WO2020085102A1 - 発電機能付照明装置 - Google Patents

発電機能付照明装置 Download PDF

Info

Publication number
WO2020085102A1
WO2020085102A1 PCT/JP2019/040019 JP2019040019W WO2020085102A1 WO 2020085102 A1 WO2020085102 A1 WO 2020085102A1 JP 2019040019 W JP2019040019 W JP 2019040019W WO 2020085102 A1 WO2020085102 A1 WO 2020085102A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thermoelectric element
lighting device
led
electrode portion
Prior art date
Application number
PCT/JP2019/040019
Other languages
English (en)
French (fr)
Inventor
後藤 博史
坂田 稔
Original Assignee
株式会社Gceインスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gceインスティチュート filed Critical 株式会社Gceインスティチュート
Priority to US17/286,871 priority Critical patent/US11221133B2/en
Priority to EP19875979.7A priority patent/EP3872393A4/en
Priority to CN201980069148.1A priority patent/CN112912664A/zh
Priority to JP2020553127A priority patent/JP7105001B2/ja
Publication of WO2020085102A1 publication Critical patent/WO2020085102A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/237Details of housings or cases, i.e. the parts between the light-generating element and the bases; Arrangement of components within housings or cases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • F21K9/275Details of bases or housings, i.e. the parts between the light-generating element and the end caps; Arrangement of components within bases or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • F21K9/278Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/04Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a generator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J45/00Discharge tubes functioning as thermionic generators

Definitions

  • This invention relates to a lighting device with a power generation function.
  • Patent Document 1 discloses a lighting device that generates electric power by using heat generated by light emission of a light emitting element.
  • the lighting device described in Patent Document 1 includes an LED element, a thermoelectric element that generates a temperature difference in the thermoelectric element to generate electricity, and a low-temperature material that causes a temperature difference in the thermoelectric element. .
  • Patent Document 2 includes electrically insulating spherical nano-beads that separate the emitter electrode layer and the collector electrode layer at submicron intervals, and the work function of the emitter electrode layer is made smaller than that of the collector electrode layer. Filling the space between electrodes separated by spherical nano-beads with a dispersion liquid of metallic nanoparticles having a work function intermediate between the layer and the collector electrode layer, and in which metallic nanoparticles having a smaller particle size than the spherical nano-beads are dispersed.
  • the disclosed thermoelectric element is disclosed.
  • thermoelectric element In the thermoelectric element described in Patent Document 1, one electrode of the electrode pair in the thermoelectric element is heated and the other electrode is cooled. By causing a temperature difference between the two electrodes in this way, the thermoelectric element generates electricity.
  • Patent Document 1 in order to actually generate power, in addition to the LED element and the thermoelectric element, a low temperature material that causes a temperature difference in the thermoelectric element and a chiller that cools the low temperature material are separately required. Therefore, the number of parts of the lighting device with a power generation function increases, and the manufacturing cost increases. Moreover, since the lighting device with a power generation function includes the LED element, the thermoelectric element, the low temperature material, and the chiller, the size thereof is also increased. Moreover, in the lighting device with a power generation function, it is necessary to newly increase the area where the low temperature material and the chiller are mounted in addition to the LED element and the thermoelectric element. This also helps increase the size.
  • thermoelectric element In the thermoelectric element disclosed in Patent Document 2, the work function of the emitter electrode layer is made smaller than that of the collector electrode layer, and the metal nanoparticle dispersion liquid is filled into the space between the electrodes separated by the spherical nanobeads. . As a result, the thermoelectric element can generate power without causing a temperature difference in the thermoelectric element.
  • Patent Document 2 discloses a structure of such a thermoelectric element. However, Patent Document 2 does not suggest that the thermoelectric element can be mixedly mounted while suppressing an increase in manufacturing cost of the lighting device and an increase in size.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a lighting device with a power generation function capable of suppressing an increase in manufacturing cost and an increase in size.
  • a lighting device with a power generation function includes a lighting device with a power generation function, which includes an LED element that converts electrical energy into light energy, and a thermoelectric element that converts thermal energy emitted from the LED element into electrical energy.
  • a thermal conductive base having a mounting surface and an open surface facing the mounting surface; and a board wiring electrically insulated from the thermal conductive base on the mounting surface.
  • a heat-conducting LED substrate including, a light-emitting device including the LED element electrically connected to the substrate wiring, a cavity inside, and the heat-conducting material on the open surface of the heat-conducting base.
  • thermoelectric element electrically insulated from the base and thermally coupled to the heat conductive base; a translucent cover provided on the heat sink for housing the light emitting device;
  • thermoelectric element electrically insulated from the heat sink and thermally coupled to the heat sink in the hollow portion of the heat sink; and the thermoelectric element includes a housing portion having a housing portion, and A first electrode portion provided in the housing portion, a second electrode provided in the housing portion, facing the first electrode portion with a space in the first direction and having a work function different from that of the first electrode portion; An electrode part and a work function provided between the first electrode part and the second electrode part in the accommodating part and between the work function of the first electrode part and the work function of the second electrode part. And an intermediate portion including nanoparticles having a.
  • the housing portion is provided on an inner surface of the hollow portion of the heat sink.
  • a lighting device with a power generation function is, in the first aspect, a first connection wiring electrically connected to the first electrode portion and leading the first electrode portion out of the housing portion.
  • a second connection wiring electrically connected to the second electrode portion and leading out the second electrode portion to the outside of the accommodating portion; and a second connection wiring between the first electrode portion and the first connection wiring.
  • Each of the one electrical contact point and the second electrical contact point between the second electrode section and the second connection wiring is provided in the housing section.
  • a lighting device with a power generation function is the illumination device according to the second aspect of the present invention, wherein the housing section faces the first main surface and the first main surface and faces the open surface of the heat conductive base.
  • a lighting device with a power generation function according to a fourth invention is the lighting device with a power generation function according to any one of the first to third inventions, wherein the thermoelectric element includes at least one of a parallel plate type thermoelectric element and a comb tooth type thermoelectric element. Characterize.
  • the illumination device with a power generation function according to a fifth aspect of the present invention is the illumination device with a power generation function according to any one of the first to fourth aspects, wherein the external input power supplied from outside and the auxiliary input power supplied from the thermoelectric element are respectively input. It is characterized by further comprising a power supply circuit that converts each of the external input power and the auxiliary input power that are possible into LED input power and outputs the LED input power to the LED element.
  • the power supply circuit includes a capacitor having one electrode and the other electrode, and the one electrode is a high potential side output node of the external input power.
  • the anode of the LED element and the cathode of the thermoelectric element are electrically coupled, and the other electrode is electrically coupled to the low potential side wiring of the power supply circuit. .
  • the power supply circuit further includes a first switch, a second switch, and a current limiting circuit, wherein the high-potential-side output node is The one electrode is electrically coupled via the first switch, the cathode of the thermoelectric element is electrically coupled to the one electrode via the second switch, and the anode of the LED element is coupled to the one electrode. It is characterized in that it is electrically coupled to the electrodes through a current limiting circuit.
  • the first electrode portion, the second electrode portion having a work function different from that of the first electrode portion, and the second electrode portion are provided in the housing portion of the housing portion of the thermoelectric element.
  • thermoelectric element 1 is provided on the inner surface of the cavity of the heat sink.
  • the cavity is a dead space.
  • the thermoelectric element is incorporated in the lighting device by utilizing its dead space. Accordingly, it is not necessary to newly secure an area for mounting the thermoelectric element in the lighting device, and it is possible to suppress an increase in size of the lighting device.
  • each of the first and second electrical contacts is provided in the housing portion.
  • the housing has a first main surface and a second main surface facing the first main surface and facing the open surface of the heat conductive base.
  • a first substrate is included.
  • each of the first and second external housing terminals is provided on the first main surface of the first substrate.
  • the first main surface can provide a larger area for each of the first and second external housing terminals than the side surface of the housing part, for example. Further, it is easier for the operator to visually recognize the work point or to extract the work point by the work robot, as compared with the side surface of the housing. As a result, for example, the electrical connection work between the thermoelectric element and the lighting device can be facilitated, and, for example, the throughput of the lighting device can be improved. Further, the reliability of assembling the lighting device including the thermoelectric element is also improved.
  • the thermoelectric element includes any one of a parallel plate type thermoelectric element and a comb tooth type thermoelectric element.
  • thermoelectric element is embodied.
  • a power circuit is further provided.
  • the power supply circuit converts external input power supplied from the outside and auxiliary input power supplied from the thermoelectric element into LED input power and outputs the LED input power to the LED element. Thereby, the power consumption of the lighting device with a power generation function can be reduced.
  • the power supply circuit includes a capacitor having one electrode and the other electrode. Meanwhile, the electrode is electrically coupled to the high potential node, the anode of the LED element, and the cathode of the thermoelectric element. The other electrode is electrically coupled to the low potential node, the cathode of the LED element, and the anode of the thermoelectric element.
  • the power supply circuit further includes a first switch, a second switch, and a current limiting circuit.
  • the high potential node is electrically coupled to the one electrode through the first switch.
  • the cathode of the thermoelectric element is electrically coupled to the one electrode via the second switch.
  • the anode of the LED element is electrically coupled to the one electrode via a current limiting circuit.
  • FIG. 1A is a schematic diagram showing an example of a lighting device with a power generation function according to the first embodiment.
  • FIG. 1B is a schematic view showing a part of FIG. 1A as a cross section.
  • FIG. 2 is a schematic exploded cross-sectional view showing an exploded example of the lighting device with a power generation function according to the first embodiment.
  • FIG. 3A and FIG. 3B are schematic cross-sectional views showing a first example of the thermoelectric element.
  • FIG. 4 is a schematic cross-sectional view showing an example of joining.
  • FIG. 5A is a schematic cross-sectional view showing an example of the intermediate portion.
  • FIG. 5B is a schematic cross-sectional view showing another example of the intermediate portion.
  • FIG. 6C are schematic cross-sectional views showing an example of the thermoelectric element according to the first modification.
  • FIG. 7 is a schematic cross-sectional view showing an example of joining.
  • FIG. 8 is a schematic cross-sectional view showing an example of the slit.
  • 9A and 9B are schematic cross-sectional views showing an example of solvent injection.
  • FIG. 10 is a schematic plan view showing a first example of the heat conductive base.
  • FIG. 11 is a schematic plan view showing a second example of the heat conductive base.
  • FIG. 12A is a schematic diagram showing an example of a lighting device according to the first modification.
  • FIG. 12B is a schematic cross-sectional view taken along the line XIIB-XIIB in FIG.
  • FIG. 13 is a schematic block diagram which shows an example of the illuminating device with a power generation function which concerns on 2nd Embodiment.
  • FIG. 14 is a schematic circuit diagram showing an example of a lighting device with a power generation function according to the second embodiment.
  • FIG. 15 is a schematic circuit diagram which shows an example of the illuminating device with a power generation function which concerns on the 1st modification of 2nd Embodiment.
  • FIG. 16 is a schematic diagram schematically showing the relationship between temperature and luminous efficiency and the relationship between temperature and power generation efficiency.
  • FIG. 17 is a schematic circuit diagram showing an example of a light emitting device with a power generation function according to a second modification of the second embodiment.
  • the height direction is the first direction Z and intersects the first direction Z, for example, one orthogonal plane direction is the second direction X, and intersects each of the first direction Z and the second direction X.
  • another plane direction orthogonal to each other is defined as a third direction Y.
  • common parts are designated by common reference numerals, and overlapping description will be omitted.
  • FIG. 1A is a schematic diagram showing an example of a lighting device with a power generation function according to the first embodiment.
  • FIG. 1B is a schematic view showing a part of FIG. 1A as a cross section.
  • FIG. 2 is a schematic exploded cross-sectional view showing an exploded example of the lighting device with a power generation function according to the first embodiment.
  • an illumination device with a power generation function (hereinafter, abbreviated as an illumination device) 400 according to the first embodiment includes an LED (Light Emitting Diode) element 210. And thermoelectric element 1.
  • the LED element 210 converts electric energy into light energy.
  • the thermoelectric element 1 converts the thermal energy emitted from the LED element 210 into electric energy.
  • the lighting device 400 includes the light emitting device 200, a heat sink 401, a translucent cover 402, and the thermoelectric element 1.
  • the lighting device 400 further includes a power supply circuit 300.
  • the light emitting device 200 includes an LED element 210 and a heat conductive LED substrate 220.
  • the heat conductive LED substrate 220 includes a heat conductive base 221, a first substrate wiring 222a, and a second substrate wiring 222b.
  • the heat conductive base 221 has a mounting surface 221a and an open surface 222b facing the mounting surface 221a.
  • the first and second substrate wirings 222a and 222b are provided on the mounting surface 221a while being electrically insulated from the heat conductive base 221.
  • the LED element 210 is electrically connected to the first and second substrate wirings 222a and 222b.
  • the heat sink 401 is provided on the open surface 221b of the heat conductive base 221.
  • the heat sink 401 is electrically insulated from the heat conductive base 221, and is thermally coupled to the heat conductive base 221.
  • the heat sink 401 has, for example, a cylindrical shape and has a hollow portion 401a inside.
  • the heat sink 401 is made of a material having high thermal conductivity. Examples of the material include aluminum, copper, an alloy of aluminum and copper, and the like.
  • the translucent cover 402 is provided on the heat sink 401.
  • the translucent cover 402 houses the light emitting device 200.
  • thermoelectric element 1 is provided on the inner surface 401b of the cavity 401a of the heat sink 401. As a result, the thermoelectric element 1 is housed in the hollow portion 401a of the heat sink 401. The thermoelectric element 1 is bonded to the inner surface 401b with, for example, the bonding member 30. The thermoelectric element 1 is electrically insulated from the heat sink 401 and is thermally coupled to the heat sink 401. The thermoelectric element 1 outputs the auxiliary input power Pina. The thermoelectric element 1 is used as, for example, an auxiliary power source of the lighting device 400.
  • the power supply circuit 300 is housed, for example, in the hollow portion 401 a of the heat sink 401.
  • the power supply circuit 300 is configured to be able to input each of the external input power Pin and the auxiliary input power Pina.
  • the external input power Pin is power supplied from outside the light emitting device 200.
  • the external input power Pin is supplied from an external power supply, for example, a commercial power supply 310.
  • the external power source and the commercial power source 310 may be a battery.
  • the auxiliary input power Pina is supplied from the thermoelectric element 1.
  • the power supply circuit 300 converts each of the external input power Pin and the auxiliary input power Pina into the LED input power Pout, and outputs the LED input power Pout to the LED element 210.
  • the light emitting device 200 is used as a light source of the lighting device 400.
  • a first example of the lighting device 400 is a light bulb type LED lamp.
  • the light bulb type LED lamp according to the first example includes, for example, a power supply circuit 300 and a base 403.
  • the base portion 403 is provided on a portion of the heat sink 401 opposite to the side where the light emitting device 200 is attached.
  • the base portion 403 is detachable from and electrically connectable to a socket (not shown).
  • the base 403 is electrically insulated from the heat sink 401.
  • the power supply circuit 300 includes a circuit board 320, an electronic component 330, and first to sixth external terminals 331a to 331f. including.
  • the electronic component 330 is provided on the circuit board 320.
  • the electronic component 330 is a circuit element that constitutes the power supply circuit 300. Examples of circuit elements include resistors, capacitors, coils, diodes, transistors, transformers, and regulators. Note that the electronic component 330 may be provided on the circuit board 320 by using, for example, the front surface and the back surface of the circuit board 320, as illustrated in FIG. 2.
  • Each of the first to sixth external terminals 331a to 331f is provided on the circuit board 320.
  • the first external terminal 331a is electrically connected to the shell 410 of the base 403 via the first lead wire 321a.
  • the second external terminal 331b is electrically connected to the eyelet 411 of the base 403 via the second lead wire 321b.
  • the third external terminal 331c is electrically connected to the cathode K of the thermoelectric element 1 via the third lead wire 321c.
  • the fourth external terminal 331d is electrically connected to the anode A of the thermoelectric element 1 via the fourth lead wire 321d.
  • the fifth external terminal 331e is electrically connected to the anode A of the LED element 210 via the fifth lead wire 321e.
  • the sixth external terminal 331f is electrically connected to the cathode K of the LED element 210 via the sixth lead wire 321f.
  • Each of the first to sixth lead wires 321a to 321f is provided in the cavity 401a.
  • the heat conductive LED substrate 220 includes a heat conductive base 221, a first substrate wiring 222a, and a second substrate wiring 222b.
  • a material having high heat conductivity is used for the heat conductive base 221. Examples of the material include aluminum, copper, an alloy of aluminum and copper, and the like.
  • the thickness of the heat conductive base 221 along the first direction Z is, for example, 1 mm or more and 10 mm or less.
  • the heat conductive base 221 has a mounting surface 221a and an open surface 221b. The open surface 221b faces the mounting surface 221a.
  • Each of the first and second substrate wirings 222a and 222b is provided on the mounting surface 221a of the heat conductive base 221 and electrically insulated from the heat conductive base 221.
  • an insulator 223 is provided on the mounting surface 221a of the heat conductive base 221.
  • Each of the first and second substrate wirings 222a and 222b is provided on the insulator 223, for example.
  • the first and second substrate wirings 222a and 222b are electrically insulated from the heat conductive base 221.
  • an insulating ceramic having good heat resistance, an insulating resin having good heat resistance, or the like can be given.
  • An example of an insulating ceramic is aluminum oxide.
  • the insulating resin are epoxy resin, PEEK (Poly Ether Ether Ketone), PEI (Poly Ether Imide), and the like.
  • a well-known one can be used for the heat conductive LED substrate 220.
  • the LED element 210 is electrically connected to the first and second substrate wirings 222a and 222b.
  • One or more LED elements 210 are provided on the heat conductive base 221.
  • the LED element 210 includes an LED chip 211, a package substrate 212, a reflector 213, a transparent encapsulating resin 214, a first electrode wiring 215a, and a second electrode wiring 215b.
  • the LED element 210 is an LED package.
  • the LED chip 211 is provided on the package substrate 212.
  • the reflector 213 is provided on the package substrate 212 and surrounds the LED chip 211.
  • the translucent encapsulating resin 214 encapsulates the LED chip 211.
  • the LED element 210 is a white LED
  • at least one monochromatic LED chip 211 is encapsulated by the translucent encapsulating resin 214 while the package substrate 212 is the bottom and the reflector 213 is the wall.
  • a phosphor is dispersed in the transparent encapsulating resin 214.
  • the LED element 210 is a full-color LED
  • at least three LED chips 211 corresponding to red, green, and blue (RGB) each have a package substrate 212 as a bottom, a reflector 213 as a wall, and a translucent encapsulation. It is encapsulated by resin 214. In the case of a full-color LED, the translucent encapsulating resin 214 may not have the phosphor dispersed therein.
  • the first electrode wiring 215a is provided on the package substrate 212.
  • the first electrode wiring 215a guides, for example, the anode (A) of the LED chip 211 to the outside of the reflector 213 and the transparent encapsulating resin 214.
  • the first electrode wiring 215a is electrically connected to the first substrate wiring 222a.
  • the second electrode wiring 215b is provided on the package substrate 212.
  • the second electrode wiring 215b guides, for example, the cathode (K) of the LED chip 211 to the outside of the reflector 213 and the transparent encapsulating resin 214.
  • the second electrode wiring 215b is electrically connected to the second substrate wiring 222b.
  • a well-known LED element 210 can be used.
  • FIG. 3A and FIG. 3B are schematic cross-sectional views showing a first example of the thermoelectric element.
  • the schematic cross section shown in FIG. 3A is taken along the line IIIA-IIIA in FIG.
  • the schematic cross section shown in FIG. 3B is taken along the line IIIB-IIIB in FIG.
  • FIG. 4 is a schematic cross-sectional view showing an example of joining.
  • FIG. 4 corresponds to the schematic cross section shown in FIG.
  • the thermoelectric element 1 includes a housing portion 10, a first electrode portion 11, a second electrode portion 12, and an intermediate portion 14.
  • the housing 10 is provided on the open surface 221b of the heat conductive base 221.
  • the housing unit 10 is adhered onto the open surface 221b by, for example, an adhesive member 30 (FIG. 2).
  • the casing 10 is fixed to the open surface 221b with a brazing material such as solder.
  • the thickness Tz of the thermoelectric element 1 along the first direction Z is about 20 ⁇ m to about 6 mm (FIG. 2).
  • the housing unit 10 includes a first substrate 10a and a second substrate 10b.
  • the thickness of each of the first and second substrates 10a and 10b along the first direction Z is, for example, 10 ⁇ m or more and 2 mm or less.
  • a plate-shaped material having an insulating property can be selected. Examples of the insulating material include silicon, quartz, glass such as Pyrex (registered trademark), insulating resin, and the like.
  • the first and second substrates 10a and 10b may be, for example, a flexible film, as well as a thin plate.
  • first and second substrates 10a or 10b are formed into a flexible film
  • PET polyethylene terephthalate
  • PC polycarbonate
  • polyimide or the like
  • the first and second substrates 10a and 10b do not have to be insulative.
  • the surface of the semiconductor substrate or the metal substrate may be covered with, for example, an insulating film.
  • a substrate with an insulating film for example, a substrate in which a silicon oxide (for example, SiO 2 ) film is formed on the surface of a silicon (Si) substrate can be mentioned.
  • the first substrate 10a includes, for example, a first support portion 13a.
  • the first support portion 13a extends from the first substrate 10a along the first direction Z toward the second substrate 10b.
  • the planar shape of the first support portion 13a is an L-shape that extends in each of the second direction X and the third direction Y when viewed from the first direction Z.
  • the second substrate 10b includes, for example, the second support portion 13b.
  • the second support portion 13b extends from the second substrate 10b along the first direction Z toward the first substrate 10a.
  • the planar shape of the second support portion 13b is an L shape extending in each of the second direction X and the third direction Y when viewed from the first direction Z.
  • each of the first and second support portions 13a and 13b along the first direction Z is, for example, 10 nm or more and 10 ⁇ m or less.
  • the 2nd support part 13b and the 1st support part 13a are separated, for example via two slits 17a and 17b.
  • the first and second support portions 13a and 13b may be provided integrally with the first and second substrates 10a and 10b, or may be provided separately.
  • the materials of the first and second support portions 13a and 13b are the same as those of the first and second substrates 10a and 10b.
  • examples of the material of the first and second support portions 13a and 13b include silicon oxide and polymer.
  • examples of polymers include polyimide, PMMA (Polymethylmethacrylate), polystyrene, and the like.
  • the slits 17a and 17b are sealed by sealing members 31a and 31b, respectively.
  • the sealing members 31a and 31b may be integrated.
  • the sealing member 31a and the sealing member 31b become one sealing member 31, and are provided in an annular shape along the outer side surfaces of the first and second support portions 13a and 13b.
  • An insulating resin can be mentioned as an example of the material of the sealing members 31a and 31b.
  • An example of the insulating resin is a fluorine-based insulating resin.
  • the first electrode portion 11 is provided inside the housing portion 10d.
  • the first electrode portion 11 is provided on the first substrate 10a.
  • the 2nd electrode part 12 is provided in the accommodating part 10d.
  • the second electrode portion 12 is provided on the second substrate 10b.
  • the first electrode portion 11 and the second electrode portion 12 form a pair of parallel plate type electrode pairs.
  • the thermoelectric element 1 is a parallel plate type thermoelectric element.
  • the first electrode portion 11 contains, for example, platinum (work function: about 5.65 eV).
  • the second electrode portion 12 contains, for example, tungsten (work function: about 4.55 eV).
  • the electrode part having a large work function functions as the anode A (collector electrode), and the electrode part having a small work function functions as the cathode K (emitter electrode).
  • the first electrode portion 11 is the anode A and the second electrode portion 12 is the cathode K.
  • the electron emission phenomenon due to the absolute temperature, which occurs between the first electrode portion 11 and the second electrode portion 12 having a work function difference, is used.
  • thermoelectric element 1 can convert thermal energy into electrical energy even when the temperature difference between the first electrode portion 11 and the second electrode portion 12 is small. Furthermore, the thermoelectric element 1 can convert thermal energy into electrical energy even when there is no temperature difference between the first electrode portion 11 and the second electrode portion 12.
  • the first electrode portion 11 may be the cathode K and the second electrode portion 12 may be the anode A.
  • each of the first and second electrode portions 11 and 12 along the first direction Z is, for example, 1 nm or more and 1 ⁇ m or less. More preferably, it is 1 nm or more and 50 nm or less.
  • the respective materials of the first and second electrode portions 11 and 12 can be selected from the following metals, for example. Platinum (Pt) Tungsten (W) Aluminum (Al) Titanium (Ti) Niobium (Nb) Molybdenum (Mo) Tantalum (Ta) Rhenium (Re) In the thermoelectric element 1, a work function difference may be generated between the first electrode portion 11 and the second electrode portion 12. Therefore, it is possible to select a metal other than the above as the material of the first electrode portions 11 and 12.
  • alloys, intermetallic compounds, and metal compounds can be selected as the materials for the first and second electrode portions 11 and 12.
  • the metal compound is a combination of a metal element and a non-metal element.
  • metal compounds include lanthanum hexaboride (LaB 6 ).
  • non-metal conductive material examples include silicon (Si: for example, p-type Si or n-type Si), and carbon-based materials such as graphene.
  • the refractory metal is, for example, W, Nb, Mo, Ta, or Re.
  • Pt is used for the first electrode portion (anode A) 11, for example, it is preferable to use at least one of Al, Si, Ti, and LaB 6 for the second electrode portion (cathode K) 12.
  • the melting points of Al and Ti are lower than those of the above high melting point metals. Therefore, it is possible to obtain the advantage that each of Al and Ti is easier to process than the above-mentioned refractory metal.
  • thermoelectric element 1 is easier to form than the above refractory metals. Therefore, from Si, in addition to the ease of processing, the productivity of the thermoelectric element 1 can be further improved.
  • the melting point of LaB 6 is higher than Ti and Nb.
  • the melting point of LaB 6 is lower than W, Mo, Ta, and Re.
  • LaB 6 is easier to process than W, Mo, Ta, and Re.
  • the work function of LaB 6 is about 2.5 to 2.7 eV.
  • LaB 6 is more likely to emit electrons than the refractory metal. Therefore, the advantage that the power generation efficiency of the thermoelectric element 1 can be further improved can be further obtained from LaB 6 .
  • each of the first electrode portion 11 and the second electrode portion 12 may be a single layer structure containing the above material or a laminated structure containing the above material.
  • the thermoelectric element 1 further includes a first connection wiring 15a and a second connection wiring 16a.
  • the first connection wiring 15a is electrically connected to the first electrode portion 11 inside the housing portion 10d.
  • the first electrical contact 11a between the first electrode portion 11 and the first connection wiring 15a is provided inside the housing portion 10d.
  • the planar shape of the first connection wiring 15a is an L-shape extending in each of the second direction X and the third direction Y when viewed from the first direction Z. is there. This is almost the same as the planar shape of the first support portion 13a.
  • the first connection wiring 15a is bonded to the first bonding metal 18a between the first support portion 13a and the second substrate 10b.
  • the first bonding metal 18a is provided on the second substrate 10b.
  • the planar shape of the first bonding metal 18a is an L-shape that extends in each of the second direction X and the third direction Y when viewed from the first direction Z. This is almost the same as the planar shape of the first connection wiring 15a on the board bonding surface 13aa.
  • the second connection wiring 16a is electrically connected to the second electrode portion 12 inside the housing portion 10d.
  • the second electrical contact 12a between the second electrode portion 12 and the second connection wiring 16a is provided inside the housing portion 10d.
  • the planar shape of the second connection wiring 16a is an L-shape extending in each of the second direction X and the third direction Y when viewed from the first direction Z. is there. This is almost the same as the planar shape of the second support portion 13b.
  • the second connection wiring 16a is bonded to the second bonding metal 18b between the second support portion 13b and the first substrate 10a.
  • the second bonding metal 18a is provided on the first substrate 10a.
  • the planar shape of the second bonding metal 18b is an L shape extending in each of the second direction X and the third direction Y when viewed from the first direction Z. This is almost the same as the planar shape of the second connection wiring 16a on the board bonding surface 13ba.
  • the first and second bonding metals 18a and 18b include, for example, a metal that can be bonded to the first and second connection wirings 15a and 16a.
  • the second substrate 10b is bonded by the first connection wiring 15a and the first bonding metal 18a, and the second connection wiring 16a and the second bonding metal 18b. It can be bonded to the first substrate 10a.
  • the housing portion 10 is provided with the housing portion 10d.
  • the first and second connection wirings 15a and 16a and the first and second bonding metals 18a and 18b are respectively It can be joined to the first and second joining metals 18a and 18b by thermocompression bonding.
  • Each of the first and second connection wirings 15a and 16a and the first and second bonding metals 18a and 18b may be, for example, a metal or alloy capable of thermocompression bonding, eutectic bonding, etc., in addition to gold. Can be used.
  • the work function of the metal or alloy used for each of the first and second connection wirings 15a and 16a and the first and second bonding metals 18a and 18b is the work function of the first electrode unit 11 and the work function of the second electrode. It is preferably between the work function of the electrode portion 12 and, for example, from the viewpoint of suppressing a decrease in power generation efficiency.
  • the work function of the generated intermetallic compound is the same as the work function of the first electrode unit 11 It is preferably between the work function of the two-electrode part 12.
  • the first connection wiring 15a is further provided on each of the inner side surface of the first supporting portion 13a, the board bonding surface 13aa, and the outer side surface of the first supporting portion 13a.
  • the first connection wiring 15a leads the first electrode portion 11 out of the housing portion 10d.
  • the second connection wiring 16a is further provided on the inner side surface of the second support portion 13b and on the substrate bonding surface 13aa.
  • the second connection wiring 16a leads the second electrode portion 12 out of the housing portion 10d.
  • the first substrate 10a has a first main surface 10af and a second main surface 10ab.
  • the second main surface 10ab faces the first main surface 10af and faces the open surface 221b of the heat conductive base 221.
  • the second main surface 10ab is bonded to the open surface 221b by, for example, the adhesive member 30.
  • the second main surface 10ab is fixed on the open surface 221b by, for example, a brazing material.
  • Each of the first external housing terminal 101 and the second external housing terminal 102 is provided on the first main surface 10af of the first substrate 10a.
  • the first external housing terminal 101 is electrically connected to the first connection wiring 15a.
  • the second external housing terminal 102 is electrically connected to the second connection wiring 16a.
  • the first main surface 10af has, for example, a portion protruding outward from each of the first and second support portions 13a and 13b.
  • the first external housing terminal 101 is provided, for example, in a portion protruding outward from the first support portion 13a of the first main surface 10af.
  • the second external housing terminal 102 is provided, for example, in a portion of the first main surface af that projects outward from the second support portion 13b.
  • the first external housing terminal 101 uses the pattern of the first connection wiring 15a and is made of the same conductive material as the first connection wiring 15a.
  • the second external housing terminal 102 uses the pattern of the second bonding metal 18b and is made of the same conductive material as the second bonding metal 18b.
  • FIG. 5A is a schematic cross-sectional view showing an example of the intermediate portion.
  • FIG. 5B is a schematic cross-sectional view showing another example of the intermediate portion.
  • the intermediate portion 14 is provided between the first electrode portion 11 and the second electrode portion 12 in the housing portion 10d.
  • the intermediate portion 14 includes nanoparticles having a work function between that of the first electrode portion 11 and that of the second electrode portion 12.
  • the intermediate portion 14 is, for example, a portion that moves the electrons emitted from the second electrode portion (cathode K) 12 to the first electrode portion (anode A) 11.
  • An inter-electrode gap G is set between the first electrode portion 11 and the second electrode portion 12 along the first direction Z.
  • the inter-electrode gap G is set by the thickness of each of the first and second support portions 13a and 13b along the first direction Z.
  • An example of the width of the interelectrode gap G is, for example, a finite value of 10 ⁇ m or less. The smaller the width of the inter-electrode gap G, the more efficiently electrons e can be emitted from the second electrode portion (cathode K) 12, and the second electrode portion 12 to the first electrode portion (anode A) 11, It can be moved efficiently. Therefore, the power generation efficiency of the thermoelectric element 1 is improved.
  • the width of the interelectrode gap G is preferably narrow.
  • the width of the interelectrode gap G is more preferably, for example, 10 nm or more and 100 nm or less.
  • the width of the inter-electrode gap G and the thickness of the first supporting portion 13a to the third supporting portion 13c along the first direction Z are substantially equivalent.
  • the intermediate portion 14 includes, for example, a plurality of nanoparticles 141 and a solvent 142.
  • the plurality of nanoparticles 141 are dispersed in the solvent 142.
  • the intermediate portion 14 is obtained, for example, by filling the gap portion 140 with the solvent 142 in which the nanoparticles 141 are dispersed.
  • the particle diameter of the nanoparticles 141 is smaller than the interelectrode gap G.
  • the particle diameter of the nanoparticles 141 is, for example, a finite value that is 1/10 or less of the interelectrode gap G.
  • the intermediate portion 14 including the nanoparticles 141 can be easily formed in the gap portion 140. This improves workability in producing the thermoelectric element 1.
  • the nanoparticles 141 include, for example, a conductive material.
  • the work function value of the nanoparticles 141 is, for example, between the work function value of the first electrode portion 11 and the work function value of the second electrode portion 12.
  • the work function value of the nanoparticles 141 is in the range of 3.0 eV or more and 5.5 eV or less.
  • At least one of gold and silver can be selected as an example of the material of the nanoparticles 141.
  • the work function value of the nanoparticles 141 may be between the work function value of the first electrode portion 11 and the work function value of the second electrode portion 12. Therefore, as the material of the nanoparticles 141, it is possible to select a conductive material other than gold and silver.
  • the particle diameter of the nanoparticles 141 is, for example, a finite value that is 1/10 or less of the interelectrode gap G. Specifically, the particle diameter of the nanoparticles 141 is 2 nm or more and 10 nm or less. Further, the nanoparticles 141 may have a particle diameter of, for example, an average particle diameter (for example, D50) of 3 nm or more and 8 nm or less.
  • the average particle size can be measured by using, for example, a particle size distribution measuring device.
  • a particle size distribution measuring device using a laser diffraction scattering method for example, Nanotrac Wave II-EX150 manufactured by Microtrac BEL may be used.
  • the nanoparticles 141 have, for example, an insulating film 141a on the surface thereof.
  • At least one of an insulating metal compound and an insulating organic compound can be selected as an example of the material of the insulating film 141a.
  • the insulating metal compound include silicon oxide and alumina.
  • the insulating organic compound include alkanethiol (for example, dodecanethiol) and the like.
  • the thickness of the insulating film 141a is a finite value of 20 nm or less, for example.
  • the electrons e are, for example, between the second electrode portion (cathode K) 12 and the nanoparticles 141, and between the nanoparticles 141 and the first electrode portion. It is possible to move between (Anode A) 11 by utilizing the tunnel effect. Therefore, for example, improvement in power generation efficiency of the thermoelectric element 1 can be expected.
  • the solvent 142 for example, a liquid having a boiling point of 60 ° C. or higher can be used. Therefore, in the environment of room temperature (for example, 15 ° C. to 35 ° C.) or higher, the vaporization of the solvent 142 can be suppressed even when the thermoelectric element 1 is used. Thereby, the deterioration of the thermoelectric element 1 due to the evaporation of the solvent 142 can be suppressed.
  • the liquid at least one of an organic solvent and water can be selected. Examples of organic solvents include methanol, ethanol, toluene, xylene, tetradecane, and alkanethiol.
  • the solvent 142 is preferably a liquid having a high electric resistance value and an insulating property.
  • the intermediate portion 14 may not include the solvent 142 but may include only the nanoparticles 141. Since the intermediate portion 14 includes only the nanoparticles 141, it is not necessary to consider vaporization of the solvent 142 even when the thermoelectric element 1 is used in a high temperature environment. This makes it possible to suppress the deterioration of the thermoelectric element 1 in a high temperature environment.
  • thermoelectric element 1 When thermal energy is applied to the thermoelectric element 1, electrons e are emitted from the second electrode portion (cathode K) 12 toward the intermediate portion 14, for example. The emitted electrons e move from the intermediate portion 14 to the first electrode portion (anode A) 11. The current flows from the first electrode portion 11 toward the second electrode portion 12. In this way, thermal energy is converted into electrical energy.
  • the thermoelectric element 1 includes the first electrode portion 11 and the second electrode portion having a work function different from that of the first electrode portion 11 in the housing portion 10d of the housing portion 10. 12 and an intermediate portion 14 including nanoparticles 141 having a work function between the work function of the first electrode portion 11 and the work function of the second electrode portion 12.
  • the thermoelectric element 1 can generate electricity without causing a temperature difference in the thermoelectric element 1. Therefore, a low temperature material and a chiller for cooling the low temperature material are unnecessary. As a result of eliminating the need for the low-temperature material and the chiller for cooling the low-temperature material, it is possible to suppress an increase in the manufacturing cost of the lighting device 400 and an increase in the size of the lighting device 400.
  • thermoelectric element 1 is provided on the inner surface 401b of the cavity 401a of the heat sink 401.
  • the hollow portion 401a is a dead space. Therefore, the thermoelectric element 1 is incorporated in the lighting device 400 by utilizing its dead space. Accordingly, it is not necessary to newly secure an area in which the thermoelectric element 1 is mounted in the lighting device 400, and it is possible to suppress an increase in size of the lighting device 400.
  • thermoelectric element 1 is incorporated into the lighting device 400, for example, during handling of the thermoelectric element 1, during mounting work of the thermoelectric element 1, the first and second electrical contacts 11a and 12a are broken, It is possible to suppress damage. Accordingly, it is possible to reduce the loss of the thermoelectric element 1 that may occur during the manufacturing of the lighting device 400.
  • the casing 10 includes a first substrate 10a having a first main surface 10af and a second main surface 10ab that faces the first main surface 10af and faces the open surface 221b of the heat conductive base 221. Including. Then, each of the first and second external housing terminals 101 and 102 is provided on the first main surface 10af of the first substrate 10a.
  • the first main surface 10af can provide a larger area for each of the first and second external housing terminals 101 and 102 than the side surface of the housing unit 10, for example. Further, as compared with the side surface of the casing 10, it is easier for the operator to visually recognize the work point or to extract the work point by the work robot.
  • the electrical connection work between the thermoelectric element 1 and the lighting device 400 can be facilitated, and, for example, the throughput of the lighting device 400 can be improved. Further, the reliability of assembling the lighting device 400 including the thermoelectric element 1 is also improved. In addition, when the lighting device 400 further includes the power supply circuit 300, the electrical connection work between the thermoelectric element 1 and the power supply circuit 300 can be facilitated.
  • the power supply circuit 300 converts the external input power Pin supplied from the outside and the auxiliary input power Pina supplied from the thermoelectric element 1 into LED input power and outputs the LED input power to the LED element 210. As a result, the power consumption of the lighting device 400 can be reduced.
  • the auxiliary input power Pina generated by the thermoelectric element 1 can be used as an emergency power source.
  • a lighting device 400 can be turned on without a power source during a power failure. That is, according to the lighting device 400, for example, the lighting device 400 can be turned on without a power source for a period of time determined by the Fire Service Law of Japan or longer. Accordingly, the lighting device 400 can be used as a light source for emergency lighting such as an evacuation passage or a guide light. Moreover, in the event of a power failure, it can be lit for a longer period of time as compared with a regular-emergency combined illumination device that has a built-in battery or storage battery that can be lit only during a dischargeable time.
  • the first modified example relates to the modification of the thermoelectric element.
  • FIGS. 6A to 6C are schematic cross-sectional views showing an example of the thermoelectric element according to the first modification.
  • the schematic cross section shown in FIG. 6A is along the line VIA-VIA in FIG.
  • the schematic cross section shown in FIG. 6B is taken along the line VIB-VIB in FIG. 6C.
  • the schematic cross section shown in FIG. 6C is taken along the line VIC-VIC in FIGS. 6A and 6B.
  • FIG. 7 is a schematic cross-sectional view showing an example of joining.
  • FIG. 7 corresponds to the schematic cross section shown in FIG.
  • thermoelectric element 1b according to the first modification is different from the thermoelectric element 1 in that the planar shape of the first electrode portion 11 viewed from the first direction Z is as follows.
  • planar shape of the second electrode portion 12 viewed from the first direction Z is a comb tooth shape.
  • the respective comb tooth portions of the first and second electrode portions 11 and 12 extend along the third direction Y.
  • the directions of the comb teeth of the first electrode portion 11 and the second electrode portion 12 are opposite to each other.
  • the comb-teeth portion of the first electrode portion 11 and the comb-teeth portion of the second electrode portion 12 mesh with each other while being separated from each other.
  • the inter-electrode gap G is defined between the comb tooth portion of the first electrode portion 11 and the comb tooth portion of the second electrode portion 12.
  • the direction in which the inter-electrode gap G is defined is the two directions of the second direction X (inter-electrode gap Gx) and the third direction Y (inter-electrode gap Gy) (FIG. 10 (c)). ).
  • thermoelectric element 1b having a comb tooth type electrode in addition to the thermoelectric element 1 having a parallel plate type electrode, the thermoelectric element 1b having a comb tooth type electrode can be used.
  • thermoelectric element 1b since the first and second electrode portions 11 and 12 are comb-teeth type, as compared with the parallel plate type thermoelectric element 1, the variation in the inter-electrode gap G due to the heat of the LED element 210 is further reduced. Less. Thereby, for example, the thermoelectric element 1b can further obtain the advantage that it is easy to suppress a minute variation in the power generation efficiency as compared with the thermoelectric element 1.
  • thermoelectric element 1b has been further devised as follows.
  • the housing 10 includes the first substrate 10a and the lid 10c-The first electrode portion 11, the second electrode portion 12, the first connection wiring 15a, and the second connection wiring 16a, respectively. Being Provided on First Main Surface 10af
  • thermoelectric element 1b will be described in more detail.
  • the lid 10c includes a third support portion 13c.
  • the third support portion 13c extends from the lid body 10c along the first direction Z toward the first substrate 10a.
  • the planar shape of the third support portion 13a is a frame shape when viewed in the first direction Z.
  • the lid 10c may be provided integrally with the third support portion 13c or may be provided separately.
  • Each of the first and second electrode portions 11 and 12 is provided inside the housing portion 10d.
  • the housing portion 10d encloses a flat surface extending in the second direction X and the third direction Y with the lid body 10c, and encloses the flat surface extending in the second direction X and the third direction Y with the third support portion 13c to form a housing. Obtained in part 10.
  • the first connection wiring 15a is electrically connected to the first electrode portion 11 inside the housing portion 10d.
  • the second connection wiring 16a is electrically connected to the second electrode portion 12 inside the housing portion 10d.
  • the second electrical contact 12a between the second electrode portion 12 and the second connection wiring 16a is provided inside the housing portion 10d.
  • the planar shape of the first connection wiring 15a is an L-shape extending in each of the second direction X and the third direction Y when viewed from the first direction Z. is there.
  • the first connection wiring 15a is joined to the first joining metal 18a between the third support portion 13c and the first substrate 10a.
  • the first bonding metal 18a is provided on the substrate bonding surface 13ca of the lid 10c.
  • the planar shape of the first bonding metal 18a is an L-shape that extends in each of the second direction X and the third direction Y when viewed from the first direction Z. This is almost the same as the planar shape of the first connection wiring 15a on the substrate bonding surface 13ca.
  • the planar shape of the second connection wiring 16a is an L-shape extending in each of the second direction X and the third direction Y when viewed from the first direction Z. is there.
  • the second connection wiring 16a is bonded to the second bonding metal 18b between the third support portion 13c and the first substrate 10a.
  • the second bonding metal 18b is provided on the substrate bonding surface 13ca of the lid 10c.
  • the planar shape of the second bonding metal 18b is an L shape extending in each of the second direction X and the third direction Y when viewed from the first direction Z. This is almost the same as the planar shape of the second connection wiring 16a on the board bonding surface 13ca.
  • the lid body 10c is connected to the first connection wiring 15a and the first bonding metal 18a by bonding, and the second connection wiring 16a and the second bonding metal 18b by bonding. It can be bonded to one substrate 10a. Then, the housing portion 10 is provided with the housing portion 10d.
  • the first connection wiring 15a and the second connection wiring 16a are separated from each other on the first main surface 10af via slits 17a and 17b so as not to contact each other.
  • the first and second bonding metals 18a and 18b may be electrically connected to the first and second connection wirings 15a and 16a, respectively.
  • the first joining metal 18a and the second joining metal 18b may be separated via the slits 17a and 17b so as not to contact each other. Good. Accordingly, it is possible to suppress a short circuit between the first connection wiring 15a and the second connection wiring 16a via the first and second bonding metals 18a and 18b.
  • FIG. 8 is a schematic cross-sectional view showing an example of the slit.
  • the schematic cross section shown in FIG. 8 is taken along the line VIII-VIII in FIG.
  • the slits 17a and 17b generate a minute clearance 17c in the thermoelectric element 1b. Therefore, the solvent 142 injected into the gap 140 may leak from the minute gap. Therefore, as shown in FIG. 10C, even if the sealing members 31a and 31b are provided between the first substrate 10a and the lid 10c and the slits 17a and 17b are closed by the sealing members 31a and 31b, respectively. Good. This can prevent the solvent 142 from leaking through the slits 17a and 17b.
  • thermoelectric element 1b a gap Gel1 along the first direction Z is provided between the first electrode portion 11 and the lid 10c, and a gap Gel2 is provided between the second electrode portion 12 and the lid 10c. ing.
  • the first and second electrode portions 11 and 12 are housed in the housing portion 10d without causing a gap between the lid body 10c and the first substrate 10a.
  • the length of the gap Gel1 and the length of the gap Gel2 may be set to be equal to each other or may be set to be different from each other. In the latter case, for example, in order to increase the difference between the work function of the first electrode portion 11 and the work function of the second electrode portion 12, coating or surface modification is performed on the surface of one of the electrode portions. It is seen when surface treatment such as. Alternatively, it is seen when the first electrode portion 11 and the second electrode portion 12 made of different materials are simultaneously formed by one etching process.
  • FIG. 9A and 9B are schematic cross-sectional views showing an example of solvent injection.
  • the schematic cross section shown in FIG. 9A corresponds to the schematic cross section shown in FIG.
  • the schematic cross section shown in FIG. 9B corresponds to the schematic cross section shown in FIG.
  • the lid 10c may be provided with a first filling hole 71a and a second filling hole 71b.
  • the first and second filling holes 71a and 71b are used, for example, for injecting the solvent 142 into the gap portion 140.
  • the solvent 142 causes the solvent 142 to pass through the gaps Gel1 and Gel2. It comes to wrap around between 11 and the 2nd electrode part 12. Thereby, the advantage that the solvent 142 is easily filled between the first electrode portion 11 and the second electrode portion 12 can be obtained.
  • the solvent 142 is injected into the gap portion 140 from the first filling hole 71a, for example.
  • the other second filling hole 71b is used, for example, as an air vent hole. Further, the solvent 142 may be injected from the first filling hole 71a while evacuating the inside of the gap 140 via the second filling hole 71b.
  • thermoelectric element 1b having the comb tooth type electrodes in addition to the thermoelectric element 1 having the parallel plate type electrodes, the thermoelectric element 1b having the comb tooth type electrodes can be used.
  • the second modification relates to the deformation of the heat conductive base.
  • FIG. 10 is a schematic plan view showing a first example of the heat conductive base.
  • the planar shape of the heat conductive base 221 of the light emitting device 200b according to the second modification viewed from the first direction Z is, for example, a circle.
  • a plurality of LED elements 210 are arranged, for example, in an annular shape on the circular heat conductive base 221.
  • the number of LED elements 210 arranged is arbitrary. Further, the arrangement pattern of the LEDs is not limited to the ring shape, but is arbitrary.
  • the heat conductive base 221 may be a heat conductive base having a circular planar shape.
  • the third modification example relates to a modification of the light emitting device.
  • FIG. 11 is a schematic plan view showing a second example of the light emitting device according to the third modification.
  • the planar shape of the heat conductive base 221 of the light emitting device 200c according to the third modification as viewed from the first direction Z is a rectangle.
  • a plurality of LED elements 210 are arranged, for example, in a matrix on the rectangular heat conductive base 221.
  • the plurality of LED elements 210 are arranged in 2 rows ⁇ 4 columns.
  • the number of LED elements 210 arranged is arbitrary.
  • the arrangement pattern of the LEDs is not limited to the ring shape of 2 rows ⁇ 4 columns.
  • the heat conductive base 221 may be a heat conductive base having a rectangular planar shape.
  • FIG. 12A is a schematic diagram showing an example of a lighting device according to the first modification.
  • FIG. 12B is a schematic cross-sectional view taken along the line XIIB-XIIB in FIG.
  • a lighting device 400b is a straight tube LED lamp.
  • the straight tube LED lamp includes a light emitting device 200, a heat sink 401, a translucent cover 402, a pair of base portions 403a and 403b, a thermoelectric element 1, and a power supply circuit 300.
  • the heat sink 401 is provided on the open surface 221b.
  • the power supply circuit 300 is housed, for example, in at least one of the base portions 403a and 403b or in the hollow portion 401a.
  • the thermoelectric element 1 is provided on the inner surface 401b of the cavity 401a of the heat sink 401. As a result, like the lighting device 400, the thermoelectric element 1 is housed in the hollow portion 401 a of the heat sink 401.
  • the lighting device may be, for example, a straight tube LED lamp like the lighting device 400b.
  • examples of the lighting device include, for example, a light bulb type LED lamp and a straight tube type LED lamp, and a backlight used as lighting for a display. Further, the lighting device includes a lighting fixture. Examples of the lighting equipment include LED downlights, LED spotlights, LED floodlights, LED street lights, LED base lights, and LED ceiling lights. As described above, the lighting device 400 can be applied to various lights.
  • FIG. 13 is a schematic block diagram which shows an example of the illuminating device with a power generation function which concerns on 2nd Embodiment.
  • the power supply circuit 300 is provided on the circuit board 320, for example.
  • first external terminals 331a to sixth external terminals 331f are provided on the circuit board 320.
  • the first external terminal 331a and the second external terminal 331b are electrically connected to an external power source, for example, a commercial power source 310.
  • the external input power Pin is input to the power supply circuit 300 via the first and second external terminals 331a and 331b.
  • the third external terminal 331c and the fourth external terminal 331d are electrically connected to the thermoelectric element 1.
  • the auxiliary input power Pina is input to the power supply circuit 300 via the third and fourth external terminals 331c and 331d.
  • the third external terminal 331c is electrically connected to the cathode K of the thermoelectric element 1.
  • the fourth external terminal 331d is electrically connected to the anode A of the thermoelectric element 1.
  • the fifth external terminal 331e and the sixth external terminal 331f are electrically connected to the LED element 210.
  • the power supply circuit 300 outputs the LED input power Pout via the fifth and sixth external terminals 331e and 331f.
  • the fifth external terminal 331e is electrically connected to the anode A of the LED element 210.
  • the sixth external terminal 331f is electrically connected to the cathode K of the LED element 210.
  • FIG. 14 is a schematic circuit diagram showing an example of a lighting device with a power generation function according to the second embodiment.
  • the power supply circuit 300 includes a converter 332.
  • the converter 332 is an AC-DC converter (rectifier circuit).
  • the external power supply is a battery
  • converter 332 is a DC-DC converter.
  • the converter 332 is an AC-DC converter, it rectifies AC power into DC power.
  • the rectified DC power is supplied to the current limiting circuit 333.
  • the current limiting circuit 333 limits the direct current and generates and outputs the LED input power Pout.
  • the high potential side output node N1 of the converter 332 is electrically coupled to the high potential side input node N2 of the current limiting circuit 333 via the first switch 334.
  • the connection node N3 between the first switch 334 and the high potential side input node N2 is electrically coupled to the low potential side wiring 335 of the power supply circuit 300 via the capacitor 336.
  • the capacitor 336 is a smoothing capacitor.
  • a resistor 337 is connected in parallel with the capacitor 336.
  • the resistor 337 is a discharge resistor.
  • the connection node N3 is electrically coupled to the cathode K of the thermoelectric element 1 via the second switch 338. Transistors are used for the first and second switches 334 and 338, for example.
  • the high potential side output node N4 of the current limiting circuit 333 is electrically coupled to the anode A of the LED element 210.
  • the cathode K of the LED element 210 and the anode A of the thermoelectric element 1 are electrically coupled to the low potential side wiring 335.
  • the first switch 334 When turning on the light emitting device 200, the first switch 334 is turned on and the second switch 338 is turned off.
  • the high potential side output node N1 is electrically connected to one electrode of the capacitor 336, and the capacitor 336 is charged. After the capacitor 336 is completely charged, the high potential side output node N1 is electrically connected to the high potential side input node N2.
  • the converter 332 supplies a current to the current limiting circuit 333.
  • the current limiting circuit 333 limits the supplied current to generate and output the LED input power Pout. As a result, the LED element 210 is turned on.
  • thermoelectric element 1 When the LED element 210 lights up, the LED element 210 generates heat. The heat is transferred to the thermoelectric element 1. Eventually, the thermoelectric element 1 will be in a state capable of generating power, for example, a state capable of generating a current capable of charging the capacitor 336. After the thermoelectric element 1 is ready to generate electricity, the second switch 338 is turned on. The cathode K of the thermoelectric element 1 is electrically connected to one electrode of the capacitor 336. The thermoelectric element 1 supplies a current to the current limiting circuit 333 together with the converter 332. As a result, the LED element 210 continues to light up.
  • thermoelectric element 1 it is possible to select either the high potential side output node N1 or the cathode K of the thermoelectric element 1 to be connected to one electrode of the capacitor 336 by the first switch 334 and the second switch 338. it can.
  • the first switch 334 is turned on and the second switch 338 is turned off to turn on the light emitting device 200 using the external input power Pin.
  • a state in which the external input power Pin is used for lighting is referred to as a normal energy mode for convenience.
  • thermoelectric element 1 After lighting, for example, when the thermoelectric element 1 is in a state capable of generating a current capable of charging the capacitor 336, the first switch 334 is turned off and the second switch 338 is turned off.
  • the power supply source is switched from the external input power Pin to the auxiliary input power Pina.
  • the operation mode of the light emitting device is switched from the normal energy mode to the energy saving mode using the auxiliary input power Pina from the thermoelectric element 1.
  • Switching from the normal energy mode to the energy saving mode can be performed automatically or manually.
  • the energy saving mode generally means reducing the brightness of the light emitting device 200 to reduce the power consumption of a commercial power source or a battery.
  • the energy saving mode in the fourth embodiment means switching to the auxiliary input power Pin different from the normal energy mode. Therefore, the decrease in brightness of the light emitting device 200 is suppressed even in the energy saving mode.
  • thermoelectric element 1 can be connected to the power supply circuit 300 by using the existing circuit element in the power supply circuit 300. This can suppress an increase in the number of circuit elements and electronic components 330 required for the power supply circuit 300.
  • FIG. 15 is a schematic circuit diagram showing an example of a light emitting device with a power generation function according to a first modification of the second embodiment. It is assumed that the electric power generated by the thermoelectric element 1 cannot secure a sufficient voltage for lighting the LED element 210. In such a case, the thermoelectric element 1 may be connected to the power supply circuit 300 via the booster circuit 350.
  • FIG. 18 shows a schematic circuit showing an example of the booster circuit 350.
  • the booster circuit 350 includes, for example, a diode 351, a coil 352, and a third switch 353.
  • the cathode of diode 351 is electrically coupled to one electrode of capacitor 336 via second switch 338.
  • the anode of the diode 351 is electrically coupled to the cathode K of the thermoelectric element 1 via the coil 352.
  • the coil 352 is a choke coil.
  • the connection node N5 between the anode of the diode 351 and the coil 352 is electrically coupled to the low potential side wiring 335 via the third switch 353.
  • a transistor is used for the third switch 353, for example.
  • the operation of the booster circuit 350 boosts the voltage of the auxiliary input power Pina as follows.
  • the second switch 338 is turned on to electrically couple the cathode K of the thermoelectric element 1 to one electrode of the capacitor 336.
  • the third switch 353 is turned on. A current flows from the cathode K of the thermoelectric element 1 to the low potential side wiring 335 via the coil 352. Then, the third switch 353 is turned off. The current from coil 352 does not immediately go to zero. Therefore, current flows from the coil 352 to the connection node N3 at once through the diode 351 and the second switch 338.
  • the diode 351 prevents the reverse flow of the current from the connection node N3. By repeating turning on and off the third switch 353 in this manner, the voltage of the auxiliary input power Pina is boosted.
  • thermoelectric element 1 may be connected to the power supply circuit 300 via the booster circuit 350.
  • the booster circuit is not limited to the booster circuit 350 shown in FIG.
  • a known booster circuit such as a transformer can be used as the booster circuit.
  • the booster circuit can be provided in the power supply circuit 300.
  • the anode A of the LED element 210 is electrically coupled to one electrode of the capacitor 336 via the current limiting circuit 333.
  • the LED element 210 can be dimmed.
  • the light emitting efficiency of the LED element 210 decreases as the temperature of the LED chip 211 increases.
  • the current limiting circuit 333 performs dimming so that the brightness of the LED element 210 decreases, an increase in temperature of the LED chip 211 is suppressed and a decrease in light emission efficiency can be suppressed.
  • thermoelectric element 1 the power generation efficiency improves as the temperature around each of the first and second electrode portions 11 and 12 rises. Therefore, the current limiting circuit 333 causes the temperature around the LED element 210 to flow to the LED element 210 so that the luminous efficiency of the LED element 210 and the power generation efficiency of the thermoelectric element 1 are maintained in a good temperature range. Try to limit the current.
  • FIG. 16 is a schematic diagram schematically showing the relationship between temperature and luminous efficiency and the relationship between temperature and power generation efficiency.
  • a line i in FIG. 16 shows the relationship between the temperature of the LED element 210 and the luminous efficiency.
  • a line ii in FIG. 16 shows the relationship between the temperature of the thermoelectric element 1 and the power generation efficiency.
  • the LED element 210 has, for example, a temperature T1 at which the light emission efficiency of the LED element 210 is not desired to be further lowered or a temperature T1 at which the temperature of the LED element 210 is not desired to be further raised.
  • the thermoelectric element 1 has, for example, a temperature at which sufficient power generation is possible in actual use, or a temperature T2 at which the power generation efficiency is desired or higher in actual use.
  • the temperature around the LED element 210 is preferably maintained in a temperature zone T0 in which the temperature T1 is the upper limit and the temperature T2 is the lower limit, for example.
  • the temperature around the LED element 210 is detected using a temperature sensor or the like. This detection result is fed back to the current limiting circuit 333 as, for example, a control signal. Based on the fed back control signal, the current limiting circuit 333 limits the current flowing to the LED element 210 so that the temperature around the LED element 210 is maintained in the temperature zone T0, for example.
  • the power supply circuit 300 is located around the LED element 210. Therefore, the temperature sensor can be provided in the power supply circuit 300.
  • a thermistor can be cited as an example of the temperature sensor.
  • the thermistor is an element whose resistance value increases as the temperature rises.
  • the temperature around the LED element 210 can be detected by using, for example, a thermistor.
  • FIG. 17 is a schematic circuit diagram showing an example of a light emitting device with a power generation function according to a second modification of the fourth embodiment.
  • the temperature detection circuit 370 includes a resistor 371, a thermistor 372, and a detection circuit 373.
  • One end of the resistor 371 is electrically coupled to the cathode K of the thermoelectric element 1.
  • One end of the thermistor 372 is electrically coupled to the anode A of the thermoelectric element 1.
  • a connection node N6 between the other end of the resistor 371 and the other end of the thermistor 372 is electrically coupled to the input terminal of the detection circuit 373.
  • the output terminal of the detection circuit 373 is electrically coupled to the current limiting circuit 333.
  • the detection circuit 373 outputs the control signal S to the current limiting circuit 333.
  • the resistance value of the thermistor 372 increases as the temperature around the LED element 210 rises. Therefore, the voltage of the connection node N6 increases as the temperature around the LED element 210 increases.
  • the detection circuit 373 detects the voltage of the connection node N6.
  • the detection circuit 373 enables the control signal S output to the current limiting circuit 333 when the temperature around the LED element 210 rises and the voltage of the connection node N6 becomes equal to or higher than the set value. As a result, the current limiting circuit 333 limits the current flowing to the LED element 210.
  • the detection circuit 373 disables the control signal S output to the current limiting circuit 333 when the temperature around the LED element 210 decreases and the voltage of the connection node N6 becomes less than the set value. As a result, the current limiting circuit 333 releases the limitation on the current flowing through the LED element 210.
  • the control signal S output to the current limiting circuit 333 is re-enabled.
  • the detection circuit 373 repeats enabling and disabling of the control signal S based on the change in the resistance value of the thermistor 372.
  • the temperature around the LED element 210 can be maintained in the temperature zone T0, for example.
  • the thermoelectric element 1 can simultaneously suppress an increase in the temperature around the LED element 210 and a decrease in the luminous efficiency of the LED element 210 while securing a sufficient amount of power generation.
  • the temperature detection circuit 370 uses the input auxiliary power Pina from the thermoelectric element 1 as a power source. For example, the temperature detection circuit 370 using the thermistor 372 keeps the current flowing while the LED element 210 is lit in order to detect the temperature around the LED element 210. This consumes external input power Pin from a commercial power source or a battery. In this respect, by using the input auxiliary voltage Pina as the power supply of the temperature detection circuit 370, the consumption of external input power can be suppressed. Therefore, according to the temperature detection circuit 370, an advantage that a temperature detection circuit with lower power consumption can be obtained can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

【課題】製造コストの増大、及びサイズの大型化を抑制可能な発電機能付照明装置を提供すること。 【解決手段】 照明装置(400)は、発光装置(200)と、内部に空洞部(401b)を有したヒートシンク(401)と、透光性カバー(402)と、熱電素子(1)と、を備える。熱電素子(1)は、収容部を有する筐体部(10)と、収容部内に設けられた第1電極部、及び第1電極部とは異なった仕事関数を有する第2電極部と、第1電極部の仕事関数と第2電極部の仕事関数との間の仕事関数を有するナノ粒子を含む中間部と、を含む。筐体部(10)は、ヒートシンク(401)の空洞部(401a)の内面(401b)上に設けられている。

Description

発電機能付照明装置
 この発明は、発電機能付照明装置に関する。
 近時、LED等の発光素子の発光に伴う熱の有効利用が注目されている。例えば、特許文献1には、発光素子の発光に伴う熱を利用して発電する照明装置が開示されている。特許文献1に記載された照明装置は、LED素子と、熱電素子の中に温度差を生じさせて発電する熱電素子と、熱電素子の中に温度差を生じさせる低温材料と、を備えている。
 特許文献2には、エミッタ電極層とコレクタ電極層とをサブミクロン間隔で離間する電気絶縁性の球状ナノビーズを備え、エミッタ電極層の仕事関数をコレクタ電極層の仕事関数よりも小さくし、エミッタ電極層とコレクタ電極層との中間の仕事関数を有し、かつ球状ナノビーズよりも粒子径が小さい金属ナノ粒子が分散された金属ナノ粒子分散液を、球状ナノビーズにより離間された電極間の空間に充填した熱電素子が開示されている。
特表2014-502015号公報 特許第6147901号公報
 特許文献1に記載の熱電素子では、熱電素子の中の電極対のうち、1つの電極は熱くし、もう1つの電極は冷たくする。このように2つの電極間に温度差を生じさせることで、熱電素子は発電する。
 しかし、特許文献1において、実際に発電させるためには、LED素子及び熱電素子の他、熱電素子の中に温度差を生じさせる低温材料や、低温材料を冷やすチラーが別途必要となる。このため、発電機能付照明装置の部品点数が増え、製造コストが増大する。また、発電機能付照明装置は、LED素子、熱電素子、低温材料、及びチラーを備えるため、そのサイズも大型化する。しかも、発電機能付照明装置の中には、LED素子及び熱電素子の他、低温材料やチラーを搭載するエリアを、新たに増やさなければならない。このことも、サイズの大型化を助長する。
 特許文献2に開示された熱電素子では、エミッタ電極層の仕事関数を、コレクタ電極層の仕事関数よりも小さくし、金属ナノ粒子分散液を、球状ナノビーズで離間された電極間の空間に充填する。これにより、熱電素子の中に温度差を生じさせなくても、熱電素子は発電できる。特許文献2は、そのような熱電素子の構造を開示する。しかし、特許文献2には、熱電素子を、照明装置の製造コストの増大、及びサイズの大型化を抑制しつつ混載可能にすることに関する示唆はない。
 この発明は、上記事情に鑑みて為されたもので、その目的は、製造コストの増大、及びサイズの大型化を抑制可能な発電機能付照明装置を提供することにある。
 第1発明に係る発電機能付照明装置は、電気エネルギーを光エネルギーに変換するLED素子と、前記LED素子から放出された熱エネルギーを電気エネルギーに変換する熱電素子と、を有する発電機能付照明装置であって、搭載面、及び前記搭載面と対向した開放面を有する熱伝導性ベースと、前記搭載面上に、前記熱伝導性ベースと電気的に絶縁されて設けられた基板配線と、を含む熱伝導性LED基板、並びに前記基板配線と電気的に接続された前記LED素子を含む発光装置と、内部に空洞部を有し、前記熱伝導性ベースの開放面上に、前記熱伝導性ベースと電気的に絶縁され、前記熱伝導性ベースと熱的に結合されて設けられたヒートシンクと、前記ヒートシンク上に設けられた、前記発光装置を収容する透光性カバーと、前記ヒートシンクの前記空洞部内に、前記ヒートシンクと電気的に絶縁され、前記ヒートシンクと熱的に結合されて設けられた熱電素子と、を備え、前記熱電素子は、収容部を有する筐体部と、前記収容部内に設けられた第1電極部と、前記収容部内に設けられ、前記第1電極部と第1方向に離間して対向し、前記第1電極部とは異なった仕事関数を有する第2電極部と、前記収容部内の、前記第1電極部と前記第2電極部との間に設けられ、前記第1電極部の仕事関数と前記第2電極部の仕事関数との間の仕事関数を有するナノ粒子を含む中間部と、を含み、前記筐体部は、前記ヒートシンクの前記空洞部の内面上に設けられていることを特徴とする。
 第2発明に係る発電機能付照明装置は、第1発明において、前記第1電極部と電気的に接続され、前記第1電極部を前記収容部の外に導出する第1接続配線と、前記第2電極部と電気的に接続され、前記第2電極部を前記収容部の外に導出する第2接続配線と、を、さらに備え、前記第1電極部と前記第1接続配線との第1電気的接点、並びに前記第2電極部と前記第2接続配線との第2電気的接点のそれぞれは、前記収容部内に設けられていることを特徴とする。
 第3発明に係る発電機能付照明装置は、第2発明において、前記筐体部は、第1主面と、前記第1主面と対向し、前記熱伝導性ベースの前記開放面と向き合う第2主面と、を有する第1基板を含み、前記第1接続配線と電気的に接続された第1外部端子と、前記第2接続配線と電気的に接続された第2外部端子と、を、さらに備え、前記第1外部端子及び前記第2外部端子のそれぞれは、前記第1基板の前記第1主面上に設けられていることを特徴とする。
 第4発明に係る発電機能付照明装置は、第1~第3発明のいずれか1つにおいて、前記熱電素子は、平行平板型熱電素子、及び櫛歯型熱電素子の少なくとも1つを含むことを特徴とする。
 第5発明に係る発電機能付照明装置は、第1~第4発明のいずれか1つにおいて、外部から供給される外部入力電力、及び前記熱電素子から供給される補助入力電力のそれぞれの入力が可能な、前記外部入力電力及び前記補助入力電力のそれぞれをLED入力電力に変換し、前記LED入力電力を前記LED素子へ出力する電源回路を、さらに備えることを特徴とする。
 第6発明に係る発電機能付照明装置は、第5発明において、前記電源回路は、一方電極、及び他方電極を有するコンデンサを、含み、前記一方電極は、前記外部入力電力の高電位側出力ノード、前記LED素子のアノード、及び前記熱電素子のカソードのそれぞれと、電気的に結合され、前記他方電極は、前記電源回路の低電位側配線と、電気的に結合されていることを特徴とする。
 第7発明に係る発電機能付照明装置は、第6発明において、前記電源回路は、第1スイッチと、第2スイッチと、電流制限回路と、を、さらに含み、前記高電位側出力ノードは、前記一方電極と、第1スイッチを介して電気的に結合され、前記熱電素子のカソードは、前記一方電極と、第2スイッチを介して電気的に結合され、前記LED素子のアノードは、前記一方電極と、電流制限回路を介して電気的に結合されていることを特徴とする。
 第1発明に係る発電機能付照明装置によれば、熱電素子の筐体部の収容部内に、第1電極部と、第1電極部とは異なった仕事関数を有する第2電極部と、第1電極部の仕事関数と第2電極部の仕事関数との間の仕事関数を有するナノ粒子を含む中間部と、を含む。これにより、熱電素子の中に温度差を生じさせなくても、熱電素子は発電できる。よって、低温材料や、低温材料を冷やすチラーが不要となる。低温材料、及び低温材料を冷やすチラーが不要となる結果、発電機能付照明装置の製造コストの増大を抑制できる。また、発電機能付照明装置のサイズの大型化を抑制できる。熱電素子1の筐体部は、ヒートシンクの空洞部の内面上に設ける。照明装置において、空洞部は、デッドスペースである。熱電素子は、照明装置に、そのデッドスペースを利用して組み込まれる。これにより、熱電素子を搭載するエリアを、照明装置に新たに確保せずに済み、照明装置のサイズの増大を抑制できる。
 第2発明に係る発電機能付照明装置によれば、第1、第2電気的接点のそれぞれを、収容部内に設ける。これにより、熱電素子を、照明装置に組み込む際、例えば、熱電素子のハンドリング中や、熱電素子の取り付け作業中等において、第1、第2電気的接点が破断したり、損傷したりすることを抑制できる。これにより、照明装置の製造中に発生する可能性がある、熱電素子のロスを減らすことができる。
 第3発明に係る発電機能付照明装置によれば、筐体部は、第1主面と、第1主面と対向し、熱伝導性ベースの開放面と向き合う第2主面と、を有する第1基板を含む。そして、第1、第2外部筐体端子のそれぞれを、第1基板の第1主面上に設ける。第1主面は、例えば、筐体部の側面と比較して、第1、第2外部筐体端子のそれぞれに、広い面積を提供できる。また、筐体部の側面と比較して、作業者による視認、あるいは作業ロボットによるワークポイントの抽出がしやすい。これらにより、例えば、熱電素子と、照明装置との電気的な接続作業を容易化でき、例えば、照明装置のスループットを向上できる。また、熱電素子を備えた、照明装置の組み立ての確実性も向上する。
 第4発明に係る発電機能付照明装置によれば、熱電素子は、平行平板型熱電素子、及び櫛歯型熱電素子のいずれか1つを含む。これにより、熱電素子の一構造例が、具現化される。
 第5発明に係る発電機能付照明装置によれば、電源回路を、さらに備える。電源回路は、外部から供給される外部入力電力、及び前記熱電素子から供給される補助入力電力のそれぞれをLED入力電力に変換してLED素子へ出力する。これにより、発電機能付照明装置の消費電力を減らすことができる。
 第6発明に係る発電機能付照明装置によれば、電源回路は、一方電極、及び他方電極を有するコンデンサを、含む。一方電極は、高電位ノード、LED素子のアノード、及び熱電素子のカソードと電気的に結合される。また、他方電極は、低電位ノード、LED素子のカソード、及び熱電素子のアノードと電気的に結合される。これにより、電源回路の一回路例が具現化される。
 第7発明に係る発電機能付照明装置によれば、電源回路は、第1スイッチと、第2スイッチと、電流制限回路と、を、さらに含む。高電位ノードは、一方電極と、第1スイッチを介して電気的に結合される。熱電素子のカソードは、一方電極と、第2スイッチを介して電気的に結合される。LED素子のアノードは、一方電極と、電流制限回路を介して電気的に結合される。これにより、電源回路の、さらに具体的な一回路例が具現化される。
図1(a)は、第1実施形態に係る発電機能付照明装置の一例を示す模式図である。図1(b)は、図1(a)の一部を断面として示した模式図である。 図2は、第1実施形態に係る発電機能付照明装置の一例を分解して示した模式分解断面図である。 図3(a)及び図3(b)は、熱電素子の第1例を示す模式断面図である。 図4は、接合の一例を示す模式断面図である。 図5(a)は、中間部の一例を示す模式断面図である。図5(b)は、中間部の他の例を示す模式断面図である。 図6(a)~図6(c)は、第1変形例に係る熱電素子の一例を示す模式断面図である。 図7は、接合の一例を示す模式断面図である。 図8は、スリットの一例を示す模式断面図である。 図9(a)及び図9(b)は、溶媒注入の一例を示す模式断面図である。 図10は、熱伝導性ベースの第1例を示す模式平面図である。 図11は、熱伝導性ベースの第2例を示す模式平面図である。 図12(a)は、第1変形例に係る照明装置の一例を示す模式図である。図12(b)は、図12(a)中のXIIB-XIIB線に沿う模式断面図である。 図13は、第2実施形態に係る発電機能付照明装置の一例を示す模式ブロック図である。 図14は、第2実施形態に係る発電機能付照明装置の一例を示す模式回路図である。 図15は、第2実施形態の第1変形例に係る発電機能付照明装置の一例を示す模式回路図である。 図16は、温度と発光効率との関係、並びに温度と発電効率との関係を模式的に示す模式図である。 図17は、第2実施形態の第2変形例に係る発電機能付発光装置の一例を示す模式回路図である。
 以下、この発明の実施形態のいくつかを、図面を参照しながら説明する。なお、各図において、高さ方向を第1方向Zとし、第1方向Zと交差、例えば直交する1つの平面方向を第2方向Xとし、第1方向Z及び第2方向Xのそれぞれと交差、例えば直交する別の平面方向を第3方向Yとする。また、各図において、共通する部分については、共通する参照符号を付し、重複する説明は省略する。
(第1実施形態)
 <発電機能付照明装置>
 図1(a)は、第1実施形態に係る発電機能付照明装置の一例を示す模式図である。図1(b)は、図1(a)の一部を断面として示した模式図である。図2は、第1実施形態に係る発電機能付照明装置の一例を分解して示した模式分解断面図である。
 図1(a)、図1(b)、及び図2に示すように、第1実施形態に係る発電機能付照明装置(以下、照明装置と略記)400は、LED(Light Emitting Diode)素子210と、熱電素子1と、を有する。LED素子210は、電気エネルギーを光エネルギーに変換する。熱電素子1は、LED素子210から放出された熱エネルギーを電気エネルギーに変換する。照明装置400は、発光装置200と、ヒートシンク401と、透光性カバー402と、熱電素子1と、を含む。照明装置400では、電源回路300を、さらに含む。
 <発光装置>
 発光装置200は、LED素子210と、熱伝導性LED基板220と、を含む。熱伝導性LED基板220は、熱伝導性ベース221と、第1基板配線222aと、第2基板配線222bと、を含む。熱伝導性ベース221は、搭載面221a、及び搭載面221aと対向した開放面222bを有する。第1、第2基板配線222a及び222bは、搭載面221a上に、熱伝導性ベース221と電気的に絶縁されて設けられている。LED素子210は、第1、第2基板配線222a及び222bと電気的に接続されている。
 <ヒートシンク>
 ヒートシンク401は、熱伝導性ベース221の開放面221b上に設けられている。ヒートシンク401は、熱伝導性ベース221と電気的に絶縁され、熱伝導性ベース221と熱的に結合されている。ヒートシンク401は、例えば、筒状であり、内部に空洞部401aを有する。ヒートシンク401は、熱伝導度が高い材料が用いられる。材料の例としては、アルミニウム、銅、又はアルミニウムと銅との合金等を挙げることができる。
 <透光性カバー>
 透光性カバー402は、ヒートシンク401上に設けられている。透光性カバー402は、発光装置200を収容する。
 <熱電素子>
 熱電素子1は、ヒートシンク401の空洞部401aの内面401b上に設けられている。これにより、熱電素子1は、ヒートシンク401の空洞部401a内に収容される。熱電素子1は、内面401b上に、例えば、接着部材30によって接着されている。熱電素子1は、ヒートシンク401と電気的に絶縁され、ヒートシンク401と熱的に結合されている。熱電素子1は、補助入力電力Pinaを出力する。熱電素子1は、照明装置400の、例えば、補助電源として使用される。
 <電源回路>
 電源回路300は、例えば、ヒートシンク401の空洞部401a内に収容される。電源回路300は、外部入力電力Pin、及び補助入力電力Pinaのそれぞれの入力が可能に構成される。外部入力電力Pinは、発光装置200の外部から供給される電力である。外部入力電力Pinは、外部電源、例えば、商用電源310から供給される。外部電源は、商用電源310は、電池であってもよい。補助入力電力Pinaは、熱電素子1から供給される。電源回路300は、外部入力電力Pin及び補助入力電力PinaのそれぞれをLED入力電力Poutに変換し、LED入力電力PoutをLED素子210へ出力する。
 <<照明装置:第1例>>
 発光装置200は、照明装置400の光源として使用される。照明装置400の第1例は、電球型LEDランプである。第1例に係る電球型LEDランプは、例えば、電源回路300と、口金部403と、を含む。口金部403は、ヒートシンク401の、発光装置200の取付側とは反対側の部分に設けられている。口金部403は、図示せぬソケットと着脱自在、かつ、電気的に接続可能である。口金部403は、ヒートシンク401と電気的に絶縁されている。
 電源回路300は、回路基板320と、電子部品330と、第1外部端子331a~第6外部端子331fと、を含む。を含む。電子部品330は、回路基板320上に設けられる。電子部品330は、電源回路300を構成する回路素子である。回路素子の例としては、抵抗、コンデンサ、コイル、ダイオード、トランジスタ、トランス、及びレギュレータ等を挙げることができる。なお、電子部品330は、図2に示すように、例えば、回路基板320の表面及び裏面のそれぞれを利用して、回路基板320上に設けられることがある。第1~第6外部端子331a~331fのそれぞれは、回路基板320上に設けられる。第1外部端子331aは、口金部403のシェル410と、第1リード線321aを介して電気的に接続されている。第2外部端子331bは、口金部403のアイレット411と、第2リード線321bを介して電気的に接続されている。第3外部端子331cは、熱電素子1のカソードKと、第3リード線321cを介して電気的に接続されている。第4外部端子331dは、熱電素子1のアノードAと、第4リード線321dを介して電気的に接続されている。第5外部端子331eは、LED素子210のアノードAと、第5リード線321eを介して電気的に接続されている。第6外部端子331fは、LED素子210のカソードKと、第6リード線321fを介して電気的に接続されている。第1~第6リード線321a~321fのそれぞれは、空洞部401a内に設けられる。
 <<発光装置:熱伝導性LED基板>>
 熱伝導性LED基板220は、熱伝導性ベース221と、第1基板配線222aと、第2基板配線222bと、を含む。熱伝導性ベース221には、熱伝導度が高い材料が用いられる。材料の例としては、アルミニウム、銅、又はアルミニウムと銅との合金等を挙げることができる。熱伝導性ベース221の第1方向Zに沿った厚さは、例えば1mm以上10mm以下である。熱伝導性ベース221は、搭載面221aと、開放面221bとを有する。開放面221bは、搭載面221aと対向する。第1、第2基板配線222a及び222bのそれぞれは、熱伝導性ベース221の搭載面221a上に、熱伝導性ベース221と電気的に絶縁されて設けられている。例えば、熱伝導性ベース221の搭載面221a上には、絶縁物223が設けられている。第1、第2基板配線222a及び222bのそれぞれは、例えば、絶縁物223上に設けられている。これにより、第1、第2基板配線222a及び222bのそれぞれは、熱伝導性ベース221と電気的に絶縁される。絶縁物223の材料の例としては、耐熱性が良い絶縁性セラミック、又は耐熱性が良い絶縁性樹脂等を挙げることができる。絶縁性セラミックの一例は、アルミニウム酸化物である。絶縁性樹脂の例は、エポキシ樹脂、PEEK(Poly Ether Ether Ketone)、又はPEI(Poly Ether Imide)等である。 
 なお、熱伝導性LED基板220には、周知のものを使用することができる。
 <<発光装置:LED素子>>
 LED素子210は、第1、第2基板配線222a及び222bと電気的に接続されている。LED素子210は、熱伝導性ベース221上に、1つ以上設けられる。LED素子210は、LEDチップ211と、パッケージ基板212と、リフレクタ213と、透光性封入樹脂214と、第1電極配線215aと、第2電極配線215bと、を含む。LED素子210は、LEDパッケージである。
 LEDチップ211は、パッケージ基板212上に設けられている。リフレクタ213はパッケージ基板212上に設けられ、LEDチップ211の周囲を囲む。透光性封入樹脂214は、LEDチップ211を封入する。LED素子210が白色LEDの場合、少なくとも1つの単色のLEDチップ211が、パッケージ基板212を底とし、リフレクタ213を壁としつつ、透光性封入樹脂214によって封入される。白色LEDの場合、透光性封入樹脂214には、蛍光体が分散される。また、LED素子210がフルカラーLEDの場合、赤、緑、青(RGB)のそれぞれに対応した少なくとも3つのLEDチップ211が、パッケージ基板212を底とし、リフレクタ213を壁としつつ、透光性封入樹脂214によって封入される。フルカラーLEDの場合、透光性封入樹脂214には、蛍光体が分散されなくてもよい。第1電極配線215aは、パッケージ基板212上に設けられている。第1電極配線215aは、LEDチップ211の、例えば、アノード(A)を、リフレクタ213及び透光性封入樹脂214の外へ導出する。第1電極配線215aは、第1基板配線222aと電気的に接続される。第2電極配線215bは、パッケージ基板212上に設けられている。第2電極配線215bは、LEDチップ211の、例えばカソード(K)を、リフレクタ213及び透光性封入樹脂214の外へ導出する。第2電極配線215bは、第2基板配線222bと電気的に接続される。 
 なお、LED素子210には、周知のものを使用することができる。
 <<熱電素子:第1例>>
 図3(a)及び図3(b)は、熱電素子の第1例を示す模式断面図である。図3(a)に示す模式断面は、図3(b)中のIIIA-IIIA線に沿う。図3(b)に示す模式断面は、図3(a)中のIIIB-IIIB線に沿う。図4は、接合の一例を示す模式断面図である。図4は、図3(a)に示す模式断面に対応する。
 図3(a)及び図3(b)に示すように、熱電素子1は、筐体部10と、第1電極部11と、第2電極部12と、中間部14と、を含む。筐体部10は、熱伝導性ベース221の開放面221b上に設けられている。筐体部10は、開放面221b上に、例えば、接着部材30によって接着される(図2)。あるいは、筐体部10は、開放面221b上に、はんだ等のろう材によって固着される。熱電素子1の第1方向Zに沿った厚さTzは、約20μm~約6mmである(図2)。
 筐体部10は、熱電素子1では、第1基板10aと、第2基板10bと、を含む。第1、第2基板10a及び10bのそれぞれの第1方向Zに沿った厚さは、例えば10μm以上2mm以下である。第1、第2基板10a及び10bのそれぞれの材料としては、絶縁性を有する板状の材料を選ぶことができる。絶縁性の材料の例としては、シリコン、石英、パイレックス(登録商標)等のガラス、及び絶縁性樹脂等を挙げることができる。第1、第2基板10a及び10bは、薄板状であるほか、例えばフレキシブルなフィルム状でもよい。例えば、第1、第2基板10a又は10bを、フレキシブルなフィルム状とする場合には、例えばPET(polyethylene terephthalate)、PC(polycarbonate)、及びポリイミド等を用いることができる。また、第1、第2基板10a及び10bは、絶縁性でなくてもよい。半導体基板や金属基板の表面を、例えば、絶縁膜によって被覆してもよい。このような絶縁被膜付基板としては、例えば、シリコン(Si)基板の表面に、シリコン酸化物(例えば、SiO)膜を形成したものを挙げることができる。
 第1基板10aは、例えば、第1支持部13aを含む。第1支持部13aは、第1基板10aから第1方向Zに沿って第2基板10bに向かって延びる。第1支持部13aの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。第2基板10bは、例えば、第2支持部13bを含む。第2支持部13bは、第2基板10bから第1方向Zに沿って第1基板10aに向かって延びる。第2支持部13bの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。第1、第2支持部13a及び13bのそれぞれの第1方向Zに沿った厚さは、例えば10nm以上10μm以下である。第2支持部13bと、第1支持部13aとは、例えば、2つのスリット17a及び17bを介して離れている。
 第1、第2支持部13a及び13bは、それぞれ、第1、第2基板10a及び10bと一体に設けられてもよいし、別々に設けられてもよい。一体に設ける場合、第1、第2支持部13a及び13bのそれぞれの材料は、第1、第2基板10a及び10bと同じ材料となる。別々に設ける場合、第1、第2支持部13a及び13bの材料の例としては、シリコン酸化物、及びポリマー等を挙げることができる。ポリマーの例としては、ポリイミド、PMMA(Polymethyl methacrylate)、及びポリスチレン等を挙げることができる。
 スリット17a及び17bは、それぞれ、封止部材31a及び31bによって封止される。封止部材31a及び31bは、一体であってもよい。この場合、封止部材31aと封止部材31bとは、1つの封止部材31となり、第1、第2支持部13a及び13bのそれぞれの外側面に沿って、環状に設けられる。封止部材31a及び31bの材料の例としては、絶縁性樹脂を挙げることができる。絶縁性樹脂の例としては、フッ素系絶縁性樹脂を挙げることができる。
 第1電極部11は、収容部10d内に設けられる。第1電極部11は、熱電素子1では、第1基板10a上に設けられる。第2電極部12は、収容部10d内に設けられる。第2電極部12は、熱電素子1では、第2基板10b上に設けられる。第1電極部11と、第2電極部12とは、1対の平行平板型電極対を構成する。熱電素子1は、平行平板型熱電素子である。
 熱電素子1では、第1電極部11は、例えば白金(仕事関数:約5.65eV)を含む。第2電極部12は、例えばタングステン(仕事関数:約4.55eV)を含む。仕事関数が大きい電極部はアノードA(コレクタ電極)として機能し、仕事関数が小さい電極部はカソードK(エミッタ電極)として機能する。熱電素子1では、第1電極部11がアノードAであり、第2電極部12がカソードKである。このような熱電素子1では、仕事関数差を有する第1電極部11と第2電極部12との間に発生する、絶対温度による電子放出現象が利用される。このため、熱電素子1は、第1電極部11と第2電極部12との温度差が小さい場合であっても、熱エネルギーを電気エネルギーに変換できる。さらに、熱電素子1は、第1電極部11と第2電極部12との間に温度差がない場合であっても、熱エネルギーを電気エネルギーに変換することができる。なお、第1電極部11をカソードKとし、第2電極部12をアノードAとしてもよい。
 第1、第2電極部11及び12のそれぞれの第1方向Zに沿った厚さは、例えば1nm以上1μm以下である。より好ましくは、1nm以上50nm以下である。第1、第2電極部11及び12のそれぞれの材料は、例えば、以下に示す金属から選ぶことができる。 
  白金(Pt)    
  タングステン(W) 
  アルミニウム(Al)
  チタン(Ti)   
  ニオブ(Nb)   
  モリブデン(Mo) 
  タンタル(Ta)  
  レニウム(Re)  
 熱電素子1では、第1電極部11と第2電極部12との間に仕事関数差が生じればよい。したがって、第1電極部11及び12の材料には、上記以外の金属を選ぶことが可能である。また、第1、第2電極部11及び12の材料には、上記金属の他、合金、金属間化合物、及び金属化合物を選ぶことも可能である。金属化合物は、金属元素と非金属元素とが化合したものである。金属化合物の例としては、例えば六ホウ化ランタン(LaB)を挙げることができる。
 第1、第2電極部11及び12の材料として、非金属導電物を選ぶことも可能である。非金属導電物の例としては、シリコン(Si:例えばp型Si、あるいはn型Si)、及びグラフェン等のカーボン系材料等を挙げることができる。
 第1、第2電極部11及び第2電極部12の材料として、高融点金属(refractory metal)以外の材料を選ぶと、以下に説明される利点を、さらに得ることができる。本明細書において、高融点金属は、例えば、W、Nb、Mo、Ta、及びReとする。第1電極部(アノードA)11に、例えばPtを用いた場合、第2電極部(カソードK)12には、Al、Si、Ti、及びLaBの少なくとも1つを用いることが好ましい。
 例えば、Al及びTiの融点は、上記高融点金属より低い。したがって、Al及びTiのそれぞれからは、上記高融点金属に比較して、加工しやすい、という利点を得ることができる。
 例えば、Siは、上記高融点金属に比較して、その形成が、さらに容易である。したがって、Siからは、上記加工のしやすさに加え、熱電素子1の生産性がより向上する、という利点を、さらに得ることができる。
 例えば、LaBの融点は、Ti及びNbより高い。しかし、LaBの融点は、W、Mo、Ta、及びReより低い。LaBは、W、Mo、Ta、及びReに比較して加工しやすい。しかも、LaBの仕事関数は、約2.5~2.7eVである。LaBは、上記高融点金属に比較して電子を放出させやすい。したがって、LaBからは、熱電素子1の発電効率の更なる向上が可能、という利点を、さらに得ることができる。
 なお、第1電極部11、及び第2電極部12のそれぞれの構造は、上記材料を含む単層構造の他、上記材料を含む積層構造とされてもよい。
 熱電素子1は、第1接続配線15aと、第2接続配線16aと、を、さらに含む。 
 第1接続配線15aは、収容部10d内において、第1電極部11と電気的に接続されている。これにより、第1電極部11と第1接続配線15aとの第1電気的接点11aは、収容部10d内に設けられる。第1支持部13aの基板接合面13aa上において、第1接続配線15aの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。これは、第1支持部13aの平面形状と、ほぼ同じである。第1接続配線15aは、第1支持部13aと、第2基板10bとの間において、第1接合金属18aと接合される。第1接合金属18aは、第2基板10b上に設けられている。第1接合金属18aの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。これは、基板接合面13aa上における第1接続配線15aの平面形状と、ほぼ同じである。
 第2接続配線16aは、収容部10d内において、第2電極部12と電気的に接続されている。これにより、第2電極部12と第2接続配線16aとの第2電気的接点12aは、収容部10d内に設けられる。第2支持部13bの基板接合面13ba上において、第2接続配線16aの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。これは、第2支持部13bの平面形状と、ほぼ同じである。第2接続配線16aは、第2支持部13bと、第1基板10aとの間において、第2接合金属18bと接合される。第2接合金属18aは、第1基板10a上に設けられている。第2接合金属18bの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。これは、基板接合面13ba上における第2接続配線16aの平面形状と、ほぼ同じである。
 第1、第2接合金属18a及び18bは、第1、第2接続配線15a及び16aと接合可能な、例えば、金属を含む。これにより、例えば、図4に示すように、第2基板10bは、第1接続配線15aと第1接合金属18aとの接合、並びに第2接続配線16aと第2接合金属18bとの接合によって、第1基板10aと接合することができる。そして、筐体部10には、収容部10dが得られる。第1、第2接続配線15a及び16a、並びに第1、第2接合金属18a及び18bのそれぞれに、例えば、Auを用いた場合には、第1、第2接続配線15a及び16aを、それぞれ、第1、第2接合金属18a及び18bと熱圧着によって接合することができる。第1、第2接続配線15a及び16a、並びに第1、第2接合金属18a及び18bのそれぞれには、金以外にも、例えば、熱圧着、共晶接合等が可能な金属、又は合金であれば用いることができる。
 なお、第1、第2接続配線15a及び16a、並びに第1、第2接合金属18a及び18bのそれぞれに用いた金属、又は合金の仕事関数は、第1電極部11の仕事関数と、第2電極部12の仕事関数との間にあることが、例えば、発電効率の低下を抑制する観点から好ましい。また、共晶接合等、金属どうしの接合によって、接合部分に金属間化合物が生成される場合には、生成された金属間化合物の仕事関数についても、第1電極部11の仕事関数と、第2電極部12の仕事関数との間にあることが好ましい。
 第1接続配線15aは、第1支持部13aの内側面上、基板接合面13aa上、及び第1支持部13aの外側面上のそれぞれに、さらに設けられている。第1接続配線15aは、第1電極部11を収容部10dの外に導出する。第2接続配線16aは、第2支持部13bの内側面上、及び基板接合面13aa上のそれぞれに、さらに設けられている。第2接続配線16aは、第2電極部12を収容部10dの外に導出する。
 第1基板10aは、第1主面10afと、第2主面10abと、を有する。第2主面10abは、第1主面10afと対向し、熱伝導性ベース221の開放面221bと向き合う。第2主面10abは、例えば、接着部材30によって、開放面221b上に接着される。あるいは、第2主面10abは、例えば、ろう材によって、開放面221b上に固着される。第1外部筐体端子101及び第2外部筐体端子102のそれぞれは、第1基板10aの第1主面10af上に設けられている。第1外部筐体端子101は、第1接続配線15aと電気的に接続されている。第2外部筐体端子102は、第2接続配線16aと電気的に接続されている。第1主面10afは、例えば、第1、第2支持部13a及び13bのそれぞれから外側に張り出した部分を有する。第1外部筐体端子101は、例えば、第1主面10afの第1支持部13aから外側に張り出し部分に設けられる。第2外部筐体端子102は、例えば、第1主面afの第2支持部13bから外側に張り出した部分に設けられる。熱電素子1では、第1外部筐体端子101は、第1接続配線15aのパターンを利用し、第1接続配線15aと同じ導電物で得ている。また、第2外部筐体端子102は、第2接合金属18bのパターンを利用し、第2接合金属18bと同じ導電物で得ている。
 図5(a)は、中間部の一例を示す模式断面図である。図5(b)は、中間部の他の例を示す模式断面図である。
 図5(a)に示すように、中間部14は、収容部10d内の、第1電極部11と第2電極部12との間に設けられている。中間部14は、第1電極部11の仕事関数と第2電極部12の仕事関数との間の仕事関数を有するナノ粒子を含む。中間部14は、例えば、第2電極部(カソードK)12から放出された電子を、第1電極部(アノードA)11へと移動させる部分である。
 第1電極部11と第2電極部12との間には、第1方向Zに沿って電極間ギャップGが設定される。熱電素子1では、電極間ギャップGは、第1、第2支持部13a及び13bのそれぞれの第1方向Zに沿った厚さによって設定される。電極間ギャップGの幅の一例は、例えば、10μm以下の有限値である。電極間ギャップGの幅は狭いほど、電子eを第2電極部(カソードK)12から効率よく放出させることができ、かつ、第2電極部12から第1電極部(アノードA)11へ、効率よく移動させることができる。このため、熱電素子1の発電効率が向上する。また、電極間ギャップGの幅は狭いほど、熱電素子1の第1方向Zに沿った厚さを薄くできる。このため、例えば、電極間ギャップGの幅は狭い方がよい。電極間ギャップGの幅は、例えば、10nm以上100nm以下であることがより好ましい。なお、電極間ギャップGの幅と、第1支持部13a~第3支持部13cの、第1方向Zに沿った厚さとは、ほぼ等価である。
 中間部14は、例えば、複数のナノ粒子141と、溶媒142と、を含む。複数のナノ粒子141は、溶媒142内に分散されている。中間部14は、例えば、ナノ粒子141が分散された溶媒142を、ギャップ部140内に充填することで得られる。ナノ粒子141の粒子径は、電極間ギャップGよりも小さい。ナノ粒子141の粒子径は、例えば、電極間ギャップGの1/10以下の有限値とされる。ナノ粒子141の粒子径を、電極間ギャップGの1/10以下とすると、ギャップ部140内に、ナノ粒子141を含む中間部14を形成しやすくなる。これにより、熱電素子1の生産に際し、作業性が向上する。
 ナノ粒子141は、例えば導電物を含む。ナノ粒子141の仕事関数の値は、例えば、第1電極部11の仕事関数の値と、第2電極部12の仕事関数の値との間にある。例えば、ナノ粒子141の仕事関数の値は、3.0eV以上5.5eV以下の範囲とされる。これにより、中間部14に放出された電子eを、ナノ粒子141を介して、例えば、第2電極部12から第1電極部11へと移動させることができる。これにより、中間部14内にナノ粒子141がない場合に比較して、電気エネルギーの発生量を、さらに増加させることが可能となる。
 ナノ粒子141の材料の例としては、金及び銀の少なくとも1つを選ぶことができる。なお、ナノ粒子141の仕事関数の値は、第1電極部11の仕事関数の値と、第2電極部12の仕事関数の値との間にあればよい。したがって、ナノ粒子141の材料には、金及び銀以外の導電性材料を選ぶことも可能である。
 ナノ粒子141の粒子径は、例えば、電極間ギャップGの1/10以下の有限値とされる。具体的には、ナノ粒子141の粒子径は、2nm以上10nm以下である。また、ナノ粒子141は、例えば、平均粒径(例えばD50)3nm以上8nm以下の粒子径を有してもよい。平均粒径は、例えば粒度分布計測器を用いることで、測定することができる。粒度分布計測器としては、例えば、レーザー回折散乱法を用いた粒度分布計測器(例えばMicrotracBEL製Nanotrac WaveII-EX150等)を用いればよい。
 ナノ粒子141は、その表面に、例えば絶縁膜141aを有する。絶縁膜141aの材料の例としては、絶縁性金属化合物及び絶縁性有機化合物の少なくとも1つを選ぶことができる。絶縁性金属化合物の例としては、例えば、シリコン酸化物及びアルミナ等を挙げることができる。絶縁性有機化合物の例としては、アルカンチオール(例えばドデカンチオール)等を挙げることができる。絶縁膜141aの厚さは、例えば20nm以下の有限値である。このような絶縁膜141aをナノ粒子141の表面に設けておくと、電子eは、例えば、第2電極部(カソードK)12とナノ粒子141との間、並びにナノ粒子141と第1電極部(アノードA)11との間を、トンネル効果を利用して移動できる。このため、例えば、熱電素子1の発電効率の向上が期待できる。
 溶媒142には、例えば、沸点が60℃以上の液体を用いることができる。このため、室温(例えば15℃~35℃)以上の環境下において、熱電素子1を用いた場合であっても、溶媒142の気化を抑制することができる。これにより、溶媒142の気化に伴う熱電素子1の劣化を抑制することができる。液体の例としては、有機溶媒及び水の少なくとも1つを選ぶことができる。有機溶媒の例としては、メタノール、エタノール、トルエン、キシレン、テトラデカン、及びアルカンチオール等を挙げることができる。なお、溶媒142は、電気的抵抗値が高く、絶縁性である液体がよい。
 また、図5(b)に示すように、中間部14は、溶媒142を含まず、ナノ粒子141のみを含むようにしてもよい。中間部14が、ナノ粒子141のみを含むことで、例えば、熱電素子1を、高温環境下で用いる場合であっても、溶媒142の気化を考慮する必要が無い。これにより、高温環境下における熱電素子1の劣化を抑制することが可能となる。
 <熱電素子の動作>
 熱エネルギーが熱電素子1に与えられると、例えば、第2電極部(カソードK)12から中間部14に向けて電子eが放出される。放出された電子eは、中間部14から第1電極部(アノードA)11へと移動する。電流は、第1電極部11から第2電極部12に向かって流れる。このようにして、熱エネルギーが電気エネルギーに変換される。
 このような照明装置400であると、熱電素子1は、筐体部10の収容部10d内に、第1電極部11と、第1電極部11とは異なった仕事関数を有する第2電極部12と、第1電極部11の仕事関数と第2電極部12の仕事関数との間の仕事関数を有するナノ粒子141を含む中間部14と、を含む。これにより、熱電素子1の中に温度差を生じさせなくても、熱電素子1は発電できる。よって、低温材料や、低温材料を冷やすチラーが不要となる。低温材料、及び低温材料を冷やすチラーが不要となる結果、照明装置400の製造コストの増大、及び照明装置400のサイズの大型化のそれぞれを抑制できる。
 さらに、照明装置400によれば、以下のような利点を、さらに得ることができる。
 (1) 熱電素子1の筐体部10は、ヒートシンク401の空洞部401aの内面401b上に設ける。照明装置400において、空洞部401aは、デッドスペースである。したがって、熱電素子1は、照明装置400に、そのデッドスペースを利用して組み込まれる。これにより、熱電素子1を搭載するエリアを、照明装置400に新たに確保せずに済み、照明装置400のサイズの増大を抑制できる。
 (2) 第1、第2電気的接点11a及び12aのそれぞれを、収容部10d内に設ける。これにより、熱電素子1を、照明装置400に組み込む際、例えば、熱電素子1のハンドリング中や、熱電素子1の取り付け作業中等において、第1、第2電気的接点11a及び12aが破断したり、損傷したりすることを抑制できる。これにより、照明装置400の製造中に発生する可能性がある、熱電素子1のロスを減らすことができる。
 (3) 筐体部10は、第1主面10afと、第1主面10afと対向し、熱伝導性ベース221の開放面221bと向き合う第2主面10abと、を有する第1基板10aを含む。そして、第1、第2外部筐体端子101及び102のそれぞれを、第1基板10aの第1主面10af上に設ける。第1主面10afは、例えば、筐体部10の側面と比較して、第1、第2外部筐体端子101及び102のそれぞれに、広い面積を提供できる。また、筐体部10の側面と比較して、作業者による視認、あるいは作業ロボットによるワークポイントの抽出がしやすい。これらにより、例えば、熱電素子1と、照明装置400との電気的な接続作業を容易化でき、例えば、照明装置400のスループットを向上できる。また、熱電素子1を備えた、照明装置400の組み立ての確実性も向上する。また、照明装置400が、電源回路300を、さらに備える場合には、熱電素子1と電源回路300との電気的な接続作業を容易化できる。
 (4) 電源回路300は、外部から供給される外部入力電力Pin、及び熱電素子1から供給される補助入力電力PinaのそれぞれをLED入力電力に変換してLED素子210へ出力する。これにより、照明装置400の消費電力を減らすことができる。
 (5) 照明装置400では、熱電素子1が発生させる補助入力電力Pinaを、非常用電源として活用することも可能である。このような照明装置400は、停電時において、無電源にて点灯させることが可能である。即ち、照明装置400によれば、例えば、日本国消防法で定められた時間以上、無電源にて点灯させることもできる。これにより、照明装置400は、避難通路等の非常照明や誘導灯の光源としても使用できる。しかも、停電時において、放電可能な時間しか点灯できない電池や蓄電池を内蔵した常用-非常用兼用型照明装置と比較して、より長時間の点灯が可能である。
 (第1実施形態:第1変形例)
 次に、第1実施形態の第1変形例を説明する。第1変形例は、熱電素子の変形に関する。
 図6(a)~図6(c)は、第1変形例に係る熱電素子の一例を示す模式断面図である。図6(a)に示す模式断面は、図6(c)中のVIA-VIA線に沿う。図6(b)に示す模式断面は、図6(c)中のVIB-VIB線に沿う。図6(c)に示す模式断面は、図6(a)及び図6(b)中のVIC-VIC線に沿う。図7は、接合の一例を示す模式断面図である。図7は、図6(b)に示す模式断面に対応する。
 図6(a)~図6(c)に示すように、第1変形例に係る熱電素子1bが、熱電素子1と異なるところは、第1電極部11の第1方向Zから見た平面形状、及び第2電極部12の第1方向Zから見た平面形状のそれぞれが、櫛歯型であること
である。
 第1、第2電極部11及び12のそれぞれの櫛歯部は、第3方向Yに沿って延びる。櫛歯の向きは、第1電極部11と第2電極部12とで、互いに反対である。第1電極部11の櫛歯部と、第2電極部12の櫛歯部とは、互いに離間しながら噛み合う。これにより、第1電極部11の櫛歯部と、第2電極部12の櫛歯部との間に、電極間ギャップGが規定される。熱電素子1bにおいて、電極間ギャップGが規定される方向は、第2方向X(電極間ギャップGx)と、第3方向Y(電極間ギャップGy)との2方向になる(図10(c))。
 熱電素子には、平行平板型電極を持つ熱電素子1の他、櫛歯型電極を持つ熱電素子1bを用いることもできる。
 熱電素子1bでは、第1、第2電極部11及び12を櫛歯型とするので、平行平板型の熱電素子1と比較して、LED素子210の熱による電極間ギャップGの変動が、より少なくなる。これにより、例えば、熱電素子1bは、熱電素子1と比較して、発電効率の微小な変動を抑制しやすい、という利点を、さらに得ることができる。
 さらに、熱電素子1bにおいては、下記のさらなる工夫がなされている。
  ・筐体部10が、第1基板10aと、蓋体10cと、を含むこと
  ・第1電極部11、第2電極部12、第1接続配線15a、及び第2接続配線16aのそれぞれが、第1主面10af上に設けられていること
 以下、熱電素子1bについて、より詳細に説明する。
 蓋体10cは、第3支持部13cを含む。第3支持部13cは、蓋体10cから第1方向Zに沿って第1基板10aに向かって延びる。第3支持部13aの平面形状は、第1方向Zから見て、枠状である。蓋体10cは、第3支持部13cと、一体に設けられてもよいし、別々に設けられてもよい。
 第1、第2電極部11及び12のそれぞれは、収容部10d内に設けられる。収容部10dは、第2方向X及び第3方向Yに広がる平面を蓋体10cによって囲み、第2方向X及び第3方向Yのそれぞれに沿って第3支持部13cによって囲むことで、筐体部10に得られる。
 第1接続配線15aは、収容部10d内において、第1電極部11と電気的に接続されている。これにより、第1電極部11と第1接続配線15aとの第1電気的接点11aは、収容部10d内に設けられる。第2接続配線16aは、収容部10d内において、第2電極部12と電気的に接続されている。これにより、第2電極部12と第2接続配線16aとの第2電気的接点12aは、収容部10d内に設けられる。
 第3支持部13cの基板接合面13ca上において、第1接続配線15aの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。第1接続配線15aは、第3支持部13cと、第1基板10aとの間において、第1接合金属18aと接合される。第1接合金属18aは、蓋体10cの基板接合面13ca上に設けられている。第1接合金属18aの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。これは、基板接合面13ca上における第1接続配線15aの平面形状と、ほぼ同じである。
 第3支持部13cの基板接合面13ca上において、第2接続配線16aの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。第2接続配線16aは、第3支持部13cと、第1基板10aとの間において、第2接合金属18bと接合される。第2接合金属18bは、蓋体10cの基板接合面13ca上に設けられている。第2接合金属18bの平面形状は、第1方向Zから見て、第2方向X及び第3方向Yのそれぞれに延在したL字状である。これは、基板接合面13ca上における第2接続配線16aの平面形状と、ほぼ同じである。
 これにより、例えば、図7に示すように、蓋体10cは、第1接続配線15aと第1接合金属18aとの接合、並びに第2接続配線16aと第2接合金属18bとの接合によって、第1基板10aと接合することができる。そして、筐体部10には、収容部10dが得られる。
 第1接続配線15aと、第2接続配線16aとは、第1主面10af上において、互いに接触しないようにスリット17a及び17bを介して離れている。第1、第2接合金属18a及び18bは、それぞれ、第1、第2接続配線15a及び16aと電気的に接続されることがある。このような場合には、図6(c)に示したように、第1接合金属18aと、第2接合金属18bとを、互いに接触しないように、スリット17a及び17bを介して離しておけばよい。これにより、第1、第2接合金属18a及び18bを介した、第1接続配線15aと、第2接続配線16aとの短絡を抑制することができる。
 図8は、スリットの一例を示す模式断面図である。図8に示す模式断面は、図6(c)中のVIII-VIII線に沿う。 
 図8に示すように、スリット17a及び17bは、熱電素子1bに微小なすきま17cを生じさせる。このため、ギャップ部140に注入された溶媒142が、微小なすきまから漏れる可能性がある。そこで、図10(c)に示すように、第1基板10aと蓋体10cとの間に封止部材31a及び31bを設け、スリット17a及び17bを、それぞれ、封止部材31a及び31bで塞いでもよい。これにより、スリット17a及び17bを介した、溶媒142の漏れを抑制することができる。
 熱電素子1bでは、さらに、第1電極部11と蓋体10cとの間に、第1方向Zに沿ったギャップGel1を設け、第2電極部12と蓋体10cとの間に、ギャップGel2設けている。ギャップGel1及びGel2を設けることにより、蓋体10cと第1基板10aとの間にすきまを生じさせることなく、第1、第2電極部11及び12のそれぞれを、収容部10d内に収容することが可能となる。ギャップGel1の長さと、ギャップGel2の長さとは、互いに等しくなるように設定されてもよいし、互いに異なるように設定されてもよい。後者の場合は、例えば、第1電極部11の仕事関数と、第2電極部12の仕事関数との差を大きくするために、いずれか一方の電極部の表面に、コーティングや、表面改質等の表面処理が行われた場合に見られる。あるいは、互いに材料が異なる第1電極部11と、第2電極部12とを、1つのエッチング工程によって、同時に形成した場合に見られる。
 図9(a)及び図9(b)は、溶媒注入の一例を示す模式断面図である。図9(a)に示す模式断面は、図6(a)に示す模式断面に対応する。図9(b)に示す模式断面は、図6(b)に示す模式断面に対応する。
 図9(a)及び図9(b)に示すように、蓋体10cには、第1充填孔71a及び第2充填孔71bを設けることもできる。第1、第2充填孔71a及び71bは、例えば、ギャップ部140内への溶媒142の注入に利用される。溶媒142の注入に、第1、第2充填孔71a及び71bを利用するとき、ギャップGel1及びGel2がギャップ部140内にあると、溶媒142が、ギャップGel1及びGel2を介して、第1電極部11と第2電極部12との間に廻り込むようになる。これにより、第1電極部11と第2電極部12との間に、溶媒142を充填しやすくなる、という利点を得ることができる。
 溶媒142は、例えば、第1充填孔71aから、ギャップ部140内へ注入される。このとき、もう1つの第2充填孔71bは、例えば、エア抜きの孔として利用される。また、第2充填孔71bを介して、ギャップ部140内を真空引きしながら、第1充填孔71aから溶媒142を注入してもよい。
 第1変形例ように、熱電素子には、平行平板型電極を持つ熱電素子1の他、櫛歯型電極を持つ熱電素子1bを用いることもできる。
 (第1実施形態:第2変形例)
 第2変形例は、熱伝導性ベースの変形に関する。
 図10は、熱伝導性ベースの第1例を示す模式平面図である。
 図10に示すように、第2変形例に係る発光装置200bの熱伝導性ベース221の第1方向Zから見た平面形状は、例えば、円形である。円形の熱伝導性ベース221上には、複数のLED素子210が、例えば、環状に配置されている。配置されるLED素子210の数は、任意である。また、LEDの配置パターンは、環状に限らず、任意である。
 第2変形例のように、熱伝導性ベース221には、平面形状が円形である熱伝導性ベースを用いることもできる。
 (第1実施形態:第3変形例)
 第3変形例は、発光装置の変形に関する。 
 図11は、第3変形例に係る発光装置の第2例を示す模式平面図である。
 図11に示すように、第3変形例に係る発光装置200cの熱伝導性ベース221の第1方向Zから見た平面形状は、矩形である。矩形の熱伝導性ベース221上には、複数のLED素子210が、例えば、行列に配置されている。例えば、発光装置200cでは、複数のLED素子210が、2ロウ×4カラムに配置されている。第2変形例においても、配置されるLED素子210の数は、任意である。また、LEDの配置パターンは、2ロウ×4カラムに環状に限られることはない。
 第3変形例のように、熱伝導性ベース221には、平面形状が矩形である熱伝導性ベースを用いることもできる。
 (第1実施形態:第4変形例)
 第4変形例は、照明装置の変形に関する。 
 図12(a)は、第1変形例に係る照明装置の一例を示す模式図である。図12(b)は、図12(a)中のXIIB-XIIB線に沿う模式断面図である。
 図12(a)及び図12(b)に示すように、第1変形例に係る照明装置400bは、直管型LEDランプである。直管型LEDランプは、発光装置200と、ヒートシンク401と、透光性カバー402と、一対の口金部403a及び403bと、熱電素子1と、電源回路300と、を含む。
 直管型LEDランプにおいても、ヒートシンク401は、開放面221b上に設けられている。直管型LEDランプでは、電源回路300は、例えば、口金部403a及び403bの少なくとも1つ、あるいは空洞部401a内に収容される。熱電素子1は、ヒートシンク401の空洞部401aの内面401b上に設けられている。これにより、照明装置400と同様に、熱電素子1は、ヒートシンク401の空洞部401a内に収容される。
 照明装置は、照明装置400bのように、例えば、直管型LEDランプとすることもできる。
 なお、照明装置の例としては、例えば、電球型LEDランプ及び直管型LEDランプの他、ディスプレイの照明として利用されるバックライト等を挙げることができる。さらに、照明装置は、照明器具を含む。照明器具としては、例えば、LEDダウンライト、LEDスポットライト、LED投光器、LED街路灯、LEDベースライト、及びLEDシーリングライト等を挙げることができる。このように、照明装置400は、様々な照明に適用することができる。
(第2実施形態)
 第2実施形態は、第1実施形態に係る照明装置に使用可能な電源回路の例に関する。 
 図13は、第2実施形態に係る発電機能付照明装置の一例を示す模式ブロック図である。
 図13に示すように、電源回路300は、例えば、回路基板320上に設けられる。回路基板320上には、例えば、第1外部端子331a~第6外部端子331fが設けられている。第1外部端子331a及び第2外部端子331bは、外部電源、例えば、商用電源310と電気的に接続される。これにより、電源回路300には、第1、第2外部端子331a及び331bを介して、外部入力電力Pinが入力される。第3外部端子331c及び第4外部端子331dは、熱電素子1と電気的に接続される。これにより、電源回路300には、第3、第4外部端子331c及び331dを介して、補助入力電力Pinaが入力される。第3外部端子331cは、熱電素子1のカソードKと電気的に接続されている。第4外部端子331dは、熱電素子1のアノードAと電気的に接続されている。第5外部端子331e及び第6外部端子331fは、LED素子210と電気的に接続される。これにより、電源回路300は、第5、第6外部端子331e及び331fを介して、LED入力電力Poutを出力する。第5外部端子331eは、LED素子210のアノードAと電気的に接続されている。第6外部端子331fは、LED素子210のカソードKと電気的に接続されている。
 図14は、第2実施形態に係る発電機能付照明装置の一例を示す模式回路図である。 
 図14に示すように、電源回路300は、コンバータ332を含む。外部電源が商用電源310である場合、コンバータ332は、AC-DCコンバータ(整流回路)となる。外部電源が電池である場合には、コンバータ332は、DC-DCコンバータとなる。コンバータ332がAC-DCコンバータである場合、交流電力を直流電力に整流する。整流された直流電力は、電流制限回路333に供給される。電流制限回路333は、直流電流を制限してLED入力電力Poutを生成し、出力する。
 コンバータ332の高電位側出力ノードN1は、電流制限回路333の高電位側入力ノードN2と、第1スイッチ334を介して電気的に結合されている。第1スイッチ334と高電位側入力ノードN2との接続ノードN3は、電源回路300の低電位側配線335と、コンデンサ336を介して電気的に結合されている。コンデンサ336は、平滑コンデンサである。また、コンデンサ336には、抵抗337が並列に接続されている。抵抗337は、放電用抵抗である。接続ノードN3は、第2スイッチ338を介して熱電素子1のカソードKと電気的に結合されている。第1、第2スイッチ334及び338には、例えば、トランジスタが使用される。電流制限回路333の高電位側出力ノードN4は、LED素子210のアノードAと電気的に結合される。LED素子210のカソードK、及び熱電素子1のアノードAは低電位側配線335と電気的に結合されている。
 発光装置200を点灯させるとき、第1スイッチ334をオン、第2スイッチ338をオフさせる。高電位側出力ノードN1は、コンデンサ336の一方電極と電気的に接続され、コンデンサ336が充電される。コンデンサ336の充電完了後、高電位側出力ノードN1は、高電位側入力ノードN2と電気的に接続される。コンバータ332は、電流を電流制限回路333に供給する。電流制限回路333は、供給された電流を制限してLED入力電力Poutを生成し、出力する。これにより、LED素子210は、点灯する。
 LED素子210が点灯すると、LED素子210は発熱する。熱は、熱電素子1へ伝わる。やがて、熱電素子1は、発電可能な状態、例えば、コンデンサ336を充電可能な電流を生成可能な状態となる。熱電素子1が発電可能な状態となった後、第2スイッチ338をオンさせる。熱電素子1のカソードKは、コンデンサ336の一方電極と電気的に接続される。熱電素子1は、コンバータ332とともに、電流を電流制限回路333に供給する。これにより、LED素子210は、点灯を続ける。
 また、第1スイッチ334、及び第2スイッチ338によって、コンデンサ336の一方電極に、高電位側出力ノードN1を結合するか、熱電素子1のカソードKを結合するかのいずれかを選択することもできる。
 例えば、発光装置200を点灯させるとき、第1スイッチ334をオン、第2スイッチ338をオフさせて、発光装置200を、外部入力電力Pinを用いて点灯させる。外部入力電力Pinを用いて点灯された状態を、便宜上、通常エネルギーモードと呼ぶ。
 点灯後、例えば、熱電素子1が、コンデンサ336を充電可能な電流を生成可能な状態となったら、第1スイッチ334をオフ、第2スイッチ338をオフさせる。電力の供給元は、外部入力電力Pinから、補助入力電力Pinaに切り替わる。これにより、発光装置の動作モードは、通常エネルギーモードから、熱電素子1からの補助入力電力Pinaを用いた省エネルギーモードへと切り替わる。通常エネルギーモードから省エネルギーモードへの切り替えは、自動、もしくは手動により行うことができる。省エネルギーモードは、一般的には、発光装置200の明るさを低下させて、商用電源、もしくは電池の消費電力を下げることをいう。しかし、第4実施形態における省エネルギーモードは、通常エネルギーモードとは別の補助入力電力Pinに切り替えることをいう。このため、省エネルギーモードであっても、発光装置200の明るさ低下は、抑制される。
 また、コンデンサ336には、電源回路300中に設けられている平滑コンデンサを利用することもできる。平滑コンデンサを利用した場合には、電源回路300中の既存回路素子を利用して、熱電素子1を電源回路300に接続できる。これにより、電源回路300に必要な回路素子や電子部品330の増加を抑制できる。
 (第2実施形態:第1変形例)
 図15は、第2実施形態の第1変形例に係る発電機能付発光装置の一例を示す模式回路図である。 
 熱電素子1が発生する電力では、LED素子210を点灯させるのに、十分な電圧を確保できない場合も想定される。このような場合には、熱電素子1を、昇圧回路350を介して、電源回路300と接続するようにしてもよい。図18には、昇圧回路350の一例を示す模式回路が示されている。
 図15に示すように、昇圧回路350は、例えば、ダイオード351と、コイル352と、第3スイッチ353と、を含む。ダイオード351のカソードは、第2スイッチ338を介してコンデンサ336の一方電極と電気的に結合されている。ダイオード351のアノードは、コイル352を介して熱電素子1のカソードKに電気的に結合されている。コイル352は、チョークコイルである。ダイオード351のアノードと、コイル352との接続ノードN5は、低電位側配線335と、第3スイッチ353を介して電気的に結合されている。第3スイッチ353には、例えば、トランジスタが使用される。
 昇圧回路350の動作は、以下のようにして、補助入力電力Pinaの電圧を昇圧する。まず、第2スイッチ338をオンさせて、熱電素子1のカソードKを、コンデンサ336の一方電極と電気的に結合させる。この状態で、第3スイッチ353をオンさせる。熱電素子1のカソードKから、電流がコイル352を介して低電位側配線335に流れる。次いで、第3スイッチ353をオフさせる。コイル352からの電流は、すぐにはゼロにはならない。このため、コイル352から、ダイオード351、及び第2スイッチ338を介して、接続ノードN3に電流が、一気に流れる。ダイオード351は、接続ノードN3からの電流の逆流を防ぐ。このように第3スイッチ353のオンとオフとを繰り返すことで、補助入力電力Pinaの電圧は、昇圧される。
 このように、熱電素子1を、昇圧回路350を介して、電源回路300と接続するようにしてもよい。なお、昇圧回路は、図12に示した昇圧回路350に限られるものでもない。昇圧回路には、例えば、トランス等、周知の昇圧回路を用いることができる。また、昇圧回路は、電源回路300中に設けることができる。
 (第2実施形態:第2変形例)
 図14に示したように、LED素子210のアノードAは、コンデンサ336の一方電極と、電流制限回路333を介して電気的に結合される。電流制限回路333を利用し、LED素子210へ流す電流を制限すると、LED素子210を調光することができる。LED素子210は、LEDチップ211の温度が上がるにつれて、発光効率が低下する。電流制限回路333によって、LED素子210の明るさが下がるように調光すると、LEDチップ211の温度の上昇が抑制され、発光効率の低下を抑制することができる。
 また、熱電素子1は、第1、第2電極部11及び12それぞれの周囲の温度が上がるにつれて、発電効率が向上する。そこで、電流制限回路333は、LED素子210の周囲の温度を、LED素子210の発光効率と、熱電素子1の発電効率とのバランスが良い温度帯で維持されるように、LED素子210へ流す電流を制限するようにする。
 図16は、温度と発光効率との関係、並びに温度と発電効率との関係を模式的に示す模式図である。図16中の線iは、LED素子210の温度と発光効率との関係を示す。図16中の線iiは、熱電素子1の温度と発電効率との関係を示す。
 図16に示すように、LED素子210には、例えば、LED素子210の発光効率をこれ以上低下させたくない温度、もしくはLED素子210の温度をこれ以上上昇させたくない温度T1がある。また、熱電素子1には、例えば、実使用上、十分な発電が可能となる温度、もしくは実使用上、望まれる発電効率以上となる温度T2がある。LED素子210の周囲の温度は、例えば、温度T1を上限とし、温度T2を下限とする温度帯T0で、維持させることが好ましい。
 例えば、温度センサ等を用いて、LED素子210の周囲の温度を検出する。この検出結果を、電流制限回路333に、例えば、制御信号としてフィードバックする。フィードバックされた制御信号に基づき、電流制限回路333は、LED素子210の周囲の温度が、例えば、温度帯T0で維持されるように、LED素子210へ流す電流を制限する。
 電源回路300は、LED素子210の周囲にある。したがって、温度センサは、電源回路300中に設けることができる。温度センサの一例としては、サーミスタを挙げることができる。サーミスタは、温度の上昇により抵抗値が増加する素子である。LED素子210の周囲の温度は、例えば、サーミスタを用いることで検出できる。
 図17は、第4実施形態の第2変形例に係る発電機能付発光装置の一例を示す模式回路図である。
 図20に示すように、温度検出回路370は、抵抗371と、サーミスタ372と、検出回路373と、を含む。抵抗371の一端は、熱電素子1のカソードKと電気的に結合されている。サーミスタ372の一端は、熱電素子1のアノードAと電気的に結合されている。抵抗371の他端と、サーミスタ372の他端との接続ノードN6は、検出回路373の入力端子と電気的に結合されている。検出回路373の出力端子は、電流制限回路333と電気的に結合されている。検出回路373は、制御信号Sを、電流制限回路333へ出力する。
 サーミスタ372は、LED素子210の周囲の温度が上がるにつれて、抵抗値が増す。このため、接続ノードN6の電圧は、LED素子210の周囲の温度が上がるにつれて高まる。検出回路373は、接続ノードN6の電圧を検出する。
 検出回路373は、LED素子210の周囲の温度が上がり、接続ノードN6の電圧が設定された値以上となると、電流制限回路333へ出力する制御信号Sをイネーブルする。これにより、電流制限回路333は、LED素子210へ流す電流を制限する。検出回路373は、LED素子210の周囲の温度が下がり、接続ノードN6の電圧が設定された値未満となると、電流制限回路333へ出力する制御信号Sをディセーブルする。これにより、電流制限回路333は、LED素子210へ流す電流の制限を、解除する。LED素子210の周囲の温度が再び上がり、接続ノードN6の電圧が設定された値以上となると、電流制限回路333へ出力する制御信号Sを、再度イネーブルする。
 このように検出回路373は、サーミスタ372の抵抗値の変化に基づき、制御信号Sのイネーブルとディセーブルとを繰り返す。これにより、LED素子210の周囲の温度は、例えば温度帯T0に維持することができる。この結果、熱電素子1には、例えば、十分な発電量を確保したまま、LED素子210の周囲の温度の上昇、並びにLED素子210の発光効率の低下のそれぞれを、同時に抑制できる。
 また、温度検出回路370は、電源として、熱電素子1からの入力補助電力Pinaを利用する。例えば、サーミスタ372を用いた温度検出回路370は、LED素子210の周囲の温度を検出するために、LED素子210が点灯している間、電流を流し続ける。これは、商用電源や電池からの外部入力電力Pinを消費する。この点、温度検出回路370の電源として、入力補助電圧Pinaを用いることで、外部入力電力の消費を抑制することができる。したがって、温度検出回路370によれば、より低消費電力な温度検出回路が得られる、という利点を得ることができる。
 以上、この発明の実施形態のいくつかを説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。例えば、これらの実施形態は、適宜組み合わせて実施することが可能である。また、この発明は、上記いくつかの実施形態の他、様々な新規な形態で実施することができる。したがって、上記いくつかの実施形態のそれぞれは、この発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更が可能である。このような新規な形態や変形は、この発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明、及び特許請求の範囲に記載された発明の均等物の範囲に含まれる。
1、1b:熱電素子
 10:筐体部
  10a:第1基板
  10af:第1主面
  10ab:第2主面
  10b:第2基板
  10c:蓋体
  10d:収容部
 11:第1電極部
  11a:第1電気的接点
 12:第2電極部
  12a:第2電気的接点
 13a:第1支持部
  13aa:基板接合面
 13b:第2支持部
  13ba:基板接合面
 13c:第3支持部
  13ca:基板接合面
 14:中間部
  140:ギャップ部
  141:ナノ粒子
  142:溶媒
 15a:第1接続配線
 16a:第2接続配線
 17a、17b:スリット
 18a:第1接合金属
 18b:第2接合金属
30:接着部材
31a、31b:封止部材
101、102:第1外部筐体端子、第2外部筐体端子
200、200b、200c:発光装置
 210:LED素子
  211:LEDチップ
  212:パッケージ基板
  213:リフレクタ
  214:透光性封入樹脂
  215a:第1電極配線
  215b:第2電極配線
 220:熱伝導性LED基板
  221:熱伝導性ベース
   221a:搭載面
   221b:開放面
  222a:第1基板配線
  222b:第2基板配線
  223:絶縁物
300:電源回路
 310:商用電源
 320:回路基板
  321a~321f:第1~第6リード線
 330:電子部品
  331a~331f:第1~第6外部端子
  332:コンバータ
  333:電流制限回路
  334:第1スイッチ
  335:低電位側配線
  336:コンデンサ
  337:抵抗
  338:第2スイッチ
 350:昇圧回路
  351:ダイオード
  352:コイル
  353:第3スイッチ
 370:温度検出回路
  371:抵抗
  372:サーミスタ
  373:検出回路
400、400b:照明装置
 401:ヒートシンク
  401a:空洞部
  402b:内面
 402:透光性カバー
 403、403a、403b:口金部
  410:シェル
  411:アイレット
Pin:外部入力電力
Pina:補助入力電力
Pout:LED入力電力
A:アノード
K:カソード
G:電極間ギャップ
 Gx:電極間ギャップ
 Gy:電極間ギャップ
Gel1:第1電極-蓋体間ギャップ
Gel2:第2電極-蓋体間ギャップ
N1~N5:ノード
T0:温度帯
T1、T2:温度
S:制御信号
X:第2方向
Y:第3方向
Z:第1方向

Claims (7)

  1.  電気エネルギーを光エネルギーに変換するLED素子と、前記LED素子から放出された熱エネルギーを電気エネルギーに変換する熱電素子と、を有する発電機能付照明装置であって、
     搭載面、及び前記搭載面と対向した開放面を有する熱伝導性ベースと、前記搭載面上に、前記熱伝導性ベースと電気的に絶縁されて設けられた基板配線と、を含む熱伝導性LED基板、並びに前記基板配線と電気的に接続された前記LED素子を含む発光装置と、
     内部に空洞部を有し、前記熱伝導性ベースの開放面上に、前記熱伝導性ベースと電気的に絶縁され、前記熱伝導性ベースと熱的に結合されて設けられたヒートシンクと、
     前記ヒートシンク上に設けられた、前記発光装置を収容する透光性カバーと、
     前記ヒートシンクの前記空洞部内に、前記ヒートシンクと電気的に絶縁され、前記ヒートシンクと熱的に結合されて設けられた熱電素子と、
     を備え、
     前記熱電素子は、
      収容部を有する筐体部と、
      前記収容部内に設けられた第1電極部と、
      前記収容部内に設けられ、前記第1電極部と第1方向に離間して対向し、前記第1電極部とは異なった仕事関数を有する第2電極部と、
      前記収容部内の、前記第1電極部と前記第2電極部との間に設けられ、前記第1電極部の仕事関数と前記第2電極部の仕事関数との間の仕事関数を有するナノ粒子を含む中間部と、
     を含み、
     前記筐体部は、前記ヒートシンクの前記空洞部の内面上に設けられていること
     を特徴とする発電機能付照明装置。
  2.  前記第1電極部と電気的に接続され、前記第1電極部を前記収容部の外に導出する第1接続配線と、
     前記第2電極部と電気的に接続され、前記第2電極部を前記収容部の外に導出する第2接続配線と、
     を、さらに備え、
     前記第1電極部と前記第1接続配線との第1電気的接点、並びに前記第2電極部と前記第2接続配線との第2電気的接点のそれぞれは、前記収容部内に設けられていること
     を特徴とする請求項1に記載の発電機能付照明装置。
  3.  前記筐体部は、
      第1主面と、前記第1主面と対向し、前記熱伝導性ベースの前記開放面と向き合う第2主面と、を有する第1基板
     を含み、
     前記第1接続配線と電気的に接続された第1外部端子と、
     前記第2接続配線と電気的に接続された第2外部端子と、
     を、さらに備え、
     前記第1外部端子及び前記第2外部端子のそれぞれは、前記第1基板の前記第1主面上に設けられていること
     を特徴とする請求項2に記載の発電機能付照明装置。
  4.  前記熱電素子は、平行平板型熱電素子、及び櫛歯型熱電素子の少なくとも1つを含むこと
     を特徴とする請求項1~3のいずれか1項に記載の発電機能付照明装置。
  5.  外部から供給される外部入力電力、及び前記熱電素子から供給される補助入力電力のそれぞれの入力が可能な、前記外部入力電力及び前記補助入力電力のそれぞれをLED入力電力に変換し、前記LED入力電力を前記LED素子へ出力する電源回路
     を、さらに備えること
     を特徴とする請求項1~4のいずれか1項に記載の発電機能付照明装置。
  6.  前記電源回路は、
      一方電極、及び他方電極を有するコンデンサ
     を、含み、
     前記一方電極は、前記外部入力電力の高電位側出力ノード、前記LED素子のアノード、及び前記熱電素子のカソードのそれぞれと、電気的に結合され、
     前記他方電極は、前記電源回路の低電位側配線と、電気的に結合されていること
     を特徴とする請求項5に記載の発電機能付照明装置。
  7.  前記電源回路は、
      第1スイッチと、
      第2スイッチと、
      電流制限回路と、
     を、さらに含み、
     前記高電位側出力ノードは、前記一方電極と、第1スイッチを介して電気的に結合され、
     前記熱電素子のカソードは、前記一方電極と、第2スイッチを介して電気的に結合され、
     前記LED素子のアノードは、前記一方電極と、電流制限回路を介して電気的に結合されていること
     を特徴とする請求項6に記載の発電機能付照明装置。
PCT/JP2019/040019 2018-10-22 2019-10-10 発電機能付照明装置 WO2020085102A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/286,871 US11221133B2 (en) 2018-10-22 2019-10-10 Lighting device with electric power generation function
EP19875979.7A EP3872393A4 (en) 2018-10-22 2019-10-10 LIGHTING DEVICE WITH ENERGY GENERATION FUNCTION
CN201980069148.1A CN112912664A (zh) 2018-10-22 2019-10-10 带发电功能的照明装置
JP2020553127A JP7105001B2 (ja) 2018-10-22 2019-10-10 発電機能付照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-198456 2018-10-22
JP2018198456 2018-10-22

Publications (1)

Publication Number Publication Date
WO2020085102A1 true WO2020085102A1 (ja) 2020-04-30

Family

ID=70330611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040019 WO2020085102A1 (ja) 2018-10-22 2019-10-10 発電機能付照明装置

Country Status (5)

Country Link
US (1) US11221133B2 (ja)
EP (1) EP3872393A4 (ja)
JP (1) JP7105001B2 (ja)
CN (1) CN112912664A (ja)
WO (1) WO2020085102A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3863072A4 (en) * 2018-10-04 2022-06-29 GCE Institute Inc. Light-emitting device with power-generation function, lighting device, and display device
CN113552555B (zh) * 2021-07-28 2024-08-13 维沃移动通信有限公司 光发射模组及电子设备
US12096693B2 (en) 2022-03-28 2024-09-17 International Business Machines Corporation Temperature indicator powered by thermoelectric generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147901B2 (ja) 1979-02-21 1986-10-21 Kobe Steel Ltd
JP2002540636A (ja) * 1999-03-11 2002-11-26 エネコ インコーポレイテッド ハイブリッド熱電子エネルギー変換器およびその方法
US20110234107A1 (en) * 2010-03-26 2011-09-29 Altair Engineering, Inc. Led light with thermoelectric generator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7832891B2 (en) * 2008-09-20 2010-11-16 Mig Technology Inc. Illuminating device which accesses natural energy
KR20110001838U (ko) * 2009-08-17 2011-02-23 주식회사 영동테크 엘이디 할로겐 램프
US20110235328A1 (en) * 2010-03-25 2011-09-29 Jian Xu Energy harvester for led luminaire
CA2817966A1 (en) 2010-11-16 2012-05-24 Photon Holding Llc Systems, methods and/or devices for providing led lighting
NL2007316C2 (en) * 2011-08-29 2013-03-04 Nobel Groep B V Lighting device, and lighting system.
JP2012099486A (ja) 2011-11-28 2012-05-24 Fujikura Ltd 照明装置
JP2013196900A (ja) * 2012-03-19 2013-09-30 Toshiba Lighting & Technology Corp 照明装置およびその製造方法
JP5627801B2 (ja) * 2012-08-22 2014-11-19 パナソニック株式会社 発光装置、電球形ランプ及び照明装置
JP6147901B1 (ja) 2016-07-29 2017-06-14 株式会社Gceインスティチュート 熱電素子及び熱電素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147901B2 (ja) 1979-02-21 1986-10-21 Kobe Steel Ltd
JP2002540636A (ja) * 1999-03-11 2002-11-26 エネコ インコーポレイテッド ハイブリッド熱電子エネルギー変換器およびその方法
US20110234107A1 (en) * 2010-03-26 2011-09-29 Altair Engineering, Inc. Led light with thermoelectric generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3872393A4

Also Published As

Publication number Publication date
US20210381685A1 (en) 2021-12-09
JP7105001B2 (ja) 2022-07-22
EP3872393A1 (en) 2021-09-01
US11221133B2 (en) 2022-01-11
EP3872393A4 (en) 2022-05-25
JPWO2020085102A1 (ja) 2021-09-16
CN112912664A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2020085102A1 (ja) 発電機能付照明装置
US20130049031A1 (en) Light-emitting device, light-emitting module, and lamp
JP2009135440A (ja) 散熱機能を有する発光デバイスとそのようなデバイスを製造するプロセス
KR101123497B1 (ko) 열전대를 이용한 매립형 광소자 패키지 모듈
US20100163890A1 (en) Led lighting device
WO2020184234A1 (ja) 発電機能付半導体集積回路装置
US8802460B2 (en) Method of mounting LED chip
WO2020184235A1 (ja) 発電機能付半導体集積回路装置
JP2012503335A (ja) 照明モジュール用光学カップ
TWM498387U (zh) 熱電分離的發光二極體封裝模組及電連接模組
JP5705323B2 (ja) 放熱特性が向上した高光力led光源構造体
US8716943B2 (en) Light-emitting device and lighting apparatus provided with the same
TW201434134A (zh) 發光裝置、背光模組及照明模組
US9338837B2 (en) Lighting device
JP7181584B2 (ja) 発電機能付発光装置、照明装置、及び表示装置
WO2020071535A1 (ja) 発電機能付発光装置、照明装置、及び表示装置
US20120267645A1 (en) Light emitting diode module package structure
CN106465537B (zh) 印刷电路板和包括该印刷电路板的光发射器件
JP2020113694A (ja) 発電機能付発光装置、照明装置、及び表示装置
JP2020061479A (ja) 発電機能付発光装置、照明装置、及び表示装置
JP2023032709A (ja) 発光モジュール
JP7224015B2 (ja) 発電機能付発光装置、照明装置、及び表示装置
JP7261461B2 (ja) 発電機能付半導体集積回路装置
JP5966192B2 (ja) 照明装置、および車両用灯具
KR20120048996A (ko) 발광장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19875979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019875979

Country of ref document: EP

Effective date: 20210525