WO2020088440A1 - 一种液固径向移动床反应装置和一种固体酸烷基化方法 - Google Patents

一种液固径向移动床反应装置和一种固体酸烷基化方法 Download PDF

Info

Publication number
WO2020088440A1
WO2020088440A1 PCT/CN2019/113950 CN2019113950W WO2020088440A1 WO 2020088440 A1 WO2020088440 A1 WO 2020088440A1 CN 2019113950 W CN2019113950 W CN 2019113950W WO 2020088440 A1 WO2020088440 A1 WO 2020088440A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reaction
bed
regeneration
radial moving
Prior art date
Application number
PCT/CN2019/113950
Other languages
English (en)
French (fr)
Inventor
胡立峰
候拴弟
毛俊义
朱振兴
唐晓津
刘铮
李永祥
赵志海
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811270089.8A external-priority patent/CN111100682B/zh
Priority claimed from CN201811270073.7A external-priority patent/CN111097338A/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to EP19879861.3A priority Critical patent/EP3875171A4/en
Priority to CA3118248A priority patent/CA3118248A1/en
Priority to US17/289,773 priority patent/US20210394143A1/en
Publication of WO2020088440A1 publication Critical patent/WO2020088440A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/085Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • B01J8/125Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow with multiple sections one above the other separated by distribution aids, e.g. reaction and regeneration sections
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00902Nozzle-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00929Provided with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0461Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds
    • B01J8/0469Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical annular shaped beds the beds being superimposed one above the other
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/706Catalytic metal recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the field of solid acid alkylation. More specifically, the present invention relates to a liquid-solid radial moving bed reaction device, and even more specifically, to a liquid-solid radial moving bed reaction device for a solid acid alkylation reaction process. The invention also relates to a solid acid alkylation method.
  • alkylated oil Under the action of strong acid, the technology of generating alkylated oil from isoparaffins (mainly isobutane) and olefins (C3-C5 olefins) provides the possibility of cleaner production of gasoline.
  • Alkylated oils have a higher octane number and lower vapor pressure, are mainly composed of saturated hydrocarbons, and do not contain sulfur, nitrogen, olefins, aromatics and other substances, so they are called clean gasoline, are aviation gasoline and vehicles Ideal blending components with gasoline.
  • the alkylation technology can be divided into liquid acid alkylation and solid acid alkylation according to the catalyst form.
  • liquid acid alkylation technology sulfuric acid method and hydrofluoric acid method
  • liquid acid alkylation technology is more mature and has better reaction options
  • problems such as the problem of serious equipment corrosion in the process of liquid acid alkylation.
  • sulfuric acid method the process consumes a lot of acid, and a large amount of waste acid has certain safety risks in transportation and handling.
  • hydrofluoric acid method because hydrofluoric acid has a strong Corrosive and toxic, and easily volatile, will cause great harm to the human body.
  • US5849976A discloses a method of alkylating a solid acid with a slow axial moving bed reaction zone and a moving bed regeneration zone.
  • a cooling area is provided in the reaction zone to pump part of the liquid mixture out of the heat exchange and then pump it back to the direct mixing and cooling to take out the heat of reaction of the alkylation reaction, while the catalyst flows down into the next bed
  • the catalyst will be cooled through the cooling zone; on the other hand, the deactivated catalyst will be periodically regenerated with hydrogen-containing materials to restore the activity of the catalyst.
  • US8373014 discloses a solid acid alkylation reaction method using a radially-moving bed placed in an overlapping manner as a reactor.
  • a structure similar to the catalytic reforming overlapping radial moving bed is used.
  • the single-stage reactor is provided with an annular barrel for the distribution of reaction materials and a central tube for collecting materials and sandwiched between the two.
  • the reactor bed zone; between the reactors at both ends, a catalyst material conveying pipe is used to convey the catalyst in the catalyst bed of the upper stage to the reactor bed zone of the lower stage reactor.
  • the effluent material in the intermediate reactor is divided into two parts, a part of which is pumped back to the upstream reactor and mixed with fresh raw materials through the mixer to be used as the feed of the upstream reactor. Before the feed mixer is mixed with fresh raw materials, it is used as the feed to the downstream reactor. This part is used directly without pump boosting.
  • the circulating material part also needs to pass through a heat exchanger to extract the heat of reaction.
  • a technical problem to be solved by the present invention is to provide a liquid-solid radial moving bed reaction device and a solid acid alkylation method using the liquid-solid radial moving bed reaction device on the basis of the prior art.
  • the present invention provides the following technical solutions:
  • a liquid-solid radial moving bed reaction device characterized in that the device comprises:
  • the radial moving bed reactor is provided with a reaction material distribution area, a catalyst bed layer, and a post-reaction material collection area from inside to outside or from outside to inside.
  • the reaction material distribution area is in communication with the reaction material feed line;
  • the described post-reaction material collection area is in communication with the post-reaction material exit tube;
  • the reaction material feed line is provided with a componentized mixer; the componentized mixer is composed of an upper circulating material pipe, a lower reaction material feed pipe and a material feed line extending into the reaction material
  • the feed pipe of fresh raw material is composed of a feed pipe nozzle at the outlet of the feed pipe of fresh raw material, a filler and / or mixing fins in the feed pipe of the reaction material, and the components
  • the chemical mixer is outside the radial moving bed reactor.
  • the liquid-solid radial moving bed reaction device characterized in that the radial moving bed reactor is provided with at least two stages of reaction beds, and between two adjacent stages of reaction beds There is a catalyst delivery tube, which enables the catalyst to move from top to bottom in the radial moving bed reactor; there is a reaction material space between the two sections of the reaction bed, and the reaction material distribution area passes through the reaction material space and the reaction material space.
  • the feed lines are connected; the feed line of the reaction material of each section of the reaction bed is provided with the component mixer.
  • the liquid-solid radial moving bed reaction device according to any one of technical solutions 1-2, characterized in that the catalyst outlet at the bottom of the radial moving bed reactor and the spent agent
  • the pipeline between the receivers is provided with an L-shaped or nearly L-shaped material delivery valve group, and the discharge rate of the catalyst is adjusted by changing the flow rate of the liquid mixture entering the valve group.
  • the liquid-solid radial moving bed reaction device according to any one of technical solutions 1-3, characterized in that the top of the radial moving bed reactor is provided with a top catalyst collection area, and the catalyst inlet passes through the The top catalyst collection area is in communication with the catalyst delivery pipe.
  • the liquid-solid radial moving bed reaction device according to any one of technical solutions 1-4, characterized in that, in the radial moving bed reactor, the component mixer of the next stage of the reaction bed layer
  • the circulating material pipe is the post-reaction material outlet pipe of the previous section of the reaction bed (or, communicated with the post-reaction material outlet pipe of the previous section of reaction bed), the circulating material pipe of the component mixer of the first section of the reaction bed and the last After the reaction of a section of the reaction bed, the materials are led out of the pipes to communicate with each other.
  • liquid-solid radial moving bed reaction device characterized in that it is connected to the to-be-generated agent receiver, the catalyst regenerator and the regenerator
  • the catalyst circulation line between the receivers is set vertically or the angle with the horizontal plane is not less than 40 degrees.
  • a regeneration medium inlet is provided at the upper part of the catalyst regenerator, and a bottom or bottom discharge line of the catalyst regenerator is provided The regeneration medium outlet; the regeneration medium inlet is at a position above 70% of the straight pipe section of the catalyst regenerator from bottom to top, and the regeneration medium outlet is at a position below 20% of the straight pipe section of the catalyst regenerator from bottom to top.
  • liquid-solid radial moving bed reaction device according to any one of technical solutions 1-8, characterized in that a filter is also provided on the regeneration medium outlet line of the catalyst regenerator.
  • liquid-solid radial moving bed reaction device according to any one of technical solutions 1-9, characterized in that a liquid mixture discharge port is provided on the bottom or bottom discharge line of the biochemical receiver .
  • liquid-solid radial moving bed reaction device according to any one of technical solutions 1-10, characterized in that, in the componentized mixer, the feed pipe of the fresh raw material and the The ratio of the cross-sectional area of the circulating material tube is 0.001-0.5: 1, preferably 0.002-0.1: 1.
  • the liquid-solid radial moving bed reaction device is provided with at least one section of reaction bed and at least one section placed up and down Regeneration beds, preferably, the number of reaction beds is 2-8, for example 4-8, the number of regeneration beds is 2-8, for example 4-8, preferably 2-7, for example 4-7; more preferably The number of regeneration beds is the same as the number of reaction beds and a regeneration bed is provided immediately below each reaction bed, or more preferably, the regeneration bed is one less than the number of reaction beds, and the reaction bed Placed in sequence with the regeneration bed, and the top and bottom of the radial moving bed reactor are set as the reaction bed;
  • Each reaction bed includes a reaction material distribution area, a catalyst bed, and a post-reaction material collection area, and each reaction bed has a reaction material feed line and a reaction material exit tube.
  • the reaction material distribution area is reacted
  • the material space is in communication with the reaction material feed line
  • the post-reaction material collection area is in communication with the post-reaction material outlet pipe
  • the componentized mixer is provided on the reaction material feed line of each section of the reaction bed
  • Each regeneration bed includes a corresponding regeneration medium distribution area, a catalyst bed and a regeneration medium collection area, and each regeneration bed has a regeneration medium feed pipe and a regeneration medium outlet pipe.
  • the regeneration medium distribution area (after regeneration (Media space) is in communication with the regeneration medium feed pipe, and the regeneration medium collection area is in communication with the regeneration medium outlet pipe;
  • any two adjacent beds in the reaction bed and the regeneration bed communicate with each other through the catalyst delivery pipe, so that the catalyst can move from top to bottom in the radial moving bed reactor; the catalyst in the reaction bed and the regeneration bed The catalyst in falls through the catalyst delivery pipe from the upstream bed to the adjacent downstream bed, and finally falls to the bottom catalyst collection area, and exits the radial moving bed reactor;
  • the regeneration medium feed pipe of any regeneration bed except the first-stage regeneration bed may be or communicate with the regeneration medium outlet pipe of the previous stage regeneration bed (upstream bed).
  • a solid acid alkylation method characterized in that the liquid-solid radial moving bed reaction device according to any one of technical solutions 1-12 is used, and the alkylated raw material and the circulating material pass through a componentized mixer Mix and segment into the radial moving bed reactor; the liquid mixture is distributed through the reaction material distribution area and then passes through the catalyst bed in the radial direction, contacts and reacts with the solid acid catalyst, and the reacted liquid mixture reaches
  • the material collection area is used as a circulating material or further separated to obtain alkylated oil products; the solid acid catalyst in the catalyst bed of the radial moving bed reactor is gradually deactivated, falling layer by layer, and finally falling to the bottom catalyst collection area and discharged radially
  • the moving bed reactor enters the spent agent receiver, in which the liquid mixture carried in the catalyst is removed, and then flows into the catalyst regenerator for regeneration reaction. In addition to the gas in it, return to the radial moving bed reactor to continue the reaction.
  • the solid acid alkylation method according to any one of technical solutions 13-14, characterized in that, in the radial moving bed reactor, the reaction temperature is 30-100 ° C, and the liquid mixture is The apparent flow velocity in the reactor is 0.05-1m / s; the mass space velocity of the mixed olefin feedstock is 0.05-1h -1 ; the molar ratio of alkane to olefin at the entrance of the reaction bed is 200-1000: 1; solid acid catalyst The average particle size of the particles is 0.3-3 mm.
  • the catalyst is a solid acid catalyst, containing 95wt% -65wt% molecular sieve and 5wt% -35wt% Heat-resistant inorganic oxide, wherein the molecules are selected from one or more of FAU structure zeolite, BETA structure zeolite and MFI structure zeolite, and the heat-resistant inorganic oxide is alumina and / or silica.
  • the fresh raw materials are mixed with the circulating materials or the materials after the upstream reactor, and then enter the reaction bed of the radial moving bed reactor;
  • the mixture passes through the reaction bed in the radial direction of the reactor, contacts the solid acid catalyst and reacts, and most of the reaction is completed (for example,> 50 vol%,> 60 vol%,> 70 vol%) ,> 80 vol%,> 90 vol%,> 95 vol%,> 96 vol%,> 97 vol%,> 98 vol%, or> 99 vol%)
  • the liquid phase mixture is discharged through the reaction product discharge port, and the remaining small part of the liquid
  • the phase mixture material follows the catalyst particles into the next reaction bed through the catalyst delivery tube or enters the catalyst regeneration bed through the catalyst delivery tube between the reaction bed and the catalyst regeneration bed;
  • the discharged liquid-phase mixture material is mixed with fresh raw materials and enters the reaction bed downstream of the reactor to continue to participate in the reaction, or is discharged from the reactor, and after separation (such as distillation), the alkylated oil product is collected;
  • the regeneration medium enters the regeneration catalyst bed of the radial moving bed reactor through the regeneration medium space and the regeneration medium distribution area, and the catalyst contacts the liquid phase regeneration medium in which hydrogen is dissolved under low temperature regeneration conditions. Convert unsaturated hydrocarbons adsorbed on the catalyst into saturated hydrocarbon molecules that are easily desorbed and take them out of the regenerator to achieve partial regeneration of the catalyst;
  • the regeneration medium can optionally enter the regeneration catalyst bed of the next section via a pipeline for low-temperature regeneration;
  • the low-temperature regenerated catalyst flows into the next reaction bed through the catalyst delivery pipe at the bottom of the catalyst regeneration bed;
  • each reaction bed and catalyst regeneration bed of the radial moving bed reactor will gradually increase the degree of deactivation as the reaction progresses and the number of regeneration increases, and it will gradually fall to the lower reaction bed. Or the catalyst regeneration bed finally reaches the catalyst outlet at the bottom of the radial moving bed reactor; the final catalyst is sent to the catalyst regenerator for high temperature deep regeneration to achieve complete recovery of catalyst activity;
  • the reactivated catalyst is sent to the catalyst inlet at the top of the radial moving bed reactor to continue to participate in the reaction;
  • the reaction temperature is 30-100 ° C
  • the reaction pressure is 1.0-5.0MPa
  • the apparent flow velocity of the liquid mixture in the reactor is 0.03-1m / s
  • the mass space velocity of the mixed olefin feedstock is 0.05-1h -1
  • the molar ratio of alkane to olefin at the entrance of the reaction bed is 200-1000: 1
  • the average particle size of the solid acid catalyst particles is 0.3-3mm;
  • the regeneration temperature is 50-140 ° C, and the apparent flow velocity of the regeneration medium in the regeneration bed is 0.01-0.5m / s;
  • the regeneration medium is liquid hydrocarbon with dissolved hydrogen;
  • the liquid hydrocarbon is C3-C5 saturated alkane or a mixture of the reaction product and the above-mentioned saturated alkane, preferably, the liquid hydrocarbon is a mixture of C3-C5 saturated alkane and the reaction product;
  • the main active component of the catalyst is a molecular sieve loaded with a certain amount of metal, the molecular sieve is FAU structure zeolite, BETA structure zeolite, MFI structure zeolite and a combination of one or more of them, preferably having FAU structure and BETA structure Zeolite; the metal supported on the catalyst is one or a combination of Fe, Co, Ni, Pd and / or Pt, preferably one or a combination of Co, Ni or Pt, more preferably Pt ;
  • the regeneration temperature is 180-400 °C
  • the regeneration pressure is 0.5-4.0MPa
  • the regeneration medium is hydrogen or a mixture of hydrogen and low-carbon hydrocarbons (such as C3-C8), preferably hydrogen and low-carbon hydrocarbons (such as C3 -A mixture of C8).
  • the liquid-solid radial moving bed reaction device provided by the invention has simple structure and flexible assembly, and is suitable for solid acid alkylation reaction.
  • Fresh alkylated materials and circulating materials are mixed uniformly in the componentized mixer outside the radial moving bed reactor, and are introduced through the feed line of the reaction materials to carry out the reaction.
  • the catalyst material communicates with the catalyst collection area at the top of the radial moving bed reactor through the radial moving bed reactor, the spent agent receiver, the catalyst regenerator, and the regenerant receiver, ensuring the reaction of solid acid catalyst particles in the radial moving bed
  • the continuous flow in the reactor, the alkylation reaction and the regeneration of the solid acid catalyst can be carried out simultaneously without interfering with each other.
  • the alkylated materials are evenly mixed, saving space in the reactor, improving reaction efficiency, and improving the selectivity of the target product.
  • the solid acid alkylation reaction device provided by the invention is applied to the solid acid alkylation method, and realizes the continuous and stable operation of the alkylation reaction and regeneration of the deactivated catalyst, improves the selectivity of the target product and the flexibility of the device operation, and reduces The investment in equipment has improved the economic competitiveness of the device.
  • FIG. 1 is a schematic diagram of an embodiment of a radial moving bed reaction device provided by the present invention
  • Figure 2 is a schematic structural diagram of a componentized mixer
  • FIG. 3 is a schematic diagram of another embodiment of a radial moving bed reaction device provided by the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a radial moving bed reaction device provided by the present invention.
  • the present invention provides a liquid-solid radial moving bed reaction device, the device comprising:
  • the radial moving bed reactor is provided with a reaction material distribution area, a catalyst bed layer, and a post-reaction material collection area from inside to outside or from outside to inside.
  • the reaction material distribution area is in communication with the reaction material feed line;
  • the described post-reaction material collection area is in communication with the post-reaction material exit tube;
  • the reaction material feed line is provided with a componentized mixer; the componentized mixer is composed of an upper circulating material pipe, a lower reaction material feed pipe and a material feed line extending into the reaction material
  • the feed pipe of fresh raw material is composed of a feed pipe nozzle at the outlet of the feed pipe of fresh raw material, a filler and / or mixing fins in the feed pipe of the reaction material, and the components
  • the chemical mixer is outside the radial moving bed reactor.
  • the upstream circulation material pipe and the downstream reaction material feed pipe are composed of one pipe or are made of the same or different pipes, preferably the same The pipe is connected; the feed pipe nozzle provided at the outlet of the feed pipe of the fresh raw material has an upward opening direction, and the angle with the axis direction of the pipeline is not more than 60 degrees, 50 degrees, 40 degrees, 30 degrees , 20 degrees, 10 degrees, 5 degrees or 0 degrees; the packing and / or mixing fins are preferably provided in the feed pipe of the reaction material downstream.
  • the radial moving bed reactor is provided with at least two reaction bed layers placed up and down between two adjacent reaction bed layers
  • a catalyst delivery tube is provided to enable the catalyst to move from top to bottom in the radial moving bed reactor; there is also a reaction material space between the two sections of the reaction bed, and the reaction material distribution area passes through the reaction material space and reacts
  • the feed lines of the materials are connected; the feed line of the reaction materials of each section of the reaction bed is provided with the component mixer.
  • the radial moving bed reactor is provided with at least one section of reaction bed and at least one section of regeneration bed placed up and down so that the catalyst can The radial moving bed reactor moves from top to bottom.
  • the number of reaction beds is 2-8, for example 4-8, and the number of regeneration beds is 2-8, for example 4-8, preferably 2- 7, for example 4-7; more preferably, the number of regeneration beds is the same as the number of reaction beds and a regeneration bed is provided immediately below each reaction bed, or more preferably, the regeneration bed is more than the reaction bed
  • the number of layers is one less, the reaction bed layer and the regeneration bed layer are placed in sequence, and the top and bottom ends of the radial moving bed reactor are set as reaction bed layers;
  • Each reaction bed includes a reaction material distribution area, a catalyst bed, and a post-reaction material collection area, and each reaction bed has a reaction material feed line and a reaction material exit tube.
  • the reaction material distribution area is reacted
  • the material space is in communication with the reaction material feed line
  • the post-reaction material collection area is in communication with the post-reaction material outlet pipe
  • the componentized mixer is provided on the reaction material feed line of each section of the reaction bed
  • each regeneration bed has a similar physical structure to the reaction bed, that is, each regeneration bed includes a corresponding regeneration medium distribution area, a catalyst bed and a regeneration medium collection area, and each regeneration bed has a regeneration medium feed pipe and A regeneration medium outlet pipe, the regeneration medium distribution area communicates with the regeneration medium feed pipe through the regeneration medium space, and the regeneration medium collection area communicates with the regeneration medium outlet pipe;
  • any two adjacent beds in the reaction bed and the regeneration bed communicate with each other through the catalyst delivery pipe; the catalyst in the reaction bed and the catalyst in the regeneration bed fall from the upstream bed to the adjacent downstream through the catalyst delivery pipe
  • the bed layer eventually falls to the bottom catalyst collection area and exits the radial moving bed reactor;
  • the regeneration medium feed pipe of any regeneration bed other than the first-stage regeneration bed can be the regeneration medium outlet pipe of the previous-stage regeneration bed (upstream bed), or it can be the same as the previous-stage regeneration bed (upstream bed) Layer) the regeneration medium outlet pipe is in communication.
  • an L-shaped or nearly L-shaped material delivery valve group is provided on the pipeline between the catalyst outlet at the bottom of the radial moving bed reactor and the raw material receiver, The discharge rate of the catalyst is adjusted by changing the flow rate of the liquid mixture entering the valve group.
  • the L-type conveying valve group occupies a small area, has a large adjustment range, and has advantages.
  • the L-shaped or nearly L-shaped material delivery valve group is a commercially available device. At least one liquid-phase mixture feed line is also connected to the L-shaped or nearly L-shaped material delivery valve group. The provision of a particle flow regulator can increase the flow resistance of the particulate material.
  • the regulator is connected with at least one liquid mixture feed line to increase the flow driving force of the particulate material and reduce the flow resistance of the particulate material.
  • the discharge rate of the catalyst can be adjusted by changing the flow rate of the liquid mixture entering the valve group, so as to achieve the control and adjustment of the catalyst in the reactor falling in each reaction bed Rate and residence time.
  • the top of the radial moving bed reactor is provided with a top catalyst collection area, and the catalyst inlet passes through the top catalyst collection area and The catalyst delivery pipes are connected.
  • the catalyst delivery tubes are respectively disposed between two adjacent beds, between the top catalyst collection zone and the first bed, and Between the last bed and the bottom catalyst collection zone.
  • the circulating material tube of the component mixer of the next stage of the reaction bed layer is the previous stage of the reaction bed After the reaction, the material outlet pipe of the layer is in communication with the material outlet pipe of the previous reaction bed.
  • a catalyst circulation line connected between the to-be-generated agent receiver, the catalyst regenerator and the regenerator agent is connected It is set vertically or the angle with the horizontal plane is not less than 40 degrees.
  • the catalyst regenerator or the regenerator receiver is also provided with a fresh catalyst feeding port.
  • a regeneration medium inlet is provided at the upper part of the catalyst regenerator, and a regeneration medium outlet is provided at the bottom or bottom discharge line of the catalyst regenerator; the regeneration The medium inlet is at a position above 70% of the straight pipe section of the catalyst regenerator from bottom to top, and the outlet of the regeneration medium is at a position below 20% of the straight pipe section of the catalyst regenerator from bottom to top.
  • a filter is also provided on the regeneration medium outlet line of the catalyst regenerator.
  • a liquid mixture discharge port is provided on the bottom or bottom discharge line of the biochemical receiver.
  • the cross-sectional area of the feed pipe of the fresh raw material and the recycle material pipe is The ratio is 0.001-0.5: 1, more preferably 0.002-0.1: 1.
  • the radial moving bed reactor in the radial moving bed reactor, at least two sections of reaction beds are placed vertically up and down, preferably, the diameter
  • the moving bed reactor contains 4-8 stages of reaction beds.
  • Each section of the reaction bed from the inside to the outside, or from the outside to the inside, contains the feed line of the reaction material, the reaction material distribution area, the (ring-shaped) catalyst bed, the reaction material collection area, and the material that leads the reaction material After the reaction, the material is led out of the tube.
  • the top of the radial moving bed reactor is provided with a top catalyst collection zone, between the top catalyst collection zone and the first stage catalyst bed, between the upstream and downstream catalyst beds, and the last stage catalyst bed and bottom
  • a catalyst delivery pipe is provided between the catalyst collection areas.
  • the catalyst inlet communicates with the top catalyst collection area and catalyst delivery tube, and the catalyst delivery tube at the bottom of the reactor communicates with the bottom catalyst collection area and catalyst outlet.
  • an L-shaped or nearly L-shaped material delivery valve is provided on the pipeline between the catalyst outlet and the spent agent receiver Group, by adjusting the flow rate of the liquid mixture into the valve group to adjust the catalyst discharge rate.
  • the falling rate and residence time of the catalyst in the reactor in each reactor bed can be controlled and adjusted.
  • the componentized mixer can be arranged in the reaction material outlet pipe of the previous reaction bed layer and the reaction material of the next reaction bed layer On the pipeline between the feed pipes, the feed pipe for fresh raw materials serves as an inlet for supplementing fresh raw materials.
  • a buffer tank for the catalyst to be produced is provided below the radial moving bed reactor to store the mixture of the catalyst receiver in the de-liquid phase and The catalyst to be discharged from the reactor during the catalyst discharge to the catalyst regenerator ensures the continuity of the flow of the catalyst material in the radial moving bed reactor and the smooth operation of the device.
  • the bioreactor receiver, the catalyst regenerator and the regenerant receiver are arranged in order from top to bottom, connected to the bioreagent receiving
  • the catalyst circulation line between the reactor, the catalyst regenerator and the regenerant receiver is vertically set or the angle between the horizontal and the horizontal plane is not less than 40 degrees, which facilitates the smooth circulation of the catalyst particulate material from top to bottom and prevents the accumulation or residual of the material in the pipeline In the middle, it affects the sealing of the valve or the effect of catalyst regeneration.
  • the catalyst regenerator is provided with a fresh catalyst feeding port.
  • the upper part of the catalyst regenerator is provided with a regeneration medium inlet and the bottom of the catalyst regenerator
  • a regeneration medium outlet is provided on the bottom discharge line for introducing and discharging regeneration medium during the hydrogen regeneration operation;
  • the regeneration medium inlet is at a position above 70% of the straight pipe section of the catalyst regenerator from bottom to top, and the regeneration The medium outlet is at a position below 20% of the straight pipe section of the catalyst regenerator from bottom to top, and is preferably provided on the bottom discharge line.
  • a filter is further provided on the outlet line of the regeneration medium of the catalyst regenerator. The filter is used to block the flow of catalyst from the regenerator to the downstream gas circulation pressurization equipment and to collect fine powder or fine particles generated by friction or purge in the regeneration process.
  • a liquid mixture discharge port is provided on the bottom or bottom discharge line of the to-be-generated agent receiver; the regenerant receiver Or a liquid-phase mixture feeding port is provided on the pipeline entering the regenerant receiver.
  • the liquid phase mixture carried in the catalyst is evacuated or added to the regenerated catalyst through the liquid phase mixture discharge port and the liquid phase mixture feed port.
  • the ratio of the cross-sectional area of the feed tube of fresh raw material to the cross-sectional area of the circulating material tube is 0.001 -0.5: 1, preferably, 0.002-0.1: 1.
  • the main feed pipe of the componentized mixer (that is, the upper circulating material pipe and the lower reaction material feed pipe) is provided with fillers and / or mixing fins for enhancing the mixing of materials, preferably, In the feed tube of the lower reaction material.
  • the packing is selected from structured packing or random packing, and the mixing fins are selected from deflectors or fins, preferably a set of inclined fins are arranged.
  • the liquid-solid radial moving bed reaction device provided by the present invention is suitable for the solid acid alkylation reaction and regeneration method, adopting any one of the above-mentioned liquid-solid radial moving bed reaction devices, and the alkylation raw material and the circulating material are mixed by components
  • the mixer mixes and enters into the radial moving bed reactor; the liquid mixture is distributed through the reaction material distribution area and then passes through the catalyst bed in the radial direction, contacts and reacts with the solid acid catalyst, and the liquid mixture after reaction Reach the material collection area, and discharge through the material outlet pipe after the reaction, as a circulating material or further separation to obtain an alkylated oil product (the discharged reaction material and fresh raw materials are mixed with a component mixer to enter the next section of the reaction bed to continue to participate Reaction, or discharge the reactor to separate the alkylated oil product); the solid acid catalyst in the catalyst bed gradually deactivates, falls layer by layer, and finally falls to the bottom catalyst collection area, and is discharged from the radial moving bed reactor;
  • the alkylation feedstock is a hydrocarbon fraction containing olefins and alkanes, preferably a C4 fraction containing C4 olefins and C4 alkanes, and more preferably a mixture of C4 olefins and C4 alkanes.
  • the alkane fraction also includes a light hydrocarbon fraction that passes through the top of the fractionation column and returns to the reactor inlet after cooling.
  • the alkylation feedstock is a hydrocarbon fraction containing olefins and alkanes, wherein the molar ratio of alkanes to olefins is 5-50: 1, such as 10-40: 1 or 20-30: 1.
  • the alkylation feedstock is a hydrocarbon fraction containing C3-C5 alkanes and C3-C5 alkenes, wherein the molar ratio of alkanes to alkenes is 5-50: 1, such as 10-40: 1 or 20-30: 1.
  • the alkylation feedstock is a mixture of C3-C5 alkanes and C3-C5 alkenes, wherein the molar ratio of alkanes to alkenes is 5-50: 1, such as 10-40: 1 or 20-30 :1.
  • the radial moving bed reactor the reaction temperature is 30-100 deg.] C
  • the mixed material liquid superficial velocity in the reactor is 0.05-1m / s
  • WHSV mixed olefin feedstock is 0.05-1h - 1
  • the molar ratio of alkane to olefin at the entrance of the reaction bed is 200-1000: 1
  • the average particle size of the solid acid catalyst particles is 0.3-3mm.
  • the catalyst is a solid acid catalyst, and the solid acid catalyst contains a molecular sieve and a heat-resistant inorganic oxide. Based on the total amount of the solid acid catalyst, the content of the molecular sieve is 65-95 wt%, and the content of the heat-resistant inorganic oxide It is 5-35 wt%; preferably, the molecular sieve is selected from at least one of FAU structure zeolite, BETA structure zeolite and MFI structure zeolite, and the heat-resistant inorganic oxide is alumina and / or silica; further preferably, The solid acid catalyst further contains a metal active component selected from at least one of Fe, Co, Ni, Pd, and Pt. Based on the total amount of the solid acid catalyst, the metal active component The content of 0.15-2wt%.
  • the post-reaction material outlet tube of the last stage of the reaction bed of the radial moving bed reactor serves as a liquid product outlet, and most of the material discharged through the liquid product outlet (eg,> 50 vol%,> 60 vol%,> 70 vol%) ,> 80vol%,> 90vol%,> 95vol%,> 96vol%,> 97vol%,> 98vol%, or> 99vol%)
  • the pump After being pressurized by the pump, it is returned to the first reaction bed of the reactor and recycled as circulating materials.
  • the alkylation raw materials are mixed, and a small part is sent to product separation equipment such as a fractionation tower to separate the alkylated oil as the product of the device.
  • the to-be-generated catalyst undergoes a regeneration reaction in a catalyst regenerator to restore activity, and the manner of regeneration is not particularly limited, and can be performed under conventional regeneration conditions.
  • the regeneration medium may be an oxygen-containing atmosphere or a hydrogen-containing atmosphere. Specifically, the regeneration may be performed in an oxygen-containing atmosphere or a hydrogen-containing atmosphere.
  • the oxygen-containing atmosphere contains oxygen and an inert gas, and may be air or a mixed gas of oxygen and nitrogen.
  • the content of oxygen may be 0.5-20% by volume.
  • the oxygen content can also be adjusted according to the regeneration process.
  • the regeneration is performed in an oxygen-containing atmosphere, and regeneration can be performed at a temperature of 180-500 ° C or 200-500 ° C; during regeneration, the pressure in the reactor can be 0.01-0.5 MPa, and the pressure is a gauge pressure.
  • the hydrogen-containing atmosphere may contain hydrogen and C4 liquefied gas, and the hydrogen content is 70-99% by volume.
  • the regeneration is carried out in a hydrogen-containing atmosphere, which can be performed at a temperature of 100-400 ° C, preferably 180-280 ° C; during regeneration, the pressure in the reactor can be 0.1-5MPa, preferably 0.5-3.5MPa. The pressure is the gauge pressure.
  • the apparent flow velocity of the regeneration medium in the catalyst regenerator is 0.003-0.8 m / s, further preferably 0.02-0.5 m / s.
  • the liquid-solid radial moving bed reaction device has a simple structure and is suitable for solid acid alkylation reaction.
  • the alkylation reaction and solid acid catalyst regeneration can be performed simultaneously without interference with each other.
  • There is a component mixer outside the radial moving bed which saves the space in the radial moving bed reactor, makes the fresh raw materials and circulating materials fully mixed evenly, improves the selectivity of the alkylation reaction, and reduces the olefin overlap
  • the reaction saves space in the reactor and improves the reaction efficiency.
  • the present invention provides a solid acid alkylation reaction and regeneration method.
  • the method uses a liquid-solid radial moving bed reaction device, and the alkylation raw material and the circulating material are mixed by a component mixer The latter section enters the radial moving bed reactor; the liquid mixture is distributed through the reaction material distribution area from inside to outside or from outside to inside, and then passes through the catalyst bed in the radial direction, and contacts and reacts with the solid acid catalyst.
  • the liquid mixture of the liquid reaches the material collection area and is discharged through the material outlet pipe after the reaction, as a circulating material or further separation to obtain an alkylated oil product (the discharged reaction material and fresh raw materials are mixed with the componentized mixer into the next section
  • the reaction bed continues to participate in the reaction, or the reactor is discharged to separate the alkylated oil product);
  • the solid acid catalyst in the catalyst bed of the radial moving bed reactor gradually deactivates, falls layer by layer, and finally falls to the bottom catalyst collection area , Exit the radial moving bed reactor; then enter the receiver of the agent to be produced through the catalyst delivery line, remove the catalyst
  • the liquid mixture of the liquid phase then flows into the catalyst regenerator for regeneration reaction, and regenerates the activity under oxygen atmosphere regeneration or hydrogen regeneration;
  • the activated regenerated catalyst at the bottom of the catalyst regenerator flows into the regenerant receiver and the liquid phase is introduced into it
  • the mixture material replaces and removes the gas in the gap of the regenerated catalyst, and then the regenerated catalyst returns
  • the liquid-solid radial moving bed reaction device includes: a radially moving bed reactor, a raw agent receiver, a catalyst regenerator and a regenerant receiver connected in sequence, wherein the catalyst outlet of the regenerant receiver is The catalyst inlet of the radial moving bed reactor is connected; the radial moving bed reactor is provided with a reaction material distribution area, a catalyst bed layer and a reaction material collection area from inside to outside or from outside to inside.
  • the material distribution area communicates with the reaction material feed line; the post-reaction material collection area communicates with the reaction material outlet tube;
  • the reaction material feed line is provided with a componentized mixer; the componentized mixer is composed of an upper circulating material pipe, a lower reaction material feed pipe and a material feed line extending into the reaction material
  • the feed pipe of fresh raw material is composed of a feed pipe nozzle at the outlet of the feed pipe of fresh raw material, a filler and / or mixing fins in the feed pipe of the reaction material, and the components
  • the chemical mixer is outside the radial moving bed reactor.
  • the upper circulating material pipe and the lower reaction material feed pipe are composed of a single pipe or are made of the same or different pipes, preferably the same The pipe is connected; the feed pipe nozzle provided at the outlet of the feed pipe of the fresh raw material has an upward opening direction, and the angle with the axis direction of the pipeline is not more than 60 degrees, 50 degrees, 40 degrees, 30 degrees , 20 degrees, 10 degrees, 5 degrees or 0 degrees; the packing and / or mixing fins are preferably provided in the feed tube of the lower reaction material.
  • the radial moving bed reactor is provided with at least two reaction bed layers placed up and down, and two adjacent reaction bed layers
  • a catalyst conveying pipe is provided between the two to enable the catalyst to move from top to bottom in the radial moving bed reactor; there is also a reaction material space between the two sections of the reaction bed.
  • the reaction material distribution area passes through the reaction material space and The feed lines of the reaction materials are connected; the feed line of the reaction materials of each section of the reaction bed is provided with the component mixer.
  • the radial moving bed reactor is provided with at least one section of reaction bed and at least one section of regeneration bed placed up and down so that the catalyst can Moving from top to bottom in a radial moving bed reactor
  • the number of reaction beds is 2-8, for example 4-8
  • the number of regeneration beds is 2-8, for example 4-8, preferably 2 -7, for example 4-7
  • the number of regeneration beds is the same as the number of reaction beds and a regeneration bed is provided immediately below each reaction bed, or more preferably, the regeneration bed is more reactive than
  • the number of beds is one less, the reaction bed and the regeneration bed are placed in sequence, and the top and bottom of the radial moving bed reactor are set as reaction beds;
  • Each reaction bed includes a reaction material distribution area, a catalyst bed, and a post-reaction material collection area, and each reaction bed has a reaction material feed line and a reaction material exit tube.
  • the reaction material distribution area is reacted
  • the material space is in communication with the reaction material feed line
  • the post-reaction material collection area is in communication with the post-reaction material outlet pipe
  • the componentized mixer is provided on the reaction material feed line of each section of the reaction bed
  • each regeneration bed has a similar physical structure to the reaction bed, that is, each regeneration bed includes a corresponding regeneration medium distribution area, a catalyst bed and a regeneration medium collection area, and each regeneration bed has a regeneration medium feed pipe and A regeneration medium outlet pipe, the regeneration medium distribution area communicates with the regeneration medium feed pipe through the regeneration medium space, and the regeneration medium collection area communicates with the regeneration medium outlet pipe;
  • any two adjacent beds in the reaction bed and the regeneration bed communicate with each other through the catalyst delivery pipe; the catalyst in the reaction bed and the catalyst in the regeneration bed fall from the upstream bed to the adjacent downstream through the catalyst delivery pipe
  • the bed layer eventually falls to the bottom catalyst collection area and exits the radial moving bed reactor;
  • the regeneration medium feed pipe of any regeneration bed other than the first-stage regeneration bed can be the regeneration medium outlet pipe of the previous-stage regeneration bed (upstream bed), or it can be the same as the previous-stage regeneration bed (upstream bed) Layer) the regeneration medium outlet pipe is in communication.
  • the pipeline between the catalyst outlet at the bottom of the radial moving bed reactor and the to-be-generated agent receiver An L-type or nearly L-type material delivery valve group is provided, and the discharge rate of the catalyst is adjusted by changing the flow rate of the liquid mixture entering the valve group. Thereby, the falling rate and residence time of the catalyst in the reactor in each reactor bed can be controlled and adjusted.
  • the top of the radial moving bed reactor is provided with a top catalyst collection area, and the catalyst inlet passes through the top catalyst collection area and the The mentioned catalyst delivery pipes are in communication.
  • the catalyst delivery pipe is respectively disposed between two adjacent beds, between the top catalyst collection zone and the first bed, And between the last bed and the bottom catalyst collection zone.
  • the circulating material tube of the component mixer of the next stage of the reaction bed is the previous stage of the reaction
  • the catalyst is connected between the receiver of the spent agent, the catalyst regenerator and the regenerator receiver
  • the pipeline is set vertically or the angle with the horizontal plane is not less than 40 degrees.
  • a fresh catalyst feed port is also provided on the catalyst regenerator or the regenerator receiver.
  • a regeneration medium inlet is provided at the upper part of the catalyst regenerator, and a regeneration medium outlet is provided at the bottom or bottom discharge line of the catalyst regenerator;
  • the regeneration medium inlet is located at a position above 70% of the straight pipe section of the catalyst regenerator from bottom to top, and the regeneration medium outlet is located at a position below 20% of the straight pipe section of the catalyst regenerator from bottom to top, and is preferably provided on the bottom discharge line.
  • a filter is further provided on the regeneration medium outlet line of the catalyst regenerator. The filter is used to block the flow of catalyst from the regenerator to the downstream gas circulation pressurization equipment and to collect fine powder or fine particles generated by friction or purge in the regeneration process.
  • a liquid mixture discharge port is provided on the bottom or bottom discharge line of the raw agent receiver; the regenerant receiving
  • a liquid mixture feed port is provided on the pipeline or the pipeline entering the regenerant receiver.
  • the liquid phase mixture carried in the catalyst is evacuated or added to the regenerated catalyst through the liquid phase mixture discharge port and the liquid phase mixture feed port.
  • the cross-sectional area of the feed pipe of the fresh raw material and the recycle material pipe is 0.001-0.5: 1, preferably 0.002-0.1: 1.
  • the packing and / or mixing fins are selected from the group consisting of deflectors, fins, structured packing or random packing, and preferably a set of inclined fins are arranged.
  • the alkylation feedstock is a hydrocarbon fraction containing olefins and alkanes, preferably a C4 fraction containing C4 olefins and C4 alkanes, more preferably It is a mixture of C4 olefins and C4 alkanes.
  • the alkylation feedstock is a hydrocarbon fraction containing olefins and alkanes, wherein the molar ratio of alkanes to olefins is 5-50: 1, such as 10-40: 1 or 20-30: 1.
  • the alkylation feedstock is a hydrocarbon fraction containing C3-C5 alkanes and C3-C5 alkenes, wherein the molar ratio of alkanes to alkenes is 5-50: 1, such as 10-40: 1 or 20-30: 1.
  • the alkylation feedstock is a mixture of C3-C5 alkanes and C3-C5 alkenes, wherein the molar ratio of alkanes to alkenes is 5-50: 1, such as 10-40: 1 or 20-30 :1.
  • the reaction temperature is 30-100 ° C, and the liquid mixture material is in the surface of the reactor.
  • the apparent flow rate is 0.05-1m / s; the mass space velocity of the mixed olefin feedstock is 0.05-1h -1 ; the molar ratio of alkane to olefin at the entrance of the reaction bed is 200-1000: 1; the average particle size of the catalyst particles is 0.3 -3mm.
  • the catalyst is a solid acid catalyst containing a molecular sieve and a heat-resistant inorganic oxide, based on the total amount of the solid acid catalyst ,
  • the content of molecular sieve is 65-95wt%, the content of heat-resistant inorganic oxide is 5-35wt%; preferably, the molecular sieve is selected from at least one of FAU structure zeolite, BETA structure zeolite and MFI structure zeolite, the resistance
  • the thermal inorganic oxide is alumina and / or silica; further preferably, the solid acid catalyst further contains a metal active component selected from at least one of Fe, Co, Ni, Pd, and Pt Based on the total amount of the solid acid catalyst, the content of the metal active component is 0.15-2 wt%.
  • the to-be-generated catalyst is subjected to a regeneration reaction in a catalyst regenerator to restore activity.
  • the method of regeneration is not particularly limited, and it can be performed under conventional regeneration conditions. get on.
  • the regeneration medium may be an oxygen-containing atmosphere or a hydrogen-containing atmosphere. Specifically, the regeneration may be performed in an oxygen-containing atmosphere or a hydrogen-containing atmosphere.
  • the catalyst to be produced and the oxygen-containing gas are at 180-500 ° C or 200-500 ° C at a pressure of
  • the oxidation reaction is carried out under the conditions of 0.01-0.5MPa (gauge pressure) to remove the carbon deposits on the to-be-produced catalyst to restore the activity of the catalyst.
  • the oxygen-containing gas contains oxygen and inert gas, and may be air or a mixed gas of oxygen and nitrogen.
  • the content of oxygen may be 0.5-20% by volume.
  • the oxygen content can be adjusted according to the progress of regeneration.
  • the catalyst to be produced undergoes a regeneration reaction in a hydrogen-containing atmosphere
  • the hydrogen-containing atmosphere may contain Hydrogen and C4 liquefied gas, the content of hydrogen is 70-99% by volume.
  • the regeneration is carried out in a hydrogen-containing atmosphere, which can be performed at a temperature of 100-400 ° C, preferably 180-280 ° C; during regeneration, the pressure in the reactor can be 0.1-5MPa, preferably 0.5-3.5MPa.
  • the pressure is the gauge pressure.
  • the apparent flow rate of the regeneration medium in the catalyst regenerator is 0.003-0.8 m / s, preferably 0.02-0.5 m / s.
  • the radial moving bed reactor contains 4-8 stage reaction beds.
  • Each section of the reaction bed from the inside to the outside, or from the outside to the inside contains the reaction material feed line, the reaction material distribution area, the ring-shaped catalyst bed, the reaction material collection area, and (the material after the reaction is led out) After the reaction, the material is led out of the tube.
  • the top of the radial moving bed reactor is provided with a top catalyst collection zone, between the top catalyst collection zone and the first stage catalyst bed, between the upstream and downstream catalyst beds, and the last stage catalyst bed and bottom
  • a catalyst delivery pipe is provided between the catalyst collection areas.
  • the catalyst inlet communicates with the top catalyst collection area and catalyst delivery tube, and the catalyst delivery tube at the bottom of the reactor communicates with the bottom catalyst collection area and catalyst outlet.
  • an L-type or nearly L-type material transport is provided on the pipeline between the catalyst outlet and the spent agent receiver
  • the valve block adjusts the catalyst discharge rate by changing the flow rate of the liquid mixture entering the valve block. Thereby, the falling rate and residence time of the catalyst in the reactor in each reactor bed can be controlled and adjusted.
  • the componentized mixer can be arranged in the reaction of the material outlet pipe of the previous reaction bed and the reaction of the next reaction bed On the pipeline between the material feed pipes, the fresh material feed pipe serves as an inlet for supplementing fresh material.
  • fresh alkylation feedstock and recycled material are mixed through a componentized mixer and staged into a radial moving bed reactor; liquid phase mixture After the material is distributed through the reaction material distribution area, it passes through the catalyst bed in the radial direction, contacts with the solid acid catalyst and reacts.
  • the reacted liquid mixture material reaches the material collection area, and is discharged through the material outlet pipe after the reaction as a circulating material Or it can be further separated to obtain alkylated oil products (the discharged reaction materials and fresh raw materials are mixed by the component mixer to enter the next stage of reaction bed to continue to participate in the reaction, or the reactor is separated to obtain alkylated oil products); catalyst bed
  • the solid acid catalyst in the layer gradually deactivates, falls layer by layer, and finally falls to the bottom catalyst collection area, and is discharged out of the radial moving bed reactor; and then enters the receiver of the agent to be born through the catalyst delivery line, where it is removed from the catalyst
  • the liquid mixture of the liquid phase then flows into the catalyst regenerator for regeneration reaction, regeneration in oxygen atmosphere or hydrogen Regenerating activity; the regenerating regenerated catalyst at the bottom of the catalyst regenerator flows into the regenerant receiver, and the liquid mixture is introduced into it to replace and remove the gas in the regenerated catalyst gap, and then the regenerated catalyst returns to the radial movement through the catalyst
  • a buffer buffer for the catalyst to be produced is provided below the radial moving bed reactor to store the mixture of the catalyst receiver in the deliquid phase
  • the to-be-generated catalyst discharged from the reactor during the catalyst discharge to the catalyst regenerator ensures the continuity of the flow of catalyst materials in the radial moving bed reactor and the smooth operation of the device.
  • the spent agent receiver, catalyst regenerator and regenerated agent receiver are sequentially arranged from top to bottom, connected to the spent agent
  • the catalyst circulation line between the receiver, catalyst regenerator and regenerant receiver is vertically set or the angle between the horizontal and the horizontal plane is not less than 40 degrees, which facilitates the smooth flow of catalyst particles from top to bottom and prevents the accumulation or residual existence of materials In the pipeline, it affects the tightness of the valve or the effect of catalyst regeneration.
  • the material outlet tube of the last reaction bed of the radial moving bed reactor is used as the outlet of the liquid product through the liquid phase.
  • Most of the material discharged from the product outlet (for example,> 50vol%,> 60vol%,> 70vol%,> 80vol%,> 90vol%,> 95vol%,> 96vol%,> 97vol%,> 98vol%, or> 99vol% )
  • a small part is sent to product separation equipment such as a fractionation tower to separate alkylated oil as the product of the device.
  • the catalyst regenerator is provided with a fresh catalyst feed port.
  • a liquid mixture discharge port is provided on the bottom or bottom discharge line of the raw agent receiver; the regenerant receiving A liquid mixture feed port is provided on the pipeline of the reactor or into the regenerant receiver.
  • the liquid phase mixture carried in the catalyst is evacuated or added to the regenerated catalyst through the liquid phase mixture discharge port and the liquid phase mixture feed port.
  • the invention adopts a liquid-solid radial moving bed reaction device.
  • the circulating materials and fresh alkylated raw materials first pass through a component mixer, and the mixing process is completed outside the liquid-solid moving bed reactor.
  • the mixed reaction materials are fed by the reaction materials.
  • the pipeline enters the reaction bed of each section in sections to contact with the catalyst for reaction.
  • the materials are mixed uniformly, which ensures the mixing effect, saves the space in the reactor, and solves the problem of uneven mixing of fresh alkylated raw materials and circulating materials in the prior art.
  • the directional words such as “upper and lower” generally refer to the upper and lower parts shown with reference to the drawings unless otherwise stated.
  • Orientation words used such as “inside and outside” refer to inside and outside relative to the contour of each component itself.
  • the top, top, etc. of the bed refer to a position above 70% from bottom to top of each section of the bed, and the bottom, etc. of the bed refer to the bottom to top of each section of the bed Less than 20% of the location.
  • the sequential connection means for example, that the catalyst outlet of the radial moving bed reactor 1 is connected to the catalyst inlet of the bioreagent receiver 5, and the catalyst outlet of the bioreactor receiver 5 is connected to the catalyst regenerator
  • the catalyst inlet of 4 is connected, and the catalyst outlet of the catalyst regenerator 4 is connected to the catalyst inlet of the regenerant receiver 6.
  • the catalyst outlet of the regenerator receiver 6 communicates with the catalyst inlet of the radial moving bed reactor 1 to send the regenerated catalyst into the radial moving bed reactor 1.
  • the present invention also provides a set of the following solutions:
  • a liquid-solid radial moving bed reaction device characterized in that the device comprises:
  • the radially moving bed reactor, the spent agent receiver, the catalyst regenerator and the regenerating agent receiver are connected in sequence, wherein the catalyst outlet of the regenerant receiver communicates with the catalyst inlet of the radial moving bed reactor;
  • a reaction material distribution area, a catalyst bed layer and a reaction material collection area are provided in the moving bed reactor from inside to outside or from outside to inside.
  • the reaction material distribution area communicates with the feed pipe;
  • the reaction material The collection area is in communication with the material outlet tube after the reaction;
  • the feed tube is provided with a component mixer;
  • the component mixer is composed of an upper circulating material pipeline, a lower feed tube and a tube extending into the feed tube
  • a feed pipe for fresh raw materials is formed.
  • the outlet of the feed pipe for fresh raw materials is provided with a feed pipe nozzle, and the feed pipe is provided with fillers and / or mixing fins.
  • the liquid-solid radial moving bed reaction device characterized in that the radial moving bed reactor is provided with at least two stages of reaction beds and between two adjacent stages of reaction beds A catalyst delivery tube enables the catalyst to move from top to bottom in the radial moving bed reactor; there is a reaction material space between the two sections of the reaction bed, and the reaction material distribution area communicates with the feed pipe through the reaction material space ;
  • the feed tube of each section of the reaction bed is provided with the component mixer.
  • the liquid-solid radial moving bed reaction device characterized in that the pipeline between the catalyst outlet at the bottom of the radial moving bed reactor and the to-be-generated agent receiver is provided on a pipeline
  • the discharge rate of the catalyst can be adjusted by changing the liquid-phase material flow into the valve group.
  • the liquid-solid radial moving bed reaction device according to technical solution 2 or 3, characterized in that the top of the radial moving bed reactor is provided with a top catalyst collection chamber, and the catalyst inlet is collected by the top catalyst The chamber is in communication with the catalyst delivery tube.
  • the liquid-solid radial moving bed reaction device characterized in that, in the radial moving bed reactor, the material circulation line of the component mixer of the next stage of the reaction bed layer is the previous stage The material in the reaction bed is led out of the pipeline.
  • the liquid-solid radial moving bed reaction device characterized in that the catalyst is connected between the spent agent receiver, the catalyst regenerator and the regenerator receiver The flow line is set vertically or at an angle of not less than 40 degrees with the horizontal plane.
  • the liquid-solid radial moving bed reaction device characterized in that a regeneration medium inlet is provided at the upper part of the catalyst regenerator, and a medium regeneration outlet is provided at the bottom or bottom discharge line of the catalyst regenerator
  • the regeneration medium inlet is at a position above 70% of the straight pipe section of the catalyst regenerator from bottom to top, and the outlet of the medium after regeneration is at a position below 20% of the straight pipe section of the catalyst regenerator from bottom to top.
  • liquid-solid radial moving bed reaction device characterized in that a filter is further provided on the outlet line of the regenerated medium.
  • liquid-solid radial moving bed reaction device characterized in that a catalyst discharge port is provided on the bottom or bottom discharge line of the to-be-received receiver.
  • liquid-solid radial moving bed reaction device characterized in that, in the componentized mixer, the cross-sectional area of the fresh raw material feed pipe and the material circulation pipe The ratio is 0.001-0.5: 1.
  • liquid-solid radial moving bed reaction device characterized in that, in the componentized mixer, the cross-sectional area of the fresh raw material feed pipe and the material circulation pipe The ratio is 0.002-0.1: 1.
  • the present invention also provides another set of the following solutions:
  • a solid acid alkylation method characterized in that a liquid-solid radial moving bed reaction device is used, and the alkylated raw material and the circulating material are mixed into the radial moving bed reactor after being mixed by the componentized mixer. It passes through the catalyst bed in the radial direction, contacts and reacts with the solid acid catalyst, and the reacted mixture reaches the material collection area as a circulating material or further separated to obtain alkylated oil products; catalyst bed in the radial moving bed reactor The solid acid catalyst in the reactor gradually deactivates and falls to the catalyst collection area, exits the radial moving bed reactor, enters into the receiver of the agent to remove the liquid phase material carried therein, and then flows into the catalyst regenerator for regeneration reaction to restore the activity The regenerated catalyst flows into the regenerant receiver to replace and remove the gas, and returns to the radial moving bed reactor to continue the reaction;
  • the liquid-solid radial moving bed reaction device includes: a radial moving bed reactor, a raw agent receiver, a catalyst regenerator and a regenerative receiver connected in sequence, wherein the catalyst outlet and radial direction of the regenerative receiver
  • the catalyst inlet of the moving bed reactor is connected;
  • the radial moving bed reactor is provided with a reaction material distribution area, a catalyst bed layer and a reaction material collection area from inside to outside or from outside to inside.
  • the zone is connected to the feed pipe;
  • the post-reaction material collection zone is connected to the post-reaction material outlet pipe;
  • the feed pipe is provided with a componentized mixer, and the componentized mixer is composed of an upper circulating material pipeline 1.
  • a lower feed pipe and a fresh raw material feed pipe extending into the feed pipe, the fresh raw material feed pipe outlet is provided with a feed pipe nozzle, and the feed pipe is provided with filler and / or mixing Fins.
  • the solid acid alkylation method according to technical solution 1 characterized in that the radial moving bed reactor is provided with at least two stages of reaction beds, and a catalyst is arranged between two adjacent stages of reaction beds
  • the conveying tube enables the catalyst to move from top to bottom in the radial moving bed reactor; there is a reaction material space between the two sections of the reaction bed, and the reaction material distribution area communicates with the feed pipe through the reaction material space;
  • the feed tube of each section of the reaction bed is provided with the aforementioned component mixer.
  • a regeneration medium inlet is provided at the upper part of the catalyst regenerator, and a regeneration medium outlet is provided at the bottom or bottom discharge line of the catalyst regenerator;
  • the regeneration medium inlet is at a position above 70% of the straight pipe section of the catalyst regenerator from bottom to top, and the outlet of the regeneration medium is at a position below 20% of the straight pipe section of the catalyst regenerator from bottom to top.
  • the solid acid alkylation method according to technical solution 1 or 2 characterized in that the alkylation raw material is a hydrocarbon fraction containing olefins and alkanes.
  • the solid acid alkylation method according to technical solution 1 or 2, characterized in that, in the radial moving bed reactor, the reaction temperature is 30 ° C to 100 ° C, and the mixture material is in the surface of the reactor.
  • the apparent flow rate is 0.05-1m / s; the mass space velocity of the olefin feedstock is 0.05-1h -1 ; the molar ratio of alkane to olefin is 200-1000: 1; the average particle size of the solid acid catalyst particles is 0.3-3mm.
  • the solid acid alkylation method according to technical solution 1 or 2 characterized in that the catalyst is a solid acid catalyst, containing 95wt% -65wt% molecular sieve and 5wt% -35wt% heat-resistant inorganic oxidation Wherein the molecules are selected from one or more of FAU structure zeolite, BETA structure zeolite and MFI structure zeolite, and the heat-resistant inorganic oxide is alumina and / or silica.
  • the solid acid alkylation method according to technical solution 1 or 2 characterized in that in the catalyst regenerator, the catalyst to be generated and the oxygen-containing gas are at a temperature of 200-500 ° C and a pressure of 0.01-0.5 Oxidation reaction under the condition of MPa to remove the carbon deposits on the catalyst to be recovered and make the catalyst recover its activity.
  • FIG. 1 is a schematic diagram of a liquid-solid radial moving bed reaction device provided by the present invention.
  • the liquid-solid radial moving bed reaction device includes a radially moving bed reactor 1, a to-be-generated agent receiver 5, a catalyst regenerator 4 and a regenerator receiver 6 connected in sequence, wherein the regenerant receiver
  • the catalyst outlet 36 of 6 is in communication with the catalyst inlet 24 of the radial moving bed reactor;
  • the radial moving bed reactor 1 is provided with three stages of reaction beds, and the three stages of catalyst beds are communicated via a catalyst delivery pipe 16.
  • Each section of the reaction bed is provided with a reaction material distribution area 12, a ring-shaped catalyst bed 3, and a reaction material collection area 11 from outside to inside.
  • the reaction material distribution area 12 communicates with the reaction material feed line; the post-reaction material collection area 11 communicates with the reaction material outlet pipe 13;
  • the catalyst inlet 24 communicates with the top catalyst collection area 10, and communicates with the catalyst outlet 23 through the catalyst delivery pipe 16 and the bottom catalyst collection area 14;
  • the componentized mixer is arranged on the feed line of the reaction material of each section of the reaction bed, and the material outlet pipes 13 of the reaction bed of the first section, the second section and the third section are used as the second section, Circulating material pipes in the componentized mixer in the feed lines for the reaction materials in the reaction beds of the third and first stages;
  • the feed pipe 17 for fresh raw materials serves as an inlet for supplementing fresh raw materials.
  • a communication line between the catalyst outlet of the radial moving bed reactor 1 and the catalyst inlet of the to-be-generated agent receiver 5 is provided with a first particle flow regulator 25 to regulate the flow of catalyst particles.
  • the raw material receiver 5 (preferably at the bottom) is provided with a liquid mixture discharge port 29.
  • the liquid phase material carried in the catalyst can be removed by directly depressurizing or introducing high-pressure hydrogen, nitrogen, etc. in the standby agent receiver 5, and the liquid phase material can pass through the liquid mixture discharge port 29 lose.
  • a deliquoring filter 7 is provided on the de-liquid phase material delivery line sent from the liquid-phase mixture material discharge port 29. The deliquoring filter 7 is used to block fine catalyst powder or fine catalyst particles.
  • the catalyst to be deliquored in the bioreactor receiver 5 is sent to a catalyst regenerator 4 for regeneration.
  • the catalyst regenerator 4 is provided with a regeneration medium inlet 30 and a regeneration medium outlet 31.
  • the regeneration medium is sent into the catalyst regenerator 4 through the regeneration medium inlet 30 to contact the catalyst to regenerate the catalyst, and the regeneration medium is discharged through the regeneration medium outlet 31.
  • a regeneration medium filter 8 is provided on the regeneration medium delivery line sent from the regeneration medium outlet 31 to block fine powder or fine particles.
  • the catalyst regenerator 4 may also be provided with a fresh catalyst feed port for fresh catalyst to enter the catalyst regenerator 4. By providing a fresh catalyst feed port on the catalyst regenerator 4, a part of the catalyst that has lost its activity or a catalyst that is difficult to restore the initial activity can be replaced with fresh catalyst to ensure the processing capacity of the device.
  • the regenerated catalyst flows into the regenerant receiver 6 through the catalyst delivery line at the bottom of the catalyst regenerator 4, and the regenerant receiver 6 is provided with a liquid mixture feed port 32.
  • the liquid material is introduced into the regenerant receiver 6 through the liquid mixture feed port 32 to replace the gas in the catalyst gap.
  • the regenerated catalyst will return to the radial moving bed reactor 1 through the catalyst delivery pipeline between the regenerant receiver 6 and the radial moving bed reactor 1 to continue to participate in the reaction until it is deactivated and then sent to the waiting agent receiver 5,
  • the catalyst is circulated according to the above procedure.
  • a second particle flow regulator 33 is provided on the communication line between the catalyst outlet of the regenerant receiver 6 and the catalyst inlet of the radial moving bed reactor 1 to adjust the catalyst particle flow.
  • the first particle flow regulator 25 and the second particle flow regulator 33 are each independently an L-shaped or approximately L-shaped material delivery valve group.
  • the catalyst particle lifting liquid lines 26 and 27 are respectively provided on the line of the catalyst outlet of the moving bed reactor 1 and the line of the regenerant receiver 6 to discharge the regenerant, to assist the transportation of the catalyst.
  • Material pipeline valves 28, 34, 35, 36 between containers are provided on the pipelines between the moving bed reactor 1, the agent-receiver receiver 5, the catalyst regenerator 4 and the regenerator receiver 6.
  • a fresh catalyst feeding port 9 is also provided on the catalyst regenerator.
  • FIG. 1 The solid acid alkylation method provided by the present invention is illustrated by FIG. 1.
  • the fresh olefin feedstock containing isobutane is introduced from the feed pipe 17 of the fresh feedstock, enters the upper, middle, and lower sides of the radial moving bed reactor 1 through the first branch line 19, the second branch line 20, and the third branch line 21, respectively.
  • the componentized mixer 37 in front of the lower three-stage reaction bed is mixed with the material in the circulating material pipe 18 or the post-reaction material outlet pipe 13 from the upstream reaction bed, and then passes through the reaction material feed of each reaction bed
  • the tube is introduced into the reaction material space 2; the above-mentioned liquid mixture material enters the reaction material distribution area 12 through the reaction material space 2, then contacts the catalyst radially through the catalyst bed 3 to react, and finally enters the material collection area 11 after the reaction and passes
  • the post-reaction material outlet pipe 13 provided thereafter is discharged from the reaction bed in this section.
  • the discharged reaction materials and fresh raw materials are mixed by the structural mixer 37 and then enter the next stage of the reaction bed to continue to participate in the reaction, or exit the reactor through the liquid-phase product outlet 22, and collect the alkylated oil product after distillation.
  • the catalyst in the reaction bed of each section of the radial moving bed reactor gradually deactivates as the reaction progresses, while gradually falling to the lower reaction bed (optionally via the distribution zone 15 at the bottom of the catalyst bed) and finally reaching the bottom Catalyst collection area 14; transported to the raw material receiver 5 from the catalyst outlet 23, and the liquid mixture in the catalyst is removed therefrom, and then flows into the catalyst through the catalyst delivery line 34 at the bottom of the raw material receiver 5
  • FIG. 2 is a schematic structural diagram of a componentized mixer.
  • the componentized mixer in the reaction material feed line of the present invention is composed of an upper circulating material pipe 91, a lower feed pipe 92 and a middle portion of the fresh raw material in the reaction material feed line.
  • the feed pipe 93 is composed of a feed pipe nozzle 94 at the outlet of the feed pipe for fresh raw material, and a filler and / or mixing fins 95 are provided in the feed pipe for the reaction material.
  • FIG. 3 is a schematic diagram of another embodiment of a radial moving bed reaction device provided by the present invention.
  • a catalyst buffer tank 38 to be produced is provided below the liquid-solid radial moving bed reactor to store the to-be-received receiver from the reactor during the de-liquid mixture and the catalyst to the catalyst regenerator.
  • the catalyst ensures the continuity of the flow of catalyst material in the reactor and the smooth operation of the device.
  • FIG. 4 is a schematic diagram of another embodiment of a radial moving bed reaction device provided by the present invention. The difference from FIG. 1 is that the radial moving bed reactor includes catalyst reaction bed layers 51 and 53 and catalyst regeneration bed layers 52 and 54 which are sequentially spaced apart;
  • Each reaction bed includes a reaction material distribution area, a catalyst bed, and a post-reaction material collection area, and each reaction bed has a reaction material feed line and a reaction material exit tube.
  • the reaction material distribution area is reacted
  • the material space is in communication with the reaction material feed line
  • the post-reaction material collection area is in communication with the post-reaction material outlet pipe
  • the componentized mixer is provided on the reaction material feed line of each section of the reaction bed
  • each regeneration bed has a similar physical structure to the reaction bed, that is, each regeneration bed includes a corresponding regeneration medium distribution area, a catalyst bed and a regeneration medium collection area, and each regeneration bed has a regeneration medium feed pipe and A regeneration medium outlet pipe, the regeneration medium distribution area communicates with the regeneration medium feed pipe through the regeneration medium space, and the regeneration medium collection area communicates with the regeneration medium outlet pipe;
  • any two adjacent beds in the reaction bed and the regeneration bed communicate with each other through the catalyst delivery pipe; the catalyst in the reaction bed and the catalyst in the regeneration bed fall from the upstream bed to the adjacent downstream through the catalyst delivery pipe
  • the bed layer eventually falls to the bottom catalyst collection area and exits the radial moving bed reactor;
  • the regeneration medium feed pipe of any regeneration bed except the first-stage regeneration bed may be or communicate with the regeneration medium outlet pipe of the previous stage regeneration bed (upstream bed).
  • FIG. 4 illustrates a solid acid alkylation reaction and hydrogen regeneration method provided by the present invention, wherein the liquid fresh raw materials 17, 19, 21 and the circulating liquid mixture material 18 or the upstream reactor after the reaction of the material 61 after mixing In the reaction bed 51,53 of the radial moving bed reactor; in the reaction bed of the reactor, the mixture passes through the reaction bed along the radial direction of the reactor, contacts and reacts with the solid acid catalyst, and the reaction is completed.
  • liquid mixture passes The reaction product discharge port is installed to discharge this section, and the remaining small part of the liquid mixture material follows the catalyst particles through the catalyst delivery pipe between the reaction bed and the catalyst regeneration bed to enter the catalyst regeneration bed 52, 54; after the discharged reaction
  • the liquid mixture 61 is mixed with fresh raw materials and then enters the reaction bed downstream of the reactor to continue to participate in the reaction or exit the reactor 22. After separation (eg, distillation), the alkylated oil product is collected.
  • fresh regeneration medium 62 enters the regeneration catalyst bed 52 of the radial moving bed reactor through the regeneration medium space and the regeneration medium distribution area.
  • the catalyst passes through the liquid phase regeneration medium dissolved in hydrogen at low temperature regeneration conditions Under contact, the unsaturated hydrocarbons adsorbed on the catalyst are converted into easily desorbed saturated hydrocarbon molecules and taken out of the regenerator to realize partial regeneration of the catalyst; the regeneration medium is passed through the regeneration medium extraction pipe and the regeneration medium feed pipe 64 Line 63 enters the next stage of regenerated catalyst bed for low temperature regeneration.
  • the regenerated catalyst will flow into the next reaction bed 53 through the catalyst conveying pipe at the bottom of the catalyst regeneration bed; the catalyst in each reaction bed and catalyst regeneration bed of the radial moving bed reactor will be regenerated as the reaction proceeds As the number of times increases, the degree of deactivation will gradually increase, and at the same time it will gradually fall to the lower reaction bed or catalyst regeneration bed, and finally reach the catalyst outlet 23 at the bottom of the radial moving bed reactor; the final catalyst is sent To the catalyst regenerator (that is, a high-temperature deep regeneration system), complete recovery of the catalyst activity is achieved; the restored catalyst is sent to the catalyst inlet 24 at the top of the radial moving bed reactor to continue to participate in the reaction, thus circulating.
  • the catalyst regenerator that is, a high-temperature deep regeneration system
  • the reaction temperature is 30-100 ° C., and the reaction pressure is 1.0-5.0 MPa.
  • the apparent flow velocity of the liquid mixture in the reactor is 0.03-1m / s; the mass space velocity of the mixed olefin feedstock is 0.05-1h -1 ; the molar ratio of alkane to olefin at the entrance of the reaction bed is 200-1000: 1;
  • the average particle size of the solid acid catalyst particles is 0.3-3mm;
  • the regeneration temperature is 50-140 °C, and the apparent flow velocity of the regeneration medium in the regeneration bed is 0.01-0.5m / s;
  • the main active component of the catalyst is a molecular sieve loaded with a certain amount of metal, the molecular sieve is FAU structure zeolite, BETA structure zeolite, MFI structure zeolite and a combination of one or more of them, preferably having FAU structure and BETA structure Zeolite; the metal supported on the catalyst is one or a combination of Fe, Co, Ni, Pd and / or Pt, preferably one or a combination of Co, Ni or Pt, more preferably Pt ;
  • the regeneration medium is a liquid hydrocarbon in which hydrogen is dissolved;
  • the liquid hydrocarbon is a C3-C5 saturated alkane or a mixture of the reaction product and the above-mentioned saturated alkane.
  • the liquid hydrocarbon is a mixture of the C3-C5 saturated alkane and the reaction product;
  • the regeneration temperature is 180-400 ° C
  • the regeneration pressure is 0.5-4.0 MPa
  • the regeneration medium is hydrogen or a mixture of hydrogen and low-carbon hydrocarbons (such as C3-C8), preferably hydrogen And low-carbon hydrocarbons (such as C3-C8) mixture.
  • the catalyst used is a spherical catalyst of FAU structure molecular sieve with an average particle size of 1.8 mm.
  • the preparation method is to adopt NaY type molecular sieve of FAU structure produced by Sinopec Catalyst Branch Company, and remove the sodium ions on the molecular sieve through the ion exchange step; then mix the molecular sieve with alumina in a ratio of 65:35, and use an oil ammonia column
  • the pellets are formed by molding, and then dried and calcined to obtain a catalyst.
  • 0.4% Pt was also impregnated.
  • the catalyst is loaded into the reactor after high-temperature air oxidation and high-temperature hydrogen reduction.
  • composition and octane number of the alkylated oil were determined by gas chromatography.
  • the solid acid alkylation reaction was carried out in a liquid-solid radial moving bed reaction device as shown in FIG. Among them, the inner diameter of the shell of the radial moving bed reactor 1 is 600 mm, and it is divided into three reaction bed layers from top to bottom, and the height of each reaction bed layer is 3.5 m.
  • the diameters of the waiting agent receiver, catalyst regenerator and regenerating agent receiver are all 1000mm, and the height of the straight pipe section is 6m.
  • the diameter of the circulating material pipe or the discharge line of the upstream reaction zone is 250 mm, and the componentized mixer as shown in FIG. 2 is provided on the inlet tube of each section of the reaction zone.
  • the inner diameter of the tube is 25mm, the inner diameter of the circulating material tube is 250mm, the inner diameter of the lower reaction material feed tube is 250mm, and the outlet of the fresh material feed tube is provided with a nozzle.
  • the alkylation raw material is a mixture of isobutane, n-butane, butene, etc. After being fed from the feed pipe 17 of fresh raw material, it is divided into three channels, mixed by a component mixer, and then enters the corresponding reaction bed.
  • the molar ratio of alkylene to the mixed material is 700: 1 (that is, the ratio of alkylene to the inlet of the reaction bed), the flow rate of the circulating material pipe in the reactor is 1.9m / s, and the corresponding total feed of fresh alkylation raw material
  • the amount is 482kg / h, and the mass space velocity of the mixed olefin feedstock is 0.25h -1 .
  • the reaction temperature is 70 ° C and the reaction pressure is 2.5 MPa.
  • Nitrogen and air (1: 1) are used as catalyst high-temperature deep regeneration medium, the period of high-temperature deep regeneration is 24h, and the amount of catalyst sent to high-temperature deep regeneration each time accounts for 120wt% of the total amount of catalyst in the reactor of the device, in order to ensure the reactor
  • the internal catalyst content is constant, and at the same time, it needs to be discharged from the reactor through the receiver for the raw agent and the receiver for the regenerant and to add the same weight of catalyst to the reactor.
  • the maximum temperature of the regeneration operation is 480 °C, the pressure is close to normal pressure, and the apparent gas velocity of the regeneration medium nitrogen and air in the deep regenerator is 0.1m / s.
  • the solid acid alkylation reaction was carried out on the fluidized bed experimental device shown in FIG. 3.
  • the solid acid alkylation reaction was carried out on a radial moving bed reaction device similar to that in Example 1. The difference was that the componentized mixers provided on the feed pipes in the reaction zones of each section used left spiral pieces and right spirals. Spiral fillers arranged alternately.
  • the specific operation process is that when the first reactor is in the alkylation reaction, the second reactor performs high temperature deep regeneration operation, two The fixed bed reactors in parallel are switched to use, so that the device can run continuously and stably.
  • the inner diameter of each fixed bed reactor is 200mm and the height is 2500mm.
  • the preparation method of the catalyst filled in the reactor is the same as that in Example 1, except that the diameter of the pellet is 2.7 mm, the filling amount is 28 kg, and the filling height is 1500 mm.
  • the reaction raw materials are the same as in Example 1.
  • the molar ratio of alkene at the entrance of the reaction bed is 800: 1, the feed amount of fresh mixed olefin is 6.3 kg / h, and the mass space velocity relative to the olefin is 0.09 h -1 .
  • the catalyst in the bed needs to be regenerated at a high temperature every 24 hours, and a mixture of nitrogen and air (same as in Example 1) is used to oxidize the catalyst in the bed at normal temperature from normal temperature to 480 ° C under normal pressure Regeneration for 3h, the bed needs to be cooled after regeneration, the entire regeneration cycle is 24h. After the regeneration is completed, the materials in the reactor in the reaction state are returned to the regenerated reactor, and the alkylation reaction experiment is continued with the regenerated catalyst, and the reactor with the reacted materials is cut into the regeneration operation, and the cycle is repeated.
  • the inner diameter of the shell of the radial moving bed reactor is 600mm, including 2 reaction beds and 2 regenerated catalyst beds.
  • the height of each section of bed is 3.5m, which are arranged in turn at intervals.
  • the fresh reaction materials were the same as those used in Example 1. After feeding from the fresh material feed line, it is divided into two paths and mixed with the circulating material or the upstream liquid phase mixture and then enters the corresponding reaction bed.
  • the molar ratio of alkene in the distribution area of the reactor is 700 ⁇ 100: 1 (that is, the alkene ratio at the entrance of the reaction bed), and the mass space velocity of the mixed olefin feedstock is 0.25h -1 .
  • the reaction temperature in the reaction bed was 70 ° C, and the reaction pressure was 2.5 MPa.
  • the post-reaction liquid mixture containing a part of paraffinic oil dissolved in hydrogen is used as the regeneration medium for the catalyst.
  • the conditions such as regeneration temperature and pressure are similar to the reaction temperature and pressure.
  • the total residence time of the catalyst in the radial moving bed reactor was controlled to 168h.
  • the catalyst that finally lost its activity was introduced into a high-temperature deep regeneration system.
  • deep regeneration was performed using hydrogen containing some low-carbon hydrocarbons to completely restore the catalyst activity.
  • the reactivated catalyst is redirected to the fresh catalyst feed port at the top of the reactor to continue to participate in the reaction, thus circulating.
  • the liquid-solid radial moving bed reaction device provided by the present invention is used for solid acid alkylation reaction, and the resulting alkylated oil has slightly better octane value than the fixed bed technology.
  • the yield of olefins in the medium is higher, the selectivity of the target product (trimethylpentane) is higher, and the yield of the C9 + product is also lower. It has better product yield and target product selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种液固径向移动床反应装置和使用所述液固径向移动床反应装置进行固体酸烷基化方法,所述液固径向移动床反应装置包括:依次连接的径向移动床反应器、待生剂接收器、催化剂再生器和再生剂接收器,其中,再生剂接收器的催化剂出料口与径向移动床反应器的催化剂入口连通;所述的径向移动床反应器中由内向外,或者由外向内设置有反应物料分布区、催化剂床层和反应后物料收集区,所述的反应物料分布区与反应物料的进料管线相通;所述的反应后物料收集区与反应后物料引出管相通;所述的反应物料的进料管线上设置有构件化混合器。以及利用该装置进行固体酸烷基化的方法。该反应装置实现了烷基化反应与失活催化剂再生的连续平稳运行,提高了目标产物的选择性和装置操作的弹性,降低了设备投资。

Description

一种液固径向移动床反应装置和一种固体酸烷基化方法
本申请要求2018年10月29日提交的中国专利申请201811270073.7和201811270089.8的优先权。
技术领域
本发明涉及固体酸烷基化领域。更具体地说,本发明涉及一种液固径向移动床反应装置,更进一步具体地说,涉及一种用于固体酸烷基化反应过程的液固径向移动床反应装置。本发明还涉及一种固体酸烷基化方法。
背景技术
目前,炼油工业的最主要任务之一是提供运输燃料,汽油作为一种重要的运输燃料,被广泛的应用于交通运输等行业中。随着汽油消耗量的增加和环保标准的日益严格,围绕着如何解决汽油清洁化生产的问题成为研究和讨论的热点。
在强酸的作用下,以异构烷烃(主要是异丁烷)和烯烃(C3-C5烯烃)为原料生成烷基化油的技术为汽油的清洁化生产提供了可能。烷基化油具有较高的辛烷值和较低的蒸汽压,主要由饱和烃组成,且不含硫、氮、烯烃和芳烃等物质,因而被称为清洁化汽油,是航空汽油和车用汽油理想的调和组分。
烷基化技术按催化剂形式可以分为液体酸烷基化和固体酸烷基化。
目前,世界范围内约90%的烷基化产能是由液体酸烷基化技术(硫酸法和氢氟酸法)提供的,虽然液体酸烷基化技术比较成熟,且具有较好的反应选择性,但是也存在很多问题,比如液体酸烷基化过程都存在设备腐蚀严重的问题。除此之外,对于硫酸法而言,其过程耗酸量巨大,大量的废酸在运输和处理上都存在一定的安全隐患,对于氢氟酸法而言,由于氢氟酸具有较强的腐蚀性和毒性,而且容易挥发,会对人体造成很大的伤害。
因此,与之对比,采用固体酸作为催化剂,不仅不会对环境造成污染,而且不存在设备腐蚀的问题,可以视为一种绿色的烷基化工艺技术,具有很好的发展前景。
但是在固体酸烷基化过程中,由于固体酸催化剂容易失活,为了 保持一定的反应活性,需要进行频繁的再生操作,因此,开发一种能够实现反应和再生过程连续化的反应器技术,对推动固体酸烷基化技术发展来说是十分重要的。
US5849976A公开了一种采用带有慢速轴向移动床反应区和移动床再生区的固体酸烷基化方法。该方法中,在反应区内设置有将部分液相混合物料抽出换热后泵回直接混合冷却的冷却区域,以取出烷基化反应的反应热,同时催化剂在向下流动进入下一床层之前会经过冷却区域实现催化剂的冷却;另一方面,失活催化剂会周期性的采用含氢物料进行再生以恢复催化剂的活性。
US8373014公开了一种采用重叠式放置的径向移动床作为反应器的固体酸烷基化反应方法。该方法中,采用了类似催化重整重叠式径向移动床的结构,单段反应器中设有外围起反应物料分布作用的环形桶和起物料收集作用的中心管以及夹在二者之间的反应床层区;两端反应器之间采用催化剂物料输送管将上段催化剂床层中的催化剂输送到下段反应器的反应床层区。处于中间反应器的流出物料被分为两部分,一部分泵回上游反应器与新鲜原料经混合器混合后作为上游反应器的进料,此部分可称为循环用料;另一部分引入下游反应器的进料混合器前与新鲜原料混合后作为下游反应器的进料,此部分未经泵增压直接使用。此外,循环料部分还需要经过一换热器以引出反应热。
发明内容
本发明要解决的一个技术问题是在现有技术的基础上,提供一种液固径向移动床反应装置,以及采用液固径向移动床反应装置的固体酸烷基化方法。
具体来说,本发明提供了下列技术方案:
1.一种液固径向移动床反应装置,其特征在于,该装置包括:
依次连接的径向移动床反应器、待生剂接收器、催化剂再生器和再生剂接收器,其中,再生剂接收器的催化剂出料口与径向移动床反应器的催化剂入口连通;所述的径向移动床反应器中由内向外,或者由外向内设置有反应物料分布区、催化剂床层和反应后物料收集区,所述的反应物料分布区与反应物料的进料管线相通;所述的反应后物料收集区与反应后物料引出管相通;
所述的反应物料的进料管线上设置有构件化混合器;所述的构件 化混合器由上部的循环物料管、下部的反应物料的进料管和伸入反应物料的进料管线中的新鲜原料的进料管组成,所述的新鲜原料的进料管出口设有进料管喷嘴,所述的反应物料的进料管线中设置有填料和/或混合翅片,其中所述的构件化混合器在径向移动床反应器外。
2.按照技术方案1所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器设置有至少两段反应床层,相邻两段反应床层之间设置有催化剂输送管,使得催化剂能够在径向移动床反应器中自上而下移动;两段反应床层之间设置有反应物料空间,所述的反应物料分布区经反应物料空间与反应物料的进料管线相通;每一段反应床层的反应物料的进料管线上设有所述的构件化混合器。
3.按照技术方案1-2中任意一项所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器底部的催化剂出料口与所述的待生剂接收器之间的管线上设置了L型或近似L型的物料输送阀组,通过改变进入阀组的液相混合物料流量来调节催化剂的排出速率。
4.按照技术方案1-3中任意一项所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器顶部设有顶部催化剂收集区,催化剂入口经所述的顶部催化剂收集区和所述的催化剂输送管相通。
5.按照技术方案1-4中任意一项所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器中,下一段反应床层的构件化混合器的循环物料管为上一段反应床层的反应后物料引出管(或者,与上一段反应床层的反应后物料引出管相通),第一段反应床层的构件化混合器的循环物料管与最后一段的反应床层的反应后物料引出管相通。
6.按照技术方案1-5中任意一项所述的液固径向移动床反应装置,其特征在于,连接所述的待生剂接收器、所述的催化剂再生器和所述的再生剂接收器之间的催化剂流通管线为垂直设置或与水平面间的夹角不小于40度。
7.按照技术方案1-6中任意一项所述的液固径向移动床反应装置,其特征在于,所述的催化剂再生器或所述的再生剂接收器上还设置新鲜催化剂加料口。
8.按照技术方案1-7中任意一项所述的液固径向移动床反应装置,其特征在于,所述的催化剂再生器上部设置再生介质入口,催化剂再 生器底部或底部排出管线上设置再生介质出口;所述的再生介质入口处于催化剂再生器直管段由下至上的70%以上的位置,所述的再生介质出口处于催化剂再生器直管段由下至上的20%以下位置。
9.按照技术方案1-8中任意一项所述的液固径向移动床反应装置,其特征在于,所述的催化剂再生器的再生介质出口管线上还设置有过滤器。
10.按照技术方案1-9中任意一项所述的液固径向移动床反应装置,其特征在于,所述的待生剂接收器底部或底部排出管线上设置液相混合物料排料口。
11.按照技术方案1-10中任意一项所述的液固径向移动床反应装置,其特征在于,所述的构件化混合器中,所述的新鲜原料的进料管与所述的循环物料管的横截面积之比为0.001-0.5:1,优选0.002-0.1:1。
12.按照技术方案1-11中任意一项所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器设置有上下放置的至少一段反应床层和至少一段再生床层,优选地,反应床层的数量为2-8,例如4-8,再生床层的数量为2-8,例如4-8,优选地2-7,例如4-7;更优选地,再生床层的数量与反应床层的数量相同并且在每一个反应床层下面紧接着设置一个再生床层,或者更优选地,再生床层比反应床层的数目少一个,反应床层和再生床层间隔依次放置,并且径向移动床反应器的顶端和底端均设置为反应床层;
每一个反应床层包括反应物料分布区、催化剂床层和反应后物料收集区,并且每一个反应床层具有反应物料的进料管线和反应后物料引出管,所述的反应物料分布区经反应物料空间与反应物料的进料管线相通,所述的反应后物料收集区与反应后物料引出管相通,每一段反应床层的反应物料的进料管线上设有所述的构件化混合器;
每一个再生床层包括相应的再生介质分布区、催化剂床层和再生介质收集区,并且每一个再生床层具有再生介质进料管和再生介质引出管,所述的再生介质分布区(经再生介质空间)与再生介质进料管相通,所述的再生介质收集区与再生介质引出管相通;
反应床层和再生床层中的任何两个相邻的床层通过催化剂输送管相通,使得催化剂能够在径向移动床反应器中自上而下移动;反应床层中的催化剂和再生床层中的催化剂通过催化剂输送管从上游床层下 落到相邻的下游床层,最终下落至底部催化剂收集区,排出径向移动床反应器;
优选地,除第一段再生床层以外的任何再生床层的再生介质进料管可以为上一段再生床层(上游床层)的再生介质引出管或与之相通。
13.一种固体酸烷基化方法,其特征在于,采用按照技术方案1-12中任意一项所述的液固径向移动床反应装置,烷基化原料与循环物料经构件化混合器混合并分段进入径向移动床反应器中;液相混合物料通过反应物料分布区分布后沿径向穿过催化剂床层,与固体酸催化剂接触并发生反应,反应后的液相混合物料到达物料收集区,作为循环物料或者进一步分离得到烷基化油产品;径向移动床反应器催化剂床层中的固体酸催化剂逐渐失活,逐层下落,最终下落至底部催化剂收集区,排出径向移动床反应器,进入待生剂接收器中,在其中脱除催化剂中携带的液相混合物料,随后流入催化剂再生器中进行再生反应,恢复活性的再生催化剂流入再生剂接收器中,置换脱除其中的气体,返回径向移动床反应器中继续反应。
14.按照技术方案13所述的固体酸烷基化方法,其特征在于,所述的烷基化原料为含有烯烃和烷烃的烃馏分。
15.按照技术方案13-14中任意一项所述的固体酸烷基化方法,其特征在于,所述的径向移动床反应器中,反应温度为30-100℃,液相混合物料在反应器内的表观流速为0.05-1m/s;混合烯烃原料的质量空速为0.05-1h -1;反应床层入口处的烷烃与烯烃的摩尔比为200-1000:1;固体酸催化剂颗粒的平均粒径为0.3-3mm。
16.按照技术方案13-15中任意一项所述的固体酸烷基化方法,其特征在于,所述的催化剂为固体酸催化剂,含有95wt%-65wt%的分子筛和5wt%-35wt%的耐热无机氧化物,其中所述的分子筛选自FAU结构沸石、BETA结构沸石和MFI结构沸石中的一种或几种,所述的耐热无机氧化物为氧化铝和/或氧化硅。
17.按照技术方案13-15中任意一项所述的固体酸烷基化方法,其特征在于,所述的催化剂再生器中,待生催化剂与含氧气体在温度为200-500℃、压力为0.01-0.5MPa的条件下氧化反应,脱除待生催化剂上的积炭使得催化剂恢复活性。
18.按照技术方案13-15中任意一项所述的固体酸烷基化方法, 其特征在于,所述的催化剂再生器中,待生催化剂与含氢气的再生介质接触反应,脱除待生催化剂上的积炭使得催化剂恢复活性,再生温度为100-400℃,再生压力为0.5-3.5MPa。
19.按照技术方案17或18中任意一项所述的固体酸烷基化方法,其特征在于,采用按照技术方案12所述的液固径向移动床反应装置,其中:
新鲜原料与循环物料或上游反应器反应后物料混合后进入径向移动床反应器的反应床层;
在反应器的反应床层中,混合料沿反应器径向穿过反应床层,与固体酸催化剂接触并发生反应,反应完毕的大部分(例如,>50vol%,>60vol%,>70vol%,>80vol%,>90vol%,>95vol%,>96vol%,>97vol%,>98vol%,或>99vol%)液相混合物料通过设置的反应产物排出口排出本段,剩余的小部分液相混合物料则跟随催化剂颗粒通过催化剂输送管进入下一个反应床层或者通过反应床层与催化剂再生床层之间的催化剂输送管进入催化剂再生床层;
排出的反应后液相混合物料,与新鲜原料混合后进入反应器的下游的反应床层继续参与反应,或排出反应器,经分离(例如蒸馏)后,收集烷基化油产品;
在催化剂再生床层中,再生介质经再生介质空间和再生介质分布区进入径向移动床反应器的再生催化剂床层,催化剂通过与溶解有氢气的液相再生介质在低温再生条件下进行接触,将吸附在催化剂上的不饱和烃类转化为容易脱附的饱和烃分子带出再生器,实现催化剂的部分再生;
再生介质可以任选地经由管线进入下一段的再生催化剂床层,进行低温再生;
低温再生后的催化剂通过催化剂再生床层底部的催化剂输送管流入下一个反应床层;
处于径向移动床反应器的各个反应床层和催化剂再生床层中的催化剂随着反应的进行以及再生次数的增加,失活程度会逐渐增加,同时也会逐渐下落至更低的反应床层或催化剂再生床层,最终到达径向移动床反应器的底部的催化剂出料口;最终催化剂被送至催化剂再生器进行高温深度再生,实现催化剂活性的完全恢复;
恢复活性的催化剂送至径向移动床反应器的顶部的催化剂入口继续参与反应;
在所述的径向移动床反应器中,在反应床层中,反应温度为30-100℃,反应压力为1.0-5.0MPa,液相混合物料在反应器内的表观流速为0.03-1m/s;混合烯烃原料的质量空速为0.05-1h -1;反应床层入口处的烷烃与烯烃的摩尔比为200-1000:1;固体酸催化剂颗粒的平均粒径为0.3-3mm;
在催化剂再生床层中,再生温度为50-140℃,再生介质在再生床层内的表观流速为0.01-0.5m/s;所述的再生介质为溶解有氢气的液态烃;液态烃为C3-C5的饱和烷烃或反应产物与上述饱和烷烃的混合物,优选的,液态烃为C3-C5的饱和烷烃与反应产物的混合物;
所述催化剂的主要活性组分为负载有一定量金属的分子筛,所述分子筛为FAU结构沸石、BETA结构沸石、MFI结构沸石及其中的一种或几种的组合,优选为具有FAU结构和BETA结构沸石;所述催化剂上负载的金属为Fe、Co、Ni、Pd和/或Pt中的一种或几种的组合,优选为Co、Ni或Pt的一种或几种的组合,更优选Pt;
在催化剂再生器中,再生温度为180-400℃,再生压力为0.5-4.0MPa,再生介质为氢气或氢气和低碳烃(如C3-C8)的混合物,优选氢气和低碳烃(如C3-C8)的混合物。
本发明的的有益效果为:
本发明提供的液固径向移动床反应装置结构简单,装配灵活,适用于固体酸烷基化反应。新鲜烷基化物料和循环物料在径向移动床反应器外的构件化混合器中混合均匀,经反应物料的进料管线引入进行反应。催化剂物料经径向移动床反应器、待生剂接收器、催化剂再生器、再生剂接收器与径向移动床反应器顶部的催化剂收集区连通,保证了固体酸催化剂颗粒在径向移动床反应器中的连续流动,烷基化反应和固体酸催化剂再生可同时进行,且互不干扰。烷基化物料混合均匀,节省了反应器内空间,提高了反应效率,提高了目标产物的选择性。
本发明提供的固体酸烷基化反应装置应用于固体酸烷基化方法,实现了烷基化反应与失活催化剂再生的连续平稳运行,提高了目标产物的选择性和装置操作的弹性,降低了设备投资,提高了装置的经济 竞争力。
附图说明
图1为本发明提供的径向移动床反应装置的一种实施方式的示意图;
图2为构件化混合器的结构示意图;
图3为本发明提供的径向移动床反应装置的另一种实施方式的示意图。
图4为本发明提供的径向移动床反应装置的另一种实施方式的示意图。
其中:
1                  径向移动床反应器;
2                  反应物料空间;
3                  催化剂床层;
4                  催化剂再生器;
5                  待生剂接收器;
6                  再生剂接收器;
7                  脱液过滤器;
8                  再生介质过滤器;
9                  新鲜催化剂加料口;
10                 顶部催化剂收集区;
11                 反应后物料收集区;
12                 反应物料分布区;
13                 反应后物料引出管;
14                 底部催化剂收集区;
15                 催化剂床层底部分布区;
16                 催化剂输送管;
17                 新鲜原料的进料管;
18                 循环物料管;
19                 第一分支管线;
20                 第二分支管线;
21                 第三分支管线;
22                 液相产品出口;
23                 催化剂出料口;
24                 催化剂入口;
25、33             催化剂颗粒调整液管线;
26、27             催化剂颗粒提升液管线;
28、34、35、36     容器间的物料管线阀;
29                 液相混合物料排料口;
30                 再生介质入口;
31                 再生介质出口管线/再生介质出口;
32                 液相混合物料加料口;
37                 构件化混合器;
38                 待生催化剂缓冲罐;
51、53             反应床层;
52、54             再生床层;
61                 反应后物料;
62                 新鲜再生介质;
63                 管线;
64                 再生介质进料管;
65                 液相产品出口;
91                 循环物料管;
92                 进料管;
93                 新鲜原料的进料管;
94                 进料管喷嘴;
95                 混合翅片。
具体实施方式
以下详细说明本发明提供的液固径向移动床反应装置的具体实施方式。
在第一个方面中,本发明提供了液固径向移动床反应装置,该装置包括:
依次连接的径向移动床反应器、待生剂接收器、催化剂再生器和再生剂接收器,其中,再生剂接收器的催化剂出料口与径向移动床反应器的催化剂入口连通;所述的径向移动床反应器中由内向外,或者 由外向内设置有反应物料分布区、催化剂床层和反应后物料收集区,所述的反应物料分布区与反应物料的进料管线相通;所述的反应后物料收集区与反应后物料引出管相通;
所述的反应物料的进料管线上设置有构件化混合器;所述的构件化混合器由上部的循环物料管、下部的反应物料的进料管和伸入反应物料的进料管线中的新鲜原料的进料管组成,所述的新鲜原料的进料管出口设有进料管喷嘴,所述的反应物料的进料管线中设置有填料和/或混合翅片,其中所述的构件化混合器在径向移动床反应器外。
对于所述的反应物料的进料管线上设置的构件化混合器来说,上游的循环物料管和下游的反应物料的进料管由一根管材构成的或者是由相同或不同管材、优选相同管材连接而成的;所述的新鲜原料的进料管出口设置的进料管喷嘴具有向上的开口方向,并且与管线的轴线方向的夹角不大于60度、50度、40度、30度、20度、10度、5度或0度;填料和/或混合翅片优选地设置在下游的反应物料的进料管中。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的径向移动床反应器设置有至少两段上下放置的反应床层,相邻两段反应床层之间设置有催化剂输送管,使得催化剂能够在径向移动床反应器中自上而下移动;两段反应床层之间还设置有反应物料空间,所述的反应物料分布区经反应物料空间与反应物料的进料管线相通;每一段反应床层的反应物料的进料管线上设有所述的构件化混合器。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的径向移动床反应器设置有上下放置的至少一段反应床层和至少一段再生床层,使得催化剂能够在径向移动床反应器中自上而下移动,优选地,反应床层的数量为2-8,例如4-8,再生床层的数量为2-8,例如4-8,优选地2-7,例如4-7;更优选地,再生床层的数量与反应床层的数量相同并且在每一个反应床层下面紧接着设置一个再生床层,或者更优选地,再生床层比反应床层的数目少一个,反应床层和再生床层间隔依次放置,并且径向移动床反应器的顶端和底端均设置为反应床层;
每一个反应床层包括反应物料分布区、催化剂床层和反应后物料收集区,并且每一个反应床层具有反应物料的进料管线和反应后物料引出管,所述的反应物料分布区经反应物料空间与反应物料的进料管 线相通,所述的反应后物料收集区与反应后物料引出管相通,每一段反应床层的反应物料的进料管线上设有所述的构件化混合器;
再生床层具有与反应床层类似的物理结构,即,每一个再生床层包括相应的再生介质分布区、催化剂床层和再生介质收集区,并且每一个再生床层具有再生介质进料管和再生介质引出管,所述的再生介质分布区经再生介质空间与再生介质进料管相通,所述的再生介质收集区与再生介质引出管相通;
反应床层和再生床层中的任何两个相邻的床层通过催化剂输送管相通;反应床层中的催化剂和再生床层中的催化剂通过催化剂输送管从上游床层下落到相邻的下游床层,最终下落至底部催化剂收集区,排出径向移动床反应器;
优选地,除第一段再生床层以外的任何再生床层的再生介质进料管可以为上一段再生床层(上游床层)的再生介质引出管,或者与上一段再生床层(上游床层)的再生介质引出管相通。
在一种实施方式中,所述的径向移动床反应器底部的催化剂出料口与所述的待生剂接收器之间的管线上设置了L型或近似L型的物料输送阀组,通过改变进入阀组的液相混合物料流量来调节催化剂的排出速率。与输送罐相比,L型输送阀组占地小,调节范围较大,具有优势。所述L型或近似L型的物料输送阀组是市售可得的设备。所述L型或近似L型的物料输送阀组上还连通至少一路液相混合物料进料管线。设置颗粒流量调节器可以增加颗粒物料的流通阻力,同时,在该调节器上连通至少一路的液相混合物料进料管线,用以增加颗粒物料的流动推动力并降低颗粒物料的流动阻力。通过设置L型或近似L型的物料输送阀组,通过改变进入阀组的液相混合物料流量可调节催化剂的排出速率,从而达到控制和调节处于反应器中的催化剂在各反应床层的下落速率和停留时间。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的径向移动床反应器顶部设有顶部催化剂收集区,催化剂入口经所述的顶部催化剂收集区和所述的催化剂输送管相通。
在一种根据本发明的液固径向移动床反应装置的实施方案中,催化剂输送管分别设置在相邻两段床层之间、在顶部催化剂收集区和第一段床层之间、以及在最后一段床层和底部催化剂收集区之间。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的径向移动床反应器中,下一段反应床层的构件化混合器的循环物料管为上一段反应床层的反应后物料引出管,或者与上一段反应床层的反应后物料引出管相通。
在一种根据本发明的液固径向移动床反应装置的实施方案中,连接所述的待生剂接收器、所述的催化剂再生器和所述的再生剂接收器之间的催化剂流通管线为垂直设置或与水平面间的夹角不小于40度。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的催化剂再生器或所述的再生剂接收器上还设置新鲜催化剂加料口。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的催化剂再生器上部设置再生介质入口,催化剂再生器底部或底部排出管线上设置再生介质出口;所述的再生介质入口处于催化剂再生器直管段由下至上的70%以上的位置,所述的再生介质出口处于催化剂再生器直管段由下至上的20%以下位置。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的催化剂再生器的再生介质出口管线上还设置有过滤器。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的待生剂接收器底部或底部排出管线上设置液相混合物料排料口。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的构件化混合器中,所述的新鲜原料的进料管与所述的循环物料管的横截面积之比为0.001-0.5:1,更优选0.002-0.1:1。
在一种根据本发明的液固径向移动床反应装置的实施方案中,在所述的径向移动床反应器中,上下竖直放置至少两段反应床层,优选地,所述的径向移动床反应器包含4-8段反应床层。每段反应床层由内向外,或者由外向内均包含反应物料的进料管线、反应物料分布区、(环柱形的)催化剂床层、反应后物料收集区,以及将反应后物料引出的反应后物料引出管。所述的径向移动床反应器顶部设置有顶部催化剂收集区,所述的顶部催化剂收集区与第一段催化剂床层之间、上下游催化剂床层之间、以及最后一段催化剂床层和底部催化剂收集区之间设置有催化剂输送管。催化剂入口与顶部催化剂收集区及催化剂输送管相通,反应器底部的催化剂输送管与底部催化剂收集区及催化剂出料口相通。
在一种根据本发明的液固径向移动床反应装置的实施方案中,催化剂出料口与所述的待生剂接收器之间的管线上设置了L型或近似L型的物料输送阀组,通过改变进入阀组的液相混合物料流量来调节催化剂的排出速率。从而达到控制和调节处于反应器中的催化剂在各反应床层的下落速率和停留时间。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的构件化混合器可以设置于上一段反应床层的反应后物料引出管与下一段反应床层的反应物料的进料管之间的管线上,所述的新鲜原料的进料管作为补充新鲜原料的入口。
在一种根据本发明的液固径向移动床反应装置的实施方案中,在径向移动床反应器下方设置待生催化剂缓冲罐,用以保存待生催化剂接收器在退液相混合物料以及向催化剂再生器排催化剂期间从反应器排出的待生催化剂,保证径向移动床反应器内催化剂物料流动的连续性和装置操作的平稳性。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的待生剂接收器、催化剂再生器和再生剂接收器为依次自上而下设置,连接待生剂接收器、催化剂再生器和再生剂接收器之间的催化剂流通管线为垂直设置或与水平面间的夹角不小于40度,便于催化剂颗粒料从上而下的顺畅流通,防止物料堆积或残存在管线中,影响阀门密封性或催化剂再生的效果。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的催化剂再生器上设置有新鲜催化剂加料口。通过在催化剂再生器上设置新鲜催化剂加料口,可将部分失去活性的催化剂或难以恢复初始活性的催化剂置换为新鲜催化剂,保证装置的处理能力。
在一种根据本发明的液固径向移动床反应装置的实施方案中,本发明提供的液固径向移动床反应装置中,所述的催化剂再生器上部设置再生介质入口,催化剂再生器底部或底部排出管线上设置再生介质出口,用于在临氢再生操作时引入和排出再生介质;所述的再生介质入口处于催化剂再生器直管段由下至上的70%以上的位置,所述的再生介质出口处于催化剂再生器直管段由下至上的20%以下位置,优选地,设置在底部排出管线上。进一步优选所述的催化剂再生器的再生介质出口管线上还设置有过滤器。该过滤器用于阻隔再生器的催化剂 流入下游的气体循环增压设备以及收集再生过程因摩擦或吹扫产生的细粉或细小颗粒。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的待生剂接收器底部或底部排出管线上设置液相混合物料排料口;所述的再生剂接收器或进入再生剂接收器的管线上设置液相混合物料加料口。通过所述的液相混合物料排料口和液相混合物料加料口将催化剂中携带的液相混合物料排空或将液相混合物料加入到再生过的催化剂。
在一种根据本发明的液固径向移动床反应装置的实施方案中,所述的构件化混合器中,新鲜原料的进料管的横截面积与循环物料管横截面积的比值是0.001-0.5:1,优选,0.002-0.1:1。所述的构件化混合器的主进料管(即上部的循环物料管和下部的反应物料的进料管)中设置了用于强化物料混合的填料和/或混合翅片,优选地,设置在下部的反应物料的进料管中。所述的填料选自规整填料或散堆填料,所述的混合翅片选自导流板或翅片,优选设置一组倾斜排列的翅片。
本发明提供的液固径向移动床反应装置适用于固体酸烷基化反应与再生方法,采用上述任一种的液固径向移动床反应装置,烷基化原料与循环物料经构件化混合器混合并分段进入径向移动床反应器中;液相混合物料通过反应物料分布区分布后沿径向穿过催化剂床层,与固体酸催化剂接触并发生反应,反应后的液相混合物料到达物料收集区,并通过反应后物料引出管排出,作为循环物料或者进一步分离得到烷基化油产品(排出的反应后物料与新鲜原料经构件化混合器混合后进入下一段反应床层继续参与反应,或者排出反应器分离得到烷基化油产品);催化剂床层中的固体酸催化剂逐渐失活,逐层下落,最终下落至底部催化剂收集区,排出径向移动床反应器;再经催化剂输送管线进入待生剂接收器中,在其中脱除催化剂中携带的液相混合物料,随后流入催化剂再生器中进行再生反应,在氧氛围再生或临氢再生恢复活性;催化剂再生器底部的恢复活性的再生催化剂流入再生剂接收器中,并在其中引入液相混合物料置换脱除再生催化剂间隙中的气体,然后再生催化剂经催化剂输送管道返回径向移动床反应器中继续反应。
所述的烷基化原料为含有烯烃和烷烃的烃馏份,优选含有C4烯烃 和C4烷烃的C4馏分,更优选为C4烯烃和C4烷烃的混合物。在一种实施方案中,烷烃馏分还包括经过分馏塔顶部经冷却返回至反应器入口的轻质烃类馏分。在一种实施方案中,所述的烷基化原料为含有烯烃和烷烃的烃馏份,其中烷烃与烯烃的摩尔比5-50:1,例如10-40:1或20-30:1。在一种实施方案中,所述的烷基化原料为含有C3-C5烷烃和C3-C5烯烃的烃馏份,其中烷烃与烯烃的摩尔比5-50:1,例如10-40:1或20-30:1。在一种实施方案中,所述的烷基化原料为C3-C5烷烃和C3-C5烯烃的混合物,其中烷烃与烯烃的摩尔比5-50:1,例如10-40:1或20-30:1。
所述的径向移动床反应器中,反应温度为30-100℃,液相混合物料在反应器内的表观流速为0.05-1m/s;混合烯烃原料的质量空速为0.05-1h -1;反应床层入口处的烷烃与烯烃的摩尔比为200-1000:1;固体酸催化剂颗粒的平均粒径为0.3-3mm。
所述催化剂为固体酸催化剂,所述固体酸催化剂含有分子筛和耐热无机氧化物,以所述固体酸催化剂的总量为基准,分子筛的含量为65-95wt%,耐热无机氧化物的含量为5-35wt%;优选地,所述分子筛选自FAU结构沸石、BETA结构沸石和MFI结构沸石中至少一种,所述耐热无机氧化物为氧化铝和/或氧化硅;进一步优选地,所述固体酸催化剂还含有金属活性组分,所述金属活性组分选自Fe、Co、Ni、Pd和Pt中至少一种,以所述固体酸催化剂的总量为基准,金属活性组分的含量为0.15-2wt%。
所述的径向移动床反应器最后一段反应床层的反应后物料引出管作为液相产品出口,通过液相产品出口排出的物料大部分(例如,>50vol%,>60vol%,>70vol%,>80vol%,>90vol%,>95vol%,>96vol%,>97vol%,>98vol%,或>99vol%)用泵增压后作为循环物料返回反应器的第一段反应床层与新鲜烷基化原料混合,小部分被送去产物分离设备如分馏塔,分离出烷基化油作为装置的产品。
待生催化剂在催化剂再生器中进行再生反应恢复活性,对于再生的方式没有特别限定,可以在常规的再生条件下进行。所述再生介质可以为含氧气氛或含氢气氛。具体地,所述再生可以在含氧气氛中进行,也可以在含氢气氛中进行。
所述的含氧气氛含有氧气和惰性气体,可以为空气、或氧气与氮 气的混合气体。所述含氧气氛中,氧气的含量可以为0.5-20体积%。另外,还可以根据再生的进程对氧气的含量进行调整。所述再生在含氧气氛中进行,可以在180-500℃或200-500℃的温度下进行再生;再生时,反应器内的压力可以为0.01-0.5MPa,所述压力为表压。
所述的含氢气氛可以含有氢气和C4液化气,氢气的含量为70-99体积%。所述再生在含氢气氛中进行,可以在100-400℃、优选180-280℃的温度下进行再生;再生时,反应器内的压力可以为0.1-5MPa,优选为0.5-3.5MPa,所述压力为表压。
优选地,所述再生介质在催化剂再生器中的表观流速为0.003-0.8m/s,进一步优选为0.02-0.5m/s。
本发明提供的液固径向移动床反应装置,结构简单,适用于固体酸烷基化反应,烷基化反应和固体酸催化剂再生可同时进行,且互不干扰。在径向移动床外设有构件化混合器,节省了径向移动床反应器内空间,使得新鲜原料和循环物料充分混合均匀,提高了烷基化反应的选择性,减少了烯烃的叠合反应,节省了反应器内的空间,提高了反应效率。
在第二个方面中,本发明提供了一种固体酸烷基化反应与再生方法,所述的方法采用液固径向移动床反应装置,烷基化原料与循环物料经构件化混合器混合后分段进入径向移动床反应器中;液相混合物料由内向外或由外向内通过反应物料分布区分布后沿径向穿过催化剂床层,与固体酸催化剂接触并发生反应,反应后的液相混合物料到达物料收集区,并通过反应后物料引出管排出,作为循环物料或者进一步分离得到烷基化油产品(排出的反应后物料与新鲜原料经构件化混合器混合后进入下一段反应床层继续参与反应,或者排出反应器分离得到烷基化油产品);径向移动床反应器的催化剂床层中的固体酸催化剂逐渐失活,逐层下落,最终下落至底部催化剂收集区,排出径向移动床反应器;再经催化剂输送管线进入待生剂接收器中,在其中脱除催化剂中携带的液相混合物料,随后流入催化剂再生器中进行再生反应,在氧氛围再生或临氢再生恢复活性;催化剂再生器底部的恢复活性的再生催化剂流入再生剂接收器中,并在其中引入液相混合物料置换脱除再生催化剂间隙中的气体,然后再生催化剂经催化剂输送管道返回径向移动床反应器中继续反应;
所述的液固径向移动床反应装置包括:依次连接的径向移动床反应器、待生剂接收器、催化剂再生器和再生剂接收器,其中,再生剂接收器的催化剂出料口与径向移动床反应器的催化剂入口连通;所述的径向移动床反应器中由内向外,或者由外向内设置有反应物料分布区、催化剂床层和反应后物料收集区,所述的反应物料分布区与反应物料的进料管线相通;所述的反应后物料收集区与反应后物料引出管相通;
所述的反应物料的进料管线上设置有构件化混合器;所述的构件化混合器由上部的循环物料管、下部的反应物料的进料管和伸入反应物料的进料管线中的新鲜原料的进料管组成,所述的新鲜原料的进料管出口设有进料管喷嘴,所述的反应物料的进料管线中设置有填料和/或混合翅片,其中所述的构件化混合器在径向移动床反应器外。
对于所述的反应物料的进料管线上设置的构件化混合器来说,上部的循环物料管和下部的反应物料的进料管由一根管材构成的或者是由相同或不同管材、优选相同管材连接而成的;所述的新鲜原料的进料管出口设置的进料管喷嘴具有向上的开口方向,并且与管线的轴线方向的夹角不大于60度、50度、40度、30度、20度、10度、5度或0度;填料和/或混合翅片优选地设置在下部的反应物料的进料管中。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的径向移动床反应器设置有至少两段上下放置的反应床层,相邻两段反应床层之间设置有催化剂输送管,使得催化剂能够在径向移动床反应器中自上而下移动;两段反应床层之间还设置有反应物料空间,所述的反应物料分布区经反应物料空间与反应物料的进料管线相通;每一段反应床层的反应物料的进料管线上设有所述的构件化混合器。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的径向移动床反应器设置有上下放置的至少一段反应床层和至少一段再生床层,使得催化剂能够在径向移动床反应器中自上而下移动,优选地,反应床层的数量为2-8,例如4-8,再生床层的数量为2-8,例如4-8,优选地2-7,例如4-7;更优选地,再生床层的数量与反应床层的数量相同并且在每一个反应床层下面紧接着设置一个再生床层,或者更优选地,再生床层比反应床层的数目少一个,反应床层和再生床层间隔依次放置,并且径向移动床反应器的顶端和底端均设置为反应 床层;
每一个反应床层包括反应物料分布区、催化剂床层和反应后物料收集区,并且每一个反应床层具有反应物料的进料管线和反应后物料引出管,所述的反应物料分布区经反应物料空间与反应物料的进料管线相通,所述的反应后物料收集区与反应后物料引出管相通,每一段反应床层的反应物料的进料管线上设有所述的构件化混合器;
再生床层具有与反应床层类似的物理结构,即,每一个再生床层包括相应的再生介质分布区、催化剂床层和再生介质收集区,并且每一个再生床层具有再生介质进料管和再生介质引出管,所述的再生介质分布区经再生介质空间与再生介质进料管相通,所述的再生介质收集区与再生介质引出管相通;
反应床层和再生床层中的任何两个相邻的床层通过催化剂输送管相通;反应床层中的催化剂和再生床层中的催化剂通过催化剂输送管从上游床层下落到相邻的下游床层,最终下落至底部催化剂收集区,排出径向移动床反应器;
优选地,除第一段再生床层以外的任何再生床层的再生介质进料管可以为上一段再生床层(上游床层)的再生介质引出管,或者与上一段再生床层(上游床层)的再生介质引出管相通。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的径向移动床反应器底部的催化剂出料口与所述的待生剂接收器之间的管线上设置了L型或近似L型的物料输送阀组,通过改变进入阀组的液相混合物料流量来调节催化剂的排出速率。从而达到控制和调节处于反应器中的催化剂在各反应床层的下落速率和停留时间。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的径向移动床反应器顶部设有顶部催化剂收集区,催化剂入口经所述的顶部催化剂收集区和所述的催化剂输送管相通。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,催化剂输送管分别设置在相邻两段床层之间、在顶部催化剂收集区和第一段床层之间、以及在最后一段床层和底部催化剂收集区之间。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的径向移动床反应器中,下一段反应床层的构件化混合器的循环物料管为上一段反应床层的反应后物料引出管,或者与上一段反应床 层的反应后物料引出管相通。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,连接所述的待生剂接收器、所述的催化剂再生器和所述的再生剂接收器之间的催化剂流通管线为垂直设置或与水平面间的夹角不小于40度。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的催化剂再生器或所述的再生剂接收器上还设置新鲜催化剂加料口。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的催化剂再生器上部设置再生介质入口,催化剂再生器底部或底部排出管线上设置再生介质出口;所述的再生介质入口处于催化剂再生器直管段由下至上的70%以上的位置,所述的再生介质出口处于催化剂再生器直管段由下至上的20%以下位置,优选地,设置在底部排出管线上。优选在所述的催化剂再生器的再生介质出口管线上还设置有过滤器。该过滤器用于阻隔再生器的催化剂流入下游的气体循环增压设备以及收集再生过程因摩擦或吹扫产生的细粉或细小颗粒。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的待生剂接收器底部或底部排出管线上设置液相混合物料排料口;所述的再生剂接收器或与进入再生剂接收器的管线上设置液相混合物料加料口。通过所述的液相混合物料排料口和液相混合物料加料口将催化剂中携带的液相混合物料排空或将液相混合物料加入到再生过的催化剂。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的构件化混合器中,所述的新鲜原料的进料管的横截面积与所述的循环物料管的横截面积之比为0.001-0.5:1,优选0.002-0.1:1。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中所述的构件化混合器的进料管(即上部的循环物料管和下部的反应物料的进料管)中设置了用于强化物料混合的填料和/或混合翅片,优选地,设置在下部的反应物料的进料管中。所述的填料和/或混合翅片选自选自导流板、翅片、规整填料或散堆填料,优选设置一组倾斜排列的翅片。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的烷基化原料为含有烯烃和烷烃的烃馏分,优选含有C4烯烃和 C4烷烃的C4馏分,更优选为C4烯烃和C4烷烃的混合物。在一种实施方案中,所述的烷基化原料为含有烯烃和烷烃的烃馏份,其中烷烃与烯烃的摩尔比5-50:1,例如10-40:1或20-30:1。在一种实施方案中,所述的烷基化原料为含有C3-C5烷烃和C3-C5烯烃的烃馏份,其中烷烃与烯烃的摩尔比5-50:1,例如10-40:1或20-30:1。在一种实施方案中,所述的烷基化原料为C3-C5烷烃和C3-C5烯烃的混合物,其中烷烃与烯烃的摩尔比5-50:1,例如10-40:1或20-30:1。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的径向移动床反应器中,反应温度为30-100℃,液相混合物料在反应器内的表观流速为0.05-1m/s;混合烯烃原料的质量空速为0.05-1h -1;反应床层入口处的烷烃与烯烃的摩尔比为200-1000:1;催化剂颗粒的平均粒径为0.3-3mm。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的催化剂为固体酸催化剂,含有分子筛和耐热无机氧化物,以所述固体酸催化剂的总量为基准,分子筛的含量为65-95wt%,耐热无机氧化物的含量为5-35wt%;优选地,所述分子筛选自FAU结构沸石、BETA结构沸石和MFI结构沸石中至少一种,所述耐热无机氧化物为氧化铝和/或氧化硅;进一步优选地,所述固体酸催化剂还含有金属活性组分,所述金属活性组分选自Fe、Co、Ni、Pd和Pt中至少一种,以所述固体酸催化剂的总量为基准,金属活性组分的含量为0.15-2wt%。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,待生催化剂在催化剂再生器中进行再生反应恢复活性,对于再生的方式没有特别限定,可以在常规的再生条件下进行。所述再生介质可以为含氧气氛或含氢气氛。具体地,所述再生可以在含氧气氛中进行,也可以在含氢气氛中进行。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,在所述的催化剂再生器中,待生催化剂与含氧气体在180-500℃或200-500℃、压力为0.01-0.5MPa(表压)的条件下氧化反应,脱除待生催化剂上的积炭使得催化剂恢复活性。所述的含氧气体含有氧气和惰性气体,可以为空气、或氧气与氮气的混合气体。所述含氧气体中,氧气的含量可以为0.5-20体积%。另外,还可以根据再生的进程对氧 气的含量进行调整。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,在所述的催化剂再生器中,待生催化剂在含氢气氛中进行再生反应,所述的含氢气氛可以含有氢气和C4液化气,氢气的含量为70-99体积%。所述再生在含氢气氛中进行,可以在100-400℃、优选180-280℃的温度下进行再生;再生时,反应器内的压力可以为0.1-5MPa,优选为0.5-3.5MPa,所述压力为表压。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,再生介质在催化剂再生器中的表观流速为0.003-0.8m/s,优选0.02-0.5m/s。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,在所述的径向移动床反应器中,上下竖直放置至少两段反应床层,优选地,所述的径向移动床反应器包含4-8段反应床层。每段反应床层由内向外,或者由外向内均包含反应物料的进料管线、反应物料分布区、环柱形的催化剂床层、反应后物料收集区,以及(将反应后物料引出的)反应后物料引出管。所述的径向移动床反应器顶部设置有顶部催化剂收集区,所述的顶部催化剂收集区与第一段催化剂床层之间、上下游催化剂床层之间、以及最后一段催化剂床层和底部催化剂收集区之间设置有催化剂输送管。催化剂入口与顶部催化剂收集区及催化剂输送管相通,反应器底部的催化剂输送管与底部催化剂收集区及催化剂出料口相通。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,催化剂出料口与所述的待生剂接收器之间的管线上设置了L型或近似L型的物料输送阀组,通过改变进入阀组的液相混合物料流量来调节催化剂的排出速率。从而达到控制和调节处于反应器中的催化剂在各反应床层的下落速率和停留时间。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的构件化混合器可以设置于上一段反应床层的反应后物料引出管与下一段反应床层的反应物料的进料管之间的管线上,所述的新鲜原料的进料管作为补充新鲜原料的入口。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,新鲜烷基化原料与循环物料经构件化混合器混合并分段进入径向移动 床反应器中;液相混合物料通过反应物料分布区分布后沿径向穿过催化剂床层,与固体酸催化剂接触并发生反应,反应后的液相混合物料到达物料收集区,并通过反应后物料引出管排出,作为循环物料或者进一步分离得到烷基化油产品(排出的反应后物料与新鲜原料经构件化混合器混合后进入下一段反应床层继续参与反应,或者排出反应器分离得到烷基化油产品);催化剂床层中的固体酸催化剂逐渐失活,逐层下落,最终下落至底部催化剂收集区,排出径向移动床反应器;再经催化剂输送管线进入待生剂接收器中,在其中脱除催化剂中携带的液相混合物料,随后流入催化剂再生器中进行再生反应,在氧氛围再生或临氢再生恢复活性;催化剂再生器底部的恢复活性的再生催化剂流入再生剂接收器中,并在其中引入液相混合物料置换脱除再生催化剂间隙中的气体,然后再生催化剂经催化剂输送管道返回径向移动床反应器中继续反应,参与反应,直至失活后被输送至待生剂接收器,如此循环。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,在径向移动床反应器下方设置待生催化剂缓冲罐,用以保存待生催化剂接收器在退液相混合物料以及向催化剂再生器排催化剂期间从反应器排出的待生催化剂,保证径向移动床反应器内催化剂物料流动的连续性和装置操作的平稳性。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的待生剂接收器、催化剂再生器和再生剂接收器为依次自上而下设置,连接待生剂接收器、催化剂再生器和再生剂接收器之间的催化剂流通管线为垂直设置或与水平面间的夹角不小于40度,便于催化剂颗粒料从上而下的顺畅流通,防止物料堆积或残存在管线中,影响阀门密封性或催化剂再生的效果。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的径向移动床反应器最后一段反应床层的反应后物料引出管作为液相产品出口,通过液相产品出口排出的物料大部分(例如,>50vol%,>60vol%,>70vol%,>80vol%,>90vol%,>95vol%,>96vol%,>97vol%,>98vol%,或>99vol%)用泵增压后作为循环物料返回反应器的第一段反应床层与新鲜烷基化原料混合,小部分被送去产物分离设备如分馏塔,分离出烷基化油作为装置的产品。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的催化剂再生器上设置有新鲜催化剂加料口。通过在催化剂再生器上设置新鲜催化剂加料口,可将部分失去活性的催化剂或难以恢复初始活性的催化剂置换为新鲜催化剂,保证装置的处理能力。
在一种根据本发明的固体酸烷基化反应与再生方法的实施方案中,所述的待生剂接收器底部或底部排出管线上设置液相混合物料排料口;所述的再生剂接收器或进入再生剂接收器的的管线上设置液相混合物料加料口。通过所述的液相混合物料排料口和液相混合物料加料口将催化剂中携带的液相混合物料排空或将液相混合物料加入到再生过的催化剂。
现有技术的固体酸烷基化方法中,如果物料混合不均匀,存在烯烃容易发生叠合副反应,影响产物选择性和催化剂处理量的问题。本发明采用液固径向移动床反应装置,循环物料和新鲜烷基化原料首先通过构件化混合器,在液固移动床反应器外完成混合过程,混合后的反应物料经反应物料的进料管线分段进入各段反应床层与催化剂接触进行反应。物料混合均匀,保证了混合效果,节省了反应器内空间,解决了现有技术中新鲜烷基化原料和循环物料的混合不均的问题。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明中,在未作相反说明的情况下,使用的方位词如“上、下”通常是指通常是指参考附图所示的上和下。使用的方位词如“内、外”是指相对于各部件本身的轮廓的内、外。
在本发明中,所述的床层的上方、顶部等是指处于每一段床层由下至上的70%以上的位置,所述的床层的底部等是指处于每一段床层由下至上的20%以下的位置。
在本发明中,所述的依次连接是指,例如,径向移动床反应器1的催化剂出口与待生剂接收器5的催化剂入口连接,待生剂接收器5的催化剂出口与催化剂再生器4的催化剂入口连接,催化剂再生器4的催化剂出口与再生剂接收器6的催化剂入口连接。再生剂接收器6 的催化剂出口与径向移动床反应器1的催化剂入口连通,以将再生催化剂送入径向移动床反应器1中。
另外,本发明还提供了一组下列的方案:
1、一种液固径向移动床反应装置,其特征在于,该装置包括:
依次连接的径向移动床反应器、待生剂接收器、催化剂再生器和再生剂接收器,其中,再生剂接收器的催化剂出口与径向移动床反应器的催化剂入口连通;所述的径向移动床反应器中由内向外,或者由外向内设置有反应物料分布区、催化剂床层和反应后物料收集区,所述的反应物料分布区与进料管相通;所述的反应后物料收集区与反应后物料引出管相通;所述的进料管上设置有构件化混合器;所述的构件化混合器由上部的循环物料管线、下部进料管和伸入进料管中的新鲜原料进料管组成,所述的新鲜原料进料管出口设有进料管喷嘴,所述的进料管中设置有填料和/或混合翅片。
2、按照技术方案1所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器设置有至少两段反应床层,相邻两段反应床层之间设置有催化剂输送管使得催化剂能够在径向移动床反应器中自上而下移动;两段反应床层之间设置有反应物料空间,所述的反应物料分布区经反应物料空间与进料管相通;每段反应床层的进料管上设有所述的构件化混合器。
3、按照技术方案2所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器底部的催化剂出口与所述的待生剂接收器之间的管线上设置了L型或近似L型的物料输送阀组,通过改变进入阀组的液相料流量来调节催化剂的排出速率。
4、按照技术方案2或3所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器顶部设有顶部催化剂收集室,催化剂入口经所述的顶部催化剂收集室和所述的催化剂输送管相通。
5、按照技术方案2所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器中,下一段反应床层的构件化混合器的物料循环管线为上一段反应床层的物料引出管线。
6、按照技术方案1所述的液固径向移动床反应装置,其特征在于,连接所述的待生剂接收器、所述的催化剂再生器和所述的再生剂接收器之间的催化剂流通管线为垂直设置或与水平面间的夹角不小于40度。
7、按照技术方案1所述的液固径向移动床反应装置,其特征在于,所述的催化剂再生器上还设置新鲜催化剂加料口。
8、按照技术方案1或2所述的液固径向移动床反应装置,其特征在于,所述的催化剂再生器上部设置再生介质入口,催化剂再生器底部或底部排出管线上设置再生后介质出口;所述的再生介质入口处于催化剂再生器直管段由下至上的70%以上的位置,所述的再生后介质出口处于催化剂再生器直管段由下至上的20%以下位置。
9、按照技术方案1所述的液固径向移动床反应装置,其特征在于,所述的再生后介质出口管线上还设置有过滤器。
10、按照技术方案1或2所述的液固径向移动床反应装置,其特征在于,所述的待生剂接收器底部或底部排出管线上设置催化剂排料口。
11、按照技术方案1所述的液固径向移动床反应装置,其特征在于,所述的构件化混合器中,所述的新鲜原料进料管与所述的物料循环管的横截面积之比为0.001-0.5:1。
12、按照技术方案11所述的液固径向移动床反应装置,其特征在于,所述的构件化混合器中,所述的新鲜原料进料管与所述的物料循环管的横截面积之比为0.002-0.1:1。
另外,本发明还提供了又一组下列的方案:
1、一种固体酸烷基化方法,其特征在于,采用液固径向移动床反应装置,烷基化原料与循环物料经构件化混合器混合后进入径向移动床反应器中,混合物料沿径向穿过催化剂床层,与固体酸催化剂接触并发生反应,反应后的混合物料到达物料收集区,作为循环物料或者进一步分离得到烷基化油产品;径向移动床反应器催化剂床层中的固体酸催化剂逐渐失活下落至催化剂收集区排出径向移动床反应器,进入待生剂接收器中脱除其中携带的液相物料,随后流入催化剂再生器中进行再生反应,恢复活性的再生催化剂流入再生剂接收器中置换脱除其中的气体,返回径向移动床反应器中继续反应;
所述的液固径向移动床反应装置包括:依次连接的径向移动床反应器、待生剂接收器、催化剂再生器和再生剂接收器,其中,再生剂接收器的催化剂出口与径向移动床反应器的催化剂入口连通;所述的径向移动床反应器中由内向外,或者由外向内设置有反应物料分布区、 催化剂床层和反应后物料收集区,所述的反应物料分布区与进料管相通;所述的反应后物料收集区与反应后物料引出管相通;所述的进料管上设置有构件化混合器,所述的构件化混合器由上部的循环物料管线、下部进料管和伸入进料管中的新鲜原料进料管组成,所述的新鲜原料进料管出口设有进料管喷嘴,所述的进料管中设置有填料和/或混合翅片。
2、按照技术方案1所述的固体酸烷基化方法,其特征在于,所述的径向移动床反应器设置有至少两段反应床层,相邻两段反应床层之间设置有催化剂输送管,使得催化剂能够在径向移动床反应器中自上而下移动;两段反应床层之间设置有反应物料空间,所述的反应物料分布区经反应物料空间与进料管相通;每一段反应床层的进料管上设有所述的构件化混合器。
3、按照技术方案2所述的固体酸烷基化方法,其特征在于,所述的径向移动床反应器底部的催化剂出口与所述的待生剂接收器之间的管线上设置了L型或近似L型的物料输送阀组,通过改变进入阀组的液相料流量来调节催化剂的排出速率。
4、按照技术方案2或3所述的固体酸烷基化方法,其特征在于,所述的径向移动床反应器顶部设有顶部催化剂收集室,催化剂入口经所述的顶部催化剂收集室和所述的催化剂输送管相通。
5、按照技术方案2所述的固体酸烷基化方法,其特征在于,所述的径向移动床反应器中,下一段反应床层的构件化混合器的物料循环管线为上一段反应床层的物料引出管线。
6、按照技术方案1所述的固体酸烷基化方法,其特征在于,连接所述的待生剂接收器、所述的催化剂再生器和所述的再生剂接收器之间的催化剂流通管线为垂直设置或与水平面间的夹角不小于40度。
7、按照技术方案1所述的固体酸烷基化方法,其特征在于,所述的催化剂再生器或所述的再生剂接收器上还设置新鲜催化剂加料口。
8、按照技术方案1或2所述的固体酸烷基化方法,其特征在于,所述的催化剂再生器上部设置再生介质入口,催化剂再生器底部或底部排出管线上设置再生介质出口;所述的再生介质入口处于催化剂再生器直管段由下至上的70%以上的位置,所述的再生介质出口处于催化剂再生器直管段由下至上的20%以下位置。
9、按照技术方案8所述的固体酸烷基化方法,其特征在于,所述的再生后介质出口管线上还设置有过滤器。
10、按照技术方案1或2所述的固体酸烷基化方法,其特征在于,所述的待生剂接收器底部或底部排出管线上设置液相物料出口。
11、按照技术方案1或2所述的固体酸烷基化方法,其特征在于,所述的构件化混合器中,所述的新鲜原料进料管与所述的物料循环管的横截面积之比为0.001-0.5:1,优选0.002-0.1:1。
12、按照技术方案1或2所述的固体酸烷基化方法,其特征在于,所述的烷基化原料为含有烯烃和烷烃的烃馏分。
13、按照技术方案1或2所述的固体酸烷基化方法,其特征在于,所述的径向移动床反应器中,反应温度为30℃-100℃,混合物料在反应器内的表观流速为0.05-1m/s;烯烃原料的质量空速为0.05-1h -1;烷烃与烯烃的摩尔比为200-1000:1;固体酸催化剂颗粒的平均粒径为0.3-3mm。
14、按照技术方案1或2所述的固体酸烷基化方法,其特征在于,所述的催化剂为固体酸催化剂,含有95wt%-65wt%的分子筛和5wt%-35wt%的耐热无机氧化物,其中所述的分子筛选自FAU结构沸石、BETA结构沸石和MFI结构沸石中的一种或几种,所述的耐热无机氧化物为氧化铝和/或氧化硅。
15、按照技术方案1或2所述的固体酸烷基化方法,其特征在于,所述的催化剂再生器中,待生催化剂与含氧气体在温度为200-500℃、压力为0.01-0.5MPa的条件下氧化反应,脱除待生催化剂上的积炭使得催化剂恢复活性。
16、按照技术方案1或2所述的固体酸烷基化方法,其特征在于,所述的催化剂再生器中,待生催化剂与含氢气的再生介质接触反应,脱除待生催化剂上的积炭使得催化剂恢复活性,再生温度为100-400℃,再生压力为0.5-3.5MPa。
以下参照附图,具体说明液固径向烷基化反应装置的结构和本发明提供的固体酸烷基化方法的具体步骤。
图1为本发明提供的液固径向移动床反应装置的示意图。如图1所示,液固径向移动床反应装置包括依次连接的径向移动床反应器1、待生剂接收器5、催化剂再生器4和再生剂接收器6,其中,再生剂接 收器6的催化剂出料口36与径向移动床反应器的催化剂入口24连通;
径向移动床反应器1中设置有三段反应床层,三段催化剂床层之间经催化剂输送管16连通。
每段反应床层由外向内设置有反应物料分布区12、环柱形的催化剂床层3、和反应后物料收集区11,
所述的反应物料分布区12与反应物料的进料管线相通;所述的反应后物料收集区11与反应后物料引出管13相通;
两段相邻的反应床层之间、以及第一段反应床层与顶部催化剂收集区10之间设置有与所述的反应物料分布区12相通的反应物料空间2和与顶部催化剂收集区10或每一个催化剂床层连通的催化剂输送管16,与反应后物料收集区相通的反应后物料引出管13,以及与所述的反应物料空间2相通的反应物料的进料管线;
催化剂进料口24与顶部催化剂收集区10相通,经催化剂输送管16、底部催化剂收集区14与催化剂出料口23相通;
所述的构件化混合器设置于每段反应床层的反应物料的进料管线上,第一段、第二段和第三段反应床层的反应后物料引出管13分别作为第二段、第三段和第一段反应床层的反应物料的进料管线中的构件化混合器中的循环物料管;
所述的新鲜原料的进料管17作为补充新鲜原料的入口。
径向移动床反应器1的催化剂出口与待生剂接收器5的催化剂入口的连通管线上设置有第一颗粒流量调节器25,以调节催化剂颗粒流量。
待生剂接收器5(优选底部)设置液相混合物料排料口29。本发明可以在待生剂接收器5中通过直接减压或引入高压氢气、氮气等充压的方式脱除催化剂中携带的液相物料,液相物料可以通过液相混合物料排料口29外输。优选地,从所述液相混合物料排料口29送出的退液相料输送管线上设置有脱液过滤器7。所述脱液过滤器7用于阻隔催化剂细粉或细小的催化剂颗粒。
待生剂接收器5中脱液后的催化剂送入催化剂再生器4中进行再生,所述催化剂再生器4设置有再生介质入口30和再生介质出口31。再生介质通过再生介质入口30送入催化剂再生器4中与催化剂接触对催化剂进行再生,再生介质通过再生介质出口31外排。从所述再生介 质出口31送出的再生介质输送管线上设置再生介质过滤器8以阻隔细粉或细小颗粒。催化剂再生器4还可以设置有新鲜催化剂进料口供新鲜催化剂进入催化剂再生器4中。通过在催化剂再生器4上设置新鲜催化剂进料口,可将部分失去活性的催化剂或难以恢复初始活性的催化剂置换为新鲜催化剂,保证装置的处理能力。
再生后的催化剂通过催化剂再生器4底部的催化剂输送管线流入再生剂接收器6,再生剂接收器6设置有液相混合物料加料口32。通过液相混合物料加料口32向再生剂接收器6中引入液相料置换催化剂间隙的气体。
再生后的催化剂会通过再生剂接收器6与径向移动床反应器1间的催化剂输送管道返回径向移动床反应器1继续参与反应,直至失活后被输送至待生剂接收器5,催化剂按照上述流程循环。再生剂接收器6的催化剂出口与径向移动床反应器1的催化剂入口的连通管线上设置有第二颗粒流量调节器33,以调节催化剂颗粒流量。优选地,所述第一颗粒流量调节器25和第二颗粒流量调节器33各自独立地为L型或近似L型的物料输送阀组。
在移动床反应器1的催化剂出料口的管线和再生剂接收器6排出再生剂的管线上分别设置催化剂颗粒提升液管线26、27,用于辅助催化剂的输送。在移动床反应器1、待生剂接收器5、催化剂再生器4和再生剂接收器6之间的管线上设置容器间的物料管线阀28、34、35、36。
催化剂再生器上还设置新鲜催化剂加料口9。
借由图1说明本发明提供的固体酸烷基化方法。
含有异丁烷的新鲜烯烃原料自新鲜原料的进料管17引入,通过第一分支管线19、第二分支管线20、第三分支管线21分别进入径向移动床反应器1的上、中、下三段反应床层前的构件化混合器37,与循环物料管18或来自上游反应床层的反应后物料引出管13中的物料进行混合,而后通过各反应床层的反应物料的进料管引入反应物料空间2;上述液相混合物料经反应物料空间2进入反应物料分布区12,然后径向穿过催化剂床层3与催化剂接触发生反应,最终进入反应后物料收集区11,并通过其后设置的反应后物料引出管13排出本段反应床层。排出的反应后物料与新鲜原料经构件化混合器37混合后进入下一段反 应床层继续参与反应,或经液相产品出口22排出反应器,蒸馏后收集烷基化油产品。处于径向移动床反应器各段反应床层中的催化剂随着反应的进行逐渐失活,同时逐渐下落至更低的反应床层(任选地经催化剂床层底部分布区15)最终到达底部催化剂收集区14;由催化剂出料口23输送至待生剂接收器5,并在其中脱除催化剂中携带的液相混合物料,随后通过待生剂接收器5底部的催化剂输送管线34流入催化剂再生器4;在催化剂再生器4中,选择在含氧氛围下高温氧化再生,或者在含氢氛围下的再生,使催化剂恢复活性;再生催化剂通过催化剂再生器4的底部的催化剂输送管线35流入再生剂接收器6中,并在其中引入液相混合物料置换催化剂间隙中的气体,再生催化剂通过再生剂接收器6的底部的催化剂输送管线36返回径向移动床反应器1,参与反应,直至失活后被输送至待生剂接收器5,如此循环。
图2为构件化混合器的结构示意图。如图2所示,本发明的反应物料的进料管线中的构件化混合器由上部的循环物料管91、下部的进料管92和中部伸入反应物料进料管线中的新鲜原料的进料管93组成,所述的新鲜原料的进料管的出口设有进料管喷嘴94,所述的反应物料的进料管线中设置有填料和/或混合翅片95。
图3为本发明提供的径向移动床反应装置的另一种实施方式的示意图。与图1不同的是液固径向移动床反应器之下设置待生催化剂缓冲罐38,用以保存待生剂接收器在退液相混合物料以及向催化剂再生器排催化剂期间从反应器排出的催化剂,保证反应器内催化剂物料流动的连续性和装置操作的平稳性。
图4为本发明提供的径向移动床反应装置的另一种实施方式的示意图。与图1不同的是,在径向移动床反应器中包括依次间隔放置的催化剂反应床层51、53和催化剂再生床层52、54;
每一个反应床层包括反应物料分布区、催化剂床层和反应后物料收集区,并且每一个反应床层具有反应物料的进料管线和反应后物料引出管,所述的反应物料分布区经反应物料空间与反应物料的进料管线相通,所述的反应后物料收集区与反应后物料引出管相通,每一段反应床层的反应物料的进料管线上设有所述的构件化混合器;
再生床层具有与反应床层类似的物理结构,即,每一个再生床层包括相应的再生介质分布区、催化剂床层和再生介质收集区,并且每 一个再生床层具有再生介质进料管和再生介质引出管,所述的再生介质分布区经再生介质空间与再生介质进料管相通,所述的再生介质收集区与再生介质引出管相通;
反应床层和再生床层中的任何两个相邻的床层通过催化剂输送管相通;反应床层中的催化剂和再生床层中的催化剂通过催化剂输送管从上游床层下落到相邻的下游床层,最终下落至底部催化剂收集区,排出径向移动床反应器;
优选地,除第一段再生床层以外的任何再生床层的再生介质进料管可以为上一段再生床层(上游床层)的再生介质引出管或与之相通。
借由图4说明本发明提供的一种固体酸烷基化反应与临氢再生方法,其中液态新鲜原料17,19,21与循环液相混合物料18或上游反应器反应后物料61混合后进入径向移动床反应器的反应床层51,53中;在反应器的反应床层中,混合料沿反应器径向穿过反应床层,与固体酸催化剂接触并发生反应,反应完毕的大部分(例如,>50vol%,>60vol%,>70vol%,>80vol%,>90vol%,>95vol%,>96vol%,>97vol%,>98vol%,或>99vol%)液相混合物料通过设置的反应产物排出口排出本段,剩余的小部分液相混合物料则跟随催化剂颗粒通过反应床层与催化剂再生床层之间的催化剂输送管进入催化剂再生床层52,54;排出的反应后液相混合物料61与新鲜原料混合后进入反应器的下游的反应床层继续参与反应或排出反应器22,经分离(例如蒸馏)后,收集烷基化油产品。在催化剂再生床层中,新鲜再生介质62经再生介质空间和再生介质分布区进入径向移动床反应器的再生催化剂床层52中,催化剂通过与溶解有氢气的液相再生介质在低温再生条件下进行接触,将吸附在催化剂上的不饱和烃类转化为容易脱附的饱和烃分子带出再生器,实现催化剂的部分再生;再生介质经由作为再生介质引出管和再生介质进料管64的管线63进入下一段的再生催化剂床层,进行低温再生。再生后的催化剂会通过催化剂再生床层底部的催化剂输送管流入下一个反应床层53;处于径向移动床反应器的各个反应床层和催化剂再生床层中的催化剂随着反应的进行以及再生次数的增加,失活程度会逐渐增加,同时也会逐渐下落至更低的反应床层或催化剂再生床层,最终到达径向移动床反应器的底部的催化剂出料口23;最终催化剂被送至催化剂再生器(即高温的深度再生系统),实现催化剂活性的完全恢复; 恢复活性的催化剂送至径向移动床反应器的顶部的催化剂入口24继续参与反应,如此循环。
根据本发明的固体酸烷基化反应与临氢再生方法,在所述的径向移动床反应器中,在反应床层中,反应温度为30-100℃,反应压力为1.0-5.0MPa,液相混合物料在反应器内的表观流速为0.03-1m/s;混合烯烃原料的质量空速为0.05-1h -1;反应床层入口处的烷烃与烯烃的摩尔比为200-1000:1;固体酸催化剂颗粒的平均粒径为0.3-3mm;
在催化剂再生床层中,再生温度为50-140℃,再生介质在再生床层内的表观流速为0.01-0.5m/s;
所述催化剂的主要活性组分为负载有一定量金属的分子筛,所述分子筛为FAU结构沸石、BETA结构沸石、MFI结构沸石及其中的一种或几种的组合,优选为具有FAU结构和BETA结构沸石;所述催化剂上负载的金属为Fe、Co、Ni、Pd和/或Pt中的一种或几种的组合,优选为Co、Ni或Pt的一种或几种的组合,更优选Pt;
所述的再生介质为溶解有氢气的液态烃;液态烃为C3-C5的饱和烷烃或反应产物与上述饱和烷烃的混合物,优选的,液态烃为C3-C5的饱和烷烃与反应产物的混合物;
在催化剂再生器(高温的深度再生系统)中,再生温度为180-400℃,再生压力为0.5-4.0MPa,再生介质为氢气或氢气和低碳烃(如C3-C8)的混合物,优选氢气和低碳烃(如C3-C8)的混合物。
以下的实施例说明本发明提供的液固移动床反应装置的结构和效果。但本发明并不因此而受到任何限制。
实施例和对比例中:
采用的催化剂为FAU结构分子筛球形催化剂,平均粒径为1.8mm。其制备方法为采用中国石化催化剂分公司生产的FAU结构的NaY型分子筛,通过离子交换步骤去除分子筛上的钠离子;然后将分子筛与和氧化铝以65:35的比例混合均匀,采用油氨柱成型法制成小球,进一步经干燥、焙烧制得催化剂。在催化剂的制备中还浸渍了0.4%的Pt。催化剂经过高温空气氧化和高温氢气还原后装入反应器。
由气相色谱法测定烷基化油的组成和辛烷值。
实施例1
在如附图1所示的液固径向移动床反应装置上进行固体酸烷基化 反应。其中,径向移动床反应器1壳体的内径为600mm,从上至下分为三个反应床层,每段反应床层的高度为3.5m。
待生剂接收器、催化剂再生器和再生剂接收器的直径均为1000mm,直管段高均为6m。循环物料管或上游反应区出料管线的直径为250mm,在各段反应区的进料管上设置了如附图2所示的构件化混合器,构件化混合器的新鲜原料的进料管的内径为25mm,循环物料管的内径为250mm,下部的反应物料的进料管的内径为250mm,其中新鲜原料的进料管出口设有喷嘴。
烷基化原料为异丁烷、正丁烷和丁烯等的混合物,从新鲜原料的进料管17进料后,分为三路经构件化混合器混合后进入各自对应的反应床层。
混合后物料的烷烯摩尔比为700:1(即,反应床层入口处的烷烯比),在反应器循环物料管的流速为1.9m/s,相应的新鲜烷基化原料总进料量为482kg/h,混合烯烃原料的质量空速为0.25h -1。反应温度为70℃,反应压力为2.5MPa。采用氮气和空气(1:1)作为催化剂高温深度再生介质,高温深度再生的周期为24h,每次送去高温深度再生的催化剂量占装置反应器内催化剂总量的120wt%,为了保证反应器内催化剂含量恒定,同时需要通过待生剂接收器和再生剂接收器从反应器放出以及向反应器内补充相同重量的催化剂。再生操作的最高温度为480℃,压力接近常压,再生介质氮气及空气在深度再生器中的表观气速为0.1m/s。
当试验装置连续稳定运行1000h后,对所得的烷基化油进行检测和评定,试验结果如表1所示。
实施例2
在如图3所示的流化床实验装置上进行固体酸烷基化反应。在与实施例1相似的径向移动床反应装置上进行固体酸烷基化反应,其区别在于在各段反应区的进料管上设置的构件化混合器采用了具有左螺旋片和右螺旋片交替排布的螺旋形填料。
当试验装置连续稳定运行1000h后,对其所得的烷基化油进行检测和评定,试验结果如表1所示。
对比例1
在两台并联的固定床中型试验装置上进行固体酸烷基化反应,具 体操作过程为,当第一台反应器处于烷基化反应时,第二台反应器进行高温深度再生操作,两台并联的固定床反应器切换使用,进而使得装置可以连续稳定运行。每个固定床反应器的内径为200mm,高2500mm。反应器内装填的催化剂制备方法与实施例1中相同,区别仅为小球的直径为2.7mm,装填量为28kg,装填高度为1500mm。反应原料与实施例1相同,反应床层入口处的烷烯摩尔比为800:1,新鲜混合烯烃的进料量为6.3kg/h,相对于烯烃的质量空速为0.09h -1。每隔24h需要对床层内的催化剂进行一次高温深度再生,采用氮气和空气的混合气(与实施例1相同)在反应温度从常温到480℃,常压下对床层内的催化剂进行氧化再生3h,再生后需要对床层进行冷却操作,整个再生周期24h。再生结束后将处于反应状态的反应器内物料退至再生完毕的反应器,继续用再生后催化剂开展烷基化反应实验,而将退完反应物料的反应器切入再生操作,如此反复循环。
当试验装置连续稳定运行1000h后,对其所得的烷基化油进行检测和评定,试验结果如表1所示。
实施例3
本实施例在图4所示的液固径向移动床反应器中进行,其中所使用的待生剂接收器、催化剂再生器、再生剂接收器和其他未提及的设备与实施例1中的相同或近似。
径向移动床反应器的壳体内径为600mm,包括2个反应床层和2个再生催化剂床层,每段床层的高度为3.5m,依次间隔设置。
反应新鲜原料与实施例1中使用的相同。从新鲜料进料管线进料后,分为两路与循环物料或上游反应后液相混合物料混合后进入各自对应的反应床层。
混合后物料在反应器内分布区的烷烯摩尔比为700±100:1(即,反应床层入口处的烷烯比),混合烯烃原料的质量空速为0.25h -1
使用与实施例1相同的催化剂。
反应床层中的反应温度为70℃,反应压力为2.5MPa。
在催化剂再生床层中,采用溶解有氢气的含有部分烷油的反应后液相混合物料作为催化剂的再生介质,再生温度、压力等条件与反应温度、压力等条件相近。
控制催化剂在径向移动床反应器中的总停留时间为168h。
最终失去活性的催化剂被引入高温深度再生系统中,在再生温度为280℃,再生压力为2.5MPa下采用含有部分低碳烃的氢气进行深度再生,以完全恢复催化剂活性。
恢复活性后的催化剂被重新引至反应器顶部的新鲜催化剂进料口继续参与反应,如此循环。
当试验装置连续稳定运行1000h后,对其所得的烷基化油进行检测和评定,试验结果如表1所示。
表1实施例中装置的运行结果及烷基化产物性质对比
实施方案 RON MON 烯烃C5+收率 TMP/DMH C9+产物wt% 催化剂停留时间
实施例1 95.5 91.5 1.99 3.53 5.12 24h
实施例2 95.7 91.7 2.0 3.62 5.10 24h
实施例3 95.6 92.0 1.94 3.67 5.32 168h
对比例1 95.2 91.3 1.96 3.24 6.76 24h
从表1中可以看出,本发明提供的液固径向移动床反应装置用于固体酸烷基化反应,所得的烷基化油的辛烷值略优于固定床技术,烷基化油中的烯烃收率更高,目标产物(三甲基戊烷)选择性更高,C9+产物的收率也更低。具有更优的产品收率和目标产物选择性。从装置运行角度来看,对于固定床烷基化技术,为了实现反应装置的连续稳定运行,至少需要两台以上的反应器切换操作,每隔一定时间对床层内的催化剂进行高温氧化再生,深度再生后还要对高温床层进行降温操作,由于装置频繁的在70℃和480℃之间进行切换,使得其在工业应用中连续稳定运行时带来了很多问题,而采用径向移动床技术,单台设备即可满足要求,减少了装置的投资成本,另外通过将失活的催化剂颗粒引出反应器外进行深度再生,在不影响反应装置稳定运行的前提下,实现了催化剂反应和再生的连续化操作,维持了装置内的催化剂具有较为稳定的平衡活性,提高了烷基化油中目标产物的选择性。

Claims (19)

  1. 一种液固径向移动床反应装置,其特征在于,该装置包括:
    依次连接的径向移动床反应器、待生剂接收器、催化剂再生器和再生剂接收器,其中,再生剂接收器的催化剂出料口与径向移动床反应器的催化剂入口连通;所述的径向移动床反应器中由内向外,或者由外向内设置有反应物料分布区、催化剂床层和反应后物料收集区,所述的反应物料分布区与反应物料的进料管线相通;所述的反应后物料收集区与反应后物料引出管相通;
    所述的反应物料的进料管线上设置有构件化混合器;所述的构件化混合器由上部的循环物料管、下部的反应物料的进料管和伸入反应物料的进料管线中的新鲜原料的进料管组成,所述的新鲜原料的进料管出口设有进料管喷嘴,所述的反应物料的进料管线中设置有填料和/或混合翅片,其中所述的构件化混合器在径向移动床反应器外。
  2. 按照权利要求1所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器设置有至少两段反应床层,相邻两段反应床层之间设置有催化剂输送管,使得催化剂能够在径向移动床反应器中自上而下移动;两段反应床层之间设置有反应物料空间,所述的反应物料分布区经反应物料空间与反应物料的进料管线相通;每一段反应床层的反应物料的进料管线上设有所述的构件化混合器。
  3. 按照权利要求1-2中任意一项所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器底部的催化剂出料口与所述的待生剂接收器之间的管线上设置了L型或近似L型的物料输送阀组,通过改变进入阀组的液相混合物料流量来调节催化剂的排出速率。
  4. 按照权利要求1-3中任意一项所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器顶部设有顶部催化剂收集区,催化剂入口经所述的顶部催化剂收集区和所述的催化剂输送管相通。
  5. 按照权利要求1-4中任意一项所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器中,下一段反应床层的构件化 混合器的循环物料管为上一段反应床层的反应后物料引出管或与之相通。
  6. 按照权利要求1-5中任意一项所述的液固径向移动床反应装置,其特征在于,连接所述的待生剂接收器、所述的催化剂再生器和所述的再生剂接收器之间的催化剂流通管线为垂直设置或与水平面间的夹角不小于40度。
  7. 按照权利要求1-6中任意一项所述的液固径向移动床反应装置,其特征在于,所述的催化剂再生器或所述的再生剂接收器上还设置新鲜催化剂加料口。
  8. 按照权利要求1-7中任意一项所述的液固径向移动床反应装置,其特征在于,所述的催化剂再生器上部设置再生介质入口,催化剂再生器底部或底部排出管线上设置再生介质出口;所述的再生介质入口处于催化剂再生器直管段由下至上的70%以上的位置,所述的再生介质出口处于催化剂再生器直管段由下至上的20%以下位置。
  9. 按照权利要求1-8中任意一项所述的液固径向移动床反应装置,其特征在于,所述的催化剂再生器的再生介质出口管线上还设置有过滤器。
  10. 按照权利要求1-9中任意一项所述的液固径向移动床反应装置,其特征在于,所述的待生剂接收器底部或底部排出管线上设置液相混合物料排料口。
  11. 按照权利要求1-10中任意一项所述的液固径向移动床反应装置,其特征在于,所述的构件化混合器中,所述的新鲜原料的进料管与所述的循环物料管的横截面积之比为0.001-0.5:1,优选0.002-0.1:1。
  12. 按照权利要求1-11中任意一项所述的液固径向移动床反应装置,其特征在于,所述的径向移动床反应器设置有上下放置的至少一段反应床层和至少一段再生床层,优选地,反应床层的数量为2-8,例 如4-8,再生床层的数量为2-8,例如4-8,优选地2-7,例如4-7;更优选地,再生床层的数量与反应床层的数量相同并且在每一个反应床层下面紧接着设置一个再生床层,或者更优选地,再生床层比反应床层的数目少一个,反应床层和再生床层间隔依次放置,并且径向移动床反应器的顶端和底端均设置为反应床层;
    每一个反应床层包括反应物料分布区、催化剂床层和反应后物料收集区,并且每一个反应床层具有反应物料的进料管线和反应后物料引出管,所述的反应物料分布区经反应物料空间与反应物料的进料管线相通,所述的反应后物料收集区与反应后物料引出管相通,每一段反应床层的反应物料的进料管线上设有所述的构件化混合器;
    每一个再生床层包括相应的再生介质分布区、催化剂床层和再生介质收集区,并且每一个再生床层具有再生介质进料管和再生介质引出管,所述的再生介质分布区经再生介质空间与再生介质进料管相通,所述的再生介质收集区与再生介质引出管相通;
    反应床层和再生床层中的任何两个相邻的床层通过催化剂输送管相通,使得催化剂能够在径向移动床反应器中自上而下移动;反应床层中的催化剂和再生床层中的催化剂通过催化剂输送管从上游床层下落到相邻的下游床层,最终下落至底部催化剂收集区,排出径向移动床反应器;
    优选地,除第一段再生床层以外的任何再生床层的再生介质进料管可以为上一段再生床层(上游床层)的再生介质引出管或与之相通。
  13. 一种固体酸烷基化方法,其特征在于,采用按照权利要求1-12中任意一项所述的液固径向移动床反应装置,烷基化原料与循环物料经构件化混合器混合并分段进入径向移动床反应器中;液相混合物料通过反应物料分布区分布后沿径向穿过催化剂床层,与固体酸催化剂接触并发生反应,反应后的液相混合物料到达物料收集区,作为循环物料或者进一步分离得到烷基化油产品;径向移动床反应器催化剂床层中的固体酸催化剂逐渐失活,逐层下落,最终下落至底部催化剂收集区,排出径向移动床反应器,进入待生剂接收器中,在其中脱除催化剂中携带的液相混合物料,随后流入催化剂再生器中进行再生反应,恢复活性的再生催化剂流入再生剂接收器中,置换脱除其中的气体,返回径向移动床反应器中继续反应。
  14. 按照权利要求13所述的固体酸烷基化方法,其特征在于,所述的烷基化原料为含有烯烃和烷烃的烃馏分。
  15. 按照权利要求13-14中任意一项所述的固体酸烷基化方法,其特征在于,所述的径向移动床反应器中,反应温度为30-100℃,液相混合物料在反应器内的表观流速为0.05-1m/s;混合烯烃原料的质量空速为0.05-1h -1;反应床层入口处的烷烃与烯烃的摩尔比为200-1000:1;固体酸催化剂颗粒的平均粒径为0.3-3mm。
  16. 按照权利要求13-15中任意一项所述的固体酸烷基化方法,其特征在于,所述的催化剂为固体酸催化剂,含有95wt%-65wt%的分子筛和5wt%-35wt%的耐热无机氧化物,其中所述的分子筛选自FAU结构沸石、BETA结构沸石和MFI结构沸石中的一种或几种,所述的耐热无机氧化物为氧化铝和/或氧化硅。
  17. 按照权利要求13-15中任意一项所述的固体酸烷基化方法,其特征在于,所述的催化剂再生器中,待生催化剂与含氧气体在温度为200-500℃、压力为0.01-0.5MPa的条件下氧化反应,脱除待生催化剂上的积炭使得催化剂恢复活性。
  18. 按照权利要求13-15中任意一项所述的固体酸烷基化方法,其特征在于,所述的催化剂再生器中,待生催化剂与含氢气的再生介质接触反应,脱除待生催化剂上的积炭使得催化剂恢复活性,再生温度为100-400℃,再生压力为0.5-3.5MPa。
  19. 按照权利要求17或18中任意一项所述的固体酸烷基化方法,其特征在于,采用按照权利要求12所述的液固径向移动床反应装置,其中:
    新鲜原料与循环物料或上游反应器反应后物料混合后进入径向移动床反应器的反应床层;
    在反应器的反应床层中,混合料沿反应器径向穿过反应床层,与固体酸催化剂接触并发生反应,反应完毕的大部分液相混合物料通过 设置的反应产物排出口排出本段,剩余的小部分液相混合物料则跟随催化剂颗粒通过催化剂输送管进入下一个反应床层或者通过反应床层与催化剂再生床层之间的催化剂输送管进入催化剂再生床层;
    排出的反应后液相混合物料,与新鲜原料混合后进入反应器的下游的反应床层继续参与反应,或排出反应器,经分离(例如蒸馏)后,收集烷基化油产品;
    在催化剂再生床层中,再生介质经再生介质空间和再生介质分布区进入径向移动床反应器的再生催化剂床层,催化剂通过与溶解有氢气的液相再生介质在低温再生条件下进行接触,将吸附在催化剂上的不饱和烃类转化为容易脱附的饱和烃分子带出再生器,实现催化剂的部分再生;
    再生介质可以任选地经由管线进入下一段的再生催化剂床层,进行低温再生;
    低温再生后的催化剂通过催化剂再生床层底部的催化剂输送管流入下一个反应床层;
    处于径向移动床反应器的各个反应床层和催化剂再生床层中的催化剂随着反应的进行以及再生次数的增加,失活程度会逐渐增加,同时也会逐渐下落至更低的反应床层或催化剂再生床层,最终到达径向移动床反应器的底部的催化剂出料口;最终催化剂被送至催化剂再生器进行高温深度再生,实现催化剂活性的完全恢复;
    恢复活性的催化剂送至径向移动床反应器的顶部的催化剂入口继续参与反应;
    在所述的径向移动床反应器中,在反应床层中,反应温度为30-100℃,反应压力为1.0-5.0MPa,液相混合物料在反应器内的表观流速为0.03-1m/s;混合烯烃原料的质量空速为0.05-1h -1;反应床层入口处的烷烃与烯烃的摩尔比为200-1000:1;固体酸催化剂颗粒的平均粒径为0.3-3mm;
    在催化剂再生床层中,再生温度为50-140℃,再生介质在再生床层内的表观流速为0.01-0.5m/s;所述的再生介质为溶解有氢气的液态烃;液态烃为C3-C5的饱和烷烃或反应产物与上述饱和烷烃的混合物,优选的,液态烃为C3-C5的饱和烷烃与反应产物的混合物;
    所述催化剂的主要活性组分为负载有一定量金属的分子筛,所述 分子筛为FAU结构沸石、BETA结构沸石、MFI结构沸石及其中的一种或几种的组合,优选为具有FAU结构和BETA结构沸石;所述催化剂上负载的金属为Fe、Co、Ni、Pd和/或Pt中的一种或几种的组合,优选为Co、Ni或Pt的一种或几种的组合,更优选Pt;
    在催化剂再生器中,再生温度为180-400℃,再生压力为0.5-4.0MPa,再生介质为氢气或氢气和低碳烃(如C3-C8)的混合物,优选氢气和低碳烃(如C3-C8)的混合物。
PCT/CN2019/113950 2018-10-29 2019-10-29 一种液固径向移动床反应装置和一种固体酸烷基化方法 WO2020088440A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19879861.3A EP3875171A4 (en) 2018-10-29 2019-10-29 RADIAL LIQUID-SOLID MOVING BED REACTION DEVICE AND SOLID ACID ALKYLATION PROCESS
CA3118248A CA3118248A1 (en) 2018-10-29 2019-10-29 A liquid-solid radial moving bed reaction apparatus and a solid acid alkylation process
US17/289,773 US20210394143A1 (en) 2018-10-29 2019-10-29 Liquid-solid radial moving bed reaction device and solid acid alkylation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811270089.8A CN111100682B (zh) 2018-10-29 2018-10-29 一种固体酸烷基化方法
CN201811270073.7 2018-10-29
CN201811270073.7A CN111097338A (zh) 2018-10-29 2018-10-29 一种液固径向移动床反应装置
CN201811270089.8 2018-10-29

Publications (1)

Publication Number Publication Date
WO2020088440A1 true WO2020088440A1 (zh) 2020-05-07

Family

ID=70462052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113950 WO2020088440A1 (zh) 2018-10-29 2019-10-29 一种液固径向移动床反应装置和一种固体酸烷基化方法

Country Status (5)

Country Link
US (1) US20210394143A1 (zh)
EP (1) EP3875171A4 (zh)
CA (1) CA3118248A1 (zh)
TW (1) TW202027854A (zh)
WO (1) WO2020088440A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558521B (zh) * 2022-03-10 2023-01-10 无锡碳谷科技有限公司 一种分层布料移动床反应装置及使用方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849976A (en) 1994-07-27 1998-12-15 Uop Llc Moving bed solid catalyst hydrocarbon alkylation process
US5863419A (en) * 1997-01-14 1999-01-26 Amoco Corporation Sulfur removal by catalytic distillation
CN102191081A (zh) * 2010-03-11 2011-09-21 中国石油化工股份有限公司 一种固体酸烷基化方法
US8373014B2 (en) 2009-12-17 2013-02-12 Uop Llc Solid catalyst hydrocarbon alkylation using stacked moving bed radial flow reactors
CN105396517A (zh) * 2014-09-05 2016-03-16 中国石油化工股份有限公司 一种流化床反应与再生装置及固体酸烷基化方法
CN105457566A (zh) * 2014-09-05 2016-04-06 中国石油化工股份有限公司 一种流化床反应与再生装置及固体酸烷基化方法
CN105617946A (zh) * 2014-10-27 2016-06-01 中国石油化工股份有限公司 一种移动床径向流反应器及其应用
CN107983270A (zh) * 2016-10-27 2018-05-04 中国石油化工股份有限公司 一种移动床反应器、固体酸烷基化反应系统及固体酸烷基化反应方法
CN209254707U (zh) * 2018-10-30 2019-08-16 中石化广州工程有限公司 径向移动床反应装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2475855A (en) * 1947-10-13 1949-07-12 Sun Oil Co Catalytic reaction apparatus
US3573200A (en) * 1968-12-04 1971-03-30 Chevron Res Catalyst makeup
US4420418A (en) * 1981-11-19 1983-12-13 Mobil Oil Corporation Para-selective zeolite catalysts
US4879424A (en) * 1988-09-19 1989-11-07 Mobil Oil Corporation Conversion of alkanes to gasoline
US5840176A (en) * 1994-05-06 1998-11-24 Uop Llc Replacement of particles in a moving bed process
US5879537A (en) * 1996-08-23 1999-03-09 Uop Llc Hydrocarbon conversion process using staggered bypassing of reaction zones
US6689331B1 (en) * 1997-04-14 2004-02-10 Institut Francais du Pétrole Staged combustion process and apparatus for regenerating a reforming or aromatic compound production catalyst in a moving bed
US7388106B2 (en) * 2005-10-14 2008-06-17 Basf Aktiengesellschaft Process for preparing acrolein or acrylic acid or a mixture thereof from propane
US7582268B1 (en) * 2006-07-12 2009-09-01 Uop Llc Reactor system with interstage product removal
CN105441116B (zh) * 2014-09-05 2017-11-28 中国石油化工股份有限公司 一种固体酸烷基化反应方法
CN105567306B (zh) * 2014-10-16 2019-01-08 中国石油化工股份有限公司 用于固体酸烷基化的模拟移动床反应与再生装置及原料反应与催化剂再生的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849976A (en) 1994-07-27 1998-12-15 Uop Llc Moving bed solid catalyst hydrocarbon alkylation process
US5863419A (en) * 1997-01-14 1999-01-26 Amoco Corporation Sulfur removal by catalytic distillation
US8373014B2 (en) 2009-12-17 2013-02-12 Uop Llc Solid catalyst hydrocarbon alkylation using stacked moving bed radial flow reactors
CN102191081A (zh) * 2010-03-11 2011-09-21 中国石油化工股份有限公司 一种固体酸烷基化方法
CN105396517A (zh) * 2014-09-05 2016-03-16 中国石油化工股份有限公司 一种流化床反应与再生装置及固体酸烷基化方法
CN105457566A (zh) * 2014-09-05 2016-04-06 中国石油化工股份有限公司 一种流化床反应与再生装置及固体酸烷基化方法
CN105617946A (zh) * 2014-10-27 2016-06-01 中国石油化工股份有限公司 一种移动床径向流反应器及其应用
CN107983270A (zh) * 2016-10-27 2018-05-04 中国石油化工股份有限公司 一种移动床反应器、固体酸烷基化反应系统及固体酸烷基化反应方法
CN209254707U (zh) * 2018-10-30 2019-08-16 中石化广州工程有限公司 径向移动床反应装置

Also Published As

Publication number Publication date
TW202027854A (zh) 2020-08-01
CA3118248A1 (en) 2020-05-07
US20210394143A1 (en) 2021-12-23
EP3875171A4 (en) 2022-08-10
EP3875171A1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
CN102355947A (zh) 脱氢方法和催化剂
CN107983270B (zh) 一种移动床反应器、固体酸烷基化反应系统及固体酸烷基化反应方法
CN105457566A (zh) 一种流化床反应与再生装置及固体酸烷基化方法
CN111068591B (zh) 一种液固轴向移动床反应与再生装置及其应用
WO2020088440A1 (zh) 一种液固径向移动床反应装置和一种固体酸烷基化方法
CN105396517B (zh) 一种流化床反应与再生装置及固体酸烷基化方法
CN105567305A (zh) 用于固体酸烷基化的模拟移动床反应与再生装置及原料反应与催化剂再生的方法
WO2016061905A1 (zh) 一种低碳烯烃的制造方法
CN112569873B (zh) 固体酸烷基化反应与再生装置及固体酸烷基化反应与再生方法
WO2020083279A1 (zh) 一种液固轴向移动床反应与再生装置和一种固体酸烷基化方法
CN104069778B (zh) 一种在线硫化烷烃脱氢制烯烃的流化床反应装置和方法
CN105567306A (zh) 用于固体酸烷基化的模拟移动床反应与再生装置及原料反应与催化剂再生的方法
CN111068590B (zh) 一种固体酸烷基化方法
CN105457567B (zh) 一种流化床固体酸烷基化反应与再生装置及应用方法
CN111100682B (zh) 一种固体酸烷基化方法
CN114426888B (zh) 一种固定床烷基化反应再生装置和固体酸烷基化反应与再生方法
CN115537229B (zh) 延长固体酸烷基化反应运转周期的方法和反应装置
CN111097338A (zh) 一种液固径向移动床反应装置
CN108080009A (zh) 一种烷烃异构化反应-再生装置及方法
CN105617954B (zh) 一种甲醇转化反应器及反应系统和甲醇转化的方法
CN108441257B (zh) 一种重油裂解轻质石油烃原位烷基化的方法
CN112745893B (zh) 待生催化剂进行再生的方法、含硫烃脱硫的方法和装置
CN110872528B (zh) 固体酸烷基化反应方法、烷基化反应装置及系统
CN106893608B (zh) 一种裂解c9馏分油的加工利用方法
CN116554917A (zh) 一种移动床固体酸烷基化连续反应系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3118248

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019879861

Country of ref document: EP

Effective date: 20210531