WO2020083342A1 - 控制装置、摄像装置、移动体、控制方法以及程序 - Google Patents

控制装置、摄像装置、移动体、控制方法以及程序 Download PDF

Info

Publication number
WO2020083342A1
WO2020083342A1 PCT/CN2019/113053 CN2019113053W WO2020083342A1 WO 2020083342 A1 WO2020083342 A1 WO 2020083342A1 CN 2019113053 W CN2019113053 W CN 2019113053W WO 2020083342 A1 WO2020083342 A1 WO 2020083342A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
current value
speed
control
motor
Prior art date
Application number
PCT/CN2019/113053
Other languages
English (en)
French (fr)
Inventor
小山高志
本庄谦一
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980033562.7A priority Critical patent/CN112136315A/zh
Publication of WO2020083342A1 publication Critical patent/WO2020083342A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention requires the priority of the Japanese invention patent with the application number JP2018-200139 and the title of the invention as "control device, imaging device, moving body, control method, and ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ " filed on October 24, 2018. All of the invention patents The content is here.
  • the invention relates to a control device, an imaging device, a moving body, a control method and a program.
  • Patent Literature 1 describes that the speed information is determined based on the detection information of the camera device posture and the movement direction of the lens, and the lens is controlled based on the speed information.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-73030.
  • the speed control When the speed control is used to control the speed of the focusing lens, the movement of the focusing lens may be unstable due to changes in the use environment of the imaging device.
  • the control device may be a control device that controls an imaging device including a lens and a motor that drives the lens.
  • the control device may include a first acquisition unit that acquires posture information indicating the posture of the imaging device.
  • the control device may include a determination unit that determines the first current value based on the posture information.
  • the control device may include a control unit that controls the current supplied to the motor based on the difference between the value representing the lens speed and the target value representing the target speed of the lens, thereby performing speed control so that the lens speed reaches the target speed.
  • the control section may also perform speed control so that the current of the first current value is supplied to the motor when the speed control is started.
  • the control section may perform speed control based on the value indicating the difference integral value.
  • the determination part may determine the first current value as an initial value representing the value of the difference integral value.
  • the determination unit may further determine the first current value based on the movement direction of the lens.
  • the determination unit may determine the first current value based on information indicating a predetermined correspondence relationship between the first current value, the camera posture, and the lens movement direction.
  • the control device may include a second acquisition unit that acquires the second current value of the current being supplied to the motor during the execution of the speed control.
  • the control device may include an update unit that updates the first current value corresponding to the camera device posture and the lens movement direction indicated by the posture information shown in the predetermined correspondence relationship based on the second current value.
  • the update unit may, based on the second current value, correspond to the camera device posture and lens movement direction indicated by the posture information shown in the predetermined correspondence relationship The first current value is updated.
  • the update unit may capture the image indicated by the posture information shown in the corresponding relationship with the predetermined based on the second current value
  • the first current value corresponding to the device posture and lens movement direction is updated.
  • the update unit may update the first current value corresponding to the camera position and the lens movement direction indicated by the posture information shown in the predetermined correspondence relationship to a value obtained by reducing the second current value under a predetermined condition.
  • the motor can drive the lens via gears or cams.
  • An imaging device may include the above-mentioned control device.
  • the imaging device may include a lens, a motor, and an image sensor that receives light through the lens.
  • the mobile body according to an aspect of the present invention may be a mobile body that includes the above-described imaging device and a support mechanism that supports the posture of the imaging device and can be moved.
  • the control method may be a control method that controls an imaging device including a lens and a motor that drives the lens.
  • the control method may include a stage of acquiring posture information indicating the posture of the camera.
  • the control method may include a stage of determining the first current value based on the posture information.
  • the control method may have a stage of performing speed control, which controls the current supplied to the motor based on the difference between the value representing the lens speed and the target value representing the target speed of the lens, so that the lens speed reaches the target speed.
  • the stage in which the speed control is performed may include a stage in which the speed control is performed so that the current of the first current value is supplied to the motor when the speed control is started.
  • the program according to an aspect of the present invention may be a program for causing a computer to function as the control device.
  • FIG. 1 is a diagram illustrating an example of an external perspective view of an imaging device.
  • FIG. 2 is a diagram showing functional blocks of an imaging device.
  • FIG. 3 is a diagram showing an example of a block diagram of PID control performed by a speed control unit.
  • FIG. 4 is a diagram showing an example of changes over time in the current value of the focus lens speed and the current supplied to the motor.
  • FIG. 5 is a diagram showing an example of information indicating the correspondence between the tilt angle, current value, and lens movement direction.
  • 6 is a flowchart showing an example of an update process of an initial value current value.
  • FIG. 7 is a diagram showing an example of the appearance of an unmanned aircraft and a remote control device.
  • FIG. 8 is a diagram for explaining an example of the hardware configuration.
  • the blocks may represent (1) the stage of the process of performing the operation or (2) the "part" of the device having the function of performing the operation.
  • the designated stages and “departments” can be realized by programmable circuits and / or processors.
  • the dedicated circuits may include digital and / or analog hardware circuits.
  • ICs integrated circuits
  • / or discrete circuits may be included.
  • the programmable circuit may include a reconfigurable hardware circuit.
  • Reconfigurable hardware circuits can include logical AND, logical OR, logical XOR, logical NAND, logical NOR, and other logic operations, flip-flops, registers, field programmable gate array (FPGA), programmable logic array (PLA) ) And other memory elements.
  • the computer-readable medium may include any tangible device capable of storing instructions executed by a suitable device.
  • the computer-readable medium having instructions stored thereon has a product that includes instructions that can be executed to create means for performing the operations specified by the flowchart or block diagram.
  • electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, etc. may be included.
  • Floppy registered trademark
  • floppy disk hard disk
  • random access memory RAM
  • ROM read only memory
  • EPROM or Flash memory erasable programmable read only memory
  • EEPROM electrically erasable programmable read-only memory
  • SRAM static random access memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • RTM Blu-ray
  • Computer readable instructions may include any one of source code or object code described by any combination of one or more programming languages.
  • Source code or object code includes traditional procedural programming languages.
  • Traditional programming languages can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or Smalltalk, Object-oriented programming languages such as C ++ and "C" programming languages or similar programming languages.
  • the computer-readable instructions may be provided locally or via a wide area network (WAN) such as a local area network (LAN), the Internet, or the like to a processor or programmable circuit of a general-purpose computer, a dedicated computer, or other programmable data processing device.
  • WAN wide area network
  • LAN local area network
  • the Internet or the like to a processor or programmable circuit of a general-purpose computer, a dedicated computer, or other programmable data processing device.
  • a processor or programmable circuit can execute computer readable instructions to create means for performing the operations specified by the flowchart or block diagram.
  • Examples of the processor include a computer processor, a processing unit, a microprocessor, a digital signal processor, a controller, a microcontroller, and so on.
  • FIG. 1 is a diagram illustrating an example of an external perspective view of an imaging device 100 according to this embodiment.
  • FIG. 2 is a diagram showing the functional blocks of the imaging device 100 according to this embodiment.
  • the imaging device 100 includes an imaging unit 102 and a lens unit 200.
  • the imaging unit 102 includes an image sensor 120, an imaging control unit 110, and a memory 130.
  • the image sensor 120 may be composed of CCD or CMOS.
  • the image sensor 120 outputs the image data of the optical image formed by the zoom lens 211 and the focus lens 210 to the imaging control section 110.
  • the imaging control unit 110 may be configured by a microprocessor such as a CPU or MPU, a microcontroller such as an MCU, or the like.
  • the memory 130 may be a computer-readable recording medium, and may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 130 stores programs and the like necessary for the imaging control unit 110 to control the image sensor 120 and the like.
  • the memory 130 may be provided inside the housing of the camera 100.
  • the memory 130 may be configured to be detachable from the casing of the camera device 100.
  • the imaging unit 102 may further include an instruction unit 162 and a display unit 160.
  • the instruction unit 162 is a user interface that receives instructions from the user to the imaging device 100.
  • the display unit 160 displays the image captured by the image sensor 120, various setting information of the imaging device 100, and the like.
  • the display section 160 may be composed of a touch panel.
  • the lens unit 200 includes a focus lens 210, a zoom lens 211, a lens driving unit 212, a lens driving unit 213, and a lens control unit 220.
  • the focusing lens 210 and the zoom lens 211 may include at least one lens. At least a part or all of the focus lens 210 and the zoom lens 211 are configured to be movable along the optical axis.
  • the lens unit 200 may be an interchangeable lens provided to be detachable from the imaging unit 102.
  • the lens driving unit 212 includes a motor 216 and an encoder 218.
  • the motor 216 may be a DC motor, a coreless motor, or an ultrasonic motor.
  • the encoder 218 detects the rotation speed and rotation speed of the motor 216.
  • the lens driving unit 212 transmits the power of the motor 216 to at least a part or all of the focusing lens 210 via a mechanism member such as a cam ring and a guide shaft, and moves at least a part or all of the focusing lens 210 along the optical axis.
  • the lens driving unit 213 includes a motor 217 and an encoder 219.
  • the motor 217 may be a stepper motor, a DC motor, a coreless motor, or an ultrasonic motor.
  • the encoder 219 detects the rotation speed and rotation speed of the motor 217.
  • the lens driving section 213 transmits the power of the motor 217 to at least a part or all of the zoom lens 211 via a mechanism member such as a cam ring and a guide shaft, and moves at least a part or all of the zoom lens 211 along the optical axis.
  • the lens control section 220 drives at least one of the lens driving section 212 and the lens driving section 213 in accordance with the lens control instruction from the imaging section 102, and causes at least one of the focusing lens 210 and the zoom lens 211 to be along the optical axis direction via the mechanism member Move to perform at least one of zooming action and focusing action.
  • the lens control commands are, for example, zoom control commands and focus control commands.
  • the mechanism member includes at least one of a gear and a cam.
  • the lens unit 200 also has a memory 222.
  • the memory 222 stores the control values of the focus lens 210 and the zoom lens 211 that are moved via the lens driving section 212 and the lens driving section 213.
  • the memory 222 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the lens control unit 220 controls the speed of the focus lens 210 by controlling the current supplied to the motor 216.
  • the motor 216 is a DC motor, a coreless motor, an ultrasonic motor, or the like
  • the focus lens 210 does not stop immediately, but moves while decelerating while moving a certain distance, and then stops. Therefore, after the current supply to the motor 216 is stopped, the distance traveled by the focus lens 210 moving at a predetermined speed before stopping is measured in advance through simulation, experiment, or the like.
  • the lens control unit 220 should stop the current supply to the motor 216 before the focus lens 210 reaches the target position according to the distance.
  • the lens control unit 220 can stop the focus lens 210 at the target position.
  • the lens control section 220 has a speed control section 230 for performing speed control so that the speed of the focusing lens 210 reaches the target speed.
  • the speed control section 230 performs speed control of the target speed by controlling the current supplied to the motor 216 based on the difference between the value indicating the speed of the focus lens 210 and the target value indicating the target speed of the focus lens 210.
  • the speed control unit 230 may also perform the speed control of the target speed by using PID control to control the current supplied to the motor 216 based on the difference between the value indicating the speed of the focusing lens 210 and the target value indicating the target speed of the focusing lens 210 .
  • FIG. 3 shows an example of a block diagram of PID control performed by the speed control unit 230.
  • the speed control unit 230 derives the difference e (t) between the predetermined target speed A (t) and the actual speed V (t).
  • the speed control unit 230 derives the value based on the difference e (t) multiplied by the proportional gain Kp, the integrated value of the difference e (t) multiplied by the proportional gain Ki, and the differential value of the difference e (t).
  • the speed control unit 230 may acquire the rotation speed of the motor 216 detected by the encoder 218 as a value representing the actual speed V (t).
  • FIG. 4 is a diagram showing an example of changes over time in the speed of the focus lens 210 and the current supplied to the motor 216.
  • FIG. 4 (A) shows an example of changes in the speed of the focusing lens 210 over time.
  • FIG. 4 (B) shows an example of changes over time in the current supplied to the motor 216 when the lens moves toward the front side of the imaging device 100 in the state where the lens is facing downward.
  • FIG. 4 (C) shows an example of changes over time in the current supplied to the motor 216 when the lens moves toward the front side of the imaging device 100 in a state where the lens is facing upward.
  • the speed control section 230 controls the current supplied to the motor 216 to perform the speed control of the focus lens 210 with PID control, so that the focus lens 210 moves at a predetermined speed V 1.
  • the speed control unit 230 stops the current supply to the motor 216 at the timing T0 before the position of the focus lens 210 reaches the target position. After that, the focusing lens 210 slowly decelerates and finally stops.
  • the speed control unit 230 supplies a relatively large current, such as the maximum current Is, to the motor 216 before starting the speed control, starts the motor 216, and then accelerates to the speed of the focus lens 210 to reach the target speed. After that, the speed control unit 230 performs speed control using PID control.
  • the speed control unit 230 uses PID control to start speed control, as shown by the dotted line 500, the current supplied to the motor 216 is temporarily zero, and then gradually increases. In this case, as indicated by the broken line 501, immediately after the speed control is started, the speed of the focus lens 210 is unstable. Therefore, when the speed control unit 230 uses PID control to start the speed control, it is preferable not to make the current supplied to the motor 216 zero, but to supply the motor 216 with a current of a current value of zero or more from the time the speed control is started. However, as shown in FIG. 4 (B) and FIG.
  • the speed control unit 230 executes speed control so that when starting the speed control, a current based on the current value of the posture of the imaging device 100 is supplied to the motor 216. Therefore, immediately after the speed control is started, the problem of unstable movement of the focus lens 210 can be suppressed.
  • the lens unit 200 has a posture sensor 240 for detecting the posture of the imaging device 100.
  • the posture sensor 240 may be a three-axis acceleration sensor.
  • the posture sensor 240 may be provided in the imaging unit 102.
  • the lens control unit 220 further includes a posture information acquisition unit 224, a determination unit 226, a current value acquisition unit 227, and an update unit 228.
  • the posture information acquisition unit 224 acquires posture information indicating the posture of the imaging device 100. Regarding the posture information, the inclination angle formed by the optical axis and the horizontal axis of the camera 100 can be expressed as the posture of the camera 100.
  • the determination section 226 determines the first current value to be supplied to the motor 216 when starting the speed control based on the posture information.
  • the determination unit 226 may determine the first current value based on information indicating a predetermined correspondence between the posture of the imaging device 100 and the current value supplied to the motor 216 when speed control is started.
  • the determining unit 226 may determine the first current value based on information indicating a predetermined correspondence between the posture of the imaging device 100, the current value supplied to the motor 216 when speed control is started, and the moving direction of the focus lens 210.
  • the speed control section 230 performs speed control so that the current of the first current value is supplied to the motor 216 when the speed control is started.
  • the speed control section 230 uses PID control to perform speed control based on the difference between the value representing the speed of the focusing lens 210 and the target value representing the target speed of the focusing lens 210.
  • the speed control unit 230 may use the first current value as an initial value indicating the value of the difference integral value. Since the integral value of PID control is zero at the start of speed control, if the speed control part 230 directly uses the integral value of the difference, the current value supplied to the motor 216 at the start of speed control becomes zero.
  • the speed control unit 230 uses the first current value as the initial value indicating the value of the difference integral value, so that when the speed control is started, the current value supplied to the motor 216 becomes the first current value. Therefore, when the speed control is started, the problem of unstable movement of the focus lens 210 can be suppressed.
  • the determination section 226 may determine the first current based on the information indicating the predetermined correspondence between the posture of the imaging apparatus 100, the current value supplied to the motor 216 when the speed control is started, and the moving direction of the focus lens 210 value.
  • the load applied to the driving mechanism of the focus lens 210 may change due to changes in the use environment of the imaging device 100 and a slight change in the focus lens 210 over time. Due to this change, even if the posture of the imaging device 100 is the same, in order to make the speed of the focus lens 210 reach the target speed, the current value that should be supplied to the motor 216 may change.
  • the current value acquisition unit 227 acquires the second current value of the current supplied to the motor 216 when performing speed control.
  • the update unit 228 updates the first current value based on the second current value, which corresponds to the posture of the imaging device 100 and the moving direction of the focus lens 210 indicated by the posture information shown in the predetermined correspondence.
  • the memory 222 may store the information indicating the predetermined correspondence shown in FIG. 5.
  • the determining unit 226 may refer to the memory 222 and determine the first current value to be supplied to the motor 216 when starting the speed control based on the information indicating the predetermined correspondence shown in FIG. 5.
  • the current value supplied to the motor 216 may not necessarily be an appropriate current value. In a sudden situation such as the impact of the imaging device 100, the current value supplied to the motor 216 may vary greatly. When this happens, the operation of updating the information indicating the predetermined correspondence with the current value provided to the motor 216 is not preferable.
  • the update unit 228 may indicate the posture information shown in the corresponding relationship with the predetermined based on the second current value The first current value corresponding to the posture of the camera device and the lens movement direction is updated.
  • the current value supplied to the motor 216 may be unstable. As shown in FIG. 4, immediately after the focus lens 210 starts to move, a relatively large current is supplied to the motor 216.
  • the update unit 228 may determine the corresponding relationship with the predetermined value based on the second current value. The posture information indicated by the posture information of the camera device and the first current value corresponding to the moving direction of the focus lens 210 are updated.
  • the update unit 228 may not directly use the second current value acquired by the current value acquisition unit 227, but reduce the second current value according to a predetermined condition, and reduce the posture information shown in the corresponding relationship with the predetermined
  • the first current value corresponding to the indicated camera posture and the moving direction of the focus lens 210 is updated to the reduced value.
  • the update unit 228 may update the first current value with a value obtained by multiplying the second current value by a predetermined ratio (for example, 0.9 or the like) smaller than 1.
  • the lens control unit 220 receives the focus control command and starts driving the focus lens 210 (S100).
  • the posture information acquiring unit 224 acquires the posture information of the imaging device 100 via the posture sensor 240 (S102).
  • the determination unit 226 determines the current value corresponding to the posture (tilt angle) indicated by the posture information.
  • the speed control unit 230 uses the current value corresponding to the posture (tilt angle) of the imaging device 100 as the initial value of the integrator and supplies the current to the motor 216 to start speed control to move the focus lens 210 at the target speed (S104) .
  • the current value acquisition unit 227 acquires the current value immediately before the current supply to the motor 216 is stopped during the execution of the speed control (S106).
  • the update unit 228 determines whether the acquired current value is the same as a predetermined value (S108), which is included in the information indicating a predetermined correspondence corresponding to the posture indicated by the posture information and the moving direction of the focus lens 210. The specified value shown. If the acquired current value is the same as the predetermined value, the update section 228 determines that it is not necessary to update the current value used as the initial value of the integrator, and ends the process.
  • a predetermined value S108
  • the update section 228 determines whether the current value is within a predetermined range. If the current value is not within a predetermined range, the update unit 228 determines that the current value is not suitable as the value to be updated, and ends the process. If the current value is within a predetermined range, the update section 228 determines whether the current value is a current value acquired after a predetermined time has passed since the focus lens 210 was started to be driven. If the predetermined time has not passed, the update unit 228 determines that the current value is not suitable as the value to be updated, and ends the process.
  • the update unit 228 determines that the current value is suitable as the value to be updated, and gives the current value a predetermined weight, for example, multiplying the current value by 0.9 to indicate the posture of the imaging device 100
  • Information of the predetermined correspondence between the current value supplied to the motor 216 and the moving direction of the focus lens 210 during speed control is updated (S114) so that this value becomes the initial value of the speed control integrator.
  • the problem of unstable movement of the focus lens 210 can be suppressed.
  • the initial value of the current supplied to the motor 216 when the speed control is started by the PID control is appropriately updated. Therefore, it is possible to suppress the occurrence of a problem in which the load applied to the driving mechanism of the focus lens 210 changes due to changes in the use environment of the imaging device 100, a slight change in the focus lens 210 over time, etc. Value, the movement of the focus lens 210 becomes unstable.
  • the imaging device 100 described above may be mounted on a mobile body.
  • the imaging device 100 can also be mounted on an unmanned aerial vehicle (UAV) as shown in FIG. 7.
  • UAV 10 may include a UAV main body 20, a universal joint 50, a plurality of imaging devices 60, and an imaging device 100.
  • the universal joint 50 and the imaging device 100 are an example of an imaging system.
  • UAV 10 is an example of a moving body propelled by the propulsion unit.
  • the concept of a moving body means that in addition to UAVs, it includes flying bodies such as airplanes moving in the air, vehicles moving on the ground, and ships moving on the water.
  • the UAV main body 20 includes a plurality of rotors. Multiple rotors are an example of a propulsion unit.
  • the UAV main body 20 makes the UAV 10 fly by controlling the rotation of a plurality of rotors.
  • the UAV body 20 uses, for example, four rotors to make the UAV 10 fly.
  • the number of rotors is not limited to four.
  • UAV10 can also be a fixed-wing aircraft without a rotor.
  • the imaging device 100 is an imaging camera that shoots an object included in a desired imaging range.
  • the universal joint 50 rotatably supports the camera device 100.
  • the universal joint 50 is an example of a support mechanism.
  • the gimbal 50 uses an actuator to rotatably support the camera 100 with a pitch axis.
  • the universal joint 50 uses an actuator to further rotatably support the imaging device 100 about the roll axis and the yaw axis, respectively.
  • the gimbal 50 can change the posture of the imaging device 100 by rotating the imaging device 100 about at least one of the yaw axis, the pitch axis, and the roll axis.
  • the plurality of imaging devices 60 are sensing cameras that shoot around the UAV 10 in order to control the UAV 10 flight.
  • the two camera devices 60 may be installed on the head of the UAV 10, that is, on the front.
  • the other two camera devices 60 may be installed on the bottom surface of the UAV 10.
  • the two camera devices 60 on the front side can be arranged in pairs, functioning as a so-called stereo camera.
  • the two camera devices 60 on the bottom surface side may also be provided in pairs to function as a stereo camera.
  • the three-dimensional spatial data around the UAV 10 can be generated from the images captured by the plurality of camera devices 60.
  • the number of imaging devices 60 included in UAV 10 is not limited to four. UAV 10 only needs to have at least one camera 60.
  • UAV 10 may also have at least one camera 60 on the nose, tail, side, bottom, and top of UAV 10, respectively.
  • the angle of view that can be set in the camera 60 can be larger than the angle of view that can be set in the camera 100.
  • the imaging device 60 may have a single focus lens or a fisheye lens.
  • the remote operation device 300 communicates with the UAV 10 to remotely operate the UAV 10.
  • the remote operation device 300 can perform wireless communication with the UAV 10.
  • the remote operation device 300 transmits to the UAV 10 instruction information indicating various commands related to the movement of the UAV 10 such as ascent, descent, acceleration, deceleration, forward, backward, and rotation.
  • the instruction information includes, for example, instruction information for raising the height of UAV 10.
  • the indication information may indicate the height at which UAV 10 should be located.
  • the UAV 10 moves to be at the height indicated by the instruction information received from the remote operation device 300.
  • the instruction information may include an ascending command to raise UAV10. UAV10 rose during the period of receiving the ascending order. When the height of UAV10 has reached the upper limit, even if the ascending command is accepted, UAV10 can limit the ascent.
  • FIG. 8 shows an example of a computer 1200 that can embody various aspects of the present invention in whole or in part.
  • the program installed on the computer 1200 can cause the computer 1200 to function as an operation associated with the device according to the embodiment of the present invention or one or more "parts" of the device.
  • the program can enable the computer 1200 to perform the operation or the one or more "parts”.
  • This program enables the computer 1200 to execute the process according to the embodiment of the present invention or the stage of the process.
  • Such a program may be executed by the CPU 1212 to cause the computer 1200 to perform specified operations associated with some or all of the blocks in the flowchart and block diagrams described in this specification.
  • the computer 1200 includes a CPU 1212 and a RAM 1214, which are connected to each other through a host controller 1210.
  • the computer 1200 also includes a communication interface 1222 and an input / output unit, which are connected to the host controller 1210 through the input / output controller 1220.
  • the computer 1200 also includes ROM 1230.
  • the CPU 1212 operates according to the programs stored in the ROM 1230 and RAM 1214, thereby controlling each unit.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • the hard disk drive can store programs and data used by the CPU 1212 in the computer 1200.
  • the ROM 1230 stores therein a boot program and the like executed by the computer 1200 at runtime, and / or a program dependent on the hardware of the computer 1200.
  • the program is provided through a computer-readable recording medium such as a CR-ROM, USB memory, or IC card, or a network.
  • the program is installed in the RAM 1214 or ROM 1230 as an example of a computer-readable recording medium, and is executed by the CPU 1212.
  • the information processing described in these programs is read by the computer 1200 and causes cooperation between the programs and the various types of hardware resources described above. The operation or processing of information may be realized with the use of the computer 1200, thereby constituting an apparatus or method.
  • the CPU 1212 when performing communication between the computer 1200 and an external device, the CPU 1212 can execute the communication program loaded in the RAM 1214, and based on the processing described in the communication program, instruct the communication interface 1222 to perform communication processing.
  • the communication interface 1222 Under the control of the CPU 1212, the communication interface 1222 reads the transmission data stored in the transmission buffer provided in the recording medium such as RAM 1214 or USB memory, and transmits the read transmission data to the network, or from The received data received by the network is written into the receive buffer provided on the recording medium, etc.
  • the CPU 1212 can cause the RAM 1214 to read all or necessary parts of files or databases stored in an external recording medium such as a USB memory, and perform various types of processing on the data on the RAM 1214. Then, the CPU 1212 can write the processed data back to the external recording medium.
  • an external recording medium such as a USB memory
  • Various types of information such as various types of programs, data, tables, and databases can be stored in the recording medium and subjected to information processing.
  • the CPU 1212 can perform various types of operations, information processing, condition judgment, conditional transfer, unconditional transfer, information transfer described in various places of the present disclosure, including the sequence specified by the program Various types of processing such as search / replace, and write the result back to RAM 1214.
  • the CPU 1212 can retrieve information in files, databases, etc. in the recording medium.
  • the CPU 1212 can retrieve the attributes with the specified first attribute from the multiple entries An entry that matches the condition of the value, and reads the attribute value of the second attribute stored in the entry, thereby obtaining the attribute value of the second attribute associated with the first attribute that meets the predetermined condition.
  • the above program or software module may be stored on the computer 1200 or on a computer-readable storage medium near the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium, so that the program can be provided to the computer 1200 via the network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Details Of Cameras Including Film Mechanisms (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Accessories Of Cameras (AREA)

Abstract

利用速度控制来控制聚焦镜头的速度时,由于摄像装置使用环境的变化等原因,可能造成聚焦镜头的移动不稳定。本发明提供一种对具备镜头和驱动镜头的电动机的摄像装置进行控制的控制装置,其可以具备:第一获取部,其获取表示摄像装置姿势的姿势信息;确定部,其基于姿势信息来确定第一电流值;以及控制部,其执行速度控制,基于表示镜头速度的值与表示镜头目标速度的目标值之间的差值,控制提供给电动机的电流,从而使得镜头速度达到目标速度。控制部也可以执行速度控制,使得在开始速度控制时将第一电流值的电流提供给电动机。

Description

控制装置、摄像装置、移动体、控制方法以及程序
优先权声明
本发明要求2018年10月24日递交的申请号为JP2018-200139、发明名称为“制御装置、撮像装置、移動体、制御方法、及びプログラム”的日本发明专利的优先权,该发明专利的全部内容在此引入。
技术领域
本发明涉及一种控制装置、摄像装置、移动体、控制方法以及程序。
背景技术
专利文献1中记载了根据摄像装置姿势的检测信息和镜头的移动方向来确定速度信息,并根据该速度信息来控制镜头。
专利文献1日本专利特开平9-73030号公报。
发明内容
发明所要解决的技术问题:
当利用速度控制来控制聚焦镜头的速度时,由于摄像装置使用环境变化等原因,可能造成聚焦镜头的移动不稳定。
用于解决问题的技术手段:
本发明的一个方面所涉及的控制装置可以是对具备镜头及驱动镜头的电动机的摄像装置进行控制的控制装置。控制装置可以具备第一获取部,该第一获取部获取表示摄像装置姿势的姿势信息。控制装置可以具备确定部,该确定部基于姿势信息来确定第一电流值。控制装置可以具备控制部,该控制部根据表示镜头速度的值与表示镜头目标速度的目标值之间的差值,通过控制提供给电动机的电流,从而执行速度控制使得镜头速度达到目标速度。控制部也可以执行速度控制,使得在开始速度控制时将第一电流值的电流提供给电动机。
控制部可以基于表示差值积分值的值来执行速度控制。确定部可以确定第一电流值作为表示差值积分值的值的初始值。
确定部进而可以基于镜头的移动方向来确定第一电流值。
确定部可以基于表示第一电流值、摄像装置姿势及镜头移动方向的预先规定的对应关系的信息来确定第一电流值。
控制装置可以具备第二获取部,在速度控制的执行过程中,该第二获取部获取正提供给电动机的电流的第二电流值。控制装置可以具备更新部,该更新部基于第二电流值,对与预先规定的对应关系中所示的姿势信息所表示的摄像装置姿势及镜头移动方向相对应的第一电流值进行更新。
当第二电流值在预先规定的电流值范围内时,更新部可以基于第二电流值,对与预先规定的对应关系中所示的姿势信息所表示的摄像装置姿势及镜头移动方向相对应的第一电流值进行更新。
利用第二获取部获取到自镜头开始移动经过预先规定的期间后的第二电流值时,更新部可以基于第二电流值,对与预先规定的对应关系中所示的姿势信息所表示的摄像装置姿势及镜头移动方向相对应的第一电流值进行更新。
更新部可以将与预先规定的对应关系中所示的姿势信息所表示的摄像装置姿势及镜头移动方向相对应的第一电流值更新为按照预先规定的条件减小第二电流值后的值。
电动机可以经由齿轮或凸轮驱动镜头。
本发明的一个方面所涉及的摄像装置可以具备上述控制装置。摄像装置可以具备镜头、电动机以及经由镜头受光的图像传感器。
本发明的一个方面所涉及的移动体可以是具备上述摄像装置和以可调整摄像装置姿势的方式进行支撑的支撑机构并进行移动的移动体。
本发明的一个方面所涉及的控制方法可以是对具备镜头及驱动镜头的电动机的摄像装置进行控制的控制方法。控制方法可以具备获取表示摄像装置姿势的姿势信息的阶段。控制方法可以具备基于姿势信息来确定第一电流值的阶段。控制方法可以具备执行速度控制的阶段,该阶段基于表示镜头速度的值与表示镜头目标速度的目标值之间的差值,控制提供给电动机的电流,从而使得镜头速度达到目标速度。执行速度控制的阶段可以包括以下阶段:执行速度控制使得在开始速度控制时将第一电流值的电流提供给电动机。
本发明的一个方面所涉及的程序可以是一种用于使计算机作为上述控制装置发挥功能的程序。
根据本发明的一个方面,利用速度控制来控制聚焦镜头的速度时,能够抑制因摄像装置使用环境的变化等原因造成的聚焦镜头移动变得不稳定问题的情况发生。
此外,上述发明内容概要并未列举出本发明的所有必要特征。并且,这些特征组的子组合也可以构成发明。
附图说明
图1是示出摄像装置的外观立体图的一个示例的图。
图2是示出摄像装置的功能块的图。
图3是示出利用速度控制部执行PID控制的框线图的一个示例的图。
图4是示出聚焦镜头速度及提供给电动机的电流的电流值的经时变化的一个示例的图。
图5是示出表示倾斜角、电流值及镜头移动方向的对应关系的信息的一个示例的图。
图6是示出初始值电流值的更新过程的一个示例的流程图。
图7是示出了无人驾驶航空器及远程操作装置的外观的一个示例的图。
图8是用于说明硬件配置的一个示例的图。
符号说明:
10 UAV
20 UAV主体
50 万向节
60 摄像装置
100 摄像装置
102 摄像部
110 摄像控制部
120 图像传感器
130 存储器
160 显示部
162 指示部
200 镜头部
210 聚焦镜头
211 变焦镜头
212、213 镜头驱动部
216、217 电动机
218、219 编码器
220 镜头控制部
222 存储器
224 姿势信息获取部
226 确定部
227 电流值获取部
228 更新部
230 速度控制部
240 姿势传感器
300 远程操作装置
1200 计算机
1210 主机控制器
1212 CPU
1214 RAM
1220 输入/输出控制器
1222 通信接口
1230 ROM
具体实施方式
以下,通过发明的实施方式来对本发明进行说明,但是以下的实施方式并不限定权利要求书所涉及的发明。此外,实施方式中所说明的所有特征组合未必是发明技术方案所必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,实施了如此变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书、说明书附图以及说明书摘要中包含受著作权保护的事项。任何人员只要在进行这些文件的复制时保持专利局所存有的文档或者记录的原样,则著作权人没有异议。除此以外,保留一切著作权。
本发明的各种实施方式可参照流程图及框图来描述,这里,框可表示(1)执行操作的过程的阶段或者(2)具有执行操作的作用的装置的“部”。指定的阶段和“部”可以通过可编程电路和/或处理器来实现。专用电路可以包括数字和/或模拟硬件电路。可以包括集成电路(IC)和/或分立电路。可编程电路可以包括可重构硬件电路。可重构硬件电路可以包括逻辑与、逻辑或、逻辑异或、逻辑与非、逻辑或非、及其它逻辑操作、触发器、寄存器、现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)等存储器元件等。
计算机可读介质可以包括能够存储由合适设备执行的指令的任何有形设备。其结果是,其上存储有指令的计算机可读介质具备一种包括指令的产品,该指令可被执行以创建用于执行流程图或框图所指定的操作的手段。作为计算机可读介质的示例,可以包括电子存储介质、磁存储介质、光学存储介质、电磁存储介质、半导体存储介质等。作为计算机可读介质的更具体的示例,可以包括Floppy(注册商标)disk、软磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者闪存)、电可擦可编程只读存储器(EEPROM)、静态随机存取存储器(SRAM)、光盘只读存储器(CD-ROM)、数字多用途光盘(DVD)、蓝光(RTM)光盘、记忆棒、集成电路卡等。
计算机可读指令可以包括由一种或多种编程语言的任意组合描述的源代码或者目标代码中的任意一个。源代码或者目标代码包括传统的程序式编程语言。传统的程序式编程语言可以为汇编指令、指令集架构(ISA)指令、机器指令、与机器相关的指令、微代码、固件指令、状态设置数据、或者Smalltalk、
Figure PCTCN2019113053-appb-000001
C++等面向对象编程语言以及“C”编程语言或者类似的编程语言。计算机可读指令可以在本地或者经由局域网(LAN)、互联网等广域网(WAN)提供给通用计算机、专用计算机或者其它可编程数据处理装置的处理器或可编程电路。处理器或可编程电路可以执行计算机可读指令,以创建用于执行流程图或框图所指定操作的手段。作为处理器的示例,包括计算机处理器、处理单元、微处理器、数字信号处理器、控制器、微控制器等。
图1是示出本实施方式所涉及的摄像装置100的外观立体图的一个示例的图。图2是示出本实施方式所涉及的摄像装置100的功能块的图。
摄像装置100具备摄像部102及镜头部200。摄像部102具有图像传感器120、摄像控制部110及存储器130。图像传感器120可以由CCD或CMOS构成。图像传感器120将通过变焦镜头211以及聚焦镜头210成像的光学图像的图像数据输出至摄像控制部110。摄像控制部110可以由CPU或MPU等微处理器、MCU等微控制器等构成。存储器130可以为计算机可读记录介质,可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。存储器130存储摄像控制部110对图像传感器120等进行控制所需的程序等。存储器130可以设置于摄像装置100的壳体内部。存储器130可以设置成可从摄像装置100的壳体上拆卸下来。
摄像部102还可以具有指示部162以及显示部160。指示部162是从用户接受对摄像装置100的指示的用户界面。显示部160对图像传感器120所拍摄的图像、摄像装置100的各种设置信息等进行显示。显示部160可以由触控面板组成。
镜头部200具有聚焦镜头210、变焦镜头211、镜头驱动部212、镜头驱动部213以及镜头控制部220。聚焦镜头210和变焦镜头211可以包括至少一个镜头。聚焦镜头210和变焦镜头211的至少一部分或全部被配置为能够沿着光轴移动。镜头部200可以是被设置成能够相对摄像部102拆装的交换镜头。镜头驱动部212包括电动机216及编码器218。电动机216可以是直流电机、无铁心电机或超声波电机。编码器218检测电动机216的转速及旋转速度。镜头驱动部212经由凸轮环、引导轴等机构构件使电动机216的动力传递至聚焦镜头210的至少一部分或全部,使聚焦镜头210的至少一部分或全部沿着光轴移动。镜头驱动部213包括电动机217及编码器219。电动机217可以是步进电机、直流电机、无铁心电机或超声波电机。编码器219检测电动机217的转速及旋转速度。镜头驱动部213经由凸轮环、引导轴等机构构件使电动机217的动力传递至变焦镜头211的至少一部分或全部,使变焦镜头211的至少一部分或全部沿着光轴移动。镜头控制部220按照来自摄像部102的镜头控制指令来驱动镜头驱动部212和镜头驱动部213中的至少一个,并经由机构构件使聚焦镜头210和变焦镜头211中的至少一个沿着光轴方向移动,以执行变焦动作和聚焦动作中的至少一个。镜头控制指令例如为变焦控制指令及聚焦控制指令。机构构件包括齿轮及凸轮中的至少一个。
镜头部200还具有存储器222。存储器222存储经由镜头驱动部212和镜头驱动部213而移动的聚焦镜头210和变焦镜头211的控制值。存储器222可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。
在如上构成的摄像装置100中,镜头控制部220通过控制提供给电动机216的电流,从而控制聚焦镜头210的速度。电动机216为直流电机、无铁心电机或超声波电机等电机时,使提供给电动机216的电流停止后,聚焦镜头210不会立即停止,而是一边减速一边移动一定距离,然后停止。因此,对于停止向电动机216供给电流后,通过模拟或实验等,事先对按预先规定的速度移动的聚焦镜头210在停止前所移动的距离进行测定。并且,镜头控制部220应结合该距离,在聚焦镜头210到达目标位置前停止向电动机216供给电流。由此,镜头控制部220可以使聚焦镜头210停止在目标位置。
镜头控制部220具有速度控制部230,用于执行速度控制,使得聚焦镜头210的速度达到目标速度。速度控制部230基于表示聚焦镜头210速度的值与表示聚焦镜头210目标速度的目标值之间的差值,通过控制提供给电动机216的电流,从而执行目标速度的速度控制。速度控制部230也可以基于表示聚焦镜头210速度的值与表示聚焦镜头210目标速度的目标值之间的差值,通过利用PID控制来控制提供给电动机216的电流,从而执行目标速度的速度控制。
图3示出了利用速度控制部230执行PID控制的框线图的一个示例。速度控制部230导出预先规定的目标速度A(t)与实际速度V(t)之间的差值e(t)。速度控制部230基于差值e(t)乘以比例增益Kp后的值、差值e(t)的积分值乘以比例增益Ki后的值以及差值e(t)的微分值,导出用于控制电动机216的控制量U(t)。速度控制部230可以获取编码器218所检测的电动机216的旋转速度作为表示实际速度V(t)的值。
图4是示出聚焦镜头210速度及提供给电动机216的电流的经时变化的一个示例的图。图4(A)示出了聚焦镜头210速度的经时变化的一个示例。图4(B)示出了在镜头朝下的状态下镜头向摄像装置100的前方侧移动时提供给电动机216的电流的经时变化的一个示例。图4(C)示出了在镜头朝上的状态下镜头向摄像装置100的前方侧移动时提供给电动机216的电流的经时变化的一个示例。
如图4所示,速度控制部230控制提供给电动机216的电流,从而以PID控制来执行聚焦镜头210的速度控制,使得聚焦镜头210以预先规定的速度V 1移动。并且,速度控制部230在聚焦镜头210的位置到达目标位置前的时机T0,停止向电机216供给电流。之后,聚焦镜头210慢慢减速并最终停止。
要使聚焦镜头210开始移动时,速度控制部230在开始速度控制之前,先向电动机216供给相对较大的电流、例如最大电流Is,使电动机216启动,然后加速至聚焦镜头210的速度达到目标速度。之后,速度控制部230利用PID控制来执行速度控制。
速度控制部230利用PID控制来开始速度控制时,如虚线500所示,先使提供给电动机216的电流暂时为零,然后慢慢增大。这种情况下,如虚线501所示,刚开始速度控制后,聚焦镜头210的速度不稳定。因此,速度控制部230利用PID控制来开始速度控制时,优选不使提供给电动机216的电流为零,而从开始速度控制时起,向电动机216供给零以上电流值的电流。但是,如图4(B)及图4(C)所示,即便聚焦镜头210的目标速度相同,受摄像装置100姿势的影响,在执行速度控制以使聚焦镜头210的速度达到目标速度期间,提供给电动机216的电流大小存在差异。因此,不论摄像装置100的姿势如何,在开始速度控制时便向电动机216供给预先规定的电流值的电流时,可能会出现聚焦镜头210的移动不稳定的情况。
对此,速度控制部230执行速度控制,使得在开始速度控制时,将基于摄像装置100姿势的电流值的电流提供给电动机216。从而在刚开始速度控制后,能够抑制聚焦镜头210移动不稳定的问题发生。
镜头部200具有用于检测摄像装置100的姿势的姿势传感器240。姿势传感器240可以是三轴加速传感器。姿势传感器240可以设置于摄像部102。镜头控制部220还具 有姿势信息获取部224、确定部226、电流值获取部227及更新部228。姿势信息获取部224获取表示摄像装置100的姿势的姿势信息。关于姿势信息,可以将摄像装置100的光轴与水平轴所成的倾斜角度表示为摄像装置100的姿势。
确定部226基于姿势信息,确定在开始速度控制时要提供给电动机216的第一电流值。确定部226可以基于表示摄像装置100的姿势和开始速度控制时提供给电动机216的电流值之间的预先规定的对应关系的信息,来确定第一电流值。确定部226也可以基于表示摄像装置100的姿势、开始速度控制时提供给电动机216的电流值以及聚焦镜头210的移动方向之间的预先规定的对应关系的信息,来确定第一电流值。
速度控制部230执行速度控制,使得在开始速度控制时将第一电流值的电流提供给电动机216。如上所述,速度控制部230利用PID控制,基于表示聚焦镜头210速度的值与表示聚焦镜头210目标速度的目标值之间的差值,执行速度控制。速度控制部230可以使用第一电流值作为表示该差值积分值的值的初始值。因为PID控制的积分值在速度控制开始时为零,如果速度控制部230直接使用差值的积分值,在开始速度控制时提供给电动机216的电流值会变为零。对此,速度控制部230使用第一电流值作为表示该差值积分值的值的初始值,从而在开始速度控制时,提供给电动机216的电流值变为第一电流值。从而在开始速度控制时,能够抑制聚焦镜头210移动不稳定的问题发生。
如上所述,确定部226可以基于表示摄像装置100的姿势、开始速度控制时提供给电动机216的电流值以及聚焦镜头210的移动方向之间的预先规定的对应关系的信息,来确定第一电流值。但是,随着摄像装置100的使用环境的变化、聚焦镜头210的些微的经时变化等,施加于聚焦镜头210的驱动机构的负载有可能发生变化。由于这种变化,即便摄像装置100的姿势相同,为了使聚焦镜头210的速度达到目标速度,应提供给电动机216的电流值也可能发生变化。对此,优选对开始速度控制时应提供给电动机216的第一电流值进行适当更新。也就是说,优选对表示摄像装置100的姿势、开始速度控制时提供给电动机216的电流值以及聚焦镜头210的移动方向之间的预先规定的对应关系的信息进行适当更新。
对此,电流值获取部227在执行速度控制时,获取提供给电动机216的电流的第二电流值。更新部228基于第二电流值更新第一电流值,该第一电流值对应于预先规定的对应关系中所示的姿势信息所表示的摄像装置100姿势及聚焦镜头210移动方向。存储器222可以存储图5所示的表示预先规定的对应关系的信息。确定部226可以参照存储器222,基于图5所示的表示预先规定的对应关系的信息,确定在开始速度控制时应提供给电动机216的第一电流值。
在执行速度控制时,提供给电动机216的电流值未必是合适的电流值。在摄像装置100受到冲击等突发情况下,提供给电动机216的电流值可能会发生较大变动。发生这种情况时,用提供给电动机216的电流值对表示预先规定的对应关系的信息进行更新的操作并不优选。
对此,当电流值获取部227获取的第二电流值在预先规定的电流值范围内时,更新部228可以基于第二电流值,对与预先规定的对应关系中所示的姿势信息所表示的摄像装置姿势及镜头移动方向相对应的第一电流值进行更新。
此外,聚焦镜头210刚开始移动后,提供给电动机216的电流值有可能不稳定。如图4所示,聚焦镜头210刚开始移动后,向电动机216供给相对较大的电流。对此,利用电流值获取部227获取到自聚焦镜头210开始移动经过预先规定的期间后的第二电流值时,更新部228可以基于第二电流值,对与预先规定的对应关系中所示的姿势信息所表示的摄像装置姿势及聚焦镜头210移动方向相对应的第一电流值进行更新。
再者,如果开始速度控制时提供给电动机216的电流的电流值过大,则聚焦镜头210的移动有可能不稳定。对此,更新部228可以不直接使用电流值获取部227所获取的第二电流值,而将第二电流值按照预先规定的条件减小,将与预先规定的对应关系中所示的姿势信息所表示的摄像装置姿势及聚焦镜头210移动方向相对应的第一电流值更新为减小后的值。更新部228可以利用将第二电流值乘以小于1的预先规定的比例(例如0.9等)所得的值来更新第一电流值。
图6是示出电流值更新过程的一个示例的流程图。镜头控制部220接受聚焦控制指令,开始驱动聚焦镜头210(S100)。姿势信息获取部224经由姿势传感器240获取摄像装置100的姿势信息(S102)。确定部226确定与姿势信息所表示的姿势(倾斜角)相对应的电流值。
速度控制部230将与摄像装置100的姿势(倾斜角)相对应的电流值作为积分器的初始值而将电流提供给电动机216,从而开始速度控制,使聚焦镜头210以目标速度移动(S104)。电流值获取部227在执行速度控制期间,获取即将停止向电动机216供给电流前的电流值(S106)。
更新部228判定所获取的电流值与规定值是否相同(S108),该规定值是与姿势信息所表示的姿势及聚焦镜头210的移动方向相对应地、表示预先规定的对应关系的信息中所示的规定值。如果所获取的电流值与规定值相同,则更新部228判断为不需要对用作积分器初始值的电流值进行更新,并结束处理。
另一方面,当电流值不同于规定值时,更新部228会判定电流值是否在预先规定的范围内。如果电流值不在预先规定的范围内,则更新部228判断电流值不适合作为要更新的值,并结束处理。如果电流值在预先规定的范围内,则更新部228判定电流值是否为自开始驱动聚焦镜头210经过预先规定的时间后所获取的电流值。如果没有经过预先规定的时间,则更新部228判断电流值不适合作为要更新的值,并结束处理。
如果经过了预先规定的时间,则更新部228判断电流值适合作为要更新的值,并对电流值赋予预先规定的权重,例如对该电流值乘以0.9,对表示摄像装置100的姿势、开始速度控制时提供给电动机216的电流值以及聚焦镜头210的移动方向之间的预先规定的对应关系的信息进行更新(S114),使得该值成为速度控制积分器的初始值。
如上所述,根据本实施方式所涉及的摄像装置100,在利用PID控制开始速度控制后,能够抑制聚焦镜头210移动不稳定的问题发生。此外,依据执行速度控制时提供给电动机216的电流的电流值,对利用PID控制来开始速度控制时提供给电动机216的电流初始值进行适当更新。从而可以抑制以下问题的发生:随着摄像装置100的使用环境的变化、聚焦镜头210的些微的经时变化等,施加于聚焦镜头210的驱动机构的负载发生变化,导致初始值成为不适合的值,聚焦镜头210的移动变得不稳定。
上述摄像装置100可以搭载于移动体上。摄像装置100还可以搭载于如图7所示的无人驾驶航空器(UAV)上。UAV 10可以具备UAV主体20、万向节50、多个摄像装置60及摄像装置100。万向节50及摄像装置100为摄像系统的一个示例。UAV 10为由推进部推进的移动体的一个示例。移动体的概念是指除UAV之外,包括在空中移动的飞机等飞行体、在地面上移动的车辆、在水上移动的船舶等。
UAV主体20具备多个旋翼。多个旋翼为推进部的一个示例。UAV主体20通过控制多个旋翼的旋转而使UAV 10飞行。UAV主体20使用例如四个旋翼来使UAV 10飞行。旋翼的数量不限于四个。另外,UAV 10也可以是没有旋翼的固定翼机。
摄像装置100为对包含在所期望的摄像范围内的被摄体进行拍摄的摄像用相机。万向节50可旋转地支撑摄像装置100。万向节50为支撑机构的一个示例。例如,万向节50使用致动器以俯仰轴可旋转地支撑摄像装置100。万向节50使用致动器进一步分别以滚转轴和偏航轴为中心可旋转地支撑摄像装置100。万向节50可通过使摄像装置100以偏航轴、俯仰轴以及滚转轴中的至少一个为中心旋转,来变更摄像装置100的姿势。
多个摄像装置60是为了控制UAV 10的飞行而对UAV 10的周围进行拍摄的传感用相机。两个摄像装置60可以设置于UAV 10的机头、即正面。并且,其它两个摄像装置60可以设置于UAV 10的底面。正面侧的两个摄像装置60可以成对设置,起到所谓的立体相机的作用。 底面侧的两个摄像装置60也可以成对设置,起到立体相机的作用。可以根据由多个摄像装置60所拍摄的图像来生成UAV 10周围的三维空间数据。UAV 10所具备的摄像装置60的数量不限于四个。UAV 10具备至少一个摄像装置60即可。UAV 10也可以在UAV10的机头、机尾、侧面、底面及顶面分别具备至少一个摄像装置60。摄像装置60中可设定的视角可大于摄像装置100中可设定的视角。摄像装置60也可以具有单焦点镜头或鱼眼镜头。
远程操作装置300与UAV 10通信,以远程操作UAV 10。远程操作装置300可以与UAV 10进行无线通信。远程操作装置300向UAV 10发送表示上升、下降、加速、减速、前进、后退、旋转等与UAV 10的移动有关的各种指令的指示信息。指示信息包括例如使UAV 10的高度上升的指示信息。指示信息可以表示UAV 10应该位于的高度。UAV 10进行移动,以位于从远程操作装置300接收的指示信息所表示的高度。指示信息可以包括使UAV 10上升的上升指令。UAV 10在接受上升指令的期间上升。在UAV 10的高度已达到上限高度时,即使接受上升指令,UAV 10也可以限制上升。
图8表示可全部或部分地体现本发明的多个方面的计算机1200的一个示例。安装在计算机1200上的程序能够使计算机1200作为与本发明的实施方式所涉及的装置相关联的操作或者该装置的一个或多个“部”而发挥功能。或者,该程序能够使计算机1200执行该操作或者该一个或多个“部”。该程序能够使计算机1200执行本发明的实施方式所涉及的过程或者该过程的阶段。这种程序可以由CPU 1212执行,以使计算机1200执行与本说明书所述的流程图及框图中的一些或者全部方框相关联的指定操作。
本实施方式所涉及的计算机1200包括CPU 1212和RAM 1214,它们通过主机控制器1210相互连接。计算机1200还包括通信接口1222、输入/输出单元,它们通过输入/输出控制器1220与主机控制器1210连接。计算机1200还包括ROM 1230。CPU 1212根据存储在ROM 1230和RAM 1214中的程序进行操作,从而控制每个单元。
通信接口1222经由网络与其他电子设备通信。硬盘驱动器可以存储计算机1200内的CPU 1212所使用的程序及数据。ROM 1230在其中存储运行时由计算机1200执行的引导程序等、和/或依赖于计算机1200的硬件的程序。程序通过CR-ROM、USB存储器或IC卡之类的计算机可读记录介质或者网络来提供。程序安装在作为计算机可读记录介质的示例的RAM 1214或ROM 1230中,并通过CPU 1212执行。这些程序中描述的信息处理由计算机1200读取,并引起程序与上述各种类型的硬件资源之间的协作。可以随着计算机1200的使用而实现信息的操作或者处理,从而构成装置或方法。
例如,当在计算机1200和外部设备之间执行通信时,CPU 1212可以执行加载在RAM1214中的通信程序,并且基于通信程序中描述的处理,命令通信接口1222进行通信处理。在CPU 1212的控制下,通信接口1222读取存储在诸如RAM 1214或USB存储器之类的记录介质中提供的发送缓冲区中的发送数据,并将读取的发送数据发送到网络,或者将从网络接收的接收数据写入记录介质上提供的接收缓冲区等。
另外,CPU 1212可以使RAM 1214读取存储在诸如USB存储器等外部记录介质中的文件或数据库的全部或必要部分,并对RAM 1214上的数据执行各种类型的处理。接着,CPU1212可以将处理过的数据写回到外部记录介质中。
诸如各种类型的程序、数据、表格和数据库的各种类型的信息可以存储在记录介质中并且接受信息处理。对于从RAM 1214读取的数据,CPU 1212可执行在本公开的各处描述的、包括由程序的指令序列指定的各种类型的操作、信息处理、条件判断、条件转移、无条件转移、信息的检索/替换等各种类型的处理,并将结果写回到RAM 1214中。此外,CPU 1212可以检索记录介质内的文件、数据库等中的信息。例如,在记录介质中存储具有分别与第二属性的属性值建立了关联的第一属性的属性值的多个条目时,CPU 1212可以从该多个条目中检索出与指定第一属性的属性值的条件相匹配的条目,并读取该条目内存储的第二属性的属性值,从而获取与满足预定条件的第一属性相关联的第二属性的属性值。
上述程序或软件模块可以存储在计算机1200上或计算机1200附近的计算机可读存储介质上。此外,连接到专用通信网络或因特网的服务器系统中提供的诸如硬盘或RAM之类的记录介质可以用作计算机可读存储介质,从而可以经由网络将程序提供到计算机1200。
以上使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所描述的范围。对本领域普通技术人员来说,显然可对上述实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,实施了如此变更或改良的方式都可包含在本发明的技术范围之内。
应该注意的是,权利要求书、说明书以及说明书附图中所示的装置、系统、程序以及方法中的动作、顺序、步骤以及阶段等各项处理的执行顺序,只要没有特别明示“在…之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,则可以任意顺序实现。关于权利要求书、说明书以及说明书附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。

Claims (13)

  1. 一种控制装置,其对具备镜头和驱动所述镜头的电动机的摄像装置进行控制,其特征在于,具备:
    第一获取部,其获取表示所述摄像装置姿势的姿势信息;
    确定部,其基于所述姿势信息来确定第一电流值;以及
    控制部,其执行速度控制,基于表示所述镜头速度的值与表示所述镜头目标速度的目标值之间的差值,控制提供给所述电动机的电流,从而使得所述镜头速度达到所述目标速度,
    所述控制部执行所述速度控制,使得在开始所述速度控制时将所述第一电流值的电流提供给所述电动机。
  2. 根据权利要求1所述的控制装置,其特征在于,所述控制部基于表示所述差值积分值的值来执行所述速度控制,
    所述确定部确定所述第一电流值作为表示所述差值积分值的值的初始值。
  3. 根据权利要求1所述的控制装置,其特征在于,所述确定部进而基于所述镜头的移动方向来确定所述第一电流值。
  4. 根据权利要求1所述的控制装置,其特征在于,所述确定部基于表示第一电流值、所述摄像装置姿势及所述镜头移动方向的预先规定的对应关系的信息来确定所述第一电流值。
  5. 根据权利要求4所述的控制装置,其特征在于,具备:
    第二获取部,在所述速度控制的执行过程中,其获取正提供给所述电动机的电流的第二电流值;以及
    更新部,其基于所述第二电流值更新第一电流值,所述第一电流值对应于所述预先规定的对应关系中所示的所述姿势信息所表示的所述摄像装置姿势及所述镜头移动方向。
  6. 根据权利要求5所述的控制装置,其特征在于,当所述第二电流值在预先规定的电流值范围内时,所述更新部基于所述第二电流值,对与所述预先规定的对应关系中所示的所述姿势信息所表示的所述摄像装置姿势及所述镜头移动方向相对应的第一电流值进行更新。
  7. 根据权利要求5所述的控制装置,其特征在于,利用所述第二获取部获取到自所述镜头开始移动经过预先规定的期间后的所述第二电流值时,所述更新部基于所述第二电流值,对与所述预先规定的对应关系中所示的所述姿势信息所表示的所述摄像装置姿 势及所述镜头移动方向相对应的第一电流值进行更新。
  8. 根据权利要求5所述的控制装置,其特征在于,所述更新部将与所述预先规定的对应关系中所示的所述姿势信息所表示的所述摄像装置姿势及所述镜头移动方向相对应的第一电流值更新为按照预先规定的条件减小所述第二电流值后的值。
  9. 根据权利要求1所述的控制装置,其特征在于,所述电动机经由齿轮或凸轮驱动所述镜头。
  10. 一种摄像装置,其特征在于,具备:
    根据权利要求1至9中任一项所述的控制装置、
    所述镜头、所述电动机以及
    经由所述镜头受光的图像传感器。
  11. 一种移动体,其特征在于,具备根据权利要求10所述的摄像装置以及以可调整所述摄像装置姿势的方式进行支撑的支撑机构并进行移动。
  12. 一种控制方法,其对具备镜头和驱动所述镜头的电动机的摄像装置进行控制,其特征在于,具备:
    获取表示所述摄像装置姿势的姿势信息的阶段;
    基于所述姿势信息来确定第一电流值的阶段;以及
    执行速度控制的阶段,所述阶段基于表示所述镜头速度的值与表示所述镜头目标速度的目标值之间的差值,控制提供给所述电动机的电流,从而使得所述镜头速度达到所述目标速度;
    所述执行速度控制的阶段包括:执行所述速度控制使得在开始所述速度控制时将所述第一电流值的电流提供给所述电动机的阶段。
  13. 一种程序,其特征在于,用于使计算机作为根据权利要求1至9中任一项所述的控制装置而发挥功能。
PCT/CN2019/113053 2018-10-24 2019-10-24 控制装置、摄像装置、移动体、控制方法以及程序 WO2020083342A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980033562.7A CN112136315A (zh) 2018-10-24 2019-10-24 控制装置、摄像装置、移动体、控制方法以及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018200139A JP6776494B2 (ja) 2018-10-24 2018-10-24 制御装置、撮像装置、移動体、制御方法、及びプログラム
JP2018-200139 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020083342A1 true WO2020083342A1 (zh) 2020-04-30

Family

ID=70330916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113053 WO2020083342A1 (zh) 2018-10-24 2019-10-24 控制装置、摄像装置、移动体、控制方法以及程序

Country Status (3)

Country Link
JP (1) JP6776494B2 (zh)
CN (1) CN112136315A (zh)
WO (1) WO2020083342A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836184A (zh) * 2003-08-21 2006-09-20 柯尼卡美能达精密光学株式会社 图像拾取装置
CN102147556A (zh) * 2011-03-09 2011-08-10 华为终端有限公司 用于移动设备的对焦方法、装置和移动设备
CN102752506A (zh) * 2011-04-20 2012-10-24 宏达国际电子股份有限公司 手持电子装置以及其中摄影设备的自动对焦方法
CN105282447A (zh) * 2015-11-10 2016-01-27 歌尔声学股份有限公司 一种摄像头模组的对焦方法和系统
CN105446055A (zh) * 2014-06-16 2016-03-30 南昌欧菲光电技术有限公司 相机模组及其对焦方法
CN105974553A (zh) * 2015-03-13 2016-09-28 三星电机株式会社 用于致动器的驱动器和相机模块
CN106470316A (zh) * 2015-08-20 2017-03-01 三星电子株式会社 使用温度和重力传感器控制相机的设备和包括其的系统
CN106506966A (zh) * 2016-11-30 2017-03-15 宇龙计算机通信科技(深圳)有限公司 一种对焦方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524145B2 (ja) * 1987-03-26 1996-08-14 旭光学工業株式会社 合焦用レンズの駆動装置
JPH0829666A (ja) * 1994-07-15 1996-02-02 Olympus Optical Co Ltd 光学素子の移動装置
JP3220930B2 (ja) * 1996-02-28 2001-10-22 京セラ株式会社 超音波モ−タの速度制御装置
JP5854732B2 (ja) * 2011-09-28 2016-02-09 キヤノン株式会社 撮像装置および撮像装置の制御方法
JP2013122565A (ja) * 2011-12-12 2013-06-20 Canon Inc レンズ装置および撮像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1836184A (zh) * 2003-08-21 2006-09-20 柯尼卡美能达精密光学株式会社 图像拾取装置
CN102147556A (zh) * 2011-03-09 2011-08-10 华为终端有限公司 用于移动设备的对焦方法、装置和移动设备
CN102752506A (zh) * 2011-04-20 2012-10-24 宏达国际电子股份有限公司 手持电子装置以及其中摄影设备的自动对焦方法
CN105446055A (zh) * 2014-06-16 2016-03-30 南昌欧菲光电技术有限公司 相机模组及其对焦方法
CN105974553A (zh) * 2015-03-13 2016-09-28 三星电机株式会社 用于致动器的驱动器和相机模块
CN106470316A (zh) * 2015-08-20 2017-03-01 三星电子株式会社 使用温度和重力传感器控制相机的设备和包括其的系统
CN105282447A (zh) * 2015-11-10 2016-01-27 歌尔声学股份有限公司 一种摄像头模组的对焦方法和系统
CN106506966A (zh) * 2016-11-30 2017-03-15 宇龙计算机通信科技(深圳)有限公司 一种对焦方法和装置

Also Published As

Publication number Publication date
JP6776494B2 (ja) 2020-10-28
JP2020067558A (ja) 2020-04-30
CN112136315A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
JP6496955B1 (ja) 制御装置、システム、制御方法、及びプログラム
WO2019206076A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
US20210199919A1 (en) Control device, photographing device, control method, and program
CN110337609B (zh) 控制装置、镜头装置、摄像装置、飞行体以及控制方法
WO2019174343A1 (zh) 活动体检测装置、控制装置、移动体、活动体检测方法及程序
JP6543875B2 (ja) 制御装置、撮像装置、飛行体、制御方法、プログラム
JP6481228B1 (ja) 決定装置、制御装置、撮像システム、飛行体、決定方法、及びプログラム
WO2021013096A1 (zh) 控制装置、摄像系统、移动体、控制方法以及程序
WO2020083342A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
WO2020216037A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
CN110785997B (zh) 控制装置、摄像装置、移动体以及控制方法
JP6565071B2 (ja) 制御装置、撮像装置、飛行体、制御方法、及びプログラム
WO2020088456A1 (zh) 控制装置、摄像装置、控制方法以及程序
CN111226170A (zh) 控制装置、移动体、控制方法以及程序
WO2021103865A1 (zh) 控制装置、摄像系统、移动体、控制方法以及程序
JP6878738B1 (ja) 制御装置、撮像システム、移動体、制御方法、及びプログラム
WO2019085794A1 (zh) 控制装置、摄像装置、飞行体、控制方法以及程序
WO2020156085A1 (zh) 图像处理装置、摄像装置、无人驾驶航空器、图像处理方法以及程序
WO2021052216A1 (zh) 控制装置、摄像装置、控制方法以及程序
WO2020063779A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
JP6413170B1 (ja) 決定装置、撮像装置、撮像システム、移動体、決定方法、及びプログラム
WO2020088438A1 (zh) 控制装置、摄像装置、系统、控制方法以及程序
CN111615663A (zh) 控制装置、摄像装置、摄像系统、移动体、控制方法以及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19876494

Country of ref document: EP

Kind code of ref document: A1