit 120 compares the drive current corresponding to the output gradation value SoRb1 received from the first processing circuit 110 with a predetermined threshold current, and sets the output gradation value SoRb2 based on the comparison result. ..
  • the signal processing circuit 100A outputs the set output gradation value SoRb2 to the pixel Pix. Specifically, the second processing circuit 120 calculates the drive current supplied to the second light emitting element 3Rb based on the output gradation value SoRb1.
  • the second processing circuit 120 sets the output gradation value SoRb2 so that the drive current of the second light emitting element 3Rb does not exceed the predetermined threshold current. More specifically, when the drive current exceeds a predetermined threshold current, the output gradation value SoRb1 is divided into a reference gradation value SotRb and a holding gradation value SorRb, and the reference gradation value SoRb is output gradation. Set as the value SoRb2.
  • the reference gradation value SotRb is a gradation value corresponding to a threshold current or a drive current equal to or less than the threshold current, is set as an output gradation value SoRb2, and is the second light emitting element 3Rb1 of the first pixel group Pix1. Is output to. Further, the held gradation value SorRb is input to the memory 115.
  • the second processing circuit 120 When the held gradation value SorRb is held in the memory 115, the second processing circuit 120 outputs based on the held gradation value SorRb and the gradation value SioRb based on the input gradation value SiR of the second pixel group Pix2.
  • the gradation value SoRb2 is set.
  • the second light emitting element 3Rb1 is set to the output gradation value SoRb1.
  • Steps ST21 to ST26 and steps ST7 to ST13 in FIG. 14 are the same as those in FIG. 12, and detailed description thereof will be omitted.
  • the second processing circuit 120 receives the output gradation value SoRb1 from the first processing circuit 110, and the held gradation value SorRb is held in the memory 115. It is determined whether or not it has been done (step ST31). When the held gradation value SorRb is held in the memory 115 (step ST31, Yes), the second processing circuit 120 sets the held gradation value SorRb as the output gradation value SoRb2 (step ST32).
  • the set output gradation value SoRb2 is output to the pixel Pix, and the second light emitting element 3Rb included in the pixel Pix is turned on.
  • the second processing circuit 120 sets the output gradation value SoRb1 (gradation value 0) as the output gradation value SoRb2. (Step ST33).
  • the set output gradation value SoRb2 is output to the pixel Pix, and the second light emitting element 3Rb included in the pixel Pix is turned off.
  • the second processing circuit 120 receives the output gradation value SoRb1 from the first processing circuit 110, and determines whether or not the memory 115 holds the held gradation value SoRb (step ST34). .. When the held gradation value SorRb is held in the memory 115 (step ST34, Yes), the second processing circuit 120 sets the held gradation to the output gradation value SoRb1 (the gradation value SioRb based on the input gradation value SiR). The value SorRb is added (step ST35).
  • the second processing circuit 120 determines that the drive current corresponding to the output gradation value SoRb1 (gradation value SioRb) is less than or equal to the threshold current. It is determined (step ST36).
  • the second processing circuit 120 sets the output gradation value SoRb1 as the output gradation value SoRb2 (step ST37). ).
  • the set output gradation value SoRb2 is output to the pixel Pix, and the second light emitting element 3Rb included in the pixel Pix is turned on.
  • the second processing circuit 120 similarly drives the output gradation value SoRb1 (gradation value SioRb + hold gradation value SorRb) to which the retention gradation value SorRb is added. It is determined whether the current is below the threshold current (step ST36). When the drive current corresponding to the output grayscale value SoRb1 is equal to or less than the threshold current (Yes in step ST36), the second processing circuit 120 outputs the output grayscale value SoRb1 to which the held grayscale value SoRbb is added as the output floor. It is set as the adjustment value SoRb2 (step ST37).
  • the set output grayscale value SoRb2 is output to the pixel Pix, and the second light emitting element 3Rb included in the pixel Pix is turned on at a grayscale corresponding to the output grayscale value SoRb1 to which the held grayscale value SorRb is added.
  • the second processing circuit 120 When the drive current corresponding to the output gradation value SoRb1 is larger than the threshold current (No in step ST36), the second processing circuit 120 causes the reference gradation value SotRb smaller than the output gradation value SoRb1 (gradation value SioRb). Is set as the output gradation value SoRb2 (step ST38). More specifically, the second processing circuit 120 calculates the reference gradation value SotRb and the held gradation value SorRb based on the output gradation value SoRb1, and sets the reference gradation value SotRb as the output gradation value SoRb2. .. After the processing of step ST38 is completed, the second processing circuit 120 records the held gradation value SorRb in the memory 115 (step ST39). The set output gradation value SoRb2 is output to the pixel Pix, and the second light emitting element 3Rb included in the pixel Pix is turned on.
  • the second processing circuit 120 similarly drives the output gradation value SoRb1 (gradation value SioRb + hold gradation value SorRb) to which the retention gradation value SorRb is added.
  • SoRb1 gradient value SioRb + hold gradation value SorRb
  • the second processing circuit 120 sets the reference gradation value SoRb2 smaller than the output gradation value SoRb1 to which the held gradation value SorRb is added to the output gradation value SoRb2. (Step ST38).
  • the second processing circuit 120 calculates the reference gradation value SoTRb and the holding gradation value SorRb based on the output gradation value SoRb1 to which the holding gradation value SorRb is added, and calculates the reference gradation value SoRb. Is set as the output gradation value SoRb2 (step ST38). After the processing of step ST38 is completed, the second processing circuit 120 records the held gradation value SorRb in the memory 115 (step ST39). The set output gradation value SoRb2 is output to the pixel Pix, and the second light emitting element 3Rb included in the pixel Pix is turned on.
  • step ST32, step ST33, step ST37 or step ST39 the signal processing circuit 100A carries out the processing of step ST7 to step ST13 as in the case of FIG.
  • the order in which each step ST is performed can be appropriately changed.
  • step ST38 and step ST39 may be performed at the same time, or step ST39 may be performed before step ST38.
  • step ST36 the drive current corresponding to the output gradation value SoRb1 and the threshold current are compared, but the present invention is not limited to this, and the reference gradation value SotRb corresponding to the threshold current is recorded, and the output floor It may be determined whether the adjustment value SoRb1 is less than or equal to the reference gradation value SotRb.
  • the reference gradation value SotRb may be a value common to all the pixels Pix, or may have a different value for each pixel Pix.
  • the first pixel group Pix1 when the drive current supplied to the second light emitting element 3Rb calculated based on the input grayscale value Si of the first pixel group Pix1 is larger than the threshold current, the first pixel group Pix1.
  • the second light emitting element 3Rb lights up with an output gradation value (reference gradation value SotRb) lower than the gradation value SioRb1 corresponding to the input gradation value SiR, and the held gradation value SorRb is held.
  • the output grayscale value So of the adjacent second pixel group Pix2 is set, the held grayscale value SorRb is added, so that the second light emitting element 3Rb is generated from the grayscale value SioRb2 corresponding to the input grayscale value SiR.
  • Lighting is performed with a high output gradation value (gradation value SioRb2 + hold gradation value SorRb). Accordingly, the driving current flowing through the second light emitting element 3Rb of the first pixel group Pix1 is maintained while maintaining the total light emission intensity by the two second light emitting elements 3Rb of the adjacent first pixel group Pix1 and second pixel group Pix2. Can be suppressed.
  • FIG. 15 is a flowchart for explaining a method of setting the output gradation value of each light emitting element according to the third modification.
  • the first processing circuit 110 performs the processing from step ST22 to step ST26 and the second processing circuit 120 performs the processing from step ST31 to step ST39, but the present invention is not limited to this.
  • the processing performed by the first processing circuit 110 and the second processing circuit 120 may be interchanged.
  • the first processing circuit 110 determines whether or not the held gradation value SorRb is held in the memory 115.
  • the description common to the second modification will be omitted.
  • the first processing circuit 110 takes in the input gradation value Si for one frame (step ST121) and determines whether or not the held gradation value SorRb is held in the memory 115 (step ST122). When the held gradation value SorRb is not held (No in step ST122), the first processing circuit 110 performs the same processing as steps ST2 to ST6 in FIG. Specifically, when the input gradation value SiR is 0 (No in step ST123), the input gradation value SiR is equal to or less than the first threshold value Lth, or the input gradation value SiR is the second threshold value.
  • the first processing circuit 110 sets the gradation value 0 as the output gradation value SoRb2 without passing through the second processing circuit 120 (steps ST124 and ST126). ). If the input gradation value SiR is larger than the first threshold value Lth and smaller than the second threshold value Hth (No in step ST125), the first processing circuit 110 causes the gradation based on the input gradation value SiR. The value SioRb is output to the second processing circuit 120 as the output gradation value SoRb1 (step ST127).
  • the first processing circuit 110 When the held gradation value SorRb is held in the memory 115 (step ST122, Yes), the first processing circuit 110 performs the same processing as steps ST123 to ST127 after adding the held gradation value SorRb. To do.
  • the first processing circuit 110 determines whether the input gradation value SiR is larger than 0 (step ST128). Specifically, when the input gradation value SiR is 0 (No in step ST128), the input gradation value SiR is equal to or less than the first threshold value Lth, or the input gradation value SiR is the second threshold value.
  • the first processing circuit 110 sets the held gradation value SorRb as the output gradation value SoRb2 without passing through the second processing circuit 120 (step ST129, step ST129). ST131). If the input gradation value SiR is larger than the first threshold value Lth and smaller than the second threshold value Hth (No in step ST130), the first processing circuit 110 causes the gradation based on the input gradation value SiR. The value obtained by adding the held gradation value SorRb to the value SioRb is output to the second processing circuit 120 as the output gradation value SoRb1 (step ST132).
  • the second processing circuit 120 When the second processing circuit 120 receives the output gradation value SoRb1 from the first processing circuit 110 (step ST132, step ST127), the second processing circuit 120 performs the same processing as steps ST36 to ST39 in FIG. Specifically, the second processing circuit 120 determines whether the drive current corresponding to the output gradation value SoRb1 is less than or equal to the threshold current (step ST133). When the drive current corresponding to the output gradation value SoRb1 is less than or equal to the threshold current (Yes in step ST133), the second processing circuit 120 sets the output gradation value SoRb1 as the output gradation value SoRb2 (step ST134). ).
  • the second processing circuit 120 determines the reference gradation value SotRb and the held gradation based on the output gradation value SoRb1.
  • the value is divided into values SorRb, the reference gradation value SotRb is set as the output gradation value SoRb2 (step ST135), and the held gradation value SorRb is recorded in the memory 115 (step ST136).
  • step ST124 After the processing of step ST124, step ST126, step ST129, step ST131, step ST134, or step ST136 is completed, the signal processing circuit 100A performs the processing of step ST7 to step ST13 as in FIG.
  • the first processing circuit 110 processes whether or not the held gradation value SorRb is held, so that the second processing is performed in some steps ST (step ST124, step ST126, step ST129, step ST131).
  • the processing can be completed without passing through the circuit 120, and the processing can be simplified.
  • FIG. 16A to 16C are plan views showing modified examples of the arrangement pattern of each light emitting element in one pixel group.
  • the first light emitting element 3Ra, the second light emitting element 3Rb, the third light emitting element 3G, and the fourth light emitting element 3B are arranged in one pixel Pix as shown in FIG.
  • the arrangement pattern of No. 3 is not limited to this.
  • FIG. 16A is a plan view showing a first arrangement pattern of each light emitting element in one pixel group according to the fourth modification. As shown in FIG. 16A, in the first arrangement pattern AP1, the first light emitting element 3Ra and the second light emitting element 3Rb are arranged in the second direction Dy.
  • the first light emitting element 3Ra and the third light emitting element 3G are arranged in the first direction Dx.
  • the second light emitting element 3Rb and the fourth light emitting element 3B are arranged in the first direction Dx.
  • the third light emitting element 3G and the fourth light emitting element 3B are arranged in the second direction Dy.
  • the arrangement of the first light emitting element 3Ra and the second light emitting element 3Rb may be exchanged, or the arrangement of the third light emitting element 3G and the fourth light emitting element 3B may be exchanged.
  • the first light emitting element 3Ra or the third light emitting element 3G having a wavelength close to each other is preferably provided at a position adjacent to the second light emitting element 3Rb in the first direction Dx or the second direction.
  • FIG. 16B is a plan view showing a second arrangement pattern of each light emitting element in one pixel group.
  • the first light emitting element 3Ra and the second light emitting element 3Rb are arranged in the first direction Dx.
  • the first light emitting element 3Ra and the third light emitting element 3G are arranged in the second direction Dy.
  • the second light emitting element 3Rb and the fourth light emitting element 3B are arranged in the second direction Dy.
  • the third light emitting element 3G and the fourth light emitting element 3B are arranged in the first direction Dx.
  • the arrangement of the first light emitting element 3Ra and the second light emitting element 3Rb may be exchanged, or the arrangement of the third light emitting element 3G and the fourth light emitting element 3B may be exchanged.
  • the arrangement of the first light emitting element 3Ra and the second light emitting element 3Rb may be exchanged, and the arrangement of the third light emitting element 3G and the fourth light emitting element 3B may be exchanged. That is, the first light emitting element 3Ra and the second light emitting element 3Rb are arranged in the first direction Dx, and the second light emitting element 3Rb and the third light emitting element 3G or the fourth light emitting element 3B are arranged in the second direction Dy. ..
  • the first light emitting element 3Ra or the third light emitting element 3G having a wavelength close to each other is preferably provided at a position adjacent to the second light emitting element 3Rb in the first direction Dx or the second direction.
  • FIG. 16C is a plan view showing a third arrangement pattern of each light emitting element in one pixel group.
  • the first light emitting element 3Ra and the fourth light emitting element 3B are arranged in the first direction Dx.
  • the first light emitting element 3Ra and the third light emitting element 3G are arranged in the second direction Dy.
  • the fourth light emitting element 3B and the second light emitting element 3Rb are arranged in the second direction Dy.
  • the third light emitting element 3G and the second light emitting element 3Rb are arranged in the first direction Dx.
  • the first light emitting element 3Ra and the second light emitting element 3Rb are arranged in an oblique direction that intersects both the first direction Dx and the second direction Dy.
  • the arrangement of the first light emitting element 3Ra and the second light emitting element 3Rb may be exchanged, or the arrangement of the third light emitting element 3G and the fourth light emitting element 3B may be exchanged.
  • the arrangement of the first light emitting element 3Ra and the second light emitting element 3Rb may be exchanged, and the arrangement of the third light emitting element 3G and the fourth light emitting element 3B may be exchanged. That is, the first light emitting element 3Ra and one of the third light emitting element 3G and the fourth light emitting element 3B are arranged in the first direction Dx, and the second light emitting element 3Rb and the third light emitting element 3G or the fourth light emitting element 3B are arranged. One of them is arranged in the second direction Dy.
  • FIGS. 17A to 17C are plan views showing modified examples of the arrangement pattern of the light emitting elements in the two pixel groups.
  • the arrangement pattern of each light emitting element is described in the embodiment and the fourth modification, when all the pixels Pix arranged in a matrix have this arrangement, each first light emitting element 3Ra, second light emitting element 3Rb, The third light emitting element 3G and the fourth light emitting element 3B are arranged in a fixed direction.
  • pixels such as the second light emitting element 3Rb that are likely to be in a non-lighted state are arranged in one direction, they may be visually recognized as uneven streaks. Therefore, in the fifth modification, two types of pixels Pix having different layout patterns of the respective light emitting elements 3 are arranged. By doing so, it is possible to suppress the visual confirmation of uneven streaks.
  • FIG. 17A is a plan view showing a fourth arrangement pattern of each light emitting element in two pixel groups according to the fifth modification.
  • the four first pixel groups Pix1 and the second pixel group Pix2 arranged in the first direction Dx have different arrangements of the light emitting elements 3.
  • the first pixel group Pix1 on the left side of FIG. 17A has the same arrangement of the light emitting elements 3 as the first arrangement pattern AP1 shown in FIG. 16A
  • the second pixel group Pix2 on the right side of FIG. 17A shows the first light emission of the first pixel group Pix1.
  • the element 3Ra and the second light emitting element 3Rb are replaced with each other. In this way, the light emitting elements 3 may be arranged differently for each of the plurality of pixels Pix.
  • FIG. 17B is a plan view showing a fifth arrangement pattern of each light emitting element in two pixel groups.
  • the first pixel group Pix1 and the second pixel group Pix2 have the same arrangement of the light emitting elements 3 as the second arrangement pattern AP2 shown in FIG. 16B.
  • the arrangements of the first light emitting element 3Ra and the second light emitting element 3Rb are switched, and the third light emitting element 3G and the fourth light emitting element 3G.
  • the second pixel group Pix2 on the right side of FIG. 17B has a configuration in which the arrangements of the first light emitting element 3Ra and the second light emitting element 3Rb of the first pixel group Pix1 are interchanged.
  • FIG. 17C is a plan view showing a sixth arrangement pattern of each light emitting element in two pixel groups.
  • the first pixel group Pix1 and the second pixel group Pix2 have the same arrangement of the light emitting elements 3 as the third arrangement pattern AP3 shown in FIG. 16C.
  • the first pixel group Pix1 on the left side of FIG. 17C has the same arrangement of the light emitting elements 3 as the third arrangement pattern AP3 shown in FIG. 16C.
  • the second pixel group Pix2 on the right side of FIG. 17C has a configuration in which the arrangement of the first light emitting element 3Ra and the second light emitting element 3Rb of the first pixel group Pix1 are interchanged.
  • FIG. 18 is a sectional view showing a light emitting element according to the sixth modification.
  • the light emitting element 3 is not limited to the face-up structure, but may have a so-called face-down structure in which the lower portion of the light emitting element 3 is connected to the anode electrode 23 and the cathode electrode 22.
  • a buffer layer 32, an n-type clad layer 33, a light emitting layer 34, a p-type clad layer 35, and a p-type electrode 36 are laminated in this order on a transparent substrate 31. ..
  • the light emitting element 3A is mounted so that the transparent substrate 31 is on the upper side and the p-type electrode 36 is on the lower side.
  • a region exposed from the light emitting layer 34 is provided on the surface side facing the cathode electrode 22.
  • the n-type electrode 38A is provided in this region.
  • the p-type electrode 36 is formed of a material having metallic luster that reflects light from the light emitting layer.
  • the p-type electrode 36 is connected to the anode electrode 23 via the bump 39A.
  • the n-type electrode 38A is connected to the cathode electrode 22 via the bump 39B.
  • the insulating film 97 covers the cathode electrode 22 and the anode electrode 23, and the bumps 39A and 39B are connected to the anode electrode 23 and the cathode electrode 22, respectively, at the openings of the insulating film 97.
  • the p-type clad layer 35 and the n-type clad layer 33 are not directly joined, but another layer (a light emitting layer 34) is introduced therebetween.
  • a light emitting layer 34 gallium nitride (GaN) added with europium (Eu) is adopted as the light emitting layer 34 in the first light emitting element 3Ra.
  • the multiple quantum well structure (MQW structure) in which the well layers composed of several atomic layers and the barrier layers are periodically stacked is adopted as the light emitting layer 34.
  • the third light emitting element 3G and the fourth light emitting element 3B may have the single light emitting layer 34 as in the first light emitting element 3Ra, or the multilayer light emitting layer 34 as in the second light emitting element 3Rb. May have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Vehicle Body Suspensions (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

表示装置は、基板と、基板に設けられた複数の画素と、複数の画素の各々に設けられる複数の第1発光素子と複数の第2発光素子と、を有し、第1発光素子の発光層は、ユウロピウム(Eu)が添加された窒化ガリウム(GaN)を含み、第2発光素子の発光層は、窒化インジウムガリウム(InGaN)と窒化ガリウム(GaN)とが多層に積層された多重量子井戸構造である。

Description

表示装置
 本発明は、表示装置に関する。
 表示素子として無機発光ダイオード(マイクロLED(micro LED))を用いた表示装置が知られている。このような表示装置では、表示する色ごとに異なる種類のLEDが用いられる。特許文献1に記載されている赤色LEDは、発光層として窒化ガリウム(GaN)の多重量子井戸構造が適用されている。また、特許文献2に記載されている赤色LEDには、発光層として窒化ガリウム(GaN)にユウロピウム(Eu)が添加された材料が用いられている。
米国特許出願公開第2018/0097033号明細書 特許第5388041号公報
 特許文献1の赤色LEDは、青色LEDや緑色LEDに比べて発光効率が低い。このため、赤色LEDの駆動電流を大きくする必要があり、消費電力が増大する可能性がある。また、特許文献2の赤色LEDでは、光のスペクトルの半値幅が、青色LEDや緑色LEDの光のスペクトルの半値幅に比べて小さい。このため、赤色のみが鮮やかに表示されて、良好に画像を表示することが困難となる可能性がある。
 本発明は、良好に画像を表示することができる表示装置を提供することを目的とする。
 本発明の一態様の表示装置は、基板と、前記基板に設けられた複数の画素と、複数の前記画素の各々に設けられる複数の第1発光素子と複数の第2発光素子と、を有し、前記第1発光素子の発光層は、ユウロピウム(Eu)が添加された窒化ガリウム(GaN)を含み、前記第2発光素子の発光層は、窒化インジウムガリウム(InGaN)と窒化ガリウム(GaN)とが多層に積層された多重量子井戸構造である。
図1は、実施形態に係る表示装置を模式的に示す平面図である。 図2は、複数の画素を示す平面図である。 図3は、画素回路を示す回路図である。 図4は、実施形態に係る表示装置の、2つの画素を拡大して示す平面図である。 図5は、図4のV-V’線に沿う断面図である。 図6は、図4のVI-VI’線に沿う断面図である。 図7は、実施形態に係る第1発光素子を示す断面図である。 図8は、実施形態に係る第2発光素子を示す断面図である。 図9は、各発光素子の発光強度と波長との関係を模式的に示すグラフである。 図10は、信号処理回路の構成を模式的に示すブロック図である。 図11は、入力階調値と、駆動される発光素子との関係を説明するための説明図である。 図12は、第1変形例に係る各発光素子の出力階調値の設定方法を説明するためのフローチャートである。 図13は、第2変形例に係る信号処理回路の構成を模式的に示すブロック図である。 図14は、第2変形例に係る各発光素子の出力階調値の設定方法を説明するためのフローチャートである。 図15は、第3変形例に係る各発光素子の出力階調値の設定方法を説明するためのフローチャートである。 図16Aは、第4変形例に係る1つの画素群における各発光素子の第1配置パターンを示す平面図である。 図16Bは、1つの画素群における各発光素子の第2配置パターンを示す平面図である。 図16Cは、1つの画素群における各発光素子の第3配置パターンを示す平面図である。 図17Aは、第5変形例に係る2つの画素群における各発光素子の第4配置パターンを示す平面図である。 図17Bは、2つの画素群における各発光素子の第5配置パターンを示す平面図である。 図17Cは、2つの画素群における各発光素子の第6配置パターンを示す平面図である。 図18は、第6変形例に係る発光素子を示す断面図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
(実施形態)
 図1は、実施形態に係る表示装置を模式的に示す平面図である。図1に示すように、表示装置1は、アレイ基板2と、画素Pix(画素群)と、駆動回路12と、駆動IC(Integrated Circuit)210と、カソード配線60と、を含む。アレイ基板2は、各画素Pixを駆動するための駆動回路基板であり、バックプレーン又はアクティブマトリクス基板とも呼ばれる。アレイ基板2は、基板21、複数のトランジスタ、複数の容量及び各種配線等を有する。
 図1に示すように、表示装置1は、表示領域AAと、周辺領域GAとを有する。表示領域AAは、複数の画素Pixと重なって配置され、画像を表示する領域である。周辺領域GAは、複数の画素Pixと重ならない領域であり、表示領域AAの外側に配置される。
 複数の画素Pixは、表示領域AAにおいて、第1方向Dx及び第2方向Dyに配列される。なお、第1方向Dx及び第2方向Dyは、基板21の表面に対して平行な方向である。第1方向Dxは、第2方向Dyと直交する。ただし、第1方向Dxは、第2方向Dyと直交しないで交差してもよい。第3方向Dzは、第1方向Dx及び第2方向Dyと直交する方向である。第3方向Dzは、例えば、基板21の法線方向に対応する。なお、以下、平面視とは、第3方向Dzから見た場合の位置関係を示す。
 駆動回路12は、駆動IC210からの各種制御信号に基づいて複数のゲート線(例えば、リセット制御信号線L5、出力制御信号線L6、画素制御信号線L7、初期化制御信号線L8(図3参照))を駆動する回路である。駆動回路12は、複数のゲート線を順次又は同時に選択し、選択されたゲート線にゲート駆動信号(例えば、画素制御信号SG)を供給する。これにより、駆動回路12は、ゲート線に接続された複数の画素Pixを選択する。
 駆動IC210は、表示装置1の表示を制御する回路である。駆動IC210は、基板21の周辺領域GAにCOG(Chip On Glass)として実装される。これに限定されず、駆動IC210は、基板21の周辺領域GAに接続された配線基板の上にCOF(Chip On Film)として実装されてもよい。配線基板は、例えば、フレキシブルプリント基板やリジット基板である。
 カソード配線60は、基板21の周辺領域GAに設けられる。カソード配線60は、表示領域AAの複数の画素Pix及び周辺領域GAの駆動回路12を囲んで設けられる。言い換えると、カソード配線60は、基板10上に形成された周辺回路と基板21の外縁との間に配置される。複数の発光素子3のカソード(カソード端子22t(図5参照))は、共通のカソード配線60に接続され、固定電位(例えば、グランド電位)が供給される。より具体的には、発光素子3のカソード端子22t(図5参照)は、カソード電極22を介して、カソード配線60に接続される。なお、カソード配線60は、基板10の3辺に沿って連続して形成される1つの配線に限らず、基板21上において、いずれかの辺においてスリットを有する2つの部分配線からなってもよく、基板21の少なくとも1つの辺に沿って配置される配線であれば良い。
 図2は、複数の画素を示す平面図である。図2に示すように、1つの画素Pixは、複数の画素49を含む。例えば、画素Pixは、第1画素49Raと、第2画素49Rbと、第3画素49Gと、第4画素49Bとを有する。第1画素49Raは、第1色としての原色の第1赤色を表示する。第2画素49Rbは、第1色としての原色の第2赤色を表示する。第3画素49Gは、第2色としての原色の緑色を表示する。第4画素49Bは、第3色としての原色の青色を表示する。第1赤色と第2赤色は、いずれも赤色の光であるが、発光強度及び光のスペクトルの半値幅が異なる。
 図2に示すように、1つの画素Pixにおいて、第1画素49Raと第2画素49Rbは第2方向Dyで並ぶ。第1画素49Raと第4画素49Bは第1方向Dxで並ぶ。第2画素49Rbと第3画素49Gは第1方向Dxで並ぶ。また、第3画素49Gと第4画素49Bは第2方向Dyで並ぶ。なお、第1色、第2色、第3色は、それぞれ赤色、緑色、青色に限られず、補色などの任意の色を選択することができる。以下において、第1画素49Ra、第2画素49Rb、第3画素49G及び第4画素49Bをそれぞれ区別する必要がない場合、画素49という。
 画素49は、それぞれ発光素子3と、アノード電極23とを有する。具体的には、第1画素49Ra、第2画素49Rb、第3画素49G及び第4画素49Bは、それぞれ、第1発光素子3Ra、第2発光素子3Rb、第3発光素子3G及び第4発光素子3Bを有する。つまり、第1発光素子3Raと第2発光素子3Rbは第2方向Dyで並ぶ。第1発光素子3Raと第4発光素子3Bは第1方向Dxで並ぶ。第2発光素子3Rbと第3発光素子3Gは第1方向Dxで並ぶ。また、第3発光素子3Gと第4発光素子3Bは第2方向Dyで並ぶ。第1発光素子3Raは第1赤色の光を出射する。第2発光素子3Rbは第2赤色の光を出射する。第3発光素子3Gは、緑色の光を出射する。第4発光素子3Bは、青色の光を出射する。なお、以下において、第1発光素子3Ra、第2発光素子3Rb、第3発光素子3G及び第4発光素子3Bをそれぞれ区別する必要がない場合、発光素子3という。
 発光素子3は、平面視で、3μm以上、300μm以下程度の大きさを有する無機発光ダイオード(LED:Light Emitting Diode)チップであり、マイクロLED(micro LED)又はミニLED(mini LED)と呼ばれる。各画素にマイクロLEDを備える表示装置1は、マイクロLED表示装置とも呼ばれる。なお、マイクロLEDのマイクロは、発光素子3の大きさを限定するものではない。
 なお、複数の発光素子3は、4色以上の異なる光を出射してもよい。なお、第1色、第2色、第3色は、それぞれ赤色、緑色、青色に限られず、補色などの任意の色を選択することができる。また、1つの画素Pixに配置される画素49の数は4に限らず、5以上であってもよく、5以上の画素49には、それぞれ異なる色が対応づけられていてもよい。さらに、画素49の配列は、これに限らず、第1画素49Ra、第2画素49Rb、第3画素49G及び第4画素49Bが第1方向Dx及び第2方向Dyのいずれか一方で並ぶように配列されていてもよい。
 図3は、画素回路を示す回路図である。図3は、1つの画素49に設けられた画素回路PICAを示しており、画素回路PICAは複数の画素49のそれぞれに設けられている。図3に示すように、画素回路PICAは、発光素子3と、5つのトランジスタと、2つの容量とを含む。具体的には、画素回路PICAは、駆動トランジスタDRT、出力トランジスタBCT、初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTを含む。駆動トランジスタDRT、出力トランジスタBCT、初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTは、それぞれn型TFT(Thin Film Transistor)で構成される。また、画素回路PICAは、第1容量Cs1及び第2容量Cs2を含む。
 発光素子3のカソード(カソード端子22t)は、カソード電源線L10に接続される。また、発光素子3のアノード(アノード端子23t)は、駆動トランジスタDRT及び出力トランジスタBCTを介してアノード電源線L1に接続される。アノード電源線L1には、アノード電源電位PVDDが供給される。カソード電源線L10には、カソード配線60及びカソード電極22に対応しカソード電源電位PVSSが供給される。アノード電源電位PVDDは、カソード電源電位PVSSよりも高い電位である。
 アノード電源線L1は、画素49に、駆動電位であるアノード電源電位PVDDを供給する。具体的には、発光素子3には、理想的にはアノード電源電位PVDDとカソード電源電位PVSSとの電位差(PVDD-PVSS)により順方向電流(駆動電流)が供給され発光する。つまり、アノード電源電位PVDDは、カソード電源電位PVSSに対し、発光素子3を発光させる電位差を有している。発光素子3のアノード端子23tはアノード電極23に接続され、アノード電極23とアノード電源線L1との間に、第2容量Cs2が接続される。
 駆動トランジスタDRTのソース電極は、アノード電極23を介して発光素子3のアノード端子23tに接続され、ドレイン電極は、出力トランジスタBCTのソース電極に接続される。駆動トランジスタDRTのゲート電極は、第1容量Cs1、画素選択トランジスタSSTのドレイン電極及び初期化トランジスタISTのドレイン電極に接続される。
 出力トランジスタBCTのゲート電極は、出力制御信号線L6に接続される。出力制御信号線L6には、出力制御信号BGが供給される。出力トランジスタBCTのドレイン電極は、アノード電源線L1に接続される。
 初期化トランジスタISTのソース電極は、初期化電源線L4に接続される。初期化電源線L4には、初期化電位Viniが供給される。初期化トランジスタISTのゲート電極は、初期化制御信号線L8に接続される。初期化制御信号線L8には、初期化制御信号IGが供給される。すなわち、駆動トランジスタDRTのゲート電極には、初期化トランジスタISTを介して初期化電源線L4が接続される。
 画素選択トランジスタSSTのソース電極は、映像信号線L2に接続される。映像信号線L2には、映像信号Vsigが供給される。画素選択トランジスタSSTのゲート電極には、画素制御信号線L7が接続されている。画素制御信号線L7には、画素制御信号SGが供給される。
 リセットトランジスタRSTのソース電極は、リセット電源線L3に接続される。リセット電源線L3には、リセット電源電位Vrstが供給される。リセットトランジスタRSTのゲート電極は、リセット制御信号線L5が接続される。リセット制御信号線L5には、リセット制御信号RGが供給される。リセットトランジスタRSTのドレイン電極は、アノード電極23(発光素子3のアノード端子23t)及び駆動トランジスタDRTのソース電極に接続される。リセットトランジスタRSTのリセット動作により、第1容量Cs1及び第2容量Cs2に保持された電圧がリセットされる。
 リセットトランジスタRSTのドレイン電極と、駆動トランジスタDRTのゲート電極との間に、第1容量Cs1が設けられる。画素回路PICAは、第1容量Cs1及び第2容量Cs2により、駆動トランジスタDRTの寄生容量とリーク電流とによるゲート電圧の変動を抑制することができる。
 なお、以下の説明において、アノード電源線L1及びカソード電源線L10を単に電源線と表す場合がある。映像信号線L2、リセット電源線L3及び初期化電源線L4を信号線と表す場合がある。リセット制御信号線L5、出力制御信号線L6、画素制御信号線L7及び初期化制御信号線L8をゲート線と表す場合がある。
 駆動トランジスタDRTのゲート電極には、映像信号Vsig(または、階調信号)に応じた電位が供給される。つまり、駆動トランジスタDRTは、出力トランジスタBCTを介して供給されたアノード電源電位PVDDに基づいて、映像信号Vsigに応じた電流を発光素子3に供給する。このように、アノード電源線L1に供給されたアノード電源電位PVDDは、駆動トランジスタDRT及び出力トランジスタBCTによって降下するため、発光素子3のアノード端子23tには、アノード電源電位PVDDよりも低い電位が供給される。
 第2容量Cs2の一方の電極には、アノード電源線L1を介してアノード電源電位PVDDが供給され、第2容量Cs2の他方の電極には、アノード電源電位PVDDよりも低い電位が供給される。つまり、第2容量Cs2の一方の電極には、第2容量Cs2の他方の電極よりも高い電位が供給される。第2容量Cs2の一方の電極は、例えば、アノード電源線L1であり、第2容量Cs2の他方の電極は、駆動トランジスタDRTのソースに接続されたアノード電極23及びこれに接続されたアノード接続電極24である。
 表示装置1において、駆動回路12(図1参照)は、複数の画素行を、先頭行(例えば、図1中の表示領域AAにおいて、最上部に位置する画素行)から順番に選択する。駆動IC210は、選択された画素行の画素49に映像信号Vsig(映像書き込み電位)を書き込み、発光素子3を発光させる。駆動IC210は、1水平走査期間ごとに、映像信号線L2に映像信号Vsigを供給し、リセット電源線L3にリセット電源電位Vrstを供給し、初期化電源線L4に初期化電位Viniを供給する。表示装置1は、これらの動作が1フレームの画像ごとに繰り返される。
 次に、図4から図6を参照しつつ、各トランジスタ及び各配線の具体的な構成例について説明する。図4は、実施形態に係る表示装置の、2つの画素を拡大して示す平面図である。
 図4は、第1方向Dxに隣り合う2つの画素49(例えば、第2画素49Rbと第3画素49G)について示す。図4に示すように、アノード電源線L1、映像信号線L2、リセット電源線L3及び初期化電源線L4は、第2方向Dyに延出する。リセット制御信号線L5、出力制御信号線L6、画素制御信号線L7、初期化制御信号線L8は、第1方向Dxに延出し、平面視で、アノード電源線L1、映像信号線L2、リセット電源線L3及び初期化電源線L4とそれぞれ交差する。また、第1方向Dxに隣り合う2つのアノード電源線L1の間に接続配線L9が設けられている。接続配線L9は、駆動トランジスタDRT、画素選択トランジスタSST及び初期化トランジスタISTを接続する。
 図4では、各配線及び半導体層を区別するために、アノード電源線L1、映像信号線L2、リセット電源線L3及び初期化電源線L4に斜線を付している。リセット制御信号線L5、出力制御信号線L6、画素制御信号線L7及び初期化制御信号線L8を点線で示している。また、各半導体層61、65、71、75、79にも斜線を付している。アノード接続電極24は、2点鎖線で示している。
 アノード電源線L1、映像信号線L2、リセット電源線L3、初期化電源線L4及び接続配線L9は、各ゲート線(リセット制御信号線L5、出力制御信号線L6、画素制御信号線L7、初期化制御信号線L8)と異なる層に設けられた金属層で形成されている。
 各種配線の材料として、チタン(Ti)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、インジウムスズ酸化物(ITO)、アルミニウム(Al)、銀(Ag)、Ag合金、銅(Cu)、カーボンナノチューブ、グラファイト、グラフェン又はカーボンナノバッドが用いられる。ここで、アノード電源線L1、映像信号線L2、リセット電源線L3、初期化電源線L4及び接続配線L9のシート抵抗値は、各ゲート線のシート抵抗値以下である。また、アノード電源線L1のシート抵抗値は、各信号線(映像信号線L2、リセット電源線L3、初期化電源線L4)及び接続配線L9のシート抵抗値以下である。例えば、アノード電源線L1のシート抵抗値は、30mΩ/□以上120mΩ/□以下である。各信号線及び接続配線L9のシート抵抗値は、120mΩ/□以上300mΩ/□以下である。また、各ゲート線のシート抵抗値は、300mΩ/□以上3000mΩ/□以下である。これにより、表示装置1は、アノード電源線L1に印加される駆動電圧の電圧降下を抑制し、表示性能の低下を抑制できる。
 なお、各種配線は、それぞれ、単層に限定されず、積層膜で構成されていてもよい。例えば、各電源線及び信号線はTi/Al/TiあるいはMo/Al/Moの積層構造であってもよく、Alの単層膜であってもよい。また、Ti、Al、Moは合金でもよい。
 半導体層61、65、71、75、79は、例えば、アモルファスシリコン、微結晶酸化物半導体、アモルファス酸化物半導体、ポリシリコン、低温ポリシリコン(LTPS:Low Temperature Polycrystalline Silicone)又は窒化ガリウム(GaN)で構成される。酸化物半導体としては、IGZO、酸化亜鉛(ZnO)、ITZOが例示される。IGZOは、インジウムガリウム亜鉛酸化物である。ITZOは、インジウムスズ亜鉛酸化物である。半導体層61、65、71、75、79は、いずれも同じ材料、例えば、ポリシリコンで構成されていてもよい。
 図4に示すように、リセット電源線L3及び初期化電源線L4は、第1方向Dxに隣り合う2つの画素49で共有される。つまり、図4の左側に示す第2画素49Rbでは、初期化電源線L4は設けられず、映像信号線L2に沿ってリセット電源線L3が設けられている。図4の右側に示す第3画素49Gでは、リセット電源線L3は設けられず、映像信号線L2に沿って初期化電源線L4が設けられている。これにより、各画素49にリセット電源線L3及び初期化電源線L4を設けた場合に比べて、配線の数を少なくして効率よく配線を配置することができる。
 駆動トランジスタDRTは、半導体層61、ソース電極62及びゲート電極64を有する。半導体層61、ソース電極62及びゲート電極64は、平面視で、少なくとも一部が重なって配置され、第1方向Dxに隣り合う2つのアノード電源線L1と、出力制御信号線L6と、画素制御信号線L7とで囲まれた領域に設けられる。半導体層61のうち、ゲート電極64と重なる領域の一部にチャネル領域が形成される。駆動トランジスタDRTは、半導体層61と重なって1つのゲート電極64が設けられたシングルゲート構造である。
 半導体層61は、第1部分半導体層61aを有する。第1部分半導体層61aは、半導体層61と同層で、同じ半導体材料が用いられる。第1部分半導体層61aは、半導体層61から第1方向Dxに突出した部分である。第1部分半導体層61aの第1方向Dxの幅は、半導体層61のうち、出力トランジスタBCTの半導体層65と接続される部分での第1方向Dxの幅よりも大きい。半導体層61は、第1部分半導体層61aを介してソース電極62と接続される。半導体層61及び第1部分半導体層61aは、第1絶縁膜91(図5参照)及びゲート電極64と重なって設けられており、第1部分半導体層61aとゲート電極64との間に第1容量Cs1が形成される。なお、半導体層61と第1部分半導体層61aとは、それぞれ矩形状に形成されて接続部を介して電気的に接続されていてもよい。
 出力トランジスタBCTは、半導体層65を有する。半導体層65は駆動トランジスタDRTの半導体層61と接続されており、出力制御信号線L6と平面視で交差する。半導体層65のうち、出力制御信号線L6と重なる領域にチャネル領域が形成される。出力制御信号線L6のうち半導体層65と重なる部分が、出力トランジスタBCTのゲート電極66として機能する。半導体層65の一端側は、アノード電源線接続部L1aと電気的に接続される。アノード電源線接続部L1aは、アノード電源線L1から第1方向Dxに分岐された部分である。これにより、駆動トランジスタDRT及び出力トランジスタBCTには、アノード電源線L1からアノード電源電位PVDDが供給される。
 図4の右側に示す第3画素49Gでは、初期化トランジスタISTは、半導体層71を有する。図4の左側に示す第2画素49Rbでは、初期化トランジスタISTは、半導体層71Aを有する。半導体層71、71Aは、それぞれ、初期化制御信号線L8及び分岐信号線L8aと平面視で交差する。半導体層71、71Aのうち、初期化制御信号線L8及び分岐信号線L8aと重なる領域にチャネル領域が形成される。分岐信号線L8aは、初期化制御信号線L8から分岐され、第1方向Dxに延出する。初期化制御信号線L8及び分岐信号線L8aのうち半導体層71、71Aと重なる部分が、それぞれ初期化トランジスタISTのゲート電極74として機能する。つまり、初期化トランジスタISTは、半導体層71、71Aのそれぞれに重なって2つのゲート電極74が設けられたダブルゲート構造である。
 図4の右側に示す第3画素49Gでは、半導体層71は、第2方向Dyに延出し、一端が接続配線L9に電気的に接続され、他端が初期化電源線接続部L4aに接続される。初期化電源線接続部L4aは、初期化電源線L4から第1方向Dxに分岐された部分である。また、図4の左側に示す第2画素49Rbでは、半導体層71Aは、第2方向Dyに延出する部分と、第1方向Dxに延出する部分とを有する。半導体層71Aのうち、第2方向Dyに延出する部分の一端が接続配線L9に電気的に接続される。半導体層71Aのうち、第1方向Dxに延出する部分は、平面視でアノード電源線L1及び映像信号線L2と交差して第3画素49Gまで延出し、初期化電源線接続部L4aに電気的に接続される。以上のような構成により、1つの初期化電源線L4は、2つの初期化トランジスタISTに電気的に接続されて、第1方向Dxに隣り合う2つの画素49で共有される。
 画素選択トランジスタSSTは、半導体層75を有する。半導体層75は、第1方向Dxに延出し、2つの分岐信号線L7aと平面視で交差する。半導体層75のうち、2つの分岐信号線L7aと重なる領域にチャネル領域が形成される。2つの分岐信号線L7aは、画素制御信号線L7から第2方向Dyに分岐された部分である。2つの分岐信号線L7aのうち半導体層75と重なる部分が、それぞれ画素選択トランジスタSSTのゲート電極78として機能する。つまり、画素選択トランジスタSSTは、半導体層75に重なって2つのゲート電極78が設けられたダブルゲート構造である。半導体層75の一端は、映像信号線接続部L2aに接続され、他端は接続配線L9に接続される。映像信号線接続部L2aは、映像信号線L2から第1方向Dxに分岐された部分である。
 リセットトランジスタRSTは、半導体層79を有する。半導体層79は、第2方向Dyに延出し、リセット制御信号線L5及び分岐信号線L5aと平面視で交差する。半導体層79のうち、リセット制御信号線L5及び分岐信号線L5aと重なる領域にチャネル領域が形成される。分岐信号線L5aは、リセット制御信号線L5から分岐され、第1方向Dxに延出する。リセット制御信号線L5及び分岐信号線L5aのうち、半導体層79と重なる部分が、それぞれリセットトランジスタRSTのゲート電極として機能する。つまり、リセットトランジスタRSTは、ダブルゲート構造である。
 リセット電源線L3には、第1方向Dxに延出するリセット電源線接続部L3a、L3b及びブリッジ部L3cが接続されている。リセット電源線接続部L3a、L3bはリセット電源線L3と同層の金属層で形成され、ブリッジ部L3cは、リセット電源線接続部L3a、L3bと異なる層、例えば各種ゲート線と同層の金属層で形成される。リセット電源線接続部L3aは第2画素49Rbに設けられ、リセット電源線接続部L3bは、第3画素49Gに設けられる。リセット電源線接続部L3aとリセット電源線接続部L3bとの間に、アノード電源線L1、映像信号線L2及び初期化電源線L4が設けられる。ブリッジ部L3cは、平面視でアノード電源線L1、映像信号線L2及び初期化電源線L4と交差して、リセット電源線接続部L3aとリセット電源線接続部L3bとを接続する。
 第2画素49Rbにおいて、半導体層79の一端はリセット電源線接続部L3aに接続される。また、第3画素49Gにおいて、半導体層79の一端はリセット電源線接続部L3bに接続される。また、半導体層79の他端は、それぞれ駆動トランジスタDRTの半導体層61に電気的に接続される。つまり、リセットトランジスタRSTの半導体層79の他端は、半導体層61、ソース電極62を介して発光素子3のアノード端子23tに電気的に接続される。以上のような構成により、1つのリセット電源線L3は、2つのリセットトランジスタRSTに電気的に接続されて、第1方向Dxに隣り合う2つの画素49で共有される。
 第1容量Cs1(図3参照)は、半導体層61(第1部分半導体層61a)とゲート電極64との間に形成される。アノード接続電極24は、駆動トランジスタDRTと電気的に接続され、少なくともアノード電源線L1と重なって配置される。アノード接続電極24と、アノード電源線L1及びアノード電源線L1に接続された各種配線との間に第2容量Cs2(図3参照)が形成される。第2画素49Rbで形成される第2容量Cs2と、第3画素49Gで形成される第2容量Cs2は、同程度の大きさであり、それぞれ例えば250fF程度である。
 また、本実施形態において、発光素子3に駆動電流を供給するための駆動トランジスタDRT及び出力トランジスタBCTは、シングルゲート構造である。初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTはダブルゲート構造である。これにより、初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTのリーク電流を抑制することができる。
 次に、表示装置1の断面構成について説明する。図5は、図4のV-V’線に沿う断面図である。図6は、図4のVI-VI’線に沿う断面図である。なお、図6では、周辺領域GAに設けられたカソード配線60及びトランジスタTrを模式的に示している。
 図5に示すように、発光素子3は、アレイ基板2の上に設けられる。アレイ基板2は、基板21、各種トランジスタ、各種配線及び各種絶縁膜を有する。基板21は絶縁基板であり、例えば、ガラス基板、樹脂基板又は樹脂フィルム等が用いられる。
 本明細書において、基板21の表面に垂直な方向において、基板21から平坦化膜27に向かう方向を「上側」とする。また、平坦化膜27から基板21に向かう方向を「下側」とする。
 駆動トランジスタDRT、出力トランジスタBCT、初期化トランジスタIST、画素選択トランジスタSST及びリセットトランジスタRSTは、基板21の一方の面側に設けられる。基板21の一方の面に、アンダーコート膜90、各ゲート線、第1絶縁膜91、半導体層61、65、71、75、第2絶縁膜92、各信号線及び電源線、第3絶縁膜93、アノード接続電極24及びシールド電極26、第4絶縁膜94の順に積層される。
 アノード接続電極24及びシールド電極26の上に、第4絶縁膜94を介して、アノード電極23及び発光素子3が設けられる。
 表示装置1において、アレイ基板2は、基板21からアノード電極23までの各層を含む。アレイ基板2には、平坦化膜27、カソード電極22及び発光素子3は含まれない。
 アンダーコート膜90、第1絶縁膜91、第2絶縁膜92及び第4絶縁膜94は、シリコン酸化膜(SiO)、シリコン窒化膜(SiN)又はシリコン酸化窒化膜(SiON)等の無機絶縁材料が用いられる。また、各無機絶縁膜は、単層に限定されず積層膜であってもよい。また、アンダーコート膜90は設けられていなくてもよい。第3絶縁膜93及び平坦化膜27は、有機絶縁膜あるいは無機有機ハイブリッド絶縁膜(Si-O主鎖に、例えば有機基(メチル基あるいはフェニル基)が結合した材料)である。
 ゲート電極64、66、74、78は、アンダーコート膜90を介して基板21の上に設けられる。第1絶縁膜91は、ゲート電極64、66、74、78を覆ってアンダーコート膜90の上に設けられる。半導体層61、65、71、75は、第1絶縁膜91の上に設けられる。第2絶縁膜92は、半導体層61、65、71、75を覆って第1絶縁膜91の上に設けられる。
 図5に示す例では、各トランジスタは、いわゆるボトムゲート構造である。ただし、各トランジスタは、半導体層の上側にゲート電極が設けられたトップゲート構造でもよく、半導体層の上側及び下側の両方にゲート電極が設けられたデュアルゲート構造でもよい。
 接続配線L9、ソース電極62、72及びドレイン電極67は、第2絶縁膜92の上に設けられる。ソース電極62は第2絶縁膜92に設けられたコンタクトホールを介して第1部分半導体層61a(半導体層61)と電気的に接続される。
 ドレイン電極67は第2絶縁膜92に設けられたコンタクトホールを介して半導体層65と電気的に接続される。また、初期化トランジスタISTのソース電極72は、第2絶縁膜92に設けられたコンタクトホールを介して半導体層71と電気的に接続される。
 接続配線L9の一端側は、第2絶縁膜92に設けられたコンタクトホールを介して画素選択トランジスタSSTの半導体層75と電気的に接続される。接続配線L9のうち、半導体層75と重なる部分がドレイン電極77として機能する。また、接続配線L9の他端側は、第2絶縁膜92に設けられたコンタクトホールを介して初期化トランジスタISTの半導体層71と電気的に接続される。接続配線L9のうち、半導体層71と重なる部分がドレイン電極73として機能する。このような構成により、画素選択トランジスタSSTのドレインと初期化トランジスタISTのドレインとが接続配線L9を介して電気的に接続される。
 第3絶縁膜93は、ソース電極62、72及びドレイン電極67、73、77を覆って、第2絶縁膜92の上に設けられる。第3絶縁膜93の上にアノード接続電極24及びシールド電極26が設けられる。アノード接続電極24は、第3絶縁膜93に設けられたコンタクトホールを介してソース電極62と接続される。シールド電極26は、アノード電極23及び発光素子3の下に設けられる。
 第4絶縁膜94は、アノード接続電極24及びシールド電極26を覆って、第3絶縁膜93の上に設けられる。アノード電極23は第4絶縁膜94の上に設けられる。アノード電極23は、第4絶縁膜94に設けられたコンタクトホールを介してアノード接続電極24と電気的に接続される。
 発光素子3は、アノード電極23の上に設けられ、発光素子3のアノード端子23tとアノード電極23が接続される。これにより、発光素子3のアノード端子23tは、駆動トランジスタDRTのソース電極62と電気的に接続される。
 平坦化膜27は、発光素子3の少なくとも側面3aを覆って第4絶縁膜94の上に設けられる。カソード電極22は、平坦化膜27の上に設けられ、発光素子3のカソード端子22tと接続される。カソード電極22は、表示領域AAから周辺領域GAに亘って設けられており、複数の画素49の発光素子3と電気的に接続される。
 図6に示すように、基板21の周辺領域GAには、複数のトランジスタとして、駆動回路12(図1参照)に含まれるトランジスタTr及びカソード配線60が設けられる。カソード配線60は、アノード電源線L1と同層に設けられ、周辺領域GAにおいて第2絶縁膜92の上に設けられる。図5に示すカソード電極22は、第3絶縁膜93、第4絶縁膜94及び平坦化膜27に設けられたコンタクトホールを介して、カソード配線60と電気的に接続される。また、図3に示すカソード電源線L10は、カソード配線60及びカソード電極22を含む。
 トランジスタTrは、半導体層81、ソース電極82、ドレイン電極83及びゲート電極84を含む。トランジスタTrは、画素回路PICAに含まれる各トランジスタと同様の層構成を有しており、詳細な説明は省略する。半導体層81は、第2絶縁膜92の上、すなわち、各半導体層61、65、71、75、79と同層に設けられている。ただし、トランジスタTrは、画素49の各トランジスタと異なる層に設けられていてもよい。
 図6に示すように、アノード電源線L1、映像信号線L2及びリセット電源線L3は、第2絶縁膜92の上に設けられる。アノード電源線L1の幅は、映像信号線L2及びリセット電源線L3のそれぞれの幅よりも大きい。また、アノード電源線L1の厚さt2は、ゲート電極64の厚さt1(図5参照)よりも厚い。また、アノード電源線L1の厚さt2は、映像信号線L2及びリセット電源線L3の厚さと等しい。これにより、アノード電源線L1の抵抗値を小さくすることができる。なお、アノード電源線L1の厚さt2は、映像信号線L2及びリセット電源線L3の厚さと異なっていてもよい。
 各配線の層構成は適宜変更できる。例えば、アノード電源線L1と、映像信号線L2及びリセット電源線L3等の各信号線とが、異なる層に設けられていてもよい。
 アノード電源線L1と各種ゲート線との間に形成される容量は、デカップリングコンデンサとして用いられる。これにより、デカップリングコンデンサは、アノード電源電位PVDDの変動を吸収して、駆動IC210を安定して動作させることができる。また、デカップリングコンデンサは、表示装置1で発生する電磁ノイズが外部に漏れることを抑制できる。
 なお、上述した図3に示す画素回路PICAの構成は適宜変更することができる。例えば1つの画素49での配線の数及びトランジスタの数は異なっていてもよい。
 図7は、実施形態に係る第1発光素子を示す断面図である。本実施形態の表示装置1において、第1発光素子3Raは、アノード端子23tが下側に設けられカソード端子22tが上側に設けられた、いわゆるフェースアップ構造である。
 図7に示すように、第1発光素子3Raは、複数の部分発光素子3sと、複数の部分発光素子3sを覆う保護層39と、p型電極37と、n型電極38と、を有する。複数の部分発光素子3sは、p型電極37とn型電極38との間に、それぞれ柱状に形成される。複数の部分発光素子3sは、n型クラッド層33と、発光層34と、p型クラッド層35と、を有する。n型電極38は、n型クラッド層33に電気的に接続される。p型電極37はp型クラッド層35に電気的に接続される。p型電極37の上に、p型クラッド層35、発光層34、n型クラッド層33の順に積層される。n型クラッド層33及びp型クラッド層35は、例えば、窒化ガリウム(GaN)、アルミニウムインジウム燐(AlInP)等の化合物半導体が用いられる。第1発光素子3Raの発光層34は、ユウロピウム(Eu)が添加された窒化ガリウム(GaN)である。
 n型電極38は、ITO(Indium Tin Oxide)等の透光性の導電性材料である。n型電極38は、第1発光素子3Raのカソード端子22tであり、カソード電極22に接続される。また、p型電極37は、第1発光素子3Raのアノード端子23tであり、Pt層37aと、メッキにより形成された厚膜Au層37bと、を有する。厚膜Au層37bは、アノード電極23の載置面23aに接続される。
 保護層39は、例えばSOG(Spin on Glass)である。保護層39の側面が、第1発光素子3Raの側面3aとなる。平坦化膜27は、保護層39の側面を囲んで設けられる。
 図8は、実施形態に係る第2発光素子を示す断面図である。第2赤色の光を出射する第2発光素子3Rbは、第1赤色の光を出射する第1発光素子3Raと異なる構造を有する。具体的には、図8に示すように、第2発光素子3Rbの発光層34Aは、窒化インジウムガリウム(InGaN)と窒化ガリウム(GaN)とが多層に積層された多重量子井戸構造である。なお、第3発光素子3G及び第4発光素子3Bは、第1発光素子3Ra及び第2発光素子3Rbと同様の積層構造を有し、第1発光素子3Raと同様に単層の発光層34を有してもよいし、第2発光素子3Rbと同様に多層の発光層34を有してもよい。
 図9は、各発光素子の発光強度と波長との関係を模式的に示すグラフである。第1発光素子3Ra、第2発光素子3Rb、第3発光素子3G及び第4発光素子3Bからそれぞれ出射される光のスペクトルにおいて、極大発光波長は、それぞれ620nm、645nm、530nm、450nm程度である。
 第1発光素子3Raの極大発光波長は、第2発光素子3Rbの極大発光波長の近傍にあり、第1発光素子3Ra及び第2発光素子3Rbはいずれも赤色の光(第1赤色、第2赤色)を出射する。第1赤色の光のスペクトルの波長領域は、第2赤色の光のスペクトルの波長領域と重なる。また、第1赤色の光のスペクトルの半値幅は、第2赤色の光のスペクトルの半値幅よりも小さい。第1赤色の光のスペクトルの発光強度は、第2赤色の光のスペクトルの発光強度よりも大きい。本実施形態では、異なる光のスペクトルを有する第1発光素子3Ra及び第2発光素子3Rbにより赤色を表示することで、良好に画像を表示することができる。
 次に、図10及び図11を参照しつつ、各発光素子の出力階調値の設定方法について説明する。図10は、信号処理回路の構成を模式的に示すブロック図である。図11は、入力階調値と、駆動される発光素子との関係を説明するための説明図である。
 図10に示すように、信号処理回路100は、第1処理回路110と、メモリ115と、バッファ125とを有する。信号処理回路100は、映像信号Vsigに基づいて4つの画素49の各々の出力階調値SoRa、SoRb、SoG、SoBを演算する。映像信号Vsigは画素Pixごとの入力階調値SiR、SiG、SiBを含む。入力階調値SiR、SiG、SiBは、それぞれ赤色、緑色、青色の階調値である。出力階調値SoRaは、第1画素49Raに対応する階調値である。出力階調値SoRbは、第2画素49Rbに対応する階調値である。出力階調値SoGは、第3画素49Gに対応する階調値である。出力階調値SoBは、第4画素49Bに対応する階調値である。信号処理回路100は、例えば図1に示す駆動IC210に含まれていてもよいし、駆動IC210と別の回路チップとして基板21に設けられていてもよい。以下において、出力階調値SoRa、SoRb、SoG、SoBをそれぞれ区別する必要がない場合、出力階調値Soという。また、入力階調値SiR、SiG、SiBをそれぞれ区別する必要がない場合、入力階調値Siという。
 バッファ125は、入力階調値Siを記憶する回路である。なお、バッファ125は、1フレーム分の映像信号Vsigに含まれる入力階調値SiR、SiG、SiBを含む入力階調値Siを記憶してもよいし、1フレーム分の映像信号Vsigのうち、一部の映像信号Vsigに含まれる入力階調値Siを取り込んでもよい。
 メモリ115は、入力階調値SiR、SiG、SiBと、4つの画素49の各々の出力階調値SoRa、SoRb、SoG、SoBとの関係を示す情報を示すデータLUTを含む。データLUTは、例えば、ルックアップテーブル(Look Up Table)のようなテーブルデータである。
 データLUTは、入力階調値SiRが0以上第1しきい値Lth(図11参照)以下の範囲では、第1発光素子3Raのみを点灯させる出力階調値SoRa、SoRbが対応付けられている。すなわち、入力階調値SiRが0以上第1しきい値Lth以下の範囲では、出力階調値SoRbは0(階調値0)である。また、データLUTは、入力階調値SiRが第1しきい値Lthよりも大きく、第2しきい値Hth(図11参照)よりも小さい範囲では、第1発光素子3Ra及び第2発光素子3Rbの両方を点灯させる出力階調値SoRa、SoRbが対応付けられている。第2しきい値Hthは、第1しきい値Lthよりも大きい階調値である。また、データLUTは、入力階調値SiRが第2しきい値Hth以上の範囲では、第1発光素子3Raのみを点灯させる出力階調値SoRa、SoRbが対応付けられている。すなわち、入力階調値SiRが第2しきい値Hth以上の範囲では、出力階調値SoRbは0(階調値0)である。なお、第2しきい値Hthは、入力階調値SiRの最大階調値m(例えば、m=255)以下の所定の数値である。
 第1処理回路110は、メモリ115から読み出したデータLUTを参照して、入力階調値SiR、SiG、SiBに対応する出力階調値SoRa、SoRb、SoG、SoBを特定する。第1処理回路110は、出力階調値SoRa、SoRb、SoG、SoBを画素Pixに出力する。各画素49は、出力階調値SoRa、SoRb、SoG、SoBに基づいて点灯する。
 図11に示すように、入力階調値SiRが0以上第1しきい値Lth以下の範囲では、出力階調値SoRa、SoRbに基づいて、第1発光素子3Raが点灯し、第2発光素子3Rbは点灯しない。入力階調値SiRが第1しきい値Lthよりも大きく、第2しきい値Hthよりも小さい範囲では、出力階調値SoRa、SoRbに基づいて、第1発光素子3Ra及び第2発光素子3Rbの両方が点灯する。入力階調値SiRが第2しきい値Hth以上の範囲では、出力階調値SoRa、SoRbに基づいて、第1発光素子3Raのみが点灯し、第2発光素子3Rbは点灯しない。
 このように、本実施形態では、低階調及び高階調の表示では、発光効率が高い第1発光素子3Raのみを点灯させることで、駆動電流の増大を抑制して良好に表示を行うことができる。また、中間階調の表示では、第1発光素子3Ra及び第2発光素子3Rbの両方を点灯させることで、良好に表示を行うことができる。また、第2発光素子3Rbに供給される駆動電流の増大を抑制することができるので、第2画素49Rbで形成される第2容量Cs2を、他の画素49と同程度の大きさにすることができる。
(第1変形例)
 図12は、各発光素子の出力階調値の設定方法を説明するためのフローチャートである。第1実施形態では、信号処理回路100は、あらかじめ定められたデータLUTに基づいて出力階調値SoRa、SoRb、SoG、SoBを演算するが、これに限定されない。図12に示すように、まず、信号処理回路100は、1フレーム画像を取り込む(ステップST1)。具体的には、バッファ125は、1フレーム分の映像信号Vsigを取り込んで、赤色、緑色、青色のそれぞれに対応する入力階調値SiR、SiG、SiBを記憶する。
 第1処理回路110は、画素Pixごとに、入力階調値SiRが0より大きいか判断する(ステップST2)。言い換えると、画素Pixごとに、赤色の表示があるかどうかを判断する。入力階調値SiRが0である場合(ステップST2、No)、第1処理回路110は、出力階調値SoRa、SoRbとして階調値0を設定する(ステップST3)。なお、階調値0は画素Pixを非点灯状態とする階調値である。設定された出力階調値SoRa、SoRbは画素Pixに出力され、第1発光素子3Ra及び第2発光素子3Rbは非点灯状態となる。一方で、入力階調値SiRが0より大きい場合(ステップST2、Yes)、すなわち入力階調値SiRが1以上の値である場合、第1処理回路110は、入力階調値SiRと、第1しきい値Lth及び第2しきい値Hthとを比較する(ステップST4)。
 入力階調値SiRが0よりも大きく第1しきい値Lth以下の場合、あるいは入力階調値SiRが第2しきい値Hth以上の場合(ステップST4、Yes)、第1処理回路110は、第1発光素子3Raのみを点灯させる出力階調値SoRa、SoRbを設定する(ステップST5)。より具体的には、出力階調値SoRaとして入力階調値SiRに基づく0より大きい値(階調値SioRa)を設定し、出力階調値SoRbとして階調値0を設定する。設定された出力階調値SoRa、SoRbは画素Pixに出力され、第1発光素子3Raが点灯し、第2発光素子3Rbは非点灯状態となる。
 入力階調値SiRが第1しきい値Lthよりも大きく、第2しきい値Hthよりも小さい場合(ステップST4、No)、第1処理回路110は、第1発光素子3Ra及び第2発光素子3Rbを点灯させる出力階調値SoRa、SoRbを設定する(ステップST6)。より具体的には、出力階調値SoRaとして入力階調値SiRに基づく0より大きい値(階調値SioRa)を設定し、出力階調値SoRbとして入力階調値SiRに基づく階調値SioRbを設定する。階調値SioRbは、0より大きい値を有する。設定された出力階調値SoRa、SoRbは画素Pixに出力され、第1発光素子3Ra及び第2発光素子3Rbが点灯する。
 ステップST3、ステップST5、または、ステップST6の処理が完了した場合、第1処理回路110は、入力階調値SiGが0より大きいかを判断する(ステップST7)。言い換えると、第1処理回路110は、緑色の表示があるかどうかを判断する。入力階調値SiGが0である場合(ステップST7、No)、第1処理回路110は、出力階調値SoGとして階調値0を設定する(ステップST8)。設定された出力階調値SoGは画素Pixに出力され、第3発光素子3Gは非点灯状態となる。入力階調値SiGが0より大きい場合(ステップST7、Yes)、すなわち入力階調値SiGが1以上の値である場合、第1処理回路110は、入力階調値SiGに基づく階調値(階調値SioG)を出力階調値SoGとして設定する(ステップST9)。設定された出力階調値SoGは、画素Pixに出力され、第3発光素子3Gが点灯する。
 ステップST8又はステップST9の処理が完了した場合、第1処理回路110は、入力階調値SiBが0より大きいかを判断する(ステップST10)。言い換えると、第1処理回路110は、青色の表示があるかどうかを判断する。入力階調値SiBが0である場合(ステップST10、No)、第1処理回路110は、出力階調値SoBとして階調値0を設定する(ステップST11)。設定された出力階調値SoBは画素Pixに出力され、第4発光素子3Bは非点灯状態となる。入力階調値SiBが0より大きい場合(ステップST10、Yes)、すなわち入力階調値SiBが1以上の値である場合、第1処理回路110は、入力階調値SiBに基づく階調値(階調値SioB)を出力階調値SoBとして設定する(ステップST12)。設定された出力階調値SoBは、画素Pixに出力され、第4発光素子3Bが点灯する。
 ステップST11又はステップST12の処理が完了した場合、第1処理回路110は、1フレーム分の全ての画素Pixの出力階調値SoRa、SoRb、SoG、SoBが設定されたかを判断する(ステップST13)。全ての画素Pixの出力階調値Soが設定されていない場合(ステップST13、No)、次の画素Pixに対して、ステップST2からの処理を実行する。全ての画素Pixの出力階調値Soが設定されている場合(ステップST13、Yes)、出力階調値Soの設定処理を完了する。なお、設定処理が完了してから出力階調値SoRa、SoRb、SoG、SoBが画素Pixに出力され、それぞれの画素Pixに配置された発光素子3は、設定された出力階調値SoRa、SoRb、SoG、SoBに基づいて、点灯制御される。
 なお、出力階調値Soが設定されてから画素Pixに出力されるタイミングは、1フレームの全ての画素の出力階調値Soの設定が完了してからでもよいし、共通するゲート線に接続される1ラインの画素群の設定が完了した段階で画素Pixに出力されてもよい。また、画素Pix単位で出力階調値Soが設定された順に、順次、画素Pixに出力されてもよい。
(第2変形例)
 図13は、第2変形例に係る信号処理回路の構成を模式的に示すブロック図である。図14は、第2変形例に係る各発光素子の出力階調値の設定方法を説明するためのフローチャートである。図13に示すように、信号処理回路100Aは、さらに第2処理回路120を備える。以下の説明では、隣り合う2つの画素Pixを、第1画素群Pix1、第2画素群Pix2と表す。信号処理回路100Aは、第1画素群Pix1の入力階調値SiR、SiG、SiBに基づいて、第1画素群Pix1の各画素49に加え第2画素群Pix2の一部の画素49を点灯させる。
 第1処理回路110は、図12で示す処理と同様の処理を行い、出力階調値SoRa、SoRb1、SoG、SoBを第2処理回路120へ出力する。第2処理回路120は、第1処理回路110から受け取った出力階調値SoRb1に対応する駆動電流と、所定のしきい値電流とを比較し、比較結果に基づく出力階調値SoRb2を設定する。信号処理回路100Aは、設定された出力階調値SoRb2を画素Pixに出力する。具体的には、第2処理回路120は、出力階調値SoRb1に基づいて、第2発光素子3Rbに供給される駆動電流を演算する。そして、第2処理回路120は、第2発光素子3Rbの駆動電流が所定のしきい値電流を超えないように、出力階調値SoRb2を設定する。より具体的には、駆動電流が所定のしきい値電流を超える場合、出力階調値SoRb1を、基準階調値SotRbと、保持階調値SorRbに分け、基準階調値SotRbを出力階調値SoRb2として設定する。基準階調値SotRbは、しきい値電流又はしきい値電流以下の駆動電流に対応する階調値であって、出力階調値SoRb2として設定され、第1画素群Pix1の第2発光素子3Rb1に出力される。また、保持階調値SorRbは、メモリ115に入力される。
 第2処理回路120は、メモリ115に保持階調値SorRbが保持されている場合、保持階調値SorRb及び第2画素群Pix2の入力階調値SiRに基づく階調値SioRbに基づいて、出力階調値SoRb2を設定する。なお、第1画素群Pix1の入力階調値SiRに対応する階調値SioRbを基準階調値SotRbと保持階調値SorRbとに分ける場合は、第2発光素子3Rb1を出力階調値SoRb1で発光させた場合の輝度と、第2発光素子3Rb1と、第2画素群Pix2の第2発光素子3Rb2とをそれぞれ基準階調値SotRbと保持階調値SorRbで発光させた場合の輝度が実質的に等しくなるように設定される。そして、第2画素群Pix2の入力階調値SiRに基づく階調値SioRbと、第1画素群Pix1の入力階調値SiRに基づく階調値SioRbから分けられた保持階調値SorRbとに基づいて、第2画素群Pix2の第2発光素子3Rb2に対する出力階調値SoRb2が設定される。
 図14のステップST21からステップST26及びステップST7からステップST13は、図12と同様であるため、詳細な説明は省略する。図14に示すように、ステップST23、ステップST25の処理が完了した後に、第2処理回路120は、第1処理回路110から出力階調値SoRb1を受け取り、メモリ115に保持階調値SorRbが保持されているかを判断する(ステップST31)。メモリ115に保持階調値SorRbが保持されている場合(ステップST31、Yes)、第2処理回路120は、保持階調値SorRbを出力階調値SoRb2として設定する(ステップST32)。設定された出力階調値SoRb2は画素Pixに出力され、画素Pixに含まれる第2発光素子3Rbが点灯する。また、メモリ115に保持階調値SorRbが保持されていない場合(ステップST31、No)、第2処理回路120は、出力階調値SoRb1(階調値0)を出力階調値SoRb2として設定する(ステップST33)。設定された出力階調値SoRb2は画素Pixに出力され、画素Pixに含まれる第2発光素子3Rbが非点灯状態となる。
 ステップST26の処理が完了した後に、第2処理回路120は、第1処理回路110から出力階調値SoRb1を受け取り、メモリ115に保持階調値SorRbが保持されているかを判断する(ステップST34)。メモリ115に保持階調値SorRbが保持されている場合(ステップST34、Yes)、第2処理回路120は、出力階調値SoRb1(入力階調値SiRに基づく階調値SioRb)に保持階調値SorRbを加算する(ステップST35)。メモリ115に保持階調値SorRbが保持されていない場合(ステップST34、No)、第2処理回路120は、出力階調値SoRb1(階調値SioRb)に対応する駆動電流がしきい値電流以下か判断する(ステップST36)。
 出力階調値SoRb1に対応する駆動電流がしきい値電流以下である場合(ステップST36、Yes)、第2処理回路120は、出力階調値SoRb1を出力階調値SoRb2として設定する(ステップST37)。設定された出力階調値SoRb2は画素Pixに出力され、画素Pixに含まれる第2発光素子3Rbが点灯する。
 なお、ステップST35の処理が完了した場合も同様に、第2処理回路120は、保持階調値SorRbが加算された出力階調値SoRb1(階調値SioRb+保持階調値SorRb)に対応する駆動電流がしきい値電流以下であるかを判断する(ステップST36)。出力階調値SoRb1に対応する駆動電流がしきい値電流以下である場合(ステップST36、Yes)、第2処理回路120は、保持階調値SorRbが加算された出力階調値SoRb1を出力階調値SoRb2として設定する(ステップST37)。設定された出力階調値SoRb2は画素Pixに出力され、保持階調値SorRbが加算された出力階調値SoRb1に対応する階調で、画素Pixに含まれる第2発光素子3Rbが点灯する。
 出力階調値SoRb1に対応する駆動電流がしきい値電流より大きい場合(ステップST36、No)、第2処理回路120は、出力階調値SoRb1(階調値SioRb)より小さい基準階調値SotRbを出力階調値SoRb2として設定する(ステップST38)。より具体的には、第2処理回路120は、出力階調値SoRb1に基づき、基準階調値SotRbと保持階調値SorRbを演算し、基準階調値SotRbを出力階調値SoRb2として設定する。ステップST38の処理が完了した後に、第2処理回路120は、保持階調値SorRbをメモリ115に記録する(ステップST39)。設定された出力階調値SoRb2は画素Pixに出力され、画素Pixに含まれる第2発光素子3Rbが点灯する。
 なお、ステップST35の処理が完了した場合も同様に、第2処理回路120は、保持階調値SorRbが加算された出力階調値SoRb1(階調値SioRb+保持階調値SorRb)に対応する駆動電流がしきい値電流より大きい場合(ステップST36、No)、第2処理回路120は、保持階調値SorRbが加算された出力階調値SoRb1より小さい基準階調値SotRbを出力階調値SoRb2として設定する(ステップST38)。より具体的には、第2処理回路120は、保持階調値SorRbが加算された出力階調値SoRb1に基づき、基準階調値SotRbと保持階調値SorRbを演算し、基準階調値SotRbを出力階調値SoRb2として設定する(ステップST38)。ステップST38の処理が完了した後に、第2処理回路120は、保持階調値SorRbをメモリ115に記録する(ステップST39)。設定された出力階調値SoRb2は画素Pixに出力され、画素Pixに含まれる第2発光素子3Rbが点灯する。
 ステップST32、ステップST33、ステップST37又はステップST39の処理が完了した後は、図12と同様に、信号処理回路100Aは、ステップST7からステップST13の処理を実施する。なお、各ステップSTの実施順は適宜変更可能であり、例えば、ステップST38及びステップST39は同時に実施してもよいし、ステップST39をステップST38より先に実施してもよい。また、ステップST36において、出力階調値SoRb1に対応する駆動電流としきい値電流を比較しているが、これに限らず、しきい値電流に対応する基準階調値SotRbを記録し、出力階調値SoRb1が基準階調値SotRb以下かを判定してもよい。なお、基準階調値SotRbは、全ての画素Pixに共通の値であってもよいし、画素Pix毎に異なる値を有してもよい。
 第2変形例では、第1画素群Pix1の入力階調値Siに基づいて演算された第2発光素子3Rbに供給される駆動電流がしきい値電流よりも大きい場合に、第1画素群Pix1の第2発光素子3Rbが入力階調値SiRに対応する階調値SioRb1より低い出力階調値(基準階調値SotRb)で点灯し、保持階調値SorRbが保持される。隣接する第2画素群Pix2の出力階調値Soを設定する際に、保持階調値SorRbが加算されることで、第2発光素子3Rbが入力階調値SiRに対応する階調値SioRb2より高い出力階調値(階調値SioRb2+保持階調値SorRb)で点灯する。これによって、隣接する第1画素群Pix1、第2画素群Pix2の2つの第2発光素子3Rbにより合計の発光強度を維持しつつ、第1画素群Pix1の第2発光素子3Rbに流れる駆動電流を抑制することができる。
(第3変形例)
 図15は、第3変形例に係る各発光素子の出力階調値の設定方法を説明するためのフローチャートである。第2変形例において、第1処理回路110が、ステップST22からステップST26の処理を行い、第2処理回路120がステップST31からステップST39の処理を行うとしたが、これに限られない。第1処理回路110及び第2処理回路120が行う処理を入れ替えてもよい。第3変形例において、第1処理回路110がメモリ115に保持階調値SorRbが保持されているか否かを判定する。なお、各ステップSTにおいて、第2変形例と共通する記載は省略する。
 第1処理回路110は、1フレーム分の入力階調値Siを取り込み(ステップST121)、保持階調値SorRbがメモリ115に保持されているか否かを判断する(ステップST122)。保持階調値SorRbが保持されていない場合(ステップST122、No)、第1処理回路110は、図12のステップST2からステップST6までと同様の処理を行う。具体的には、入力階調値SiRが0である場合(ステップST123、No)、及び、入力階調値SiRが第1しきい値Lth以下、若しくは、入力階調値SiRが第2しきい値Hth以上である場合(ステップST125、Yes)は、第1処理回路110は、第2処理回路120を介さずに、出力階調値SoRb2として階調値0を設定する(ステップST124、ステップST126)。また、入力階調値SiRが第1しきい値Lthより大きく、第2しきい値Hthより小さい場合(ステップST125、No)は、第1処理回路110は、入力階調値SiRに基づく階調値SioRbを出力階調値SoRb1として第2処理回路120に出力する(ステップST127)。
 保持階調値SorRbがメモリ115に保持されている場合(ステップST122、Yes)、第1処理回路110は、保持階調値SorRbを加算した上で、ステップST123からステップST127と同様の処理を実施する。第1処理回路110は、入力階調値SiRが0より大きいかを判断する(ステップST128)。具体的には、入力階調値SiRが0である場合(ステップST128、No)、及び、入力階調値SiRが第1しきい値Lth以下、若しくは、入力階調値SiRが第2しきい値Hth以上である場合(ステップST130、Yes)は、第1処理回路110は、第2処理回路120を介さずに、出力階調値SoRb2として保持階調値SorRbを設定する(ステップST129、ステップST131)。また、入力階調値SiRが第1しきい値Lthより大きく、第2しきい値Hthより小さい場合(ステップST130、No)は、第1処理回路110は、入力階調値SiRに基づく階調値SioRbに保持階調値SorRbを加算した値を出力階調値SoRb1として第2処理回路120に出力する(ステップST132)。
 第2処理回路120は、第1処理回路110から出力階調値SoRb1を受け取ると(ステップST132、ステップST127)、図14のステップST36からステップST39と同様の処理を実施する。具体的には、第2処理回路120は、出力階調値SoRb1に対応する駆動電流がしきい値電流以下かを判断する(ステップST133)。出力階調値SoRb1に対応する駆動電流がしきい値電流以下である場合(ステップST133、Yes)、第2処理回路120は、出力階調値SoRb1を出力階調値SoRb2として設定する(ステップST134)。出力階調値SoRb1に対応する駆動電流がしきい値電流より大きい場合(ステップST133、No)、第2処理回路120は、出力階調値SoRb1に基づいて、基準階調値SotRbと保持階調値SorRbに分け、基準階調値SotRbを出力階調値SoRb2として設定し(ステップST135)、保持階調値SorRbをメモリ115に記録する(ステップST136)。
 ステップST124、ステップST126、ステップST129、ステップST131、ステップST134又はステップST136の処理が完了した後は、図12と同様に、信号処理回路100Aは、ステップST7からステップST13の処理を実施する。
 このように、保持階調値SorRbが保持されているか否かを第1処理回路110で処理することで、一部のステップST(ステップST124、ステップST126、ステップST129、ステップST131)で第2処理回路120を介さずに処理を完了することででき、処理を簡素化することができる。
(第4変形例)
 図16Aから図16Cは、1つの画素群における各発光素子の配置パターンの変形例を示す平面図である。実施形態では、1画素Pixにおいて、図2に示すように、第1発光素子3Ra、第2発光素子3Rb、第3発光素子3G、第4発光素子3Bが配置されるとしたが、各発光素子3の配置パターンはこれに限られない。図16Aは、第4変形例に係る1つの画素群における各発光素子の第1配置パターンを示す平面図である。図16Aに示すように、第1配置パターンAP1では、第1発光素子3Raと第2発光素子3Rbは第2方向Dyで並ぶ。第1発光素子3Raと第3発光素子3Gは第1方向Dxで並ぶ。第2発光素子3Rbと第4発光素子3Bは第1方向Dxで並ぶ。また、第3発光素子3Gと第4発光素子3Bは第2方向Dyで並ぶ。
 なお、第1配置パターンAP1において、第1発光素子3Raと第2発光素子3Rbとの配置を入れ替えてもよいし、あるいは、第3発光素子3Gと第4発光素子3Bとの配置を入れ替えてもよい。第2発光素子3Rbと第1方向Dx又は第2方向に隣り合う位置には、波長が近い第1発光素子3Ra又は第3発光素子3Gが設けられることが好ましい。
 図16Bは、1つの画素群における各発光素子の第2配置パターンを示す平面図である。図16Bに示すように、第2配置パターンAP2では、第1発光素子3Raと第2発光素子3Rbは第1方向Dxで並ぶ。第1発光素子3Raと第3発光素子3Gは第2方向Dyで並ぶ。第2発光素子3Rbと第4発光素子3Bは第2方向Dyで並ぶ。また、第3発光素子3Gと第4発光素子3Bは第1方向Dxで並ぶ。
 なお、第2配置パターンAP2において、第1発光素子3Raと第2発光素子3Rbとの配置を入れ替えてもよいし、あるいは、第3発光素子3Gと第4発光素子3Bとの配置を入れ替えてもよい。また、第1発光素子3Raと第2発光素子3Rbとの配置を入れ替えて、且つ、第3発光素子3Gと第4発光素子3Bとの配置を入れ替えてもよい。つまり、第1発光素子3Raと第2発光素子3Rbとは、第1方向Dxに並び、第2発光素子3Rbと、第3発光素子3G又は第4発光素子3Bとは、第2方向Dyに並ぶ。第2発光素子3Rbと第1方向Dx又は第2方向に隣り合う位置には、波長が近い第1発光素子3Ra又は第3発光素子3Gが設けられることが好ましい。
 図16Cは、1つの画素群における各発光素子の第3配置パターンを示す平面図である。図16Cに示すように、第3配置パターンAP3では、第1発光素子3Raと第4発光素子3Bは第1方向Dxで並ぶ。第1発光素子3Raと第3発光素子3Gは第2方向Dyで並ぶ。第4発光素子3Bと第2発光素子3Rbは第2方向Dyで並ぶ。また、第3発光素子3Gと第2発光素子3Rbは第1方向Dxで並ぶ。言い換えると、第1発光素子3Raと第2発光素子3Rbが第1方向Dx及び第2方向Dyのいずれとも交差する斜め方向に配列される。
 なお、第3配置パターンAP3において、第1発光素子3Raと第2発光素子3Rbとの配置を入れ替えてもよいし、あるいは、第3発光素子3Gと第4発光素子3Bとの配置を入れ替えてもよい。また、第1発光素子3Raと第2発光素子3Rbとの配置を入れ替えて、且つ、第3発光素子3Gと第4発光素子3Bとの配置を入れ替えてもよい。つまり、第1発光素子3Raと、第3発光素子3G又は第4発光素子3Bの一方とは、第1方向Dxに並び、第2発光素子3Rbと、第3発光素子3G又は第4発光素子3Bの一方とは、第2方向Dyに並ぶ。
(第5変形例)
 図17Aから図17Cは、2つの画素群における各発光素子の配置パターンの変形例を示す平面図である。実施形態及び第4変形例において、各発光素子の配置パターンについて記載したが、マトリクス状に配置された画素Pixの全てがこの配置である場合、各第1発光素子3Ra、第2発光素子3Rb、第3発光素子3G、第4発光素子3Bは、それぞれ、一定の方向に配置されることとなる。このような場合、特に第2発光素子3Rbのような非点灯状態となりやすい画素が一方向に配列されていると、スジムラとして視認される可能性がある。そこで、第5変形例では、各発光素子3の配置パターンが異なる2種類の画素Pixを配置する。このようにすることで、スジムラの視認を抑制することができる。
 図17Aは、第5変形例に係る2つの画素群における各発光素子の第4配置パターンを示す平面図である。図17Aに示すように、第4配置パターンAP4において、第1方向Dxに並ぶ2つの第1画素群Pix1及び第2画素群Pix2は、発光素子3の配置が異なる。図17A左側の第1画素群Pix1は、図16Aに示す第1配置パターンAP1と同じ発光素子3の配置であり、図17A右側の第2画素群Pix2は、第1画素群Pix1の第1発光素子3Raと第2発光素子3Rbとを入れ替えた構成である。このように、複数の画素Pixごとに発光素子3の配置が異なっていてもよい。
 図17Bは、2つの画素群における各発光素子の第5配置パターンを示す平面図である。図17Bに示すように、第5配置パターンAP5において、第1画素群Pix1及び第2画素群Pix2は、図16Bに示す第2配置パターンAP2と同様の発光素子3の配置である。図17B左側の第1画素群Pix1は、図16Bに示す第2配置パターンAP2において、第1発光素子3Raと第2発光素子3Rbとの配置を入れ替えて、且つ、第3発光素子3Gと第4発光素子3Bとの配置を入れ替えた構成である。図17B右側の第2画素群Pix2は、第1画素群Pix1の第1発光素子3Raと第2発光素子3Rbとの配置を入れ替えた構成である。
 図17Cは、2つの画素群における各発光素子の第6配置パターンを示す平面図である。図17Cに示すように、第6配置パターンAP6において第1画素群Pix1及び第2画素群Pix2は、図16Cに示す第3配置パターンAP3と同様の発光素子3の配置である。図17C左側の第1画素群Pix1は、図16Cに示す第3配置パターンAP3と同じ発光素子3の配置である。図17C右側の第2画素群Pix2は、第1画素群Pix1の第1発光素子3Raと第2発光素子3Rbとの配置を入れ替えた構成である。
(第6変形例)
 図18は、第6変形例に係る発光素子を示す断面図である。表示装置1において、発光素子3はフェースアップ構造に限定されず、発光素子3の下部が、アノード電極23及びカソード電極22に接続される、いわゆるフェースダウン構造であってもよい。
 図18に示すように、発光素子3Aは、透光性基板31の上に、バッファ層32、n型クラッド層33、発光層34、p型クラッド層35、p型電極36の順に積層される。発光素子3Aは、透光性基板31が上側に、p型電極36が下側になるように実装される。また、n型クラッド層33において、カソード電極22と対向する面側には、発光層34から露出した領域が設けられている。この領域にn型電極38Aが設けられている。
 p型電極36は、発光層からの光を反射する金属光沢のある材料で形成される。p型電極36はバンプ39Aを介してアノード電極23に接続される。n型電極38Aはバンプ39Bを介してカソード電極22に接続される。絶縁膜97はカソード電極22及びアノード電極23を覆っており、絶縁膜97の開口部分でバンプ39A、39Bは、それぞれアノード電極23及びカソード電極22と接続される。
 発光素子3Aでは、p型クラッド層35とn型クラッド層33とが直接接合せずに、間に別の層(発光層34)が導入されている。これにより、電子や正孔といったキャリアを発光層34の中に集中させることができ、効率よく再結合(発光)させることが可能となる。本変形例においても、第1発光素子3Raにおいて、ユウロピウム(Eu)が添加された窒化ガリウム(GaN)が、発光層34として採用される。また、第2発光素子3Rbにおいて、数原子層からなる井戸層と障壁層とを周期的に積層させた多重量子井戸構造(MQW構造)が、発光層34として採用される。なお、第3発光素子3G及び第4発光素子3Bは、第1発光素子3Raと同様に単層の発光層34を有してもよいし、第2発光素子3Rbと同様に多層の発光層34を有してもよい。
 以上、本発明の好適な実施の形態を説明したが、本発明はこのような実施の形態に限定されるものではない。実施の形態で開示された内容はあくまで一例にすぎず、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。本発明の趣旨を逸脱しない範囲で行われた適宜の変更についても、当然に本発明の技術的範囲に属する。上述した各実施形態及び各変形例の要旨を逸脱しない範囲で、構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。
 1 表示装置
 2 アレイ基板
 3、3A 発光素子
 3Ra 第1発光素子
 3Rb 第2発光素子
 3G 第3発光素子
 3B 第4発光素子
 12 駆動回路
 21 基板
 49Ra 第1画素
 49Rb 第2画素
 49G 第3画素
 49B 第4画素
 61、65、71、71A、75、79 半導体層
 64、66、74、78 ゲート電極
 62、72 ソース電極
 67、73、77 ドレイン電極
 61a 第1部分半導体層
 210 駆動IC
 91 第1絶縁膜
 92 第2絶縁膜
 93 第3絶縁膜
 94 第4絶縁膜
 100 信号処理回路
 110 第1処理回路
 115 メモリ
 120 第2処理回路
 125 バッファ
 DRT 駆動トランジスタ
 BCT 出力トランジスタ
 IST 初期化トランジスタ
 SST 画素選択トランジスタ
 RST リセットトランジスタ
 PVDD アノード電源電位
 PVSS カソード電源電位
 L1 アノード電源線
 L2 映像信号線
 L3 リセット電源線
 L4 初期化電源線
 L5 リセット制御信号線
 L6 出力制御信号線
 L7 画素制御信号線
 L8 初期化制御信号線
 L9 接続配線

Claims (7)

  1.  基板と、
     前記基板に設けられた複数の画素と、
     複数の前記画素の各々に設けられる複数の第1発光素子と複数の第2発光素子と、を有し、
     前記第1発光素子の発光層は、ユウロピウム(Eu)が添加された窒化ガリウム(GaN)を含み、
     前記第2発光素子の発光層は、窒化インジウムガリウム(InGaN)と窒化ガリウム(GaN)とが多層に積層された多重量子井戸構造である
     表示装置。
  2.  前記第1発光素子は第1赤色の光を出射し、
     前記第2発光素子は第2赤色の光を出射し、
     前記第1赤色の光のスペクトルの半値幅は、前記第2赤色の光のスペクトルの半値幅よりも小さい
     請求項1に記載の表示装置。
  3.  緑色の光を出射する第3発光素子と、
     青色の光を出射する第4発光素子と、を備え、
     前記第1発光素子と前記第2発光素子とは、第1方向に並び、
     前記第2発光素子と、前記第3発光素子又は前記第4発光素子とは、前記第1方向と交差する第2方向に並ぶ
     請求項1又は請求項2に記載の表示装置。
  4.  緑色の光を出射する第3発光素子と、
     青色の光を出射する第4発光素子と、を備え、
     前記第1発光素子と、前記第3発光素子又は前記第4発光素子の一方とは、第1方向に並び、
     前記第2発光素子と、前記第3発光素子又は前記第4発光素子の前記一方とは、前記第1方向と交差する第2方向に並ぶ
     請求項1又は請求項2に記載の表示装置。
  5.  前記画素の入力階調値が第1しきい値以下の場合に前記第1発光素子が点灯し、
     前記画素の入力階調値が前記第1しきい値よりも大きく、且つ、前記第1しきい値よりも大きい第2しきい値よりも小さい場合に前記第1発光素子及び前記第2発光素子が点灯する
     請求項1から請求項4のいずれか1項に記載の表示装置。
  6.  前記画素の入力階調値が前記第2しきい値以上の場合に前記第1発光素子が点灯する
     請求項5に記載の表示装置。
  7.  前記第1発光素子及び前記第2発光素子をそれぞれ有し、隣り合って配列された第1画素群及び第2画素群を有し、
     前記第1画素群の入力階調値に基づいて演算された前記第2発光素子に供給される駆動電流がしきい値電流よりも大きい場合に、前記第1画素群の前記第2発光素子が入力階調値に対応する階調値より低い出力階調値で点灯し、前記第2画素群の前記第2発光素子が入力階調値に対応する階調値より高い出力階調値で点灯する
     請求項1から請求項4のいずれか1項に記載の表示装置。
PCT/JP2019/031531 2018-11-02 2019-08-08 表示装置 WO2020090183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980071079.8A CN112956036B (zh) 2018-11-02 2019-08-08 显示装置
JP2020554773A JP6987273B2 (ja) 2018-11-02 2019-08-08 表示装置
US17/240,469 US11811002B2 (en) 2018-11-02 2021-04-26 Display with dual red emitters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018207671 2018-11-02
JP2018-207671 2018-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/240,469 Continuation US11811002B2 (en) 2018-11-02 2021-04-26 Display with dual red emitters

Publications (1)

Publication Number Publication Date
WO2020090183A1 true WO2020090183A1 (ja) 2020-05-07

Family

ID=70464407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031531 WO2020090183A1 (ja) 2018-11-02 2019-08-08 表示装置

Country Status (5)

Country Link
US (1) US11811002B2 (ja)
JP (1) JP6987273B2 (ja)
CN (1) CN112956036B (ja)
TW (1) TWI808248B (ja)
WO (1) WO2020090183A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113990212A (zh) * 2020-07-27 2022-01-28 北京芯海视界三维科技有限公司 发光模组及显示器件
CN116137920A (zh) * 2021-09-17 2023-05-19 京东方科技集团股份有限公司 阵列基板和显示设备
CN114203109B (zh) * 2021-12-20 2022-12-13 长沙惠科光电有限公司 像素驱动电路及其补偿方法、显示面板
CN114898690A (zh) * 2022-01-24 2022-08-12 北京京东方技术开发有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515956A (ja) * 1999-12-02 2003-05-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Led及び蛍光ledを含み、白色光を生成するハイブリッド照明システム
JP2009065137A (ja) * 2007-08-09 2009-03-26 Toshiba Lighting & Technology Corp 発光装置
JP2010503228A (ja) * 2006-09-08 2010-01-28 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 波長可変発光ダイオード
JP2013120848A (ja) * 2011-12-07 2013-06-17 Osaka Univ 赤色発光半導体素子とその製造方法
JP2015177019A (ja) * 2014-03-14 2015-10-05 シチズン電子株式会社 Led発光装置
US20180097033A1 (en) * 2016-09-30 2018-04-05 Khaled Ahmed Micro-led displays

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415870B2 (en) * 2008-08-28 2013-04-09 Panasonic Corporation Semiconductor light emitting device and backlight source, backlight source system, display device and electronic device using the same
JP5388041B2 (ja) 2009-05-07 2014-01-15 国立大学法人大阪大学 赤色発光半導体素子および赤色発光半導体素子の製造方法
JP5650918B2 (ja) * 2010-03-26 2015-01-07 株式会社ジャパンディスプレイ 画像表示装置
JP2016181550A (ja) * 2015-03-23 2016-10-13 三菱化学株式会社 発光装置、照明装置及び画像表示装置
KR102328945B1 (ko) * 2015-07-31 2021-11-19 엘지전자 주식회사 디스플레이 장치
CN106098720A (zh) * 2016-06-20 2016-11-09 深圳市华星光电技术有限公司 微发光二极管显示器
JP2018077600A (ja) * 2016-11-08 2018-05-17 株式会社ジャパンディスプレイ 表示装置
JP6760141B2 (ja) * 2017-03-07 2020-09-23 信越半導体株式会社 発光素子及びその製造方法
TWI621277B (zh) * 2017-03-08 2018-04-11 錼創科技股份有限公司 顯示裝置與磊晶晶圓
CN106816502B (zh) * 2017-04-12 2019-04-02 京东方科技集团股份有限公司 一种led芯片、led发光基板、显示装置及彩色显示控制方法
TWI640075B (zh) * 2017-10-31 2018-11-01 友達光電股份有限公司 像素發光裝置
US10586829B2 (en) * 2018-01-23 2020-03-10 Light Share, LLC Full-color monolithic micro-LED pixels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515956A (ja) * 1999-12-02 2003-05-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Led及び蛍光ledを含み、白色光を生成するハイブリッド照明システム
JP2010503228A (ja) * 2006-09-08 2010-01-28 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 波長可変発光ダイオード
JP2009065137A (ja) * 2007-08-09 2009-03-26 Toshiba Lighting & Technology Corp 発光装置
JP2013120848A (ja) * 2011-12-07 2013-06-17 Osaka Univ 赤色発光半導体素子とその製造方法
JP2015177019A (ja) * 2014-03-14 2015-10-05 シチズン電子株式会社 Led発光装置
US20180097033A1 (en) * 2016-09-30 2018-04-05 Khaled Ahmed Micro-led displays

Also Published As

Publication number Publication date
JPWO2020090183A1 (ja) 2021-09-24
US11811002B2 (en) 2023-11-07
TW202018967A (zh) 2020-05-16
JP6987273B2 (ja) 2021-12-22
CN112956036B (zh) 2024-06-07
CN112956036A (zh) 2021-06-11
TWI808248B (zh) 2023-07-11
US20210265530A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6987273B2 (ja) 表示装置
TWI738058B (zh) 顯示裝置及陣列基板
US11824150B2 (en) Display device and array substrate
TWI719570B (zh) 顯示裝置
US11362078B2 (en) Display device
TWI738242B (zh) 顯示裝置
US20240258295A1 (en) Display device and array substrate
TW202125666A (zh) 顯示裝置之修補方法
CN112419908A (zh) 显示装置和半导体器件
US12120927B2 (en) Display device including bending portion with frame flattening film and slits
WO2021192807A1 (ja) 表示装置
US20230155030A1 (en) Array substrate and display device including thereof
US20220399320A1 (en) Display device
WO2023281626A1 (ja) 表示装置
WO2021059783A1 (ja) 表示装置の補修方法及び表示装置
TW202125800A (zh) 顯示裝置及顯示裝置之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020554773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878851

Country of ref document: EP

Kind code of ref document: A1