WO2020087850A1 - 显示屏及显示终端 - Google Patents

显示屏及显示终端 Download PDF

Info

Publication number
WO2020087850A1
WO2020087850A1 PCT/CN2019/079930 CN2019079930W WO2020087850A1 WO 2020087850 A1 WO2020087850 A1 WO 2020087850A1 CN 2019079930 W CN2019079930 W CN 2019079930W WO 2020087850 A1 WO2020087850 A1 WO 2020087850A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
electrode
electrodes
display panel
electrode lead
Prior art date
Application number
PCT/CN2019/079930
Other languages
English (en)
French (fr)
Inventor
楼均辉
宋艳芹
李高敏
张露
Original Assignee
云谷(固安)科技有限公司
昆山国显光电有限公司
昆山维信诺科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司, 昆山国显光电有限公司, 昆山维信诺科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020087850A1 publication Critical patent/WO2020087850A1/zh
Priority to US16/930,326 priority Critical patent/US11404531B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present application relates to the field of display technology, in particular to a display screen and a display terminal using the display screen.
  • the present application provides a display screen having an adjacent first display area and a second display area, at least part of the first display area is connected to the second display area; the first display area and the The second display area is used for displaying pictures; the display screen further includes a first display panel provided in the first display area and a second display panel provided in the second display area; the first display panel
  • the method includes: a first substrate; a first electrode layer formed on the first substrate, the first electrode layer includes a plurality of first electrodes, at least one end of the first electrode is adjacent to the second display panel A first pixel defining layer formed on the first electrode layer; a second electrode layer formed on the first pixel defining layer, the second electrode layer includes a plurality of second electrodes, the plurality A second electrode is disposed across the plurality of first electrodes; and a plurality of electrode lead wires are used to lead the plurality of first electrodes, and the plurality of electrode lead wires are respectively connected to the plurality of first electrodes, And the plurality of electrode lead wires and the pluralit
  • the plurality of electrode lead-out lines are disposed below the first pixel defining layer and between the first electrode layer and the first substrate, and are connected to the plurality of electrode lead-out lines
  • a signal shielding layer is provided between the first electrode layer and the first electrode layer.
  • the signal shielding layer is overlaid on the plurality of electrode lead-out lines, the signal shielding layer is provided with openings, the first electrode layer is formed on the signal shielding layer and A conductive material is formed in the opening to connect the first electrode layer and the plurality of electrode lead wires.
  • the plurality of electrode lead-out lines are disposed below the first pixel defining layer and above the first electrode layer, and between the plurality of electrode lead-out lines and the first electrode layer There is a signal shielding layer.
  • the first display area includes adjacent first and second sub-display areas, a photosensitive device is disposed below the first sub-display area, and the first pixel defining layer includes A transparent first pixel defining layer corresponding to the first sub-display area, the transparent first pixel defining layer is a transparent material.
  • the first pixel defining layer further includes a light blocking first pixel defining layer corresponding to the second sub-display area, and the light blocking first pixel defining layer is an opaque material.
  • the first display panel is a PMOLED display panel
  • the plurality of first electrodes are a plurality of arcs connected
  • the plurality of first electrodes extend in parallel in the same direction, and the phase There is a pitch between adjacent first electrodes; and in the extending direction of the plurality of first electrodes, the width of each first electrode continuously changes or intermittently changes, and the pitch continuously changes or intermittently changes.
  • the plurality of second electrodes are a plurality of contiguous arcs, the plurality of second electrodes extend in parallel in the same direction, and there is a gap between adjacent second electrodes; and In the extending direction of the plurality of second electrodes, the width of each second electrode continuously changes or intermittently changes, and the pitch continuously changes or intermittently changes
  • the sides of the plurality of electrode lead-out lines are arranged in a plurality of arcs that are in contact with each other, the plurality of electrode lead-out lines extend in parallel in the same direction, and adjacent electrode lead-out lines There is a gap between them; and in the extending direction of the plurality of electrode lead wires, the width of the plurality of electrode lead wires changes continuously or intermittently, and the pitch changes continuously or intermittently.
  • a plurality of pixel openings are formed on the first pixel defining layer, and the shape of each pixel opening is one of a circle, an ellipse, a dumbbell, or a gourd.
  • the orthographic projections of the plurality of electrode lead lines and the plurality of second electrodes on the first substrate are offset from each other.
  • the present application also provides a display screen having an adjacent first display area and a second display area, at least a portion of the first display area is connected to the second display area; the first display area and all The second display area is used for displaying pictures; the display screen further includes a first display panel provided in the first display area and a second display panel provided in the second display area, the first display The area has a plurality of display partitions, each display partition is provided with a sub-display panel, the sub-display panel includes: a first substrate; a first electrode layer formed on the first substrate, the first electrode layer includes a plurality of First electrodes, at least one end of the first electrode is adjacent to the second display panel; a first pixel defining layer is formed on the first electrode layer; a second electrode layer is formed on the first On the pixel defining layer, the second electrode layer includes a plurality of second electrodes; and each sub-display panel is independently driven.
  • the first display panel is a PMOLED display panel
  • the second electrode layer includes a plurality of second electrodes, the plurality of second electrodes intersecting the plurality of first electrodes
  • the first display panel further includes a plurality of electrode lead-out lines for leading out the first electrodes, each first electrode in at least one display section is provided with the electrode lead-out lines, and the plurality of electrode lead-out lines are respectively It is connected to the plurality of first electrodes, and the plurality of electrode lead lines in the same display section and the plurality of second electrodes extend in parallel in the same direction.
  • the display partitions are three or more, each display partition is connected in sequence, and the plurality of second electrodes of each display partition are parallel and spaced apart from each other, and are located at least two adjacent Each first electrode in the display section between the display sections is provided with the electrode lead-out line.
  • the plurality of electrode lead-out lines are disposed below the first pixel defining layer and between the first electrode layer and the first substrate, and are connected to the plurality of electrode lead-out lines
  • a signal shielding layer is provided between the first electrode layer and the first electrode layer.
  • the plurality of electrode lead-out lines are disposed below the first pixel defining layer and above the first electrode layer, and between the plurality of electrode lead-out lines and the first electrode layer There is a signal shielding layer.
  • the first display area includes adjacent first and second sub-display areas, a photosensitive device is disposed below the first sub-display area, and the first pixel defining layer includes A transparent first pixel defining layer corresponding to the first sub-display area, the transparent first pixel defining layer is a transparent material.
  • the first pixel defining layer further includes a light blocking first pixel defining layer corresponding to the second sub-display area, and the light blocking first pixel defining layer is an opaque material.
  • the first display panel is an AMOLED display panel or an AMOLED-like display panel
  • the AMOLED-like display panel includes a plurality of pixel circuits disposed on the first substrate, the first electrode layer is disposed on the plurality of pixel circuits, and the pixel circuit includes only one switching device;
  • the first pixel defining layer has a plurality of pixel openings, and a light emitting structure is provided in the pixel opening, each first electrode corresponds to a light emitting structure, and the first electrode is circular, oval, dumbbell-shaped, or gourd-shaped one of them.
  • the present application also provides a display terminal, including: a device body having a device area; and a display screen as described above, covering the device body; the device area is located below the first display area, and the A photosensitive device for collecting light through the first display area is provided in the device area.
  • FIG. 1 is a schematic diagram of a display screen according to an embodiment.
  • FIG. 2 is a schematic diagram of the first display area in an embodiment.
  • FIG 3 is a cross-sectional view of the first display panel in an embodiment.
  • FIG. 4 is a top view of the first display panel in an embodiment.
  • FIG. 5 is a schematic diagram of the second electrode of the first display panel in an embodiment.
  • FIG. 6 is a schematic diagram of a pixel opening in the first pixel defining layer in an embodiment.
  • each sub-display panel 7 is a top view of each sub-display panel in an embodiment.
  • FIG. 8 is a top view of each sub-display panel in another embodiment.
  • FIG. 9 is a cross-sectional view of a first display panel in another embodiment.
  • FIG. 10 is a schematic diagram of the circuit principle of the pixel circuit in an embodiment.
  • FIG. 11 is a schematic diagram of a display terminal in an embodiment.
  • FIG. 12 is a schematic diagram of the device body in an embodiment.
  • an element when referred to as being “fixed” to another element, it can be directly on the other element or there can also be a centered element. When an element is considered to be “connected” to another element, it may be directly connected to another element or there may be a center element at the same time.
  • PMOLED Passive matrix organic-light-emitting diode
  • the pixels in the array are illuminated by scanning.
  • Each pixel operates in a short pulse mode
  • the transparent display can use a high-transparency PMOLED display, and to ensure the display effect, the other areas are still AMOLED diode, active matrix organic light-emitting diode) display screen. If the lead line of the PMOLED is still drawn from the side of the PMOLED, it will increase the width of the side of the PMOLED or increase the width of the bonding interface between the PMOLED and AMOLED, thereby affecting the display effect.
  • the lead line of the PMOLED in the groove area is drawn from the side of the PMOLED, which will increase the width of the side of the PMOLED or increase the width of the bonding interface between the PMOLED and AMOLED, thereby affecting the display effect, providing a display screen that can improve the display effect And display terminal.
  • FIG. 1 is a schematic diagram of a partition of a display screen according to an embodiment. Please refer to FIG. 1, the present application provides a display screen 100 according to an embodiment.
  • the display screen 100 includes adjacent first display area AA1 and second display area AA2.
  • At least part of the first display area AA1 is connected to the second display area AA2. Both the first display area AA1 and the second display area AA2 are used to display pictures.
  • the shape of the first display area AA1 may be a circle, an ellipse, a rectangle, or other irregular graphics.
  • the first display area AA1 may be disposed in the top middle area of the display screen, and the first display area AA1 is rectangular, so that there is three-face contact with the second display area AA2, as shown in FIG. 1.
  • the first display area AA1 may also be disposed in the left middle area or the right middle area of the second display area AA2.
  • the first display area AA1 may also be disposed inside the second display area AA2, so that the first display area AA1 is completely surrounded by the second display area AA2.
  • the number of the second display area AA2 and the first display area AA1 are both one. In other embodiments, the number of the second display area AA2 and the first display area AA1 may be two or two the above. Both the second display area AA2 and the first display area AA1 are used to display pictures.
  • FIG. 2 is a schematic diagram of the first display area AA1 in an embodiment, showing the division of the first display area AA1.
  • the first display area AA1 includes a first sub-display area AA12 and a second sub-display area AA14, as shown in FIG. 2.
  • a photosensitive device may be provided under the second sub-display area AA14.
  • the number of the second sub-display area AA14 is two, and both are surrounded by the first sub-display area AA12.
  • the number of the second sub-display area AA14 may also be set to one.
  • the number of the second sub-display area AA14 can be determined according to the position setting of the photosensitive device in the display terminal. For example, when the front camera of the display terminal uses a dual camera, two second sub-display areas AA14 may be provided, and each second sub-display area AA14 corresponds to one camera.
  • the display screen 100 includes a first display panel 110 and a second display panel 120.
  • the first display panel 110 is disposed in the first display area AA1.
  • the second display panel 120 is disposed in the second display area AA2.
  • the first display panel 110 and the second display panel 120 may be manufactured separately, or may be manufactured simultaneously to form an integrated screen.
  • the first display panel 110 is a PMOLED display panel
  • the second display panel 120 is an AMOLED display panel.
  • PMOLED simply forms a matrix with a cathode and an anode, and illuminates the pixels in the array in a scanning manner. Each pixel is operated in a short pulse mode and emits light with high brightness in an instant.
  • the advantage is simple structure, which can effectively reduce manufacturing costs.
  • FIG. 3 is a cross-sectional view of the first display panel 110 in an embodiment
  • FIG. 4 is a top view of the first display panel in an embodiment.
  • the first display panel 110 includes a first substrate 111; a first electrode layer (that is, a layer where a plurality of first electrodes 112 is located) is formed on the first substrate 11; a first pixel defining layer (not shown) is formed on the first On an electrode layer; a second electrode layer (that is, a layer where a plurality of second electrodes 114 are located) is formed on the first pixel defining layer; and a plurality of electrode lead lines 116.
  • AMOLED has a TFT (Thin Film Transistor) array substrate. It uses an independent thin film transistor to control each pixel. Each pixel can drive light continuously and independently. It can be driven by low-temperature polysilicon or oxide TFT. The advantage is that the driving voltage is low , Long life of light-emitting components.
  • TFT Thin Film Transistor
  • the second display panel 120 includes a second substrate and a TFT array (not shown) sequentially formed on the second substrate, a second pixel defining layer (not shown), an anode (not shown), and a light emitting structure ( (Not shown) and the cathode to form an AMOLED display panel.
  • the anode of the second display panel 120 corresponds to the thin film transistor and the light emitting structure of the TFT array in one-to-one correspondence
  • the cathode of the second display panel 120 may be a surface electrode.
  • the second pixel defining layer is an opaque material to ensure that the data lines of the second display panel 120 are not visible, thereby improving the visual effect of the display screen.
  • the anode of the AMOLED display panel is generally patterned and formed corresponding to each sub-pixel; and the cathode of the AMOLED display panel is generally the entire surface electrode, covering the entire TFT array substrate provided with multiple sub-pixels.
  • the TFT array substrate may include a substrate, a buffer layer, a thin film transistor, and other structures.
  • the anode and cathode of the PMOLED display panel are generally strip-shaped, that is, the first display panel 110 of the first display area AA1 includes a plurality of crossed anode strips and a plurality of cathodes
  • the stripe forms a sub-pixel at the position where the anode stripe and the cathode stripe overlap. Therefore, the three sides of the PMOLED display panel are connected to the AMOLED display panel.
  • the present application proposes a method for adding an electrode lead-out line, which leads the electrode lead-out from the edge connected to the AMOLED display panel from the edge of the PMOLED display panel not connected to the AMOLED display panel.
  • the cathode is located above, there is no need to lead out, and the anode bar is located below the cathode bar (lower in this application refers to the direction closer to the substrate, upper refers to the direction away from the substrate, the same applies below), and the anode bar has Many functional film layers, such as passivation layer, signal shielding layer, etc., these functional film layers provide advantages for the arrangement of the leads.
  • the first display panel 110 includes a first substrate 111; a first electrode layer (ie, a layer where a plurality of first electrodes 112 is located) is formed on the first substrate 111, and the first electrode layer includes a plurality of first electrodes 112.
  • a first pixel defining layer (not shown) is formed on the first electrode layer; a second electrode layer (that is, a layer where a plurality of second electrodes 114 are located) is formed on the first pixel defining layer, and the second electrode layer includes A plurality of second electrodes 114; and a plurality of electrode lead wires 116 for leading a plurality of first electrodes 112, the plurality of electrode lead wires 116 are respectively connected to the plurality of first electrodes 112, and the plurality of electrode lead wires 116 are respectively connected to The plurality of second electrodes 114 extend in parallel in the same direction.
  • At least one end of the first electrode 112 is adjacent to the second display panel 120.
  • the plurality of second electrodes 114 cross the plurality of first electrodes 112.
  • the first display panel 110 further includes a plurality of electrode lead wires 116 for leading the plurality of first electrodes 112, each electrode lead wire 116 is connected to each first electrode 112, and each electrode lead wire 116 is respectively connected to each second electrode 114 Extend in parallel in the same direction.
  • the above-mentioned display screen 100 has a first display area AA1 and a second display area AA2 both used for displaying pictures, and can truly realize full-screen display. In this way, each electrode lead line 116 and each second electrode 114 extend in parallel in the same direction, and thus can be drawn from the same side edge of the first display panel 110.
  • the width of the side frame of at least one side of the first display panel 110 can be reduced, and the problem of increasing the side width of the first display panel is avoided , Thereby increasing the area of the display area and improving the display effect of the display screen.
  • the electrode lead 116 is drawn from the edge of the PMOLED display panel that is not connected to the AMOLED display panel.
  • the first substrate and the second substrate may be the same substrate.
  • a plurality of first electrodes 112 extend in parallel in the same direction, and there is a gap between two adjacent first electrodes 112.
  • the plurality of second electrodes 114 extend in parallel in the same direction, and there is a gap between two adjacent second electrodes 114.
  • a plurality of electrode lead wires 116 extend in parallel in the same direction, and there is a gap between two adjacent electrode lead wires 116.
  • the sides of one or more of the first electrode 112, the second electrode 114, and the electrode lead-out line 116 are arranged in a plurality of arcs that are in contact with each other.
  • the widths of the plurality of connected arc traces continuously change or intermittently change, and the interval continuously changes or intermittently changes.
  • Continuously changing width means that the widths at any two adjacent positions on multiple connected arc traces are different.
  • the discontinuous change in width means that there are multiple adjacent arc traces in which the widths of two adjacent positions in the partial area are the same, and the widths of the adjacent two positions in the partial area are not the same.
  • the external light passes through the signal
  • the positions of the diffraction fringes generated at different positions of a plurality of connected arc-shaped traces are different.
  • the diffraction fringes at different positions cancel each other, which can effectively reduce the diffraction effect, thereby ensuring that when the camera is disposed below the first display panel 110, the captured graphics have high definition.
  • the first electrode layer may be an anode layer.
  • the electrode lead 116 is provided on the first substrate 111.
  • the signal shielding layer 113 is disposed on the electrode lead-out line 116 and covers the electrode lead-out line 116.
  • the first electrode layer is formed on the signal shielding layer 113.
  • the first pixel defining layer is formed on the first electrode layer.
  • the electrode lead line 116 is disposed below the first pixel defining layer, and avoids the area where the photosensitive device such as a camera is located. By disposing the electrode lead 116 under the first pixel defining layer and avoiding the area where the camera is located, the interference of the electrode lead 116 to the light emitting area and the normal operation of the camera can be avoided. Furthermore, by forming the signal shielding layer 113 between the electrode lead 116 and the first electrode layer, it can be ensured that the electrode lead 116 does not cause signal interference to the first electrode layer.
  • the electrode lead 116 is located between the first electrode layer and the first substrate 111. That is, the electrode lead 116 is prepared before the first electrode layer. In addition, the electrode lead 116 is disposed below the first electrode layer, so that the influence on the operation of the first electrode layer can be reduced. At this time, the first electrode layer is an anode layer. In another embodiment, the electrode lead 116 may also be disposed above the first electrode layer and below the first pixel defining layer.
  • the signal shielding layer 113 when the signal shielding layer 113 is disposed between the electrode lead 116 and the first electrode 112, the signal shielding layer 113 is overlaid on the electrode lead 116, and the signal shielding layer 113 is provided with openings on the signal shielding layer 113
  • the first electrode 112 is formed, and the material of the first electrode 112 is formed in the opening so that the first electrode 112 and the electrode lead 116 are connected.
  • the first electrode layer is the cathode layer at this time, so as to avoid the electrode lead 116 from interfering with its normal operation.
  • the first substrate 111 includes a glass substrate and a flexible substrate formed over the glass substrate. By adding a flexible substrate, it can be ensured that the first substrate has a certain bending performance.
  • the first pixel defining layer includes a light blocking first pixel defining layer corresponding to the first sub-display area AA12.
  • the light blocking first pixel defining layer may be an opaque material (such as a light blocking or light absorbing material, Such as black organic glue, etc.). Since the first sub-display area AA12 does not require a camera, the light transmittance of this area is relatively low.
  • the first pixel defining layer further includes a light-transmitting first pixel defining layer corresponding to the second sub-display area AA14.
  • the light-transmitting first pixel defining layer is a light-transmitting material.
  • the electrode lead 116 is a metal or a transparent metal oxide material.
  • the electrode lead 116 is made of a transparent metal oxide, indium tin oxide (ITO), indium zinc oxide (IZO), silver-doped indium tin oxide (Ag + ITO), or silver-doped indium zinc oxide can be used (Ag + IZO) etc.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • Ag + ITO silver-doped indium tin oxide
  • Ag + IZO silver-doped indium zinc oxide
  • FIG. 6 is a schematic structural diagram of the pixel opening 123 in the first pixel defining layer of the first display panel 110 in an embodiment.
  • a pixel opening 123 is formed in the first pixel defining layer.
  • Each pixel opening 123 of the first pixel defining layer corresponds to a light emitting structure.
  • the shape of each pixel opening 123 is one of a circle, an ellipse, a dumbbell, or a gourd. Specifically, as shown in FIG. 6, the shape of the pixel opening 123 is a dumbbell.
  • each sub-pixel By setting each sub-pixel to one of a circle, an ellipse, a dumbbell, or a gourd, so that when external light passes through the light-emitting structure, the positions of diffraction fringes generated at different positions of the sub-pixel are different.
  • the diffraction fringes at different positions cancel each other, which can effectively reduce the diffraction effect, thereby ensuring that when the camera is disposed below the first display panel 110, the captured graphics have high definition.
  • the circular, elliptical, dumbbell or gourd shape can maximize the area of each sub-pixel to further increase the light transmittance.
  • the solution for setting the electrode lead line 116 of the present application can be applied to a pure PMOLED display panel, and can also be used for a composite screen of a PMOLED display panel and an AMOLED display panel.
  • the display screen 100 is a composite screen of a PMOLED display panel and an AMOLED display panel, that is, the first display panel 110 of the first display area AA1 is a PMOLED display panel, and the second display panel 120 of the second display area AA2 is an AMOLED display panel.
  • the display screen 100 shown in FIG. 1 it has both an AMOLED display panel and a PMOLED display panel, which is a composite screen of the two. Because the PMOLED display panel has no TFT drive array, the light transmittance is high.
  • a photosensitive device can be provided under the PMOLED display panel.
  • the photosensitive device can obtain light from the first display area AA1; when the photosensitive device is not operating, the first display area AA1 can display the picture normally. Thereby improving the display effect of the mobile phone.
  • the PMOLED display panel when both the AMOLED display panel and the PMOLED display panel are compounded, part of the edges of the PMOLED display panel are connected to the AMOLED display panel, that is, the PMOLED display panel also has edges that are not connected to the AMOLED display panel.
  • the first display area AA1 is at the top of the second display area AA2, and the top of the first display area AA1 is flush with the top of the second display area AA2.
  • the first display area AA1 is located at the edge of the entire display screen 100, which can reduce the impact on the display screen effect. Accordingly, the electrode extraction line 116 is extracted from the top of the first display area AA1.
  • the signal shielding layer 113 and the passivation layer, the interlayer insulating layer or the planarization layer of the second display panel 120 are formed in the same process step.
  • the signal shielding layer 113 can be formed in the same layer, the same material, and simultaneously when the passivation layer, the interlayer insulating layer, or the planarization layer is formed on the AMOLED display panel, so that the process and the thickness and structure of the film layer are not increased .
  • the electrode lead-out line 116 and the source-drain layer or the gate layer of the second display panel 120 are formed in the same process step, and the light-blocking first pixel defining layer is an opaque material. That is to say, the electrode lead-out line 116 can be formed in the same layer, the same material and the same time as the source-drain layer or the gate layer in the AMOLED display panel.
  • the light-blocking first pixel defining layer of the opaque material can make the electrode lead-out line 116 Invisible, this not only saves the process, but also avoids the increase in film thickness caused by the increase in film layer.
  • the first pixel defining layers of the first display area AA1 are all light-transmitting materials.
  • the electrode lead 116 is a transparent metal oxide material.
  • the electrode lead 116 is parallel to the second electrode 114, that is to say, the extending direction of the electrode lead 116 is the same as the extending direction of the second electrode 114. In this way, the electrode lead 116 is drawn from the same side as the lead edge of the second electrode 114.
  • the orthographic projections of the electrode lead 116 and the second electrode 114 on the first substrate 111 are offset from each other. Specifically, the orthographic projection of the electrode lead 116 on the first substrate 111 is located between two adjacent second electrodes 114 or outside the second electrode 114 at the outermost edge. In this way, the position where the first electrode 112 and the second electrode 114 overlap is avoided, that is, the arrangement of the electrode lead 116 avoids the sub-pixel, thereby avoiding the arrangement of the electrode lead 116 to affect the sub-pixel and thus the display 100 problem.
  • the connection between the electrode lead 116 and the first electrode 112 is provided with an opening, it will cause the first electrode 112 to sink slightly there, which is not conducive to the formation of sub-pixels.
  • the orthographic projection of the electrode lead 116 on the first substrate 111 is between two adjacent second electrodes 114.
  • the width of the PMOLED display panel along the extending direction of the first electrode 112 may not be increased as much as possible. It can be understood that the electrode lead 116 is evenly distributed in the area between the two adjacent second electrodes 114 or the area outside the outermost second electrode 114 as much as possible to ensure that the arrangement of the electrode lead 116 does not affect other ⁇ Film layer.
  • each electrode lead wire 116 may be provided between two adjacent second electrodes 114. It can be understood that the length of each electrode lead 116 may be set differently, or the length of some electrode lead 116 may be set to be the same. Optionally, the length of each electrode lead 116 is set to be different as much as possible. Optionally, one end of each electrode lead 116 is aligned and the other end is used to connect with the first electrode 112.
  • the first display area AA1 of the present application has a plurality of display partitions AA11, and each display partition AA11 is provided with a sub-display panel 1012.
  • the sub-display panels 1012 each include the above-mentioned first substrate 111, first electrode layer, first pixel defining layer and Second electrode layer.
  • the first electrode layer includes a plurality of first electrodes 112, and at least one end of the first electrode 112 is adjacent to the second display panel 120.
  • Each sub-display panel 1012 is independently driven.
  • each sub-display panel 1012 are independent of each other, that is to say, the first electrode layer and the second electrode layer in different sub-display panels 1012 can write signals independently, and The signal can be written synchronously.
  • each sub-display panel 1012 is scanned in the scanning direction 103 shown in FIG. 7 during scanning, Therefore, the number of scanned lines can be greatly reduced, and the luminous time of each line can be increased by increasing the scanning time of each line, so as to achieve the purpose of improving the brightness of the first display area AA1 without reducing the resolution.
  • the second electrode layer includes a plurality of second electrodes 114.
  • a plurality of second electrodes 114 and a plurality of first electrodes 112 cross to form a sub-display panel 1012.
  • At least one sub-display panel 1012 is provided with a plurality of electrode lead-out lines 116, and each electrode lead-out line 116 and each second electrode 114 in the same display section extend in parallel in the same direction.
  • Each first electrode 112 of at least one sub-display panel 1012 is provided with an electrode lead 116.
  • the electrode lead 116 and the second electrode 114 are drawn from the same side edge of the PMOLED display panel.
  • the width of the frame on one side of the PMOLED display panel can be reduced, which avoids the problem of increasing the width of the side of the PMOLED, thereby increasing the display The area of the area and improve the display effect of the display screen.
  • the first electrode 112 needs to be drawn from the edge of the PMOLED display panel connected to the AMOLED display panel using traditional wiring, so it is inevitable to increase the PMOLED display panel and The width of the bonding interface between AMOLED display panels.
  • the electrode lead 116 is specifically applied to a PMOLED display panel in which a PMOLED display panel and an AMOLED display panel are combined, the electrode lead 116 and the second electrode 114 in the same sub-display panel 1012 are taken from the PMOLED The same side edge leading out of the display panel is not connected to the AMOLED display panel.
  • the width of the bonding interface between the PMOLED display panel and the AMOLED display panel can also be reduced, which avoids that the electrode lead 116 needs to be drawn from the side of the PMOLED display panel connected to the AMOLED display panel, resulting in an increase in the width of the bonding interface between PMOLED and AMOLEDD
  • the first display area AA1 corresponding to the PMOLED display panel is divided into two display areas AA11, sub-display panels 1012 are respectively set, and then the two sub-display panels 1012 are scanned according to the scanning direction 103, respectively Compared with full-screen scanning, the number of scanning lines is reduced by half, and the brightness can be doubled. In order to cooperate with the area scan, the data lines of the two sub-display panels 1012 are input separately, but the data signals are written synchronously; therefore, the number of input data lines will double.
  • the first display area AA1 corresponding to the PMOLED display panel is divided into three display areas AA11, sub-display panels 1012 are set respectively, and then the three sub-display panels 1012 are scanned separately, and the original full-screen scan In comparison, the brightness can be increased to 3 times; at the same time, the data line must also be divided into three data lines in the sub-display panel 1012, the data signals of the three sub-display panels 1012 are written synchronously, so the number of input data lines will become 3 .
  • the sub-display panels 1012 of each display area AA11 are sequentially connected in such a manner that the second electrodes 114 are parallel to each other and spaced apart, at least the display between the adjacent two display areas AA11
  • the sub-display panel 1012 in the partition AA11 is provided with a plurality of electrode lead lines 116.
  • the sub display panels 1012 of each display area AA11 are connected in sequence, and the second electrodes 114 of each sub display panel 1012 are mutually connected.
  • the first electrode 112 of the sub-display panel 1012 in the display area AA11 between two adjacent display areas AA11 is respectively provided with the aforementioned electrode lead lines 116.
  • the electrode lead 116 is drawn from the edge of the sub-display panel 1012 that is not connected to other sub-display panels 1012, that is, the electrode lead 116 in each sub-display panel 1012 is perpendicular to the second electrode 114 from the display screen 100 Leading to the same side edge.
  • an electrode lead 116 is provided under each first electrode 112 in each sub-display panel 1012, and each electrode lead 116 is not connected to other sub-display panels 1012 from the sub-display panel 1012. Leading to the edge, so that the width of the bonding interface between two adjacent display areas AA11 can be reduced.
  • each electrode lead 116 in each sub-display panel 1012 is drawn from the same side edge of the corresponding sub-display panel 1012; that is, the electrode lead 116 in each sub-display panel 1012 is drawn from the same side edge of the display screen 100 Lead out.
  • the width of the other edges of the display screen 100 can also be reduced, and only one edge needs to be left for the electrode lead 116 and the second electrode 114 to lead That is, it is advantageous for the display screen 100 to achieve a narrow frame.
  • the multiple sub-display panels 1012 are connected in sequence, and the first electrodes 112 of the multiple sub-display panels 1012 are parallel to each other and spaced apart (not shown).
  • the electrode lead-out lines 116 in each sub-display panel 1012 can optionally be led out from the same side edge of the display screen 100 perpendicular to the first electrode 112.
  • the first display panel 110 is an AMOLED-like display panel
  • the second display panel 120 is an AMOLED display panel.
  • the AMOLED-like display panel means that its pixel circuit includes only one switching device (ie, driving TFT) without a capacitor structure.
  • the other structure of the AMOLED-like display panel is the same as the AMOLED display panel.
  • the first display panel 110 is an AMOLED-like display panel as an example for description.
  • FIG. 9 is a schematic structural diagram of a first display panel in another embodiment, where the first display panel is an AMOLED-like display panel.
  • This type of AMOLED display panel includes a first substrate 810 and a plurality of pixel circuits 820 (that is, TFT arrays) disposed on the first substrate 810.
  • a first electrode layer is provided on the pixel circuit 820.
  • the first electrode layer includes a plurality of first electrodes 830.
  • the first electrode 830 corresponds to the pixel circuit 820 in one-to-one correspondence.
  • the first electrode 830 here is an anode.
  • the AMOLED-like display panel further includes a pixel defining layer 840, which is disposed on the first electrode 830.
  • the pixel defining layer 840 has a plurality of pixel openings 870, and a light emitting structure 850 is disposed in the pixel openings 870 to form sub-pixels (not shown), and the sub-pixels correspond to the first electrodes 830 in one-to-one correspondence.
  • a second electrode 860 is provided above the light emitting structure 850.
  • the second electrode 860 is a cathode, and the cathode is a surface electrode, that is, an entire surface electrode formed of an entire surface electrode material.
  • the pixel circuit 820 is provided with scanning lines, data lines, and TFT switching devices. Both the scanning line and the data line are connected to the TFT switching device. The scan line controls the turning on and off of the TFT switching device. When the pixel is turned on, the data line provides a driving current to the first electrode 830 to control the sub-pixel to emit light.
  • the first substrate 810 may be a rigid substrate, such as a transparent substrate such as a glass substrate, a quartz substrate, or a plastic substrate; the substrate 810 may also be a flexible substrate, such as a PI film, etc., to improve the transparency of the device.
  • the light emitting structure 850 may be an OLED (Organic Light-Emitting Diode, organic light emitting diode).
  • FIG. 10 is a schematic diagram of the circuit principle of the pixel circuit 820 in an embodiment. Unlike the pixel circuit of a conventional AMOLED display panel, the pixel circuit 820 only includes a switching device, and does not include storage capacitors and other elements, thereby forming a capacitor-less structure. In this embodiment, the pixel circuit 820 includes a switching device. The switching devices correspond to the first electrodes 830 in one-to-one correspondence, that is, one sub-pixel corresponds to one switching device. The switching device includes a first terminal 2a, a second terminal 2b, and a control terminal 2c. For details, see the subsequent detailed introduction.
  • the scan line is connected to the control terminal 2c of the switching device, the data line is connected to the first terminal 2a of the switching device, and the first electrode 830 is connected to the second terminal 2b of the switching device.
  • the first end 2a of the switching device is connected through the data line, and the control terminal 2c of the switching device is connected to the scanning line, which can reduce the number of switching devices in the pixel circuit 820 to one, greatly reducing the load current and data of the scanning line The load current of the line.
  • the scanning line in the above display panel controls the opening and closing of the pixel circuit 820, and only needs to provide the switching voltage required by the switching device in the pixel circuit 820, and does not need to input the current of the light emitting structure (OLED), which greatly reduces the load current of the scanning line.
  • the scanning line can be made of transparent materials such as ITO.
  • the data line when the pixel circuit 820 is turned on, the data line provides a driving current to the anode to control the sub-pixel to emit light.
  • the data line only needs to supply the driving current of one sub-pixel at a time, and the load of the data line is also small. Therefore, the data line can also use transparent materials such as ITO, thereby improving the light transmittance of the display screen.
  • the surface electrodes are shared by multiple sub-pixels, and the current of a row of sub-pixels is provided by the entire surface of the cathode at each moment. It does not require negative photoresist to separate the cathode.
  • the first electrode 830 may be one of a circle, an ellipse, a dumbbell, or a gourd. For details, refer to FIG. 6.
  • the first electrode 830 By setting the first electrode 830 to be one of circular, elliptical, dumbbell-shaped, or gourd-shaped, the diffraction effect can also be weakened.
  • the shape of the pixel opening in the pixel defining layer 840 is one of circular, elliptical, dumbbell-shaped, or gourd-shaped, as shown in FIG. 6, so that the diffraction effect can also be weakened.
  • the signal lines such as the scan line and the data line can be connected with multiple arc-shaped traces, so as to achieve the effect of improving diffraction.
  • FIG. 11 is a schematic diagram of a display terminal in an embodiment.
  • An embodiment of the present application further provides a display terminal.
  • the display terminal includes a device body 910 and a display screen 920.
  • the display screen 920 is provided on the device body 910 and connected to the device body 910. Among them, the display screen 920 may use the display screen in any of the foregoing embodiments to display a picture.
  • FIG. 12 is a schematic diagram of the device body 910 in an embodiment.
  • the device body 910 may be provided with a slotted area 912 and a non-slotted area 914.
  • Photosensitive devices such as a camera 930 and a light sensor may be provided in the slotted area 912.
  • the first display area AA1 of the display screen 920 corresponds to the slotted area 912, so that the above-mentioned photosensitive devices such as the camera 930 and the light sensor can collect external light through the first display area AA1 And other operations.
  • no polarizer may be provided in the first display area AA1, that is, no polarizer is provided in the first display panel 110.
  • the first display panel 110 in the first display area AA1 can effectively improve the diffraction phenomenon caused by the external light transmitting through the first display area AA1, the quality of the image captured by the camera 930 on the display terminal can be effectively improved to avoid the diffraction As a result, the captured image is distorted, and at the same time, the accuracy and sensitivity of the light sensor in sensing external light can also be improved.
  • the above display terminal may be a digital device such as a mobile phone, a tablet computer, a palmtop computer, an iPod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示屏,具有相邻的第一显示区和第二显示区,第一显示区至少部分区域与第二显示区相接;第一显示区和第二显示区均用于显示画面;显示屏还包括设置于第一显示区的第一显示面板及设置于第二显示区的第二显示面板;第一显示面板包括:第一基板;第一电极层,形成于第一基板上,第一电极层包括多个第一电极,第一电极的至少一端与第二显示面板相邻;第一像素限定层,形成于第一电极层上;第二电极层,形成于第一像素限定层上,第二电极层包括多个第二电极,多个第二电极与多个第一电极交叉设置;以及多个电极引出线,用于引出多个第一电极,多个电极引出线分别与多个第一电极连接,且多个电极引出线分别与多个第二电极沿相同的方向并行延伸。

Description

显示屏及显示终端
相关申请的交叉引用
本申请要求于2018年10月31日提交中国专利局,申请号为201811290641.X,申请名称为“显示屏及显示终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种显示屏及使用该显示屏的显示终端。
背景技术
随着电子设备的快速发展,用户对屏占比的要求越来越高,使得电子设备的全面屏显示受到业界越来越多的关注。传统的电子设备如手机、平板电脑等,由于需要集成诸如前置摄像头、听筒以及红外感应元件等,故而可通过在显示屏上开槽(Notch),在开槽区域设置摄像头、听筒以及红外感应元件等,但开槽区域并不用来显示画面,如现有技术中的“刘海屏”,或者采用在屏幕上开孔的方式,对于实现摄像功能的电子设备来说,外界光线可通过屏幕上的开孔处进入位于屏幕下方的感光元件。但是这些电子设备均不是真正意义上的全面屏,并不能在整个屏幕的各个区域均进行显示,如在摄像头区域不能显示画面。
发明内容
本申请提供一种显示屏,具有相邻的第一显示区和第二显示区,所述第一显示区至少部分区域与所述第二显示区相接;所述第一显示区和所述第二显示区均用于显示画面;所述显示屏还包括设置于所述第一显示区的第一显示面板及设置于所述第二显示区的第二显示面板;所述第一显示面板包括:第一基板;第一电极层,形成于所述第一基板上,所述第一电极层包括多个第一电极,所述第一电极的至少一端与所述第二显示面板相邻;第一像素限定层,形成于所述第一电极层上;第二电极层,形成于所述第一像素限定层上,所述第二电极层包括多个第二电极,所述多个第二电极与所述多个第一电极交叉设置;以及多个电极引出线,用于引出所述多个第一电极,所述多个电极引出线分别与所述多个第一电极连接,且所述多个电极引出线分别与所述多个第二电极沿相同的方向并行延伸。
在其中一个实施例中,所述多个电极引出线设置于所述第一像素限定层下方且位于所 述第一电极层和所述第一基板之间,并在所述多个电极引出线和所述第一电极层之间设置有信号屏蔽层。
在其中一个实施例中,所述信号屏蔽层覆设于所述多个电极引出线上,所述信号屏蔽层设有开孔,在所述信号屏蔽层上形成所述第一电极层并在所述开孔内形成导电材料,以使所述第一电极层和所述多个电极引出线连接。
在其中一个实施例中,所述多个电极引出线设置于所述第一像素限定层下方且位于所述第一电极层上方,并在所述多个电极引出线和所述第一电极层之间设置有信号屏蔽层。
在其中一个实施例中,所述第一显示区包括相邻的第一子显示区和第二子显示区,所述第一子显示区下方设置感光器件,并且所述第一像素限定层包括与所述第一子显示区对应的透光第一像素限定层,所述透光第一像素限定层为透光材料。
在其中一个实施例中,所述第一像素限定层还包括与所述第二子显示区对应的阻光第一像素限定层,所述阻光第一像素限定层为不透光材料。
在其中一个实施例中,所述第一显示面板为PMOLED显示面板,所述多个第一电极为多个相接的弧形,所述多个第一电极沿相同的方向并行延伸,且相邻的第一电极间具有间距;并且在所述多个第一电极的延伸方向上,各个第一电极的宽度连续变化或间断变化,且所述间距连续变化或间断变化。
在其中一个实施例中,所述多个第二电极为多个相接的弧形,所述多个第二电极沿相同的方向并行延伸,且相邻的第二电极间具有间距;并且在所述多个第二电极的延伸方向上,各个第二电极的宽度连续变化或间断变化,且所述间距连续变化或间断变化
在其中一个实施例中,所述多个电极引出线的侧边设置为多个相接的弧形,所述多个电极引出线沿相同的方向并行延伸,且相邻的多个电极引出线间具有间距;并且在所述多个电极引出线的延伸方向上,所述多个电极引出线的宽度连续变化或间断变化,且所述间距连续变化或间断变化。
在其中一个实施例中,所述第一像素限定层上形成有多个像素开口,各个像素开口的形状为圆形、椭圆形、哑铃形或者葫芦形其中一种。
在其中一个实施例中,所述多个电极引出线与所述多个第二电极在所述第一基板上的正投影相互错开。
本申请还提供一种显示屏,具有相邻的第一显示区和第二显示区,所述第一显示区至少部分区域与所述第二显示区相接;所述第一显示区和所述第二显示区均用于显示画面;所述显示屏还包括设置于所述第一显示区的第一显示面板及设置于所述第二显示区的第 二显示面板,所述第一显示区具有多个显示分区,各个显示分区均设置有子显示面板,所述子显示面板包括:第一基板;第一电极层,形成于所述第一基板上,所述第一电极层包括多个第一电极,所述第一电极的至少一端与所述第二显示面板相邻;第一像素限定层,形成于所述第一电极层上;第二电极层,形成于所述第一像素限定层上,所述第二电极层包括多个第二电极;并且各子显示面板均独立驱动。
在其中一个实施例中,所述第一显示面板为PMOLED显示面板,所述第二电极层包括多个第二电极,所述多个第二电极与所述多个第一电极交叉设置;并且所述第一显示面板还包括用于引出所述第一电极的多个电极引出线,至少一个显示分区内的各个第一电极均设置有所述电极引出线,所述多个电极引出线分别与所述多个第一电极连接,且同一显示分区内的所述多个电极引出线与所述多个第二电极沿相同的方向并行延伸。
在其中一个实施例中,所述显示分区为三个或三个以上,各显示分区依次连接,且各个显示分区的所述多个第二电极相互平行且间隔,至少位于相邻两个所述显示分区之间的显示分区内的各个第一电极均设置有所述电极引出线。
在其中一个实施例中,所述多个电极引出线设置于所述第一像素限定层下方且位于所述第一电极层和所述第一基板之间,并在所述多个电极引出线和所述第一电极层之间设置有信号屏蔽层。
在其中一个实施例中,所述多个电极引出线设置于所述第一像素限定层下方且位于所述第一电极层上方,并在所述多个电极引出线和所述第一电极层之间设置有信号屏蔽层。
在其中一个实施例中,所述第一显示区包括相邻的第一子显示区和第二子显示区,所述第一子显示区下方设置感光器件,并且所述第一像素限定层包括与所述第一子显示区对应的透光第一像素限定层,所述透光第一像素限定层为透光材料。
在其中一个实施例中,所述第一像素限定层还包括与所述第二子显示区对应的阻光第一像素限定层,所述阻光第一像素限定层为不透光材料。
在其中一个实施例中,所述第一显示面板为AMOLED显示面板或类AMOLED显示面板,
所述类AMOLED显示面板包括多个像素电路,设置于所述第一基板上,所述多个像素电路上设置有所述第一电极层,所述像素电路仅包含一个开关器件;
所述第一像素限定层具有多个像素开口,所述像素开口内设置有发光结构,每个第一电极对应一个发光结构,所述第一电极为圆形、椭圆形、哑铃形或者葫芦形其中一种。
本申请还提供一种显示终端,包括:设备本体,具有器件区;及如上所述的显示屏, 覆盖在所述设备本体上;所述器件区位于所述第一显示区下方,且所述器件区中设置有透过所述第一显示区进行光线采集的感光器件。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将根据说明书、附图以及权利要求书的描述变得明显。
附图说明
为了更好地描述和说明本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。
图1为一实施例的显示屏的示意图。
图2为一实施例中的第一显示区的示意图。
图3为一实施例中的第一显示面板的剖视图。
图4为一实施例中的第一显示面板的俯视图。
图5为一实施例中的第一显示面板的第二电极的示意图。
图6为一实施例中的第一像素限定层中的像素开口的示意图。
图7为一实施例中的各个子显示面板的俯视图。
图8为另一实施例中的各个子显示面板的俯视图。
图9为另一实施例中的第一显示面板的剖视图。
图10为一实施例中的像素电路的电路原理的示意图。
图11为一实施例中的显示终端的示意图。
图12为一实施例中的设备本体的示意图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
由于PMOLED(Passive matrix organic light-emitting diode,被动矩阵式有机发光二极体)单纯地以阴极、阳极构成矩阵状,以扫描方式点亮阵列中的像素,每个像素都是操作在短脉冲模式下,为瞬间高亮度发光,具有结构简单,可以有效降低制造成本等优点,因此透明显示可以采用高透明度的PMOLED显示屏,而为保证显示效果其他区域仍然为AMOLED(Active-matrix organic light-emitting diode,主动矩阵式有机发光二极体)显示屏。若PMOLED的引出线仍从PMOLED的侧边引出,会增加PMOLED的侧边宽度或增加PMOLED和AMOLED之间的结合界面宽度,进而影响显示效果。
针对槽区的PMOLED的引出线从PMOLED的侧边引出,会增加PMOLED的侧边宽度或增加PMOLED和AMOLED之间的结合界面宽度进而影响显示效果的问题,提供一种能够提高显示效果的显示屏及显示终端。
为便于描述,附图仅示出了与本申请实施方式相关的结构。
图1为一实施例的显示屏的分区示意图。请参照附图1,本申请提供了一实施例的显示屏100。该显示屏100包括相邻的第一显示区AA1和第二显示区AA2。
第一显示区AA1至少部分区域与第二显示区AA2相接。第一显示区AA1和第二显示区AA2均用于显示画面。第一显示区AA1的形状可以为圆形、椭圆形、矩形或者其他不规则图形。在一实施例中,第一显示区AA1可以设置在显示屏的顶部中间区域,且第一显示区AA1为矩形,从而与第二显示区AA2存在三面接触,如图1所示。第一显示区AA1也可以设置在第二显示区AA2的左侧中间区域,或者右侧中间区域。在另一实施例中,第一显示区AA1还可以设置在第二显示区AA2的内部,从而使得第一显示区AA1完全被第二显示区AA2所包围。在图1中,第二显示区AA2和第一显示区AA1的数量均为一个,在其他的实施例中,第二显示区AA2和第一显示区AA1的数量均可以为两个或者两个以上。第二显示区AA2和第一显示区AA1均用于显示画面。
图2为一实施例中的第一显示区AA1的示意图,示出了第一显示区AA1的分区。在 一实施例中,第一显示区AA1包括第一子显示区AA12和第二子显示区AA14,如图2所示。第二子显示区AA14下方可设置感光器件。在本实施例中,第二子显示区AA14的个数为两个,且均由第一子显示区AA12所包围。在其他的实施例中,第二子显示区AA14的数量也可以设置为一个。第二子显示区AA14的数量可以根据显示终端中的感光器件的位置设置来确定。比如,显示终端的前置摄像头采用双摄像头时,可以设置两个第二子显示区AA14,每个第二子显示区AA14对应一个摄像头。
继续参照图1,在一实施例中,显示屏100包括第一显示面板110和第二显示面板120。第一显示面板110设置于第一显示区AA1。第二显示面板120设置于第二显示区AA2。第一显示面板110和第二显示面板120可以分别进行制作,也可以同时制作形成一体化屏。
在一实施例中,第一显示面板110为PMOLED显示面板,第二显示面板120为AMOLED显示面板。
PMOLED单纯地以阴极、阳极构成矩阵状,以扫描方式点亮阵列中的像素,每个像素都是操作在短脉冲模式下,为瞬间高亮度发光。优点是结构简单,可以有效降低制造成本。
具体地,可参见图3~4,图3为一实施例中的第一显示面板110的剖视图,图4为一实施例中的第一显示面板的俯视图。第一显示面板110包括第一基板111;第一电极层(即多个第一电极112所在的层),形成于第一基板11上;第一像素限定层(未图示),形成于第一电极层上;第二电极层(即多个第二电极114所在的层),形成于第一像素限定层上;以及多个电极引出线116。
AMOLED具有TFT(Thin Film Transistor)阵列基板,采用独立的薄膜电晶体去控制每个像素,每个像素皆可以连续且独立的驱动发光,可以使用低温多晶硅或者氧化物TFT驱动,优点是驱动电压低,发光组件寿命长。
具体地,第二显示面板120包括第二基板及在第二基板上依次形成的TFT阵列(图未示)、第二像素限定层(图未示)、阳极(图未示)、发光结构(图未示)及阴极,以形成AMOLED显示面板。需要说明的是,第二显示面板120的阳极与TFT阵列的薄膜晶体管、发光结构一一对应设置,第二显示面板120的阴极可为面电极。其中,第二像素限定层为不透光材料,以确保第二显示面板120的数据线不可见,提高显示屏的视觉效果。
需要说明的是,AMOLED显示面板的阳极一般是图案化的,对应每个子像素形成;而AMOLED显示面板的阴极一般是整个面电极,覆盖在设有多个子像素的整个TFT阵列基板上。TFT阵列基板可以包括基板、缓冲层及薄膜晶体管等结构。
正如背景技术及前述介绍,与AMOLED显示面板不同的是,PMOLED显示面板的阳极和阴极一般为条状,即第一显示区AA1的第一显示面板110包括交叉的多条阳极条和多条阴极条,在阳极条和阴极条交叠的位置则形成一个子像素。因此PMOLED显示面板三面与AMOLED显示面板相接,PMOLED显示面板的阳极条和阴极条中必然有一电极线需从与AMOLED显示面板连接的边缘引出,这必然导致PMOLED的侧边宽度或增加PMOLED和AMOLED之间的结合界面宽度。
因此本申请提出一种增加电极引出线的方法,将该需从与AMOLED显示面板连接的边缘引出的电极线从PMOLED显示面板的不与AMOLED显示面板连接的边缘引出。
进一步地,考虑到阴极位于上方,无需引出,且阳极条位于阴极条的下方(本申请的下方是指靠近基板的方向,上方是指远离基板的方向,下同),且阳极条的下方具有较多的功能膜层,例如钝化层、信号屏蔽层等等,这些功能膜层给引线的设置提供了优势。
继续参阅图3,在本实施例中,仅仅给出了涉及的结构层,而省略了或者简化了其他图层。该第一显示面板110包括第一基板111;第一电极层(即多个第一电极112所在的层),形成于第一基板111上,第一电极层包括多个第一电极112。第一像素限定层(未示出),形成于第一电极层上;第二电极层(即多个第二电极114所在的层),形成于第一像素限定层上,第二电极层包括多个第二电极114;以及多个电极引出线116,用于引出多个第一电极112,多个电极引出线116分别与多个第一电极112连接,且多个电极引出线116分别与多个第二电极114沿相同的方向并行延伸。
继续参阅图1、3和4,第一电极112的至少一端与第二显示面板120相邻。多个第二电极114与多个第一电极112交叉设置。
第一显示面板110还包括用于引出多个第一电极112的多个电极引出线116,各个电极引出线116与各个第一电极112连接,且各个电极引出线116分别与各个第二电极114沿相同的方向并行延伸。上述显示屏100,具有均用于进行显示画面的第一显示区AA1和第二显示区AA2,可以真正实现全面屏显示。如此各个电极引出线116和各个第二电极114沿相同的方向并行延伸,进而可从第一显示面板110的同侧边缘引出。如此相比于传统第一电极112和第二电极114从各自的边缘引出的方案,至少可减少第一显示面板110一侧边的边框宽度,避免了增加第一显示面板的侧边宽度的问题,进而增大了显示区域的面积及提高了显示屏的显示效果。
例如图1所示的示例中,第一显示面板110为PMOLED显示面板,第二显示面板120为AMOLED显示面板时,电极引出线116从PMOLED显示面板的不与AMOLED显示面 板连接的边缘引出。可理解,第一基板和第二基板可为同一个基板。
如图4所示,多个第一电极112沿相同的方向并行延伸,且相邻的两个第一电极112间具有间距。多个第二电极114沿相同的方向并行延伸,且相邻的两个第二电极114间具有间距。并且多个电极引出线116沿相同的方向并行延伸,且相邻的两个电极引出线116间具有间距。
图5为一实施例中的第一显示面板的第二电极的示意图。在一实施例中,第一电极112、第二电极114及电极引出线116中的一个或多个的侧边设置为多个相接的弧形。具体地,在多个相接的弧形走线的延伸方向上,多个相接的弧形走线的宽度持续变化或者间断变化,且该间距连续变化或间断变化。宽度连续变化是指在多个相接的弧形走线上任意两个相邻位置处的宽度不相同。宽度间断变化是指在多个相接的弧形走线上存在部分区域内相邻两个位置的宽度相同,而在部分区域内相邻两个位置的宽度不相同。
通过将第一显示面板110中的第一电极112、第二电极114及电极引出线116中的一个或多个的侧边设置为多个相接的弧形走线,从而使得外部光线经过信号走线时,在多个相接的弧形走线的不同位置处产生的衍射条纹的位置不同。不同位置处的衍射条纹相互抵消,从而可以有效减弱衍射效应,进而确保摄像头设置在第一显示面板110下方时,拍摄得到的图形具有较高的清晰度。在一实施例中,第一电极层可以为阳极层。
继续参照图3,其中,电极引出线116设置在第一基板111上。在一实施例中,信号屏蔽层113设置在电极引出线116上且覆盖电极引出线116。第一电极层形成于信号屏蔽层113上。第一像素限定层则形成在第一电极层上。具体地,电极引出线116设置在第一像素限定层的下方,且避开摄像头等感光器件所在的区域。通过将电极引出线116设置在第一像素限定层下方且避开摄像头所在区域,可以避免电极引出线116对发光区域以及摄像头正常工作的干扰。并且,通过在电极引出线116和第一电极层之间形成信号屏蔽层113,可以确保电极引出线116不会对第一电极层产生信号干扰。
在一实施例中,电极引出线116位于第一电极层和第一基板111之间。也即,电极引出线116先于第一电极层进行制备得到。并且,电极引出线116设置在第一电极层下方,从而可以减小对第一电极层的工作影响。此时,第一电极层为阳极层。在另一实施例中,电极引出线116也可以设置于第一电极层上方,且位于第一像素限定层下方。
具体地,信号屏蔽层113设置于电极引出线116和第一电极112之间时,信号屏蔽层113覆设于电极引出线116上,信号屏蔽层113设有开孔,在信号屏蔽层113上形成第一电极112,并且在开孔内形成第一电极112的材料,以使第一电极112和电极引出线116 连接。
当电极引出线116设置在第一电极层上方时,此时第一电极层为阴极层,从而避免电极引出线116对其正常的工作产生干扰。
在一实施例中,第一基板111包括玻璃基板和形成在玻璃基板上方的柔性基板。通过增设柔性基板,可以确保第一基板具有一定的弯折性能。
在一实施例中,第一像素限定层包括与第一子显示区AA12对应的阻光第一像素限定层,阻光第一像素限定层可以为不透光材料(如阻光或者吸光材料,比如黑色的有机胶等)。由于第一子显示区AA12并不需要设置摄像头,因此对该区域的透光率要求较低。且第一像素限定层还包括与第二子显示区AA14对应的透光第一像素限定层,透光第一像素限定层为透光材料。此时,电极引出线116为金属或者透明金属氧化物材料。例如,当电极引出线116采用透明金属氧化物时,可以采用氧化铟锡(ITO)、氧化铟锌(IZO)、掺杂银的氧化铟锡(Ag+ITO)或者掺杂银的氧化铟锌(Ag+IZO)等。通过将第一子显示区AA12的阻光第一像素限定层设置为不透光,以牺牲一定的面板透光率来确保经过第一子显示区AA12的电极引出线116不可见,提高显示屏的显示效果。
图6为一实施例中的第一显示面板110的第一像素限定层中的像素开口123的结构示意图。在一实施例中,第一像素限定层中形成有像素开口123。第一像素限定层的每个像素开口123对应一个发光结构。各像素开口123的形状为圆形、椭圆形、哑铃形或者葫芦形其中一种,具体如图6所示,像素开口123的形状为哑铃形。通过将各子像素设置为圆形、椭圆形、哑铃形或者葫芦形其中一种,从而使得外部光线经过发光结构时,在子像素的不同位置处产生的衍射条纹的位置不同。不同位置处的衍射条纹相互抵消,从而可以有效减弱衍射效应,进而确保摄像头设置在第一显示面板110下方时,拍摄得到的图形具有较高的清晰度。并且,圆形、椭圆形、哑铃形或者葫芦形可在最大限度上扩大各个子像素的面积,进一步提高透光率。
本申请设置电极引出线116的方案可应用于纯粹的PMOLED显示面板,也可用于PMOLED显示面板与AMOLED显示面板的复合屏。该显示屏100为PMOLED显示面板与AMOLED显示面板的复合屏,即第一显示区AA1的第一显示面板110为PMOLED显示面板,第二显示区AA2的第二显示面板120为AMOLED显示面板。具体在附图1所示的显示屏100中,其同时具有AMOLED显示面板和PMOLED显示面板,即为两者的复合屏。由于PMOLED显示面板无TFT驱动阵列,使得光线透过率高。因此可在PMOLED显示面板下方设置感光器件。当感光器件工作时,感光器件可以从第一显示区AA1处获 得光线;当感光器件不工作时,第一显示区AA1可以正常显示画面。从而提高手机的显示效果。
进一步地,当AMOLED显示面板和PMOLED显示面板两者复合时,PMOLED显示面板的部分边缘与AMOLED显示面板相接,即PMOLED显示面板还具有不与AMOLED显示面板相接的边缘。
具体在图1所示的显示屏100中,第一显示区AA1处于第二显示区AA2的顶部,且第一显示区AA1的顶端与第二显示区AA2的顶端平齐。这样设置之后,第一显示区AA1位于整个显示屏100的边缘,能够减少对显示画面效果的影响。相应地,电极引出线116从第一显示区AA1的顶端引出。
请继续参照图3,信号屏蔽层113与第二显示面板120的钝化层、层间绝缘层或平坦化层在同一工艺步骤中形成。如此可在AMOLED显示面板形成钝化层、层间绝缘层或平坦化层时同层、同材、同步形成该信号屏蔽层113,进而可不增加工序,同时也不会增加膜层的厚度和结构。
进一步地,电极引出线116与第二显示面板120的源漏极层或栅极层在同一工艺步骤中形成,且阻光第一像素限定层为不透光材料。也就是说,电极引出线116可与AMOLED显示面板内的源漏极层或栅极层同层、同材、同步形成,不透光材料的阻光第一像素限定层可使电极引出线116不可见,如此不仅可节省工序,还可避免增加膜层导致的膜层厚度增加。
在一实施例中,第一显示区AA1的第一像素限定层均为透光材料。此时,电极引出线116为透明金属氧化物材料。通过将第一显示区AA1的第一像素限定层设置为透光材料,可以确保显示屏具有较好的透光率,确保设置于下方的摄像头等感光器件的正常工作。通过将电极引出线116设置为透明的金属氧化物时,可以确在保在第二显示面板120为透明显示面板时,其不会对显示面板的透明度产生影响。
请继续参照图4,进一步地,电极引出线116与第二电极114平行设置,也就是说电极引出线116的延伸方向与第二电极114的延伸方向相同。如此电极引出线116从第二电极114的引出边缘同侧引出。
进一步地,电极引出线116与第二电极114在第一基板111上的正投影相互错开。具体地,电极引出线116在第一基板111的正投影位于相邻两条第二电极114之间或位于最边缘的第二电极114的外侧。如此避开了第一电极112和第二电极114交叠的位置,即电极引出线116的设置避开了子像素,从而避免了电极引出线116的设置影响子像素进而导 致影响显示屏100的问题。
值得说明的是,因为电极引出线116与第一电极112的连接处设置了开孔,因此将导致该处第一电极112稍稍下沉,因此此处不利于形成子像素。可选地,电极引出线116在第一基板111的正投影位于相邻两条第二电极114之间。此外还可尽可能地不增加PMOLED显示面板沿第一电极112的延伸方向的宽度。可理解,电极引出线116尽可能地均匀分布于相邻两条第二电极114之间的区域或位于最边缘的第二电极114的外侧的区域,以保证电极引出线116的设置不影响其他膜层。
可理解,在一些实施例中,相邻两条第二电极114之间可设有两条以上的电极引出线116。可理解,各条电极引出线116的长度可设置不相同,也可将部分电极引出线116的长度设置为相同。可选地,各条电极引出线116的长度尽量不相同设置。可选地,各条电极引出线116的一端对齐设置,另一端用于与第一电极112连接。
图7~8为不同实施例中的各个子显示面板的俯视图,示出了第一显示面板110的各个子显示面板1012的第一电极112、第二电极114及电极引出线116的俯视分布情况。本申请的第一显示区AA1具有多个显示分区AA11,各显示分区AA11都设置有子显示面板1012,子显示面板1012均包括上述第一基板111、第一电极层、第一像素限定层及第二电极层。第一电极层包括多个第一电极112,第一电极112的至少一端与第二显示面板120相邻。各个子显示面板1012均独立驱动。
具体地,各子显示面板1012的第一电极层和第二电极层均相互独立,也就是说,不同子显示面板1012内的第一电极层和第二电极层可分别独立写入信号,还可同步写入信号。如此通过将第一显示区AA1设置成两个及两个以上的显示分区AA11,并分别设置子显示面板1012,扫描时对各子显示面板1012按照图7所示的扫描方向103开进行扫描,从而可大幅度降低扫描的行数,进而通过提高每行的扫描时间来提高每行的发光时间,以在不降低分辨率的前提下,实现提升第一显示区AA1的亮度的目的。
进一步地,第一显示面板110为PMOLED显示面板时,第二电极层包括多个第二电极114。多个第二电极114和多个第一电极112交叉形成一个子显示面板1012。
进一步地,至少一个子显示面板1012内设置有多个电极引出线116,同一显示分区内的各个电极引出线116与各个第二电极114沿相同的方向并行延伸。至少一个子显示面板1012的各个第一电极112均设置有电极引出线116。
请继续参照图7~8,同一子显示面板1012内,电极引出线116和第二电极114从PMOLED显示面板的同侧边缘引出。如此相比于传统第一电极112和第二电极114从各 自的边缘引出的方案,至少可减少PMOLED显示面板一侧边的边框宽度,避免了增加PMOLED的侧边宽度的问题,进而增大显示区域的面积及提高显示屏的显示效果。
针对PMOLED显示面板的部分边缘与AMOLED显示面板连接的情况,此时第一电极112采用传统的走线需从PMOLED显示面板的与AMOLED显示面板连接的边缘引出,因此不可避免地增加PMOLED显示面板与AMOLED显示面板之间的结合界面宽度。针对该技术问题,将该电极引出线116具体应用到具体在PMOLED显示面板与AMOLED显示面板复合中的PMOLED显示面板时,将同一子显示面板1012内的电极引出线116和第二电极114自PMOLED显示面板引出的同侧边缘不与AMOLED显示面板连接。
如此还可减少PMOLED显示面板与AMOLED显示面板之间的结合界面宽度,避免了电极引出线116需从PMOLED显示面板的与AMOLED显示面板连接的侧边引出导致PMOLED和AMOLEDD之间的结合界面宽度增加导致影响显示效果的问题,或避免了第一电极112引出需穿过AMOLED的显示区进而影响AMOLED的显示效果的问题,进而增大了显示区域的面积及提高了显示屏的显示效果。
请继续参照图7,例如,将PMOLED显示面板对应的第一显示区AA1分成2个显示分区AA11,分别设置子显示面板1012,然后对2个子显示面板1012按照扫描方向103分别进行扫描,和原来整屏扫描相比,扫描行数降低一半,亮度就可以提升一倍。为了配合分区扫描,两个子显示面板1012的数据线分开输入,但数据信号同步写入;所以输入的数据线数量会增加一倍。
请继续参照图8,同理若将PMOLED显示面板对应的第一显示区AA1分成3个显示分区AA11,分别设置子显示面板1012,然后对3个子显示面板1012分别进行扫描,和原来整屏扫描相比,亮度就可以提升到3倍;同时数据线也必须分成3个子显示面板1012中的数据线,3个子显示面板1012的数据信号同步写入,所以输入的数据线数量会变成3倍。
当显示分区AA11为三个或三个以上时,各显示分区AA11的子显示面板1012以第二电极114相互平行且间隔设置的方式依次连接,至少位于相邻两个显示分区AA11之间的显示分区AA11内的子显示面板1012设置有多个电极引出线116。
请继续参照图8,在一些实施例中,当显示分区AA11为三个或三个以上时,各显示分区AA11的子显示面板1012依次连接,且各子显示面板1012的各第二电极114相互平行且间隔设置,至少位于相邻两个显示分区AA11之间的显示分区AA11内子显示面板1012的各第一电极112的下方分别设置有前述电极引出线116。如此设置,使得电极引出 线116从该子显示面板1012不与其他子显示面板1012连接的边缘引出,即各子显示面板1012内的电极引出线116均从显示屏100的垂直于第二电极114的同侧边缘引出。如此解决了位于中间的子显示面板1012内的第一电极112引出需穿过两侧的子显示面板1012进而影响AMOLED的显示效果的问题,同时也减少了显示分区AA11之间的结合界面宽度。
可理解,在一实施例中,各子显示面板1012内的每条第一电极112的下方均设置电极引出线116,各电极引出线116自所在子显示面板1012未与其他子显示面板1012连接的边缘引出,从而可减小相邻两个显示分区AA11之间的结合界面宽度。
进一步地,各子显示面板1012内的各电极引出线116均从对应的子显示面板1012的同侧边缘引出;即各子显示面板1012内的电极引出线116均从显示屏100的同侧边缘引出。如此在减小相邻两个显示分区AA11之间的结合界面宽度的同时,也可减少显示屏100其他各边缘的宽度,只需留一侧边缘用于电极引出线116和第二电极114引出即可,从而有利于显示屏100实现窄边框化。
可理解,在另一具体示例中,多个子显示面板1012依次连接,且多个子显示面板1012的各第一电极112相互平行且间隔设置(图未示)。此时,各子显示面板1012内的电极引出线116可选均从显示屏100的垂直于第一电极112的同侧边缘引出。只是这种情况相比上述情况,没有足够的位置设置电极引出线116。
在一些实施例中,第一显示面板110为类AMOLED显示面板,第二显示面板120为AMOLED显示面板。类AMOLED显示面板是指其像素电路仅包含一个开关器件(即驱动TFT),而无电容结构。类AMOLED显示面板的其他结构与AMOLED显示面板相同。下面以第一显示面板110为类AMOLED显示面板为例进行说明。
图9为另一实施例中的第一显示面板的结构示意图,其中的第一显示面板为类AMOLED显示面板。该类AMOLED显示面板包括第一基板810以及设置于第一基板810上的多个像素电路820(也即TFT阵列)。像素电路820上设置有第一电极层。第一电极层包括多个第一电极830。第一电极830与像素电路820一一对应。此处的第一电极830为阳极。类AMOLED显示面板还包括像素限定层840,设置于第一电极830上。像素限定层840具有多个像素开口870,像素开口870内设置有发光结构850,以形成子像素(未图示),子像素与第一电极830一一对应。发光结构850的上方设置有第二电极860,第二电极860为阴极,该阴极为面电极,也就是由整面的电极材料形成的整面电极。像素电路820中设置有扫描线、数据线和TFT开关器件。扫描线和数据线均与TFT开关器件连 接。扫描线控制TFT开关器件的开启和关闭,数据线在像素开启时,为第一电极830提供驱动电流,以控制子像素发光。
在一实施例中,第一基板810可以为刚性基板,如玻璃基板、石英基板或者塑料基板等透明基板;基板810也可为柔性基板,如PI薄膜等,以提高器件的透明度。发光结构850可以是OLED(Organic Light-Emitting Diode,有机发光二极管)。
图10为一实施例中的像素电路820的电路原理的示意图。与传统的AMOLED显示面板的像素电路不同,像素电路820仅包括开关器件,而不包括存储电容等元件,从而形成无电容结构。在本实施例中,像素电路820包括一个开关器件。开关器件与第一电极830一一对应设置,即一个子像素对应一个开关器件。开关器件包括第一端2a、第二端2b和控制端2c,详见后续具体介绍。扫描线与开关器件的控制端2c连接,数据线连接开关器件的第一端2a,第一电极830连接开关器件的第二端2b。如图8所示。上述像素电路820中,通过数据线连接开关器件的第一端2a,扫描线连接开关器件的控制端2c,能够将像素电路820中的开关器件减少至一个,大大降低扫描线的负载电流以及数据线的负载电流。
上述显示面板中扫描线控制像素电路820的开启和关闭,仅需提供像素电路820中的开关器件所需的开关电压,不需要输入发光结构(OLED)的电流,大大降低扫描线的负载电流,使得扫描线可以采用ITO等透明材料制作。并且,数据线在像素电路820开启时,为阳极提供驱动电流,控制子像素发光,数据线在每一时刻只需供应一个子像素的驱动电流,数据线的负载也很小。因此,数据线也可以采用ITO等透明材料,从而提高了显示屏的透光率。多个子像素共用面电极(阴极),每一时刻一行子像素的电流由整面阴极提供,对阴极的导电性要求大幅度降低,可以采用高透明电极,提高了透明度,提高了屏幕整体的一致性,并且不需要负性光刻胶分开阴极。
在一实施例中,第一电极830可以为设置为圆形、椭圆形、哑铃形或者葫芦形其中一种,具体可以参考图6。通过将第一电极830设置为圆形、椭圆形、哑铃形或者葫芦形其中一种,同样可以弱化衍射效应。在一实施例中,像素限定层840中的像素开口的形状为圆形、椭圆形、哑铃形或者葫芦形其中一种,如图6,从而同样可以弱化衍射效应。在一实施例中,扫描线和数据线等信号线可以多个相接的弧形走线,从而达到改善衍射的效果。
图11为一实施例中的显示终端的示意图。本申请一实施例还提供一种显示终端,该显示终端包括设备本体910和显示屏920。显示屏920设置在设备本体910上,且与该设备本体910相互连接。其中,显示屏920可以采用前述任一实施例中的显示屏,用以显示 画面。
图12为一实施例中的设备本体910的示意图。在本实施例中,设备本体910上可设有开槽区912和非开槽区914。在开槽区912中可设置有诸如摄像头930以及光传感器等感光器件。此时,显示屏920的第一显示区AA1对应于开槽区912贴合在一起,以使得上述的诸如摄像头930及光传感器等感光器件能够透过该第一显示区AA1对外部光线进行采集等操作。
在一实施例中,为了提高透光率,在第一显示区AA1可以不设置偏光片,也即第一显示面板110中不设置偏光片。并且由于第一显示区AA1中的第一显示面板110能够有效改善外部光线透射该第一显示区AA1所产生的衍射现象,从而可有效提升显示终端上摄像头930所拍摄图像的质量,避免因衍射而导致所拍摄的图像失真,同时也能提升光传感器感测外部光线的精准度和敏感度。
上述显示终端可以为手机、平板电脑、掌上电脑、ipod等数码设备。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种显示屏,具有相邻的第一显示区和第二显示区,所述第一显示区至少部分区域与所述第二显示区相接,所述第一显示区和所述第二显示区均用于显示画面;所述显示屏还包括设置于所述第一显示区的第一显示面板及设置于所述第二显示区的第二显示面板,
    所述第一显示面板包括:
    第一基板;
    第一电极层,形成于所述第一基板上,所述第一电极层包括多个第一电极,所述第一电极的至少一端与所述第二显示面板相邻;
    第一像素限定层,形成于所述第一电极层上;
    第二电极层,形成于所述第一像素限定层上,所述第二电极层包括多个第二电极,所述多个第二电极与所述多个第一电极交叉设置;以及
    多个电极引出线,用于引出所述多个第一电极,所述多个电极引出线分别与所述多个第一电极连接,且所述多个电极引出线分别与所述多个第二电极沿相同的方向并行延伸。
  2. 根据权利要求1所述的显示屏,其中,所述多个电极引出线设置于所述第一像素限定层下方且位于所述第一电极层和所述第一基板之间,并在所述多个电极引出线和所述第一电极层之间设置有信号屏蔽层。
  3. 根据权利要求2所述的显示屏,其中,所述信号屏蔽层覆设于所述多个电极引出线上,所述信号屏蔽层设有开孔,在所述信号屏蔽层上形成所述第一电极层并在所述开孔内形成导电材料,以使所述第一电极层和所述多个电极引出线连接。
  4. 根据权利要求1所述的显示屏,其中,所述多个电极引出线设置于所述第一像素限定层下方且位于所述第一电极层上方,并在所述多个电极引出线和所述第一电极层之间设置有信号屏蔽层。
  5. 根据权利要求2所述的显示屏,其中,所述第一显示区包括相邻的第一子显示区和第二子显示区,所述第一子显示区下方设置感光器件,并且所述第一像素限定层包括与所述第一子显示区对应的透光第一像素限定层,所述透光第一像素限定层为透光材料。
  6. 根据权利要求5所述的显示屏,其中,所述第一像素限定层还包括与所述第二子显示区对应的阻光第一像素限定层,所述阻光第一像素限定层为不透光材料。
  7. 根据权利要求1所述的显示屏,其中,所述第一显示面板为PMOLED显示面板,所述多个第一电极为多个相接的弧形,所述多个第一电极沿相同的方向并行延伸,且相邻 的第一电极间具有间距;并且在所述多个第一电极的延伸方向上,各个第一电极的宽度连续变化或间断变化,且所述间距连续变化或间断变化。
  8. 根据权利要求1所述的显示屏,其中,所述多个第二电极为多个相接的弧形,所述多个第二电极沿相同的方向并行延伸,且相邻的第二电极间具有间距;并且在所述多个第二电极的延伸方向上,各个第二电极的宽度连续变化或间断变化,且所述间距连续变化或间断变化
  9. 根据权利要求1所述的显示屏,其中,所述多个电极引出线的侧边设置为多个相接的弧形,所述多个电极引出线沿相同的方向并行延伸,且相邻的多个电极引出线间具有间距;并且在所述多个电极引出线的延伸方向上,所述多个电极引出线的宽度连续变化或间断变化,且所述间距连续变化或间断变化。
  10. 根据权利要求1所述的显示屏,其中,所述第一像素限定层上形成有多个像素开口,各个像素开口的形状为圆形、椭圆形、哑铃形或者葫芦形其中一种。
  11. 根据权利要求1所述的显示屏,其中,所述多个电极引出线与所述多个第二电极在所述第一基板上的正投影相互错开。
  12. 一种显示屏,具有相邻的第一显示区和第二显示区,所述第一显示区至少部分区域与所述第二显示区相接;所述第一显示区和所述第二显示区均用于显示画面;所述显示屏还包括设置于所述第一显示区的第一显示面板及设置于所述第二显示区的第二显示面板,所述第一显示区具有多个显示分区,各个显示分区均设置有子显示面板,所述子显示面板包括:
    第一基板;
    第一电极层,形成于所述第一基板上,所述第一电极层包括多个第一电极,所述第一电极的至少一端与所述第二显示面板相邻;
    第一像素限定层,形成于所述第一电极层上;
    第二电极层,形成于所述第一像素限定层上,所述第二电极层包括多个第二电极;并且
    各子显示面板均独立驱动。
  13. 根据权利要求12所述的显示屏,其中,所述第一显示面板为PMOLED显示面板,所述第二电极层包括多个第二电极,所述多个第二电极与所述多个第一电极交叉设置;并且所述第一显示面板还包括用于引出所述第一电极的多个电极引出线,至少一个显示分区内的各个第一电极均设置有所述电极引出线,所述多个电极引出线分别与所述多个第一电 极连接,且同一显示分区内的所述多个电极引出线与所述多个第二电极沿相同的方向并行延伸。
  14. 根据权利要求13所述的显示屏,其中,所述显示分区为三个或三个以上,各显示分区依次连接,且各个显示分区的所述多个第二电极相互平行且间隔,至少位于相邻两个所述显示分区之间的显示分区内的各个第一电极均设置有所述电极引出线。
  15. 根据权利要求13所述的显示屏,其中,所述多个电极引出线设置于所述第一像素限定层下方且位于所述第一电极层和所述第一基板之间,并在所述多个电极引出线和所述第一电极层之间设置有信号屏蔽层。
  16. 根据权利要求13所述的显示屏,其中,所述多个电极引出线设置于所述第一像素限定层下方且位于所述第一电极层上方,并在所述多个电极引出线和所述第一电极层之间设置有信号屏蔽层。
  17. 根据权利要求15所述的显示屏,其中,所述第一显示区包括相邻的第一子显示区和第二子显示区,所述第一子显示区下方设置感光器件,并且所述第一像素限定层包括与所述第一子显示区对应的透光第一像素限定层,所述透光第一像素限定层为透光材料。
  18. 根据权利要求17所述的显示屏,其中,所述第一像素限定层还包括与所述第二子显示区对应的阻光第一像素限定层,所述阻光第一像素限定层为不透光材料。
  19. 根据权利要求12所述的显示屏,其中,所述第一显示面板为AMOLED显示面板或类AMOLED显示面板,
    所述类AMOLED显示面板包括多个像素电路,设置于所述第一基板上,所述多个像素电路上设置有所述第一电极层,所述像素电路仅包含一个开关器件;
    所述第一像素限定层具有多个像素开口,所述像素开口内设置有发光结构,每个第一电极对应一个发光结构,所述第一电极为圆形、椭圆形、哑铃形或者葫芦形其中一种。
  20. 一种显示终端,包括:
    设备本体,具有开槽区;及
    如权利要求1所述的显示屏,覆盖在所述设备本体上;
    所述器件区位于所述第一显示区下方,且所述设备本体包括设置于所述开槽区的透过所述第一显示区的屏体进行光线采集的感光器件。
PCT/CN2019/079930 2018-10-31 2019-03-27 显示屏及显示终端 WO2020087850A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/930,326 US11404531B2 (en) 2018-10-31 2020-07-16 Display screens and display terminals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811290641.X 2018-10-31
CN201811290641.XA CN110767684B (zh) 2018-10-31 2018-10-31 显示屏及显示终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/930,326 Continuation US11404531B2 (en) 2018-10-31 2020-07-16 Display screens and display terminals

Publications (1)

Publication Number Publication Date
WO2020087850A1 true WO2020087850A1 (zh) 2020-05-07

Family

ID=69328911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079930 WO2020087850A1 (zh) 2018-10-31 2019-03-27 显示屏及显示终端

Country Status (3)

Country Link
US (1) US11404531B2 (zh)
CN (1) CN110767684B (zh)
WO (1) WO2020087850A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584525A (zh) * 2020-05-27 2020-08-25 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制造方法
CN111833741B (zh) * 2020-07-01 2022-03-29 合肥维信诺科技有限公司 阵列基板、显示面板及显示装置
CN112213867B (zh) * 2020-10-29 2023-05-05 京东方科技集团股份有限公司 显示面板、显示装置及显示面板驱动方法
CN112767839B (zh) * 2021-01-29 2022-08-19 昆山国显光电有限公司 显示面板和显示设备
CN112909063B (zh) * 2021-02-03 2022-09-27 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663396A (zh) * 2014-08-08 2017-05-10 株式会社半导体能源研究所 显示装置
US20180053917A1 (en) * 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Display device
CN108364976A (zh) * 2017-09-25 2018-08-03 广东聚华印刷显示技术有限公司 顶发射显示面板、显示装置及其制作方法
CN108520888A (zh) * 2018-04-02 2018-09-11 云谷(固安)科技有限公司 显示屏及其显示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3923238B2 (ja) * 1999-07-07 2007-05-30 シャープ株式会社 表示装置
JP2001052859A (ja) * 1999-08-06 2001-02-23 Auto Network Gijutsu Kenkyusho:Kk El表示装置
JP2002268079A (ja) * 2001-03-09 2002-09-18 Seiko Epson Corp 電気光学装置と電子機器
KR100394006B1 (ko) * 2001-05-04 2003-08-06 엘지전자 주식회사 전류구동 표시소자의 더블 스캔 구조 및 제조방법
JP2003157028A (ja) * 2001-11-20 2003-05-30 Canon Electronics Inc 有機エレクトロルミネッセンスパネル
JP2005173299A (ja) 2003-12-12 2005-06-30 Optrex Corp 有機el表示装置および有機el表示装置の基板
JP4439988B2 (ja) * 2004-04-23 2010-03-24 シャープ株式会社 表示装置
CN101099110A (zh) * 2005-01-07 2008-01-02 皇家飞利浦电子股份有限公司 无源矩阵显示器中的交错电极
CN101288023A (zh) * 2005-10-14 2008-10-15 皇家飞利浦电子股份有限公司 平面内切换显示设备
KR100645706B1 (ko) * 2006-01-27 2006-11-15 삼성에스디아이 주식회사 유기전계발광 표시장치 및 그 제조방법
JP4909677B2 (ja) * 2006-08-23 2012-04-04 オプトレックス株式会社 表示装置
JP2012032471A (ja) * 2010-07-29 2012-02-16 Dainippon Printing Co Ltd パッシブマトリクス駆動型の表示素子パネル、その製造方法及び表示装置
CN201946599U (zh) * 2010-12-17 2011-08-24 四川虹视显示技术有限公司 一种pmoled扫描电极布线结构
JP5384755B2 (ja) 2011-01-18 2014-01-08 シャープ株式会社 被成膜基板、有機el表示装置
WO2014174773A1 (ja) * 2013-04-25 2014-10-30 パナソニック株式会社 パッシブマトリクス駆動型ディスプレイ及びタイリングディスプレイ
JP2015207409A (ja) * 2014-04-18 2015-11-19 パナソニック株式会社 ディスプレイ及びタイリングディスプレイ
KR20160123113A (ko) * 2015-04-15 2016-10-25 엘지전자 주식회사 이동 단말기
CN105427748B (zh) 2016-01-04 2018-10-09 京东方科技集团股份有限公司 一种阵列基板、显示面板、显示装置及显示方法
CN107481666A (zh) 2017-08-16 2017-12-15 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器
CN207781599U (zh) * 2017-09-30 2018-08-28 云谷(固安)科技有限公司 显示屏以及电子设备
US11957001B2 (en) * 2018-09-27 2024-04-09 Sharp Kabushiki Kaisha Display device and method of manufacturing display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663396A (zh) * 2014-08-08 2017-05-10 株式会社半导体能源研究所 显示装置
US20180053917A1 (en) * 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Display device
CN108364976A (zh) * 2017-09-25 2018-08-03 广东聚华印刷显示技术有限公司 顶发射显示面板、显示装置及其制作方法
CN108520888A (zh) * 2018-04-02 2018-09-11 云谷(固安)科技有限公司 显示屏及其显示装置

Also Published As

Publication number Publication date
US11404531B2 (en) 2022-08-02
US20200350394A1 (en) 2020-11-05
CN110767684A (zh) 2020-02-07
CN110767684B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
US11107402B2 (en) Display screen, display device integrated with display screen, and cover plate
KR102672109B1 (ko) 디스플레이 기판, 디스플레이 패널 및 디스플레이 장치
WO2020087850A1 (zh) 显示屏及显示终端
CN108986678B (zh) 一种显示面板及其制作方法、显示装置
JP7329685B2 (ja) 表示パネル
US10234975B2 (en) Flexible display device, fabrication method and electronic device thereof
WO2020087799A1 (zh) 显示屏及显示终端
WO2020207135A1 (zh) 显示面板及显示装置
WO2021027109A1 (zh) 显示面板及显示装置
WO2020173060A1 (zh) 显示基板、显示面板及显示装置
US20220308694A1 (en) Touch display panel and electronic device
US11561660B2 (en) Display apparatuses and self-capacitance touch panels thereof
CN110767681B (zh) 显示屏及显示终端
CN110767166B (zh) 显示屏及显示终端
CN111384136B (zh) 显示面板及显示装置
WO2022062879A9 (zh) 触控基板及显示面板
CN110783481A (zh) 显示面板、显示屏及显示装置
US11789571B2 (en) Touch structure, touch display panel and electronic device
WO2020087851A1 (zh) 显示屏及显示终端
CN110164940B (zh) 有机发光显示面板和显示装置
CN110767686B (zh) 显示屏及显示终端
US12019833B2 (en) Touch structure, touch display panel and electronic device
WO2023142044A1 (zh) 显示基板
CN113809135B (zh) 一种显示面板及显示装置
WO2023137663A1 (zh) 显示基板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879670

Country of ref document: EP

Kind code of ref document: A1